51
|
Protein Transduction Domain-Mediated Delivery of Recombinant Proteins and In Vitro Transcribed mRNAs for Protein Replacement Therapy of Human Severe Genetic Mitochondrial Disorders: The Case of Sco2 Deficiency. Pharmaceutics 2023; 15:pharmaceutics15010286. [PMID: 36678915 PMCID: PMC9861957 DOI: 10.3390/pharmaceutics15010286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial disorders represent a heterogeneous group of genetic disorders with variations in severity and clinical outcomes, mostly characterized by respiratory chain dysfunction and abnormal mitochondrial function. More specifically, mutations in the human SCO2 gene, encoding the mitochondrial inner membrane Sco2 cytochrome c oxidase (COX) assembly protein, have been implicated in the mitochondrial disorder fatal infantile cardioencephalomyopathy with COX deficiency. Since an effective treatment is still missing, a protein replacement therapy (PRT) was explored using protein transduction domain (PTD) technology. Therefore, the human recombinant full-length mitochondrial protein Sco2, fused to TAT peptide (a common PTD), was produced (fusion Sco2 protein) and successfully transduced into fibroblasts derived from a SCO2/COX-deficient patient. This PRT contributed to effective COX assembly and partial recovery of COX activity. In mice, radiolabeled fusion Sco2 protein was biodistributed in the peripheral tissues of mice and successfully delivered into their mitochondria. Complementary to that, an mRNA-based therapeutic approach has been more recently considered as an innovative treatment option. In particular, a patented, novel PTD-mediated IVT-mRNA delivery platform was developed and applied in recent research efforts. PTD-IVT-mRNA of full-length SCO2 was successfully transduced into the fibroblasts derived from a SCO2/COX-deficient patient, translated in host ribosomes into a nascent chain of human Sco2, imported into mitochondria, and processed to the mature protein. Consequently, the recovery of reduced COX activity was achieved, thus suggesting the potential of this mRNA-based technology for clinical translation as a PRT for metabolic/genetic disorders. In this review, such research efforts will be comprehensibly presented and discussed to elaborate their potential in clinical application and therapeutic usefulness.
Collapse
|
52
|
Phadwal K, Tang QY, Luijten I, Zhao JF, Corcoran B, Semple RK, Ganley IG, MacRae VE. p53 Regulates Mitochondrial Dynamics in Vascular Smooth Muscle Cell Calcification. Int J Mol Sci 2023; 24:1643. [PMID: 36675156 PMCID: PMC9864220 DOI: 10.3390/ijms24021643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Arterial calcification is an important characteristic of cardiovascular disease. It has key parallels with skeletal mineralization; however, the underlying cellular mechanisms responsible are not fully understood. Mitochondrial dynamics regulate both bone and vascular function. In this study, we therefore examined mitochondrial function in vascular smooth muscle cell (VSMC) calcification. Phosphate (Pi)-induced VSMC calcification was associated with elongated mitochondria (1.6-fold increase, p < 0.001), increased mitochondrial reactive oxygen species (ROS) production (1.83-fold increase, p < 0.001) and reduced mitophagy (9.6-fold decrease, p < 0.01). An increase in protein expression of optic atrophy protein 1 (OPA1; 2.1-fold increase, p < 0.05) and a converse decrease in expression of dynamin-related protein 1 (DRP1; 1.5-fold decrease, p < 0.05), two crucial proteins required for the mitochondrial fusion and fission process, respectively, were noted. Furthermore, the phosphorylation of DRP1 Ser637 was increased in the cytoplasm of calcified VSMCs (5.50-fold increase), suppressing mitochondrial translocation of DRP1. Additionally, calcified VSMCs showed enhanced expression of p53 (2.5-fold increase, p < 0.05) and β-galactosidase activity (1.8-fold increase, p < 0.001), the cellular senescence markers. siRNA-mediated p53 knockdown reduced calcium deposition (8.1-fold decrease, p < 0.01), mitochondrial length (3.0-fold decrease, p < 0.001) and β-galactosidase activity (2.6-fold decrease, p < 0.001), with concomitant mitophagy induction (3.1-fold increase, p < 0.05). Reduced OPA1 (4.1-fold decrease, p < 0.05) and increased DRP1 protein expression (2.6-fold increase, p < 0.05) with decreased phosphorylation of DRP1 Ser637 (3.20-fold decrease, p < 0.001) was also observed upon p53 knockdown in calcifying VSMCs. In summary, we demonstrate that VSMC calcification promotes notable mitochondrial elongation and cellular senescence via DRP1 phosphorylation. Furthermore, our work indicates that p53-induced mitochondrial fusion underpins cellular senescence by reducing mitochondrial function.
Collapse
Affiliation(s)
- Kanchan Phadwal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Qi-Yu Tang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Ineke Luijten
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jin-Feng Zhao
- MRC Protein Phosphorylation & Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Brendan Corcoran
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Robert K. Semple
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ian G. Ganley
- MRC Protein Phosphorylation & Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Vicky E. MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| |
Collapse
|
53
|
Brown K, Jenkins LMM, Crooks DR, Surman DR, Mazur SJ, Xu Y, Arimilli BS, Yang Y, Lane AN, Fan TWM, Schrump DS, Linehan WM, Ripley RT, Appella E. Targeting mutant p53-R248W reactivates WT p53 function and alters the onco-metabolic profile. Front Oncol 2023; 12:1094210. [PMID: 36713582 PMCID: PMC9874945 DOI: 10.3389/fonc.2022.1094210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
TP53 is the most commonly mutated gene in cancer, and gain-of-function mutations have wide-ranging effects. Efforts to reactivate wild-type p53 function and inhibit mutant functions have been complicated by the variety of TP53 mutations. Identified from a screen, the NSC59984 compound has been shown to restore activity to mutant p53 in colorectal cancer cells. Here, we investigated its effects on esophageal adenocarcinoma cells with specific p53 hot-spot mutations. NSC59984 treatment of cells reactivated p53 transcriptional regulation, inducing mitochondrial intrinsic apoptosis. Analysis of its effects on cellular metabolism demonstrated increased utilization of the pentose phosphate pathway and inhibition of glycolysis at the fructose-1,6-bisphosphate to fructose 6-phosphate junction. Furthermore, treatment of cells with NSC59984 increased reactive oxygen species production and decreased glutathione levels; these effects were enhanced by the addition of buthionine sulfoximine and inhibited by N-acetyl cysteine. We found that the effects of NSC59984 were substantially greater in cells harboring the p53 R248W mutation. Overall, these findings demonstrate p53-dependent effects of NSC59984 on cellular metabolism, with increased activity in cells harboring the p53 R248W mutation. This research highlights the importance of defining the mutational status of a particular cancer to create a patient-centric strategy for the treatment of p53-driven cancers.
Collapse
Affiliation(s)
- Kate Brown
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States,*Correspondence: Kate Brown,
| | - Lisa M. Miller Jenkins
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel R. Crooks
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Deborah R. Surman
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sharlyn J. Mazur
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yuan Xu
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Bhargav S. Arimilli
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ye Yang
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, UK, Lexington, KY, United States
| | - Teresa W-M. Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, UK, Lexington, KY, United States
| | - David S. Schrump
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - R. Taylor Ripley
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ettore Appella
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
54
|
Rinaldi L, Senatore E, Iannucci R, Chiuso F, Feliciello A. Control of Mitochondrial Activity by the Ubiquitin Code in Health and Cancer. Cells 2023; 12:234. [PMID: 36672167 PMCID: PMC9856579 DOI: 10.3390/cells12020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Cellular homeostasis is tightly connected to the broad variety of mitochondrial functions. To stay healthy, cells need a constant supply of nutrients, energy production and antioxidants defenses, undergoing programmed death when a serious, irreversible damage occurs. The key element of a functional integration of all these processes is the correct crosstalk between cell signaling and mitochondrial activities. Once this crosstalk is interrupted, the cell is not able to communicate its needs to mitochondria, resulting in oxidative stress and development of pathological conditions. Conversely, dysfunctional mitochondria may affect cell viability, even in the presence of nutrients supply and energy production, indicating the existence of feed-back control mechanisms between mitochondria and other cellular compartments. The ubiquitin proteasome system (UPS) is a multi-step biochemical pathway that, through the conjugation of ubiquitin moieties to specific protein substrates, controls cellular proteostasis and signaling, removing damaged or aged proteins that might otherwise accumulate and affect cell viability. In response to specific needs or changed extracellular microenvironment, the UPS modulates the turnover of mitochondrial proteins, thus influencing the organelle shape, dynamics and function. Alterations of the dynamic and reciprocal regulation between mitochondria and UPS underpin genetic and proliferative disorders. This review focuses on the mitochondrial metabolism and activities supervised by UPS and examines how deregulation of this control mechanism results in proliferative disorders and cancer.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, 80131 Naples, Italy
| |
Collapse
|
55
|
Hatami H, Sajedi A, Mir SM, Memar MY. Importance of lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) in cancer cells. Health Sci Rep 2023; 6:e996. [PMID: 36570342 PMCID: PMC9768844 DOI: 10.1002/hsr2.996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background In most regions, cancer ranks the second most frequent cause of death following cardiovascular disorders. Aim In this article, we review the various aspects of glycolysis with a focus on types of MCTs and the importance of lactate in cancer cells. Results and Discussion Metabolic changes are one of the first and most important alterations in cancer cells. Cancer cells use different pathways to survive, energy generation, growth, and proliferation compared to normal cells. The increase in glycolysis, which produces substances such as lactate and pyruvate, has an important role in metastases and invasion of cancer cells. Two important cellular proteins that play a role in the production and transport of lactate include lactate dehydrogenase and monocarboxylate transporters (MCTs). These molecules by their various isoforms and different tissue distribution help to escape the immune system and expansion of cancer cells under different conditions.
