51
|
Lee HK, Yang YJ, Koirala GR, Oh S, Kim TI. From lab to wearables: Innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Biomaterials 2024; 310:122632. [PMID: 38824848 DOI: 10.1016/j.biomaterials.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Functional hydrogels have emerged as foundational materials in diagnostics, therapy, and wearable devices, owing to their high stretchability, flexibility, sensing, and outstanding biocompatibility. Their significance stems from their resemblance to biological tissue and their exceptional versatility in electrical, mechanical, and biofunctional engineering, positioning themselves as a bridge between living organisms and electronic systems, paving the way for the development of highly compatible, efficient, and stable interfaces. These multifaceted capability revolutionizes the essence of hydrogel-based wearable devices, distinguishing them from conventional biomedical devices in real-world practical applications. In this comprehensive review, we first discuss the fundamental chemistry of hydrogels, elucidating their distinct properties and functionalities. Subsequently, we examine the applications of these bioelectronics within the human body, unveiling their transformative potential in diagnostics, therapy, and human-machine interfaces (HMI) in real wearable bioelectronics. This exploration serves as a scientific compass for researchers navigating the interdisciplinary landscape of chemistry, materials science, and bioelectronics.
Collapse
Affiliation(s)
- Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Yang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
52
|
Kandwal A, Sharma YD, Jasrotia R, Kit CC, Lakshmaiya N, Sillanpää M, Liu LW, Igbe T, Kumari A, Sharma R, Kumar S, Sungoum C. A comprehensive review on electromagnetic wave based non-invasive glucose monitoring in microwave frequencies. Heliyon 2024; 10:e37825. [PMID: 39323784 PMCID: PMC11422007 DOI: 10.1016/j.heliyon.2024.e37825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
Diabetes is a chronic disease that affects millions of humans worldwide. This review article provides an analysis of the recent advancements in non-invasive blood glucose monitoring, detailing methods and techniques, with a special focus on Electromagnetic wave microwave glucose sensors. While optical, thermal, and electromagnetic techniques have been discussed, the primary emphasis is focussed on microwave frequency sensors due to their distinct advantages. Microwave sensors exhibit rapid response times, require minimal user intervention, and hold potential for continuous monitoring, renders them extremely potential for real-world applications. Additionally, their reduced susceptibility to physiological interferences further enhances their appeal. This review critically assesses the performance of microwave glucose sensors by considering factors such as accuracy, sensitivity, specificity, and user comfort. Moreover, it sheds light on the challenges and upcoming directions in the growth of microwave sensors, including the need for reduction and integration with wearable platforms. By concentrating on microwave sensors within the broader context of non-invasive glucose monitoring, this article aims to offer significant enlightenment that may drive further innovation in diabetes care.
Collapse
Affiliation(s)
- Abhishek Kandwal
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Taicang, Suzhou 215400, China
- Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, 71800, Malaysia
- School of Physics and Materials Science, Shoolini University, Bajhol, Himachal Pradesh, 173229, India
| | - Yogeshwar Dutt Sharma
- School of Physics and Materials Science, Shoolini University, Bajhol, Himachal Pradesh, 173229, India
| | - Rohit Jasrotia
- Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, 71800, Malaysia
- School of Physics and Materials Science, Shoolini University, Bajhol, Himachal Pradesh, 173229, India
- Centre for Research Impact and Outcome, Chitkara University, Rajpura 140101, Punjab, India
| | - Chan Choon Kit
- Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, 71800, Malaysia
- Faculty of Engineering, Shinawatra University, Pathumthani, 12160, Thailand
| | - Natrayan Lakshmaiya
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu 602105, India
| | - Mika Sillanpää
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093, Kuwait
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, Uni-versity of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
- Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248007, India
- School of Technology, Woxsen University, Hyderabad, Telangana, India
| | - Louis Wy Liu
- Faculty of Engineering, Vietnamese German University, 75000, Viet Nam
| | - Tobore Igbe
- Center for Diabetes Technology, School of Medicine, University of Virginia, VA22903, USA
| | - Asha Kumari
- Department of Chemistry, Career Point University, Himachal Pradesh, 176041, India
| | - Rahul Sharma
- Department of Chemistry, Career Point University, Himachal Pradesh, 176041, India
| | - Suresh Kumar
- Department of Physics, MMU University, Ambala, Haryana, India
| | - Chongkol Sungoum
- Faculty of Engineering, Shinawatra University, Pathumthani, 12160, Thailand
| |
Collapse
|
53
|
Zhang Y, Zheng XT, Zhang X, Pan J, Thean AVY. Hybrid Integration of Wearable Devices for Physiological Monitoring. Chem Rev 2024; 124:10386-10434. [PMID: 39189683 DOI: 10.1021/acs.chemrev.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Wearable devices can provide timely, user-friendly, non- or minimally invasive, and continuous monitoring of human health. Recently, multidisciplinary scientific communities have made significant progress regarding fully integrated wearable devices such as sweat wearable sensors, saliva sensors, and wound sensors. However, the translation of these wearables into markets has been slow due to several reasons associated with the poor system-level performance of integrated wearables. The wearability consideration for wearable devices compromises many properties of the wearables. Besides, the limited power capacity of wearables hinders continuous monitoring for extended duration. Furthermore, peak-power operations for intensive computations can quickly create thermal issues in the compact form factor that interfere with wearability and sensor operations. Moreover, wearable devices are constantly subjected to environmental, mechanical, chemical, and electrical interferences and variables that can invalidate the collected data. This generates the need for sophisticated data analytics to contextually identify, include, and exclude data points per multisensor fusion to enable accurate data interpretation. This review synthesizes the challenges surrounding the wearable device integration from three aspects in terms of hardware, energy, and data, focuses on a discussion about hybrid integration of wearable devices, and seeks to provide comprehensive guidance for designing fully functional and stable wearable devices.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
54
|
Li Z, Wang Y, Zhang R, Liu Z, Chang Z, Deng Y, Qi X. Microneedles-Based Theranostic Platform: From the Past to the Future. ACS NANO 2024; 18:23876-23893. [PMID: 39177073 DOI: 10.1021/acsnano.4c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fully integrated theranostic devices are highly esteemed in clinical applications, offering immense potential in real-time disease monitoring and personalized care. Microneedles (MNs), as innovative and wearable devices, boast important advantages in biosensing and therapy, thus holding significant promise in the advancement of diagnostic and therapeutic platforms. Encouragingly, advancements in electrochemical sensing technology, micronano fabrication, and biocompatible materials are propelling momentum for MNs-based closed-loop systems, enhancing detection capabilities, biocompatibility, and cost-effectiveness. Moreover, the notable progress in integrating MN chips with other biochips signifies a frontier for growth. Successful clinical trials in target molecule monitoring and drug delivery domains herald excellent clinical translational prospects for the aforementioned theranostic platform. Finally, we delineate both challenges and opportunities in the development of integrated diagnostic and therapeutic MN systems, including continuous monitoring, intelligent control algorithms, safety, and regulatory considerations.
Collapse
Affiliation(s)
- Ziyang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhan Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruiwei Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zijian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyue Qi
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
55
|
Mariello M, Eş I, Proctor CM. Soft and Flexible Bioelectronic Micro-Systems for Electronically Controlled Drug Delivery. Adv Healthc Mater 2024; 13:e2302969. [PMID: 37924224 DOI: 10.1002/adhm.202302969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Indexed: 11/06/2023]
Abstract
The concept of targeted and controlled drug delivery, which directs treatment to precise anatomical sites, offers benefits such as fewer side effects, reduced toxicity, optimized dosages, and quicker responses. However, challenges remain to engineer dependable systems and materials that can modulate host tissue interactions and overcome biological barriers. To stay aligned with advancements in healthcare and precision medicine, novel approaches and materials are imperative to improve effectiveness, biocompatibility, and tissue compliance. Electronically controlled drug delivery (ECDD) has recently emerged as a promising approach to calibrated drug delivery with spatial and temporal precision. This article covers recent breakthroughs in soft, flexible, and adaptable bioelectronic micro-systems designed for ECDD. It overviews the most widely reported operational modes, materials engineering strategies, electronic interfaces, and characterization techniques associated with ECDD systems. Further, it delves into the pivotal applications of ECDD in wearable, ingestible, and implantable medical devices. Finally, the discourse extends to future prospects and challenges for ECDD.
Collapse
Affiliation(s)
- Massimo Mariello
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
56
|
Backiyalakshmi G, Snekhalatha U, Salvador AL. Recent advancements in non-invasive wearable electrochemical biosensors for biomarker analysis - A review. Anal Biochem 2024; 692:115578. [PMID: 38801938 DOI: 10.1016/j.ab.2024.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
A biomarker is a molecular indicator that can be used to identify the presence or severity of a disease. It may be produced due to biochemical or molecular changes in normal biological processes. In some cases, the presence of a biomarker itself is an indication of the disease, while in other cases, the elevated or depleted level of a particular protein or chemical substance aids in identifying a disease. Biomarkers indicate the progression of the disease in response to therapeutic interventions. Identifying these biomarkers can assist in diagnosing the disease early and providing proper therapeutic treatment. In recent years, wearable electrochemical (EC) biosensors have emerged as an important tool for early detection due to their excellent selectivity, low cost, ease of fabrication, and improved sensitivity. There are several challenges in developing a fully integrated wearable sensor, such as device miniaturization, high power consumption, incorporation of a power source, and maintaining the integrity and durability of the biomarker for long-term continuous monitoring. This review covers the recent advancements in the fabrication techniques involved in device development, the types of sensing platforms utilized, different materials used, challenges, and future developments in the field of wearable biosensors.
