51
|
Soler J, Fañanás L, Parellada M, Krebs MO, Rouleau GA, Fatjó-Vilas M. Genetic variability in scaffolding proteins and risk for schizophrenia and autism-spectrum disorders: a systematic review. J Psychiatry Neurosci 2018; 43:223-244. [PMID: 29947605 PMCID: PMC6019351 DOI: 10.1503/jpn.170066] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/18/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Scaffolding proteins represent an evolutionary solution to controlling the specificity of information transfer in intracellular networks. They are highly concentrated in complexes located in specific subcellular locations. One of these complexes is the postsynaptic density of the excitatory synapses. There, scaffolding proteins regulate various processes related to synaptic plasticity, such as glutamate receptor trafficking and signalling, and dendritic structure and function. Most scaffolding proteins can be grouped into 4 main families: discs large (DLG), discs-large-associated protein (DLGAP), Shank and Homer. Owing to the importance of scaffolding proteins in postsynaptic density architecture, it is not surprising that variants in the genes that code for these proteins have been associated with neuropsychiatric diagnoses, including schizophrenia and autism-spectrum disorders. Such evidence, together with the clinical, neurobiological and genetic overlap described between schizophrenia and autism-spectrum disorders, suggest that alteration of scaffolding protein dynamics could be part of the pathophysiology of both. However, despite the potential importance of scaffolding proteins in these psychiatric conditions, no systematic review has integrated the genetic and molecular data from studies conducted in the last decade. This review has the following goals: to systematically analyze the literature in which common and/or rare genetic variants (single nucleotide polymorphisms, single nucleotide variants and copy number variants) in the scaffolding family genes are associated with the risk for either schizophrenia or autism-spectrum disorders; to explore the implications of the reported genetic variants for gene expression and/or protein function; and to discuss the relationship of these genetic variants to the shared genetic, clinical and cognitive traits of schizophrenia and autism-spectrum disorders.
Collapse
Affiliation(s)
- Jordi Soler
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Lourdes Fañanás
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Mara Parellada
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Marie-Odile Krebs
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Guy A Rouleau
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Mar Fatjó-Vilas
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| |
Collapse
|
52
|
Fernández E, Collins MO, Frank RAW, Zhu F, Kopanitsa MV, Nithianantharajah J, Lemprière SA, Fricker D, Elsegood KA, McLaughlin CL, Croning MDR, Mclean C, Armstrong JD, Hill WD, Deary IJ, Cencelli G, Bagni C, Fromer M, Purcell SM, Pocklington AJ, Choudhary JS, Komiyama NH, Grant SGN. Arc Requires PSD95 for Assembly into Postsynaptic Complexes Involved with Neural Dysfunction and Intelligence. Cell Rep 2018; 21:679-691. [PMID: 29045836 PMCID: PMC5656750 DOI: 10.1016/j.celrep.2017.09.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 08/03/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
Arc is an activity-regulated neuronal protein, but little is known about its interactions, assembly into multiprotein complexes, and role in human disease and cognition. We applied an integrated proteomic and genetic strategy by targeting a tandem affinity purification (TAP) tag and Venus fluorescent protein into the endogenous Arc gene in mice. This allowed biochemical and proteomic characterization of native complexes in wild-type and knockout mice. We identified many Arc-interacting proteins, of which PSD95 was the most abundant. PSD95 was essential for Arc assembly into 1.5-MDa complexes and activity-dependent recruitment to excitatory synapses. Integrating human genetic data with proteomic data showed that Arc-PSD95 complexes are enriched in schizophrenia, intellectual disability, autism, and epilepsy mutations and normal variants in intelligence. We propose that Arc-PSD95 postsynaptic complexes potentially affect human cognitive function. TAP tag and purification of endogenous Arc protein complexes from the mouse brain PSD95 is the major Arc binding protein, and both assemble into 1.5-MDa supercomplexes PSD95 is essential for recruitment of Arc to synapses Mutations and genetic variants in Arc-PSD95 are linked to cognition
Collapse
Affiliation(s)
- Esperanza Fernández
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), and VIB Center for the Biology of Disease, Leuven, Belgium
| | - Mark O Collins
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - René A W Frank
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Fei Zhu
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Maksym V Kopanitsa
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Synome Ltd., Moneta Building, Babraham Research Campus, Cambridge, UK
| | - Jess Nithianantharajah
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Sarah A Lemprière
- Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - David Fricker
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Synome Ltd., Moneta Building, Babraham Research Campus, Cambridge, UK
| | - Kathryn A Elsegood
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Catherine L McLaughlin
- Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Mike D R Croning
- Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Colin Mclean
- School of Informatics, Institute for Adaptive and Neural Computation, University of Edinburgh, UK
| | - J Douglas Armstrong
- School of Informatics, Institute for Adaptive and Neural Computation, University of Edinburgh, UK
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, UK
| | - Giulia Cencelli
- KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), and VIB Center for the Biology of Disease, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Bagni
- KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), and VIB Center for the Biology of Disease, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Menachem Fromer
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shaun M Purcell
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew J Pocklington
- Institute of Psychological Medicine & Clinical Neurosciences, University of Cardiff, Cardiff, Wales, UK
| | - Jyoti S Choudhary
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Noboru H Komiyama
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Seth G N Grant
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
53
|
Yu L, Liu Y, Yang H, Zhu X, Cao X, Gao J, Zhao H, Xu Y. PSD-93 Attenuates Amyloid-β-Mediated Cognitive Dysfunction by Promoting the Catabolism of Amyloid-β. J Alzheimers Dis 2018; 59:913-927. [PMID: 28697571 DOI: 10.3233/jad-170320] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amyloid-β (Aβ) is a key neuropathological hallmark of Alzheimer's disease (AD). Postsynaptic density protein 93 (PSD-93) is a key scaffolding protein enriched at postsynaptic sites. The aim of the present study was to examine whether PSD-93 overexpression could alleviate Aβ-induced cognitive dysfunction in APPswe/PS1dE9 (APP/PS1) mice by reducing Aβ levels in the brain. The level of PSD-93 was significantly decreased in the hippocampus of 6-month-old APP/PS1 mice compared with that in wild-type mice. Following lentivirus-mediated PSD-93 overexpression, cognitive function, synaptic function, and amyloid burden were investigated. The open field test, Morris water maze test, and fear condition test revealed that PSD-93 overexpression ameliorated spatial memory deficits in APP/PS1 mice. The facilitation of long-term potentiation induction was observed in APP/PS1 mice after PSD-93 overexpression. The expression of somatostatin receptor 4 (SSTR4) and neprilysin was increased, while the amyloid plaque load and Aβ levels were decreased in the brains of APP/PS1 mice. Moreover, PSD-93 interacted with SSTR4 and affected the level of SSTR4 on cell membrane, which was associated with the ubiquitination. Together, these findings suggest that PSD-93 attenuates spatial memory deficits and decreases amyloid levels in APP/PS1 mice, which might be associated with Aβ catabolism, and overexpression of PSD-93 might be a potential therapy for AD.
Collapse
Affiliation(s)
- Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, P. R. China
| | - Yi Liu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, P. R. China
| | - Hui Yang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, P. R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, P. R. China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, P. R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, P. R. China
| | - Jun Gao
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, P. R. China
| | - Hui Zhao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, P. R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, P. R. China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, P. R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, P. R. China
| |
Collapse
|
54
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
55
|
Ali S, Hoven A, Dress RJ, Schaal H, Alferink J, Scheu S. Identification of a novel Dlg2 isoform differentially expressed in IFNβ-producing plasmacytoid dendritic cells. BMC Genomics 2018; 19:194. [PMID: 29703139 PMCID: PMC6389146 DOI: 10.1186/s12864-018-4573-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/01/2018] [Indexed: 12/13/2022] Open
Abstract
Background The murine discs large homolog 2 (DLG2; post synaptic density 93 (PSD-93); Chapsyn-110) is a member of the membrane-associated guanylate kinase (MAGUK) protein family involved in receptor assembly and associated with signaling enzymes on cell membranes. In neurons, DLG2 protein isoforms derived from alternatively spliced transcripts have been described to bind to NMDA (N-methyl-aspartate) receptors and K channels and to mediate clustering of these channels in the postsynaptic membrane. In myeloid cells of the immune system, such as dendritic cells (DCs), a lack of data exists on the expression or function of DLG2. In cDNA microarray transcriptome analyses, we found Dlg2 highly expressed in a subpopulation of plasmacytoid DCs (pDCs) stimulated to produce type I interferons (IFNs) such as IFNβ. Results Using RACE- and RT-PCR as well as immunoprecipitation followed by Western blotting we characterised the differential expression of the Dlg2 splice variants in IFNβ-producing pDCs. Besides Dlg2ɣ this cell population expressed a novel short Dlg2η transcript we termed Dlg2η3. Our expression data were integrated into information from genome databases to obtain a novel and comprehensive overview of the mouse Dlg2 gene architecture. To elucidate the intracellular localisation pattern of protein isoforms, ectopical expression analysis of fluorescently tagged DLG2 splice variants was performed. Here we found an enrichment of the larger isoform DLG2α1 at the plasma membrane while the newly identified shorter (DLG2η) isoform as well as DLG2ɣ were equally distributed throughout the cytoplasm. Additionally, DLG2η was also found in the nucleus. Analysis of Dlg2-knockout mice previously generated by deleting exon 9 surprisingly revealed that the protein for the novel DLG2η isoform was still expressed in the brain and in bone marrow-derived pDCs from mice carrying the homozygous deletion (Dlg2ΔE9/ΔE9). Conclusion We describe a novel splice variant of the mouse Dlg2 gene termed Dlg2η and define the differential expression pattern of DLG2 isoforms in IFNβ-producing pDCs. The presence of DLG2η protein in the CNS of Dlg2ΔE9/ΔE9 mice might influence the phenotype of these mice and has to be taken into account in the interpretation of results regarding the functional role of DLG2 in neuronal postsynaptic membranes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4573-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.,Cluster of Excellence EXC 1003, Cells in Motion, Waldeyerstraße 15, D-48149, Münster, Germany
| | - Alexander Hoven
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Regine J Dress
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.,Singapore Immunology Network, Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore
| | - Heiner Schaal
- Institute of Virology, Heinrich Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.,BMFZ (Biologisch-Medizinisches Forschungszentrum), Heinrich Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Judith Alferink
- Cluster of Excellence EXC 1003, Cells in Motion, Waldeyerstraße 15, D-48149, Münster, Germany.,Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
56
|
Lindroos R, Dorst MC, Du K, Filipović M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J. Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Front Neural Circuits 2018; 12:3. [PMID: 29467627 PMCID: PMC5808142 DOI: 10.3389/fncir.2018.00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models.
