51
|
du Preez HN, Aldous C, Hayden MR, Kruger HG, Lin J. Pathogenesis of COVID-19 described through the lens of an undersulfated and degraded epithelial and endothelial glycocalyx. FASEB J 2021; 36:e22052. [PMID: 34862979 DOI: 10.1096/fj.202101100rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
The glycocalyx surrounds every eukaryotic cell and is a complex mesh of proteins and carbohydrates. It consists of proteoglycans with glycosaminoglycan side chains, which are highly sulfated under normal physiological conditions. The degree of sulfation and the position of the sulfate groups mainly determine biological function. The intact highly sulfated glycocalyx of the epithelium may repel severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) through electrostatic forces. However, if the glycocalyx is undersulfated and 3-O-sulfotransferase 3B (3OST-3B) is overexpressed, as is the case during chronic inflammatory conditions, SARS-CoV-2 entry may be facilitated by the glycocalyx. The degree of sulfation and position of the sulfate groups will also affect functions such as immune modulation, the inflammatory response, vascular permeability and tone, coagulation, mediation of sheer stress, and protection against oxidative stress. The rate-limiting factor to sulfation is the availability of inorganic sulfate. Various genetic and epigenetic factors will affect sulfur metabolism and inorganic sulfate availability, such as various dietary factors, and exposure to drugs, environmental toxins, and biotoxins, which will deplete inorganic sulfate. The role that undersulfation plays in the various comorbid conditions that predispose to coronavirus disease 2019 (COVID-19), is also considered. The undersulfated glycocalyx may not only increase susceptibility to SARS-CoV-2 infection, but would also result in a hyperinflammatory response, vascular permeability, and shedding of the glycocalyx components, giving rise to a procoagulant and antifibrinolytic state and eventual multiple organ failure. These symptoms relate to a diagnosis of systemic septic shock seen in almost all COVID-19 deaths. The focus of prevention and treatment protocols proposed is the preservation of epithelial and endothelial glycocalyx integrity.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Melvin R Hayden
- Division of Endocrinology Diabetes and Metabolism, Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA.,Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
52
|
Resveratrol and cyclodextrins, an easy alliance: Applications in nanomedicine, green chemistry and biotechnology. Biotechnol Adv 2021; 53:107844. [PMID: 34626788 DOI: 10.1016/j.biotechadv.2021.107844] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 12/20/2022]
Abstract
Most drugs or the natural substances reputed to display some biological activity are hydrophobic molecules that demonstrate low bioavailability regardless of their mode of absorption. Resveratrol and its derivatives belong to the chemical group of stilbenes; while stilbenes are known to possess very interesting properties, these are limited by their poor aqueous solubility as well as low bioavailability in animals and humans. Among the substances capable of forming nanomolecular inclusion complexes which can be used for drug delivery, cyclodextrins show spectacular physicochemical and biomedical implications in stilbene chemistry for their possible application in nanomedicine. By virtue of their properties, cyclodextrins have also demonstrated their possible use in green chemistry for the synthesis of stilbene glucosylated derivatives with potential applications in dermatology and cosmetics. Compared to chemical synthesis and genetically modified microorganisms, plant cell or tissue systems provide excellent models for obtaining stilbenes in few g/L quantities, making feasible the production of these compounds at a large scale. However, the biosynthesis of stilbenes is only possible in the presence of the so-called elicitor compounds, the most commonly used of which are cyclodextrins. We also report here on the induction of resveratrol production by cyclodextrins or combinatory elicitation with methyljasmonate in plant cell systems as well as the mechanisms by which they are able to trigger a stilbene response. The present article therefore discusses the role of cyclodextrins in stilbene chemistry both at the physico-chemical level as well as the biomedical and biotechnological levels, emphasizing the notion of "easy alliance" between these compounds and stilbenes.
Collapse
|
53
|
Kamat S, Kumari M, Jayabaskaran C. Nano-engineered tools in the diagnosis, therapeutics, prevention, and mitigation of SARS-CoV-2. J Control Release 2021; 338:813-836. [PMID: 34478750 PMCID: PMC8406542 DOI: 10.1016/j.jconrel.2021.08.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 01/07/2023]
Abstract
The recent outbreak of SARS-CoV-2 has forever altered mankind resulting in the COVID-19 pandemic. This respiratory virus further manifests into vital organ damage, resulting in severe post COVID-19 complications. Nanotechnology has been moonlighting in the scientific community to combat several severe diseases. This review highlights the triune of the nano-toolbox in the areas of diagnostics, therapeutics, prevention, and mitigation of SARS-CoV-2. Nanogold test kits have already been on the frontline of rapid detection. Breath tests, magnetic nanoparticle-based nucleic acid detectors, and the use of Raman Spectroscopy present myriads of possibilities in developing point of care biosensors, which will ensure sensitive, affordable, and accessiblemass surveillance. Most of the therapeutics are trying to focus on blocking the viral entry into the cell and fighting with cytokine storm, using nano-enabled drug delivery platforms. Nanobodies and mRNA nanotechnology with lipid nanoparticles (LNPs) as vaccines against S and N protein have regained importance. All the vaccines coming with promising phase 3 clinical trials have used nano-delivery systems for delivery of vaccine-cargo, which are currently administered widely in many countries. The use of chemically diverse metal, carbon and polymeric nanoparticles, nanocages and nanobubbles demonstrate opportunities to develop anti-viral nanomedicine. In order to prevent and mitigate the viral spread, high-performance charged nanofiber filters, spray coating of nanomaterials on surfaces, novel materials for PPE kits and facemasks have been developed that accomplish over 90% capture of airborne SARS-CoV-2. Nano polymer-based disinfectants are being tested to make smart-transport for human activities. Despite the promises of this toolbox, challenges in terms of reproducibility, specificity, efficacy and emergence of new SARS-CoV-2 variants are yet to overcome.
Collapse
Affiliation(s)
- Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India.
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
54
|
Qiao Q, Liu X, Yang T, Cui K, Kong L, Yang C, Zhang Z. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design. Acta Pharm Sin B 2021; 11:3060-3091. [PMID: 33977080 PMCID: PMC8102084 DOI: 10.1016/j.apsb.2021.04.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by the severe inflammation and destruction of the lung air-blood barrier, leading to irreversible and substantial respiratory function damage. Patients with coronavirus disease 2019 (COVID-19) have been encountered with a high risk of ARDS, underscoring the urgency for exploiting effective therapy. However, proper medications for ARDS are still lacking due to poor pharmacokinetics, non-specific side effects, inability to surmount pulmonary barrier, and inadequate management of heterogeneity. The increased lung permeability in the pathological environment of ARDS may contribute to nanoparticle-mediated passive targeting delivery. Nanomedicine has demonstrated unique advantages in solving the dilemma of ARDS drug therapy, which can address the shortcomings and limitations of traditional anti-inflammatory or antioxidant drug treatment. Through passive, active, or physicochemical targeting, nanocarriers can interact with lung epithelium/endothelium and inflammatory cells to reverse abnormal changes and restore homeostasis of the pulmonary environment, thereby showing good therapeutic activity and reduced toxicity. This article reviews the latest applications of nanomedicine in pre-clinical ARDS therapy, highlights the strategies for targeted treatment of lung inflammation, presents the innovative drug delivery systems, and provides inspiration for strengthening the therapeutic effect of nanomedicine-based treatment.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- AEC II, alveolar type II epithelial cells
- AM, alveolar macrophages
- ARDS, acute respiratory distress syndrome
- Acute lung injury
- Acute respiratory distress syndrome
- Anti-inflammatory therapy
- BALF, bronchoalveolar lavage fluid
- BSA, bovine serum albumin
- CD, cyclodextrin
- CLP, cecal ligation and perforation
- COVID-19
- COVID-19, coronavirus disease 2019
- DOPE, phosphatidylethanolamine
- DOTAP, 1-diolefin-3-trimethylaminopropane
- DOX, doxorubicin
- DPPC, dipalmitoylphosphatidylcholine
- Drug delivery
- ECM, extracellular matrix
- ELVIS, extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration
- EPCs, endothelial progenitor cells
- EPR, enhanced permeability and retention
- EVs, extracellular vesicles
- EphA2, ephrin type-A receptor 2
- Esbp, E-selectin-binding peptide
- FcgR, Fcγ receptor
- GNP, peptide-gold nanoparticle
- H2O2, hydrogen peroxide
- HO-1, heme oxygenase-1
- ICAM-1, intercellular adhesion molecule-1
- IKK, IκB kinase
- IL, interleukin
- LPS, lipopolysaccharide
- MERS, Middle East respiratory syndrome
- MPMVECs, mouse pulmonary microvascular endothelial cells
- MPO, myeloperoxidase
- MSC, mesenchymal stem cells
- NAC, N-acetylcysteine
- NE, neutrophil elastase
- NETs, neutrophil extracellular traps
- NF-κB, nuclear factor-κB
- Nanomedicine
- PC, phosphatidylcholine
- PCB, poly(carboxybetaine)
- PDA, polydopamine
- PDE4, phosphodiesterase 4
- PECAM-1, platelet-endothelial cell adhesion molecule
- PEG, poly(ethylene glycol)
- PEI, polyetherimide
- PEVs, platelet-derived extracellular vesicles
- PLGA, poly(lactic-co-glycolic acid)
- PS-PEG, poly(styrene-b-ethylene glycol)
- Pathophysiologic feature
- RBC, red blood cells
- RBD, receptor-binding domains
- ROS, reactive oxygen species
- S1PLyase, sphingosine-1-phosphate lyase
- SARS, severe acute respiratory syndrome
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SDC1, syndecan-1
- SORT, selective organ targeting
- SP, surfactant protein
- Se, selenium
- Siglec, sialic acid-binding immunoglobulin-like lectin
- TLR, toll-like receptor
- TNF-α, tumor necrosis factor-α
- TPP, triphenylphosphonium cation
- Targeting strategy
- YSA, YSAYPDSVPMMS
- cRGD, cyclic arginine glycine-d-aspartic acid
- iNOS, inducible nitric oxide synthase
- rSPANb, anti-rat SP-A nanobody
- scFv, single chain variable fragments
Collapse
Affiliation(s)
- Qi Qiao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kexin Cui
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
55
|
Malani M, Salunke P, Kulkarni S, Jain GK, Sheikh A, Kesharwani P, Nirmal J. Repurposing pharmaceutical excipients as an antiviral agent against SARS-CoV-2. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:110-136. [PMID: 34464232 DOI: 10.1080/09205063.2021.1975020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The limited time indorsed to face the COVID-19 emergency and large number of deaths across the globe, poses an unrelenting challenge to find apt therapeutic approaches. However, lead candidate selection to phase III trials of new chemical entity is a time-consuming procedure, and not feasible in pandemic, such as the one we are facing. Drug repositioning, an exploration of existing drug for new therapeutic use, could be an effective alternative as it allows fast-track estimation in phase II-III trials, or even forthright compassionate use. Although, drugs repurposed for COVID-19 pandemic are commercially available, yet the evaluation of their safety and efficacy is tiresome and painstaking. In absence of any specific treatment the easy alternatives such as over the counter products, phytotherapies and home remedies have been largely adopted for prophylaxis and therapy as well. In recent years, it has been demonstrated that several pharmaceutical excipients possess antiviral properties making them prospective candidates against SARS-CoV-2. This review highlights the mechanism of action of various antiviral excipients and their propensity to act against SARs-CoV2. Though, repurposing of pharmaceutical excipients against COVID-19 has the edge over therapeutic agents in terms of safety, cost and fast-track approval trial burdened, this hypothesis needs to be experimentally verified for COVID-19 patients.