Collapse
Affiliation(s)
- G Backiyalakshmi
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - U Snekhalatha
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India; College of Engineering, Architecture and Fine Arts, Batangas State University, Batangas, Philippines.
| | - Anela L Salvador
- College of Engineering, Architecture and Fine Arts, Batangas State University, Batangas, Philippines
| |
Collapse
|
57
|
Zhao J, Gong S, Mu Y, Jia X, Zhou Y, Tian Y, Chao D. Wearable dual-drug controlled release patch for psoriasis treatment. J Colloid Interface Sci 2024; 669:835-843. [PMID: 38749222 DOI: 10.1016/j.jcis.2024.05.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024]
Abstract
Wearable drug delivery systems (DDS) have made significant advancements in the field of precision medicine, offering precise regulation of drug dosage, location, and timing. The performance qualities that wearable DDS has always strived for are simplicity, efficiency, and intelligence. This paper proposes a wearable dual-drug synergistic release patch. The patch is powered by a built-in magnesium battery and utilizes a hydrogel containing viologen-based hyperbranched polyamidoamine as both a cathode material and an integrated drug reservoir. This design allows for the simultaneous release of both dexamethasone and tannic acid, overcoming the limitations of monotherapy and ensuring effective synergy for on-demand therapy. In a mouse model with praziquimod-induced psoriasis, the patch demonstrated therapeutic efficacy at a low voltage. The inflammatory skin returned to normal after 5 days with the on-demand release of dual drugs. This work provides a promising treatment option considering its straightforward construction and the therapeutic advantages of dual-drug synergy.
Collapse
Affiliation(s)
- Jiaxin Zhao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Shengen Gong
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yueming Mu
- Department of Dermatology and Venerology of the First Hospital, Jilin University, Changchun 130021, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yan Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yaping Tian
- Department of Dermatology and Venerology of the First Hospital, Jilin University, Changchun 130021, China.
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
58
|
Bindu A, Bhadra S, Nayak S, Khan R, Prabhu AA, Sevda S. Bioelectrochemical biosensors for water quality assessment and wastewater monitoring. Open Life Sci 2024; 19:20220933. [PMID: 39220594 PMCID: PMC11365470 DOI: 10.1515/biol-2022-0933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Bioelectrochemical biosensors offer a promising approach for real-time monitoring of industrial bioprocesses. Many bioelectrochemical biosensors do not require additional labelling reagents for target molecules. This simplifies the monitoring process, reduces costs, and minimizes potential contamination risks. Advancements in materials science and microfabrication technologies are paving the way for smaller, more portable bioelectrochemical biosensors. This opens doors for integration into existing bioprocessing equipment and facilitates on-site, real-time monitoring capabilities. Biosensors can be designed to detect specific heavy metals such as lead, mercury, or chromium in wastewater. Early detection allows for the implementation of appropriate removal techniques before they reach the environment. Despite these challenges, bioelectrochemical biosensors offer a significant leap forward in wastewater monitoring. As research continues to improve their robustness, selectivity, and cost-effectiveness, they have the potential to become a cornerstone of efficient and sustainable wastewater treatment practices.
Collapse
Affiliation(s)
- Anagha Bindu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Sudipa Bhadra
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Soubhagya Nayak
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Rizwan Khan
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Ashish A. Prabhu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| |
Collapse
|
59
|
Castillo-Valdez PF, Rodriguez-Salvador M, Ho YS. Scientific Production Dynamics in mHealth for Diabetes: Scientometric Analysis. JMIR Diabetes 2024; 9:e52196. [PMID: 39172508 PMCID: PMC11377915 DOI: 10.2196/52196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/23/2024] [Accepted: 06/04/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The widespread use of mobile technologies in health care (mobile health; mHealth) has facilitated disease management, especially for chronic illnesses such as diabetes. mHealth for diabetes is an attractive alternative to reduce costs and overcome geographical and temporal barriers to improve patients' conditions. OBJECTIVE This study aims to reveal the dynamics of scientific publications on mHealth for diabetes to gain insights into who are the most prominent authors, countries, institutions, and journals and what are the most cited documents and current hot spots. METHODS A scientometric analysis based on a competitive technology intelligence methodology was conducted. An innovative 8-step methodology supported by experts was executed considering scientific documents published between 1998 and 2021 in the Science Citation Index Expanded database. Publication language, publication output characteristics, journals, countries and institutions, authors, and most cited and most impactful articles were identified. RESULTS The insights obtained show that a total of 1574 scientific articles were published by 7922 authors from 90 countries, with an average of 15 (SD 38) citations and 6.5 (SD 4.4) authors per article. These documents were published in 491 journals and 92 Web of Science categories. The most productive country was the United States, followed by the United Kingdom, China, Australia, and South Korea, and the top 3 most productive institutions came from the United States, whereas the top 3 most cited articles were published in 2016, 2009, and 2017 and the top 3 most impactful articles were published in 2016 and 2017. CONCLUSIONS This approach provides a comprehensive knowledge panorama of research productivity in mHealth for diabetes, identifying new insights and opportunities for research and development and innovation, including collaboration with other entities, new areas of specialization, and human resource development. The findings obtained are useful for decision-making in policy planning, resource allocation, and identification of research opportunities, benefiting researchers, health professionals, and decision makers in their efforts to make significant contributions to the advancement of diabetes science.
Collapse
|
60
|
Li D, Cui T, Xu Z, Xu S, Dong Z, Tao L, Liu H, Yang Y, Ren TL. Designs and Applications for the Multimodal Flexible Hybrid Epidermal Electronic Systems. RESEARCH (WASHINGTON, D.C.) 2024; 7:0424. [PMID: 39130493 PMCID: PMC11310101 DOI: 10.34133/research.0424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024]
Abstract
Research on the flexible hybrid epidermal electronic system (FHEES) has attracted considerable attention due to its potential applications in human-machine interaction and healthcare. Through material and structural innovations, FHEES combines the advantages of traditional stiff electronic devices and flexible electronic technology, enabling it to be worn conformally on the skin while retaining complex system functionality. FHEESs use multimodal sensing to enhance the identification accuracy of the wearer's motion modes, intentions, or health status, thus realizing more comprehensive physiological signal acquisition. However, the heterogeneous integration of soft and stiff components makes balancing comfort and performance in designing and implementing multimodal FHEESs challenging. Herein, multimodal FHEESs are first introduced in 2 types based on their different system structure: all-in-one and assembled, reflecting totally different heterogeneous integration strategies. Characteristics and the key design issues (such as interconnect design, interface strategy, substrate selection, etc.) of the 2 multimodal FHEESs are emphasized. Besides, the applications and advantages of the 2 multimodal FHEESs in recent research have been presented, with a focus on the control and medical fields. Finally, the prospects and challenges of the multimodal FHEES are discussed.
Collapse
Affiliation(s)
- Ding Li
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Tianrui Cui
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Zigan Xu
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Shuoyan Xu
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Zirui Dong
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Luqi Tao
- Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing, China
| | - Houfang Liu
- Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing, China
| | - Yi Yang
- School of Integrated Circuit,
Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing, China
| | - Tian-Ling Ren
- School of Integrated Circuit,
Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing, China
| |
Collapse
|
61
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
62
|
Pan Y, Yu R, Jiang Y, Zhong H, Yuan Q, Lee CKW, Yang R, Chen S, Chen Y, Poon WY, Li MG. Heterogeneous Cu xO Nano-Skeletons from Waste Electronics for Enhanced Glucose Detection. NANO-MICRO LETTERS 2024; 16:249. [PMID: 39023649 PMCID: PMC11258110 DOI: 10.1007/s40820-024-01467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024]
Abstract
Electronic waste (e-waste) and diabetes are global challenges to modern societies. However, solving these two challenges together has been challenging until now. Herein, we propose a laser-induced transfer method to fabricate portable glucose sensors by recycling copper from e-waste. We bring up a laser-induced full-automatic fabrication method for synthesizing continuous heterogeneous CuxO (h-CuxO) nano-skeletons electrode for glucose sensing, offering rapid (< 1 min), clean, air-compatible, and continuous fabrication, applicable to a wide range of Cu-containing substrates. Leveraging this approach, h-CuxO nano-skeletons, with an inner core predominantly composed of Cu2O with lower oxygen content, juxtaposed with an outer layer rich in amorphous CuxO (a-CuxO) with higher oxygen content, are derived from discarded printed circuit boards. When employed in glucose detection, the h-CuxO nano-skeletons undergo a structural evolution process, transitioning into rigid Cu2O@CuO nano-skeletons prompted by electrochemical activation. This transformation yields exceptional glucose-sensing performance (sensitivity: 9.893 mA mM-1 cm-2; detection limit: 0.34 μM), outperforming most previously reported glucose sensors. Density functional theory analysis elucidates that the heterogeneous structure facilitates gluconolactone desorption. This glucose detection device has also been downsized to optimize its scalability and portability for convenient integration into people's everyday lives.