Collapse
Affiliation(s)
- Hamed Hatami
- Department of Immunology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Atefe Sajedi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| | - Seyed Mostafa Mir
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Clinical Biochemistry, Faculty of MedicineGolestan University of Medical SciencesGorganIran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
56
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
57
|
Cellular signals integrate cell cycle and metabolic control in cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:397-423. [PMID: 37061338 DOI: 10.1016/bs.apcsb.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Growth factors are the small peptides that can promote growth, differentiation, and survival of most living cells. However, aberrant activation of receptor tyrosine kinases by GFs can generate oncogenic signals, resulting in oncogenic transformation. Accumulating evidence support a link between GF/RTK signaling through the major signaling pathways, Ras/Erk and PI3K/Akt, and cell cycle progression. In response to GF signaling, the quiescent cells in the G0 stage can re-enter the cell cycle and become the proliferative stage. While in the proliferative stage, tumor cells undergo profound changes in their metabolism to support biomass production and bioenergetic requirements. Accumulating data show that the cell cycle regulators, specifically cyclin D, cyclin B, Cdk2, Cdk4, and Cdk6, and anaphase-promoting complex/cyclosome (APC/C-Cdh1) play critical roles in modulating various metabolic pathways. These cell cycle regulators can regulate metabolic enzyme activities through post-translational mechanisms or the transcriptional factors that control the expression of the metabolic genes. This fine-tune control allows only the relevant metabolic pathways to be active in a particular phase of the cell cycle, thereby providing suitable amounts of biosynthetic precursors available during the proliferative stage. The imbalance of metabolites in each cell cycle phase can induce cell cycle arrest followed by p53-induced apoptosis.
Collapse
|
58
|
Zhong H, Yang L, Zeng Q, Chen W, Zhao H, Wu L, Qin L, Yu QQ. Machine Learning Predicts the Oxidative Stress Subtypes Provide an Innovative Insight into Colorectal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1737501. [PMID: 37122535 PMCID: PMC10147531 DOI: 10.1155/2023/1737501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 05/02/2023]
Abstract
So far, it has been reached the academic consensus that the molecular subtypes are via genomic heterogeneity and immune infiltration patterns. Considering that oxidative stress (OS) is involved in tumorigenesis and prognosis prediction, we propose an innovative classification of colorectal cancer- (CRC-) OS subtypes. We obtain three datasets from The Cancer Genome Atlas Program (TCGA) and Gene Expression Omnibus (GEO) online databases. 1399 OS-related genes were selected from the GeneCards database. We remove the batch effect before conducting differentially expressed genes (DEGs) analyses between normal and tumor samples. Nonnegative matrix factorization (NMF) was used to perform an unsupervised cluster. Lasso regression and Cox regression were used to construct the signature model. DEGs, robust rank aggregation, and protein-protein interaction networks were used to select hub genes, and then use hub genes to predict OS subtypes by random forest algorithms. NMF identifies two OS-related subtypes of CRC patients. Eight OS-related gene signatures were built to predict the outcome of patients, based on the DEGs between two subtypes. A total of 61 DEGs overlap each dataset, and the RRA analysis shows that 17 genes are important in these three datasets, and 15 genes are shared genes between the two methods. PPI network suggests that five hub genes are confirmed, they are SPP1, SERPINE1, CAV1, PDGFRB, and PLAU. These five hub genes could predict the OS-related subtype of CRC accurately with AUC equal to 0.771. In our study, we identify two OS-related subtypes, which will provide an innovative insight into colorectal cancer.
Collapse
Affiliation(s)
- Haitao Zhong
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Le Yang
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Qingshang Zeng
- Shanghai Tianyou Hospital, Tongji University, Shanghai 200333, China
| | - Weidong Chen
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Haibo Zhao
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Linlin Wu
- Department of Oncology, Tengzhou Central People's Hospital Affiliated to Jining Medical College, Tengzhou 277500, China
| | - Lei Qin
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Qing-Qing Yu
- Jining First People's Hospital, Jining Medical University, Jining 272000, China
| |
Collapse
|
59
|
Chen K, Wang X, Wei B, Sun R, Wu C, Yang HJ. LncRNA SNHG6 promotes glycolysis reprogramming in hepatocellular carcinoma by stabilizing the BOP1 protein. Anim Cells Syst (Seoul) 2022; 26:369-379. [PMID: 36605586 PMCID: PMC9809352 DOI: 10.1080/19768354.2022.2134206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metabolic reprogramming is an important feature in tumor progression. Long noncoding RNA's (lncRNA) small nucleolar RNA host gene 6 (SNHG6) acts as a proto-oncogene in hepatocellular carcinoma (HCC) but its role in glycolysis is mostly unknown. The role of SNHG6 and Block of proliferation 1 (BOP1) on glycolysis is assessed by glucose uptake, lactate production, oxygen consumptive rate (OCR) and extracellular acidification rate (ECAR) and glycolytic enzyme levels. The regulatory effect of SNHG6 on BOP1 protein was confirmed by Western blotting, MS2 pull-down, RNA pull-down, and RIP assay. SNHG6 and BOP1 levels were increased in HCC tissues and cells. SNHG6 and BOP1 were prognostic factors in HCC patients and significantly correlated to TP53 mutant and tumor grade. SNHG6 promoted proliferation, inhibited apoptosis, enhanced glucose uptake and lactate production, decreased OCR, and increased ECAR in HCC cell lines. SNHG6 could bind the BOP1 protein and enhance its stability. BOP1 overexpression rescued the change of proliferation, apoptosis, and glycolysis in HCCLM3 and SMMC-7721 cells. Our data indicate that SNHG6 accelerates proliferation and glycolysis and inhibits the apoptosis of HCC cell lines by binding the BOP1 protein and enhancing its stability. Both SNHG6 and BOP1 are promising prognostic and therapeutic markers in HCC.
Collapse
Affiliation(s)
- Kai Chen
- Organ Transplant Center and Third Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, People’s Republic of China
| | - Xi Wang
- Organ Transplant Center and Third Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, People’s Republic of China
| | - Bowen Wei
- Clinical College, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Rongcun Sun
- Clinical College, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Chunlin Wu
- Clinical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Hong-ji Yang
- Organ Transplant Center and Third Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, People’s Republic of China, Hong-ji Yang Organ Transplant Center and Third Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32 West Second Section, First Ring Road, Chengdu, Sichuan610072, People’s Republic of China
| |
Collapse
|
60
|
Sollazzo M, De Luise M, Lemma S, Bressi L, Iorio M, Miglietta S, Milioni S, Kurelac I, Iommarini L, Gasparre G, Porcelli AM. Respiratory Complex I dysfunction in cancer: from a maze of cellular adaptive responses to potential therapeutic strategies. FEBS J 2022; 289:8003-8019. [PMID: 34606156 PMCID: PMC10078660 DOI: 10.1111/febs.16218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 01/14/2023]
Abstract
Mitochondria act as key organelles in cellular bioenergetics and biosynthetic processes producing signals that regulate different molecular networks for proliferation and cell death. This ability is also preserved in pathologic contexts such as tumorigenesis, during which bioenergetic changes and metabolic reprogramming confer flexibility favoring cancer cell survival in a hostile microenvironment. Although different studies epitomize mitochondrial dysfunction as a protumorigenic hit, genetic ablation or pharmacological inhibition of respiratory complex I causing a severe impairment is associated with a low-proliferative phenotype. In this scenario, it must be considered that despite the initial delay in growth, cancer cells may become able to resume proliferation exploiting molecular mechanisms to overcome growth arrest. Here, we highlight the current knowledge on molecular responses activated by complex I-defective cancer cells to bypass physiological control systems and to re-adapt their fitness during microenvironment changes. Such adaptive mechanisms could reveal possible novel molecular players in synthetic lethality with complex I impairment, thus providing new synergistic strategies for mitochondrial-based anticancer therapy.
Collapse
Affiliation(s)
- Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Monica De Luise
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Silvia Lemma
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Licia Bressi
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Iorio
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Stefano Miglietta
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Sara Milioni
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Ivana Kurelac
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giuseppe Gasparre
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Interdepartmental Center for Industrial Research (CIRI) Life Sciences and Technologies for Health, Alma Mater Studiorum-University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
61
|
Tsymbal SA, Refeld AG, Kuchur OA. The p53 Tumor Suppressor and Copper Metabolism: An Unrevealed but Important Link. Mol Biol 2022. [DOI: 10.1134/s0026893322060188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
62
|
Cohen IJ, Pareja F, Socci ND, Shen R, Doane AS, Schwartz J, Khanin R, Morris EA, Sutton EJ, Blasberg RG. Increased tumor glycolysis is associated with decreased immune infiltration across human solid tumors. Front Immunol 2022; 13:880959. [PMID: 36505421 PMCID: PMC9731115 DOI: 10.3389/fimmu.2022.880959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Response to immunotherapy across multiple cancer types is approximately 25%, with some tumor types showing increased response rates compared to others (i.e. response rates in melanoma and non-small cell lung cancer (NSCLC) are typically 30-60%). Patients whose tumors are resistant to immunotherapy often lack high levels of pre-existing inflammation in the tumor microenvironment. Increased tumor glycolysis, acting through glucose deprivation and lactic acid accumulation, has been shown to have pleiotropic immune suppressive effects using in-vitro and in-vivo models of disease. To determine whether the immune suppressive effect of tumor glycolysis is observed across human solid tumors, we analyzed glycolytic and immune gene expression patterns in multiple solid malignancies. We found that increased expression of a glycolytic signature was associated with decreased immune infiltration and a more aggressive disease across multiple tumor types. Radiologic and pathologic analysis of untreated estrogen receptor (ER)-negative breast cancers corroborated these observations, and demonstrated that protein expression of glycolytic enzymes correlates positively with glucose uptake and negatively with infiltration of CD3+ and CD8+ lymphocytes. This study reveals an inverse relationship between tumor glycolysis and immune infiltration in a large cohort of multiple solid tumor types.
Collapse
Affiliation(s)
- Ivan J. Cohen
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States,*Correspondence: Ivan J. Cohen,
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Nicholas D. Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ashley S. Doane
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jazmin Schwartz
- Computational Biology and Medicine Tri-Institutional PhD Program, Weill Cornell Medicine, New York, NY, United States
| | - Raya Khanin
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Elizabeth A. Morris
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Elizabeth J. Sutton
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ronald G. Blasberg
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States,Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, United States,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
63
|
Nagpal I, Yuan ZM. p53-mediated metabolic response to low doses of ionizing radiation. Int J Radiat Biol 2022; 99:934-940. [DOI: 10.1080/09553002.2022.2142983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Isha Nagpal
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhi-Min Yuan
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
64
|
Mori MP, Penjweini R, Knutson JR, Wang PY, Hwang PM. Mitochondria and oxygen homeostasis. FEBS J 2022; 289:6959-6968. [PMID: 34235856 PMCID: PMC8790743 DOI: 10.1111/febs.16115] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 01/13/2023]
Abstract
Molecular oxygen possesses a dual nature due to its highly reactive free radical property: it is capable of oxidizing metabolic substrates to generate cellular energy, but can also serve as a substrate for genotoxic reactive oxygen species generation. As a labile substance upon which aerobic life depends, the mechanisms for handling cellular oxygen have been fine-tuned and orchestrated in evolution. Protection from atmospheric oxygen toxicity as originally posited by the Endosymbiotic Theory of the Mitochondrion is likely to be one basic principle underlying oxygen homeostasis. We briefly review the literature on oxygen homeostasis both in vitro and in vivo with a focus on the role of the mitochondrion where the majority of cellular oxygen is consumed. The insights gleaned from these basic mechanisms are likely to be important for understanding disease pathogenesis and developing strategies for maintaining health.