Collapse
Affiliation(s)
- Manisha Malani
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, India
| | - Prerana Salunke
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, India
| | - Shraddha Kulkarni
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, India
| | - Gaurav K Jain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Jayabalan Nirmal
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, India
| |
Collapse
|
56
|
Umar Y, Al-Batty S, Rahman H, Ashwaq O, Sarief A, Sadique Z, Sreekumar PA, Haque SKM. Polymeric Materials as Potential Inhibitors Against SARS-CoV-2. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 30:1244-1263. [PMID: 34518763 PMCID: PMC8426594 DOI: 10.1007/s10924-021-02272-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2021] [Indexed: 05/02/2023]
Abstract
Recently discovered SARS-CoV-2 caused a pandemic that triggered researchers worldwide to focus their research on all aspects of this new peril to humanity. However, in the absence of specific therapeutic intervention, some preventive strategies and supportive treatment minimize the viral transmission as studied by some factors such as basic reproduction number, case fatality rate, and incubation period in the epidemiology of viral diseases. This review briefly discusses coronaviruses' life cycle of SARS-CoV-2 in a human host cell and preventive strategies at some selected source of infection. The antiviral activities of synthetic and natural polymers such as chitosan, hydrophobically modified chitosan, galactosylated chitosan, amine-based dendrimers, cyclodextrin, carrageenans, polyethyleneimine, nanoparticles are highlighted in this article. Mechanism of virus inhibition, detection and diagnosis are also presented. It also suggests that polymeric materials and nanoparticles can be effective as potential inhibitors and immunization against coronaviruses which would further develop new technologies in the field of polymer and nanoscience.
Collapse
Affiliation(s)
- Yunusa Umar
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| | - Sirhan Al-Batty
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| | - Habibur Rahman
- Department of General Studies, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| | - Omar Ashwaq
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| | - Abdulla Sarief
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| | - Zakariya Sadique
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| | - P. A. Sreekumar
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| | - S. K. Manirul Haque
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961 Saudi Arabia
| |
Collapse
|
57
|
Rincón-López J, Almanza-Arjona YC, Riascos AP, Rojas-Aguirre Y. When Cyclodextrins Met Data Science: Unveiling Their Pharmaceutical Applications through Network Science and Text-Mining. Pharmaceutics 2021; 13:1297. [PMID: 34452258 PMCID: PMC8399453 DOI: 10.3390/pharmaceutics13081297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
We present a data-driven approach to unveil the pharmaceutical technologies of cyclodextrins (CDs) by analyzing a dataset of CD pharmaceutical patents. First, we implemented network science techniques to represent CD patents as a single structure and provide a framework for unsupervised detection of keywords in the patent dataset. Guided by those keywords, we further mined the dataset to examine the patenting trends according to CD-based dosage forms. CD patents formed complex networks, evidencing the supremacy of CDs for solubility enhancement and how this has triggered cutting-edge applications based on or beyond the solubility improvement. The networks exposed the significance of CDs to formulate aqueous solutions, tablets, and powders. Additionally, they highlighted the role of CDs in formulations of anti-inflammatory drugs, cancer therapies, and antiviral strategies. Text-mining showed that the trends in CDs for aqueous solutions, tablets, and powders are going upward. Gels seem to be promising, while patches and fibers are emerging. Cyclodextrins' potential in suspensions and emulsions is yet to be recognized and can become an opportunity area. This is the first unsupervised/supervised data-mining approach aimed at depicting a landscape of CDs to identify trending and emerging technologies and uncover opportunity areas in CD pharmaceutical research.
Collapse
Affiliation(s)
- Juliana Rincón-López
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Yara C. Almanza-Arjona
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Alejandro P. Riascos
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Yareli Rojas-Aguirre
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| |
Collapse
|
58
|
Jicsinszky L, Martina K, Cravotto G. Cyclodextrins in the antiviral therapy. J Drug Deliv Sci Technol 2021; 64:102589. [PMID: 34035845 PMCID: PMC8135197 DOI: 10.1016/j.jddst.2021.102589] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The main antiviral drug-cyclodextrin interactions, changes in physicochemical and physiological properties of the most commonly used virucides are summarized. The potential complexation of antiviral molecules against the SARS-Cov2 also pointed out the lack of detailed information in designing effective and general medicines against viral infections. The principal problem of the current molecules is the 3D structures of the currently active compounds. Improving the solubility or bioavailability of antiviral molecules is possible, however, there is no universal solution, and the complexation experiments dominantly use the already approved cyclodextrin derivatives. This review discusses the basic properties of the different cyclodextrin derivatives, their potential in antiviral formulations, and the prevention and treatment of viral infections. The biologically active new cyclodextrin derivatives are also discussed.
Collapse
Affiliation(s)
- László Jicsinszky
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| | - Katia Martina
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| | - Giancarlo Cravotto
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| |
Collapse
|
59
|
Dawre S, Maru S. Human respiratory viral infections: Current status and future prospects of nanotechnology-based approaches for prophylaxis and treatment. Life Sci 2021; 278:119561. [PMID: 33915132 PMCID: PMC8074533 DOI: 10.1016/j.lfs.2021.119561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 12/23/2022]
Abstract
Respiratory viral infections are major cause of highly mortal pandemics. They are impacting socioeconomic development and healthcare system globally. These emerging deadly respiratory viruses develop newer survival strategies to live inside host cells and tricking the immune system of host. Currently, medical facilities, therapies and research -development teams of every country kneel down before novel corona virus (SARS-CoV-2) which claimed ~2,828,629 lives till date. Thus, there is urgent requirement of novel treatment strategies to combat against these emerging respiratory viral infections. Nanocarriers come under the umbrella of nanotechnology and offer numerous benefits compared to traditional dosage forms. Further, unique physicochemical properties (size, shape and surface charge) of nanocarriers provide additional advantage for targeted delivery. This review discusses in detail about the respiratory viruses, their transmission mode and cell invasion pathways, survival strategies, available therapies, and nanocarriers for the delivery of therapeutics. Further, the role of nanocarriers in the development of treatment therapy against SARS-CoV-2 is also overviewed.
Collapse
Affiliation(s)
- Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy &, Technology Management, SVKM's NMIMS, Babulde Banks of Tapi River, Mumbai-Agra Road, Shirpur, Maharashtra 425405, India.
| | - Saurabh Maru
- School of Pharmacy and Technology Management, SVKM's NMIMS, Babulde Banks of Tapi River, Mumbai-Agra Road, Shirpur, Maharashtra 425405, India.
| |
Collapse
|
60
|
De Maio F, Palmieri V, Babini G, Augello A, Palucci I, Perini G, Salustri A, Spilman P, De Spirito M, Sanguinetti M, Delogu G, Rizzi LG, Cesareo G, Soon-Shiong P, Sali M, Papi M. Graphene nanoplatelet and graphene oxide functionalization of face mask materials inhibits infectivity of trapped SARS-CoV-2. iScience 2021; 24:102788. [PMID: 34222841 PMCID: PMC8233064 DOI: 10.1016/j.isci.2021.102788] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advancements in bidimensional nanoparticles production such as graphene (G) and graphene oxide (GO) have the potential to meet the need for highly functional personal protective equipment (PPE) against SARS-CoV-2 infection. The ability of G and GO to interact with microorganisms provides an opportunity to develop engineered textiles for use in PPE and limit the spread of COVID-19. PPE in current use in high-risk settings for COVID transmission provides only a physical barrier that decreases infection likelihood and does not inactivate the virus. Here, we show that virus pre-incubation with soluble GO inhibits SARS-CoV-2 infection of VERO cells. Furthermore, when G/GO-functionalized polyurethane or cotton was in contact SARS-CoV-2, the infectivity of the fabric was nearly completely inhibited. The findings presented here constitute an important innovative nanomaterial-based strategy to significantly increase PPE efficacy in protection against the SARS-CoV-2 virus that may implement water filtration, air purification, and diagnostics methods.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Valentina Palmieri
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Gabriele Babini
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario "A. Gemelli", Largo A. Gemelli, 8 00168 Rome, Italy
| | - Alberto Augello
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Ivana Palucci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Alessandro Salustri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Patricia Spilman
- ImmunityBio, LLC, Culver City, 440 Duley Road, El Segundo, California, CA 90245, USA
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Mater Olbia Hospital, Strada Statale 125 Orientale Sarda, 07026 Olbia SS, Italy
| | - Laura Giorgia Rizzi
- Directa Plus S.p.A. c/o ComoNExT - Science and Technology Park, 22074 Lomazzo, Como, Italy
| | - Giulio Cesareo
- Directa Plus S.p.A. c/o ComoNExT - Science and Technology Park, 22074 Lomazzo, Como, Italy
| | - Patrick Soon-Shiong
- Nantworks LLC, Culver City, 9920 Jefferson Boulevard, California, CA 90230, USA
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| |
Collapse
|
61
|
De Maio F, Palmieri V, Babini G, Augello A, Palucci I, Perini G, Salustri A, Spilman P, De Spirito M, Sanguinetti M, Delogu G, Rizzi LG, Cesareo G, Soon-Shiong P, Sali M, Papi M. Graphene nanoplatelet and graphene oxide functionalization of face mask materials inhibits infectivity of trapped SARS-CoV-2. iScience 2021; 24:102788. [PMID: 34222841 DOI: 10.1101/2020.09.16.20194316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 05/19/2023] Open
Abstract
Recent advancements in bidimensional nanoparticles production such as graphene (G) and graphene oxide (GO) have the potential to meet the need for highly functional personal protective equipment (PPE) against SARS-CoV-2 infection. The ability of G and GO to interact with microorganisms provides an opportunity to develop engineered textiles for use in PPE and limit the spread of COVID-19. PPE in current use in high-risk settings for COVID transmission provides only a physical barrier that decreases infection likelihood and does not inactivate the virus. Here, we show that virus pre-incubation with soluble GO inhibits SARS-CoV-2 infection of VERO cells. Furthermore, when G/GO-functionalized polyurethane or cotton was in contact SARS-CoV-2, the infectivity of the fabric was nearly completely inhibited. The findings presented here constitute an important innovative nanomaterial-based strategy to significantly increase PPE efficacy in protection against the SARS-CoV-2 virus that may implement water filtration, air purification, and diagnostics methods.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Valentina Palmieri
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Gabriele Babini
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario "A. Gemelli", Largo A. Gemelli, 8 00168 Rome, Italy
| | - Alberto Augello
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Ivana Palucci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Alessandro Salustri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Patricia Spilman
- ImmunityBio, LLC, Culver City, 440 Duley Road, El Segundo, California, CA 90245, USA
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Mater Olbia Hospital, Strada Statale 125 Orientale Sarda, 07026 Olbia SS, Italy
| | - Laura Giorgia Rizzi
- Directa Plus S.p.A. c/o ComoNExT - Science and Technology Park, 22074 Lomazzo, Como, Italy
| | - Giulio Cesareo
- Directa Plus S.p.A. c/o ComoNExT - Science and Technology Park, 22074 Lomazzo, Como, Italy
| | - Patrick Soon-Shiong
- Nantworks LLC, Culver City, 9920 Jefferson Boulevard, California, CA 90230, USA
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| |
Collapse
|
62
|
Thakur AK, Sathyamurthy R, Ramalingam V, Lynch I, Sharshir SW, Ma Z, Poongavanam G, Lee S, Jeong Y, Hwang JY. A case study of SARS-CoV-2 transmission behavior in a severely air-polluted city (Delhi, India) and the potential usage of graphene based materials for filtering air-pollutants and controlling/monitoring the COVID-19 pandemic. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:923-946. [PMID: 34165129 DOI: 10.1039/d1em00034a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Globally, humanity is facing its most significant challenge in 100 years due to the novel coronavirus, SARS-CoV-2, which is responsible for COVID-19. Under the enormous pressure created by the pandemic, scientists are studying virus transmission mechanisms in order to develop effective mitigation strategies. However, no established methods have been developed to control the spread of this deadly virus. In addition, the ease in lockdown has escalated air pollution which may affect SARS-CoV-2 transmission through attachment to particulates. The present review summarizes the role of graphene nanomaterials, which show antimicrobial behavior and have antiviral efficacy, in reducing the spread of COVID-19. Graphene and its derivatives have excellent antimicrobial efficacy, providing both physical and chemical mechanisms of damage. Coupled with their lightness, optimal properties, and ease of functionalization, they are optimal nanomaterials for coating onto fabrics such as personal protection equipment, face masks and gloves to control the transmission of SARS-CoV-2 effectively. Biosensors using graphene can effectively detect the virus with high accuracy and sensitivity, providing rapid quantification. It is envisioned that the present work will boost the development of graphene-based highly sensitive, accurate and cost-effective diagnostic tools for efficiently monitoring and controlling the spread of COVID-19 and other air-borne viruses.