Collapse
Affiliation(s)
- Robert Lindroos
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Matthijs C. Dorst
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Kai Du
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Marko Filipović
- Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Keller
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Maya Ketzef
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Alexander K. Kozlov
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Arvind Kumar
- Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
- Department Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael Lindahl
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Anu G. Nair
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Juan Pérez-Fernández
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Jeanette Hellgren Kotaleski
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
57
|
Coba MP, Ramaker MJ, Ho EV, Thompson SL, Komiyama NH, Grant SGN, Knowles JA, Dulawa SC. Dlgap1 knockout mice exhibit alterations of the postsynaptic density and selective reductions in sociability. Sci Rep 2018; 8:2281. [PMID: 29396406 PMCID: PMC5797244 DOI: 10.1038/s41598-018-20610-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/16/2018] [Indexed: 11/09/2022] Open
Abstract
The scaffold protein DLGAP1 is localized at the post-synaptic density (PSD) of glutamatergic neurons and is a component of supramolecular protein complexes organized by PSD95. Gain-of-function variants of DLGAP1 have been associated with obsessive-compulsive disorder (OCD), while haploinsufficient variants have been linked to autism spectrum disorder (ASD) and schizophrenia in human genetic studies. We tested male and female Dlgap1 wild type (WT), heterozygous (HT), and knockout (KO) mice in a battery of behavioral tests: open field, dig, splash, prepulse inhibition, forced swim, nest building, social approach, and sucrose preference. We also used biochemical approaches to examine the role of DLGAP1 in the organization of PSD protein complexes. Dlgap1 KO mice were most notable for disruption of protein interactions in the PSD, and deficits in sociability. Other behavioral measures were largely unaffected. Our data suggest that Dlgap1 knockout leads to PSD disruption and reduced sociability, consistent with reports of DLGAP1 haploinsufficient variants in schizophrenia and ASD.
Collapse
Affiliation(s)
- M P Coba
- Department of Psychiatry and the Behavioral Sciences, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - M J Ramaker
- Department of Psychiatry, University of California, San Diego, USA
| | - E V Ho
- Department of Psychiatry, University of California, San Diego, USA
| | - S L Thompson
- Department of Psychiatry, University of California, San Diego, USA
- Committee on Neurobiology, The University of Chicago, Chicago, USA
| | - N H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, Edinburgh University, Edinburgh, Scotland
| | - S G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, Edinburgh University, Edinburgh, Scotland
| | - J A Knowles
- Department of Psychiatry and the Behavioral Sciences, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S C Dulawa
- Department of Psychiatry, University of California, San Diego, USA.
| |
Collapse
|
58
|
Horner AE, McLaughlin CL, Afinowi NO, Bussey TJ, Saksida LM, Komiyama NH, Grant SGN, Kopanitsa MV. Enhanced cognition and dysregulated hippocampal synaptic physiology in mice with a heterozygous deletion of PSD-95. Eur J Neurosci 2018; 47:164-176. [DOI: 10.1111/ejn.13792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/25/2023]
Affiliation(s)
| | - Catherine L. McLaughlin
- Genes to Cognition Programme; Centre for Clinical Brain Sciences; University of Edinburgh; Edinburgh UK
| | | | - Timothy J. Bussey
- Department of Psychology; University of Cambridge; Cambridge UK
- The MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Molecular Medicine Research Group; Robarts Research Institute; London ON Canada
- Department of Physiology and Pharmacology; Schulich School of Medicine & Dentistry; Western University; London ON Canada
| | - Lisa M. Saksida
- Department of Psychology; University of Cambridge; Cambridge UK
- The MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Molecular Medicine Research Group; Robarts Research Institute; London ON Canada
- Department of Physiology and Pharmacology; Schulich School of Medicine & Dentistry; Western University; London ON Canada
| | - Noboru H. Komiyama
- Genes to Cognition Programme; Centre for Clinical Brain Sciences; University of Edinburgh; Edinburgh UK
| | - Seth G. N. Grant
- Genes to Cognition Programme; Centre for Clinical Brain Sciences; University of Edinburgh; Edinburgh UK
| | | |
Collapse
|
59
|
Wegner W, Mott AC, Grant SGN, Steffens H, Willig KI. In vivo STED microscopy visualizes PSD95 sub-structures and morphological changes over several hours in the mouse visual cortex. Sci Rep 2018; 8:219. [PMID: 29317733 PMCID: PMC5760696 DOI: 10.1038/s41598-017-18640-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/14/2017] [Indexed: 12/23/2022] Open
Abstract
The post-synaptic density (PSD) is an electron dense region consisting of ~1000 proteins, found at the postsynaptic membrane of excitatory synapses, which varies in size depending upon synaptic strength. PSD95 is an abundant scaffolding protein in the PSD and assembles a family of supercomplexes comprised of neurotransmitter receptors, ion channels, as well as signalling and structural proteins. We use superresolution STED (STimulated Emission Depletion) nanoscopy to determine the size and shape of PSD95 in the anaesthetised mouse visual cortex. Adult knock-in mice expressing eGFP fused to the endogenous PSD95 protein were imaged at time points from 1 min to 6 h. Superresolved large assemblies of PSD95 show different sub-structures; most large assemblies were ring-like, some horse-shoe or figure-8 shaped, and shapes were continuous or made up of nanoclusters. The sub-structure appeared stable during the shorter (minute) time points, but after 1 h, more than 50% of the large assemblies showed a change in sub-structure. Overall, these data showed a sub-morphology of large PSD95 assemblies which undergo changes within the 6 hours of observation in the anaesthetised mouse.
Collapse
Affiliation(s)
- Waja Wegner
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Alexander C Mott
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Heinz Steffens
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Katrin I Willig
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany. .,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany. .,Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
60
|
Zigu Z, Xiaoyu W, Weiwei N, Qiuxia L, Rui Z, Wei O. Effects of Calcium on Drinking Fluorosis-induced Hippocampal Synaptic Plasticity Impairment in the Offspring of Rats. Transl Neurosci 2017; 8:191-200. [PMID: 29340225 PMCID: PMC5765774 DOI: 10.1515/tnsci-2017-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/11/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This study investigated the effects of calcium on fluorosis-induced impairment in learning and memory of offspring rats. Methods Seventy-five newly weaned female Sprague-Dawley (SD) rats were randomly divided into five groups as follows: Control group (Control) drank tap water, and ate the normal diet (calcium content of 0.79%); fluoride group (F) drank 100 mg/L NaF solution, and ate the normal diet; low calcium group (LCa) drank tap water, and ate the low calcium diet (calcium content of 0.063%); low calcium fluoride group (F+LCa) drank 100 mg/L NaF solution, and ate the low calcium diet; high calcium fluoride group (F+HCa) drank 100 mg/L NaF solution, and ate the high calcium diet (calcium content of 7%). After exposing rats to fluoride for three months, male and female rats were mated and 14 and 28 days old offspring were obtained as experimental subjects. Examinations determined the submicroscopic parameters of the synaptic interface and expression levels of specific proteins: doublecortin (DCX) and synaptophysin (p38). RESULTS (1) High fluorosis significantly reduced synapse density, length of synaptic active zone, thickness of postsynaptic density, and led to abnormal changes in the structural parameter of synaptic gap width, which was significantly reduced or increased. High dietary calcium significantly reversed the abnormal changes in structural parameters, and low calcium aggravated these variations. (2) Dietary calcium resulted in nonsignificant effect on expression levels of DCX and p38. CONCLUSION The results suggested that dietary calcium significantly affected hippocampal synaptic plasticity of offspring of mothers exposed to water fluorosis, but its molecular mechanism may not be related to the expression of DCX and p38 in the brain. The findings also demonstrate the important effects of maternal exposure to water fluorosis on offspring brain functions before water improvement.
Collapse
Affiliation(s)
- Zhang Zigu
- Zhejiang Normal University, Jinhua, China
| | | | | | | | - Zhang Rui
- Zhejiang Normal University, Jinhua, China
| | - Ouyang Wei
- Zhejiang Normal University, Jinhua, China
| |
Collapse
|
61
|
Adrenergic Gate Release for Spike Timing-Dependent Synaptic Potentiation. Neuron 2017; 93:394-408. [PMID: 28103480 DOI: 10.1016/j.neuron.2016.12.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/08/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Spike timing-dependent synaptic plasticity (STDP) serves as a key cellular correlate of associative learning, which is facilitated by elevated attentional and emotional states involving activation of adrenergic signaling. At cellular levels, adrenergic signaling increases dendrite excitability, but the underlying mechanisms remain elusive. Here we show that activation of β2-adrenoceptors promoted STD long-term synaptic potentiation at mouse hippocampal excitatory synapses by inactivating dendritic Kv1.1-containing potassium channels, which increased dendrite excitability and facilitated dendritic propagation of postsynaptic depolarization, potentially improving coincidental activation of pre- and postsynaptic terminals. We further demonstrate that adrenergic modulation of Kv1.1 was mediated by the signaling scaffold SAP97, which, through direct protein-protein interactions, escorts β2 signaling to remove Kv1.1 from the dendrite surface. These results reveal a mechanism through which the postsynaptic signaling scaffolds bridge the aroused brain state to promote induction of synaptic plasticity and potentially to enhance spike timing and memory encoding.
Collapse
|
62
|
Reggiani C, Coppens S, Sekhara T, Dimov I, Pichon B, Lufin N, Addor MC, Belligni EF, Digilio MC, Faletra F, Ferrero GB, Gerard M, Isidor B, Joss S, Niel-Bütschi F, Perrone MD, Petit F, Renieri A, Romana S, Topa A, Vermeesch JR, Lenaerts T, Casimir G, Abramowicz M, Bontempi G, Vilain C, Deconinck N, Smits G. Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability. Genome Med 2017; 9:67. [PMID: 28724449 PMCID: PMC5518101 DOI: 10.1186/s13073-017-0452-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/20/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Tissue-specific integrative omics has the potential to reveal new genic elements important for developmental disorders. METHODS Two pediatric patients with global developmental delay and intellectual disability phenotype underwent array-CGH genetic testing, both showing a partial deletion of the DLG2 gene. From independent human and murine omics datasets, we combined copy number variations, histone modifications, developmental tissue-specific regulation, and protein data to explore the molecular mechanism at play. RESULTS Integrating genomics, transcriptomics, and epigenomics data, we describe two novel DLG2 promoters and coding first exons expressed in human fetal brain. Their murine conservation and protein-level evidence allowed us to produce new DLG2 gene models for human and mouse. These new genic elements are deleted in 90% of 29 patients (public and in-house) showing partial deletion of the DLG2 gene. The patients' clinical characteristics expand the neurodevelopmental phenotypic spectrum linked to DLG2 gene disruption to cognitive and behavioral categories. CONCLUSIONS While protein-coding genes are regarded as well known, our work shows that integration of multiple omics datasets can unveil novel coding elements. From a clinical perspective, our work demonstrates that two new DLG2 promoters and exons are crucial for the neurodevelopmental phenotypes associated with this gene. In addition, our work brings evidence for the lack of cross-annotation in human versus mouse reference genomes and nucleotide versus protein databases.
