51
|
Powell SK, O'Shea CP, Shannon SR, Akbarian S, Brennand KJ. Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells. ADVANCES IN NEUROBIOLOGY 2020; 25:155-206. [PMID: 32578147 DOI: 10.1007/978-3-030-45493-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a chronic and severe neuropsychiatric condition manifested by cognitive, emotional, affective, perceptual, and behavioral abnormalities. Despite decades of research, the biological substrates driving the signs and symptoms of the disorder remain elusive, thus hampering progress in the development of treatments aimed at disease etiologies. The recent emergence of human induced pluripotent stem cell (hiPSC)-based models has provided the field with a highly innovative approach to generate, study, and manipulate living neural tissue derived from patients, making possible the exploration of fundamental roles of genes and early-life stressors in disease-relevant cell types. Here, we begin with a brief overview of the clinical, epidemiological, and genetic aspects of the condition, with a focus on schizophrenia as a neurodevelopmental disorder. We then highlight relevant technical advancements in hiPSC models and assess novel findings attained using hiPSC-based approaches and their implications for disease biology and treatment innovation. We close with a critical appraisal of the developments necessary for both further expanding knowledge of schizophrenia and the translation of new insights into therapeutic innovations.
Collapse
Affiliation(s)
- Samuel K Powell
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Callan P O'Shea
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Rose Shannon
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
52
|
Adell A. Brain NMDA Receptors in Schizophrenia and Depression. Biomolecules 2020; 10:biom10060947. [PMID: 32585886 PMCID: PMC7355879 DOI: 10.3390/biom10060947] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP), dizocilpine (MK-801) and ketamine have long been considered a model of schizophrenia, both in animals and humans. However, ketamine has been recently approved for treatment-resistant depression, although with severe restrictions. Interestingly, the dosage in both conditions is similar, and positive symptoms of schizophrenia appear before antidepressant effects emerge. Here, we describe the temporal mechanisms implicated in schizophrenia-like and antidepressant-like effects of NMDA blockade in rats, and postulate that such effects may indicate that NMDA receptor antagonists induce similar mechanistic effects, and only the basal pre-drug state of the organism delimitates the overall outcome. Hence, blockade of NMDA receptors in depressive-like status can lead to amelioration or remission of symptoms, whereas healthy individuals develop psychotic symptoms and schizophrenia patients show an exacerbation of these symptoms after the administration of NMDA receptor antagonists.
Collapse
Affiliation(s)
- Albert Adell
- Institute of Biomedicine and Biotechnology of Cantabria, IBBTEC (CSIC-University of Cantabria), Calle Albert Einstein 22 (PCTCAN), 39011 Santander, Spain; or
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 39011 Santander, Spain
| |
Collapse
|
53
|
Conn KA, Burne THJ, Kesby JP. Subcortical Dopamine and Cognition in Schizophrenia: Looking Beyond Psychosis in Preclinical Models. Front Neurosci 2020; 14:542. [PMID: 32655348 PMCID: PMC7325949 DOI: 10.3389/fnins.2020.00542] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia is characterized by positive, negative and cognitive symptoms. All current antipsychotic treatments feature dopamine-receptor antagonism that is relatively effective at addressing the psychotic (positive) symptoms of schizophrenia. However, there is no clear evidence that these medications improve the negative or cognitive symptoms, which are the greatest predictors of functional outcomes. One of the most robust pathophysiological observations in patients with schizophrenia is increased subcortical dopamine neurotransmission, primarily in the associative striatum. This brain area has an important role in a range of cognitive processes. Dopamine is also known to play a major part in regulating a number of cognitive functions impaired in schizophrenia but much of this research has been focused on cortical dopamine. Emerging research highlights the strong influence subcortical dopamine has on a range of cognitive domains, including attention, reward learning, goal-directed action and decision-making. Nonetheless, the precise role of the associative striatum in the cognitive impairments observed in schizophrenia remains poorly understood, presenting an opportunity to revisit its contribution to schizophrenia. Without a better understanding of the mechanisms underlying cognitive dysfunction, treatment development remains at a standstill. For this