Collapse
Affiliation(s)
- Yexin Pan
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, People's Republic of China
| | - Ruohan Yu
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, People's Republic of China
- The Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, People's Republic of China
| | - Yalong Jiang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Haosong Zhong
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, People's Republic of China
| | - Qiaoyaxiao Yuan
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, People's Republic of China
| | - Connie Kong Wai Lee
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, People's Republic of China
| | - Rongliang Yang
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, People's Republic of China
| | - Siyu Chen
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, People's Republic of China
| | - Yi Chen
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, People's Republic of China
| | - Wing Yan Poon
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, People's Republic of China
| | - Mitch Guijun Li
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, People's Republic of China.
| |
Collapse
|
63
|
Wang Z, Xiao M, Li Z, Wang X, Li F, Yang H, Chen Y, Zhu Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv Healthc Mater 2024; 13:e2303921. [PMID: 38341619 DOI: 10.1002/adhm.202303921] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Health Industry Innovation Center, Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, China
| |
Collapse
|
64
|
Hassan Akhtar M, Azhar Hayat Nawaz M, Abbas M, Liu N, Han W, Lv Y, Yu C. Advances in pH Sensing: From Traditional Approaches to Next-Generation Sensors in Biological Contexts. CHEM REC 2024; 24:e202300369. [PMID: 38953343 DOI: 10.1002/tcr.202300369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/18/2024] [Indexed: 07/04/2024]
Abstract
pH has been considered one of the paramount factors in bodily functions because most cellular tasks exclusively rely on precise pH values. In this context, the current techniques for pH sensing provide us with the futuristic insight to further design therapeutic and diagnostic tools. Thus, pH-sensing (electrochemically and optically) is rapidly evolving toward exciting new applications and expanding researchers' interests in many chemical contexts, especially in biomedical applications. The adaptation of cutting-edge technology is subsequently producing the modest form of these biosensors as wearable devices, which are providing us the opportunity to target the real-time collection of vital parameters, including pH for improved healthcare systems. The motif of this review is to provide insight into trending tech-based systems employed in real-time or in-vivo pH-responsive monitoring. Herein, we briefly go through the pH regulation in the human body to help the beginners and scientific community with quick background knowledge, recent advances in the field, and pH detection in real-time biological applications. In the end, we summarize our review by providing an outlook; challenges that need to be addressed, and prospective integration of various pH in vivo platforms with modern electronics that can open new avenues of cutting-edge techniques for disease diagnostics and prevention.
Collapse
Affiliation(s)
- Mahmood Hassan Akhtar
- College of Animal Science, Jilin University, Changchun, 130062, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS, University Islamabad, 54000, Lahore, Campus, Pakistan
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Ning Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Wenzhao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yan Lv
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
65
|
Garcia-Rodriguez W, Saavedra-Ruiz A, Resto-Irizarry PJ. Label-Free Classification of L-Histidine Vs Artificial Human Sweat Using Laser Scribed Electrodes and a Multi-Layer Perceptron Neural Network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039476 DOI: 10.1109/embc53108.2024.10781841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
A challenge in wearable technology lies in the realtime monitoring of molecular biomarkers associated with human health. Electrochemical sensors are one of the most useful tools for this purpose and are commonly used in health monitoring devices. Electrochemical biosensing is particularly convenient when used in user-friendly, low-cost devices for testing noninvasive body fluids such as sweat and saliva. However, achieving high selectivity and specificity in measurements depends on the complexity of the biomarker and the stability of the biomarker capture molecule. In this study, laser-scribed electrodes (LSEs) were manufactured using a CO2 laser cutter on Polyimide for the label-free classification of sweat components. Cyclic voltammetry experiments were performed on artificial human sweat and the sweat component L-Histidine. The resulting voltammogram data served as input to train a Multi-Layer Perceptron Neural Network (MLP-NN) algorithm capable of classifying L-Histidine and artificial sweat.
Collapse
|
66
|
Li J, Zhang F, Lyu H, Yin P, Shi L, Li Z, Zhang L, Di CA, Tang P. Evolution of Musculoskeletal Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303311. [PMID: 38561020 DOI: 10.1002/adma.202303311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/10/2024] [Indexed: 04/04/2024]
Abstract
The musculoskeletal system, constituting the largest human physiological system, plays a critical role in providing structural support to the body, facilitating intricate movements, and safeguarding internal organs. By virtue of advancements in revolutionized materials and devices, particularly in the realms of motion capture, health monitoring, and postoperative rehabilitation, "musculoskeletal electronics" has actually emerged as an infancy area, but has not yet been explicitly proposed. In this review, the concept of musculoskeletal electronics is elucidated, and the evolution history, representative progress, and key strategies of the involved materials and state-of-the-art devices are summarized. Therefore, the fundamentals of musculoskeletal electronics and key functionality categories are introduced. Subsequently, recent advances in musculoskeletal electronics are presented from the perspectives of "in vitro" to "in vivo" signal detection, interactive modulation, and therapeutic interventions for healing and recovery. Additionally, nine strategy avenues for the development of advanced musculoskeletal electronic materials and devices are proposed. Finally, concise summaries and perspectives are proposed to highlight the directions that deserve focused attention in this booming field.
Collapse
Affiliation(s)
- Jia Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Houchen Lyu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Lei Shi
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Zhiyi Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| |
Collapse
|
67
|
Peng HL, Zhang Y, Liu H, Gao C. Flexible Wearable Electrochemical Sensors Based on AuNR/PEDOT:PSS for Simultaneous Monitoring of Levodopa and Uric Acid in Sweat. ACS Sens 2024; 9:3296-3306. [PMID: 38829039 DOI: 10.1021/acssensors.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
As a facile substitute for the invasive technique of blood testing, wearable electrochemical sensors exhibit high potential for the noninvasive and real-time monitoring of biomarkers in human sweat. However, owing to enzyme specificity, the simultaneous detection of multiple biomarkers by enzymatic analysis is challenging. Moreover, sweat accumulation under sensors causes sweat contamination, which hinders real-time biomarker detection from sweat. This study reports the design and fabrication of flexible wearable electrochemical sensors containing a composite comprising Au nanorods (AuNRs) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) for the nonenzymatic detection of levodopa (LD) and uric acid (UA) in sweat. Each sensor was integrated with a flexible three-electrode system and a microfluidic patch for sweat sampling. AuNRs immobilized by PEG-doped PEDOT:PSS showed excellent analytical performance for LD and UA at different potentials. Thus, the newly fabricated sensors could detect LD and UA over a broad detection range with high sensitivity and showed a low limit of detection for both species. On-body assessments confirmed the ability of these sensors to simultaneously detect LD and UA in real time. Therefore, this study could open new frontiers in the fabrication of wearable electrochemical sensors for the pharmacokinetic profile tracking of LD and gout management.
Collapse
Affiliation(s)
- Hui-Ling Peng
- Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yongqi Zhang
- Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Huihui Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cunji Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
68
|
Chen C, Fu Y, Sparks SS, Lyu Z, Pradhan A, Ding S, Boddeti N, Liu Y, Lin Y, Du D, Qiu K. 3D-Printed Flexible Microfluidic Health Monitor for In Situ Sweat Analysis and Biomarker Detection. ACS Sens 2024; 9:3212-3223. [PMID: 38820602 PMCID: PMC12009136 DOI: 10.1021/acssensors.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Wearable sweat biosensors have shown great progress in noninvasive, in situ, and continuous health monitoring to demonstrate individuals' physiological states. Advances in novel nanomaterials and fabrication methods promise to usher in a new era of wearable biosensors. Here, we introduce a three-dimensional (3D)-printed flexible wearable health monitor fabricated through a unique one-step continuous manufacturing process with self-supporting microfluidic channels and novel single-atom catalyst-based bioassays for measuring the sweat rate and concentration of three biomarkers. Direct ink writing is adapted to print the microfluidic device with self-supporting structures to harvest human sweat, which eliminates the need for removing sacrificial supporting materials and addresses the contamination and sweat evaporation issues associated with traditional sampling methods. Additionally, the pick-and-place strategy is employed during the printing process to accurately integrate the bioassays, improving manufacturing efficiency. A single-atom catalyst is developed and utilized in colorimetric bioassays to improve sensitivity and accuracy. A feasibility study on human skin successfully demonstrates the functionality and reliability of our health monitor, generating reliable and quantitative in situ results of sweat rate, glucose, lactate, and uric acid concentrations during physical exercise.
