51
|
Abstract
Ca(2+) entry into cells of the peripheral immune system occurs through highly Ca(2+)-selective channels known as CRAC (calcium release-activated calcium) channels. CRAC channels are a very well-characterized example of store-operated Ca(2+) channels, so designated because they open when the endoplasmic reticulum (ER) Ca(2+) store becomes depleted. Physiologically, Ca(2+) is released from the ER lumen into the cytoplasm when activated receptors couple to phospholipase C and trigger production of the second messenger inositol 1,4,5-trisphosphate (IP(3)). IP(3) binds to IP(3) receptors in the ER membrane and activates Ca(2+) release. The proteins STIM and ORAI were discovered through limited and genome-wide RNAi screens, respectively, performed in Drosophila cells and focused on identifying modulators of store-operated Ca(2+) entry. STIM1 and STIM2 sense the depletion of ER Ca(2+) stores, whereas ORAI1 is a pore subunit of the CRAC channel. In this review, we discuss selected aspects of Ca(2+) signaling in cells of the immune system, focusing on the roles of STIM and ORAI proteins in store-operated Ca(2+) entry.
Collapse
Affiliation(s)
- Patrick G. Hogan
- Department of Pathology, Harvard Medical School, Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital Boston, Boston, Massachusetts 02115
| | - Richard S. Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - Anjana Rao
- Department of Pathology, Harvard Medical School, Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital Boston, Boston, Massachusetts 02115
| |
Collapse
|
52
|
Plasma membrane calcium pump and sodium–calcium exchanger in maintenance and control of calcium concentrations in platelets. Biochem Biophys Res Commun 2010; 392:41-6. [DOI: 10.1016/j.bbrc.2009.12.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 12/23/2009] [Indexed: 11/23/2022]
|
53
|
Abstract
Dynamic changes in cytoplasmic calcium concentration dictate the immunological fate and functions of lymphocytes. During the past few years, important details have been revealed about the mechanism of store-operated calcium entry in lymphocytes, including the molecular identity of calcium release-activated calcium (CRAC) channels and the endoplasmic reticulum (ER) calcium sensor (STIM1) responsible for CRAC channel activation following calcium depletion of stores. However, details of the potential fine regulation of CRAC channel activation that may be imposed on lymphocytes following physiologic stimulation within an inflammatory environment have not been fully addressed. In this review, we discuss several underexplored aspects of store-operated (CRAC-mediated) and store-independent calcium signaling in B lymphocytes. First, we discuss results suggesting that coupling between stores and CRAC channels may be regulated, allowing for fine tuning of CRAC channel activation following depletion of ER stores. Second, we discuss mechanisms that sustain the duration of calcium entry via CRAC channels. Finally, we discuss distinct calcium permeant non-selective cation channels (NSCCs) that are activated by innate stimuli in B cells, the potential means by which these innate calcium signaling pathways and CRAC channels crossregulate one another, and the mechanistic basis and physiologic consequences of innate calcium signaling.
Collapse
Affiliation(s)
- Leslie B King
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
54
|
|
55
|
Kummerow C, Junker C, Kruse K, Rieger H, Quintana A, Hoth M. The immunological synapse controls local and global calcium signals in T lymphocytes. Immunol Rev 2009; 231:132-47. [DOI: 10.1111/j.1600-065x.2009.00811.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
56
|
Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 2009; 136:876-90. [PMID: 19249086 PMCID: PMC2670439 DOI: 10.1016/j.cell.2009.02.014] [Citation(s) in RCA: 774] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 01/06/2009] [Accepted: 02/09/2009] [Indexed: 12/25/2022]
Abstract
Store-operated Ca(2+) channels activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER) are a major Ca(2+) entry pathway in nonexcitable cells and are essential for T cell activation and adaptive immunity. After store depletion, the ER Ca(2+) sensor STIM1 and the CRAC channel protein Orai1 redistribute to ER-plasma membrane (PM) junctions, but the fundamental issue of how STIM1 activates the CRAC channel at these sites is unresolved. Here, we identify a minimal, highly conserved 107-aa CRAC activation domain (CAD) of STIM1 that binds directly to the N and C termini of Orai1 to open the CRAC channel. Purified CAD forms a tetramer that clusters CRAC channels, but analysis of STIM1 mutants reveals that channel clustering is not sufficient for channel activation. These studies establish a molecular mechanism for store-operated Ca(2+) entry in which the direct binding of STIM1 to Orai1 drives the accumulation and the activation of CRAC channels at ER-PM junctions.
Collapse
Affiliation(s)
- Chan Young Park
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul J. Hoover
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Franklin M. Mullins
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Priti Bachhawat
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth D. Covington
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stefan Raunser
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ricardo E. Dolmetsch
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Richard S. Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
57
|
Goyal R, Angermann JE, Ostrovskaya O, Buchholz JN, Smith GD, Wilson SM. Enhanced capacitative calcium entry and sarcoplasmic-reticulum calcium storage capacity with advanced age in murine mesenteric arterial smooth muscle cells. Exp Gerontol 2009; 44:201-7. [PMID: 19017540 PMCID: PMC2667155 DOI: 10.1016/j.exger.2008.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 10/18/2008] [Accepted: 10/21/2008] [Indexed: 11/16/2022]
Abstract
Intracellular Ca(2+) signaling is important to perfusion pressure related arterial reactivity and to vascular disorders including hypertension, angina and ischemic stroke. We have recently shown that advancing-age leads to calcium signaling adaptations in mesenteric arterial myocytes from C57 BL/6 mice [Corsso, C.D., Ostrovskaya, O., McAllister, C.E., Murray, K., Hatton, W.J., Gurney, A.M., Spencer, N.J., Wilson, S.M., 2006. Effects of aging on Ca(2+) signaling in murine mesenteric arterial smooth muscle cells. Mech. Ageing Dev. 127, 315-323)] which may contribute to decrements in perfusion pressure related arterial contractility others have shown occur. Even still, the mechanisms underlying the changes in Ca(2+) signaling and arterial reactivity are unresolved. Ca(2+) transport and storage capabilities are thought to contribute to age-related Ca(2+) signaling dysfunctions in other cell types. The present studies were therefore designed to test the hypothesis that cytosolic and compartmental Ca(2+) homeostasis in mesenteric arterial myocytes changes with advanced age. The hypothesis was tested by performing digitalized fluorescence microscopy on mesenteric arterial myocytes isolated from 5- to 6-month and 29- to 30-month-old C57Bl/6 mice. The data provide evidence that with advanced age capacitative Ca(2+) entry and sarcoplasmic reticulum Ca(2+) storage are increased although sarcoplasmic reticulum Ca(2+) uptake and plasma membrane Ca(2+) extrusion are unaltered. Overall, the studies begin to resolve the mechanisms associated with age-related alterations in mesenteric arterial smooth muscle Ca(2+) signaling and their physiological consequences.
Collapse
Affiliation(s)
- Ravi Goyal
- Department of Pharmacology, University of Mississippi School of Pharmacy and Research Institute of Pharmaceutical Sciences, MS 38677, USA
| | | | | | | | | | | |
Collapse
|
58
|
Kruger WA, Yun CC, Monteith GR, Poronnik P. Muscarinic-induced recruitment of plasma membrane Ca2+-ATPase involves PSD-95/Dlg/Zo-1-mediated interactions. J Biol Chem 2009; 284:1820-30. [PMID: 19017653 PMCID: PMC2615496 DOI: 10.1074/jbc.m804590200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 10/30/2008] [Indexed: 11/06/2022] Open
Abstract
Efflux of cytosolic Ca2+ mediated by plasma membrane Ca2+-ATPases (PMCA) plays a key role in fine tuning the magnitude and duration of Ca2+ signaling following activation of G-protein-coupled receptors. However, the molecular mechanisms that underpin the trafficking of PMCA to the membrane during Ca2+ signaling remain largely unexplored in native cell models. One potential mechanism for the recruitment of proteins to the plasma membrane involves PDZ interactions. In this context, we investigated the role of PMCA interactions with the Na+/H+ exchanger regulatory factor 2 (NHERF-2) during muscarinic-induced Ca2+ mobilization in the HT-29 epithelial cell line. GST pull-downs in HT-29 cell lysates showed that the PDZ2 module of NHERF-2 bound to the PDZ binding motif on the C terminus of PMCA. Co-immunoprecipitations confirmed that PMCA1b and NHERF-2 associated under normal conditions in HT-29 cells. Cell surface biotinylations revealed significant increases in membrane-associated NHERF-2 and PMCA within 60 s following muscarinic activation, accompanied by increased association of the two proteins as seen by confocal microscopy. The recruitment of NHERF-2 to the membrane preceded that of PMCA, suggesting that NHERF-2 was involved in nucleating an efflux complex at the membrane. The muscarinic-mediated translocation of PMCA was abolished when NHERF-2 was silenced, and the rate of relative Ca2+ efflux was also reduced. These experiments also uncovered a NHERF-2-independent PMCA retrieval mechanism. Our findings describe rapid agonist-induced translocation of PMCA in a native cell model and suggest that NHERF-2 plays a key role in scaffolding and maintaining PMCA at the cell membrane.