Collapse
Affiliation(s)
- Mateus P. Mori
- Cardiovascular Branch; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| | - Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| | - Jay R. Knutson
- Laboratory of Advanced Microscopy and Biophotonics; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| | - Ping-yuan Wang
- Cardiovascular Branch; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| | - Paul M. Hwang
- Cardiovascular Branch; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| |
Collapse
|
65
|
Zanetti C, Gaspar RDL, Zhdanov AV, Maguire NM, Joyce SA, Collins SG, Maguire AR, Papkovsky DB. Heterosubstituted Derivatives of PtPFPP for O 2 Sensing and Cell Analysis: Structure–Activity Relationships. Bioconjug Chem 2022; 33:2161-2169. [DOI: 10.1021/acs.bioconjchem.2c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chiara Zanetti
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | | | - Alexander V. Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | - Nuala M. Maguire
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Susan A. Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | - Stuart G. Collins
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Anita R. Maguire
- School of Chemistry and School of Pharmacy, University College Cork, Cork T12 YN60, Ireland
| | - Dmitri B. Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| |
Collapse
|
66
|
Zhu J, Wang H, Jiang X. mTORC1 beyond anabolic metabolism: Regulation of cell death. J Biophys Biochem Cytol 2022; 221:213609. [PMID: 36282248 PMCID: PMC9606688 DOI: 10.1083/jcb.202208103] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1), a multi-subunit protein kinase complex, interrogates growth factor signaling with cellular nutrient and energy status to control metabolic homeostasis. Activation of mTORC1 promotes biosynthesis of macromolecules, including proteins, lipids, and nucleic acids, and simultaneously suppresses catabolic processes such as lysosomal degradation of self-constituents and extracellular components. Metabolic regulation has emerged as a critical determinant of various cellular death programs, including apoptosis, pyroptosis, and ferroptosis. In this article, we review the expanding knowledge on how mTORC1 coordinates metabolic pathways to impinge on cell death regulation. We focus on the current understanding on how nutrient status and cellular signaling pathways connect mTORC1 activity with ferroptosis, an iron-dependent cell death program that has been implicated in a plethora of human diseases. In-depth understanding of the principles governing the interaction between mTORC1 and cell death pathways can ultimately guide the development of novel therapies for the treatment of relevant pathological conditions.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China,Tsinghua-Peking Center for Life Sciences, Beijing, China,Correspondence to Jiajun Zhu:
| | - Hua Wang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY,Xuejun Jiang:
| |
Collapse
|
67
|
Li Y, Liu X, Chang Y, Fan B, Shangguan C, Chen H, Zhang L. Identification and Validation of a DNA Damage Repair-Related Signature for Diffuse Large B-Cell Lymphoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2645090. [PMID: 36281462 PMCID: PMC9587677 DOI: 10.1155/2022/2645090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/27/2022] [Indexed: 10/06/2023]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma in adults, whose prognostic scoring system remains to be improved. Dysfunction of DNA repair genes is closely associated with the development and prognosis of diffuse large B-cell lymphoma. The aim of this study was to establish and validate a DNA repair-related gene signature associated with the prognosis of DLBCL and to investigate the clinical predictive value of this signature. METHODS DLBCL cases were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. One hundred ninety-nine DNA repair-related gene sets were retrieved from the GeneCards database. The LASSO Cox regression was used to generate the DNA repair-related gene signature. Subsequently, the level of immune cell infiltration and the correlation between the gene signature and immune cells were analyzed using the CIBERSORT algorithm. Based on the Genomics of Drug Sensitivity in Cancer (GDSC) database, the relationship between the signature and drug sensitivity was analyzed, and together with the nomogram and gene set variation analysis (GSVA), the value of the signature for clinical application was evaluated. RESULTS A total of 14 DNA repair genes were screened out and included in the final risk model. Subgroup analysis of the training and validation cohorts showed that the risk model accurately predicted overall survival of DLBCL patients, with patients in the high-risk group having a worse prognosis than patients in the low-risk group. Subsequently, the risk score was confirmed as an independent prognostic factor by multivariate analysis. Furthermore, by CIBERSORT analysis, we discovered that immune cells, such as regulatory T cells (Tregs), activated memory CD4+ T cells, and gamma delta T cells showed significant differences between the high- and low-risk groups. In addition, we found some interesting associations of our signature with immune checkpoint genes (CD96, TGFBR1, and TIGIT). By analyzing drug sensitivity data in the GDSC database, we were able to identify potential therapeutics for DLBCL patients stratified according to our signature. CONCLUSIONS Our study identified and validated a 14-DNA repair-related gene signature for stratification and prognostic prediction of DLBCL patients, which might guide clinical personalization of treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Xiyang Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Yu Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Bingjie Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Chenxing Shangguan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Huan Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| |
Collapse
|
68
|
Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol 2022; 85:4-32. [PMID: 33785447 PMCID: PMC8473587 DOI: 10.1016/j.semcancer.2021.03.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Although the classic activities of p53 including induction of cell-cycle arrest, senescence, and apoptosis are well accepted as critical barriers to cancer development, accumulating evidence suggests that loss of these classic activities is not sufficient to abrogate the tumor suppression activity of p53. Numerous studies suggest that metabolic regulation contributes to tumor suppression, but the mechanisms by which it does so are not completely understood. Cancer cells rewire cellular metabolism to meet the energetic and substrate demands of tumor development. It is well established that p53 suppresses glycolysis and promotes mitochondrial oxidative phosphorylation through a number of downstream targets against the Warburg effect. The role of p53-mediated metabolic regulation in tumor suppression is complexed by its function to promote both cell survival and cell death under different physiological settings. Indeed, p53 can regulate both pro-oxidant and antioxidant target genes for complete opposite effects. In this review, we will summarize the roles of p53 in the regulation of glucose, lipid, amino acid, nucleotide, iron metabolism, and ROS production. We will highlight the mechanisms underlying p53-mediated ferroptosis, AKT/mTOR signaling as well as autophagy and discuss the complexity of p53-metabolic regulation in tumor development.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
69
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
70
|
Alpinumisoflavone Impairs Mitochondrial Respiration via Oxidative Stress and MAPK/PI3K Regulation in Hepatocellular Carcinoma Cells. Antioxidants (Basel) 2022; 11:antiox11101929. [PMID: 36290652 PMCID: PMC9598146 DOI: 10.3390/antiox11101929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Alpinumisoflavone is a natural prenylated isoflavonoid extracted from the raw fruit of Cudrania tricuspidata. Several studies have reported the beneficial characteristics of alpinumisoflavone, such as its antioxidant, anti-inflammation, anti-bacterial, osteoprotective, and neuroprotective effects. Alpinumisoflavone also has anti-cancer effects on thyroid, renal, and ovarian cancers, but its therapeutic effects on hepatocellular carcinoma (HCC) have not yet been demonstrated. We investigated the anti-cancer effects of alpinumisoflavone on HCC using human liver cancer cell lines, Hep3B and Huh7. Our results confirmed that alpinumisoflavone inhibited viability and regulated the MAPK/PI3K pathway in Hep3B and Huh7 cells. We also verified that alpinumisoflavone can depolarize the mitochondrial membrane potential and suppress the mitochondrial respiration in HCC cells. Moreover, we confirmed the dysregulation of the mitochondrial complexes I, III, and V involving mitochondrial oxidative phosphorylation at the mRNA level and the accumulation of calcium ions in the mitochondrial matrix. Lastly, we demonstrated that alpinumisoflavone induced mitochondria-mediated apoptosis via regulation of the Bcl-xL and BAK proteins. This study elucidates the anti-cancer effects of alpinumisoflavone on HCC.
Collapse
|
71
|
Kealey J, Düssmann H, Llorente-Folch I, Niewidok N, Salvucci M, Prehn JHM, D’Orsi B. Effect of TP53 deficiency and KRAS signaling on the bioenergetics of colon cancer cells in response to different substrates: A single cell study. Front Cell Dev Biol 2022; 10:893677. [PMID: 36238683 PMCID: PMC9550869 DOI: 10.3389/fcell.2022.893677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. Somatic mutations in genes involved in oncogenic signaling pathways, including KRAS and TP53, rewire the metabolic machinery in cancer cells. We here set out to determine, at the single cell level, metabolic signatures in human colon cancer cells engineered to express combinations of activating KRAS gene mutations and TP53 gene deletions. Specifically, we explored how somatic mutations in these genes and substrate availability (lactate, glucose, substrate deprivation) from the extracellular microenvironment affect bioenergetic parameters, including cellular ATP, NADH and mitochondrial membrane potential dynamics. Employing cytosolic and mitochondrial FRET-based ATP probes, fluorescent NADH sensors, and the membrane-permeant cationic fluorescent probe TMRM in HCT-116 cells as a model system, we observed that TP53 deletion and KRAS mutations drive a shift in metabolic signatures enabling lactate to become an efficient metabolite to replenish both ATP and NADH following nutrient deprivation. Intriguingly, cytosolic, mitochondrial and overall cellular ATP measurements revealed that, in WT KRAS cells, TP53 deficiency leads to an enhanced ATP production in the presence of extracellular lactate and glucose, and to the greatest increase in ATP following a starvation period. On the other hand, oncogenic KRAS in TP53-deficient cells reversed the alterations in cellular ATP levels. Moreover, cell population measurements of mitochondrial and glycolytic metabolism using a Seahorse analyzer demonstrated that WT KRAS TP53-silenced cells display an increase of the basal respiration and tightly-coupled mitochondria, in the presence of glucose as substrate, compared to TP53 competent cells. Furthermore, cells possessing oncogenic KRAS, independently of TP53 status, showed less pronounced mitochondrial membrane potential changes in response to metabolic nutrients. Furthermore, analysis of cytosolic and mitochondrial NADH levels revealed that the simultaneous presence of TP53 deletion and oncogenic KRAS showed the most pronounced alteration in cytosolic and mitochondrial NADH during metabolic stress. In conclusion, our findings demonstrate how activating KRAS mutation and loss of TP53 remodel cancer metabolism and lead to alterations in bioenergetics under metabolic stress conditions by modulating cellular ATP production, NADH oxidation, mitochondrial respiration and function.