reason, improved preclinical animal models are needed if we are to understand the complex relationship between subcortical dopamine and cognition. A range of new techniques are facillitating the discrete manipulation of dopaminergic neurotransmission and measurements of cognitive performance, which can be investigated using a variety of sensitive translatable tasks. This has the potential to aid the successful incorporation of recent clinical research to address the lack of treatment strategies for cognitive symptoms in schizophrenia. This review will give an overview on the current state of research focused on subcortical dopamine and cognition in the context of schizophrenia research. We also discuss future strategies and approaches aimed at improving the translational outcomes for the treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Kyna-Anne Conn
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| | - James P Kesby
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
54
|
Rubio JM, Taipale H, Correll CU, Tanskanen A, Kane JM, Tiihonen J. Psychosis breakthrough on antipsychotic maintenance: results from a nationwide study. Psychol Med 2020; 50:1356-1367. [PMID: 31190660 DOI: 10.1017/s0033291719001296] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND There is uncertainty about the incidence of breakthrough psychosis in treatment adherent patients, and the role that factors, such as cumulative antipsychotic exposure, play in this phenomenon. METHODS In a nationwide cohort of individuals treated for schizophrenia-spectrum disorders in Finland between 1 January 1996 and 31 December 2015, 'Breakthrough Psychosis on Antipsychotic Maintenance Medication' (BAMM) was defined as hospitalization for psychosis despite ongoing continuous treatment with long-acting injectable antipsychotics (LAIs) or oral antipsychotics (OAPs) for ⩾8 weeks. Incidence rates, survival curves, and risk factors were presented. RESULTS In a cohort of 16 031 continuous LAI treatment episodes with virtually assured adherence [median duration = 441 days, interquartile range (IQR) = 155-1277], BAMM incidence was 31.5%. For 42 867 OAPs treatment episodes (median duration = 483 days, IQR = 167-1491), for whom adherence was modeled by the PRE2DUP method, BAMM incidence was 31.1%. Factors related to illness instability at treatment onset were associated with BAMM, although median time to BAMM was 291 days (IQR = 121-876) for LAIs and 344 days (IQR = 142-989) for OAPs, and 27.4% (N = 1386) of the BAMM events in the LAI, and 32.9% (N = 4378) in the OAP group occurred despite >1 year since last hospitalization at treatment onset. Cumulative antipsychotic exposure was not a consistent risk factor. CONCLUSION BAMM was relatively common even when adherence was confirmed with LAIs. Illness instability at treatment onset accounted for most cases, but relapse after years of continuous treatment was still prevalent. There was insufficient evidence to support causality between cumulative antipsychotic exposure and BAMM. Future research needs to address the role of symptom severity and neurobiology in BAMM.
Collapse
Affiliation(s)
- Jose M Rubio
- Division of Psychiatry Research, The Zucker Hillside Hospital, 75-59 263rd St, Glen Oaks, NY11004, USA
- Department of Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY11550, USA
- The Feinstein Institute for Medical Research, Manhasset, NY11030, USA
| | - Heidi Taipale
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Niuvankuja 65, FI-70240Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Tomtebodavägen 18A, 5th floor, SE-171 77Stockholm, Sweden
- School of Pharmacy, University of Eastern Finland, PO Box 1627, SE-70211Kuopio, Finland
| | - Christoph U Correll
- Division of Psychiatry Research, The Zucker Hillside Hospital, 75-59 263rd St, Glen Oaks, NY11004, USA
- Department of Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY11550, USA
- The Feinstein Institute for Medical Research, Manhasset, NY11030, USA
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Antti Tanskanen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Niuvankuja 65, FI-70240Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Tomtebodavägen 18A, 5th floor, SE-171 77Stockholm, Sweden
| | - John M Kane
- Division of Psychiatry Research, The Zucker Hillside Hospital, 75-59 263rd St, Glen Oaks, NY11004, USA
- Department of Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY11550, USA
- The Feinstein Institute for Medical Research, Manhasset, NY11030, USA
| | - Jari Tiihonen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Niuvankuja 65, FI-70240Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Tomtebodavägen 18A, 5th floor, SE-171 77Stockholm, Sweden
- Stockholm County Council, Stockholm Health Care Services, Norra Stationsgatan 69, SE-113 64Stockholm, Sweden
| |
Collapse
|
55