Collapse
Affiliation(s)
- Wade A Kruger
- School of Biomedical Sciences and School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | |
Collapse
|
59
|
Abstract
Calcium signals mediate diverse cellular functions in immunological cells. Early studies with mast cells, then a preeminent model for studying Ca2+-dependent exocytosis, revealed several basic features of calcium signaling in non-electrically excitable cells. Subsequent studies in these and other cells further defined the basic processes such as inositol 1,4,5-trisphosphate-mediated release of Ca2+ from Ca2+ stores in the endoplasmic reticulum (ER); coupling of ER store depletion to influx of external Ca2+ through a calcium-release activated calcium (CRAC) channel now attributed to the interaction of the ER Ca2+ sensor, stromal interacting molecule-1 (STIM1), with a unique Ca2+-channel protein, Orai1/CRACM1, and subsequent uptake of excess Ca2+ into ER and mitochondria through ATP-dependent Ca2+ pumps. In addition, transient receptor potential channels and ion exchangers also contribute to the generation of calcium signals that may be global or have dynamic (e.g., waves and oscillations) and spatial resolution for specific functional readouts. This review discusses past and recent developments in this field of research, the pharmacologic agents that have assisted in these endeavors, and the mast cell as an exemplar for sorting out how calcium signals may regulate multiple outputs in a single cell.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Michael A. Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
60
|
Abstract
Calcium acts as a second messenger in many cell types, including lymphocytes. Resting lymphocytes maintain a low concentration of Ca2+. However, engagement of antigen receptors induces calcium influx from the extracellular space by several routes. A chief mechanism of Ca2+ entry in lymphocytes is through store-operated calcium (SOC) channels. The identification of two important molecular components of SOC channels, CRACM1 (the pore-forming subunit) and STIM1 (the sensor of stored calcium), has allowed genetic and molecular manipulation of the SOC entry pathway. In this review, we highlight advances in the understanding of Ca2+ signaling in lymphocytes with special emphasis on SOC entry. We also discuss outstanding questions and probable future directions of the field.
Collapse
Affiliation(s)
- Monika Vig
- Laboratory of Allergy and Immunology, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
61
|
Gao Y, Gillen CM, Wheatly MG. Cloning and characterization of a calmodulin gene (CaM) in crayfish Procambarus clarkii and expression during molting. Comp Biochem Physiol B Biochem Mol Biol 2008; 152:216-25. [PMID: 19095075 DOI: 10.1016/j.cbpb.2008.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/21/2008] [Accepted: 11/27/2008] [Indexed: 10/21/2022]
Abstract
Calmodulin (CaM) is a highly conserved calcium (Ca(2+)) binding protein that transduces Ca(2+) signals into downstream effects influencing a range of cellular processes, including Ca(2+) homeostasis. The present study explores CaM expression when Ca(2+) homeostasis is challenged during the mineralization cycle of the freshwater crayfish (Procambarus clarkii). In this paper we report the cloning of a CaM gene from axial abdominal crayfish muscle (referred to as pcCaM). The pcCaM mRNA is ubiquitously expressed but is far more abundant in excitable tissue (muscle, nerve) than in any epithelia (gill, antennal gland, digestive) suggesting that it plays a greater role in the biology of excitation than in epithelial ion transport. In muscle cells the pcCaM was colocalized on the plasma membrane with the Ca(2+) ATPase (PMCA) known to regulate intracellular Ca(2+) through basolateral efflux. While PMCA exhibits a greater upregulation in epithelia (than in non-epithelial tissues) during molting stages requiring transcellular Ca(2+) flux (pre- and postmolt compared with intermolt), expression of pcCaM exhibited a uniform increase in epithelial and non-epithelial tissues alike. The common increase in expression of CaM in all tissues during pre- and postmolt stages (compared with intermolt) suggests that the upregulation is systemically (hormonally) mediated. Colocalization of CaM with PMCA confirms physiological findings that their regulation is linked.
Collapse
Affiliation(s)
- Yongping Gao
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | | | | |
Collapse
|
62
|
Lyubchenko T, Nielsen JP, Miller SM, Liubchenko GA, Holers VM. Role of initial protein phosphorylation events and localized release-activated calcium influx in B cell antigen receptor signaling. J Leukoc Biol 2008; 85:298-309. [PMID: 19028960 DOI: 10.1189/jlb.0308193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An increase in intracellular calcium concentration is one of the major initial steps in B cell activation following antigen receptor (BCR) ligation. We show herein that in C57BL/6 murine B lymphocytes and in model cell lines, BCR-mediated calcium ion (Ca(2+)) influx occurs via highly selective Ca(2+) release-activated channels, and stromal interaction molecule 1 (STIM1) plays an important role in this pathway. We also demonstrate the temporal relation between Ca(2+)-dependent signaling events and formation of the immune synapse. Our data indicate that cytoplasmic Ca(2+) levels in areas adjacent to the immune synapse differ from those in the rest of the cytoplasm. Finally, a comparison of phosphorylation patterns of BCR-triggered signaling proteins in the presence or absence of Ca(2+) revealed the unanticipated finding that initial BCR-triggered, Ca(2+)-dependent tyrosine phosphorylation events involve predominantly Ca(2+) released from intracellular stores and that influx-derived Ca(2+) is not essential. This suggests a different role for this phase of Ca(2+) influx.
Collapse
Affiliation(s)
- Taras Lyubchenko
- Department of Medicine and Immunology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
63
|
Baggaley EM, Elliott AC, Bruce JIE. Oxidant-induced inhibition of the plasma membrane Ca2+-ATPase in pancreatic acinar cells: role of the mitochondria. Am J Physiol Cell Physiol 2008; 295:C1247-60. [PMID: 18787078 PMCID: PMC2584981 DOI: 10.1152/ajpcell.00083.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 09/08/2008] [Indexed: 01/19/2023]
Abstract
Impairment of the normal spatiotemporal pattern of intracellular Ca(2+) ([Ca(2+)](i)) signaling, and in particular, the transition to an irreversible "Ca(2+) overload" response, has been implicated in various pathophysiological states. In some diseases, including pancreatitis, oxidative stress has been suggested to mediate this Ca(2+) overload and the associated cell injury. We have previously demonstrated that oxidative stress with hydrogen peroxide (H(2)O(2)) evokes a Ca(2+) overload response and inhibition of plasma membrane Ca(2+)-ATPase (PMCA) in rat pancreatic acinar cells (Bruce JI and Elliott AC. Am J Physiol Cell Physiol 293: C938-C950, 2007). The aim of the present study was to further examine this oxidant-impaired inhibition of the PMCA, focusing on the role of the mitochondria. Using a [Ca(2+)](i) clearance assay in which mitochondrial Ca(2+) uptake was blocked with Ru-360, H(2)O(2) (50 microM-1 mM) markedly inhibited the PMCA activity. This H(2)O(2)-induced inhibition of the PMCA correlated with mitochondrial depolarization (assessed using tetramethylrhodamine methylester fluorescence) but could occur without significant ATP depletion (assessed using Magnesium Green fluorescence). The H(2)O(2)-induced PMCA inhibition was sensitive to the mitochondrial permeability transition pore (mPTP) inhibitors, cyclosporin-A and bongkrekic acid. These data suggest that oxidant-induced opening of the mPTP and mitochondrial depolarization may lead to an inhibition of the PMCA that is independent of mitochondrial Ca(2+) handling and ATP depletion, and we speculate that this may involve the release of a mitochondrial factor. Such a phenomenon may be responsible for the Ca(2+) overload response, and for the transition between apoptotic and necrotic cell death thought to be important in many disease states.
Collapse
Affiliation(s)
- Erin M Baggaley
- Faculty of Life Sciences, 2nd Floor Core Technology Facility, 46 Grafton St., Univ. of Manchester, Manchester M13 9NT, UK
| | | | | |
Collapse
|
64
|
González A, Pariente JA, Salido GM. Ethanol impairs calcium homeostasis following CCK-8 stimulation in mouse pancreatic acinar cells. Alcohol 2008; 42:565-573. [PMID: 18774672 DOI: 10.1016/j.alcohol.2008.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 12/15/2022]
Abstract
Alcohol consumption has long been associated with cell damage, and it is thought that it is involved in approximately 40% of cases of acute pancreatitis. In the present study, we have investigated the early effects of acute ethanol exposure on cholecystokinin octapeptide (CCK-8)-evoked calcium (Ca2+) signals in mouse pancreatic acinar cells. Cells were loaded with fura-2 and the changes in fluorescence were monitorized using a spectrofluorimeter. Our results show that stimulation of cells with 1 nM CCK-8 led to a transient increase in [Ca2+]c, which consisted of an initial increase followed by a decrease of [Ca2+]c toward a value close to the prestimulation level. In the presence of 50mM ethanol, CCK-8 lead to a greater Ca2+ mobilization compared to that obtained with CCK-8 alone. The peak of CCK-8-evoked Ca2+ response, the "steady-state level" reached 5 min after stimulation, the rate of decay of [Ca2+]c toward basal values and the total Ca2+ mobilization were significantly affected by ethanol pretreatment. Thapsigargin (Tps) induced an increase in [Ca2+]c due to its release from intracellular stores. After stimulation of cells with CCK-8 or Tps in the presence of 50mM ethanol, a greater [Ca2+]c peak response, a slower rate of decay of [Ca2+]c, and higher values of [Ca2+]c were observed. The effects of ethanol might result from a delayed or reduced Ca2+ extrusion from the cytosol toward the extracellular space by plasma membrane Ca2+ adenosine triphosphatase (ATPase), or into the cytosolic stores by the sarcoendoplasmic reticulum Ca2+-ATPase. Participation of mitochondria in Ca2+ handling is also demonstrated. The actions of ethanol on CCK-8 stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.
Collapse
Affiliation(s)
- Antonio González
- Department of Physiology, Cell Physiology Research Group, Faculty of Veterinary Sciences, University of Extremadura, Avenida Universidad s/n, PO Box 643, Cáceres, Spain.
| | | | | |
Collapse
|
65
|
Abstract
Positive and negative feedback loops are common regulatory elements in biological signaling systems. We discuss core feedback motifs that have distinct roles in shaping signaling responses in space and time. We also discuss approaches to experimentally investigate feedback loops in signaling systems.