Collapse
Affiliation(s)
- Amrit Kumar Thakur
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamil Nadu 641407, India.
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamil Nadu 641407, India.
| | - Velraj Ramalingam
- Institute for Energy Studies, Anna University, Chennai-600025, Tamil Nadu, India
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Swellam Wafa Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh33516, Egypt
| | - Zhenjun Ma
- Sustainable Buildings Research Centre (SBRC), University of Wollongong, Australia
| | - Ganeshkumar Poongavanam
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Suyeong Lee
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yeseul Jeong
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jang-Yeon Hwang
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
63
|
Nie C, Pouyan P, Lauster D, Trimpert J, Kerkhoff Y, Szekeres GP, Wallert M, Block S, Sahoo AK, Dernedde J, Pagel K, Kaufer BB, Netz RR, Ballauff M, Haag R. Polysulfate hemmen durch elektrostatische Wechselwirkungen die SARS‐CoV‐2‐Infektion**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chuanxiong Nie
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Institut für Virologie Freie Universität Berlin Robert-von-Ostertag-Straße 7–13 14163 Berlin Deutschland
| | - Paria Pouyan
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Daniel Lauster
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Jakob Trimpert
- Institut für Virologie Freie Universität Berlin Robert-von-Ostertag-Straße 7–13 14163 Berlin Deutschland
| | - Yannic Kerkhoff
- Department of Chemistry and Biochemistry Emmy-Noether Group “Bionanointerfaces” Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Gergo Peter Szekeres
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Department of Molecular Physics Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Deutschland
| | - Matthias Wallert
- Department of Chemistry and Biochemistry Emmy-Noether Group “Bionanointerfaces” Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Stephan Block
- Department of Chemistry and Biochemistry Emmy-Noether Group “Bionanointerfaces” Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Anil Kumar Sahoo
- Fachbereich Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité-Universitätsmedizin Berlin Augustenburgerplatz 1 13353 Berlin Deutschland
| | - Kevin Pagel
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Department of Molecular Physics Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Deutschland
| | - Benedikt B. Kaufer
- Institut für Virologie Freie Universität Berlin Robert-von-Ostertag-Straße 7–13 14163 Berlin Deutschland
| | - Roland R. Netz
- Fachbereich Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
| | - Matthias Ballauff
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
64
|
Nie C, Pouyan P, Lauster D, Trimpert J, Kerkhoff Y, Szekeres GP, Wallert M, Block S, Sahoo AK, Dernedde J, Pagel K, Kaufer BB, Netz RR, Ballauff M, Haag R. Polysulfates Block SARS-CoV-2 Uptake through Electrostatic Interactions*. Angew Chem Int Ed Engl 2021; 60:15870-15878. [PMID: 33860605 PMCID: PMC8250366 DOI: 10.1002/anie.202102717] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/29/2021] [Indexed: 12/20/2022]
Abstract
Here we report that negatively charged polysulfates can bind to the spike protein of SARS-CoV-2 via electrostatic interactions. Using a plaque reduction assay, we compare inhibition of SARS-CoV-2 by heparin, pentosan sulfate, linear polyglycerol sulfate (LPGS) and hyperbranched polyglycerol sulfate (HPGS). Highly sulfated LPGS is the optimal inhibitor, with an IC50 of 67 μg mL-1 (approx. 1.6 μm). This synthetic polysulfate exhibits more than 60-fold higher virus inhibitory activity than heparin (IC50 : 4084 μg mL-1 ), along with much lower anticoagulant activity. Furthermore, in molecular dynamics simulations, we verified that LPGS can bind more strongly to the spike protein than heparin, and that LPGS can interact even more with the spike protein of the new N501Y and E484K variants. Our study demonstrates that the entry of SARS-CoV-2 into host cells can be blocked via electrostatic interactions, therefore LPGS can serve as a blueprint for the design of novel viral inhibitors of SARS-CoV-2.
Collapse
Affiliation(s)
- Chuanxiong Nie
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Institut für VirologieFreie Universität BerlinRobert-von-Ostertag-Strasse 7–1314163BerlinGermany
| | - Paria Pouyan
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Daniel Lauster
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jakob Trimpert
- Institut für VirologieFreie Universität BerlinRobert-von-Ostertag-Strasse 7–1314163BerlinGermany
| | - Yannic Kerkhoff
- Department of Chemistry and BiochemistryEmmy-Noether Group “Bionanointerfaces”Freie Universität BerlinArnimallee 2214195BerlinGermany
| | - Gergo Peter Szekeres
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Department of Molecular PhysicsFritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Matthias Wallert
- Department of Chemistry and BiochemistryEmmy-Noether Group “Bionanointerfaces”Freie Universität BerlinArnimallee 2214195BerlinGermany
| | - Stephan Block
- Department of Chemistry and BiochemistryEmmy-Noether Group “Bionanointerfaces”Freie Universität BerlinArnimallee 2214195BerlinGermany
| | - Anil Kumar Sahoo
- Fachbereich PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und PathobiochemieCharité-Universitätsmedizin BerlinAugustenburgerplatz 113353BerlinGermany
| | - Kevin Pagel
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Department of Molecular PhysicsFritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Benedikt B. Kaufer
- Institut für VirologieFreie Universität BerlinRobert-von-Ostertag-Strasse 7–1314163BerlinGermany
| | - Roland R. Netz
- Fachbereich PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Matthias Ballauff
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| |
Collapse
|
65
|
Rabus JM, Pellegrinelli RP, Khodr AHA, Bythell BJ, Rizzo TR, Carrascosa E. Unravelling the structures of sodiated β-cyclodextrin and its fragments. Phys Chem Chem Phys 2021; 23:13714-13723. [PMID: 34128027 PMCID: PMC8220536 DOI: 10.1039/d1cp01058a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/05/2021] [Indexed: 12/29/2022]
Abstract
We present cryogenic infrared spectra of sodiated β-cyclodextrin [β-CD + Na]+, a common cyclic oligosaccharide, and its main dissociation products upon collision-induced dissociation (CID). We characterize the parent ions using high-resolution ion mobility spectrometry and cryogenic infrared action spectroscopy, while the fragments are characterized by their mass and cryogenic infrared spectra. We observe sodium-cationized fragments that differ in mass by 162 u, corresponding to Bn/Zm ions. For the m/z 347 product ion, electronic structure calculations are consistent with formation of the lowest energy 2-ketone B2 ion structure. For the m/z 509 product ion, both the calculated 2-ketone B3 and the Z3 structures show similarities with the experimental spectrum. The theoretical structure most consistent with the spectrum of the m/z 671 ions is a slightly higher energy 2-ketone B4 structure. Overall, the data suggest a consistent formation mechanism for all the observed fragments.
Collapse
Affiliation(s)
- Jordan M Rabus
- Department of Chemistry and Biochemistry, Ohio University, 391 Clippinger Laboratories, Athens, Ohio 45701, USA
| | - Robert P Pellegrinelli
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland.
| | - Ali Hassan Abi Khodr
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland.
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, Ohio University, 391 Clippinger Laboratories, Athens, Ohio 45701, USA
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland.
| | - Eduardo Carrascosa
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
66
|
Fatmi S, Taouzinet L, Skiba M, Iguer-Ouada M. The Use of Cyclodextrin or its Complexes as a Potential Treatment Against the 2019 Novel Coronavirus: A Mini-Review. Curr Drug Deliv 2021; 18:382-386. [PMID: 32940180 DOI: 10.2174/1567201817666200917124241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 has spread rapidly since its discovery in December 2019 in the Chinese province of Hubei, reaching this day all the continents. This scourge is, unfortunately, in lineage with various dangerous outbreaks such as Ebola, Cholera, Spanish flu, American seasonal flu. Until today, the best solution for the moment remains prevention (Social distancing, hand disinfection, use of masks, partial or total sanitary containment, etc.); there is also the emergence of drug treatment (research and development, clinical trials, use on patients). Recent reviews emphasized the role of membrane lipids in the infectivity mechanism of SARS-COV-2. Cholesterol-rich parts of cell membranes serve as docking places of host cells for the viruses. Coronavirus 2 is a member of a virus family with lipid envelope that fuses with host cell through endocytosis, internalizing its components in the cell. In vitro cell models have shown that depletion of cholesterol by cyclodextrin, and particularly methyl beta cyclodextrin disturb the host cell membrane lipid composition this way, reducing the attachment of the virus to the protein receptors. This review aims to summarize the state of the art of research concerning the use of cyclodextrin or its complexes as a potential treatment against this new virus and update work already published.
Collapse
Affiliation(s)
- Sofiane Fatmi
- Department of Processes Engineering, Faculty of Technology, Technology Pharmaceutical Laboratory, Université de Bejaia, 06000, Bejaia, Algeria
| | - Lamia Taouzinet
- Department of Processes Engineering, Faculty of Technology, Technology Pharmaceutical Laboratory, Université de Bejaia, 06000, Bejaia, Algeria
| | - Mohamed Skiba
- Technology Pharmaceutical and Bio Pharmaceutics Laboratory, UFR Medicine and Pharmacy, Rouen University, 22 Blvd. Gambetta, 76183, Rouen, France
| | - Mokrane Iguer-Ouada
- Faculty of Nature and Life Sciences, Associated Laboratory in Marine Ecosystems and Aquaculture, Université de Bejaia, 06000, Bejaia, Algeria
| |
Collapse
|
67
|
Mathez G, Cagno V. Viruses Like Sugars: How to Assess Glycan Involvement in Viral Attachment. Microorganisms 2021; 9:1238. [PMID: 34200288 PMCID: PMC8230229 DOI: 10.3390/microorganisms9061238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The first step of viral infection requires interaction with the host cell. Before finding the specific receptor that triggers entry, the majority of viruses interact with the glycocalyx. Identifying the carbohydrates that are specifically recognized by different viruses is important both for assessing the cellular tropism and for identifying new antiviral targets. Advances in the tools available for studying glycan-protein interactions have made it possible to identify them more rapidly; however, it is important to recognize the limitations of these methods in order to draw relevant conclusions. Here, we review different techniques: genetic screening, glycan arrays, enzymatic and pharmacological approaches, and surface plasmon resonance. We then detail the glycan interactions of enterovirus D68 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlighting the aspects that need further clarification.