Collapse
Affiliation(s)
- Claudio Reggiani
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, 1050 Belgium
| | - Sandra Coppens
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
- Neuropediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Tayeb Sekhara
- Neuropediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
- Present address: Neuropediatrics, Clinique Saint-Anne Saint-Rémy - CHIREC, Brussels, 1070 Belgium
| | - Ivan Dimov
- Faculté de Médecine, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Bruno Pichon
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Nicolas Lufin
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Marie-Claude Addor
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, 1011 Switzerland
| | - Elga Fabia Belligni
- Department of Public Health and Pediatrics, University of Torino, Turin, 10126 Italy
| | | | - Flavio Faletra
- S.C. Medical Genetics, Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, 34137 Italy
| | | | - Marion Gerard
- Laboratory of Medical Genetics, CHU de Caen - Hôpital Clémenceau, Caen, 14033 Caen Cedex, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, 44093 Nantes Cedex 1, France
| | - Shelagh Joss
- West of Scotland Clinical Genetics Service, South Glasgow University Hospitals, Glasgow, G51 4TF UK
| | - Florence Niel-Bütschi
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, 1011 Switzerland
| | - Maria Dolores Perrone
- S.C. Medical Genetics, Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, 34137 Italy
- Present address: Assisted Fertilization Department, Casa di Cura Città di Udine, Udine, 33100 Italy
| | - Florence Petit
- Service de Génétique, CHRU de Lille - Hôpital Jeanne de Flandre, Lille, 59000 France
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, 53100 Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, 53100 Italy
| | - Serge Romana
- Service d’Histologie Embryologie Cytogénétique, Hôpital Necker Enfants Malades, Paris, 75015 France
- Université Paris Descartes - Institut IMAGINE, Paris, 75015 France
| | - Alexandra Topa
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, 413 45 Sweden
| | | | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, 1050 Belgium
- AI lab, Vrije Universiteit Brussel, Brussels, 1050 Belgium
| | - Georges Casimir
- Pediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Marc Abramowicz
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Gianluca Bontempi
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, 1050 Belgium
| | - Catheline Vilain
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
- Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Nicolas Deconinck
- Neuropediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
- Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| |
Collapse
|
63
|
Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: implications for the pathogenesis of vascular cognitive impairment. GeroScience 2017; 39:385-406. [PMID: 28664509 DOI: 10.1007/s11357-017-9981-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
Strong epidemiological and experimental evidence indicates that hypertension has detrimental effects on the cerebral microcirculation and thereby promotes accelerated brain aging. Hypertension is an independent risk factor for both vascular cognitive impairment (VCI) and Alzheimer's disease (AD). However, the pathophysiological link between hypertension-induced cerebromicrovascular injury (e.g., blood-brain barrier disruption, increased microvascular oxidative stress, and inflammation) and cognitive decline remains elusive. The present study was designed to characterize neuronal functional and morphological alterations induced by chronic hypertension and compare them to those induced by aging. To achieve that goal, we induced hypertension in young C57BL/6 mice by chronic (4 weeks) infusion of angiotensin II. We found that long-term potentiation (LTP) of performant path synapses following high-frequency stimulation of afferent fibers was decreased in hippocampal slices obtained from hypertensive mice, mimicking the aging phenotype. Hypertension and advanced age were associated with comparable decline in synaptic density in the stratum radiatum of the mouse hippocampus. Hypertension, similar to aging, was associated with changes in mRNA expression of several genes involved in regulation of neuronal function, including down-regulation of Bdnf, Homer1, and Dlg4, which may have a role in impaired synaptic plasticity. Collectively, hypertension impairs synaptic plasticity, reduces synaptic density, and promotes dysregulation of genes involved in synaptic function in the mouse hippocampus mimicking the aging phenotype. These hypertension-induced neuronal alterations may impair establishment of memories in the hippocampus and contribute to the pathogenesis and clinical manifestation of both vascular cognitive impairment (VCI) and Alzheimer's disease (AD).
Collapse
|
64
|
Morimura N, Yasuda H, Yamaguchi K, Katayama KI, Hatayama M, Tomioka NH, Odagawa M, Kamiya A, Iwayama Y, Maekawa M, Nakamura K, Matsuzaki H, Tsujii M, Yamada K, Yoshikawa T, Aruga J. Autism-like behaviours and enhanced memory formation and synaptic plasticity in Lrfn2/SALM1-deficient mice. Nat Commun 2017; 8:15800. [PMID: 28604739 PMCID: PMC5472790 DOI: 10.1038/ncomms15800] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 05/04/2017] [Indexed: 12/23/2022] Open
Abstract
Lrfn2/SALM1 is a PSD-95-interacting synapse adhesion molecule, and human LRFN2 is associated with learning disabilities. However its role in higher brain function and underlying mechanisms remain unknown. Here, we show that Lrfn2 knockout mice exhibit autism-like behavioural abnormalities, including social withdrawal, decreased vocal communications, increased stereotyped activities and prepulse inhibition deficits, together with enhanced learning and memory. In the hippocampus, the levels of synaptic PSD-95 and GluA1 are decreased. The synapses are structurally and functionally immature with spindle shaped spines, smaller postsynaptic densities, reduced AMPA/NMDA ratio, and enhanced LTP. In vitro experiments reveal that synaptic surface expression of AMPAR depends on the direct interaction between Lrfn2 and PSD-95. Furthermore, we detect functionally defective LRFN2 missense mutations in autism and schizophrenia patients. Together, these findings indicate that Lrfn2/LRFN2 serve as core components of excitatory synapse maturation and maintenance, and their dysfunction causes immature/silent synapses with pathophysiological state.
Collapse
Affiliation(s)
- Naoko Morimura
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan.,Department of Integrative Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiroki Yasuda
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kazuhiko Yamaguchi
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Kei-Ichi Katayama
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Minoru Hatayama
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan.,Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki 852-8523, Japan
| | - Naoko H Tomioka
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Maya Odagawa
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Akiko Kamiya
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Kazuhiko Nakamura
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Masatsugu Tsujii
- Faculty of Contemporary Sociology, Chukyo University, Toyota, Aichi 470-0393, Japan
| | - Kazuyuki Yamada
- Support Unit for Animal Experiments, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Jun Aruga
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan.,Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki 852-8523, Japan
| |
Collapse
|
65
|
Rogers JT, Liu CC, Zhao N, Wang J, Putzke T, Yang L, Shinohara M, Fryer JD, Kanekiyo T, Bu G. Subacute ibuprofen treatment rescues the synaptic and cognitive deficits in advanced-aged mice. Neurobiol Aging 2017; 53:112-121. [PMID: 28254590 PMCID: PMC5385269 DOI: 10.1016/j.neurobiolaging.2017.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
Abstract
Aging is accompanied by increased neuroinflammation, synaptic dysfunction, and cognitive deficits both in rodents and humans, yet the onset and progression of these deficits throughout the life span remain unknown. These aging-related deficits affect the quality of life and present challenges to our aging society. Here, we defined age-dependent and progressive impairments of synaptic and cognitive functions and showed that reducing astrocyte-related neuroinflammation through anti-inflammatory drug treatment in aged mice reverses these events. By comparing young (3 months), middle-aged (18 months), aged (24 months), and advanced-aged wild-type mice (30 months), we found that the levels of an astrocytic marker, glial fibrillary acidic protein, progressively increased after 18 months of age, which preceded the decreases of the synaptic marker PSD-95. Hippocampal long-term potentiation was also suppressed in an age-dependent manner, where significant deficits were observed after 24 months of age. Fear conditioning tests demonstrated that associative memory in the context and cued conditions was decreased starting at the ages of 18 and 30 months, respectively. When the mice were tested on hidden platform water maze, spatial learning memory was significantly impaired after 24 months of age. Importantly, subacute treatment with the anti-inflammatory drug ibuprofen suppressed astrocyte activation and restored synaptic plasticity and memory function in advanced-aged mice. These results support the critical contribution of aging-related inflammatory responses to hippocampal-dependent cognitive function and synaptic plasticity, in particular during advanced aging. Our findings provide strong evidence that suppression of neuroinflammation could be a promising treatment strategy to preserve cognition during aging.
Collapse
Affiliation(s)
- Justin T Rogers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Jian Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Travis Putzke
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Longyu Yang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, China
| | | | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, China; Neurobiology of Disease Graduate Program, Mayo Clinic College of Medicine, Jacksonville, FL, USA.
| |
Collapse
|
66
|
Edelmann E, Cepeda-Prado E, Leßmann V. Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons. Front Synaptic Neurosci 2017; 9:7. [PMID: 28352224 PMCID: PMC5348504 DOI: 10.3389/fnsyn.2017.00007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-term depression (LTD). At the single cell level, spike timing-dependent plasticity (STDP) protocols have emerged as a powerful tool to investigate synaptic plasticity with stimulation paradigms that also likely occur during memory formation in vivo. Such kind of plasticity can be induced by different STDP paradigms with multiple repeat numbers and stimulation patterns. They subsequently recruit or activate different molecular pathways and neuromodulators for induction and expression of STDP. Dopamine (DA) and brain-derived neurotrophic factor (BDNF) have been recently shown to be important modulators for hippocampal STDP at Schaffer collateral (SC)-CA1 synapses and are activated exclusively by distinguishable STDP paradigms. Distinct types of parallel synaptic plasticity in a given neuron depend on specific subcellular molecular prerequisites. Since the basal and apical dendrites of CA1 pyramidal neurons are known to be heterogeneous, and distance-dependent dendritic gradients for specific receptors and ion channels are described, the dendrites might provide domain specific locations for multiple types of synaptic plasticity in the same neuron. In addition to the distinct signaling and expression mechanisms of various types of LTP and LTD, activation of these different types of plasticity might depend on background brain activity states. In this article, we will discuss some ideas why multiple forms of synaptic plasticity can simultaneously and independently coexist and can contribute so effectively to increasing the efficacy of memory storage and processing capacity of the brain. We hypothesize that resolving the subcellular location of t-LTP and t-LTD mechanisms that are regulated by distinct neuromodulator systems will be essential to reach a more cohesive understanding of synaptic plasticity in memory formation.