Collapse
Affiliation(s)
- Chuchu Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yonghao Fu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Sonja S Sparks
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Arijit Pradhan
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Narasimha Boddeti
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yun Liu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Kaiyan Qiu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
69
|
Roy A, Dhibar S, Karmakar K, Bhattacharjee S, Saha B, Ray SJ. Development of a novel self-healing Zn(II)-metallohydrogel with wide bandgap semiconducting properties for non-volatile memory device application. Sci Rep 2024; 14:13109. [PMID: 38849385 PMCID: PMC11161586 DOI: 10.1038/s41598-024-61870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
A rapid and effective strategy has been devised for the swift development of a Zn(II)-ion-based supramolecular metallohydrogel, termed Zn@PEH, using pentaethylenehexamine as a low molecular weight gelator. This process occurs in an aqueous medium at room temperature and atmospheric pressure. The mechanical strength of the synthesized Zn@PEH metallohydrogel has been assessed through rheological analysis, considering angular frequency and oscillator stress dependencies. Notably, the Zn@PEH metallohydrogel exhibits exceptional self-healing abilities and can bear substantial loads, which have been characterized through thixotropic analysis. Additionally, this metallohydrogel displays injectable properties. The structural arrangement resembling pebbles within the hierarchical network of the supramolecular Zn@PEH metallohydrogel has been explored using FESEM and TEM measurements. EDX elemental mapping has confirmed the primary chemical constituents of the metallohydrogel. The formation mechanism of the metallohydrogel has been analyzed via FT-IR spectroscopy. Furthermore, zinc(II) metallohydrogel (Zn@PEH)-based Schottky diode structure has been fabricated in a lateral metal-semiconductor-metal configuration and it's charge transport behavior has also been studied. Notably, the zinc(II) metallohydrogel-based resistive random access memory (RRAM) device (Zn@PEH) demonstrates bipolar resistive switching behavior at room temperature. This RRAM device showcases remarkable switching endurance over 1000 consecutive cycles and a high ON/OFF ratio of approximately 270. Further, 2 × 2 crossbar array of the RRAM devices were designed to demonstrate OR and NOT logic circuit operations, which can be extended for performing higher order computing operations. These structures hold promise for applications in non-volatile memory design, neuromorphic and in-memory computing, flexible electronics, and optoelectronic devices due to their straightforward fabrication process, robust resistive switching behavior, and overall system stability.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801103, India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713303, India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801103, India.
| |
Collapse
|
70
|
Ertas YN, Ertas D, Erdem A, Segujja F, Dulchavsky S, Ashammakhi N. Diagnostic, Therapeutic, and Theranostic Multifunctional Microneedles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308479. [PMID: 38385813 DOI: 10.1002/smll.202308479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Microneedles (MNs) have maintained their popularity in therapeutic and diagnostic medical applications throughout the past decade. MNs are originally designed to gently puncture the stratum corneum layer of the skin and have lately evolved into intelligent devices with functions including bodily fluid extraction, biosensing, and drug administration. MNs offer limited invasiveness, ease of application, and minimal discomfort. Initially manufactured solely from metals, MNs are now available in polymer-based varieties. MNs can be used to create systems that deliver drugs and chemicals uniformly, collect bodily fluids, and are stimulus-sensitive. Although these advancements are favorable in terms of biocompatibility and production costs, they are insufficient for the therapeutic use of MNs. This is the first comprehensive review that discusses individual MN functions toward the evolution and development of smart and multifunctional MNs for a variety of novel and impactful future applications. The study examines fabrication techniques, application purposes, and experimental details of MN constructs that perform multiple functions concurrently, including sensing, drug-molecule release, sampling, and remote communication capabilities. It is highly likely that in the near future, MN-based smart devices will be a useful and important component of standard medical practice for different applications.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Türkiye
| | - Derya Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
| | - Ahmet Erdem
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
- Department of Chemistry, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
| | - Farouk Segujja
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
| | - Scott Dulchavsky
- Department of Surgery, Henry Ford Health, Detroit, MI, 48201, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Colleges of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
71
|
Chenani H, Saeidi M, Rastkhiz MA, Bolghanabadi N, Aghaii AH, Orouji M, Hatamie A, Simchi A. Challenges and Advances of Hydrogel-Based Wearable Electrochemical Biosensors for Real-Time Monitoring of Biofluids: From Lab to Market. A Review. Anal Chem 2024; 96:8160-8183. [PMID: 38377558 DOI: 10.1021/acs.analchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO Box 45195-1159, Zanjan 45137-66731, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
72
|
Zhao C, Wu Z, Pan B, Zhang R, Golestani A, Feng Z, Ge Y, Yang H. Functional biomacromolecules-based microneedle patch for the treatment of diabetic wound. Int J Biol Macromol 2024; 267:131650. [PMID: 38636756 DOI: 10.1016/j.ijbiomac.2024.131650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Diabetic wounds are a common complication of diabetes. The prolonged exposure to high glucose and oxidative stress in the wound environment increases the risk of bacterial infection and abnormal angiogenesis, leading to amputation. Microneedle patches have shown promise in promoting the healing of diabetic wounds through transdermal drug delivery. These patches target the four main aspects of diabetic wound treatment: hypoglycemia, antibacterial action, inflammatory regulation, and tissue regeneration. By overcoming the limitations of traditional administration methods, microneedle patches enable targeted therapy for deteriorated tissues. The design of these patches extends beyond the selection of needle tip material and biomacromolecule encapsulated drugs; it can also incorporate near-infrared rays to facilitate cascade reactions and treat diabetic wounds. In this review, we comprehensively summarize the advantages of microneedle patches compared to traditional treatment methods. We focus on the design and mechanism of these patches based on existing experimental articles in the field and discuss the potential for future research on microneedle patches.
Collapse
Affiliation(s)
- Chenyu Zhao
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China; Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Zhaoqi Wu
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Boyue Pan
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ruihan Zhang
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Avin Golestani
- Faculty of Life Science and Medicine, King's College London, London SE1 1UL, UK
| | - Ziyi Feng
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China; Department of Plastic Surgery, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang 110002, China
| | - Yi Ge
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
73
|
Man T, Yu G, Zhu F, Huang Y, Wang Y, Su Y, Deng S, Pei H, Li L, Ye H, Wan Y. Antidiabetic Close Loop Based on Wearable DNA-Hydrogel Glucometer and Implantable Optogenetic Cells. JACS AU 2024; 4:1500-1508. [PMID: 38665655 PMCID: PMC11040667 DOI: 10.1021/jacsau.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Diabetes mellitus and its associated secondary complications have become a pressing global healthcare issue. The current integrated theranostic plan involves a glucometer-tandem pump. However, external condition-responsive insulin delivery systems utilizing rigid glucose sensors pose challenges in on-demand, long-term insulin administration. To overcome these challenges, we present a novel model of antidiabetic management based on printable metallo-nucleotide hydrogels and optogenetic engineering. The conductive hydrogels were self-assembled by bioorthogonal chemistry using oligonucleotides, carbon nanotubes, and glucose oxidase, enabling continuous glucose monitoring in a broad range (0.5-40 mM). The optogenetically engineered cells were enabled glucose regulation in type I diabetic mice via a far-red light-induced transgenic expression of insulin with a month-long avidity. Combining with a microchip-integrated microneedle patch, a prototyped close-loop system was constructed. The glucose levels detected by the sensor were received and converted by a wireless controller to modulate far-infrared light, thereby achieving on-demand insulin expression for several weeks. This study sheds new light on developing next-generation diagnostic and therapy systems for personalized and digitalized precision medicine.
Collapse
Affiliation(s)
- Tiantian Man
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Guiling Yu
- Institute
of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fulin Zhu
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Yaqi Huang
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Yueyu Wang
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Yan Su
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Shengyuan Deng
- Key
Laboratory of Metabolic Engineering and Biosynthesis Technology of
Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hao Pei
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200241, China
| | - Li Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200241, China
| | - Haifeng Ye
- Institute
of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Wan
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| |
Collapse
|
74
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
75
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
76
|
Niu J, Lin S, Chen D, Wang Z, Cao C, Gao A, Cui S, Liu Y, Hong Y, Zhi X, Cui D. A Fully Elastic Wearable Electrochemical Sweat Detection System of Tree-Bionic Microfluidic Structure for Real-Time Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306769. [PMID: 37932007 DOI: 10.1002/smll.202306769] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Fresh sweat contains a diverse range of physiological indicators that can effectively reflect changes in the body. However, existing wearable sweat detection systems face challenges in efficiently collecting and detecting fresh sweat in real-time. Additionally, they often lack the necessary deformation capabilities, resulting in discomfort for the wearer. Here, a fully elastic wearable electrochemical sweat detection system is developed that integrates a sweat-collecting microfluidic chip, a multi-parameter electrochemical sensor, a micro-heater, and a sweat detection elastic circuit board system. The unique tree-bionic structure of the microfluidic chip significantly enhances the efficiency of fresh sweat collection and discharge, enabling real-time detection by the electrochemical sensors. The sweat multi-parameter electrochemical sensor offers high-precision and high-sensitivity measurements of sodium ions, potassium ions, lactate, and glucose. The electronic system is built on an elastic circuit board that matches perfectly to wrinkled skin, ensuring improved wearing comfort and enabling multi-channel data sampling, processing, and wireless transmission. This state-of-the-art system represents a significant advancement in the field of elastic wearable sweat detection and holds promising potential for extending its capabilities to the detection of other sweat markers or various wearable applications.
Collapse
Affiliation(s)
- Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ang Gao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuping Hong
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao Zhi
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
77
|
Antonova IV, Ivanov AI, Shavelkina MB, Poteryayev DA, Buzmakova AA, Soots RA. Engineering of graphene-based composites with hexagonal boron nitride and PEDOT:PSS for sensing applications. Phys Chem Chem Phys 2024; 26:7844-7854. [PMID: 38376373 DOI: 10.1039/d3cp05953g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
A unique nanomaterial has been developed for sweat analysis, including glucose level monitoring. Simple resusable low-cost sensors from composite materials based on graphene, hexagonal boron nitride, and conductive PEDOT:PSS (poly(3,4-ethylenedioxythiophene)polystyrene sulfonate) polymer have been developed and fabricated via 2D printing on flexible substrates. The sensors were tested as biosensors using different water-based solutions. A strong increase in the current response (several orders of magnitude) was observed for aqua vapors or glucose solution vapors. This property is associated with the sorption capacity of graphene synthesized in a volume of plasma jets and thus having many active centers on the surface. The structure and properties of graphene synthesized in a plasma are different from those of graphene created by other methods. As a result, the current response for a wearable sensor is 3-5 orders of magnitude higher for the reference blood glucose concentration range of 4-14 mM. It has been found that the most promising sensor with the highest response was fabricated based on the graphene:PEDOT:PSS composite. The graphene:h-BN:PEDOT:PSS (h-BN is hexagonal boron nitride) sensors demonstrated a longer response and the highest response after the functionalization of the sensors with a glucose oxidase enzyme. The reusable wearable graphene:PEDOT:PSS glucose sensors on a paper substrate demonstrated a current response of 10-10 to 10-5 A for an operating voltage of 0.5 V and glucose range of 4-10 mM.