Collapse
Affiliation(s)
| | - Valeria Cagno
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
68
|
Guo X, Sun M, Gao R, Qu A, Chen C, Xu C, Kuang H, Xu L. Ultrasmall Copper (I) Sulfide Nanoparticles Prevent Hepatitis B Virus Infection. Angew Chem Int Ed Engl 2021; 60:13073-13080. [PMID: 33837622 DOI: 10.1002/anie.202103717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) poses a severe threat to public health and social development. Here, we synthesized 4±0.5 nm copper (I) sulfide (Cu2 S) nanoparticles (NPs) with 46 mdeg chiroptical property at 530 nm to selectively cleavage HBV core antigen (HBcAg) and effectively blocked HBV assembly and prevented HBV infection both in vitro and in vivo under light at 808 nm. Experimental analysis showed that the chiral Cu2 S NPs specific bound with the functional domain from phenylalanine23 (F23 ) to leucine30 (L30 ) from HBcAg primary sequence and the cutting site was between amino acid residues F24 and proline25 (P25 ). Under excitation at 808 nm, the intracellular HBcAg concentration was reduced by 95 %, and in HBV transgenic mice, the levels of HBV surface antigen (HBsAg) and HBV DNA were decreased by 93 % and 86 %, respectively. Together, these results reveal the potential nanomedicine for HBV control and provide fresh tools for viral infection.
Collapse
Affiliation(s)
- Xiao Guo
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Rui Gao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chen Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
69
|
Guo X, Sun M, Gao R, Qu A, Chen C, Xu C, Kuang H, Xu L. Ultrasmall Copper (I) Sulfide Nanoparticles Prevent Hepatitis B Virus Infection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao Guo
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Rui Gao
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chen Chen
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
70
|
Jiang X, Li Z, Young DJ, Liu M, Wu C, Wu YL, Loh XJ. Toward the prevention of coronavirus infection: what role can polymers play? MATERIALS TODAY. ADVANCES 2021; 10:100140. [PMID: 33778467 PMCID: PMC7980145 DOI: 10.1016/j.mtadv.2021.100140] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome-associated coronavirus 2 has caused a global public health crisis with high rates of infection and mortality. Treatment and prevention approaches include vaccine development, the design of small-molecule antiviral drugs, and macromolecular neutralizing antibodies. Polymers have been designed for effective virus inhibition and as antiviral drug delivery carriers. This review summarizes recent progress and provides a perspective on polymer-based approaches for the treatment and prevention of coronavirus infection. These polymer-based partners include polyanion/polycations, dendritic polymers, macromolecular prodrugs, and polymeric drug delivery systems that have the potential to significantly improve the efficacy of antiviral therapeutics.
Collapse
Affiliation(s)
- X Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Z Li
- Institute of Materials Research and Engineering, A∗STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - D J Young
- College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia
| | - M Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - C Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Y-L Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - X J Loh
- Institute of Materials Research and Engineering, A∗STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| |
Collapse
|
71
|
Carrouel F, Valette M, Gadea E, Esparcieux A, Illes G, Langlois ME, Perrier H, Dussart C, Tramini P, Ribaud M, Bouscambert-Duchamp M, Bourgeois D. Use of an antiviral mouthwash as a barrier measure in the SARS-CoV-2 transmission in adults with asymptomatic to mild COVID-19: a multicentre, randomized, double-blind controlled trial. Clin Microbiol Infect 2021; 27:1494-1501. [PMID: 34044151 PMCID: PMC8142805 DOI: 10.1016/j.cmi.2021.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Objectives To determine if commercially available mouthwash with β-cyclodextrin and citrox (bioflavonoids) (CDCM) could decrease the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) salivary viral load. Methods In this randomized controlled trial, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR-positive patients aged 18–85 years with asymptomatic to mild coronavirus disease 2019 (COVID-19) symptoms for <8 days were recruited. A total of 176 eligible patients were randomly assigned (1:1) to CDCM or placebo. Three rinses daily were performed for 7 days. Saliva sampling was performed on day 1 at 09.00 (T1), 13.00 (T2) and 18.00 (T3). On the following 6 days, one sample was taken at 15.00. Quantitative RT-PCR was used to detect SARS-CoV-2. Results The intention-to-treat analysis demonstrated that, over the course of 1 day, CDCM was significantly more effective than placebo 4 hours after the first dose (p 0.036), with a median percentage (log10 copies/mL) decrease T1–T2 of –12.58% (IQR –29.55% to –0.16%). The second dose maintained the low median value for the CDCM (3.08 log10 copies/mL; IQR 0–4.19), compared with placebo (3.31 log10 copies/mL; IQR 1.18–4.75). At day 7, there was still a greater median percentage (log10 copies/mL) decrease in salivary viral load over time in the CDCM group (–58.62%; IQR –100% to –34.36%) compared with the placebo group (–50.62%; IQR –100% to –27.66%). These results were confirmed by the per-protocol analysis. Conclusions This trial supports the relevance of using CDCM on day 1 (4 hours after the initial dose) to reduce the SARS-CoV-2 viral load in saliva. For long-term effect (7 days), CDMC appears to provide a modest benefit compared with placebo in reducing viral load in saliva.
Collapse
Affiliation(s)
- Florence Carrouel
- Laboratory "Systemic Health Care", EA4129, University of Lyon, University Claude Bernard Lyon 1, Lyon, France.
| | - Martine Valette
- Virology Laboratory, Institute of Infectious Agents, National Center for Virus of Respiratory Infections, Croix-Rousse Hospital, Hospices Civils of Lyon, Lyon, France
| | - Emilie Gadea
- Equipe SNA-EPIS, EA4607, University Jean Monnet, Saint-Etienne, France; Clinical Research Unit, Emile Roux Hospital Centre, le Puy-en-Velay, France
| | - Aurélie Esparcieux
- Department of Internal Medicine and Infectious Diseases, Protestant Infirmary, Caluire-et-Cuire, France
| | - Gabriela Illes
- Department of Internal Medicine and Infectious Diseases, Intercommunal Hospital Centre of "Mont de Marsan et du Pays des Sources", Mont de Marsan, France
| | - Marie Elodie Langlois
- Department of Internal Medicine and Infectious Diseases, Saint Joseph Saint Luc Hospital, Lyon, France
| | - Hervé Perrier
- Clinical Research Unit, Protestant Infirmary, Lyon, France
| | - Claude Dussart
- Laboratory "Systemic Health Care", EA4129, University of Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - Paul Tramini
- Department of Public Health, Faculty of Dental Medicine, University of Montpellier, Montpellier, France
| | - Mélina Ribaud
- National Institute of Agronomic Research (INRAE), BioSP, UR546, Avignon, France
| | - Maude Bouscambert-Duchamp
- Virology Laboratory, Institute of Infectious Agents, National Center for Virus of Respiratory Infections, Croix-Rousse Hospital, Hospices Civils of Lyon, Lyon, France
| | - Denis Bourgeois
- Laboratory "Systemic Health Care", EA4129, University of Lyon, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
72
|
Kouhpayeh S, Shariati L, Boshtam M, Rahimmanesh I, Mirian M, Esmaeili Y, Najaflu M, Khanahmad N, Zeinalian M, Trovato M, Tay FR, Khanahmad H, Makvandi P. The Molecular Basis of COVID-19 Pathogenesis, Conventional and Nanomedicine Therapy. Int J Mol Sci 2021; 22:5438. [PMID: 34064039 PMCID: PMC8196740 DOI: 10.3390/ijms22115438] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
In late 2019, a new member of the Coronaviridae family, officially designated as "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), emerged and spread rapidly. The Coronavirus Disease-19 (COVID-19) outbreak was accompanied by a high rate of morbidity and mortality worldwide and was declared a pandemic by the World Health Organization in March 2020. Within the Coronaviridae family, SARS-CoV-2 is considered to be the third most highly pathogenic virus that infects humans, following the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV). Four major mechanisms are thought to be involved in COVID-19 pathogenesis, including the activation of the renin-angiotensin system (RAS) signaling pathway, oxidative stress and cell death, cytokine storm, and endothelial dysfunction. Following virus entry and RAS activation, acute respiratory distress syndrome develops with an oxidative/nitrosative burst. The DNA damage induced by oxidative stress activates poly ADP-ribose polymerase-1 (PARP-1), viral macrodomain of non-structural protein 3, poly (ADP-ribose) glycohydrolase (PARG), and transient receptor potential melastatin type 2 (TRPM2) channel in a sequential manner which results in cell apoptosis or necrosis. In this review, blockers of angiotensin II receptor and/or PARP, PARG, and TRPM2, including vitamin D3, trehalose, tannins, flufenamic and mefenamic acid, and losartan, have been investigated for inhibiting RAS activation and quenching oxidative burst. Moreover, the application of organic and inorganic nanoparticles, including liposomes, dendrimers, quantum dots, and iron oxides, as therapeutic agents for SARS-CoV-2 were fully reviewed. In the present review, the clinical manifestations of COVID-19 are explained by focusing on molecular mechanisms. Potential therapeutic targets, including the RAS signaling pathway, PARP, PARG, and TRPM2, are also discussed in depth.
Collapse
Affiliation(s)
- Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 8164776351, Iran;
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Malihe Najaflu
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.N.); (M.Z.)
| | - Negar Khanahmad
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 817467346, Iran;
| | - Mehrdad Zeinalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.N.); (M.Z.)
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy;
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, USA;
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.N.); (M.Z.)
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pisa, Italy
| |
Collapse
|
73
|
Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers (Basel) 2021; 13:polym13111684. [PMID: 34064190 PMCID: PMC8196804 DOI: 10.3390/polym13111684] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) and cyclodextrin (CD)-based polymers are well-known complexing agents. One of their distinctive features is to increase the quantity of a drug in a solution or improve its delivery. However, in certain instances, the activity of the solutions is increased not only due to the increase of the drug dose but also due to the drug complexation. Based on numerous studies reviewed, the drug appeared more active in a complex form. This review aims to summarize the performance of CDs and CD-based polymers as activity enhancers. Accordingly, the review is divided into two parts, i.e., the effect of CDs as active drugs and as enhancers in antimicrobials, antivirals, cardiovascular diseases, cancer, neuroprotective agents, and antioxidants.