Collapse
Affiliation(s)
- Elke Edelmann
- Institute of Physiology, Otto-von-Guericke UniversityMagdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke UniversityMagdeburg, Germany
| | | | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke UniversityMagdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke UniversityMagdeburg, Germany
| |
Collapse
|
67
|
Won S, Levy JM, Nicoll RA, Roche KW. MAGUKs: multifaceted synaptic organizers. Curr Opin Neurobiol 2017; 43:94-101. [PMID: 28236779 DOI: 10.1016/j.conb.2017.01.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 11/19/2022]
Abstract
The PSD-95 family of proteins, known as MAGUKs, have long been recognized to be central building blocks of the PSD. They are categorized as scaffolding proteins, which link surface-expressed receptors to the intracellular signaling molecules. Although the four members of the PSD-95 family (PSD-95, PSD-93, SAP102, and SAP97) have many shared roles in regulating synaptic function, recent studies have begun to delineate specific binding partners and roles in plasticity. In the current review, we will highlight the conserved and unique roles of these proteins.
Collapse
Affiliation(s)
- Sehoon Won
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jon M Levy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, United States; Department of Physiology, University of California, San Francisco, CA 94158, United States
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
68
|
Hypersocial behavior and biological redundancy in mice with reduced expression of PSD95 or PSD93. Behav Brain Res 2017; 352:35-45. [PMID: 28189758 DOI: 10.1016/j.bbr.2017.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/27/2022]
Abstract
The postsynaptic density proteins 95 (PSD95) and 93 (PSD93) belong to a family of scaffolding proteins, the membrane-associated guanylate kinases (MAGUKs), which are highly enriched in synapses and responsible for organizing the numerous protein complexes required for synaptic development and plasticity. Genetic studies have associated MAGUKs with diseases like autism and schizophrenia, but knockout mice show severe, complex defects with difficult-to-interpret behavioral abnormalities due to major motor dysfunction which is atypical for psychiatric phenotypes. Therefore, rather than studying loss-of-function mutants, we comprehensively investigated the behavioral consequences of reduced PSD95 expression, using heterozygous PSD95 knockout mice (PSD95+/-). Specifically, we asked whether heterozygous PSD95 deficient mice would exhibit alterations in the processing of social stimuli and social behavior. Additionally, we investigated whether PSD95 and PSD93 would reveal any indication of functional or biological redundancy. Therefore, homozygous and heterozygous PSD93 deficient mice were examined in a similar behavioral battery as PSD95 mutants. We found robust hypersocial behavior in the dyadic interaction test in both PSD95+/- males and females. Additionally, male PSD95+/- mice exhibited higher levels of aggression and territoriality, while female PSD95+/- mice showed increased vocalization upon exposure to an anesthetized female mouse. Both male and female PSD95+/- mice revealed mild hypoactivity in the open field but no obvious motor deficit. Regarding PSD93 mutants, homozygous (but not heterozygous) knockout mice displayed prominent hypersocial behavior comparable to that observed in PSD95+/- mice, despite a more severe motor phenotype, which precluded several behavioral tests or their interpretation. Considering that PSD95 and PSD93 reduction provoke strikingly similar behavioral consequences, we explored a potential substitution effect and found increased PSD93 protein expression in hippocampal synaptic enrichment preparations of PSD95+/- mice. These data suggest that both PSD95 and PSD93 are involved in processing of social stimuli and control of social behavior. This important role may be partly assured by functional/behavioral and biological/biochemical redundancy.
Collapse
|
69
|
Shukla A, Beroun A, Panopoulou M, Neumann PA, Grant SG, Olive MF, Dong Y, Schlüter OM. Calcium-permeable AMPA receptors and silent synapses in cocaine-conditioned place preference. EMBO J 2017; 36:458-474. [PMID: 28077487 DOI: 10.15252/embj.201695465] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/04/2016] [Accepted: 12/12/2016] [Indexed: 01/15/2023] Open
Abstract
Exposure to cocaine generates silent synapses in the nucleus accumbens (NAc), whose eventual unsilencing/maturation by recruitment of calcium-permeable AMPA-type glutamate receptors (CP-AMPARs) after drug withdrawal results in profound remodeling of NAc neuro-circuits. Silent synapse-based NAc remodeling was shown to be critical for several drug-induced behaviors, but its role in acquisition and retention of the association between drug rewarding effects and drug-associated contexts has remained unclear. Here, we find that the postsynaptic proteins PSD-93, PSD-95, and SAP102 differentially regulate excitatory synapse properties in the NAc. Mice deficient for either of these scaffold proteins exhibit distinct maturation patterns of silent synapses and thus provided instructive animal models to examine the role of NAc silent synapse maturation in cocaine-conditioned place preference (CPP). Wild-type and knockout mice alike all acquired cocaine-CPP and exhibited increased levels of silent synapses after drug-context conditioning. However, the mice differed in CPP retention and CP-AMPAR incorporation. Collectively, our results indicate that CP-AMPAR-mediated maturation of silent synapses in the NAc is a signature of drug-context association, but this maturation is not required for establishing or retaining cocaine-CPP.
Collapse
Affiliation(s)
- Avani Shukla
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.,Cluster of Excellence "Nanoscale Microscopy and Molecular Physiology of the Brain", University Medical Center, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, Göttingen, Germany
| | - Anna Beroun
- Cluster of Excellence "Nanoscale Microscopy and Molecular Physiology of the Brain", University Medical Center, Göttingen, Germany.,Laboratory of Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Myrto Panopoulou
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.,Cluster of Excellence "Nanoscale Microscopy and Molecular Physiology of the Brain", University Medical Center, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, Göttingen, Germany
| | - Peter A Neumann
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seth Gn Grant
- Genes to Cognition Programme, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oliver M Schlüter
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA .,Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.,Cluster of Excellence "Nanoscale Microscopy and Molecular Physiology of the Brain", University Medical Center, Göttingen, Germany
| |
Collapse
|
70
|
Park J, Chávez AE, Mineur YS, Morimoto-Tomita M, Lutzu S, Kim KS, Picciotto MR, Castillo PE, Tomita S. CaMKII Phosphorylation of TARPγ-8 Is a Mediator of LTP and Learning and Memory. Neuron 2016; 92:75-83. [PMID: 27667007 DOI: 10.1016/j.neuron.2016.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 06/25/2016] [Accepted: 08/29/2016] [Indexed: 11/28/2022]
Abstract
Protein phosphorylation is an essential step for the expression of long-term potentiation (LTP), a long-lasting, activity-dependent strengthening of synaptic transmission widely regarded as a cellular mechanism underlying learning and memory. At the core of LTP is the synaptic insertion of AMPA receptors (AMPARs) triggered by the NMDA receptor-dependent activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII). However, the CaMKII substrate that increases AMPAR-mediated transmission during LTP remains elusive. Here, we identify the hippocampus-enriched TARPγ-8, but not TARPγ-2/3/4, as a critical CaMKII substrate for LTP. We found that LTP induction increases TARPγ-8 phosphorylation, and that CaMKII-dependent enhancement of AMPAR-mediated transmission requires CaMKII phosphorylation sites of TARPγ-8. Moreover, LTP and memory formation, but not basal transmission, are significantly impaired in mice lacking CaMKII phosphorylation sites of TARPγ-8. Together, these findings demonstrate that TARPγ-8 is a crucial mediator of CaMKII-dependent LTP and therefore a molecular target that controls synaptic plasticity and associated cognitive functions.
Collapse
Affiliation(s)
- Joongkyu Park
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andrés E Chávez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Yann S Mineur
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Megumi Morimoto-Tomita
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stefano Lutzu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kwang S Kim
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marina R Picciotto
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
71
|
ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci Rep 2016; 6:33609. [PMID: 27640997 PMCID: PMC5027525 DOI: 10.1038/srep33609] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent studies highlighted the importance of astrocyte-secreted molecules, such as ATP, for the slow modulation of synaptic transmission in central neurones. Biophysical mechanisms underlying the impact of gliotransmitters on the strength of individual synapse remain, however, unclear. Here we show that purinergic P2X receptors can bring significant contribution to the signalling in the individual synaptic boutons. ATP released from astrocytes facilitates a recruitment of P2X receptors into excitatory synapses by Ca2+-dependent mechanism. P2X receptors, co-localized with NMDA receptors in the excitatory synapses, can be activated by ATP co-released with glutamate from pre-synaptic terminals and by glia-derived ATP. An activation of P2X receptors in turn leads to down-regulation of postsynaptic NMDA receptors via Ca2+-dependent de-phosphorylation and interaction with PSD-95 multi-protein complex. Genetic deletion of the PSD-95 or P2X4 receptors obliterated ATP-mediated down-regulation of NMDA receptors. Impairment of purinergic modulation of NMDA receptors in the PSD-95 mutants dramatically decreased the threshold of LTP induction and increased the net magnitude of LTP. Our findings show that synergistic action of glia- and neurone-derived ATP can pre-modulate efficacy of excitatory synapses and thereby can have an important role in the glia-neuron communications and brain meta-plasticity.
Collapse
|
72
|
Grant SGN. The molecular evolution of the vertebrate behavioural repertoire. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150051. [PMID: 26598730 PMCID: PMC4685586 DOI: 10.1098/rstb.2015.0051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations.
Collapse
Affiliation(s)
- Seth G N Grant
- Centre for Clinical Brain Science, Edinburgh University, Chancellors Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
73
|
Choi M, Ahn S, Yang EJ, Kim H, Chong YH, Kim HS. Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus. Mol Brain 2016; 9:72. [PMID: 27460927 PMCID: PMC4962445 DOI: 10.1186/s13041-016-0253-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/22/2016] [Indexed: 12/31/2022] Open
Abstract
Astrocytes have been reported to exist in two states, the resting and the reactive states. Morphological changes in the reactive state of astrocytes include an increase in thickness and number of processes, and an increase in the size of the cell body. Molecular changes also occur, such as an increase in the expression of glial fibrillary acidic protein (GFAP). However, the morphological and molecular changes during the process of learning and memory have not been elucidated. In the current study, we subjected Fvb/n mice to contextual fear conditioning, and checked for morphological and molecular changes in astrocytes. 1 h after fear conditioning, type II and type III astrocytes exhibited a unique status with an increased number of processes and decreased GFAP expression which differed from the typical resting or reactive state. In addition, the protein level of excitatory excitatory amino acid transporter 2 (EAAT2) was increased 1 h to 24 h after contextual fear conditioning while EAAT1 did not show any alterations. Connexin 43 (Cx43) protein was found to be increased at 24 h after fear conditioning. These data suggest that hippocampus-based contextual memory process induces changes in the status of astrocytes towards a novel status different from typical resting or reactive states. These morphological and molecular changes may be in line with functional changes.