Collapse
Affiliation(s)
- Irina V Antonova
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
- Department of Semiconductor Devices and Microelectronics, Novosibirsk State Technical University, 20 K. Marx Str., Novosibirsk 630073, Russia
| | - Artem I Ivanov
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
| | - Marina B Shavelkina
- Joint Institute for High Temperatures RAS, Izhorskaya Str. 13 Bd.2, Moscow 125412, Russia
| | - Dmitriy A Poteryayev
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
- Department of Semiconductor Devices and Microelectronics, Novosibirsk State Technical University, 20 K. Marx Str., Novosibirsk 630073, Russia
| | - Anna A Buzmakova
- Department of Semiconductor Devices and Microelectronics, Novosibirsk State Technical University, 20 K. Marx Str., Novosibirsk 630073, Russia
| | - Regina A Soots
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
| |
Collapse
|
78
|
Zhang P, Zhu B, Du P, Travas-Sejdic J. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chem Rev 2024; 124:722-767. [PMID: 38157565 DOI: 10.1021/acs.chemrev.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Bioelectronic devices are designed to translate biological information into electrical signals and vice versa, thereby bridging the gap between the living biological world and electronic systems. Among different types of bioelectronics devices, wearable and implantable biosensors are particularly important as they offer access to the physiological and biochemical activities of tissues and organs, which is significant in diagnosing and researching various medical conditions. Organic conducting and semiconducting materials, including conducting polymers (CPs) and graphene and carbon nanotubes (CNTs), are some of the most promising candidates for wearable and implantable biosensors. Their unique electrical, electrochemical, and mechanical properties bring new possibilities to bioelectronics that could not be realized by utilizing metals- or silicon-based analogues. The use of organic- and carbon-based conductors in the development of wearable and implantable biosensors has emerged as a rapidly growing research field, with remarkable progress being made in recent years. The use of such materials addresses the issue of mismatched properties between biological tissues and electronic devices, as well as the improvement in the accuracy and fidelity of the transferred information. In this review, we highlight the most recent advances in this field and provide insights into organic and carbon-based (semi)conducting materials' properties and relate these to their applications in wearable/implantable biosensors. We also provide a perspective on the promising potential and exciting future developments of wearable/implantable biosensors.
Collapse
Affiliation(s)
- Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
79
|
Wang M, Lin B, Chen Y, Liu H, Ju Z, Lv R. Fluorescence-Recovered Wearable Hydrogel Patch for In Vitro Detection of Glucose Based on Rare-Earth Nanoparticles. ACS Biomater Sci Eng 2024; 10:1128-1138. [PMID: 38221709 DOI: 10.1021/acsbiomaterials.3c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The physiological state of the human body can be indicated by analyzing the composition of sweat. In this research, a fluorescence-recovered wearable hydrogel patch has been designed and realized which can noninvasively monitor the glucose concentration in human sweat. Rare-earth nanoparticles (RENPs) of NaGdF4 doped with different elements (Yb, Er, and Ce) are synthesized and optimized for better luminescence in the near-infrared second (NIR-II) and visible region. In addition, RENPs are coated with CoOOH of which the absorbance has an extensive peak in the visible and NIR regions. The concentration of H2O2 in the environment can be detected by the fluorescence recovery degree of CoOOH-modified RENPs based on the fluorescence resonance energy transfer effect. For in vivo detection, the physiological state of oxidative stress at tumor sites can be visualized through its fluorescence in NIR-II with low background noise and high penetration depth. For the in vitro detection, CoOOH-modified RENP and glucose oxidase (GOx) were doped into a polyacrylamide hydrogel, and a patch that can emit green upconversion fluorescence under a 980 nm laser was prepared. Compared with the conventional electrochemical detection method, the fluorescence we presented has higher sensitivity and linear detection region to detect the glucose. This improved anti-interference sweat patch that can work in the dark environment was obtained, and the physiological state of the human body is conveniently monitored, which provides a new facile and convenient method to monitor the sweat status.
Collapse
Affiliation(s)
- Min Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Yitong Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Hanyu Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Ziyue Ju
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| |
Collapse
|
80
|
Jiang W, Lee S, Zan G, Zhao K, Park C. Alternating Current Electroluminescence for Human-Interactive Sensing Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304053. [PMID: 37696051 DOI: 10.1002/adma.202304053] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/04/2023] [Indexed: 09/13/2023]
Abstract
The development of stimuli-interactive displays based on alternating current (AC)-driven electroluminescence (EL) is of great interest, owing to their simple device architectures suitable for wearable applications requiring resilient mechanical flexibility and stretchability. AC-EL displays can serve as emerging platforms for various human-interactive sensing displays (HISDs) where human information is electrically detected and directly visualized using EL, promoting the development of the interaction of human-machine technologies. This review provides a holistic overview of the latest developments in AC-EL displays with an emphasis on their applications for HISDs. AC-EL displays based on exciton recombination or impact excitations of hot electrons are classified into four representative groups depending upon their device architecture: 1) displays without insulating layers, 2) displays with single insulating layers, 3) displays with double insulating layers, and 4) displays with EL materials embedded in an insulating matrix. State-of-the-art AC HISDs are discussed. Furthermore, emerging stimuli-interactive AC-EL displays are described, followed by a discussion of scientific and engineering challenges and perspectives for future stimuli-interactive AC-EL displays serving as photo-electronic human-machine interfaces.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Guangtao Zan
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kaiying Zhao
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
| |
Collapse
|
81
|
Park J, Ghanim R, Rahematpura A, Gerage C, Abramson A. Electromechanical convective drug delivery devices for overcoming diffusion barriers. J Control Release 2024; 366:650-667. [PMID: 38190971 PMCID: PMC10922834 DOI: 10.1016/j.jconrel.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Drug delivery systems which rely on diffusion for mass transport, such as hydrogels and nanoparticles, have enhanced drug targeting and extended delivery profiles to improve health outcomes for patients suffering from diseases including cancer and diabetes. However, diffusion-dependent systems often fail to provide >0.01-1% drug bioavailability when transporting macromolecules across poorly permeable physiological tissues such as the skin, solid tumors, the blood-brain barrier, and the gastrointestinal walls. Convection-enabling robotic ingestibles, wearables, and implantables physically interact with tissue walls to improve bioavailability in these settings by multiple orders of magnitude through convective mass transfer, the process of moving drug molecules via bulk fluid flow. In this Review, we compare diffusive and convective drug delivery systems, highlight engineering techniques that enhance the efficacy of convective devices, and provide examples of synergies between the two methods of drug transport.
Collapse
Affiliation(s)
- Jihoon Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ramy Ghanim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Adwik Rahematpura
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Caroline Gerage
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alex Abramson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
82
|
Alam MM, Howlader MMR. High performance nonenzymatic electrochemical sensors via thermally grown Cu native oxides (CuNOx) towards sweat glucose monitoring. Analyst 2024; 149:712-728. [PMID: 37755066 DOI: 10.1039/d3an01153d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Diabetes, which is the seventh leading cause of death globally, necessitates real-time blood glucose monitoring, a process that is often invasive. A promising alternative is sweat glucose monitoring, which typically uses transition metals and their oxide nanomaterials as sensors. Despite their excellent surface-to-volume ratio, these materials have some drawbacks, including poor conductivity, structural collapse, and aggregation. As a result, selecting highly electroconductive materials and optimizing their nanostructures is critical. In this work, we developed a high-performance, low-cost, nonenzymatic sensor for sweat glucose detection, using the thermally grown native oxide of copper (CuNOx). By heating Cu foil at 160, 250, and 280 °C, we grew a native oxide layer of approximately 140 nm cupric oxide (CuO), which is excellent for glucose electrocatalysis. Using cyclic voltammetry, we found that our CuNOx sensors prepared at 280 °C exhibited a sensitivity of 1795 μA mM-1 cm-2, a linear range up to the desired limit of 1.00 mM for sweat glucose with excellent linearity (R2 = 0.9844), and a lower limit of detection of 135.39 μM. For glucose sensing, the redox couple Cu(II)/Cu(III) oxidizes glucose to gluconolactone and subsequently to gluconic acid, producing an oxidation current in an alkaline environment. Our sensors showed excellent repeatability and stability (remaining stable for over a year) with a relative standard deviation (RSD) of 2.48% and 4.17%, respectively, for 1 mM glucose. The selectivity, when tested with common interferants found in human sweat and blood, showed an RSD of 4.32%. We hope that the electrocatalytic efficacy of the thermally grown CuNOx sensors for glucose sensing can introduce new avenues in the fabrication of sweat glucose sensors.