Collapse
|
74
|
Karmacharya M, Kumar S, Gulenko O, Cho YK. Advances in Facemasks during the COVID-19 Pandemic Era. ACS APPLIED BIO MATERIALS 2021; 4:3891-3908. [PMID: 35006814 PMCID: PMC7839420 DOI: 10.1021/acsabm.0c01329] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The outbreak of coronavirus disease (COVID-19) has transformed the daily lifestyles of people worldwide. COVID-19 was characterized as a pandemic owing to its global spread, and technologies based on engineered materials that help to reduce the spread of infections have been reported. Nanotechnology present in materials with enhanced physicochemical properties and versatile chemical functionalization offer numerous ways to combat the disease. Facemasks are a reliable preventive measure, although they are not 100% effective against viral infections. Nonwoven materials, which are the key components of masks, act as barriers to the virus through filtration. However, there is a high chance of cross-infection because the used mask lacks virucidal properties and can become an additional source of infection. The combination of antiviral and filtration properties enhances the durability and reliability of masks, thereby reducing the likelihood of cross-infection. In this review, we focus on masks, from the manufacturing stage to practical applications, and their abilities to combat COVID-19. Herein, we discuss the impacts of masks on the environment, while considering safe industrial production in the future. Furthermore, we discuss available options for future research directions that do not negatively impact the environment.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Sumit Kumar
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Oleksandra Gulenko
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| |
Collapse
|
75
|
Sellaoui L, Badawi M, Monari A, Tatarchuk T, Jemli S, Luiz Dotto G, Bonilla-Petriciolet A, Chen Z. Make it clean, make it safe: A review on virus elimination via adsorption. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 412:128682. [PMID: 33776550 PMCID: PMC7983426 DOI: 10.1016/j.cej.2021.128682] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 05/09/2023]
Abstract
Recently, the potential dangers of viral infection transmission through water and air have become the focus of worldwide attention, via the spread of COVID-19 pandemic. The occurrence of large-scale outbreaks of dangerous infections caused by unknown pathogens and the isolation of new pandemic strains require the development of improved methods of viruses' inactivation. Viruses are not stable self-sustaining living organisms and are rapidly inactivated on isolated surfaces. However, water resources and air can participate in the pathogens' diffusion, stabilization, and transmission. Viruses inactivation and elimination by adsorption are relevant since they can represent an effective and low-cost method to treat fluids, and hence limit the spread of pathogen agents. This review analyzed the interaction between viruses and carbon-based, oxide-based, porous materials and biological materials (e.g., sulfated polysaccharides and cyclodextrins). It will be shown that these adsorbents can play a relevant role in the viruses removal where water and air purification mostly occurring via electrostatic interactions. However, a clear systematic vision of the correlation between the surface potential and the adsorption capacity of the different filters is still lacking and should be provided to achieve a better comprehension of the global phenomenon. The rationalization of the adsorption capacity may be achieved through a proper physico-chemical characterization of new adsorbents, including molecular modeling and simulations, also considering the adsorption of virus-like particles on their surface. As a most timely perspective, the results on this review present potential solutions to investigate coronaviruses and specifically SARS-CoV-2, responsible of the COVID-19 pandemic, whose spread can be limited by the efficient disinfection and purification of closed-spaces air and urban waters.
Collapse
Affiliation(s)
- Lotfi Sellaoui
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques LPCT UMR CNRS 7019, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques LPCT UMR CNRS 7019, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Tetiana Tatarchuk
- Educational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, Tunisia
- Faculty of Sciences of Sfax, Biology Department, University of Sfax, Tunisia
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, 97105-900 Santa Maria, RS, Brazil
| | | | - Zhuqi Chen
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
76
|
Lan G, Yang J, Ye RP, Boyjoo Y, Liang J, Liu X, Li Y, Liu J, Qian K. Sustainable Carbon Materials toward Emerging Applications. SMALL METHODS 2021; 5:e2001250. [PMID: 34928103 DOI: 10.1002/smtd.202001250] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/10/2021] [Indexed: 06/14/2023]
Abstract
It is desirable for a sustainable society that the production and utilization of renewable materials are net-zero in terms of carbon emissions. Carbon materials with emerging applications in CO2 utilization, renewable energy storage and conversion, and biomedicine have attracted much attention both academically and industrially. However, the preparation process of some new carbon materials suffers from energy consumption and environmental pollution issues. Therefore, the development of low-cost, scalable, industrially and economically attractive, sustainable carbon material preparation methods are required. In this regard, the use of biomass and its derivatives as a precursor of carbon materials is a major feature of sustainability. Recent advances in the synthetic strategy of sustainable carbon materials and their emerging applications are summarized in this short review. Emphasis is made on the discussion of the original intentions and various sustainable strategies for producing sustainable carbon materials. This review provides basic insights and significant guidelines for the further design of sustainable carbon materials and their emerging applications in catalysis and the biomedical field.
Collapse
Affiliation(s)
- Guojun Lan
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou Chaowang Road 18, Zhejiang, 310032, P. R. China
| | - Jing Yang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, 160 Pujian Road, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Run-Ping Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Yash Boyjoo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Ji Liang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Xiaoyan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Ying Li
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou Chaowang Road 18, Zhejiang, 310032, P. R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, 160 Pujian Road, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
77
|
Williams GT, Kedge JL, Fossey JS. Molecular Boronic Acid-Based Saccharide Sensors. ACS Sens 2021; 6:1508-1528. [PMID: 33844515 PMCID: PMC8155662 DOI: 10.1021/acssensors.1c00462] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Boronic acids can reversibly bind diols, a molecular feature that is ubiquitous within saccharides, leading to their use in the design and implementation of sensors for numerous saccharide species. There is a growing understanding of the importance of saccharides in many biological processes and systems; while saccharide or carbohydrate sensing in medicine is most often associated with detection of glucose in diabetes patients, saccharides have proven to be relevant in a range of disease states. Herein the relevance of carbohydrate sensing for biomedical applications is explored, and this review seeks to outline how the complexity of saccharides presents a challenge for the development of selective sensors and describes efforts that have been made to understand the underpinning fluorescence and binding mechanisms of these systems, before outlining examples of how researchers have used this knowledge to develop ever more selective receptors.
Collapse
Affiliation(s)
- George T. Williams
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Jonathan L. Kedge
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - John S. Fossey
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| |
Collapse
|
78
|
Important Roles of Oligo- and Polysaccharides against SARS-CoV-2: Recent Advances. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083512] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-initiated outbreak of COVID-19 has spread rapidly around the world, posing a huge threat to public health. Natural oligo- and polysaccharides with low toxicity, good sustainability, high biocompatibility, respectable safety, immune regulation, and antiviral activity can be employed as promising candidates for the prevention and inhibition of viral infections, especially COVID-19. Glycosaminoglycans, marine polysaccharides, terrestrial plant polysaccharides, and some others have exhibited potential antiviral activity against pathogenic viruses, in the format of polysaccharide-centered vaccine adjuvants, nano-based structures, drug conveyance platforms, etc. In this review, significant recent advancements pertaining to the antiviral applications of oligo- and polysaccharides against SARS-CoV-2 are highlighted, including important challenges and future perspectives.
Collapse
|
79
|
Is the ZIKV Congenital Syndrome and Microcephaly Due to Syndemism with Latent Virus Coinfection? Viruses 2021; 13:v13040669. [PMID: 33924398 PMCID: PMC8069280 DOI: 10.3390/v13040669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 01/04/2023] Open
Abstract
The emergence of the Zika virus (ZIKV) mirrors its evolutionary nature and, thus, its ability to grow in diversity or complexity (i.e., related to genome, host response, environment changes, tropism, and pathogenicity), leading to it recently joining the circle of closed congenital pathogens. The causal relation of ZIKV to microcephaly is still a much-debated issue. The identification of outbreak foci being in certain endemic urban areas characterized by a high-density population emphasizes that mixed infections might spearhead the recent appearance of a wide range of diseases that were initially attributed to ZIKV. Globally, such coinfections may have both positive and negative effects on viral replication, tropism, host response, and the viral genome. In other words, the possibility of coinfection may necessitate revisiting what is considered to be known regarding the pathogenesis and epidemiology of ZIKV diseases. ZIKV viral coinfections are already being reported with other arboviruses (e.g., chikungunya virus (CHIKV) and dengue virus (DENV)) as well as congenital pathogens (e.g., human immunodeficiency virus (HIV) and cytomegalovirus (HCMV)). However, descriptions of human latent viruses and their impacts on ZIKV disease outcomes in hosts are currently lacking. This review proposes to select some interesting human latent viruses (i.e., herpes simplex virus 2 (HSV-2), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), human parvovirus B19 (B19V), and human papillomavirus (HPV)), whose virological features and co-exposition with ZIKV may provide evidence of the syndemism process, shedding some light on the emergence of the ZIKV-induced global congenital syndrome in South America.
Collapse
|
80
|
Wells L, Vierra C, Hardman J, Han Y, Dimas D, Gwarada‐Phillips LN, Blackeye R, Eggers DK, LaBranche CC, Král P, McReynolds KD. Sulfoglycodendrimer Therapeutics for HIV-1 and SARS-CoV-2. ADVANCED THERAPEUTICS 2021; 4:2000210. [PMID: 33786368 PMCID: PMC7995185 DOI: 10.1002/adtp.202000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/04/2021] [Indexed: 12/05/2022]
Abstract
Hexavalent sulfoglycodendrimers (SGDs) are synthesized as mimics of host cell heparan sulfate proteoglycans (HSPGs) to inhibit the early stages in viral binding/entry of HIV-1 and SARS-CoV-2. Using an HIV neutralization assay, the most promising of the seven candidates are found to have sub-micromolar anti-HIV activities. Molecular dynamics simulations are separately implemented to investigate how/where the SGDs interacted with both pathogens. The simulations revealed that the SGDs: 1) develop multivalent binding with polybasic regions within and outside of the V3 loop on glycoprotein 120 (gp120) for HIV-1, and consecutively bind with multiple gp120 subunits, and 2) interact with basic amino acids in both the angiotensin-converting enzyme 2 (ACE2) and HSPG binding regions of the Receptor Binding Domain (RBD) from SARS-CoV-2. These results illustrate the considerable potential of SGDs as inhibitors in viral binding/entry of both HIV-1 and SARS-CoV-2 pathogens, leading the way for further development of this class of molecules as broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Lauren Wells
- Department of ChemistryCalifornia State UniversitySacramento, 6000 J StreetSacramentoCA95819–6057USA
| | - Cory Vierra
- Department of ChemistryCalifornia State UniversitySacramento, 6000 J StreetSacramentoCA95819–6057USA
| | - Janee’ Hardman
- Department of ChemistryCalifornia State UniversitySacramento, 6000 J StreetSacramentoCA95819–6057USA
| | - Yanxiao Han
- Department of ChemistryUniversity of IllinoisChicago 845 W. Taylor St.ChicagoIL60607USA
| | - Dustin Dimas
- Department of ChemistryCalifornia State UniversitySacramento, 6000 J StreetSacramentoCA95819–6057USA
| | - Lucia N. Gwarada‐Phillips
- Department of ChemistryCalifornia State UniversitySacramento, 6000 J StreetSacramentoCA95819–6057USA
| | - Rachel Blackeye
- Department of ChemistryCalifornia State UniversitySacramento, 6000 J StreetSacramentoCA95819–6057USA
| | - Daryl K. Eggers
- Department of ChemistrySan José State UniversityOne Washington SquareSan JoséCA95192USA
| | | | - Petr Král
- Department of ChemistryUniversity of IllinoisChicago 845 W. Taylor St.ChicagoIL60607USA
- Departments of Physics, Pharmaceutical Sciences, and Chemical EngineeringUniversity of IllinoisChicago 845 W. Taylor St.ChicagoIL60607USA
| | - Katherine D. McReynolds
- Department of ChemistryCalifornia State UniversitySacramento, 6000 J StreetSacramentoCA95819–6057USA
| |
Collapse
|
81
|
Li S, Guo X, Gao R, Sun M, Xu L, Xu C, Kuang H. Recent Progress on Biomaterials Fighting against Viruses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005424. [PMID: 33644954 DOI: 10.1002/adma.202005424] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/19/2020] [Indexed: 05/24/2023]
Abstract
Viruses not only pose severe threats to public health, but also influence the development of society. Over the past decade, rapid advances have been seen in the application of nanomaterials to virus research. As an interdisciplinary field, nanotechnology offers powerful functions because the structures of nanomaterials are unique, with remarkable physicochemical properties and excellent biocompatibility. Nanomaterials have been developed for virus detection and tracking and for antiviral strategies, to better understand viruses and reduce viral infections, implying a bright future for this field. Herein, the recent advances are systematically summarized regarding the nanomaterials used in viral studies. Representative applications of nanomaterials to viral detection and tracking are described. The antiviral effects achieved with nanomaterials based on different mechanisms are also described, including entry inhibition, inhibition of viral replication, and immunological enhancement. The current challenges and future opportunities in this promising field are also discussed.