Collapse
Affiliation(s)
- Moonseok Choi
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, 110-799, Seoul, Republic of Korea
| | - Sangzin Ahn
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, 110-799, Seoul, Republic of Korea
| | - Eun-Jeong Yang
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, 110-799, Seoul, Republic of Korea
| | - Hyunju Kim
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, 110-799, Seoul, Republic of Korea
| | - Young Hae Chong
- Department of Microbiology, School of Medicine, Ewha Womans University, 911-1, Mok-6-dong, Yangcheonku, Seoul, 158-710, Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, 110-799, Seoul, Republic of Korea. .,Seoul National University College of Medicine, Seoul National University Bundang Hospital, Sungnam, 463-707, Republic of Korea. .,Seoul National University College of Medicine, Bundang Hospital, Sungnam, Bundang-Gu, Republic of Korea. .,Neuroscience Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.
| |
Collapse
|
74
|
Andrade-Talavera Y, Duque-Feria P, Paulsen O, Rodríguez-Moreno A. Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus. Cereb Cortex 2016; 26:3637-3654. [PMID: 27282393 PMCID: PMC4961031 DOI: 10.1093/cercor/bhw172] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spike timing-dependent plasticity (STDP) is a Hebbian learning rule important for synaptic refinement during development and for learning and memory in the adult. Given the importance of the hippocampus in memory, surprisingly little is known about the mechanisms and functions of hippocampal STDP. In the present work, we investigated the requirements for induction of hippocampal spike timing-dependent long-term potentiation (t-LTP) and spike timing-dependent long-term depression (t-LTD) and the mechanisms of these 2 forms of plasticity at CA3-CA1 synapses in young (P12–P18) mouse hippocampus. We found that both t-LTP and t-LTD can be induced at hippocampal CA3-CA1 synapses by pairing presynaptic activity with single postsynaptic action potentials at low stimulation frequency (0.2 Hz). Both t-LTP and t-LTD require NMDA-type glutamate receptors for their induction, but the location and properties of these receptors are different: While t-LTP requires postsynaptic ionotropic NMDA receptor function, t-LTD does not, and whereas t-LTP is blocked by antagonists at GluN2A and GluN2B subunit-containing NMDA receptors, t-LTD is blocked by GluN2C or GluN2D subunit-preferring NMDA receptor antagonists. Both t-LTP and t-LTD require postsynaptic Ca2+ for their induction. Induction of t-LTD also requires metabotropic glutamate receptor activation, phospholipase C activation, postsynaptic IP3 receptor-mediated Ca2+ release from internal stores, postsynaptic endocannabinoid (eCB) synthesis, activation of CB1 receptors and astrocytic signaling, possibly via release of the gliotransmitter d-serine. We furthermore found that presynaptic calcineurin is required for t-LTD induction. t-LTD is expressed presynaptically as indicated by fluctuation analysis, paired-pulse ratio, and rate of use-dependent depression of postsynaptic NMDA receptor currents by MK801. The results show that CA3-CA1 synapses display both NMDA receptor-dependent t-LTP and t-LTD during development and identify a presynaptic form of hippocampal t-LTD similar to that previously described at neocortical synapses during development.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Paloma Duque-Feria
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| |
Collapse
|
75
|
NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun 2016; 7:11264. [PMID: 27117477 PMCID: PMC5227094 DOI: 10.1038/ncomms11264] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/04/2016] [Indexed: 01/29/2023] Open
Abstract
How neuronal proteomes self-organize is poorly understood because of their inherent molecular and cellular complexity. Here, focusing on mammalian synapses we use blue-native PAGE and ‘gene-tagging' of GluN1 to report the first biochemical purification of endogenous NMDA receptors (NMDARs) directly from adult mouse brain. We show that NMDARs partition between two discrete populations of receptor complexes and ∼1.5 MDa supercomplexes. We tested the assembly mechanism with six mouse mutants, which indicates a tripartite requirement of GluN2B, PSD93 and PSD95 gate the incorporation of receptors into ∼1.5 MDa supercomplexes, independent of either canonical PDZ-ligands or GluN2A. Supporting the essential role of GluN2B, quantitative gene-tagging revealed a fourfold molar excess of GluN2B over GluN2A in adult forebrain. NMDAR supercomplexes are assembled late in postnatal development and triggered by synapse maturation involving epigenetic and activity-dependent mechanisms. Finally, screening the quaternary organization of 60 native proteins identified numerous discrete supercomplexes that populate the mammalian synapse. NMDARs and MAGUK proteins are capable of forming higher-order protein assemblies, however their organisation in the intact brain is unclear. Here, Frank et al. identify mouse and human supercomplexes and discover their mechanism of assembly using genetic tagging and affinity purification.
Collapse
|
76
|
PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits. Sci Rep 2016; 6:24626. [PMID: 27109929 PMCID: PMC4842999 DOI: 10.1038/srep24626] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/01/2016] [Indexed: 12/27/2022] Open
Abstract
The molecular features of synapses in the hippocampus underpin current models of learning and cognition. Although synapse ultra-structural diversity has been described in the canonical hippocampal circuitry, our knowledge of sub-synaptic organisation of synaptic molecules remains largely unknown. To address this, mice were engineered to express Post Synaptic Density 95 protein (PSD95) fused to either eGFP or mEos2 and imaged with two orthogonal super-resolution methods: gated stimulated emission depletion (g-STED) microscopy and photoactivated localisation microscopy (PALM). Large-scale analysis of ~100,000 synapses in 7 hippocampal sub-regions revealed they comprised discrete PSD95 nanoclusters that were spatially organised into single and multi-nanocluster PSDs. Synapses in different sub-regions, cell-types and locations along the dendritic tree of CA1 pyramidal neurons, showed diversity characterised by the number of nanoclusters per synapse. Multi-nanocluster synapses were frequently found in the CA3 and dentate gyrus sub-regions, corresponding to large thorny excrescence synapses. Although the structure of individual nanoclusters remained relatively conserved across all sub-regions, PSD95 packing into nanoclusters also varied between sub-regions determined from nanocluster fluorescence intensity. These data identify PSD95 nanoclusters as a basic structural unit, or building block, of excitatory synapses and their number characterizes synapse size and structural diversity.
Collapse
|
77
|
Sharp-Wave Ripples Orchestrate the Induction of Synaptic Plasticity during Reactivation of Place Cell Firing Patterns in the Hippocampus. Cell Rep 2016; 14:1916-29. [PMID: 26904941 PMCID: PMC4785795 DOI: 10.1016/j.celrep.2016.01.061] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 10/16/2015] [Accepted: 01/19/2016] [Indexed: 12/11/2022] Open
Abstract
Place cell firing patterns reactivated during hippocampal sharp-wave ripples (SWRs) in rest or sleep are thought to induce synaptic plasticity and thereby promote the consolidation of recently encoded information. However, the capacity of reactivated spike trains to induce plasticity has not been directly tested. Here, we show that reactivated place cell firing patterns simultaneously recorded from CA3 and CA1 of rat dorsal hippocampus are able to induce long-term potentiation (LTP) at synapses between CA3 and CA1 cells but only if accompanied by SWR-associated synaptic activity and resulting dendritic depolarization. In addition, we show that the precise timing of coincident CA3 and CA1 place cell spikes in relation to SWR onset is critical for the induction of LTP and predictive of plasticity generated by reactivation. Our findings confirm an important role for SWRs in triggering and tuning plasticity processes that underlie memory consolidation in the hippocampus during rest or sleep.
Collapse
|
78
|
Tigaret CM, Olivo V, Sadowski JHLP, Ashby MC, Mellor JR. Coordinated activation of distinct Ca(2+) sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity. Nat Commun 2016; 7:10289. [PMID: 26758963 PMCID: PMC4735496 DOI: 10.1038/ncomms10289] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/26/2015] [Indexed: 01/10/2023] Open
Abstract
At glutamatergic synapses, induction of associative synaptic plasticity requires time-correlated presynaptic and postsynaptic spikes to activate postsynaptic NMDA receptors (NMDARs). The magnitudes of the ensuing Ca2+ transients within dendritic spines are thought to determine the amplitude and direction of synaptic change. In contrast, we show that at mature hippocampal Schaffer collateral synapses the magnitudes of Ca2+ transients during plasticity induction do not match this rule. Indeed, LTP induced by time-correlated pre- and postsynaptic spikes instead requires the sequential activation of NMDARs followed by voltage-sensitive Ca2+ channels within dendritic spines. Furthermore, LTP requires inhibition of SK channels by mGluR1, which removes a negative feedback loop that constitutively regulates NMDARs. Therefore, rather than being controlled simply by the magnitude of the postsynaptic calcium rise, LTP induction requires the coordinated activation of distinct sources of Ca2+ and mGluR1-dependent facilitation of NMDAR function. During STDP, the magnitude of postsynaptic Ca2+ transients is hypothesized to determine the strength of synaptic plasticity. Here, the authors find that STDP in mature hippocampal synapses does not obey this rule but instead relies on the coordinated activation of NMDARs and VGCCs and their regulation by mGluRs and SK channels.