Collapse
Affiliation(s)
- Maksud M Alam
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Matiar M R Howlader
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
83
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
84
|
Wang Y, Chen Z, Davis B, Lipman W, Xing S, Zhang L, Wang T, Hafiz P, Xie W, Yan Z, Huang Z, Song J, Bai W. Digital automation of transdermal drug delivery with high spatiotemporal resolution. Nat Commun 2024; 15:511. [PMID: 38218967 PMCID: PMC10787768 DOI: 10.1038/s41467-023-44532-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024] Open
Abstract
Transdermal drug delivery is of vital importance for medical treatments. However, user adherence to long-term repetitive drug delivery poses a grand challenge. Furthermore, the dynamic and unpredictable disease progression demands a pharmaceutical treatment that can be actively controlled in real-time to ensure medical precision and personalization. Here, we report a spatiotemporal on-demand patch (SOP) that integrates drug-loaded microneedles with biocompatible metallic membranes to enable electrically triggered active control of drug release. Precise control of drug release to targeted locations (<1 mm2), rapid drug release response to electrical triggers (<30 s), and multi-modal operation involving both drug release and electrical stimulation highlight the novelty. Solution-based fabrication ensures high customizability and scalability to tailor the SOP for various pharmaceutical needs. The wireless-powered and digital-controlled SOP demonstrates great promise in achieving full automation of drug delivery, improving user adherence while ensuring medical precision. Based on these characteristics, we utilized SOPs in sleep studies. We revealed that programmed release of exogenous melatonin from SOPs improve sleep of mice, indicating potential values for basic research and clinical treatments.
Collapse
Affiliation(s)
- Yihang Wang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zeka Chen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brayden Davis
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Will Lipman
- Department of Psychology and Neuroscience, University of North Carolina at chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sicheng Xing
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tian Wang
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Priyash Hafiz
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Wanrong Xie
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zijie Yan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhili Huang
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
85
|
He J, Cao X, Liu H, Liang Y, Chen H, Xiao M, Zhang Z. Power and Sensitivity Management of Carbon Nanotube Transistor Glucose Biosensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1351-1360. [PMID: 38150673 DOI: 10.1021/acsami.3c17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Continuous glucose monitoring (CGM), which is significant for the daily management of diabetes, requires a low-power-consumption sensor system that can track low nanomolar levels of glucose in physiological fluids, such as sweat and tears. However, traditional electrochemical methods are limited to analytes in micromolar to millimolar ranges and entail high power consumption. Carbon nanotube (CNT) film field-effect transistors (FETs) are promising for constructing extremely sensitive biosensors, but their wide applications in CGM are limited by the strong screening effect of physiological fluids and the zero charge of glucose molecules. In this study, we demonstrate a glucose aptamer-modified CNT FET biosensor to realize a highly sensitive CGM system with sub-nW power consumption by applying a suitable gate voltage. A positive gate voltage can enlarge the effective Debye screening length at the double layer to reduce the local ion population nearby and then improve the sensitivity of the FET-based biosensors by 5 times. We construct CNT FET sensors for CGM with a limit of detection of 0.5 fM, a record dynamic range up to 109, and a power consumption down to ∼100 pW. The proposed field-modulated sensing performance scheme is applicable to other aptamer-based FET biosensors for detecting neutral or less charged molecules and opens opportunities to develop facilely modulated, highly sensitive, low-power, and noninvasive CGM systems.
Collapse
Affiliation(s)
- Jianping He
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Xianmao Cao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
- School of Integrated Circuits, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Haiyang Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Yuqi Liang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Hong Chen
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
| | - Mengmeng Xiao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
86
|
Zhang Y, Tang Q, Zhou J, Zhao C, Li J, Wang H. Conductive and Eco-friendly Biomaterials-based Hydrogels for Noninvasive Epidermal Sensors: A Review. ACS Biomater Sci Eng 2024; 10:191-218. [PMID: 38052003 DOI: 10.1021/acsbiomaterials.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
As noninvasive wearable electronic devices, epidermal sensors enable continuous, real-time, and remote monitoring of various human physiological parameters. Conductive biomaterials-based hydrogels as sensor matrix materials have good biocompatibility, biodegradability, and efficient stimulus response capabilities and are widely applied in motion monitoring, healthcare, and human-machine interaction. However, biomass hydrogel-based epidermal sensing devices still need excellent mechanical properties, prolonged stability, multifunctionality, and extensive practicality. Therefore, this paper reviews the common biomass hydrogel materials for epidermal sensing (proteins, polysaccharides, polyphenols, etc.) and the various types of noninvasive sensing devices (strain/pressure sensors, temperature sensors, glucose sensors, electrocardiograms, etc.). Moreover, this review focuses on the strategies of scholars to enhance sensor properties, such as strength, conductivity, stability, adhesion, and self-healing ability. This work will guide the preparation and optimization of high-performance biomaterials-based hydrogel epidermal sensors.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Qianhui Tang
- School of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian, Liaoning 116023, P. R. China
| | - Junyang Zhou
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenghao Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Jingpeng Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Haiting Wang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
87
|
Park R, Lee DH, Koh CS, Kwon YW, Chae SY, Kim C, Jung HH, Jeong J, Hong SW. Laser-Assisted Structuring of Graphene Films with Biocompatible Liquid Crystal Polymer for Skin/Brain-Interfaced Electrodes. Adv Healthc Mater 2024; 13:e2301753. [PMID: 37820714 PMCID: PMC11468237 DOI: 10.1002/adhm.202301753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/09/2023] [Indexed: 10/13/2023]
Abstract
The work presented here introduces a facile strategy for the development of flexible and stretchable electrodes that harness the robust characteristics of carbon nanomaterials through laser processing techniques on a liquid crystal polymer (LCP) film. By utilizing LCP film as a biocompatible electronic substrate, control is demonstrated over the laser irradiation parameters to achieve efficient pattern generation and transfer printing processes, thereby yielding highly conductive laser-induced graphene (LIG) bioelectrodes. To enhance the resolution of the patterned LIG film, shadow masks are employed during laser scanning on the LCP film surface. This approach is compatible with surface-mounted device integration, enabling the circuit writing of LIG/LCP materials in a flexible format. Moreover, kirigami-inspired on-skin bioelectrodes are introduced that exhibit reasonable stretchability, enabling independent connections to healthcare hardware platforms for electrocardiogram (ECG) and electromyography (EMG) measurements. Additionally, a brain-interfaced LIG microelectrode array is proposed that combines mechanically compliant architectures with LCP encapsulation for stimulation and recording purposes, leveraging their advantageous structural features and superior electrochemical properties. This developed approach offers a cost-effective and scalable route for producing patterned arrays of laser-converted graphene as bioelectrodes. These bioelectrodes serve as ideal circuit-enabled flexible substrates with long-term reliability in the ionic environment of the human body.
Collapse
Affiliation(s)
- Rowoon Park
- Department of Optics and Mechatronics Engineering, Department of Cogno‐Mechatronics Engineering, College of Nanoscience and NanotechnologyPusan National UniversityBusan46241Republic of Korea
| | - Dong Hyeon Lee
- School of Mechanical EngineeringPusan National UniversityBusan46241Republic of Korea
| | - Chin Su Koh
- Department of NeurosurgeryCollege of MedicineYonsei UniversitySeoul03722Republic of Korea
| | - Young Woo Kwon
- Engineering Research Center for Color‐Modulated Extra‐Sensory Perception TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Seon Yeong Chae
- Engineering Research Center for Color‐Modulated Extra‐Sensory Perception TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Chang‐Seok Kim
- Department of Optics and Mechatronics Engineering, Department of Cogno‐Mechatronics Engineering, College of Nanoscience and NanotechnologyPusan National UniversityBusan46241Republic of Korea
- Engineering Research Center for Color‐Modulated Extra‐Sensory Perception TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Hyun Ho Jung
- Department of NeurosurgeryCollege of MedicineYonsei UniversitySeoul03722Republic of Korea
| | - Joonsoo Jeong
- School of Biomedical Convergence EngineeringDepartment of Information Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
| | - Suck Won Hong
- Department of Optics and Mechatronics Engineering, Department of Cogno‐Mechatronics Engineering, College of Nanoscience and NanotechnologyPusan National UniversityBusan46241Republic of Korea
- Engineering Research Center for Color‐Modulated Extra‐Sensory Perception TechnologyPusan National UniversityBusan46241Republic of Korea
| |
Collapse
|
88
|
Jadhav MR, Wankhede PR, Srivastava S, Bhargaw HN, Singh S. Breath-based biosensors and system development for noninvasive detection of diabetes: A review. Diabetes Metab Syndr 2024; 18:102931. [PMID: 38171153 DOI: 10.1016/j.dsx.2023.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND AND AIMS In recent years, noninvasive techniques are becoming conspicuous for diabetes detection. Sweat, tear, saliva, urine and breath-based methods showing prominent results in breath acetone detection which is considered as a biomarker of diabetes. A concrete relationship between breath acetone and BG helps in the development of devices for diabetes detection. METHODS The primary source for this study includes scholarly publications that primarily focus on the development of biosensors and systems for diabetes detection using acetone present in breath. Articles were analysed to examine various types of biosensors with their sensing materials to provide acetone detection limits. Recent noninvasive systems and products have been investigated and determine the relationship between breath acetone and BG levels. RESULTS Breath-based biosensor technologies are capable for diabetes detection. The acetone biosensor detection ranges from 100 ppb to 100 ppm, and it can applicable from room temperature to 400 °C. In healthy volunteers, acetone level ranges from 0.32 to 2.19 ppm, while patients with diabetes exhibit a wider range of 0.22-21 ppm depending on the biosensor, detection method, and clinical circumstances of patients and lab conditions. CONCLUSION This manuscript presents an extensive analysis of breath-based biosensors and their potential for detection of diabetes. Acetone detection methods are promising but unable to provide concrete correlation between breath acetone and blood glucose levels. The present study motivates the continued research and development of biosensors, and electronic devices to provide linear relationship of breath acetone and BG for noninvasive diabetes detection applications.