Collapse
Affiliation(s)
- Onn Brandman
- Department of Cellular and Molecular Pharmacology, University of California-San Francisco and Howard Hughes Medical Institute, San Francisco, CA 94158, USA. E-mail:
| | - Tobias Meyer
- Department of Chemical and Systems Biology, 318 Campus Drive, Clark Building W200, Stanford University Medical Center, Stanford, CA 94305–5174, USA. E-mail:
| |
Collapse
|
66
|
Szikra T, Cusato K, Thoreson WB, Barabas P, Bartoletti TM, Krizaj D. Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors. J Physiol 2008; 586:4859-75. [PMID: 18755743 PMCID: PMC2614069 DOI: 10.1113/jphysiol.2008.160051] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 08/27/2008] [Indexed: 11/08/2022] Open
Abstract
Tonic synapses are specialized for sustained calcium entry and transmitter release, allowing them to operate in a graded fashion over a wide dynamic range. We identified a novel plasma membrane calcium entry mechanism that extends the range of rod photoreceptor signalling into light-adapted conditions. The mechanism, which shares molecular and physiological characteristics with store-operated calcium entry (SOCE), is required to maintain baseline [Ca(2+)](i) in rod inner segments and synaptic terminals. Sustained Ca(2+) entry into rod cytosol is augmented by store depletion, blocked by La(3+) and Gd(3+) and suppressed by organic antagonists MRS-1845 and SKF-96365. Store depletion and the subsequent Ca(2+) influx directly stimulated exocytosis in terminals of light-adapted rods loaded with the activity-dependent dye FM1-43. Moreover, SOCE blockers suppressed rod-mediated synaptic inputs to horizontal cells without affecting presynaptic voltage-operated Ca(2+) entry. Silencing of TRPC1 expression with small interference RNA disrupted SOCE in rods, but had no effect on cone Ca(2+) signalling. Rods were immunopositive for TRPC1 whereas cone inner segments immunostained with TRPC6 channel antibodies. Thus, SOCE modulates Ca(2+) homeostasis and light-evoked neurotransmission at the rod photoreceptor synapse mediated by TRPC1.
Collapse
Affiliation(s)
- Tamas Szikra
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
67
|
Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 2008; 454:538-42. [PMID: 18596693 PMCID: PMC2712442 DOI: 10.1038/nature07065] [Citation(s) in RCA: 441] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 05/08/2008] [Indexed: 12/20/2022]
Abstract
Ca(2+)-release-activated Ca(2+) (CRAC) channels generate sustained Ca(2+) signals that are essential for a range of cell functions, including antigen-stimulated T lymphocyte activation and proliferation. Recent studies have revealed that the depletion of Ca(2+) from the endoplasmic reticulum (ER) triggers the oligomerization of stromal interaction molecule 1 (STIM1), the ER Ca(2+) sensor, and its redistribution to ER-plasma membrane (ER-PM) junctions where the CRAC channel subunit ORAI1 accumulates in the plasma membrane and CRAC channels open. However, how the loss of ER Ca(2+) sets into motion these coordinated molecular rearrangements remains unclear. Here we define the relationships among [Ca(2+)](ER), STIM1 redistribution and CRAC channel activation and identify STIM1 oligomerization as the critical [Ca(2+)](ER)-dependent event that drives store-operated Ca(2+) entry. In human Jurkat leukaemic T cells expressing an ER-targeted Ca(2+) indicator, CRAC channel activation and STIM1 redistribution follow the same function of [Ca(2+)](ER), reaching half-maximum at approximately 200 microM with a Hill coefficient of approximately 4. Because STIM1 binds only a single Ca(2+) ion, the high apparent cooperativity suggests that STIM1 must first oligomerize to enable its accumulation at ER-PM junctions. To assess directly the causal role of STIM1 oligomerization in store-operated Ca(2+) entry, we replaced the luminal Ca(2+)-sensing domain of STIM1 with the 12-kDa FK506- and rapamycin-binding protein (FKBP12, also known as FKBP1A) or the FKBP-rapamycin binding (FRB) domain of the mammalian target of rapamycin (mTOR, also known as FRAP1). A rapamycin analogue oligomerizes the fusion proteins and causes them to accumulate at ER-PM junctions and activate CRAC channels without depleting Ca(2+) from the ER. Thus, STIM1 oligomerization is the critical transduction event through which Ca(2+) store depletion controls store-operated Ca(2+) entry, acting as a switch that triggers the self-organization and activation of STIM1-ORAI1 clusters at ER-PM junctions.
Collapse
Affiliation(s)
| | | | | | - Minnie M. Wu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Richard S. Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
68
|
Baggaley E, McLarnon S, Demeter I, Varga G, Bruce JIE. Differential regulation of the apical plasma membrane Ca(2+) -ATPase by protein kinase A in parotid acinar cells. J Biol Chem 2007; 282:37678-93. [PMID: 17938178 DOI: 10.1074/jbc.m703416200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cross-talk between intracellular calcium ([Ca(2+)](i)) signaling and cAMP defines the specificity of stimulus-response coupling in a variety of cells. Previous studies showed that protein kinase A (PKA) potentiates and phosphorylates the plasma membrane Ca(2+)-ATPase (PMCA) in a Ca(2+)-dependent manner in parotid acinar cells (Bruce, J. I. E., Yule, D. I., and Shuttleworth, T. J. (2002) J. Biol. Chem. 277, 48172-48181). The aim of this study was to further investigate the spatial regulation of [Ca(2+)](i) clearance in parotid acinar cells. Par-C10 cells were used to functionally isolate the apical and basolateral PMCA activity by applying La(3+) to the opposite side to inhibit the PMCA. Activation of PKA (using forskolin) differentially potentiated apical [Ca(2+)](i) clearance in mouse parotid acinar cells and apical PMCA activity in Par-C10 cells. Immunofluorescence of parotid tissue slices revealed that PMCA1 was distributed throughout the plasma membrane, PMCA2 was localized to the basolateral membrane, and PMCA4 was localized to the apical membrane of parotid acinar cells. However, in situ phosphorylation assays demonstrated that PMCA1 was the only isoform phosphorylated by PKA following stimulation. Similarly, immunofluorescence of acutely isolated parotid acinar cells showed that the regulatory subunit of PKA (RIIbeta) translocated to the apical region following stimulation. These data suggest that PKA-mediated phosphorylation of PMCA1 differentially regulates [Ca(2+)](i) clearance in the apical region of parotid acinar cells because of a dynamic translocation of PKA. Such tight spatial regulation of Ca(2+) efflux is likely important for the fine-tuning of Ca(2+)-dependent effectors close to the apical membrane important for the regulation of fluid secretion and exocytosis.
Collapse
Affiliation(s)
- Erin Baggaley
- Faculty of Life Sciences, the University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
69
|
Ribiczey P, Tordai A, Andrikovics H, Filoteo AG, Penniston JT, Enouf J, Enyedi Á, Papp B, Kovács T. Isoform-specific up-regulation of plasma membrane Ca2+ATPase expression during colon and gastric cancer cell differentiation. Cell Calcium 2007; 42:590-605. [PMID: 17433436 PMCID: PMC2096732 DOI: 10.1016/j.ceca.2007.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 02/09/2007] [Indexed: 02/06/2023]
Abstract
In this work we demonstrate a differentiation-induced up-regulation of the expression of plasma membrane Ca2+ATPase (PMCA) isoforms being present in various gastric/colon cancer cell types. We found PMCA1b as the major isoform in non-differentiated cancer cell lines, whereas the expression level of PMCA4b was significantly lower. Cell differentiation initiated with short chain fatty acids (SCFAs) and trichostatin A, or spontaneous differentiation of post-confluent cell cultures resulted in a marked induction of PMCA4b expression, while only moderately increased PMCA1b levels. Up-regulation of PMCA4b expression was demonstrated both at the protein and mRNA levels, and closely correlated with the induction of established differentiation markers. In contrast, the expression level of the Na+/K+-ATPase or that of the sarco/endoplasmic reticulum Ca2+ATPase 2 protein did not change significantly under these conditions. In membrane vesicles obtained from SCFA-treated gastric/colon cancer cells a marked increase in the PMCA-dependent Ca2+ transport activity was observed, indicating a general increase of PMCA function during the differentiation of these cancer cells. Because various PMCA isoforms display distinct functional characteristics, we suggest that up-regulated PMCA expression, together with a major switch in PMCA isoform pattern may significantly contribute to the differentiation of gastric/colon cancer cells. The analysis of PMCA expression may provide a new diagnostic tool for monitoring the tumor phenotype.
Collapse
Affiliation(s)
- Polett Ribiczey
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
| | - Attila Tordai
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
| | - Hajnalka Andrikovics
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
| | - Adelaida G. Filoteo
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, MN 55905, United States
| | | | - Jocelyne Enouf
- Institut National de la Santé et de la Recherche Médicale (INSERM) U689 E4, Paris, France
- Université Paris 7-Denis Diderot, IFR139, Site Lariboisière, Paris, France
| | - Ágnes Enyedi
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
| | - Béla Papp
- INSERM, U718, Laboratoire de Biologie Cellulaire Hématopoïétique, Paris, France
- Université Paris 7-Denis Diderot, Faculté de médecine, IFR105-Saint Louis-Institut Universitaire d’Hématologie, Paris, France
| | - Tünde Kovács
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
| |
Collapse
|
70
|
Abstract
Alterations in the cytosolic concentration of calcium ions (Ca2+) transmit information that is crucial for the development and function of B cells. Cytosolic Ca2+ concentration is determined by a balance of active transport and gradient-driven Ca2+ fluxes, both of which are subject to the influence of multiple receptors and environmental sensing pathways. Recent advances in genomics have allowed for the compilation of an increasingly comprehensive list of Ca2+ transporters and channels expressed by B cells. The increasing understanding of the function and regulation of these proteins has begun to shift the frontier of Ca2+ physiology in B cells from molecular analysis to determining how diverse inputs to cytosolic Ca2+ concentration are integrated in specific immunological contexts.