Collapse
Affiliation(s)
- Si Li
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiao Guo
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Rui Gao
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
82
|
Cyclodextrins in Antiviral Therapeutics and Vaccines. Pharmaceutics 2021; 13:pharmaceutics13030409. [PMID: 33808834 PMCID: PMC8003769 DOI: 10.3390/pharmaceutics13030409] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
The present review describes the various roles of cyclodextrins (CDs) in vaccines against viruses and in antiviral therapeutics. The first section describes the most commonly studied application of cyclodextrins—solubilisation and stabilisation of antiviral drugs; some examples also refer to their beneficial taste-masking activity. The second part of the review describes the role of cyclodextrins in antiviral vaccine development and stabilisation, where they are employed as adjuvants and cryopreserving agents. In addition, cyclodextrin-based polymers as delivery systems for mRNA are currently under development. Lastly, the use of cyclodextrins as pharmaceutical active ingredients for the treatment of viral infections is explored. This new field of application is still taking its first steps. Nevertheless, promising results from the use of cyclodextrins as agents to treat other pathologies are encouraging. We present potential applications of the results reported in the literature and highlight the products that are already available on the market.
Collapse
|
83
|
Romero-Arias JR, S Luviano A, Costas M, Hernández-Machado A, Barrio RA. Dipole-dipole interactions control the interfacial rheological response of cyclodextrin/surfactant solutions. SOFT MATTER 2021; 17:2652-2658. [PMID: 33533369 DOI: 10.1039/d0sm01796e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A recent surface rheological study has shown that aqueous solutions of α-cyclodextrin (αCD) with anionic surfactants (S) display a remarkable viscoelasticity at the liquid/air interface, which has not been observed in similar systems. The dilatational modulus is various orders of magnitude larger than those for the binary mixtures αCD + water and S + water. The rheological response has been qualitatively related to the bulk distribution of species, the 2 : 1 inclusion complexes (αCD2 : S) playing a fundamental role. In this work, we have developed a model that considers dipole-dipole interactions between 2 : 1 inclusion complexes ordered on the liquid/air interface. When the model is applied to the specific experimental conditions, the dependencies on concentration and temperature of the dilatational modulus and the surface tension were found to be in excellent agreement with the data, indicating clearly that dipole-dipole interactions determine and control the rheological behavior of the interface.
Collapse
Affiliation(s)
- J Roberto Romero-Arias
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, CdMx 01000, Mexico
| | - Alberto S Luviano
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, CdMx 04510, Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, CdMx 04510, Mexico
| | - Aurora Hernández-Machado
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain and Institute of Nanoscience and Nanotechnology (IN2UB)
| | - Rafael A Barrio
- Instituto de Física, Universidad Nacional Autónoma de México, 01000 CdMx, Mexico.
| |
Collapse
|
84
|
Donskyi IS, Nie C, Ludwig K, Trimpert J, Ahmed R, Quaas E, Achazi K, Radnik J, Adeli M, Haag R, Osterrieder K. Graphene Sheets with Defined Dual Functionalities for the Strong SARS-CoV-2 Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007091. [PMID: 33533178 DOI: 10.1002/smll.202170046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/05/2021] [Indexed: 05/26/2023]
Abstract
Search of new strategies for the inhibition of respiratory viruses is one of the urgent health challenges worldwide, as most of the current therapeutic agents and treatments are inefficient. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic and has taken lives of approximately two million people to date. Even though various vaccines are currently under development, virus, and especially its spike glycoprotein can mutate, which highlights a need for a broad-spectrum inhibitor. In this work, inhibition of SARS-CoV-2 by graphene platforms with precise dual sulfate/alkyl functionalities is investigated. A series of graphene derivatives with different lengths of aliphatic chains is synthesized and is investigated for their ability to inhibit SARS-CoV-2 and feline coronavirus. Graphene derivatives with long alkyl chains (>C9) inhibit coronavirus replication by virtue of disrupting viral envelope. The ability of these graphene platforms to rupture viruses is visualized by atomic force microscopy and cryogenic electron microscopy. A large concentration window (10 to 100-fold) where graphene platforms display strongly antiviral activity against native SARS-CoV-2 without significant toxicity against human cells is found. In this concentration range, the synthesized graphene platforms inhibit the infection of enveloped viruses efficiently, opening new therapeutic and metaphylactic avenues against SARS-CoV-2.
Collapse
Affiliation(s)
- Ievgen S Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- BAM - Federal Institute for Material Science and Testing, Division of Surface Analysis, and Interfacial Chemistry, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Rameez Ahmed
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Elisa Quaas
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Jörg Radnik
- BAM - Federal Institute for Material Science and Testing, Division of Surface Analysis, and Interfacial Chemistry, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Klaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
85
|
Donskyi IS, Nie C, Ludwig K, Trimpert J, Ahmed R, Quaas E, Achazi K, Radnik J, Adeli M, Haag R, Osterrieder K. Graphene Sheets with Defined Dual Functionalities for the Strong SARS-CoV-2 Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007091. [PMID: 33533178 PMCID: PMC7995151 DOI: 10.1002/smll.202007091] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/05/2021] [Indexed: 05/11/2023]
Abstract
Search of new strategies for the inhibition of respiratory viruses is one of the urgent health challenges worldwide, as most of the current therapeutic agents and treatments are inefficient. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic and has taken lives of approximately two million people to date. Even though various vaccines are currently under development, virus, and especially its spike glycoprotein can mutate, which highlights a need for a broad-spectrum inhibitor. In this work, inhibition of SARS-CoV-2 by graphene platforms with precise dual sulfate/alkyl functionalities is investigated. A series of graphene derivatives with different lengths of aliphatic chains is synthesized and is investigated for their ability to inhibit SARS-CoV-2 and feline coronavirus. Graphene derivatives with long alkyl chains (>C9) inhibit coronavirus replication by virtue of disrupting viral envelope. The ability of these graphene platforms to rupture viruses is visualized by atomic force microscopy and cryogenic electron microscopy. A large concentration window (10 to 100-fold) where graphene platforms display strongly antiviral activity against native SARS-CoV-2 without significant toxicity against human cells is found. In this concentration range, the synthesized graphene platforms inhibit the infection of enveloped viruses efficiently, opening new therapeutic and metaphylactic avenues against SARS-CoV-2.
Collapse
Affiliation(s)
- Ievgen S. Donskyi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
- BAM – Federal Institute for Material Science and TestingDivision of Surface Analysis, and Interfacial ChemistryUnter den Eichen 44‐4612205BerlinGermany
| | - Chuanxiong Nie
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
- Institut für VirologieRobert von Ostertag‐HausZentrum für InfektionsmedizinFreie Universität BerlinRobert‐von‐Ostertag‐Str. 7‐1314163BerlinGermany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMolInstitut für Chemie und BiochemieFreie Universität BerlinFabeckstr. 36a14195BerlinGermany
| | - Jakob Trimpert
- Institut für VirologieRobert von Ostertag‐HausZentrum für InfektionsmedizinFreie Universität BerlinRobert‐von‐Ostertag‐Str. 7‐1314163BerlinGermany
| | - Rameez Ahmed
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Elisa Quaas
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Katharina Achazi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Jörg Radnik
- BAM – Federal Institute for Material Science and TestingDivision of Surface Analysis, and Interfacial ChemistryUnter den Eichen 44‐4612205BerlinGermany
| | - Mohsen Adeli
- Department of ChemistryFaculty of ScienceLorestan UniversityKhorramabadIran
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Klaus Osterrieder
- Institut für VirologieRobert von Ostertag‐HausZentrum für InfektionsmedizinFreie Universität BerlinRobert‐von‐Ostertag‐Str. 7‐1314163BerlinGermany
- Department of Infectious Diseases and Public HealthJockey Club College of Veterinary Medicine and Life SciencesCity University of Hong KongKowloon TongHong Kong
| |
Collapse
|
86
|
Zelikin AN, Stellacci F. Broad-Spectrum Antiviral Agents Based on Multivalent Inhibitors of Viral Infectivity. Adv Healthc Mater 2021; 10:e2001433. [PMID: 33491915 PMCID: PMC7995163 DOI: 10.1002/adhm.202001433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/23/2020] [Indexed: 12/18/2022]
Abstract
The ongoing pandemic of the coronavirus disease (Covid-19), caused by the spread of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), highlights the need for broad-spectrum antiviral drugs. In this Essay, it is argued that such agents already exist and are readily available while highlighting the challenges that remain to translate them into the clinic. Multivalent inhibitors of viral infectivity based on polymers or supramolecular agents and nanoparticles are shown to be broadly acting against diverse pathogens in vitro as well as in vivo. Furthermore, uniquely, such agents can be virucidal. Polymers and nanoparticles are stable, do not require cold chain of transportation and storage, and can be obtained on large scale. Specifically, for the treatment of respiratory viruses and pulmonary diseases, these agents can be administered via inhalation/nebulization, as is currently investigated in clinical trials as a treatment against SARS CoV-2/Covid-19. It is believed that with due optimization and clinical validation, multivalent inhibitors of viral infectivity can claim their rightful position as broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Alexander N. Zelikin
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
| | - Francesco Stellacci
- Institute of Materials and Bioengineering InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| |
Collapse
|
87
|
Sorice M, Misasi R, Riitano G, Manganelli V, Martellucci S, Longo A, Garofalo T, Mattei V. Targeting Lipid Rafts as a Strategy Against Coronavirus. Front Cell Dev Biol 2021; 8:618296. [PMID: 33614627 PMCID: PMC7890255 DOI: 10.3389/fcell.2020.618296] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are functional membrane microdomains containing sphingolipids, including gangliosides, and cholesterol. These regions are characterized by highly ordered and tightly packed lipid molecules. Several studies revealed that lipid rafts are involved in life cycle of different viruses, including coronaviruses. Among these recently emerged the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The main receptor for SARS-CoV-2 is represented by the angiotensin-converting enzyme-2 (ACE-2), although it also binds to sialic acids linked to host cell surface gangliosides. A new type of ganglioside-binding domain within the N-terminal portion of the SARS-CoV-2 spike protein was identified. Lipid rafts provide a suitable platform able to concentrate ACE-2 receptor on host cell membranes where they may interact with the spike protein on viral envelope. This review is focused on selective targeting lipid rafts components as a strategy against coronavirus. Indeed, cholesterol-binding agents, including statins or methyl-β-cyclodextrin (MβCD), can affect cholesterol, causing disruption of lipid rafts, consequently impairing coronavirus adhesion and binding. Moreover, these compounds can block downstream key molecules in virus infectivity, reducing the levels of proinflammatory molecules [tumor necrosis factor alpha (TNF-α), interleukin (IL)-6], and/or affecting the autophagic process involved in both viral replication and clearance. Furthermore, cyclodextrins can assemble into complexes with various drugs to form host-guest inclusions and may be used as pharmaceutical excipients of antiviral compounds, such as lopinavir and remdesivir, by improving bioavailability and solubility. In conclusion, the role of lipid rafts-affecting drugs in the process of coronavirus entry into the host cells prompts to introduce a new potential task in the pharmacological approach against coronavirus.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | | | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Agostina Longo
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| |
Collapse
|
88
|
Kocabiyik O, Cagno V, Silva PJ, Zhu Y, Sedano L, Bhide Y, Mettier J, Medaglia C, Da Costa B, Constant S, Huang S, Kaiser L, Hinrichs WLJ, Huckriede A, Le Goffic R, Tapparel C, Stellacci F. Non-Toxic Virucidal Macromolecules Show High Efficacy Against Influenza Virus Ex Vivo and In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001012. [PMID: 33552848 PMCID: PMC7856883 DOI: 10.1002/advs.202001012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/07/2020] [Indexed: 06/12/2023]
Abstract
Influenza is one of the most widespread viral infections worldwide and represents a major public health problem. The risk that one of the next pandemics is caused by an influenza strain is high. It is important to develop broad-spectrum influenza antivirals to be ready for any possible vaccine shortcomings. Anti-influenza drugs are available but they are far from ideal. Arguably, an ideal antiviral should target conserved viral domains and be virucidal, that is, irreversibly inhibit viral infectivity. Here, a new class of broad-spectrum anti-influenza macromolecules is described that meets these criteria and display exceedingly low toxicity. These compounds are based on a cyclodextrin core modified on its primary face with long hydrophobic linkers terminated either in 6'sialyl-N-acetyllactosamine (6'SLN) or in 3'SLN. SLN enables nanomolar inhibition of the viruses while the hydrophobic linkers confer irreversibility to the inhibition. The combination of these two properties allows for efficacy in vitro against several human or avian influenza strains, as well as against a 2009 pandemic influenza strain ex vivo. Importantly, it is shown that, in mice, one of the compounds provides therapeutic efficacy when administered 24 h post-infection allowing 90% survival as opposed to no survival for the placebo and oseltamivir.