Collapse
Affiliation(s)
- Mahendra R Jadhav
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, Madhya Pradesh, India.
| | - P R Wankhede
- CSMSS Chh. Shahu College of Engineering, Chhatrapati Sambhajinagar, 431001, Maharashtra, India
| | - Satyam Srivastava
- CSIR-Central Electronics Engineering Research Institute, Pilani, 333031, Rajasthan, India
| | - Hari N Bhargaw
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, Madhya Pradesh, India
| | - Samarth Singh
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, Madhya Pradesh, India
| |
Collapse
|
89
|
Watkins Z, McHenry A, Heikenfeld J. Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:223-282. [PMID: 38273210 DOI: 10.1007/10_2023_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Adam McHenry
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
90
|
Zhang Q, Ma S, Zhan X, Meng W, Wang H, Liu C, Zhang T, Zhang K, Su S. Smartphone-based wearable microfluidic electrochemical sensor for on-site monitoring of copper ions in sweat without external driving. Talanta 2024; 266:125015. [PMID: 37541004 DOI: 10.1016/j.talanta.2023.125015] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
The directional movement of liquid without exogenous drive can show great potential in portable electrochemical platforms. Herein, we developed a portable electrochemical platform that drove electrolyte flow by surface tension gradient, which can realize collection of electrolyte, flow preconcentration and electrochemical detection of Cu2+. The induced graphene electrodes (LIG) was fabricated using laser direct writing, and flower cluster shaped ZnO nanorods (FC-ZnONRs) were prepared and modified on LIG, which provided a large amount of space for electrolyte to shuttled between the holes of LIG and ZnO, and increased the electrochemical active sites and electrons transport ability. The effect of surface tension gradients driving fluid flow could accelerate preconcentration, shorten detection time (save 300 s of preconcentration time) and enhance electrochemical responses in synergy with the 3D FC-ZnONRs/LIG. The microfluidic system possessed excellent performance for detection of Cu2+ ranged from 1 μg L-1 to 2100 μg L-1 with a low detection limit (LOD) of 0.0368 μg L-1 and high sensitivity of 0.414 μA (μg L-1)-1 cm-2. Additionally, this portable microfluidic system was successfully worn on the skin for analysing Cu2+ in human sweat, and the results showed good consistency with inductively coupled plasma-mass spectrometry (ICP-MS). This novel sensing system provides a sample collection, rapid detection, low cost and easy-to-operate strategy for heavy metal ions analysis in real samples and shows huge application prospects in point-of-care testing.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Shangshang Ma
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China; School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou, 221100, China.
| | - Xijie Zhan
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Wanghan Meng
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Hongyan Wang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Chao Liu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Tianren Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Keying Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China.
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
91
|
Golparvar A, Thenot L, Boukhayma A, Carrara S. Soft Epidermal Paperfluidics for Sweat Analysis by Ratiometric Raman Spectroscopy. BIOSENSORS 2023; 14:12. [PMID: 38248389 PMCID: PMC10812966 DOI: 10.3390/bios14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
The expanding interest in digital biomarker analysis focused on non-invasive human bodily fluids, such as sweat, highlights the pressing need for easily manufactured and highly efficient soft lab-on-skin solutions. Here, we report, for the first time, the integration of microfluidic paper-based devices (μPAD) and non-enhanced Raman-scattering-enabled optical biochemical sensing (Raman biosensing). Their integration merges the enormous benefits of μPAD, with high potential for commercialization and use in resource-limited settings, with biorecognition-element-free (but highly selective) optical Raman biosensing. The introduced thin (0.36 mm), ultra-lightweight (0.19 g), and compact footprint (3 cm2) opto-paperfluidic sweat patch is flexible, stretchable, and conforms, irritation-free, to hairless or minimally haired body regions to enable swift sweat collection. As a great advantage, this new bio-chemical sensory system excels through its absence of onboard biorecognition elements (bioreceptor-free) and omission of plasmonic nanomaterials. The proposed easy fabrication process is adaptable to mass production by following a fully sustainable and cost-effective process utilizing only basic tools by avoiding typically employed printing or laser patterning. Furthermore, efficient collection and transportation of precise sweat volumes, driven exclusively by the wicking properties of porous materials, shows high efficiency in liquid transportation and reduces biosensing latency by a factor of 5 compared to state-of-the-art epidermal microfluidics. The proposed unit enables electronic chip-free and imaging-less visual sweat loss quantification as well as optical biochemical analysis when coupled with Raman spectroscopy. We investigated the multimodal quantification of sweat urea and lactate levels ex vivo (with syntactic sweat including +30 sweat analytes on porcine skin) and achieved a linear dynamic range from 0 to 100 mmol/L during fully dynamic continuous flow characterization.
Collapse
Affiliation(s)
- Ata Golparvar
- Bio/CMOS Interfaces (BCI) Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 2000 Neuchatel, Switzerland
| | - Lucie Thenot
- Bio/CMOS Interfaces (BCI) Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 2000 Neuchatel, Switzerland
| | | | - Sandro Carrara
- Bio/CMOS Interfaces (BCI) Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 2000 Neuchatel, Switzerland
| |
Collapse
|
92
|
Kalita N, Gogoi S, Minteer SD, Goswami P. Advances in Bioelectrode Design for Developing Electrochemical Biosensors. ACS MEASUREMENT SCIENCE AU 2023; 3:404-433. [PMID: 38145027 PMCID: PMC10740130 DOI: 10.1021/acsmeasuresciau.3c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.
Collapse
Affiliation(s)
- Nabajyoti Kalita
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudarshan Gogoi
- Department
of Chemistry, Sadiya College, Chapakhowa, Assam 786157, India
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pranab Goswami
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
93
|
Cammarano A, Dello Iacono S, Meglio C, Nicolais L. Advances in Transdermal Drug Delivery Systems: A Bibliometric and Patent Analysis. Pharmaceutics 2023; 15:2762. [PMID: 38140102 PMCID: PMC10747220 DOI: 10.3390/pharmaceutics15122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Transdermal drug delivery systems have become an intriguing research topic in healthcare technology and one of the most frequently developed pharmaceutical products in the global market. In recent years, researchers and pharmaceutical companies have made significant progress in developing new solutions in the field. This study sheds light on current trends, collaboration patterns, research hotspots, and emerging frontiers of transdermal drug delivery. Herein, a bibliometric and patent analysis of data recovered from Scopus and The Lens databases, respectively, is reported over the last 20 years. From 2000 to 2022, the annual global publications increased from 131 in 2000 to 659 in 2022. Researchers in the United States, China, and India produced the highest number of publications. Likewise, most patent applications have been filed in the USA, China, and Europe. The recovered patents are 7275, grouped into 2997 patent families, of which 314 were granted. This study could support the work of decision-makers, scientific managers, or scientists to create new business opportunities or save money, time, and intellectual capital, thereby defining when a research or technology project should be a priority or not.
Collapse
Affiliation(s)
| | - Stefania Dello Iacono
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, P.le Enrico Fermi 1, 80055 Portici, Italy
| | | | - Luigi Nicolais
- Materias Srl, Corso N. Protopisani 50, 80146 Naples, Italy
| |
Collapse
|
94
|
Chato L, Regentova E. Survey of Transfer Learning Approaches in the Machine Learning of Digital Health Sensing Data. J Pers Med 2023; 13:1703. [PMID: 38138930 PMCID: PMC10744730 DOI: 10.3390/jpm13121703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Machine learning and digital health sensing data have led to numerous research achievements aimed at improving digital health technology. However, using machine learning in digital health poses challenges related to data availability, such as incomplete, unstructured, and fragmented data, as well as issues related to data privacy, security, and data format standardization. Furthermore, there is a risk of bias and discrimination in machine learning models. Thus, developing an accurate prediction model from scratch can be an expensive and complicated task that often requires extensive experiments and complex computations. Transfer learning methods have emerged as a feasible solution to address these issues by transferring knowledge from a previously trained task to develop high-performance prediction models for a new task. This survey paper provides a comprehensive study of the effectiveness of transfer learning for digital health applications to enhance the accuracy and efficiency of diagnoses and prognoses, as well as to improve healthcare services. The first part of this survey paper presents and discusses the most common digital health sensing technologies as valuable data resources for machine learning applications, including transfer learning. The second part discusses the meaning of transfer learning, clarifying the categories and types of knowledge transfer. It also explains transfer learning methods and strategies, and their role in addressing the challenges in developing accurate machine learning models, specifically on digital health sensing data. These methods include feature extraction, fine-tuning, domain adaptation, multitask learning, federated learning, and few-/single-/zero-shot learning. This survey paper highlights the key features of each transfer learning method and strategy, and discusses the limitations and challenges of using transfer learning for digital health applications. Overall, this paper is a comprehensive survey of transfer learning methods on digital health sensing data which aims to inspire researchers to gain knowledge of transfer learning approaches and their applications in digital health, enhance the current transfer learning approaches in digital health, develop new transfer learning strategies to overcome the current limitations, and apply them to a variety of digital health technologies.