Collapse
Affiliation(s)
- Cezar M Tigaret
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Valeria Olivo
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Josef H L P Sadowski
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Michael C Ashby
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
79
|
Zhang Q, Goto H, Akiyoshi-Nishimura S, Prosselkov P, Sano C, Matsukawa H, Yaguchi K, Nakashiba T, Itohara S. Diversification of behavior and postsynaptic properties by netrin-G presynaptic adhesion family proteins. Mol Brain 2016; 9:6. [PMID: 26746425 PMCID: PMC4706652 DOI: 10.1186/s13041-016-0187-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vertebrate-specific neuronal genes are expected to play a critical role in the diversification and evolution of higher brain functions. Among them, the glycosylphosphatidylinositol (GPI)-anchored netrin-G subfamily members in the UNC6/netrin family are unique in their differential expression patterns in many neuronal circuits, and differential binding ability to their cognate homologous post-synaptic receptors. RESULTS To gain insight into the roles of these genes in higher brain functions, we performed comprehensive behavioral batteries using netrin-G knockout mice. We found that two netrin-G paralogs that recently diverged in evolution, netrin-G1 and netrin-G2 (gene symbols: Ntng1 and Ntng2, respectively), were responsible for complementary behavioral functions. Netrin-G2, but not netrin-G1, encoded demanding sensorimotor functions. Both paralogs were responsible for complex vertebrate-specific cognitive functions and fine-scale regulation of basic adaptive behaviors conserved between invertebrates and vertebrates, such as spatial reference and working memory, attention, impulsivity and anxiety etc. Remarkably, netrin-G1 and netrin-G2 encoded a genetic "division of labor" in behavioral regulation, selectively mediating different tasks or even different details of the same task. At the cellular level, netrin-G1 and netrin-G2 differentially regulated the sub-synaptic localization of their cognate receptors and differentiated the properties of postsynaptic scaffold proteins in complementary neural pathways. CONCLUSIONS Pre-synaptic netrin-G1 and netrin-G2 diversify the complexity of vertebrate behaviors and differentially regulate post-synaptic properties. Our findings constitute the first genetic analysis of the behavioral and synaptic diversification roles of a vertebrate GPI protein and presynaptic adhesion molecule family.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Hiromichi Goto
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Sachiko Akiyoshi-Nishimura
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Pavel Prosselkov
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Chie Sano
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Hiroshi Matsukawa
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Kunio Yaguchi
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Toshiaki Nakashiba
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
80
|
Abstract
Nearly 60 years ago Seymour Kety proposed that research on genetics and brain pathology, but not on neurochemistry, would ultimately lead to an understanding of the pathophysiology of schizophrenia. This article will demonstrate the prescience of Kety's proposal; advances in our knowledge of brain structure and genetics have shaped our current understanding of the pathophysiology of schizophrenia. Brain-imaging techniques have shown that schizophrenia is associated with cortical atrophy and ventricular enlargement, which progresses for at least a decade after the onset of psychotic symptoms. Cortical atrophy correlates with negative symptoms and cognitive impairment, but not with psychotic symptoms, in schizophrenia. Studies with the Golgi-staining technique that illuminates the entire neuron indicate that cortical atrophy is due to reduced synaptic connectivity on the pyramidal neurons and not due to actual loss of neurons. Results of recent genetic studies indicate that several risk genes for schizophrenia are within two degrees of separation from the N-methy-D-aspartate receptor (NMDAR), a subtype of glutamate receptor that is critical to synapse formation and synaptic plasticity. Inactivation of one of these risk genes that encodes serine racemase, which synthesizes D-serine, an NMDAR co-agonist, reproduces the synaptic pathology of schizophrenia. Thus, widespread loss of cortical synaptic connectivity appears to be the primary pathology in schizophrenia that is driven by multiple risk genes that adversely affect synaptogenesis and synapse maintenance, as hypothesized by Kety.
Collapse
|
81
|
Suzuki E, Kamiya H. PSD-95 regulates synaptic kainate receptors at mouse hippocampal mossy fiber-CA3 synapses. Neurosci Res 2015; 107:14-9. [PMID: 26746114 DOI: 10.1016/j.neures.2015.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
Kainate-type glutamate receptors (KARs) are the third class of ionotropic glutamate receptors whose activation leads to the unique roles in regulating synaptic transmission and circuit functions. In contrast to AMPA receptors (AMPARs), little is known about the mechanism of synaptic localization of KARs. PSD-95, a major scaffold protein of the postsynaptic density, is a candidate molecule that regulates the synaptic KARs. Although PSD-95 was shown to bind directly to KARs subunits, it has not been tested whether PSD-95 regulates synaptic KARs in intact synapses. Using PSD-95 knockout mice, we directly investigated the role of PSD-95 in the KARs-mediated components of synaptic transmission at hippocampal mossy fiber-CA3 synapse, one of the synapses with the highest density of KARs. Mossy fiber EPSCs consist of AMPA receptor (AMPAR)-mediated fast component and KAR-mediated slower component, and the ratio was significantly reduced in PSD-95 knockout mice. The size of KARs-mediated field EPSP reduced in comparison with the size of the fiber volley. Analysis of KARs-mediated miniature EPSCs also suggested reduced synaptic KARs. All the evidence supports critical roles of PSD-95 in regulating synaptic KARs.
Collapse
Affiliation(s)
- Etsuko Suzuki
- Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Haruyuki Kamiya
- Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| |
Collapse
|
82
|
Loh DH, Jami SA, Flores RE, Truong D, Ghiani CA, O'Dell TJ, Colwell CS. Misaligned feeding impairs memories. eLife 2015; 4. [PMID: 26652002 PMCID: PMC4729691 DOI: 10.7554/elife.09460] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/19/2015] [Indexed: 01/23/2023] Open
Abstract
Robust sleep/wake rhythms are important for health and cognitive function. Unfortunately, many people are living in an environment where their circadian system is challenged by inappropriate meal- or work-times. Here we scheduled food access to the sleep time and examined the impact on learning and memory in mice. Under these conditions, we demonstrate that the molecular clock in the master pacemaker, the suprachiasmatic nucleus (SCN), is unaltered while the molecular clock in the hippocampus is synchronized by the timing of food availability. This chronic circadian misalignment causes reduced hippocampal long term potentiation and total CREB expression. Importantly this mis-timed feeding resulted in dramatic deficits in hippocampal-dependent learning and memory. Our findings suggest that the timing of meals have far-reaching effects on hippocampal physiology and learned behaviour. DOI:http://dx.doi.org/10.7554/eLife.09460.001 Many processes within the body follow an approximately 24-hour cycle. In addition to patterns of sleep and wakefulness, such circadian rhythms help to regulate body temperature, blood pressure and hormone levels. They also affect when we feel hungry, when our muscles work most efficiently, and when we are mentally at our sharpest. A region of the brain called the suprachiasmatic nucleus (SCN) generates and maintains circadian rhythms, and thus acts as the body’s master clock. Daily exposure to light keeps the SCN synchronized with the 24-hour day/night cycle. However, most organs, from the heart to the pancreas, also possess their own clocks, which help to regulate organ-specific processes. These secondary clocks normally operate in synchrony with the SCN. Exposure to light has long been known to influence circadian rhythms. However, more recent evidence suggests that the timing of meals may also affect circadian clocks, particularly those within the digestive system. Loh et al. therefore decided to investigate whether eating outside normal waking hours would also affect other key physiological processes, specifically the cognitive processes of learning and memory. Mice normally consume most of their food after sunset. Loh et al. showed that rodents that were instead fed during the day performed less well on cognitive tests than other mice who received the same food at night. The daytime-fed mice showed changes in a region of the brain called the hippocampus, which supports learning and memory. In particular, daytime feeding changed the timing of the secondary circadian clock within the hippocampus, although it had no effect on the master clock in the SCN. Loh et al. therefore suggest that the misalignment of these circadian clocks impairs cognition. Further experiments are needed to determine whether a similar relationship exists between the timing of meals and cognitive performance in humans. If so, these findings will have implications for the many individuals whose mealtimes, for work or social reasons, are out of synchrony with their body clocks. DOI:http://dx.doi.org/10.7554/eLife.09460.002
Collapse
Affiliation(s)
- Dawn H Loh
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,UCLA Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, United States
| | - Shekib A Jami
- UCLA Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, United States.,Molecular, Cellular, and Integrative Physiology PhD Program, University of California, Los Angeles, Los Angeles, United States
| | - Richard E Flores
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Danny Truong
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Cristina A Ghiani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Thomas J O'Dell
- UCLA Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, United States.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,UCLA Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
83
|
Neurobeachin Regulates Glutamate- and GABA-Receptor Targeting to Synapses via Distinct Pathways. Mol Neurobiol 2015; 53:2112-23. [PMID: 25934101 PMCID: PMC4823379 DOI: 10.1007/s12035-015-9164-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/27/2015] [Indexed: 01/25/2023]
Abstract
Neurotransmission and synaptic strength depend on expression of post-synaptic receptors on the cell surface. Post-translational modification of receptors, trafficking to the synapse through the secretory pathway, and subsequent insertion into the synapse involves interaction of the receptor with A-kinase anchor proteins (AKAPs) and scaffolding proteins. Neurobeachin (Nbea), a brain specific AKAP, is required for synaptic surface expression of both glutamate and GABA receptors. Here, we investigated the role of Nbea-dependent targeting of postsynaptic receptors by studying Nbea interaction with synapse-associated protein 102 (SAP102/Dlg3) and protein kinase A subunit II (PKA II). A Nbea mutant lacking the PKA binding domain showed a similar distribution as wild-type Nbea in Nbea null neurons and partially restored GABA receptor surface expression. To understand the relevance of Nbea interaction with SAP102, we analysed SAP102 null mutant mice. Nbea levels were reduced by ~80 % in SAP102 null mice, but glutamatergic receptor expression was normal. A single-point mutation in the pleckstrin homology domain of Nbea (E2218R) resulted in loss of binding with SAP102. When expressed in Nbea null neurons, this mutant fully restored GABA receptor surface expression, but not glutamate receptor expression. Our results suggest that the PKA-binding domain is not essential for Nbea’s role in receptor targeting and that Nbea targets glutamate and GABA receptors to the synapse via distinct molecular pathways by interacting with specific effector proteins.
Collapse
|
84
|
Zhu D, Li C, Swanson AM, Villalba RM, Guo J, Zhang Z, Matheny S, Murakami T, Stephenson JR, Daniel S, Fukata M, Hall RA, Olson JJ, Neigh GN, Smith Y, Rainnie DG, Van Meir EG. BAI1 regulates spatial learning and synaptic plasticity in the hippocampus. J Clin Invest 2015; 125:1497-508. [PMID: 25751059 DOI: 10.1172/jci74603] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/15/2015] [Indexed: 12/16/2022] Open
Abstract
Synaptic plasticity is the ability of synapses to modulate the strength of neuronal connections; however, the molecular factors that regulate this feature are incompletely understood. Here, we demonstrated that mice lacking brain-specific angiogenesis inhibitor 1 (BAI1) have severe deficits in hippocampus-dependent spatial learning and memory that are accompanied by enhanced long-term potentiation (LTP), impaired long-term depression (LTD), and a thinning of the postsynaptic density (PSD) at hippocampal synapses. We showed that compared with WT animals, mice lacking Bai1 exhibit reduced protein levels of the canonical PSD component PSD-95 in the brain, which stems from protein destabilization. We determined that BAI1 prevents PSD-95 polyubiquitination and degradation through an interaction with murine double minute 2 (MDM2), the E3 ubiquitin ligase that regulates PSD-95 stability. Restoration of PSD-95 expression in hippocampal neurons in BAI1-deficient mice by viral gene therapy was sufficient to compensate for Bai1 loss and rescued deficits in synaptic plasticity. Together, our results reveal that interaction of BAI1 with MDM2 in the brain modulates PSD-95 levels and thereby regulates synaptic plasticity. Moreover, these results suggest that targeting this pathway has therapeutic potential for a variety of neurological disorders.