Collapse
Affiliation(s)
- Ozgun Kocabiyik
- Insitute of MaterialsÉcole Polytechnique Fédérale de LausanneStation 12Lausanne1015Switzerland
| | - Valeria Cagno
- Insitute of MaterialsÉcole Polytechnique Fédérale de LausanneStation 12Lausanne1015Switzerland
- Department of Microbiology and Molecular MedicineUniversity of GenevaRue Michel Servet 1Geneva1205Switzerland
| | - Paulo Jacob Silva
- Insitute of MaterialsÉcole Polytechnique Fédérale de LausanneStation 12Lausanne1015Switzerland
| | - Yong Zhu
- Insitute of MaterialsÉcole Polytechnique Fédérale de LausanneStation 12Lausanne1015Switzerland
| | - Laura Sedano
- Virologie et Immunologie MoleculaireInstitut National Recherche AgronomiqueUniversité Paris‐SaclayJouy en Josas78350France
| | - Yoshita Bhide
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningen9713GZThe Netherlands
- University Medical Center GroningenDepartment of Medical Microbiology and Infection Prevention (internal postcode EB88)University of GroningenHanzeplein 1Groningen9713GZThe Netherlands
| | - Joelle Mettier
- Virologie et Immunologie MoleculaireInstitut National Recherche AgronomiqueUniversité Paris‐SaclayJouy en Josas78350France
| | - Chiara Medaglia
- Department of Microbiology and Molecular MedicineUniversity of GenevaRue Michel Servet 1Geneva1205Switzerland
| | - Bruno Da Costa
- Virologie et Immunologie MoleculaireInstitut National Recherche AgronomiqueUniversité Paris‐SaclayJouy en Josas78350France
| | | | - Song Huang
- Epithelix SasChemin des Aulx 18Geneva1228Switzerland
| | - Laurent Kaiser
- Hopital Universitaire de GenèveRue Gabrielle Perret Gentil 4Geneva1205Switzerland
| | - Wouter L. J. Hinrichs
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningen9713GZThe Netherlands
| | - Anke Huckriede
- University Medical Center GroningenDepartment of Medical Microbiology and Infection Prevention (internal postcode EB88)University of GroningenHanzeplein 1Groningen9713GZThe Netherlands
| | - Ronan Le Goffic
- Virologie et Immunologie MoleculaireInstitut National Recherche AgronomiqueUniversité Paris‐SaclayJouy en Josas78350France
| | - Caroline Tapparel
- Department of Microbiology and Molecular MedicineUniversity of GenevaRue Michel Servet 1Geneva1205Switzerland
| | - Francesco Stellacci
- Insitute of MaterialsÉcole Polytechnique Fédérale de LausanneStation 12Lausanne1015Switzerland
- Bioengineering InstituteEcole Polytechnique Fédérale de LausanneStation 12Lausanne1015Switzerland
| |
Collapse
|
89
|
Tang Z, Zhang X, Shu Y, Guo M, Zhang H, Tao W. Insights from nanotechnology in COVID-19 treatment. NANO TODAY 2021; 36:101019. [PMID: 33178330 PMCID: PMC7640897 DOI: 10.1016/j.nantod.2020.101019] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
In just a few months, SARS-CoV-2 and the disease it causes, COVID-19, created a worldwide pandemic. Virologists, biologists, pharmacists, materials scientists, and clinicians are collaborating to develop efficient treatment strategies. Overall, in addition to the use of clinical equipment to assist patient rehabilitation, antiviral drugs and vaccines are the areas of greatest focus. Given the physical size of SARS-CoV-2 and the vaccine delivery platforms currently in clinical trials, the relevance of nanotechnology is clear, and previous antiviral research using nanomaterials also supports this connection. Herein we briefly summarize current representative strategies regarding nanomaterials in antiviral research. We focus specifically on SARS-CoV-2 and the detailed role that nanotechnology can play in addressing this pandemic, including i) using FDA-approved nanomaterials for drug/vaccine delivery, including further exploration of the inhalation pathway; ii) introducing promising nanomaterials currently in clinical trials for drug/vaccine delivery; iii) designing novel biocompatible nanomaterials to combat the virus via interfering in its life cycle; and iv) promoting the utilization of nanomaterials in pneumonia treatment.
Collapse
Affiliation(s)
- Zhongmin Tang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Xingcai Zhang
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States
| | - Yiqing Shu
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ming Guo
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
90
|
Saxena A, Khare D, Agrawal S, Singh A, Dubey AK. Recent advances in materials science: a reinforced approach toward challenges against COVID-19. EMERGENT MATERIALS 2021; 4:57-73. [PMID: 33644691 PMCID: PMC7898028 DOI: 10.1007/s42247-021-00179-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/27/2021] [Indexed: 05/15/2023]
Abstract
With the recent COVID-19 pandemic, medical professionals and scientists have encountered an unprecedented trouble to make the latest technological solutions to work. Despite of abundant tools available as well as initiated for diagnosis and treatment, researchers in the healthcare systems were in backfoot to provide concrete answers to the demanding challenge of SARS-CoV-2. It has incited global collaborative efforts in every field from economic, social, and political to dedicated science to confront the growing demand toward solution to this outbreak. Field of materials science has been in the frontline to the current scenario to provide major diagnostic tools, antiviral materials, safety materials, and various therapeutic means such as, antiviral drug design, drug delivery, and vaccination. In the present article, we emphasized the role of materials science to the development of PPE kits such as protecting suits, gloves, and masks as well as disinfection of the surfaces/surroundings. In addition, contribution of materials science towards manufacturing diagnostic devices such as microfluidics, immunosensors as well as biomaterials with a point of care analysis has also been discussed. Further, the efficacy of nanoparticles and scaffolds for antiviral drug delivery and micro-physiological systems as well as materials derived from human tissues for extracorporeal membrane oxygenation (ECMO) devices have been elaborated towards therapeutic applications.
Collapse
Affiliation(s)
- Abhinav Saxena
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), -221005, Varanasi, India
| | - Deepak Khare
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), -221005, Varanasi, India
| | - Swati Agrawal
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), -221005, Varanasi, India
| | - Angaraj Singh
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), -221005, Varanasi, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), -221005, Varanasi, India
| |
Collapse
|
91
|
Wankar JN, Chaturvedi VK, Bohara C, Singh MP, Bohara RA. Role of Nanomedicine in Management and Prevention of COVID-19. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.589541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
COVID-19, or the Coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic. At the time of writing this (July 28, 2020), more than 17 million people have become affected and 0.7 million people have died across the world. Remdesivir has shown glimpses of insight into how to fight the virus, but as of yet remain far from victory. Nanotechnology has proven its role in medicine to deliver the drug at the target site with minimal side effects, particularly in the anticancer domain. Most specifically, a range of nanotechnology-based products, such as nanosilver, are currently on the market because they have demonstrated the potential to combat viruses. This article provides an overview of the role of nanomedicine, including polymeric and inorganic materials, and its future capabilities in the management of the disease outbreak. Taking all this into account, an attempt has been made to educate readers in the simplest way of the role of nanomedicine, which can play a pivotal role in the management of diseases.
Collapse
|
92
|
Li N, Chen F, Shen J, Zhang H, Wang T, Ye R, Li T, Loh TP, Yang YY, Zeng H. Buckyball-Based Spherical Display of Crown Ethers for De Novo Custom Design of Ion Transport Selectivity. J Am Chem Soc 2020; 142:21082-21090. [PMID: 33274928 DOI: 10.1021/jacs.0c09655] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Searching for membrane-active synthetic analogues that are structurally simple yet functionally comparable to natural channel proteins has been of central research interest in the past four decades, yet custom design of the ion transport selectivity still remains a grand challenge. Here we report on a suite of buckyball-based molecular balls (MBs), enabling transmembrane ion transport selectivity to be custom designable. The modularly tunable MBm-Cn (m = 4-7; n = 6-12) structures consist of a C60-fullerene core, flexible alkyl linkers Cn (i.e., C6 for n-C6H12 group), and peripherally aligned benzo-3m-crown-m ethers (i.e., m = 4 for benzo-12-crown-4) as ion-transporting units. Screening a matrix of 16 such MBs, combinatorially derived from four different crown units and four different Cn linkers, intriguingly revealed that their transport selectivity well resembles the intrinsic ion binding affinity of the respective benzo-crown units present, making custom design of the transport selectivity possible. Specifically, MB4s, containing benzo-12-crown-4 units, all are Li+-selective in transmembrane ion transport, with the most active MB4-C10 exhibiting an EC50(Li+) value of 0.13 μM (corresponding to 0.13 mol % of the lipid present) while excluding all other monovalent alkali-metal ions. Likewise, the most Na+ selective MB5-C8 and K+ selective MB6-C8 demonstrate high Na+/K+ and K+/Na+ selectivity values of 13.7 and 7.8, respectively. For selectivity to Rb+ and Cs+ ions, the most active MB7-C8 displays exceptionally high transport efficiencies, with an EC50(Rb+) value of 105 nM (0.11 mol %) and an EC50(Cs+) value of 77 nM (0.079 mol %).