Collapse
Affiliation(s)
- James Kealey
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Heiko Düssmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Irene Llorente-Folch
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Universidad Rey Juan Carlos, Alcorcon-Madrid, Spain
| | - Natalia Niewidok
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- *Correspondence: Jochen H. M. Prehn, ; Beatrice D’Orsi,
| | - Beatrice D’Orsi
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Institute of Neuroscience, Italian National Research Council, Pisa, Italy
- *Correspondence: Jochen H. M. Prehn, ; Beatrice D’Orsi,
| |
Collapse
|
72
|
Delfan M, Vahed A, Bishop DJ, Amadeh Juybari R, Laher I, Saeidi A, Granacher U, Zouhal H. Effects of two workload-matched high intensity interval training protocols on regulatory factors associated with mitochondrial biogenesis in the soleus muscle of diabetic rats. Front Physiol 2022; 13:927969. [PMID: 36213227 PMCID: PMC9541894 DOI: 10.3389/fphys.2022.927969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022] Open
Abstract
Aims: High intensity interval training (HIIT) improves mitochondrial characteristics. This study compared the impact of two workload-matched high intensity interval training (HIIT) protocols with different work:recovery ratios on regulatory factors related to mitochondrial biogenesis in the soleus muscle of diabetic rats. Materials and methods: Twenty-four Wistar rats were randomly divided into four equal-sized groups: non-diabetic control, diabetic control (DC), diabetic with long recovery exercise [4-5 × 2-min running at 80%-90% of the maximum speed reached with 2-min of recovery at 40% of the maximum speed reached (DHIIT1:1)], and diabetic with short recovery exercise (5-6 × 2-min running at 80%-90% of the maximum speed reached with 1-min of recovery at 30% of the maximum speed reached [DHIIT2:1]). Both HIIT protocols were completed five times/week for 4 weeks while maintaining equal running distances in each session. Results: Gene and protein expressions of PGC-1α, p53, and citrate synthase of the muscles increased significantly following DHIIT1:1 and DHIIT2:1 compared to DC (p ˂ 0.05). Most parameters, except for PGC-1α protein (p = 0.597), were significantly higher in DHIIT2:1 than in DHIIT1:1 (p ˂ 0.05). Both DHIIT groups showed significant increases in maximum speed with larger increases in DHIIT2:1 compared with DHIIT1:1. Conclusion: Our findings indicate that both HIIT protocols can potently up-regulate gene and protein expression of PGC-1α, p53, and CS. However, DHIIT2:1 has superior effects compared with DHIIT1:1 in improving mitochondrial adaptive responses in diabetic rats.
Collapse
Affiliation(s)
- Maryam Delfan
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Alieh Vahed
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - David J. Bishop
- Institute for Sport and Health (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Raheleh Amadeh Juybari
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Urs Granacher
- Division of Training and Movement Sciences, University of Potsdam, Potsdam, Germany
| | - Hassane Zouhal
- Movement, Sport, Health and Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Cachan, Rennes Cedex, France
- Institut International des Sciences du Sport (2I2S), Irodouer, France
| |
Collapse
|
73
|
Comparison of
DNA
methylation patterns across tissue types in infants with tetralogy of Fallot. Birth Defects Res 2022; 114:1101-1111. [DOI: 10.1002/bdr2.2090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/05/2022] [Accepted: 09/04/2022] [Indexed: 11/07/2022]
|
74
|
Yadav E, Yadav P, Khan MMU, Singh H, Verma A. Resveratrol: A potential therapeutic natural polyphenol for neurodegenerative diseases associated with mitochondrial dysfunction. Front Pharmacol 2022; 13:922232. [PMID: 36188541 PMCID: PMC9523540 DOI: 10.3389/fphar.2022.922232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/25/2022] [Indexed: 12/06/2022] Open
Abstract
Most polyphenols can cross blood-brain barrier, therefore, they are widely utilized in the treatment of various neurodegenerative diseases (ND). Resveratrol, a natural polyphenol contained in blueberry, grapes, mulberry, etc., is well documented to exhibit potent neuroprotective activity against different ND by mitochondria modulation approach. Mitochondrial function impairment is the most common etiology and pathological process in various neurodegenerative disorders, viz. Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Nowadays these ND associated with mitochondrial dysfunction have become a major threat to public health as well as health care systems in terms of financial burden. Currently available therapies for ND are limited to symptomatic cures and have inevitable toxic effects. Therefore, there is a strict requirement for a safe and highly effective drug treatment developed from natural compounds. The current review provides updated information about the potential of resveratrol to target mitochondria in the treatment of ND.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Pankajkumar Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - HariOm Singh
- Department of Molecular Biology, ICMR-National Aids Research Institute, Pune, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
75
|
Nair R, Gupta P, Shanmugam M. Mitochondrial metabolic determinants of multiple myeloma growth, survival, and therapy efficacy. Front Oncol 2022; 12:1000106. [PMID: 36185202 PMCID: PMC9523312 DOI: 10.3389/fonc.2022.1000106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell dyscrasia characterized by the clonal proliferation of antibody producing plasma cells. Despite the use of next generation proteasome inhibitors (PI), immunomodulatory agents (IMiDs) and immunotherapy, the development of therapy refractory disease is common, with approximately 20% of MM patients succumbing to aggressive treatment-refractory disease within 2 years of diagnosis. A large emphasis is placed on understanding inter/intra-tumoral genetic, epigenetic and transcriptomic changes contributing to relapsed/refractory disease, however, the contribution of cellular metabolism and intrinsic/extrinsic metabolites to therapy sensitivity and resistance mechanisms is less well understood. Cancer cells depend on specific metabolites for bioenergetics, duplication of biomass and redox homeostasis for growth, proliferation, and survival. Cancer therapy, importantly, largely relies on targeting cellular growth, proliferation, and survival. Thus, understanding the metabolic changes intersecting with a drug's mechanism of action can inform us of methods to elicit deeper responses and prevent acquired resistance. Knowledge of the Warburg effect and elevated aerobic glycolysis in cancer cells, including MM, has allowed us to capitalize on this phenomenon for diagnostics and prognostics. The demonstration that mitochondria play critical roles in cancer development, progression, and therapy sensitivity despite the inherent preference of cancer cells to engage aerobic glycolysis has re-invigorated deeper inquiry into how mitochondrial metabolism regulates tumor biology and therapy efficacy. Mitochondria are the sole source for coupled respiration mediated ATP synthesis and a key source for the anabolic synthesis of amino acids and reducing equivalents. Beyond their core metabolic activities, mitochondria facilitate apoptotic cell death, impact the activation of the cytosolic integrated response to stress, and through nuclear and cytosolic retrograde crosstalk maintain cell fitness and survival. Here, we hope to shed light on key mitochondrial functions that shape MM development and therapy sensitivity.
Collapse
|
76
|
Zhi D, Zhao C, Dong J, Ma W, Xu S, Yue J, Wang D. cep-1 mediated the mitohormesis effect of Shengmai formula in regulating Caenorhabditis elegans lifespan. Biomed Pharmacother 2022; 152:113246. [PMID: 35687906 DOI: 10.1016/j.biopha.2022.113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Ageing is one of the major causes of many diseases such as cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. It has been found that mitochondrion acts as a crucial regulator of healthy lifespan. In this work, traditional Chinese medicine Shengmai formula (SMH) was used to treat mitochondrial mutants of Caenorhabditis elegans. The results showed that SMH shortened the lifespan of short-lived mev-1 mutant, but lengthened the lifespan of long-lived isp-1 mutant. Acute SMH treatment has benefit effect by increasing resistance capacity and motion activity in both ETC mutants and wild type N2. Compared with N2, the genome-wide transcriptome profile of ETC mutants showed on a similar pattern after SMH treatment. GO and KEGG enrichment analysis addressed that SMH-induced genes mainly enriched in metabolic process and oxidation-reduction process. The ROS levels in ETC mutants and N2 firstly rose then fell after SMH treatment, in company with the elevation of SOD-1, SOD-3 and GST-4, the increment of HSP-16.2 combined with heat shock. SMH increased oxygen consumption and ATP content, improved the restoration of mitochondrial homeostasis. SMH-induced opposed lifespan outcomes were markedly counteracted by cep-1 RNAi, together with the mitochondrial dynamics. Western blot assay also demonstrated a SMH-induced CEP-1 expression. Collectively, SMH acts as a prooxidant to regulate mitochondrial homeostasis and causes mitohormesis to exert therapeutic effect based on the redox background of the recipients, and cep-1 was required for the mitochondrial hormetic responses. The results shed a light on the rational clinical anti-ageing applications of SMH in the future.
Collapse
Affiliation(s)
- Dejuan Zhi
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Chengmu Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Juan Dong
- Qinghai University Affiliated Hospital, Tongren Road No. 29th, Chengxi District, Xining, Qinghai, PR China
| | - Wenjuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Shuaishuai Xu
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Juan Yue
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Dongsheng Wang
- School of Pharmacy, Lanzhou University, Lanzhou, PR China.
| |
Collapse
|
77
|
Novel role of COX6c in the regulation of oxidative phosphorylation and diseases. Cell Death Dis 2022; 8:336. [PMID: 35879322 PMCID: PMC9314418 DOI: 10.1038/s41420-022-01130-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase subunit VIc (COX6c) is one of the most important subunits of the terminal enzyme of the respiratory chain in mitochondria. Numerous studies have demonstrated that COX6c plays a critical role in the regulation of oxidative phosphorylation (OXPHOS) and energy production. The release of COX6c from the mitochondria may be a hallmark of the intrinsic apoptosis pathway. Moreover, The changes in COX6c expression are widespread in a variety of diseases and can be chosen as a potential biomarker for diagnosis and treatment. In light of its exclusive effects, we present the elaborate roles that COX6c plays in various diseases. In this review, we first introduced basic knowledge regarding COX6c and its functions in the OXPHOS and apoptosis pathways. Subsequently, we described the regulation of COX6c expression and activity in both positive and negative ways. Furthermore, we summarized the elaborate roles that COX6c plays in various diseases, including cardiovascular disease, kidney disease, brain injury, skeletal muscle injury, and tumors. This review highlights recent advances and provides a comprehensive summary of COX6c in the regulation of OXPHOS in multiple diseases and may be helpful for drug design and the prediction, diagnosis, treatment, and prognosis of diseases.