Collapse
Affiliation(s)
- Lina Chato
- Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, NV 89154, USA;
| | | |
Collapse
|
95
|
Kazemi N, Abdolrazzaghi M, Light PE, Musilek P. In-human testing of a non-invasive continuous low-energy microwave glucose sensor with advanced machine learning capabilities. Biosens Bioelectron 2023; 241:115668. [PMID: 37774465 DOI: 10.1016/j.bios.2023.115668] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/08/2023] [Accepted: 09/03/2023] [Indexed: 10/01/2023]
Abstract
Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R2 ∼ 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn.
Collapse
Affiliation(s)
- Nazli Kazemi
- Electrical and Computer Engineering, University of Alberta, 116 St., Edmonton, T6G 2R3, AB, Canada.
| | | | - Peter E Light
- Faculty of Medicine and Dentistry Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, 112 St., Edmonton, T6G 2R3, AB, Canada.
| | - Petr Musilek
- Electrical and Computer Engineering, University of Alberta, 116 St., Edmonton, T6G 2R3, AB, Canada; Applied Cybernetics, University of Hradec Králové, Rokitanského 62/26, Hradec Králové, 500 03, Czechia, Czech Republic.
| |
Collapse
|
96
|
Fukada K, Nakamura M, Tajima T, Hayashi K. Noninvasive Glucose Sensing in Dielectrically Equivalent Multilayer Skin Phantoms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15208-15214. [PMID: 37846062 DOI: 10.1021/acs.langmuir.3c01827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The interstitial fluid of the skin contains glucose levels comparable to those of blood. Noninvasive glucose sensing by microwaves has great potential to relieve diabetics from the burden of daily blood sampling, but improving the selectivity of this method remains a challenge. This study reports a dielectrically equivalent multilayer skin phantom and provides insight into the criteria for noninvasive glucose sensing by conducting dielectric analysis. The skin phantom was a hydrogel composed of gelatin, glucose, sodium chloride, and water covered by paraffin-impregnated paper. Investigations conducted on a wide range of component concentrations revealed characteristic relative permittivity and dielectric loss determined by the amount of electrolyte and solution that was independent of the amount of glucose. Since the microwave response due to glucose tends to be buried in noise, we developed a flowchart that first identifies the amounts of electrolytes and proteins, which are the major components other than glucose, and then quantifies the remaining glucose content. This noninvasive glucose sensing method would not be limited to the medical healthcare field; it could potentially be used in food manufacturing processes, livestock farming, and plant cultivation management.
Collapse
Affiliation(s)
- Kenta Fukada
- NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi 243-0198, Kanagawa, Japan
- Bio-Medical and Informatics Research Center, NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi 243-0198, Kanagawa, Japan
| | - Masahito Nakamura
- NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi 243-0198, Kanagawa, Japan
- Bio-Medical and Informatics Research Center, NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi 243-0198, Kanagawa, Japan
| | - Takuro Tajima
- NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi 243-0198, Kanagawa, Japan
- Bio-Medical and Informatics Research Center, NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi 243-0198, Kanagawa, Japan
| | - Katsuyoshi Hayashi
- NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi 243-0198, Kanagawa, Japan
- Bio-Medical and Informatics Research Center, NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi 243-0198, Kanagawa, Japan
| |
Collapse
|
97
|
Xian X. Frontiers of Wearable Biosensors for Human Health Monitoring. BIOSENSORS 2023; 13:964. [PMID: 37998139 PMCID: PMC10669529 DOI: 10.3390/bios13110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Wearable biosensors offer noninvasive, real-time, and continuous monitoring of diverse human health data, making them invaluable for remote patient tracking, early diagnosis, and personalized medicine [...].
Collapse
Affiliation(s)
- Xiaojun Xian
- The Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
98
|
Yang DS, Wu Y, Kanatzidis EE, Avila R, Zhou M, Bai Y, Chen S, Sekine Y, Kim J, Deng Y, Guo H, Zhang Y, Ghaffari R, Huang Y, Rogers JA. 3D-printed epidermal sweat microfluidic systems with integrated microcuvettes for precise spectroscopic and fluorometric biochemical assays. MATERIALS HORIZONS 2023; 10:4992-5003. [PMID: 37641877 DOI: 10.1039/d3mh00876b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Systems for capture, storage and analysis of eccrine sweat can provide insights into physiological health status, quantify losses of water, electrolytes, amino acids and/or other essential species, and identify exposures to adverse environmental species or illicit drugs. Recent advances in materials and device designs serve as the basis for skin-compatible classes of microfluidic platforms and in situ colorimetric assays for precise assessments of sweat rate, sweat loss and concentrations of wide-ranging types of biomarkers in sweat. This paper presents a set of findings that enhances the performance of these systems through the use of microfluidic networks, integrated valves and microscale optical cuvettes formed by three dimensional printing in hard/soft hybrid materials systems, for accurate spectroscopic and fluorometric assays. Field studies demonstrate the capability of these microcuvette systems to evaluate the concentrations of copper, chloride, and glucose in sweat, along with the pH of sweat, with laboratory-grade accuracy and sensitivity.
Collapse
Affiliation(s)
- Da Som Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Precision Biology Research Center (PBRC), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Yixin Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Evangelos E Kanatzidis
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Rice University, Houston, TX, 77005, USA
| | - Mingyu Zhou
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yun Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shulin Chen
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yurina Sekine
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yujun Deng
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Hexia Guo
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yi Zhang
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems Inc., Cambridge, MA, USA
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems Inc., Cambridge, MA, USA
- Department of Neurological Surgery, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
99
|
Yu S, Park TH, Jiang W, Lee SW, Kim EH, Lee S, Park JE, Park C. Soft Human-Machine Interface Sensing Displays: Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204964. [PMID: 36095261 DOI: 10.1002/adma.202204964] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The development of human-interactive sensing displays (HISDs) that simultaneously detect and visualize stimuli is important for numerous cutting-edge human-machine interface technologies. Therefore, innovative device platforms with optimized architectures of HISDs combined with novel high-performance sensing and display materials are demonstrated. This study comprehensively reviews the recent advances in HISDs, particularly the device architectures that enable scaling-down and simplifying the HISD, as well as material designs capable of directly visualizing input information received by various sensors. Various HISD platforms for integrating sensors and displays are described. HISDs consist of a sensor and display connected through a microprocessor, and attempts to assemble the two devices by eliminating the microprocessor are detailed. Single-device HISD technologies are highlighted in which input stimuli acquired by sensory components are directly visualized with various optical components, such as electroluminescence, mechanoluminescence and structural color. The review forecasts future HISD technologies that demand the development of materials with molecular-level synthetic precision that enables simultaneous sensing and visualization. Furthermore, emerging HISDs combined with artificial intelligence technologies and those enabling simultaneous detection and visualization of extrasensory information are discussed.
Collapse
Affiliation(s)
- Seunggun Yu
- Insulation Materials Research Center, Korea Electrotechnology Research Institute (KERI), Jeongiui-gil 12, Seongsan-gu, Changwon, 51543, Republic of Korea
- Electro-functional Materials Engineering, University of Science and Technology (UST), Jeongiui-gil 12, Seongsan-gu, Changwon, 51543, Republic of Korea
| | - Tae Hyun Park
- KIURI Institute, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Won Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui Hyuk Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung-Eun Park
- LOTTE Chemical, Gosan-ro 56, Uiwang-si, Gyeonggi-do, 16073, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| |
Collapse
|
100
|
Mbituyimana B, Adhikari M, Qi F, Shi Z, Fu L, Yang G. Microneedle-based cell delivery and cell sampling for biomedical applications. J Control Release 2023; 362:692-714. [PMID: 37689252 DOI: 10.1016/j.jconrel.2023.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Cell-based therapeutics are novel therapeutic strategies that can potentially treat many presently incurable diseases through novel mechanisms of action. Cell therapies may benefit from the ease, safety, and efficacy of administering therapeutic cells. Despite considerable recent technological and biological advances, several barriers remain to the clinical translation and commercialization of cell-based therapies, including low patient compliance, personal handling inconvenience, poor biosafety, and limited biocompatibility. Microneedles (MNs) are emerging as a promising biomedical device option for improved cell delivery with little invasion, pain-free administration, and simplicity of disposal. MNs have shown considerable promise in treating a wide range of diseases and present the potential to improve cell-based therapies. In this review, we first summarized the latest advances in the various types of MNs developed for cell delivery and cell sampling. Emphasis was given to the design and fabrication of various types of MNs based on their structures and materials. Then we focus on the recent biomedical applications status of MNs-mediated cell delivery and sampling, including tissue repair (wound healing, heart repair, and endothelial repair), cancer treatment, diabetes therapy, cell sampling, and other applications. Finally, the current status of clinical application, potential perspectives, and the challenges for clinical translation are also highlighted.
Collapse
Affiliation(s)
- Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Manjila Adhikari
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Lina Fu
- College of Medicine, Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Central Hospital, Zhumadian, Henan 463000, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|