Collapse
Affiliation(s)
- Andrew M. Scharenberg
- Departments of Pediatrics and Immunology, University of Washington School of Medicine and, Children's Hospital and Regional Medical Center, Suite 300, 307 Westlake Ave, Seattle, WA 98109, USA
| | - Lisa A. Humphries
- Departments of Pediatrics and Immunology, University of Washington School of Medicine and, Children's Hospital and Regional Medical Center, Suite 300, 307 Westlake Ave, Seattle, WA 98109, USA
| | - David J. Rawlings
- Departments of Pediatrics and Immunology, University of Washington School of Medicine and, Children's Hospital and Regional Medical Center, Suite 300, 307 Westlake Ave, Seattle, WA 98109, USA
| |
Collapse
|
71
|
Quintana A, Schwindling C, Wenning AS, Becherer U, Rettig J, Schwarz EC, Hoth M. T cell activation requires mitochondrial translocation to the immunological synapse. Proc Natl Acad Sci U S A 2007; 104:14418-23. [PMID: 17726106 PMCID: PMC1964825 DOI: 10.1073/pnas.0703126104] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Indexed: 11/18/2022] Open
Abstract
T helper (Th) cell activation is required for the adaptive immune response. Formation of the immunological synapse (IS) between Th cells and antigen-presenting cells is essential for Th cell activation. IS formation induces the polarization and redistribution of many signaling molecules; however, very little is known about organelle redistribution during IS formation in Th cells. We show that formation of the IS induced cytoskeleton-dependent mitochondrial redistribution to the immediate vicinity of the IS. Using total internal reflection microscopy, we found that upon stimulation, the distance between the IS and mitochondria was decreased to values<200 nm. Consequently, mitochondria close to the IS took up more Ca2+ than the ones farther away from the IS. The redistribution of mitochondria to the IS was necessary to maintain Ca2+ influx across the plasma membrane and Ca2+-dependent Th cell activation. Our results suggest that mitochondria are part of the signaling complex at the IS and that their localization close to the IS is required for Th cell activation.
Collapse
Affiliation(s)
- Ariel Quintana
- Department of Physiology, Saarland University, Gebäude 58/59, D-66421 Homburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
72
|
Bruce JIE, Elliott AC. Oxidant-impaired intracellular Ca2+ signaling in pancreatic acinar cells: role of the plasma membrane Ca2+-ATPase. Am J Physiol Cell Physiol 2007; 293:C938-50. [PMID: 17494627 DOI: 10.1152/ajpcell.00582.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pancreatitis is an inflammatory disease of pancreatic acinar cells whereby intracellular calcium concentration ([Ca(2+)](i)) signaling and enzyme secretion are impaired. Increased oxidative stress has been suggested to mediate the associated cell injury. The present study tested the effects of the oxidant, hydrogen peroxide, on [Ca(2+)](i) signaling in rat pancreatic acinar cells by simultaneously imaging fura-2, to measure [Ca(2+)](i), and dichlorofluorescein, to measure oxidative stress. Millimolar concentrations of hydrogen peroxide increased cellular oxidative stress and irreversibly increased [Ca(2+)](i), which was sensitive to antioxidants and removal of external Ca(2+), and ultimately led to cell lysis. Responses were also abolished by pretreatment with (sarco)endoplasmic reticulum Ca(2+)-ATPase inhibitors, unless cells were prestimulated with cholecystokinin to promote mitochondrial Ca(2+) uptake. This suggests that hydrogen peroxide promotes Ca(2+) release from the endoplasmic reticulum and the mitochondria and that it promotes Ca(2+) influx. Lower concentrations of hydrogen peroxide (10-100 muM) increased [Ca(2+)](i) and altered cholecystokinin-evoked [Ca(2+)](i) oscillations with marked heterogeneity, the severity of which was directly related to oxidative stress, suggesting differences in cellular antioxidant capacity. These changes in [Ca(2+)](i) also upregulated the activity of the plasma membrane Ca(2+)-ATPase in a Ca(2+)-dependent manner, whereas higher concentrations (0.1-1 mM) inactivated the plasma membrane Ca(2+)-ATPase. This may be important in facilitating "Ca(2+) overload," resulting in cell injury associated with pancreatitis.
Collapse
Affiliation(s)
- Jason I E Bruce
- Faculty of Life Sciences, 2nd Floor Core Technology Facility, 46 Grafton St., The Univ. of Manchester, Manchester M13 9NT, UK.
| | | |
Collapse
|
73
|
Abstract
Calcium signals in cells of the immune system participate in the regulation of cell differentiation, gene transcription and effector functions. An increase in intracellular levels of calcium ions (Ca2+) results from the engagement of immunoreceptors, such as the T-cell receptor, B-cell receptor and Fc receptors, as well as chemokine and co-stimulatory receptors. The major pathway that induces an increase in intracellular Ca2+ levels in lymphocytes is through store-operated calcium entry (SOCE) and calcium-release-activated calcium (CRAC) channels. This Review focuses on the role of Ca2+ signals in lymphocyte functions, the signalling pathways leading to Ca2+ influx, the function of the recently discovered regulators of Ca2+ influx (STIM and ORAI), and the relationship between Ca2+ signals and diseases of the immune system.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA.
| |
Collapse
|
74
|
Mueller P, Quintana A, Griesemer D, Hoth M, Pieters J. Disruption of the cortical actin cytoskeleton does not affect store operated Ca2+ channels in human T-cells. FEBS Lett 2007; 581:3557-62. [PMID: 17624329 DOI: 10.1016/j.febslet.2007.06.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/24/2007] [Accepted: 06/25/2007] [Indexed: 11/17/2022]
Abstract
Lymphocyte signaling and activation leads to the influx of extracellular Ca(2+) via the activation of Ca(2+) release activated Ca(2+) (CRAC) channels in the plasma membrane. Activation of CRAC channels occurs following emptying of the endoplasmic reticulum intracellular Ca(2+) stores. One model to explain the coupling of store-emptying to CRAC activation is the secretion-like conformational coupling model. This model proposes that store depletion increases junctions between the endoplasmic reticulum and the plasma membrane in a manner that could be regulated by the cortical actin cytoskeleton. Here, we show that stabilization or depolymerization of the actin cytoskeleton failed to affect CRAC activation. We therefore conclude that rearrangement of the actin cytoskeleton is dispensable for store-operated Ca(2+) entry in T-cells.
Collapse
Affiliation(s)
- Philipp Mueller
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
75
|
Silva HS, Kapela A, Tsoukias NM. A mathematical model of plasma membrane electrophysiology and calcium dynamics in vascular endothelial cells. Am J Physiol Cell Physiol 2007; 293:C277-93. [PMID: 17459942 DOI: 10.1152/ajpcell.00542.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular endothelial cells (ECs) modulate smooth muscle cell (SMC) contractility, assisting in vascular tone regulation. Cytosolic Ca2+ concentration ([Ca2+]i) and membrane potential ( Vm) play important roles in this process by controlling EC-dependent vasoactive signals and intercellular communication. The present mathematical model integrates plasmalemma electrophysiology and Ca2+ dynamics to investigate EC responses to different stimuli and the controversial relationship between [Ca2+]i and Vm. The model contains descriptions for the intracellular balance of major ionic species and the release of Ca2+ from intracellular stores. It also expands previous formulations by including more detailed transmembrane current descriptions. The model reproduces Vm responses to volume-regulated anion channel (VRAC) blockers and extracellular K+ concentration ([K+]o) challenges, predicting 1) that Vm changes upon VRAC blockade are [K+]o dependent and 2) a biphasic response of Vm to increasing [K+]o. Simulations of agonist-induced Ca2+ mobilization replicate experiments under control and Vm hyperpolarization blockade conditions. They show that peak [Ca2+]i is governed by store Ca2+ release while Ca2+ influx (and consequently Vm) impacts more the resting and plateau [Ca2+]i. The Vm sensitivity of rest and plateau [Ca2+]i is dictated by a [Ca2+]i “buffering” system capable of masking the Vm-dependent transmembrane Ca2+ influx. The model predicts plasma membrane Ca2+-ATPase and Ca2+ permeability as main players in this process. The heterogeneous Vm impact on [Ca2+]i may elucidate conflicting reports on how Vm influences EC Ca2+. The present study forms the basis for the development of multicellular EC-SMC models that can assist in understanding vascular autoregulation in health and disease.
Collapse
Affiliation(s)
- Haroldo S Silva
- Dept. of Biomedical Engineering, Florida International University, 10555 W. Flagler St., TEC 2674, Miami, FL 33174, USA
| | | | | |
Collapse
|
76
|
Dissecting ICRAC, a store-operated calcium current. Trends Biochem Sci 2007; 32:235-45. [PMID: 17434311 DOI: 10.1016/j.tibs.2007.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 03/05/2007] [Accepted: 03/28/2007] [Indexed: 02/02/2023]
Abstract
The use of Ca(2+) for intracellular signalling necessitates tight local and global control of cytoplasmic Ca(2+) concentration, and mechanisms for maintaining the net Ca(2+) balance. It has long been recognized that intracellular Ca(2+) stores exert control over Ca(2+) influx at the plasma membrane through a process of store-operated Ca(2+) entry (SOCE). The Ca(2+) current I(CRAC) is the best characterized instance of SOCE, but the elements of the pathway leading to I(CRAC) have eluded biochemical definition for more than a decade. However, the recent identification of key proteins underlying I(CRAC)--STIM1 and Orai1--has led to several insights into this ER-to-plasma membrane signalling system and to the recognition that it is an ancient and conserved mechanism in multicellular organisms.