Collapse
|
78
|
Smith ALM, Whitehall JC, Greaves LC. Mitochondrial
DNA
mutations in aging and cancer. Mol Oncol 2022; 16:3276-3294. [PMID: 35842901 PMCID: PMC9490137 DOI: 10.1002/1878-0261.13291] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/18/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Advancing age is a major risk factor for malignant transformation and the development of cancer. As such, over 50% of neoplasms occur in individuals over the age of 70. The pathologies of both ageing and cancer have been characterized by respective groups of molecular hallmarks, and while some features are divergent between the two pathologies, several are shared. Perturbed mitochondrial function is one such common hallmark, and this observation therefore suggests that mitochondrial alterations may be of significance in age‐related cancer development. There is now considerable evidence documenting the accumulation of somatic mitochondrial DNA (mtDNA) mutations in ageing human postmitotic and replicative tissues. Similarly, mutations of the mitochondrial genome have been reported in human cancers for decades. The plethora of functions in which mitochondria partake, such as oxidative phosphorylation, redox balance, apoptosis and numerous biosynthetic pathways, manifests a variety of ways in which alterations in mtDNA may contribute to tumour growth. However, the specific mechanisms by which mtDNA mutations contribute to tumour progression remain elusive and often contradictory. This review aims to consolidate current knowledge and describe future direction within the field.
Collapse
Affiliation(s)
- Anna LM Smith
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| |
Collapse
|
79
|
Icard P, Simula L, Fournel L, Leroy K, Lupo A, Damotte D, Charpentier MC, Durdux C, Loi M, Schussler O, Chassagnon G, Coquerel A, Lincet H, De Pauw V, Alifano M. The strategic roles of four enzymes in the interconnection between metabolism and oncogene activation in non-small cell lung cancer: Therapeutic implications. Drug Resist Updat 2022; 63:100852. [PMID: 35849943 DOI: 10.1016/j.drup.2022.100852] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.
Collapse
Affiliation(s)
- Philippe Icard
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U1086, 14000 Caen, France.
| | - Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, Paris University, Paris 75014, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1124, Cellular Homeostasis and Cancer, University of Paris, Paris, France
| | - Karen Leroy
- Department of Genomic Medicine and Cancers, Georges Pompidou European Hospital, APHP, Paris, France
| | - Audrey Lupo
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Diane Damotte
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | | | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Mauro Loi
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Olivier Schussler
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | | | - Antoine Coquerel
- INSERM U1075, COMETE " Mobilités: Attention, Orientation, Chronobiologie", Université Caen, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France, Université Lyon 1, Lyon, France; INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
| | - Vincent De Pauw
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| |
Collapse
|
80
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|
81
|
Semenov O, Daks A, Fedorova O, Shuvalov O, Barlev NA. Opposing Roles of Wild-type and Mutant p53 in the Process of Epithelial to Mesenchymal Transition. Front Mol Biosci 2022; 9:928399. [PMID: 35813818 PMCID: PMC9261265 DOI: 10.3389/fmolb.2022.928399] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 12/05/2022] Open
Abstract
The central role of an aberrantly activated EMT program in defining the critical features of aggressive carcinomas is well documented and includes cell plasticity, metastatic dissemination, drug resistance, and cancer stem cell-like phenotypes. The p53 tumor suppressor is critical for leashing off all the features mentioned above. On the molecular level, the suppression of these effects is exerted by p53 via regulation of its target genes, whose products are involved in cell cycle, apoptosis, autophagy, DNA repair, and interactions with immune cells. Importantly, a set of specific mutations in the TP53 gene (named Gain-of-Function mutations) converts this tumor suppressor into an oncogene. In this review, we attempted to contrast different regulatory roles of wild-type and mutant p53 in the multi-faceted process of EMT.
Collapse
Affiliation(s)
- Oleg Semenov
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Alexandra Daks
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Olga Fedorova
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Oleg Shuvalov
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Nickolai A. Barlev
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
- Laboratory of Intracellular Signalling, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- The Group of Targeted Delivery Mechanisms of Nanosystems, Institute of Biomedical Chemistry, Moscow, Russia
- *Correspondence: Nickolai A. Barlev,
| |
Collapse
|
82
|
Association of p53 with Neurodegeneration in Parkinson's Disease. PARKINSON'S DISEASE 2022; 2022:6600944. [PMID: 35601652 PMCID: PMC9117072 DOI: 10.1155/2022/6600944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
p53 is a vital transcriptional protein implicated in regulating diverse cellular processes, including cell cycle arrest, DNA repair, mitochondrial metabolism, redox homeostasis, autophagy, senescence, and apoptosis. Recent studies have revealed that p53 levels and activity are substantially increased in affected neurons in cellular and animal models of Parkinson's disease (PD) as well as in the brains of PD patients. p53 activation in response to neurodegenerative stress is closely associated with the degeneration of dopaminergic neurons accompanied by mitochondrial dysfunction, reactive oxygen species (ROS) production, abnormal protein aggregation, and impairment of autophagy, and these pathogenic events have been implicated in the pathogenesis of PD. Pathogenic p53 integrates diverse cellular stresses and activate these downstream events to induce the degeneration of dopaminergic neurons; thus, it plays a crucial role in the pathogenesis of PD and appears to be a potential target for the treatment of the disease. We reviewed the current knowledge concerning p53-dependent neurodegeneration to better understand the underlying mechanisms and provide possible strategies for PD treatment by targeting p53.
Collapse
|
83
|
Joseph LC, Shi J, Nguyen QN, Pensiero V, Goulbourne C, Bauer RC, Zhang H, Morrow JP. Combined metabolomic and transcriptomic profiling approaches reveal the cardiac response to high-fat diet. iScience 2022; 25:104184. [PMID: 35494220 PMCID: PMC9038541 DOI: 10.1016/j.isci.2022.104184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
The response of vital organs to different types of nutrition or diet is a fundamental question in physiology. We examined the cardiac response to 4 weeks of high-fat diet in mice, measuring cardiac metabolites and mRNA. Metabolomics showed dramatic differences after a high-fat diet, including increases in several acyl-carnitine species. The RNA-seq data showed changes consistent with adaptations to use more fatty acid as substrate and an increase in the antioxidant protein catalase. Changes in mRNA were correlated with changes in protein level for several highly responsive genes. We also found significant sex differences in both metabolomics and RNA-seq datasets, both at baseline and after high fat diet. This work reveals the response of a vital organ to dietary intervention at both metabolomic and transcriptomic levels, which is a fundamental question in physiology. This work also reveals significant sex differences in cardiac metabolites and gene expression.
Collapse
Affiliation(s)
- Leroy C. Joseph
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Jianting Shi
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
- Cardiometabolic Genomics Program, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Quynh N. Nguyen
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Victoria Pensiero
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Chris Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Robert C. Bauer
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Hanrui Zhang
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
- Cardiometabolic Genomics Program, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - John P. Morrow
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| |
Collapse
|
84
|
Läsche M, Gallwas J, Gründker C. Like Brothers in Arms: How Hormonal Stimuli and Changes in the Metabolism Signaling Cooperate, Leading HPV Infection to Drive the Onset of Cervical Cancer. Int J Mol Sci 2022; 23:5050. [PMID: 35563441 PMCID: PMC9103757 DOI: 10.3390/ijms23095050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all precautionary actions and the possibility of using vaccinations to counteract infections caused by human papillomaviruses (HPVs), HPV-related cancers still account for approximately 5% of all carcinomas. Worldwide, many women are still excluded from adequate health care due to their social position and origin. Therefore, immense efforts in research and therapy are still required to counteract the challenges that this disease entails. The special thing about an HPV infection is that it is not only able to trick the immune system in a sophisticated way, but also, through genetic integration into the host genome, to use all the resources available to the host cells to complete the replication cycle of the virus without activating the alarm mechanisms of immune recognition and elimination. The mechanisms utilized by the virus are the metabolic, immune, and hormonal signaling pathways that it manipulates. Since the virus is dependent on replication enzymes of the host cells, it also intervenes in the cell cycle of the differentiating keratinocytes and shifts their terminal differentiation to the uppermost layers of the squamocolumnar transformation zone (TZ) of the cervix. The individual signaling pathways are closely related and equally important not only for the successful replication of the virus but also for the onset of cervical cancer. We will therefore analyze the effects of HPV infection on metabolic signaling, as well as changes in hormonal and immune signaling in the tumor and its microenvironment to understand how each level of signaling interacts to promote tumorigenesis of cervical cancer.
Collapse
Affiliation(s)
| | | | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, 37075 Göttingen, Germany; (M.L.); (J.G.)
| |
Collapse
|
85
|
Dabi YT, Andualem H, Degechisa ST, Gizaw ST. Targeting Metabolic Reprogramming of T-Cells for Enhanced Anti-Tumor Response. Biologics 2022; 16:35-45. [PMID: 35592358 PMCID: PMC9113448 DOI: 10.2147/btt.s365490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
Abstract
Cancer immunotherapy is an effective treatment option against cancer. One of the approaches of cancer immunotherapy is the modification of T cell-based anti-tumor immune responses. T-cells, a type of adaptive immune response cells responsible for cell-mediated immunity, have long been recognized as key regulators of immune-mediated anti-tumor immunity. T-cell activities have been reported to be suppressed or enhanced by changes in cell metabolism. Moreover, metabolic reprogramming during activation of T cells is required for the development of distinct differentiation profiles of these cells, which may allow the development of long-term cell-mediated anti-tumor immunity. However, T cells have been shown to undergo metabolic exhaustion in tumor microenvironment (TME) as it poses several obstacles to their function. Applications of several mechanistic solutions to improve the efficacy of T cell-based therapies including chimeric antigen receptor (CAR) T cell therapy are yet to be determined. Modifying the metabolic properties of these cells and employing them in cancer immunotherapy is a potential strategy for improving their anti-tumor activity and therapeutic efficacy. To give an insight, in this review paper, we endeavoured to cover metabolic reprogramming in cancer and T cells, signalling mechanisms involved in immuno-metabolic regulation, the effects of the TME on T cell metabolic fitness, and targeting metabolic reprogramming of T cells for an enhanced anti-tumor response.