Collapse
|
85
|
Sheinin A, Lavi A, Michaelevski I. StimDuino: an Arduino-based electrophysiological stimulus isolator. J Neurosci Methods 2015; 243:8-17. [PMID: 25619449 DOI: 10.1016/j.jneumeth.2015.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/08/2015] [Accepted: 01/11/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Electrical stimulus isolator is a widely used device in electrophysiology. The timing of the stimulus application is usually automated and controlled by the external device or acquisition software; however, the intensity of the stimulus is adjusted manually. Inaccuracy, lack of reproducibility and no automation of the experimental protocol are disadvantages of the manual adjustment. To overcome these shortcomings, we developed StimDuino, an inexpensive Arduino-controlled stimulus isolator allowing highly accurate, reproducible automated setting of the stimulation current. NEW METHOD The intensity of the stimulation current delivered by StimDuino is controlled by Arduino, an open-source microcontroller development platform. The automatic stimulation patterns are software-controlled and the parameters are set from Matlab-coded simple, intuitive and user-friendly graphical user interface. The software also allows remote control of the device over the network. RESULTS Electrical current measurements showed that StimDuino produces the requested current output with high accuracy. In both hippocampal slice and in vivo recordings, the fEPSP measurements obtained with StimDuino and the commercial stimulus isolators showed high correlation. COMPARISON WITH EXISTING METHODS Commercial stimulus isolators are manually managed, while StimDuino generates automatic stimulation patterns with increasing current intensity. The pattern is utilized for the input-output relationship analysis, necessary for assessment of excitability. In contrast to StimuDuino, not all commercial devices are capable for remote control of the parameters and stimulation process. CONCLUSIONS StimDuino-generated automation of the input-output relationship assessment eliminates need for the current intensity manually adjusting, improves stimulation reproducibility, accuracy and allows on-site and remote control of the stimulation parameters.
Collapse
Affiliation(s)
- Anton Sheinin
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv 69978, Israel; Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Ayal Lavi
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv 69978, Israel; Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Izhak Michaelevski
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv 69978, Israel; Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
86
|
Abstract
Synaptic cell adhesion molecules are increasingly gaining attention for conferring specific properties to individual synapses. Netrin-G1 and netrin-G2 are trans-synaptic adhesion molecules that distribute on distinct axons, and their presence restricts the expression of their cognate receptors, NGL1 and NGL2, respectively, to specific subdendritic segments of target neurons. However, the neural circuits and functional roles of netrin-G isoform complexes remain unclear. Here, we use netrin-G-KO and NGL-KO mice to reveal that netrin-G1/NGL1 and netrin-G2/NGL2 interactions specify excitatory synapses in independent hippocampal pathways. In the hippocampal CA1 area, netrin-G1/NGL1 and netrin-G2/NGL2 were expressed in the temporoammonic and Schaffer collateral pathways, respectively. The lack of presynaptic netrin-Gs led to the dispersion of NGLs from postsynaptic membranes. In accord, netrin-G mutant synapses displayed opposing phenotypes in long-term and short-term plasticity through discrete biochemical pathways. The plasticity phenotypes in netrin-G-KOs were phenocopied in NGL-KOs, with a corresponding loss of netrin-Gs from presynaptic membranes. Our findings show that netrin-G/NGL interactions differentially control synaptic plasticity in distinct circuits via retrograde signaling mechanisms and explain how synaptic inputs are diversified to control neuronal activity.
Collapse
|
87
|
Sorokin A, Sorokina O, Armstrong JD. RKappa: Statistical Sampling Suite for Kappa Models. HYBRID SYSTEMS BIOLOGY 2015. [DOI: 10.1007/978-3-319-27656-4_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
88
|
Martenson JS, Tomita S. Synaptic localization of neurotransmitter receptors: comparing mechanisms for AMPA and GABAA receptors. Curr Opin Pharmacol 2014; 20:102-8. [PMID: 25529200 DOI: 10.1016/j.coph.2014.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 11/30/2022]
Abstract
Ionotropic neurotransmitter receptors mediate fast synaptic transmission by localizing at postsynapses. Changes in receptor number at synapses induce synaptic plasticity. Thus, mechanisms for the synaptic localization of receptors in basal transmission and synaptic plasticity have been investigated extensively. Recent findings reveal that synaptic localization of tetrameric AMPA receptors in basal transmission requires the PDZ binding of TARP auxiliary subunits, which modulate receptor properties and pharmacology. On the other hand, pentameric GABAA receptors require multiple receptor subunits for their synaptic localization in basal transmission. AMPA receptors seem to utilize distinct mechanisms for basal synaptic localization and synaptic insertion during plasticity. Revealing precise mechanisms for receptor synaptic localization may establish new approaches to control synaptic transmission.
Collapse
Affiliation(s)
- James S Martenson
- Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Susumu Tomita
- Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
89
|
Dlg5 regulates dendritic spine formation and synaptogenesis by controlling subcellular N-cadherin localization. J Neurosci 2014; 34:12745-61. [PMID: 25232112 DOI: 10.1523/jneurosci.1280-14.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most excitatory synapses in the mammalian brain are formed on dendritic spines, and spine density has a profound impact on synaptic transmission, integration, and plasticity. Membrane-associated guanylate kinase (MAGUK) proteins are intracellular scaffolding proteins with well established roles in synapse function. However, whether MAGUK proteins are required for the formation of dendritic spines in vivo is unclear. We isolated a novel disc large-5 (Dlg5) allele in mice, Dlg5(LP), which harbors a missense mutation in the DLG5 SH3 domain, greatly attenuating its ability to interact with the DLG5 GUK domain. We show here that DLG5 is a MAGUK protein that regulates spine formation, synaptogenesis, and synaptic transmission in cortical neurons. DLG5 regulates synaptogenesis by enhancing the cell surface localization of N-cadherin, revealing a key molecular mechanism for regulating the subcellular localization of this cell adhesion molecule during synaptogenesis.
Collapse
|
90
|
Jacobs S, Cui Z, Feng R, Wang H, Wang D, Tsien JZ. Molecular and genetic determinants of the NMDA receptor for superior learning and memory functions. PLoS One 2014; 9:e111865. [PMID: 25360708 PMCID: PMC4216132 DOI: 10.1371/journal.pone.0111865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/06/2014] [Indexed: 12/17/2022] Open
Abstract
The opening-duration of the NMDA receptors implements Hebb's synaptic coincidence-detection and is long thought to be the rate-limiting factor underlying superior memory. Here, we investigate the molecular and genetic determinants of the NMDA receptors by testing the “synaptic coincidence-detection time-duration” hypothesis vs. “GluN2B intracellular signaling domain” hypothesis. Accordingly, we generated a series of GluN2A, GluN2B, and GluN2D chimeric subunit transgenic mice in which C-terminal intracellular domains were systematically swapped and overexpressed in the forebrain excitatory neurons. The data presented in the present study supports the second hypothesis, the “GluN2B intracellular signaling domain” hypothesis. Surprisingly, we found that the voltage-gated channel opening-durations through either GluN2A or GluN2B are sufficient and their temporal differences are marginal. In contrast, the C-terminal intracellular domain of the GluN2B subunit is necessary and sufficient for superior performances in long-term novel object recognition and cued fear memories and superior flexibility in fear extinction. Intriguingly, memory enhancement correlates with enhanced long-term potentiation in the 10–100 Hz range while requiring intact long-term depression capacity at the 1–5 Hz range.
Collapse
Affiliation(s)
- Stephanie Jacobs
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
| | - Zhenzhong Cui
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
| | - Ruiben Feng
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
| | - Huimin Wang
- Shanghai Institute of Functional Genomics, East China Normal University, Shanghai, China
| | - Deheng Wang
- Banna Biomedical Research Institute, Xi-Shuang-Ban-Na Prefecture, Yunnan Province, China
| | - Joe Z. Tsien
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
91
|
PSD-93 deletion inhibits Fyn-mediated phosphorylation of NR2B and protects against focal cerebral ischemia. Neurobiol Dis 2014; 68:104-11. [DOI: 10.1016/j.nbd.2014.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
|
92
|
Modeling combined schizophrenia-related behavioral and metabolic phenotypes in rodents. Behav Brain Res 2014; 276:130-42. [PMID: 24747658 DOI: 10.1016/j.bbr.2014.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a chronic, debilitating disorder with a complex behavioral and cognitive phenotype underlined by a similarly complex etiology involving an interaction between susceptibility genes and environmental factors during early development. Limited progress has been made in developing novel pharmacotherapy, partly due to a lack of valid animal models. The recent recognition of the potentially causal role of central and peripheral energy metabolism in the pathophysiology of schizophrenia raises the need of research on animal models that combine both behavioral and metabolic phenotypic domains, similar to what have been identified in humans. In this review we focus on selected genetic (DBA/2J mice, leptin receptor mutants, and PSD-93 knockout mice), early neurodevelopmental (maternal protein deprivation) and pharmacological (acute phencyclidine) animal models that capture the combined behavioral and metabolic abnormalities shown by schizophrenic patients. In reviewing behavioral phenotypes relevant to schizophrenia we apply the principles established by the Research Domain Criteria (RDoC) for better translation. We demonstrate that etiologically diverse manipulations such as specific breeding, deletion of genes that are primarily involved in metabolic regulation and in synaptic plasticity, as well as early metabolic deprivation and adult pharmacological challenge of the glutamate system can lead to schizophrenia-related behavioral and metabolic phenotypes, which suggest that these pathways might be interlinked. We propose that using animal models that combine different domains of schizophrenia can be used as a translationally valid approach to capture the system-level complex interplay between peripheral and central processes in the development of psychopathology.
Collapse
|
93
|
Bonhomme D, Pallet V, Dominguez G, Servant L, Henkous N, Lafenêtre P, Higueret P, Béracochéa D, Touyarot K. Retinoic acid modulates intrahippocampal levels of corticosterone in middle-aged mice: consequences on hippocampal plasticity and contextual memory. Front Aging Neurosci 2014; 6:6. [PMID: 24570662 PMCID: PMC3917121 DOI: 10.3389/fnagi.2014.00006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/10/2014] [Indexed: 12/13/2022] Open
Abstract
It is now established that vitamin A and its derivatives, retinoic acid (RA), are required for cognitive functions in adulthood. RA hyposignaling and hyperactivity of glucocorticoid (GC) pathway appear concomitantly during aging and would contribute to the deterioration of hippocampal synaptic plasticity and functions. Furthermore, recent data have evidenced counteracting effects of retinoids on GC signaling pathway. In the present study, we addressed the following issue: whether the stimulation of RA pathway could modulate intrahippocampal corticosterone (CORT) levels in middle-aged mice and thereby impact on hippocampal plasticity and cognitive functions. We firstly investigated the effects of vitamin A supplementation and RA treatment in middle-aged mice, on contextual serial discrimination task, a paradigm which allows the detection of early signs of age-related hippocampal-dependent memory dysfunction. We then measured intrahippocampal CORT concentrations by microdialysis before and after a novelty-induced stress. Our results show that both RA treatment and vitamin A supplementation improve “episodic-like” memory in middle-aged mice but RA treatment appears to be more efficient. Moreover, we show that the beneficial effect of RA on memory is associated to an increase in hippocampal PSD-95 expression. In addition, intrahippocampal CORT levels are reduced after novelty-induced stress in RA-treated animals. This effect cannot be related to a modulation of hippocampal 11β-HSD1 expression. Interestingly, RA treatment induces a modulation of RA receptors RARα and RARβ expression in middle-aged mice, a finding which has been correlated with the amplitude of intrahippocampal CORT levels after novelty-induced stress. Taken together, our results suggest that the preventive action of RA treatment on age-related memory deficits in middle-aged mice could be, at least in part, due to an inhibitory effect of retinoids on GC activity.