Collapse
|
77
|
Patterson M, Sneyd J, Friel DD. Depolarization-induced calcium responses in sympathetic neurons: relative contributions from Ca2+ entry, extrusion, ER/mitochondrial Ca2+ uptake and release, and Ca2+ buffering. ACTA ACUST UNITED AC 2007; 129:29-56. [PMID: 17190902 PMCID: PMC2151609 DOI: 10.1085/jgp.200609660] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many models have been developed to account for stimulus-evoked [Ca(2+)] responses, but few address how responses elicited in specific cell types are defined by the Ca(2+) transport and buffering systems that operate in the same cells. In this study, we extend previous modeling studies by linking the time course of stimulus-evoked [Ca(2+)] responses to the underlying Ca(2+) transport and buffering systems. Depolarization-evoked [Ca(2+)](i) responses were studied in sympathetic neurons under voltage clamp, asking how response kinetics are defined by the Ca(2+) handling systems expressed in these cells. We investigated five cases of increasing complexity, comparing observed and calculated responses deduced from measured Ca(2+) handling properties. In Case 1, [Ca(2+)](i) responses were elicited by small Ca(2+) currents while Ca(2+) transport by internal stores was inhibited, leaving plasma membrane Ca(2+) extrusion intact. In Case 2, responses to the same stimuli were measured while mitochondrial Ca(2+) uptake was active. In Case 3, responses were elicited as in Case 2 but with larger Ca(2+) currents that produce larger and faster [Ca(2+)](i) elevations. Case 4 included the mitochondrial Na/Ca exchanger. Finally, Case 5 included ER Ca(2+) uptake and release pathways. We found that [Ca(2+)](i) responses elicited by weak stimuli (Cases 1 and 2) could be quantitatively reconstructed using a spatially uniform model incorporating the measured properties of Ca(2+) entry, removal, and buffering. Responses to strong depolarization (Case 3) could not be described by this model, but were consistent with a diffusion model incorporating the same Ca(2+) transport and buffering descriptions, as long as endogenous buffers have low mobility, leading to steep radial [Ca(2+)](i) gradients and spatially nonuniform Ca(2+) loading by mitochondria. When extended to include mitochondrial Ca(2+) release (Case 4) and ER Ca(2+) transport (Case 5), the diffusion model could also account for previous measurements of stimulus-evoked changes in total mitochondrial and ER Ca concentration.
Collapse
Affiliation(s)
- Michael Patterson
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
78
|
Quintana A, Schwarz EC, Schwindling C, Lipp P, Kaestner L, Hoth M. Sustained Activity of Calcium Release-activated Calcium Channels Requires Translocation of Mitochondria to the Plasma Membrane. J Biol Chem 2006; 281:40302-9. [PMID: 17056596 DOI: 10.1074/jbc.m607896200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A rise of the intracellular Ca(2+) concentration has multiple signaling functions. Sustained Ca(2+) influx across plasma membrane through calcium release-activated calcium (CRAC) channels is required for T-cell development in the thymus, gene transcription, and proliferation and differentiation of naïve T-cells into armed effectors cells. Intracellular Ca(2+) signals are shaped by mitochondria, which function as a highly dynamic Ca(2+) buffer. However, the precise role of mitochondria for Ca(2+)-dependent T-cell activation is unknown. Here we have shown that mitochondria are translocated to the plasma membrane as a consequence of Ca(2+) influx and that this directed movement is essential to sustain Ca(2+) influx through CRAC channels. The decreased distance between mitochondria and the plasma membrane enabled mitochondria to take up large amounts of inflowing Ca(2+) at the plasma membrane, thereby preventing Ca(2+)-dependent inactivation of CRAC channels and sustaining Ca(2+) signals. Inhibition of kinesin-dependent mitochondrial movement along microtubules abolished mitochondrial translocation and reduced sustained Ca(2+) signals. Our results show how a directed movement of mitochondria is used to control important cellular functions such as Ca(2+)-dependent T-cell activation.
Collapse
Affiliation(s)
- Ariel Quintana
- Department of Physiology, Institute for Molecular Cell Biology, Saarland University, 66421 Homburg, Germany.
| | | | | | | | | | | |
Collapse
|
79
|
Luik RM, Wu MM, Buchanan J, Lewis RS. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. ACTA ACUST UNITED AC 2006; 174:815-25. [PMID: 16966423 PMCID: PMC2064336 DOI: 10.1083/jcb.200604015] [Citation(s) in RCA: 520] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The activation of store-operated Ca2+ entry by Ca2+ store depletion has long been hypothesized to occur via local interactions of the endoplasmic reticulum (ER) and plasma membrane, but the structure involved has never been identified. Store depletion causes the ER Ca2+ sensor stromal interacting molecule 1 (STIM1) to form puncta by accumulating in junctional ER located 10–25 nm from the plasma membrane (see Wu et al. on p. 803 of this issue). We have combined total internal reflection fluorescence (TIRF) microscopy and patch-clamp recording to localize STIM1 and sites of Ca2+ influx through open Ca2+ release–activated Ca2+ (CRAC) channels in Jurkat T cells after store depletion. CRAC channels open only in the immediate vicinity of STIM1 puncta, restricting Ca2+ entry to discrete sites comprising a small fraction of the cell surface. Orai1, an essential component of the CRAC channel, colocalizes with STIM1 after store depletion, providing a physical basis for the local activation of Ca2+ influx. These studies reveal for the first time that STIM1 and Orai1 move in a coordinated fashion to form closely apposed clusters in the ER and plasma membranes, thereby creating the elementary unit of store-operated Ca2+ entry.
Collapse
Affiliation(s)
- Riina M Luik
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
80
|
Wu MM, Buchanan J, Luik RM, Lewis RS. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. ACTA ACUST UNITED AC 2006; 174:803-13. [PMID: 16966422 PMCID: PMC2064335 DOI: 10.1083/jcb.200604014] [Citation(s) in RCA: 645] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stromal interacting molecule 1 (STIM1), reported to be an endoplasmic reticulum (ER) Ca2+ sensor controlling store-operated Ca2+ entry, redistributes from a diffuse ER localization into puncta at the cell periphery after store depletion. STIM1 redistribution is proposed to be necessary for Ca2+ release–activated Ca2+ (CRAC) channel activation, but it is unclear whether redistribution is rapid enough to play a causal role. Furthermore, the location of STIM1 puncta is uncertain, with recent reports supporting retention in the ER as well as insertion into the plasma membrane (PM). Using total internal reflection fluorescence (TIRF) microscopy and patch-clamp recording from single Jurkat cells, we show that STIM1 puncta form several seconds before CRAC channels open, supporting a causal role in channel activation. Fluorescence quenching and electron microscopy analysis reveal that puncta correspond to STIM1 accumulation in discrete subregions of junctional ER located 10–25 nm from the PM, without detectable insertion of STIM1 into the PM. Roughly one third of these ER–PM contacts form in response to store depletion. These studies identify an ER structure underlying store-operated Ca2+ entry, whose extreme proximity to the PM may enable STIM1 to interact with CRAC channels or associated proteins.
Collapse
Affiliation(s)
- Minnie M Wu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
81
|
Montalvo GB, Artalejo AR, Gilabert JA. ATP from subplasmalemmal mitochondria controls Ca2+-dependent inactivation of CRAC channels. J Biol Chem 2006; 281:35616-23. [PMID: 16982621 DOI: 10.1074/jbc.m603518200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A sustained Ca2+ entry is the primary signal for T lymphocyte activation after antigen recognition. This Ca2+ entry mainly occurs through store-operated Ca2+ channels responsible for a highly selective Ca2+ current known as I(CRAC). Ca2+ ions act as negative feedback regulators of I(CRAC), promoting its inactivation. Mitochondria, which act as intracellular Ca2+ buffers, have been proposed to control all stages of CRAC current and, hence, intracellular Ca2+ signaling in several types of non-excitable cells. Using the whole-cell configuration of the patch clamp technique, which allows control of the intracellular environment, we report here that respiring mitochondria located close to CRAC channels can regulate slow Ca2+-dependent inactivation of I(CRAC) by increasing the Ca2+-buffering capacity beneath the plasma membrane, mainly through the release of ATP.
Collapse
Affiliation(s)
- Gema B Montalvo
- Department of Toxicology and Pharmacology, Instituto de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n. 28040 Madrid, Spain
| | | | | |
Collapse
|
82
|
Pellegrini M, Finetti F, Petronilli V, Ulivieri C, Giusti F, Lupetti P, Giorgio M, Pelicci PG, Bernardi P, Baldari CT. p66SHC promotes T cell apoptosis by inducing mitochondrial dysfunction and impaired Ca2+ homeostasis. Cell Death Differ 2006; 14:338-47. [PMID: 16794602 DOI: 10.1038/sj.cdd.4401997] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
p66Shc, a redox enzyme that enhances reactive oxygen species (ROS) production by mitochondria, promotes T cell apoptosis. We have addressed the mechanisms regulating p66Shc-dependent apoptosis in T cells exposed to supraphysiological increases in [Ca2+]c. p66Shc expression resulted in profound mitochondrial dysfunction in response to the Ca2+ ionophore A23187, as revealed by dissipation of mitochondrial transmembrane potential, cytochrome c release and decreased ATP levels. p66Shc expression also caused a dramatic alteration in the cells' Ca2+-handling ability, which resulted in Ca2+ overload after A23187 treatment. The impairment in Ca2+ homeostasis was ROS dependent and caused by defective Ca2+ extrusion due at least in part to decreased plasma membrane ATPase (PMCA) expression. Both effects of p66Shc required Ca2+-dependent serine-36 phosphorylation. The mitochondrial effects of p66Shc were potentiated by but not strictly dependent on the rise in [Ca2+]c. Thus, Ca2+-dependent p66Shc phosphorylation causes both mitochondrial dysfunction and impaired Ca2+ homeostasis, which synergize in promoting T cell apoptosis.