Collapse
Affiliation(s)
- Yosef Tsegaye Dabi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, Wollega University, Nekemte, Ethiopia
- Correspondence: Yosef Tsegaye Dabi, Tel +251911364465, Email
| | - Henok Andualem
- Immunology and Molecular Biology, Department of Medical Laboratory Science, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Sisay Teka Degechisa
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
86
|
Uchenunu O, Zhdanov AV, Hutton P, Jovanovic P, Wang Y, Andreev DE, Hulea L, Papadopoli DJ, Avizonis D, Baranov PV, Pollak MN, Papkovsky DB, Topisirovic I. Mitochondrial complex IV defects induce metabolic and signaling perturbations that expose potential vulnerabilities in HCT116 cells. FEBS Open Bio 2022; 12:959-982. [PMID: 35302710 PMCID: PMC9063438 DOI: 10.1002/2211-5463.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in genes encoding cytochrome c oxidase (mitochondrial complex IV) subunits and assembly factors [e.g., synthesis of cytochrome c oxidase 2 (SCO2)] are linked to severe metabolic syndromes. Notwithstanding that SCO2 is under transcriptional control of tumor suppressor p53, the role of mitochondrial complex IV dysfunction in cancer metabolism remains obscure. Herein, we demonstrate that the loss of SCO2 in HCT116 colorectal cancer cells leads to significant metabolic and signaling perturbations. Specifically, abrogation of SCO2 increased NAD+ regenerating reactions and decreased glucose oxidation through citric acid cycle while enhancing pyruvate carboxylation. This was accompanied by a reduction in amino acid levels and the accumulation of lipid droplets. In addition, SCO2 loss resulted in hyperactivation of the insulin-like growth factor 1 receptor (IGF1R)/AKT axis with paradoxical downregulation of mTOR signaling, which was accompanied by increased AMP-activated kinase activity. Accordingly, abrogation of SCO2 expression appears to increase the sensitivity of cells to IGF1R and AKT, but not mTOR inhibitors. Finally, the loss of SCO2 was associated with reduced proliferation and enhanced migration of HCT116 cells. Collectively, herein we describe potential adaptive signaling and metabolic perturbations triggered by mitochondrial complex IV dysfunction.
Collapse
Affiliation(s)
- Oro Uchenunu
- Lady Davis Institute for Medical ResearchJewish General HospitalMontréalCanada
- Department of Experimental MedicineMcGill UniversityMontrealCanada
| | | | - Phillipe Hutton
- Lady Davis Institute for Medical ResearchJewish General HospitalMontréalCanada
| | - Predrag Jovanovic
- Lady Davis Institute for Medical ResearchJewish General HospitalMontréalCanada
- Department of Experimental MedicineMcGill UniversityMontrealCanada
| | - Ye Wang
- Lady Davis Institute for Medical ResearchJewish General HospitalMontréalCanada
| | - Dmitry E. Andreev
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryMoscowRussia
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityRussia
| | - Laura Hulea
- Département de MédecineDépartement de Biochimie et Médecine MoléculaireUniversité de MontréalMaisonneuve‐Rosemont Hospital Research CentreCanada
| | - David J. Papadopoli
- Lady Davis Institute for Medical ResearchJewish General HospitalMontréalCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealCanada
| | - Daina Avizonis
- Goodman Cancer Research CentreMcGill UniversityMontrealCanada
| | - Pavel V. Baranov
- School of Biochemistry and Cell BiologyUniversity College CorkIreland
| | - Michael N. Pollak
- Lady Davis Institute for Medical ResearchJewish General HospitalMontréalCanada
- Department of Experimental MedicineMcGill UniversityMontrealCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealCanada
| | | | - Ivan Topisirovic
- Lady Davis Institute for Medical ResearchJewish General HospitalMontréalCanada
- Department of Experimental MedicineMcGill UniversityMontrealCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealCanada
- Department of BiochemistryMcGill UniversityMontrealCanada
| |
Collapse
|
87
|
McCubrey JA, Meher AK, Akula SM, Abrams SL, Steelman LS, LaHair MM, Franklin RA, Martelli AM, Ratti S, Cocco L, Barbaro F, Duda P, Gizak A. Wild type and gain of function mutant TP53 can regulate the sensitivity of pancreatic cancer cells to chemotherapeutic drugs, EGFR/Ras/Raf/MEK, and PI3K/mTORC1/GSK-3 pathway inhibitors, nutraceuticals and alter metabolic properties. Aging (Albany NY) 2022; 14:3365-3386. [PMID: 35477123 PMCID: PMC9085237 DOI: 10.18632/aging.204038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
TP53 is a master regulator of many signaling and apoptotic pathways involved in: aging, cell cycle progression, gene regulation, growth, apoptosis, cellular senescence, DNA repair, drug resistance, malignant transformation, metastasis, and metabolism. Most pancreatic cancers are classified as pancreatic ductal adenocarcinomas (PDAC). The tumor suppressor gene TP53 is mutated frequently (50-75%) in PDAC. Different types of TP53 mutations have been observed including gain of function (GOF) point mutations and various deletions of the TP53 gene resulting in lack of the protein expression. Most PDACs have point mutations at the KRAS gene which result in constitutive activation of KRas and multiple downstream signaling pathways. It has been difficult to develop specific KRas inhibitors and/or methods that result in recovery of functional TP53 activity. To further elucidate the roles of TP53 in drug-resistance of pancreatic cancer cells, we introduced wild-type (WT) TP53 or a control vector into two different PDAC cell lines. Introduction of WT-TP53 increased the sensitivity of the cells to multiple chemotherapeutic drugs, signal transduction inhibitors, drugs and nutraceuticals and influenced key metabolic properties of the cells. Therefore, TP53 is a key molecule which is critical in drug sensitivity and metabolism of PDAC.
Collapse
Affiliation(s)
- James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Stephen L. Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S. Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Michelle M. LaHair
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Richard A. Franklin
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Fulvio Barbaro
- Department of Medicine and Surgery, Re.Mo.Bio.S. Laboratory, Anatomy Section, University of Parma, Parma, Italy
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
88
|
da Silva EL, Mesquita FP, de Sousa Portilho AJ, Bezerra ECA, Daniel JP, Aranha ESP, Farran S, de Vasconcellos MC, de Moraes MEA, Moreira-Nunes CA, Montenegro RC. Differences in glucose concentration shows new perspectives in gastric cancer metabolism. Toxicol In Vitro 2022; 82:105357. [PMID: 35427737 DOI: 10.1016/j.tiv.2022.105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 12/06/2022]
Abstract
Gastric cancer (GC) is among the deadliest cancers worldwide despite available therapies, highlighting the need for novel therapies and pharmacological agents. Metabolic deregulation is a potential study area for new anticancer targets, but the in vitro metabolic studies are controversial, as different ranges of glucose used in the culture medium can influence results. In this study, we evaluated cellular viability, glucose uptake, and LDH activity in gastric cell lines when exposed to different glucose concentrations: high (HG, 25 mM), low (LG, 5.5 mM), and free (FG, 0 mM) glucose mediums. Moreover, we evaluated how glucose variations may influence cellular phenotype and the expression of genes related to epithelial-mesenchymal transition (EMT), metabolism, and cancer development in metastatic GC cells (AGP-01). Results showed that in the FG metastatic cells evidenced higher viability when compared with other cell lines and that when exposed to either LG or HG mediums most of the phenotypic assays did not differ. However, cells exposed to LG increased colony formation and mRNA levels of metabolic-related genes when compared to HG medium. Our results recommend LG medium to metabolic studies once glucose concentration is closer to physiological levels. These findings are important to point out new relevant targets in metabolic reprogramming that can be alternatives to current chemotherapies in patients with metastatic GC.
Collapse
Affiliation(s)
- Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Adrhyann Jullyanne de Sousa Portilho
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Emanuel Cintra Austregésilo Bezerra
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Julio Paulino Daniel
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Elenn Suzany Pereira Aranha
- Biological Activity Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 1200 - Coroado, Manaus, Brazil
| | - Sarah Farran
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center - Riad El-Solh, Beirut, Lebanon
| | - Marne Carvalho de Vasconcellos
- Biological Activity Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 1200 - Coroado, Manaus, Brazil
| | - Maria Elisabete Amaral de Moraes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Caroline Aquino Moreira-Nunes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil.
| |
Collapse
|
89
|
Dahpy MA, Salama RHM, Kamal AA, El-Deek HE, AbdelMotaleb AA, Abd-El-Rehim AS, Hassan EA, Alsanory AA, Saad MM, Ali M. Evaluation of tripartite motif 59 and its diagnostic utility in benign bowel diseases and colorectal cancer. J Biochem Mol Toxicol 2022; 36:e23065. [PMID: 35377964 DOI: 10.1002/jbt.23065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 10/31/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality in developing countries. Tripartite motif-59 (TRIM59) a member of the TRIM ubiquitin ligase family, is a surface molecule that regulates biological processes such as cell proliferation, apoptosis, and tumorigenesis. Previous studies reported that TRIM59 expression was upregulated in human CRC, however, the expression pattern and role of TRIM59 in benign colorectal lesions remain unclear. Sixty patients diagnosed with CRC and 60 patients with benign lesions (Crohn's disease, ulcerative colitis, adenoma, and familial adenomatous polyposis) were recruited to the present study. TRIM59 gene expression was assessed by real-time quantitative polymerase chain reaction. Expression of TRIM59 protein and p-AKT were determined using, enzyme-linked immunoassay while p53 expression was detected by immunohistochemistry. Antioxidant/oxidant role of glutathione (GSH)/malondialdehyde (MDA) were evaluated by colorimetric methods in all of the studied groups. Our results showed upregulated expressions of TRIM59 gene and protein levels in CRC tissues and benign colonic lesions compared to nontumor tissues. Their levels were higher in inflammatory compared to noninflammatory bowel lesions. There were significant interrelations among TRIM59 gene expression, protein levels, tumor, node, metastasis staging, and the presence of metastasis (p < 0.0001). Receiver-operator characteristic curve analyses showed that at the cutoff point of 2.5 TRIM59 mRNA expression can discriminate between CRC cases and benign bowel group (area under the curve [AUC]: 0.639, sensitivity: 86.7%, specificity: 41.7%), and between CRC and controls (AUC: 0.962, sensitivity: 90%, specificity: 91.7%). TRIM59 could be a potential biomarker in the early detection, diagnosis, and treatment of benign colonic lesions and CRC.