Collapse
Affiliation(s)
- Ning Li
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Feng Chen
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Jie Shen
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Hao Zhang
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China
| | - Tianxiang Wang
- School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Ruijuan Ye
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China
| | - Tianhu Li
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China
| | - Teck Peng Loh
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China.,School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #07-01, The Nanos, Singapore 138669
| | - Huaqiang Zeng
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China
| |
Collapse
|
93
|
Han Z, Porter AE. In situ Electron Microscopy of Complex Biological and Nanoscale Systems: Challenges and Opportunities. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.606253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In situ imaging for direct visualization is important for physical and biological sciences. Research endeavors into elucidating dynamic biological and nanoscale phenomena frequently necessitate in situ and time-resolved imaging. In situ liquid cell electron microscopy (LC-EM) can overcome certain limitations of conventional electron microscopies and offer great promise. This review aims to examine the status-quo and practical challenges of in situ LC-EM and its applications, and to offer insights into a novel correlative technique termed microfluidic liquid cell electron microscopy. We conclude by suggesting a few research ideas adopting microfluidic LC-EM for in situ imaging of biological and nanoscale systems.
Collapse
|
94
|
Chen X, Han W, Wang G, Zhao X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Int J Biol Macromol 2020; 164:331-343. [PMID: 32679328 PMCID: PMC7358770 DOI: 10.1016/j.ijbiomac.2020.07.106] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Since the outbreak of the novel coronavirus disease COVID-19, caused by the SARS-CoV-2 virus, it has spread rapidly worldwide and poses a great threat to public health. This is the third serious coronavirus outbreak in <20 years, following SARS in 2002-2003 and MERS in 2012. So far, there are almost no specific clinically effective drugs and vaccines available for COVID-19. Polysaccharides with good safety, immune regulation and antiviral activity have broad application prospects in anti-virus, especially in anti-coronavirus applications. Here, we reviewed the antiviral mechanisms of some polysaccharides, such as glycosaminoglycans, marine polysaccharides, traditional Chinese medicine polysaccharides, and their application progress in anti-coronavirus. In particular, the application prospects of polysaccharide-based vaccine adjuvants, nanomaterials and drug delivery systems in the fight against novel coronavirus were also analyzed and summarized. Additionally, we speculate the possible mechanisms of polysaccharides anti-SARS-CoV-2, and propose the strategy of loading S or N protein from coronavirus onto polysaccharide capped gold nanoparticles vaccine for COVID-19 treatment. This review may provide a new approach for the development of COVID-19 therapeutic agents and vaccines.
Collapse
Affiliation(s)
- Xiangyan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wenwei Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
95
|
Gasbarri M, V’kovski P, Torriani G, Thiel V, Stellacci F, Tapparel C, Cagno V. SARS-CoV-2 Inhibition by Sulfonated Compounds. Microorganisms 2020; 8:E1894. [PMID: 33265927 PMCID: PMC7760145 DOI: 10.3390/microorganisms8121894] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) depends on angiotensin converting enzyme 2 (ACE2) for cellular entry, but it might also rely on attachment receptors such as heparan sulfates. Several groups have recently demonstrated an affinity of the SARS-CoV2 spike protein for heparan sulfates and a reduced binding to cells in the presence of heparin or heparinase treatment. Here, we investigated the inhibitory activity of several sulfated and sulfonated molecules, which prevent interaction with heparan sulfates, against vesicular stomatitis virus (VSV)-pseudotyped-SARS-CoV-2 and the authentic SARS-CoV-2. Sulfonated cyclodextrins and nanoparticles that have recently shown broad-spectrum non-toxic virucidal activity against many heparan sulfates binding viruses showed inhibitory activity in the micromolar and nanomolar ranges, respectively. In stark contrast with the mechanisms that these compounds present for these other viruses, the inhibition against SARS-CoV-2 was found to be simply reversible.
Collapse
Affiliation(s)
- Matteo Gasbarri
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (M.G.); (F.S.)
| | - Philip V’kovski
- Institute of Virology and Immunology (IVI), Länggassstrasse 122, 3012 Bern, Switzerland; (P.V.); (V.T.)
- Institute for Infectious Diseases, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland
| | - Giulia Torriani
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneve, Switzerland; (G.T.); (C.T.)
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Länggassstrasse 122, 3012 Bern, Switzerland; (P.V.); (V.T.)
- Institute for Infectious Diseases, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (M.G.); (F.S.)
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneve, Switzerland; (G.T.); (C.T.)
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneve, Switzerland; (G.T.); (C.T.)
| |
Collapse
|
96
|
Liu Z, Zhang W, Sun B, Ma Y, He M, Pan Y, Wang F. Probing conformational hotspots for the recognition and intervention of protein complexes by lysine reactivity profiling. Chem Sci 2020; 12:1451-1457. [PMID: 34163908 PMCID: PMC8179027 DOI: 10.1039/d0sc05330a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Probing the conformational and functional hotspot sites within aqueous native protein complexes is still a challenging task. Herein, a mass spectrometry (MS)-based two-step isotope labeling-lysine reactivity profiling (TILLRP) strategy is developed to quantify the reactivities of lysine residues and probe the molecular details of protein–protein interactions as well as evaluate the conformational interventions by small-molecule active compounds. The hotspot lysine sites that are crucial to the SARS-CoV-2 S1–ACE2 combination could be successfully probed, such as S1 Lys417 and Lys444. Significant alteration of the reactivities of lysine residues at the interaction interface of S1-RBD Lys386–Lys462 was observed during the formation of complexes, which might be utilized as indicators for investigating the S1-ACE2 dynamic recognition and intervention at the molecular level in high throughput. A mass spectrometry-based two-step isotope labeling-lysine reactivity profiling strategy is developed to probe the molecular details of protein–protein interactions and evaluate the conformational interventions by small-molecule active compounds.![]()
Collapse
Affiliation(s)
- Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Wenxiang Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Binwen Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yaolu Ma
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Min He
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
97
|
Sulfonated Nanomaterials with Broad-Spectrum Antiviral Activity Extending beyond Heparan Sulfate-Dependent Viruses. Antimicrob Agents Chemother 2020; 64:AAC.02001-20. [PMID: 32988820 DOI: 10.1128/aac.02001-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infections are among the main causes of death worldwide, and we lack antivirals for the majority of viruses. Heparin-like sulfated or sulfonated compounds have been known for decades for their ability to prevent infection by heparan sulfate proteoglycan (HSPG)-dependent viruses but only in a reversible way. We have previously shown that gold nanoparticles and β-cyclodextrins coated with mercapto-undecane sulfonic acid (MUS) inhibit HSPG-dependent viruses irreversibly while retaining the low-toxicity profile of most heparin-like compounds. In this work, we show that, in stark contrast to heparin, these compounds also inhibit different strains of influenza virus and vesicular stomatitis virus (VSV), which do not bind HSPG. The antiviral action is virucidal and irreversible for influenza A virus (H1N1), while for VSV, there is a reversible inhibition of viral attachment to the cell. These results further broaden the spectrum of activity of MUS-coated gold nanoparticles and β-cyclodextrins.
Collapse
|
98
|
Tang Z, Kong N, Zhang X, Liu Y, Hu P, Mou S, Liljeström P, Shi J, Tan W, Kim JS, Cao Y, Langer R, Leong KW, Farokhzad OC, Tao W. A materials-science perspective on tackling COVID-19. NATURE REVIEWS. MATERIALS 2020; 5:847-860. [PMID: 33078077 PMCID: PMC7556605 DOI: 10.1038/s41578-020-00247-y] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2020] [Indexed: 05/08/2023]
Abstract
The ongoing SARS-CoV-2 pandemic highlights the importance of materials science in providing tools and technologies for antiviral research and treatment development. In this Review, we discuss previous efforts in materials science in developing imaging systems and microfluidic devices for the in-depth and real-time investigation of viral structures and transmission, as well as material platforms for the detection of viruses and the delivery of antiviral drugs and vaccines. We highlight the contribution of materials science to the manufacturing of personal protective equipment and to the design of simple, accurate and low-cost virus-detection devices. We then investigate future possibilities of materials science in antiviral research and treatment development, examining the role of materials in antiviral-drug design, including the importance of synthetic material platforms for organoids and organs-on-a-chip, in drug delivery and vaccination, and for the production of medical equipment. Materials-science-based technologies not only contribute to the ongoing SARS-CoV-2 research efforts but can also provide platforms and tools for the understanding, protection, detection and treatment of future viral diseases.
Collapse
Affiliation(s)
- Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
| | - Yuan Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Shan Mou
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | | | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY USA
| | - Omid C. Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
99
|
Chakhalian D, Shultz RB, Miles CE, Kohn J. Opportunities for biomaterials to address the challenges of COVID-19. J Biomed Mater Res A 2020; 108:1974-1990. [PMID: 32662571 PMCID: PMC7405498 DOI: 10.1002/jbm.a.37059] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has revealed major shortcomings in our ability to mitigate transmission of infectious viral disease and provide treatment to patients, resulting in a public health crisis. Within months of the first reported case in China, the virus has spread worldwide at an unprecedented rate. COVID-19 illustrates that the biomaterials community was engaged in significant research efforts against bacteria and fungi with relatively little effort devoted to viruses. Accordingly, biomaterials scientists and engineers will have to participate in multidisciplinary antiviral research over the coming years. Although tissue engineering and regenerative medicine have historically dominated the field of biomaterials, current research holds promise for providing transformative solutions to viral outbreaks. To facilitate collaboration, it is imperative to establish a mutual language and adequate understanding between clinicians, industry partners, and research scientists. In this article, clinical perspectives are shared to clearly define emerging healthcare needs that can be met by biomaterials solutions. Strategies and opportunities for novel biomaterials intervention spanning diagnostics, treatment strategies, vaccines, and virus-deactivating surface coatings are discussed. Ultimately this review serves as a call for the biomaterials community to become a leading contributor to the prevention and management of the current and future viral outbreaks.
Collapse
Affiliation(s)
- Daniel Chakhalian
- Department of Chemistry and Chemical BiologyRutgers – The State University of New JerseyPiscatawayNew JerseyUSA
| | - Robert B. Shultz
- Department of Chemistry and Chemical BiologyRutgers – The State University of New JerseyPiscatawayNew JerseyUSA
- Department of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Catherine E. Miles
- Department of Chemistry and Chemical BiologyRutgers – The State University of New JerseyPiscatawayNew JerseyUSA
| | - Joachim Kohn
- Department of Chemistry and Chemical BiologyRutgers – The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
100
|
Matencio A, Caldera F, Cecone C, López-Nicolás JM, Trotta F. Cyclic Oligosaccharides as Active Drugs, an Updated Review. Pharmaceuticals (Basel) 2020; 13:E281. [PMID: 33003610 PMCID: PMC7601923 DOI: 10.3390/ph13100281] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
There have been many reviews of the cyclic oligosaccharide cyclodextrin (CD) and CD-based materials used for drug delivery, but the capacity of CDs to complex different agents and their own intrinsic properties suggest they might also be considered for use as active drugs, not only as carriers. The aim of this review is to summarize the direct use of CDs as drugs, without using its complexing potential with other substances. The direct application of another oligosaccharide called cyclic nigerosyl-1,6-nigerose (CNN) is also described. The review is divided into lipid-related diseases, aggregation diseases, antiviral and antiparasitic activities, anti-anesthetic agent, function in diet, removal of organic toxins, CDs and collagen, cell differentiation, and finally, their use in contact lenses in which no drug other than CDs are involved. In the case of CNN, its application as a dietary supplement and immunological modulator is explained. Finally, a critical structure-activity explanation is provided.
Collapse
Affiliation(s)
- Adrián Matencio
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - Fabrizio Caldera
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - Claudio Cecone
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Espinardo, Murcia, Spain;
| | - Francesco Trotta
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| |
Collapse
|