Collapse
Affiliation(s)
- M Pellegrini
- Department of Evolutionary Biology, University of Siena, Siena I-53100, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Duszyński J, Kozieł R, Brutkowski W, Szczepanowska J, Zabłocki K. The regulatory role of mitochondria in capacitative calcium entry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:380-7. [PMID: 16777055 DOI: 10.1016/j.bbabio.2006.04.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 04/13/2006] [Accepted: 04/20/2006] [Indexed: 11/19/2022]
Abstract
Capacitative regulation of calcium entry is a major mechanism of Ca2+ influx into electrically non-excitable cells, but it also operates in some excitable ones. It participates in the refilling of intracellular calcium stores and in the generation of Ca2+ signals in excited cells. The mechanism which couples depletion of intracellular calcium stores located in the endoplasmic reticulum with opening of store-operated calcium channels in the plasma membrane is not clearly understood. Mitochondria located in close proximity to Ca2+ channels are exposed to high Ca2+ concentration, and therefore, they are able to accumulate this cation effectively. This decreases local Ca2+ concentration and thereby affects calcium-dependent processes, such as depletion and refilling of the intracellular calcium stores and opening of the store-operated channels. Finally, mitochondria modulate the intensity and the duration of calcium signals induced by extracellular stimuli. Ca2+ uptake by mitochondria requires these organelles to be in the energized state. On the other hand, Ca2+ flux into mitochondria stimulates energy metabolism. To sum up, mitochondria couple cellular metabolism with calcium homeostasis and signaling.
Collapse
Affiliation(s)
- Jerzy Duszyński
- Nencki Institute of Experimental Biology, 3 Pasteur Str., 02-093 Warsaw, Poland
| | | | | | | | | |
Collapse
|
84
|
Feske S, Prakriya M, Rao A, Lewis RS. A severe defect in CRAC Ca2+ channel activation and altered K+ channel gating in T cells from immunodeficient patients. ACTA ACUST UNITED AC 2006; 202:651-62. [PMID: 16147976 PMCID: PMC2212870 DOI: 10.1084/jem.20050687] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Engagement of the TCR triggers sustained Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels, which helps drive gene expression underlying the T cell response to pathogens. The identity and activation mechanism of CRAC channels at a molecular level are unknown. We have analyzed ion channel expression and function in T cells from SCID patients which display 1–2% of the normal level of Ca2+ influx and severely impaired T cell activation. The lack of Ca2+ influx is not due to deficient regulation of Ca2+ stores or expression of several genes implicated in controlling Ca2+ entry in lymphocytes (kcna3/Kv1.3, kcnn4/IKCa1, trpc1, trpc3, trpv6, stim1). Instead, electrophysiologic measurements show that the influx defect is due to a nearly complete absence of functional CRAC channels. The lack of CRAC channel activity is correlated with diminished voltage sensitivity and slowed activation kinetics of the voltage-dependent Kv1.3 channel. These results demonstrate that CRAC channels provide the major, if not sole, pathway for Ca2+ entry activated by the TCR in human T cells. They also offer evidence for a functional link between CRAC and Kv1.3 channels, and establish a model system for molecular genetic studies of the CRAC channel.
Collapse
Affiliation(s)
- Stefan Feske
- CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
85
|
Gallo EM, Canté-Barrett K, Crabtree GR. Lymphocyte calcium signaling from membrane to nucleus. Nat Immunol 2005; 7:25-32. [PMID: 16357855 DOI: 10.1038/ni1295] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 11/14/2005] [Indexed: 12/14/2022]
Abstract
Ca(2+) signals control a variety of lymphocyte responses, ranging from short-term cytoskeletal modifications to long-term changes in gene expression. The identification of molecules and channels that modulate Ca(2+) entry into T and B lymphocytes has both provided details of the molecular events leading to immune responses and raised controversy. Here we review studies of the pathways that allow Ca(2+) entry, the function of Ca(2+) in the regulation of cell polarity and motility and the principles by which Ca(2+)-dependent transcription regulates lymphocyte function.
Collapse
Affiliation(s)
- Elena M Gallo
- Program in Immunology, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
86
|
Frieden M, Arnaudeau S, Castelbou C, Demaurex N. Subplasmalemmal Mitochondria Modulate the Activity of Plasma Membrane Ca2+-ATPases. J Biol Chem 2005; 280:43198-208. [PMID: 16216868 DOI: 10.1074/jbc.m510279200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondria are dynamic organelles that modulate cellular Ca2+ signals by interacting with Ca2+ transporters on the plasma membrane or the endoplasmic reticulum (ER). To study how mitochondria dynamics affects cell Ca2+ homeostasis, we overexpressed two mitochondrial fission proteins, hFis1 and Drp1, and measured Ca2+ changes within the cytosol and the ER in HeLa cells. Both proteins fragmented mitochondria, decreased their total volume by 25-40%, and reduced the fraction of subplasmalemmal mitochondria by 4-fold. The cytosolic Ca2+ signals elicited by histamine were unaltered in cells lacking subplasmalemmal mitochondria as long as Ca2+ was present in the medium, but the signals were significantly blunted when Ca2+ was removed. Upon Ca2+ withdrawal, the free ER Ca2+ concentration decreased rapidly, and hFis1 cells were unable to respond to repetitive histamine stimulations. The loss of stored Ca2+ was due to an increased activity of plasma membrane Ca2+-ATPase (PMCA) pumps and was associated with an increased influx of Ca2+ and Mn2+ across store-operated Ca2+ channels. The increased Ca2+ influx compensated for the loss of stored Ca2+, and brief Ca2+ additions between successive agonist stimulations fully corrected subsequent histamine responses. We propose that the lack of subplasmalemmal mitochondria disrupts the transfer of Ca2+ from plasma membrane channels to the ER and that the resulting increase in subplasmalemmal [Ca2+] up-regulates the activity of PMCA. The increased Ca2+ extrusion promotes ER depletion and the subsequent activation of store-operated Ca2+ channels. Cells thus adapt to the lack of subplasmalemmal mitochondria by relying on external rather than on internal Ca2+ for signaling.
Collapse
Affiliation(s)
- Maud Frieden
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
87
|
Neumann AK, Yang J, Biju MP, Joseph SK, Johnson RS, Haase VH, Freedman BD, Turka LA. Hypoxia inducible factor 1 alpha regulates T cell receptor signal transduction. Proc Natl Acad Sci U S A 2005; 102:17071-6. [PMID: 16286658 PMCID: PMC1287984 DOI: 10.1073/pnas.0506070102] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 10/07/2005] [Indexed: 12/11/2022] Open
Abstract
Low oxygen pressures exist in many solid tissues, including primary and secondary lymphoid organs. One key element in cellular adaptation to hypoxia is induced expression of hypoxia inducible factor (Hif) 1alpha. Here, we have examined the effect of Hif-1alpha, isolated from the myriad other effects of hypoxia, on T cell receptor (TCR) signaling in thymocytes. Because pVHL (von Hippel-Lindau protein) directs the proteolysis of Hif-1alpha under "normoxic" conditions, we achieved constitutive stabilization of Hif-1alpha through thymic deletion of Vhlh and reversed Hif-1alpha stabilization with double deletion of Vhlh and Hif-1alpha. We found that constitutive activity of Hif-1alpha resulted in diminished Ca(2+) response upon TCR crosslinking despite equivalent activation of phospholipase C(gamma1), normal intracellular Ca(2+) stores, and normal entry of Ca(2+) across the plasma membrane. Altered Ca(2+) response was instead due to accelerated removal of Ca(2+) from the cytoplasm into intracellular compartments, which occurred in association with Hif-1alpha-dependent overexpression of the calcium pump SERCA2 (sarcoplasmic/endoplasmic reticulum calcium ATPase 2). These data suggest a unique mechanism for control of TCR signaling through Hif-1alpha, which may be operative at the physiologic oxygen tensions seen in solid lymphoid organs.
Collapse
Affiliation(s)
- Aaron K Neumann
- Department of Medicine and Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Colina C, Flores A, Castillo C, Garrido MDR, Israel A, DiPolo R, Benaim G. Ceramide-1-P induces Ca2+ mobilization in Jurkat T-cells by elevation of Ins(1,4,5)-P3 and activation of a store-operated calcium channel. Biochem Biophys Res Commun 2005; 336:54-60. [PMID: 16122699 DOI: 10.1016/j.bbrc.2005.08.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
Sphingolipids comprise a very important class of second messengers involved in cell growth, differentiation, and apoptosis, among other different functions. Recently, these lipids have been implicated in calcium mobilization in different cell lines, including Jurkat T-lymphocytes. However, the effect of each particular sphingolipid appears to be cell-line specific. Among them, the least studied is ceramide-1-P (Cer-1-P). Here, we show that Cer-1-P increased the intracellular Ca(2+) concentration in Jurkat T-cells. Furthermore, laser-scanning confocal microscopy indicated that Ca(2+) is released from the endoplasmic reticulum. An effect on store-operated Ca(2+) channels was evidenced by whole-cell "patch clamp" measurements after Cer-1-P induced Ca(2+) store depletion. The mechanism of action of Cer-1-P resembles that of the Jurkat anti-TCR antibody, but differs from that of ceramide, since Cer-1-P induced an increase in Ins(1,4,5)-P(3).