Collapse
Affiliation(s)
- Marwa A Dahpy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Medical Biochemistry and Molecular Biology, Armed forces collage of Medicine (AFCM), Cairo, Egypt
| | - Ragaa H M Salama
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa A Kamal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Heba E El-Deek
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ali A AbdelMotaleb
- Department of Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abeer S Abd-El-Rehim
- Department of Tropical Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Elham A Hassan
- Department of Tropical Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Aya A Alsanory
- House Officer, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud M Saad
- House Officer, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Maha Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
90
|
Hanselmann RG, Welter C. Origin of Cancer: Cell work is the Key to Understanding Cancer Initiation and Progression. Front Cell Dev Biol 2022; 10:787995. [PMID: 35300431 PMCID: PMC8921603 DOI: 10.3389/fcell.2022.787995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
The cell is the smallest unit of life. It is a structure that maintains order through self-organization, characterized by a high level of dynamism, which in turn is characterized by work. For this work to take place, a continuous high flow of energy is necessary. However, a focused view of the physical relationship between energy and work is inadequate for describing complex biological/medical mechanisms or systems. In this review, we try to make a connection between the fundamental laws of physics and the mechanisms and functions of biology, which are characterized by self-organization. Many different physical work processes (work) in human cells are called cell work and can be grouped into five forms: synthetic, mechanical, electrical, concentration, and heat generation cell work. In addition to the flow of energy, these cell functions are based on fundamental processes of self-organization that we summarize with the term Entirety of molecular interaction (EoMI). This illustrates that cell work is caused by numerous molecular reactions, flow equilibrium, and mechanisms. Their number and interactions are so complex that they elude our perception in their entirety. To be able to describe cell functions in a biological/medical context, the parameters influencing cell work should be summarized in overarching influencing variables. These are “biological” energy, information, matter, and cell mechanics (EMIM). This makes it possible to describe and characterize the cell work involved in cell systems (e.g., respiratory chain, signal transmission, cell structure, or inheritance processes) and to demonstrate changes. If cell work and the different influencing parameters (EMIM influencing variables) are taken as the central property of the cell, specific gene mutations cannot be regarded as the sole cause for the initiation and progression of cancer. This reductionistic monocausal view does not do justice to the dynamic and highly complex system of a cell. Therefore, we postulate that each of the EMIM influencing variables described above is capable of changing the cell work and thus the order of a cell in such a way that it can develop into a cancer cell.
Collapse
|
91
|
Hamsanathan S, Gurkar AU. Lipids as Regulators of Cellular Senescence. Front Physiol 2022; 13:796850. [PMID: 35370799 PMCID: PMC8965560 DOI: 10.3389/fphys.2022.796850] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Lipids are key macromolecules that perform a multitude of biological functions ranging from maintaining structural integrity of membranes, energy storage, to signaling molecules. Unsurprisingly, variations in lipid composition and its levels can influence the functional and physiological state of the cell and its milieu. Cellular senescence is a permanent state of cell cycle arrest and is a hallmark of the aging process, as well as several age-related pathologies. Senescent cells are often characterized by alterations in morphology, metabolism, chromatin remodeling and exhibit a complex pro-inflammatory secretome (SASP). Recent studies have shown that the regulation of specific lipid species play a critical role in senescence. Indeed, some lipid species even contribute to the low-grade inflammation associated with SASP. Many protein regulators of senescence have been well characterized and are associated with lipid metabolism. However, the link between critical regulators of cellular senescence and senescence-associated lipid changes is yet to be elucidated. Here we systematically review the current knowledge on lipid metabolism and dynamics of cellular lipid content during senescence. We focus on the roles of major players of senescence in regulating lipid metabolism. Finally, we explore the future prospects of lipid research in senescence and its potential to be targeted as senotherapeutics.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Aditi U. Gurkar
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
- *Correspondence: Aditi U. Gurkar,
| |
Collapse
|
92
|
Humpton TJ, Hall H, Kiourtis C, Nixon C, Clark W, Hedley A, Shaw R, Bird TG, Blyth K, Vousden KH. p53-mediated redox control promotes liver regeneration and maintains liver function in response to CCl 4. Cell Death Differ 2022; 29:514-526. [PMID: 34628485 PMCID: PMC8901761 DOI: 10.1038/s41418-021-00871-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
The p53 transcription factor coordinates wide-ranging responses to stress that contribute to its function as a tumour suppressor. The responses to p53 induction are complex and range from mediating the elimination of stressed or damaged cells to promoting survival and repair. These activities of p53 can modulate tumour development but may also play a role in pathological responses to stress such as tissue damage and repair. Using a p53 reporter mouse, we have previously detected strong induction of p53 activity in the liver of mice treated with the hepatotoxin carbon tetrachloride (CCl4). Here, we show that p53 functions to support repair and recovery from CCl4-mediated liver damage, control reactive oxygen species (ROS) and limit the development of hepatocellular carcinoma (HCC), in part through the activation of a detoxification cytochrome P450, CYP2A5 (CYP2A6 in humans). Our work demonstrates an important role for p53-mediated redox control in facilitating the hepatic regenerative response after damage and identifies CYP2A5/CYP2A6 as a mediator of this pathway with potential prognostic utility in human HCC.
Collapse
Affiliation(s)
- Timothy J Humpton
- The Francis Crick Institute, London, NW1 1AT, UK.
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
| | - Holly Hall
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Christos Kiourtis
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - William Clark
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Robin Shaw
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | | |
Collapse
|
93
|
Ita MI, Wang JH, Toulouse A, Lim C, Fanning N, O’Sullivan M, Nolan Y, Kaar GF, Redmond HP. The utility of plasma circulating cell-free messenger RNA as a biomarker of glioma: a pilot study. Acta Neurochir (Wien) 2022; 164:723-735. [PMID: 34643804 PMCID: PMC8913523 DOI: 10.1007/s00701-021-05014-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/28/2021] [Indexed: 11/04/2022]
Abstract
Background Research into the potential utility of plasma-derived circulating cell-free nucleic acids as non-invasive adjuncts to radiological imaging have been occasioned by the invasive nature of brain tumour biopsy. The objective of this study was to determine whether significant differences exist in the plasma transcriptomic profile of glioma patients relative to differences in their tumour characteristics, and also whether any observed differences were representative of synchronously obtained glioma samples and TCGA glioma-derived RNA. Methods Blood samples were collected from twenty glioma patients prior to tumour resection. Plasma ccfmRNAs and glioma-derived RNA were extracted and profiled. Results BCL2L1, GZMB, HLA-A, IRF1, MYD88, TLR2, and TP53 genes were significantly over-expressed in glioma patients (p < 0.001, versus control). GZMB and HLA-A genes were significantly over-expressed in high-grade glioma patients (p < 0.001, versus low-grade glioma patients). Moreover, the fold change of the BCL2L1 gene was observed to be higher in patients with high-grade glioma (p = 0.022, versus low-grade glioma patients). There was positive correlation between the magnitude of fold change of differentially expressed genes in plasma- and glioma-derived RNA (Spearman r = 0.6344, n = 14, p = 0.017), and with the mean FPKM in TCGA glioma-derived RNA samples (Spearman r = 0.4614, n = 19, p < 0.05). There was positive correlation between glioma radiographic tumour burden and the magnitude of fold change of the CSF3 gene (r = 0.9813, n = 20, p < 0.001). Conclusion We identified significant differential expression of genes involved in cancer inflammation and immunity crosstalk among patients with different glioma grades, and there was positive correlation between their transcriptomic profile in plasma and tumour samples, and with TCGA glioma-derived RNA. Supplementary Information The online version contains supplementary material available at 10.1007/s00701-021-05014-8.
Collapse
|
94
|
Lee YG, Park DH, Chae YC. Role of Mitochondrial Stress Response in Cancer Progression. Cells 2022; 11:cells11050771. [PMID: 35269393 PMCID: PMC8909674 DOI: 10.3390/cells11050771] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are subcellular organelles that are a hub for key biological processes, such as bioenergetic, biosynthetic, and signaling functions. Mitochondria are implicated in all oncogenic processes, from malignant transformation to metastasis and resistance to chemotherapeutics. The harsh tumor environment constantly exposes cancer cells to cytotoxic stressors, such as nutrient starvation, low oxygen, and oxidative stress. Excessive or prolonged exposure to these stressors can cause irreversible mitochondrial damage, leading to cell death. To survive hostile microenvironments that perturb mitochondrial function, cancer cells activate a stress response to maintain mitochondrial protein and genome integrity. This adaptive mechanism, which is closely linked to mitochondrial function, enables rapid adjustment and survival in harsh environmental conditions encountered during tumor dissemination, thereby promoting cancer progression. In this review, we describe how the mitochondria stress response contributes to the acquisition of typical malignant traits and highlight the potential of targeting the mitochondrial stress response as an anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Yu Geon Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Korea Food Research Institute, Wanju 55365, Korea
| | - Do Hong Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Correspondence: ; Tel.: +82-52-217-2524 or +82-52-217-2638
| |
Collapse
|
95
|
Nathan CA, Khandelwal AR, Wolf GT, Rodrigo JP, Mäkitie AA, Saba NF, Forastiere AA, Bradford CR, Ferlito A. TP53 mutations in head and neck cancer. Mol Carcinog 2022; 61:385-391. [PMID: 35218075 DOI: 10.1002/mc.23385] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arising in the mucosal linings of the upper aerodigestive tract are highly heterogeneous, aggressive, and multifactorial tumors affecting more than half a million patients worldwide each year. Classical etiological factors for HNSCC include alcohol, tobacco, and human papillomavirus (HPV) infection. Current treatment options for HNSCCs encompass surgery, radiotherapy, chemotherapy, or combinatorial remedies. Comprehensive integrative genomic analysis of HNSCC has identified mutations in TP53 gene as the most frequent of all somatic genomic alterations. TP53 mutations are associated with either loss of wild-type p53 function or gain of functions that promote invasion, metastasis, genomic instability, and cancer cell proliferation. Interestingly, disruptive TP53 mutations in tumor DNA are associated with aggressiveness and reduced survival after surgical treatment of HNSCC. This review summarizes the current evidence and impact of TP53 mutations in HNSCC.