Collapse
Affiliation(s)
- Damien Bonhomme
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Véronique Pallet
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Gaelle Dominguez
- CNRS, Intititut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 Talence, France ; INSERM, U-930, Université François Rabelais Tours, France
| | - Laure Servant
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Nadia Henkous
- CNRS, Intititut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 Talence, France
| | - Pauline Lafenêtre
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Paul Higueret
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Daniel Béracochéa
- CNRS, Intititut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 Talence, France
| | - Katia Touyarot
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| |
Collapse
|
94
|
Differential roles of postsynaptic density-93 isoforms in regulating synaptic transmission. J Neurosci 2013; 33:15504-17. [PMID: 24068818 DOI: 10.1523/jneurosci.0019-12.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the postsynaptic density of glutamatergic synapses, the discs large (DLG)-membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins coordinates a multiplicity of signaling pathways to maintain and regulate synaptic transmission. Postsynaptic density-93 (PSD-93) is the most variable paralog in this family; it exists in six different N-terminal isoforms. Probably because of the structural and functional variability of these isoforms, the synaptic role of PSD-93 remains controversial. To accurately characterize the synaptic role of PSD-93, we quantified the expression of all six isoforms in the mouse hippocampus and examined them individually in hippocampal synapses. Using molecular manipulations, including overexpression, gene knockdown, PSD-93 knock-out mice combined with biochemical assays, and slice electrophysiology both in rat and mice, we demonstrate that PSD-93 is required at different developmental synaptic states to maintain the strength of excitatory synaptic transmission. This strength is differentially regulated by the six isoforms of PSD-93, including regulations of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-active and inactive synapses, and activity-dependent modulations. Collectively, these results demonstrate that alternative combinations of N-terminal PSD-93 isoforms and DLG-MAGUK paralogs can fine-tune signaling scaffolds to adjust synaptic needs to regulate synaptic transmission.
Collapse
|
95
|
Liu M, Lewis LD, Shi R, Brown EN, Xu W. Differential requirement for NMDAR activity in SAP97β-mediated regulation of the number and strength of glutamatergic AMPAR-containing synapses. J Neurophysiol 2013; 111:648-58. [PMID: 24225540 DOI: 10.1152/jn.00262.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PSD-95-like, disc-large (DLG) family membrane-associated guanylate kinase proteins (PSD/DLG-MAGUKs) are essential for regulating synaptic AMPA receptor (AMPAR) function and activity-dependent trafficking of AMPARs. Using a molecular replacement strategy to replace endogenous PSD-95 with SAP97β, we show that the prototypic β-isoform of the PSD-MAGUKs, SAP97β, has distinct NMDA receptor (NMDAR)-dependent roles in regulating basic properties of AMPAR-containing synapses. SAP97β enhances the number of AMPAR-containing synapses in an NMDAR-dependent manner, whereas its effect on the size of unitary synaptic response is not fully dependent on NMDAR activity. These effects contrast with those of PSD-95α, which increases both the number of AMPAR-containing synapses and the size of unitary synaptic responses, with or without NMDAR activity. Our results suggest that SAP97β regulates synaptic AMPAR content by increasing surface expression of GluA1-containing AMPARs, whereas PSD-95α enhances synaptic AMPAR content presumably by increasing the synaptic scaffold capacity for synaptic AMPARs. Our approach delineates discrete effects of different PSD-MAGUKs on principal properties of glutamatergic synaptic transmission. Our results suggest that the molecular diversity of PSD-MAGUKs can provide rich molecular substrates for differential regulation of glutamatergic synapses in the brain.
Collapse
Affiliation(s)
- Mingna Liu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | | | | | | |
Collapse
|
96
|
Soler-Llavina GJ, Arstikaitis P, Morishita W, Ahmad M, Südhof TC, Malenka RC. Leucine-rich repeat transmembrane proteins are essential for maintenance of long-term potentiation. Neuron 2013; 79:439-46. [PMID: 23931994 DOI: 10.1016/j.neuron.2013.06.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 11/18/2022]
Abstract
Leucine-rich repeat transmembrane proteins (LRRTMs) are synaptic cell adhesion molecules that trigger excitatory synapse assembly in cultured neurons and influence synaptic function in vivo, but their role in synaptic plasticity is unknown. shRNA-mediated knockdown (KD) of LRRTM1 and LRRTM2 in vivo in CA1 pyramidal neurons of newborn mice blocked long-term potentiation (LTP) in acute hippocampal slices. Molecular replacement experiments revealed that the LRRTM2 extracellular domain is sufficient for LTP, probably because it mediates binding to neurexins (Nrxs). Examination of surface expression of endogenous AMPA receptors (AMPARs) in cultured neurons suggests that LRRTMs maintain newly delivered AMPARs at synapses after LTP induction. LRRTMs are also required for LTP of mature synapses on adult CA1 pyramidal neurons, indicating that the block of LTP in neonatal synapses by LRRTM1 and LRRTM2 KD is not due to impairment of synapse maturation.
Collapse
Affiliation(s)
- Gilberto J Soler-Llavina
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
97
|
Qian W, Miao K, Li T, Zhang Z. Effect of selenium on fluoride-induced changes in synaptic plasticity in rat hippocampus. Biol Trace Elem Res 2013; 155:253-60. [PMID: 23959921 DOI: 10.1007/s12011-013-9773-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/24/2013] [Indexed: 11/28/2022]
Abstract
This study was conducted to further explore the effect of selenium on fluoride-induced changes in the synaptic plasticity in rat hippocampus. Animals were randomly divided into control group, F group (sodium fluoride: 50 mg/L), three Se groups (sodium selenite: 0.375, 0.75, and 1.5 mg/L), and three F+Se groups (sodium fluoride: 50 mg/L; sodium selenite:0.375, 0.75, and 1.5 mg/L) and subjected to an exposure time of 6 months. The changes in synaptic plasticity in rat hippocampus were observed by electron microscopy. Compared with the fluoride group, the length of the synaptic active zone and the thickness of the postsynaptic density (PSD) increased significantly, whereas the width of the synaptic cleft decreased with high significance in the F+Se (0.75 mg/L) group. Moreover, the nitric oxide synthase activity and the nitric oxide content in the hippocampus decreased significantly in the F+Se (0.75 and 1.5 mg/L) groups. Furthermore, reverse transcriptase polymerase chain reaction and Western blot analyses showed that postsynaptic density-93 (PSD-93) expression in the hippocampus was increased significantly, whereas postsynaptic density-95 (PSD-95) expression decreased significantly in the fluoride group compared with the control group. The PSD-93 expression was inhibited in the three F+Se groups, whereas the opposite result was observed in PSD-95 expression. Based on the results, the optimal selenium dosage range that can antagonize the neurotoxicity of fluorosis is from 0.75 to 1.5 mg/L. The changes in PSD-93 expression may be the key factor to fluoride-induced central nervous toxicity and the effect of selenium intervention.
Collapse
|
98
|
Synaptic state-dependent functional interplay between postsynaptic density-95 and synapse-associated protein 102. J Neurosci 2013; 33:13398-409. [PMID: 23946397 DOI: 10.1523/jneurosci.6255-11.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent regulation of AMPA receptor (AMPAR)-mediated synaptic transmission is the basis for establishing differences in synaptic weights among individual synapses during developmental and experience-dependent synaptic plasticity. Synaptic signaling scaffolds of the Discs large (DLG)-membrane-associated guanylate kinase (MAGUK) protein family regulate these processes by tethering signaling proteins to receptor complexes. Using a molecular replacement strategy with RNAi-mediated knockdown in rat and mouse hippocampal organotypic slice cultures, a postsynaptic density-95 (PSD-95) knock-out mouse line and electrophysiological analysis, our current study identified a functional interplay between two paralogs, PSD-95 and synapse-associated protein 102 (SAP102) to regulate synaptic AMPARs. During synaptic development, the SAP102 protein levels normally plateau but double if PSD-95 expression is prevented during synaptogenesis. For an autonomous function of PSD-95 in regulating synaptic AMPARs, in addition to the previously demonstrated N-terminal multimerization and the first two PDZ (PSD-95, Dlg1, zona occludens-1) domains, the PDZ3 and guanylate kinase domains were required. The Src homology 3 domain was dispensable for the PSD-95-autonomous regulation of basal synaptic transmission. However, it mediated the functional interaction with SAP102 of PSD-95 mutants to enhance AMPARs. These results depict a protein domain-based multifunctional aspect of PSD-95 in regulating excitatory synaptic transmission and unveil a novel form of domain-based interplay between signaling scaffolds of the DLG-MAGUK family.
Collapse
|
99
|
Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington’s disease. Neuroscience 2013; 251:66-74. [DOI: 10.1016/j.neuroscience.2012.05.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/11/2012] [Accepted: 05/16/2012] [Indexed: 11/23/2022]
|
100
|
TRPA1 channels are regulators of astrocyte basal calcium levels and long-term potentiation via constitutive D-serine release. J Neurosci 2013; 33:10143-53. [PMID: 23761909 DOI: 10.1523/jneurosci.5779-12.2013] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are found throughout the brain where they make extensive contacts with neurons and synapses. Astrocytes are known to display intracellular Ca(2+) signals and release signaling molecules such as D-serine into the extracellular space. However, the role(s) of astrocyte Ca(2+) signals in hippocampal long-term potentiation (LTP), a form of synaptic plasticity involved in learning and memory, remains unclear. Here, we explored a recently discovered novel TRPA1 channel-mediated transmembrane Ca(2+) flux pathway in astrocytes. Specifically, we determined whether block or genetic deletion of TRPA1 channels affected LTP of Schaffer collateral to CA1 pyramidal neuron synapses. Using pharmacology, TRPA1(-/-) mice, imaging, electrophysiology, and D-serine biosensors, our data indicate that astrocyte TRPA1 channels contribute to basal Ca(2+) levels and are required for constitutive D-serine release into the extracellular space, which contributes to NMDA receptor-dependent LTP. The findings have broad relevance for the study of astrocyte-neuron interactions by demonstrating how TRPA1 channel-mediated fluxes contribute to astrocyte basal Ca(2+) levels and neuronal function via constitutive D-serine release.
Collapse
|