Collapse
Affiliation(s)
- Claudia Colina
- Laboratorio de Permeabilidad Iónica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | | | | | | | | | | | | |
Collapse
|
89
|
Lee WJ, Robinson JA, Holman NA, McCall MN, Roberts-Thomson SJ, Monteith GR. Antisense-mediated Inhibition of the Plasma Membrane Calcium-ATPase Suppresses Proliferation of MCF-7 Cells. J Biol Chem 2005; 280:27076-84. [PMID: 15911623 DOI: 10.1074/jbc.m414142200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alterations in Ca2+ signaling may contribute to tumorigenesis and the mechanism of action of some anti-cancer drugs. The plasma membrane calcium-ATPase (PMCA) is a crucial controller of intracellular Ca2+ signaling. Altered PMCA expression occurs in the mammary gland during lactation and in breast cancer cell lines. Despite this, the consequences of PMCA inhibition in breast cancer cell lines have not been investigated. In this work, we used Tet-off PMCA antisense-expressing MCF-7 cells to assess the effects of PMCA inhibition in a human breast cancer cell line. At a level of PMCA inhibition that did not completely prevent PMCA-mediated Ca2+ efflux and did not induce cell death, a dramatic inhibition of cellular proliferation was observed. Fluorescence-activated cell sorting analysis indicated that PMCA antisense involves changes in cell cycle kinetics but not cell cycle arrest. We concluded that modulation of PMCA has important effects in regulating the proliferation of human breast cancer MCF-7 cells.
Collapse
Affiliation(s)
- Won Jae Lee
- School of Pharmacy, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
90
|
Penheiter AR, Filoteo AG, Penniston JT, Caride AJ. Kinetic analysis of the calmodulin-binding region of the plasma membrane calcium pump isoform 4b. Biochemistry 2005; 44:2009-20. [PMID: 15697226 DOI: 10.1021/bi0488552] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sequence L(1086)RRGQILWFRGLNRIQTQIKVVKAFHSS(1113) (peptide C28) is responsible for calmodulin binding to PMCA4b. In this work, peptides following the above sequence were progressively shortened either at the N-terminus (C28NDelta3, C28NDelta5, or C28NDelta6) or at the C-terminus (C20, C22, C23, and C25). Competitive inhibition of PMCA activity was used to measure apparent dissociation constants of the complexes between calmodulin and C28 or progressively shortened peptides. Additionally, equilibrium titrations were used to measure the apparent dissociation constants of the various peptides with TA-calmodulin by changes in TA-calmodulin fluorescence and Trp fluorescence of the peptides. At the N-terminus, deletion of five residues did not change calmodulin affinity, but deletion of six residues resulted in a 5-fold decrease in affinity. There were no major differences in the time course of TA-CaM binding, but C28NDelta6 exhibited a different time course of Trp fluorescence change. At the C-terminus, deletion of five residues (C23) or more resulted in a net increase in fluorescence of TA-CaM upon binding, while longer peptides (C25 and C28) produced both a transient increase and a net decrease in the fluorescence of TA-CaM. Global regression analysis revealed that binding of TA-CaM to the C23 peptide could be fit by a two-step model, while longer peptides required three-step models for adequate fitting. TA-calmodulin dissociated rapidly from C23, C22, and C20, resulting in a marked increase in apparent K(d). Thus, the sequence I(1091)LWFRGLNRIQTQIKVVKAF(1110) (C25NDelta5) is required to reproduce the calmodulin-binding properties of C28. When F(1110) was replaced by A, the TA-calmodulin association and dissociation kinetics resembled C23 kinetics, but changing V(1107) to A produced a smaller effect, suggesting that F(1110), rather than V(1107), is the main anchor for the N-terminal lobe of calmodulin in PMCA4b.
Collapse
Affiliation(s)
- Alan R Penheiter
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55901, USA
| | | | | | | |
Collapse
|
91
|
Colina C, Flores A, Rojas H, Acosta A, Castillo C, Garrido MDR, Israel A, DiPolo R, Benaim G. Ceramide increase cytoplasmic Ca2+ concentration in Jurkat T cells by liberation of calcium from intracellular stores and activation of a store-operated calcium channel. Arch Biochem Biophys 2005; 436:333-45. [PMID: 15797246 DOI: 10.1016/j.abb.2005.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 02/09/2005] [Indexed: 01/19/2023]
Abstract
The effect of ceramide on the cytoplasmic Ca2+ concentration ([Ca2+]i) varies depending on the cell type. We have found that in Jurkat human T cells ceramide increases the [Ca2+]i from a thapsigargin-sensitive calcium pool and the subsequent activation of a capacitative Ca2+ entry. This effect occurs both in the presence and in the absence of extracellular calcium. Addition of ceramine, a non-hydrolysable analogue of ceramide, reproduced its effect on the [Ca2+]i ruling out that this is due to the conversion of ceramide to sphingosine. The effect of ceramide was additive to that obtained by sphingosine, but not to the Jurkat T cells specific antibody OKT3. However, different to the latter, ceramide do not induced an elevation of InsP3. The opening of a store operated Ca2+ channel by ceramide was corroborated by experiments of Fura-2 quenching, using Mn2+ as a surrogate for Ca2+ and confirmed by whole-cell recording patch clamp techniques.
Collapse
Affiliation(s)
- Claudia Colina
- Centro de Biociencias y Medicina Molecular, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
In electrically nonexcitable cells, Ca2+influx is essential for regulating a host of kinetically distinct processes involving exocytosis, enzyme control, gene regulation, cell growth and proliferation, and apoptosis. The major Ca2+entry pathway in these cells is the store-operated one, in which the emptying of intracellular Ca2+stores activates Ca2+influx (store-operated Ca2+entry, or capacitative Ca2+entry). Several biophysically distinct store-operated currents have been reported, but the best characterized is the Ca2+release-activated Ca2+current, ICRAC. Although it was initially considered to function only in nonexcitable cells, growing evidence now points towards a central role for ICRAC-like currents in excitable cells too. In spite of intense research, the signal that relays the store Ca2+content to CRAC channels in the plasma membrane, as well as the molecular identity of the Ca2+sensor within the stores, remains elusive. Resolution of these issues would be greatly helped by the identification of the CRAC channel gene. In some systems, evidence suggests that store-operated channels might be related to TRP homologs, although no consensus has yet been reached. Better understood are mechanisms that inactivate store-operated entry and hence control the overall duration of Ca2+entry. Recent work has revealed a central role for mitochondria in the regulation of ICRAC, and this is particularly prominent under physiological conditions. ICRACtherefore represents a dynamic interplay between endoplasmic reticulum, mitochondria, and plasma membrane. In this review, we describe the key electrophysiological features of ICRACand other store-operated Ca2+currents and how they are regulated, and we consider recent advances that have shed insight into the molecular mechanisms involved in this ubiquitous and vital Ca2+entry pathway.
Collapse
Affiliation(s)
- Anant B Parekh
- Department of Physiology, University of Oxford, United Kingdom.
| | | |
Collapse
|
93
|
Abstract
The modulation of inositol-1,4,5-trisphosphate (IP3), a product of phospholipase C (PLC) activity, is one of a common signaling mechanism used in many biological systems. B lymphocytes also rely on IP3 and subsequent calcium signaling to ensure appropriate developmental outcomes, as well as antigen-specific responses. In establishing the optimal intensity and duration of the PLC-gamma activity, an important role has emerged for adaptor molecules, which direct the appropriate subcellular localization of PLC-gamma and induce its conformational changes. Generated IP3 binds to IP3 receptors located on the endoplasmic reticulum (ER), which in turn is essential for triggering calcium release from the ER and subsequent entry of extracellular calcium by so-called Ca2+ entry channels. Recent data has begun to shed new light on the connection between the calcium release and the influx of extracellular calcium, and the molecular identity of the Ca2+ entry channels.
Collapse
MESH Headings
- Allosteric Regulation
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Calcium/immunology
- Calcium/metabolism
- Calcium Channels/immunology
- Calcium Channels/metabolism
- Endoplasmic Reticulum/immunology
- Endoplasmic Reticulum/metabolism
- Humans
- Inositol 1,4,5-Trisphosphate/immunology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/immunology
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/immunology
- NFATC Transcription Factors/metabolism
- Phospholipase C gamma/genetics
- Phospholipase C gamma/immunology
- Phospholipase C gamma/metabolism
- Protein Transport/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/immunology
- Transcriptional Activation/immunology
Collapse
Affiliation(s)
- Masaki Hikida
- Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | |
Collapse
|
94
|
Fioretti B, Franciolini F, Catacuzzeno L. A model of intracellular Ca2+ oscillations based on the activity of the intermediate-conductance Ca2+-activated K+ channels. Biophys Chem 2005; 113:17-23. [PMID: 15617807 DOI: 10.1016/j.bpc.2004.07.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 07/15/2004] [Accepted: 07/21/2004] [Indexed: 11/25/2022]
Abstract
Intracellular Ca2+ oscillations are observed in a large number of non-excitable cells. While most appear to reflect an intermittent Ca2+ release from intracellular stores, in some instances intracellular Ca2+ oscillations strongly depend on Ca2+ influx, and are coupled to oscillations of the membrane potential, suggesting that a plasma membrane-based mechanism may be involved. We have developed a theoretical model for the latter type of intracellular Ca2+ oscillations based on the Ca2+-dependent modulation of the intermediate-conductance, Ca2+-activated K+ (IKCa) channel. The functioning of this model relies on the Ca2+-dependent activation, and the much slower Ca2+-dependent rundown of this channel. We have shown that Ca2+-dependent activation of the IKCa channels, the consequent membrane hyperpolarization and the resulting increase in Ca2+ influx may confer the positive feedback mechanism required for the ascending phase of the oscillation. The much slower Ca2+-dependent rundown process will conversely halt this positive loop, and establish the descending phase of the intracellular Ca2+ oscillation. We found that this simple model gives rise to intracellular Ca2+ oscillations when using physiologically reasonable parameters, suggesting that IKCa channels could participate in the generation of intracellular Ca2+ oscillations.