Collapse
Affiliation(s)
- Cherie-Ann Nathan
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University-Health Shreveport, Shreveport, Louisiana, USA
| | - Alok R Khandelwal
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University-Health Shreveport, Shreveport, Louisiana, USA
| | - Gregory T Wolf
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Juan P Rodrigo
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Antti A Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, USA
| | - Arlene A Forastiere
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carol R Bradford
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
96
|
Lee JH, Kim DH, Kim M, Jung KH, Lee KH. Mitochondrial ROS-Mediated Metabolic and Cytotoxic Effects of Isoproterenol on Cardiomyocytes Are p53-Dependent and Reversed by Curcumin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041346. [PMID: 35209134 PMCID: PMC8877017 DOI: 10.3390/molecules27041346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
Abstract
Acute β-adrenergic stimulation contributes to heart failure. Here, we investigated the role of p53 in isoproterenol (ISO)-mediated metabolic and oxidative stress effects on cardiomyocytes and explored the direct protective effects offered by the antioxidant nutraceutical curcumin. Differentiated H9C2 rat cardiomyocytes treated with ISO were assayed for glucose uptake, lactate release, and mitochondrial reactive oxygen species (ROS) generation. Survival was assessed by sulforhodamine B assays. Cardiomyocytes showed significantly decreased glucose uptake and lactate release, as well as increased cellular toxicity by ISO treatment. This was accompanied by marked dose-dependent increases of mitochondria-derived ROS. Scavenging with N-acetyl-L-cysteine (NAC) effectively lowered ROS levels, which completely recovered glycolytic metabolism and survival suppressed by ISO. Mechanistically, ISO reduced extracellular-signal-regulated kinase (ERK) activation, whereas it upregulated p53 expression in an ROS-dependent manner. Silencing of p53 with siRNA blocked the ability of ISO to stimulate mitochondrial ROS and suppress glucose uptake, and partially recovered cell survival. Finally, curcumin completely reversed the metabolic and ROS-stimulating effects of ISO. Furthermore, curcumin improved survival of cardiomyocytes exposed to ISO. Thus, ISO suppresses cardiomyocyte glycolytic metabolism and survival by stimulating mitochondrial ROS in a p53-dependent manner. Furthermore, curcumin can efficiently rescue cardiomyocytes from these adverse effects.
Collapse
Affiliation(s)
- Jin Hee Lee
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.H.L.); (D.H.K.); (M.K.)
- Samsung Advanced Institute for Health and Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Da Hae Kim
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.H.L.); (D.H.K.); (M.K.)
| | - MinA Kim
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.H.L.); (D.H.K.); (M.K.)
- Samsung Advanced Institute for Health and Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.H.L.); (D.H.K.); (M.K.)
- Samsung Advanced Institute for Health and Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (K.-H.J.); (K.-H.L.); Tel.: +82-2-3410-2649 (K.-H.J.); +82-2-3410-2630 (K.-H.L.); Fax: +82-2-3410-2639 (K.-H.J. & K.-H.L.)
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.H.L.); (D.H.K.); (M.K.)
- Samsung Advanced Institute for Health and Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (K.-H.J.); (K.-H.L.); Tel.: +82-2-3410-2649 (K.-H.J.); +82-2-3410-2630 (K.-H.L.); Fax: +82-2-3410-2639 (K.-H.J. & K.-H.L.)
| |
Collapse
|
97
|
Bonora M, Kahsay A, Pinton P. Mitochondrial calcium homeostasis in hematopoietic stem cell: Molecular regulation of quiescence, function, and differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 362:111-140. [PMID: 34253293 DOI: 10.1016/bs.ircmb.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hematopoiesis is based on the existence of hematopoietic stem cells (HSC) with the capacity to self-proliferate and self-renew or to differentiate into specialized cells. The hematopoietic niche is the essential microenvironment where stem cells reside and integrate various stimuli to determine their fate. Recent studies have identified niche containing high level of calcium (Ca2+) suggesting that HSCs are sensitive to Ca2+. This is a highly versatile and ubiquitous second messenger that regulates a wide variety of cellular functions. Advanced methods for measuring its concentrations, genetic experiments, cell fate tracing data, single-cell imaging, and transcriptomics studies provide information into its specific roles to integrate signaling into an array of mechanisms that determine HSC identity, lineage potential, maintenance, and self-renewal. Accumulating and contrasting evidence, are revealing Ca2+ as a previously unacknowledged feature of HSC, involved in functional maintenance, by regulating multiple actors including transcription and epigenetic factors, Ca2+-dependent kinases and mitochondrial physiology. Mitochondria are significant participants in HSC functions and their responsiveness to cellular demands is controlled to a significant extent via Ca2+ signals. Recent reports indicate that mitochondrial Ca2+ uptake also controls HSC fate. These observations reveal a physiological feature of hematopoietic stem cells that can be harnessed to improve HSC-related disease. In this review, we discuss the current knowledge Ca2+ in hematopoietic stem cell focusing on its potential involvement in proliferation, self-renewal and maintenance of HSC and discuss future research directions.
Collapse
Affiliation(s)
- Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| | - Asrat Kahsay
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
98
|
Zhang Y, Mohibi S, Vasilatis DM, Chen M, Zhang J, Chen X. Ferredoxin reductase and p53 are necessary for lipid homeostasis and tumor suppression through the ABCA1-SREBP pathway. Oncogene 2022; 41:1718-1726. [PMID: 35121827 PMCID: PMC8933276 DOI: 10.1038/s41388-021-02100-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022]
Abstract
p53 is known to modulate metabolism and FDXR is required for steroidogenesis. Given that FDXR is a target/regulator of p53, the FDXR–p53 axis may play a unique role in lipid metabolism. Here, we found that expression of ABCA1, a cholesterol-efflux pump, was suppressed by loss of FDXR and/or p53, leading to activation of master lipogenic regulators SREBP1/2. Accordingly, lipid droplets, cholesterol, and triglycerides were increased by loss of FDXR or p53, which were further increased by loss of both FDXR and p53. To explore the biological significance of the FDXR–p53 axis, we generated a cohort of mice deficient in Fdxr and/or Trp53. We found that Fdxr+/−, Trp53+/−, and Fdxr+/−;Trp53+/− mice had a short life span and were prone to spontaneous tumors and liver steatosis. Moreover, the levels of serum cholesterol and triglycerides were significantly increased in Fdxr+/− and Trp53+/− mice, which were further increased in Fdxr+/−;Trp53+/− mice. Interestingly, loss of Fdxr but not p53 led to accumulation of serum low-density lipoprotein. Together, our findings reveal that the FDXR–p53 axis plays a critical role in lipid homeostasis and tumor suppression.
Collapse
Affiliation(s)
- Yanhong Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Demitria M Vasilatis
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, 95616, USA.
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
99
|
Greene J, Segaran A, Lord S. Targeting OXPHOS and the electronic transport chain in cancer; molecular and therapeutic implications. Semin Cancer Biol 2022; 86:851-859. [PMID: 35122973 DOI: 10.1016/j.semcancer.2022.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
Oxidative phosphorylation (OXPHOS) takes place in mitochondria and is the process whereby cells use carbon fuels and oxygen to generate ATP. Formerly OXPHOS was thought to be reduced in tumours and that glycolysis was the critical pathway for generation of ATP but it is now clear that OXPHOS, at least in many tumour types, plays a critical role in delivering the bioenergetic and macromolecular anabolic requirements of cancer cells. There is now great interest in targeting the OXPHOS and the electron transport chain for cancer therapy and in this review article we describe current therapeutic approaches and challenges.
Collapse
Affiliation(s)
- John Greene
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Ashvina Segaran
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford, United Kingdom
| | - Simon Lord
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom.
| |
Collapse
|
100
|
Yuan Y, Li H, Pu W, Chen L, Guo D, Jiang H, He B, Qin S, Wang K, Li N, Feng J, Wen J, Cheng S, Zhang Y, Yang W, Ye D, Lu Z, Huang C, Mei J, Zhang HF, Gao P, Jiang P, Su S, Sun B, Zhao SM. Cancer metabolism and tumor microenvironment: fostering each other? SCIENCE CHINA. LIFE SCIENCES 2022; 65:236-279. [PMID: 34846643 DOI: 10.1007/s11427-021-1999-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
The changes associated with malignancy are not only in cancer cells but also in environment in which cancer cells live. Metabolic reprogramming supports tumor cell high demand of biogenesis for their rapid proliferation, and helps tumor cell to survive under certain genetic or environmental stresses. Emerging evidence suggests that metabolic alteration is ultimately and tightly associated with genetic changes, in particular the dysregulation of key oncogenic and tumor suppressive signaling pathways. Cancer cells activate HIF signaling even in the presence of oxygen and in the absence of growth factor stimulation. This cancer metabolic phenotype, described firstly by German physiologist Otto Warburg, insures enhanced glycolytic metabolism for the biosynthesis of macromolecules. The conception of metabolite signaling, i.e., metabolites are regulators of cell signaling, provides novel insights into how reactive oxygen species (ROS) and other metabolites deregulation may regulate redox homeostasis, epigenetics, and proliferation of cancer cells. Moreover, the unveiling of noncanonical functions of metabolic enzymes, such as the moonlighting functions of phosphoglycerate kinase 1 (PGK1), reassures the importance of metabolism in cancer development. The metabolic, microRNAs, and ncRNAs alterations in cancer cells can be sorted and delivered either to intercellular matrix or to cancer adjacent cells to shape cancer microenvironment via media such as exosome. Among them, cancer microenvironmental cells are immune cells which exert profound effects on cancer cells. Understanding of all these processes is a prerequisite for the development of a more effective strategy to contain cancers.
Collapse
Affiliation(s)
- Yiyuan Yuan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China
| | - Huimin Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wang Pu
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China
| | - Leilei Chen
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Hongfei Jiang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingwei Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jing Wen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shipeng Cheng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Weiwei Yang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Dan Ye
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Jun Mei
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hua-Feng Zhang
- CAS Centre for Excellence in Cell and Molecular Biology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ping Gao
- School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China.
| | - Peng Jiang
- Tsinghua University School of Life Sciences, and Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Bing Sun
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|