Collapse
Affiliation(s)
- Bernard Fioretti
- Dipartimento di Biologia Cellulare e Molecolare Universita' di Perugia via Pascoli 1, I-06123 Perugia, Italy
| | | | | |
Collapse
|
95
|
Zabłocki K, Szczepanowska J, Duszyński J. Extracellular pH modifies mitochondrial control of capacitative calcium entry in Jurkat cells. J Biol Chem 2004; 280:3516-21. [PMID: 15569668 DOI: 10.1074/jbc.m411507200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It was found that a collapse of the mitochondrial calcium buffering caused by the protonophoric uncoupler CCCP, antimycin A plus oligomycin, or the inhibitor of the mitochondrial Ca2+/Na+ exchanger led to a strong inhibition of thapsigargin-induced capacitative Ca2+ entry (CCE) into Jurkat cells suspended in a medium at pH 7.2. The effect of these inhibitors was markedly less significant at higher extracellular pH. Moreover, dysfunction of the mitochondrial calcium handling greatly decreased CCE sensitivity to extracellular Ca2+ when the pH of extracellular solution was 7.2 (apparent Kd toward extracellular Ca2+ rose from 2.3 +/- 0.6 mm in control cells to 11.0 +/- 1.7 mM in CCCP-treated cells) as compared with pH 7.8 (apparent Kd toward extracellular Ca2+ increased from 1.3 +/- 0.4 mM in control cells to 2.4 +/- 0.4 mM in uncoupler-treated cells). Changes in intracellular pH triggered by methylamine did not influence Ca2+ influx. This suggests that, in Jurkat cells, store-operated calcium channels sense extracellular pH change as a parameter that modifies their sensitivity to intracellular Ca2+. In contrast, in human osteosarcoma cells, changes in extracellular pH as well as mitochondrial uncoupling did not exert any inhibitory effects on CCE.
Collapse
Affiliation(s)
- Krzysztof Zabłocki
- Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland.
| | | | | |
Collapse
|
96
|
Quintana A, Griesemer D, Schwarz EC, Hoth M. Calcium-dependent activation of T-lymphocytes. Pflugers Arch 2004; 450:1-12. [PMID: 15806400 DOI: 10.1007/s00424-004-1364-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 10/18/2004] [Indexed: 12/11/2022]
Abstract
Activation of T-lymphocytes requires stimulation of T-cell receptors (TCR) and co-stimulatory signals. Among different signalling cascades, TCR engagement induces Ca(2+) entry through plasma membrane Ca(2+) channels, which is an indispensable step for T-cells to expand clonally and to acquire effector functions. The Ca(2+) channels are activated by depletion of Ca(2+) stores and are called Ca(2+) release-activated Ca(2+) (CRAC) channels. Ca(2+) influx through CRAC channels is also controlled, directly or indirectly, by K(+) channels, Ca(2+)-ATPases, mitochondria, endoplasmic reticulum and Ca(2+) buffers. We review the functional implications of these transporters, organelles and buffers and develop a model of Ca(2+) signal generation that depends mainly on their relative mutual localization. This model offers the possibility of controlling amplitude and kinetics of Ca(2+) signals in T-cells. Decoding of various Ca(2+) signals allows differential activation of the transcription factor families nuclear factor of activated T-cells (NFAT), nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1). Variation of amplitude and kinetics of Ca(2+) signals thus is an important mechanism for modulating the specificity of T-cell responses.
Collapse
Affiliation(s)
- Ariel Quintana
- Institut für Physiologie, Universität des Saarlandes, Gebäude 58, 66421 Homburg/Saar, Germany
| | | | | | | |
Collapse
|
97
|
Fierro AF, Wurth GA, Zweifach A. Cross-talk with Ca2+ Influx Does Not Underlie the Role of Extracellular Signal-regulated Kinases in Cytotoxic T Lymphocyte Lytic Granule Exocytosis. J Biol Chem 2004; 279:25646-52. [PMID: 15060074 DOI: 10.1074/jbc.m400296200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One important mechanism cytotoxic T lymphocytes use to kill target cells is exocytosis of lytic granules that contain cytotoxic agents such as perforin and granzyme. Ca(2+) influx and activation of protein kinase C have been known for many years to be key signals for granule exocytosis. Recent work has suggested that activation of extracellular signal-regulated kinases (ERK), members of the mitogen-activated protein kinase (MAP kinase) family, may be a third required signal. We surmised that the involvement of ERK in lytic granule exocytosis could be mediated through cross-talk with Ca(2+) influx, rather than constituting an independent signal. We tested this idea using TALL-104 human leukemic CTLs as a model system and discovered the following. 1) ERK inhibition caused a modest decrease in the amplitude of increases in intracellular Ca(2+) concentration, but this effect cannot account for the profound inhibition of granule exocytosis. 2) Ca(2+) influx can activate ERK in TALL-104 cells, but this effect does not contribute to ERK activation stimulated by solid phase anti-CD3 monoclonal antibodies. We conclude that cross-talk between ERK signaling and Ca(2+) does not mediate the role of ERK in CTL lytic granule exocytosis.
Collapse
Affiliation(s)
- Allan F Fierro
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
98
|
Chen J, McLean PA, Neel BG, Okunade G, Shull GE, Wortis HH. CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nat Immunol 2004; 5:651-7. [PMID: 15133509 DOI: 10.1038/ni1072] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 03/16/2004] [Indexed: 01/17/2023]
Abstract
Binding of antigen to the B cell receptor induces a calcium response, which is required for proliferation and antibody production. CD22, a B cell surface protein, inhibits this signal through mechanisms that have been obscure. We report here that CD22 augments calcium efflux after B cell receptor crosslinking. Inhibition of plasma membrane calcium-ATPase (PMCA) attenuated these effects, as did disruption by homologous recombination of the gene encoding PMCA4a and PMCA4b. PMCA coimmunoprecipitated with CD22 in an activation-dependent way. CD22 cytoplasmic tyrosine residues were required for association with PMCA and enhancement of calcium efflux. Moreover, CD22 regulation of efflux and the calcium response required the tyrosine phosphatase SHP-1. Thus, SHP-1 and PMCA provide a mechanism by which CD22, a tissue-specific negative regulator, can affect calcium responses.
Collapse
Affiliation(s)
- Jie Chen
- Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
99
|
Rivas FV, O'Keefe JP, Alegre ML, Gajewski TF. Actin cytoskeleton regulates calcium dynamics and NFAT nuclear duration. Mol Cell Biol 2004; 24:1628-39. [PMID: 14749378 PMCID: PMC344175 DOI: 10.1128/mcb.24.4.1628-1639.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-cell activation by antigen-presenting cells is accompanied by actin polymerization, T-cell receptor (TCR) capping, and formation of the immunological synapse. However, whether actin-dependent events are required for T-cell function is poorly understood. Herein, we provide evidence for an unexpected negative regulatory role of the actin cytoskeleton on TCR-induced cytokine production. Disruption of actin polymerization resulted in prolonged intracellular calcium elevation in response to anti-CD3, thapsigargin, or phorbol myristate acetate plus ionomycin, leading to persistent NFAT (nuclear factor of activated T cells) nuclear duration. These events were dominant, as the net effect of actin blockade was augmented interleukin 2 promoter activity. Increased surface expression of the plasma membrane Ca(2+) ATPase was observed upon stimulation, which was inhibited by cytochalasin D, suggesting that actin polymerization contributes to calcium export. Our results imply a novel role for the actin cytoskeleton in modulating the duration of Ca(2+)-NFAT signaling and indicate that actin dynamics regulate features of T-cell activation downstream of receptor clustering.
Collapse
Affiliation(s)
- Fabiola V Rivas
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
100
|
Schlatterer C, Happle K, Lusche DF, Sonnemann J. Cytosolic [Ca2+] transients in dictyostelium discoideum depend on the filling state of internal stores and on an active sarco/endoplasmic reticulum calcium ATPase (SERCA) Ca2+ pump. J Biol Chem 2004; 279:18407-14. [PMID: 14973132 DOI: 10.1074/jbc.m307096200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of Dictyostelium discoideum with cAMP evokes a change of the cytosolic free Ca(2+) concentration ([Ca(2+)](i)). We analyzed the role of the filling state of Ca(2+) stores for the [Ca(2+)] transient. Parameters tested were the height of the [Ca(2+)](i) elevation and the percentage of responding amoebae. After loading stores with Ca(2+), cAMP induced a [Ca(2+)](i) transient in many cells. Without prior loading, cAMP evoked a [Ca(2+)](i) change in a few cells only. This indicates that the [Ca(2+)](i) elevation is not mediated exclusively by Ca(2+) influx but also by Ca(2+) release from stores. Reducing the Ca(2+) content of the stores by EGTA preincubation led to a cAMP-activated [Ca(2+)](i) increase even at low extracellular [Ca(2+)]. Moreover, the addition of Ca(2+) itself elicited a capacitative [Ca(2+)](i) elevation. This effect was not observed when stores were emptied by the standard technique of inhibiting internal Ca(2+) pumps with 2,5-di-(t-butyl)-1,4-hydroquinone. Therefore, in Dictyostelium, an active internal Ca(2+)-ATPase is absolutely required to allow for Ca(2+) entry. No influence of the filling state of stores on Ca(2+) influx characteristics was found by the Mn(2+)-quenching technique, which monitors the rate of Ca(2+) entry. Both basal and cAMP-activated Mn(2+) influx rates were similar in control cells and cells with empty stores. By contrast, determination of extracellular free Ca(2+) concentration ([Ca(2+)](e)) changes, which represent the sum of Ca(2+) influx and efflux, revealed a higher rate of [Ca(2+)](e) decrease in EGTA-treated than in control amoebae. We conclude that emptying of Ca(2+) stores does not change the rate of Ca(2+) entry but results in inhibition of the plasma membrane Ca(2+)-ATPase. Furthermore, the activities of the Ca(2+) transport ATPases of the stores are of crucial importance for the regulation of [Ca(2+)](i) changes.
Collapse
|