|
Mitelman SA, Buchsbaum MS, Christian BT, Merrill BM, Buchsbaum BR, Mukherjee J, Lehrer DS. Positive association between cerebral grey matter metabolism and dopamine D 2/D 3 receptor availability in healthy and schizophrenia subjects: An 18F-fluorodeoxyglucose and 18F-fallypride positron emission tomography study. World J Biol Psychiatry 2020; 21:368-382. [PMID: 31552783 DOI: 10.1080/15622975.2019.1671609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objectives: Overlapping decreases in extrastriatal dopamine D2/D3-receptor availability and glucose metabolism have been reported in subjects with schizophrenia. It remains unknown whether these findings are physiologically related or coincidental.Methods: To ascertain this, we used two consecutive 18F-fluorodeoxyglucose and 18F-fallypride positron emission tomography scans in 19 healthy and 25 unmedicated schizophrenia subjects. Matrices of correlations between 18F-fluorodeoxyglucose uptake and 18F-fallypride binding in voxels at the same xyz location and AFNI-generated regions of interest were evaluated in both diagnostic groups.Results:18F-fluorodeoxyglucose uptake and 18F-fallypride binding potential were predominantly positively correlated across the striatal and extrastriatal grey matter in both healthy and schizophrenia subjects. In comparison to healthy subjects, significantly weaker correlations in subjects with schizophrenia were confirmed in the right cingulate gyrus and thalamus, including the mediodorsal, lateral dorsal, anterior, and midline nuclei. Schizophrenia subjects showed decreased D2/D3-receptor availability in the hypothalamus, mamillary bodies, thalamus and several thalamic nuclei, and increased glucose uptake in three lobules of the cerebellar vermis.Conclusions: Dopaminergic system may be involved in modulation of grey matter metabolism and neurometabolic coupling in both healthy human brain and psychopathology. Hyperdopaminergic state in untreated schizophrenia may at least partly account for the corresponding decreases in grey matter metabolism.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City,NY, USA.,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, Elmhurst, IL, USA
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, San Diego, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine School of Medicine, Orange, CA, USA
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
56
|
Early improvement as a predictor of remission and response in schizophrenia: Results from a naturalistic study. Eur Psychiatry 2020; 24:501-6. [DOI: 10.1016/j.eurpsy.2009.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 02/20/2009] [Indexed: 11/19/2022] Open
Abstract
AbstractObjectiveTo examine the predictive validity of early improvement in a naturalistic sample of inpatients and to identify the criterion that best defines early improvement.MethodsTwo hundred and forty-seven inpatients who fulfilled ICD-10 criteria for schizophrenia were assessed with the Positive And Negative Syndrome Scale (PANSS) at admission and at biweekly intervals until discharge from hospital. Remission was defined according to the recently proposed consensus criteria, response as a reduction of at least 40% in the PANNS total score from admission to discharge.ResultsReceiver operating characteristic (ROC) analyses showed that early improvement (reduction of the PANSS total score within the first 2 weeks of treatment) predicts remission (AUC = 0.659) and response (AUC = 0.737) at discharge. A 20% reduction in the PANSS total score within the first 2 weeks was the most accurate cut-off for the prediction of remission (total accuracy: 65%; sensitivity: 53%; specificity: 76%), and a 30% reduction the most accurate cut-off for the prediction of response (total accuracy: 76%; sensitivity: 47%; specificity: 90%).ConclusionThe findings of clinical drug trials that early improvement is a predictor of subsequent treatment response were replicated in a naturalistic sample. Further studies should examine whether patients without early improvement benefit from an early change of antipsychotic medication.
Collapse
|
57
|
Girgis RR, Forbes A, Abi-Dargham A, Slifstein M. A positron emission tomography occupancy study of brexpiprazole at dopamine D 2 and D 3 and serotonin 5-HT 1A and 5-HT 2A receptors, and serotonin reuptake transporters in subjects with schizophrenia. Neuropsychopharmacology 2020; 45:786-792. [PMID: 31847007 PMCID: PMC7075883 DOI: 10.1038/s41386-019-0590-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022]
Abstract
The objective of this study (NCT01854944) was to assess D2/D3, 5-HT1A, 5-HT2A and serotonin transporter (SERT) occupancies of brexpiprazole in adult subjects with schizophrenia in order to identify the in vivo pharmacologic profile that may be relevant to the antipsychotic, antidepressant, and side effect profiles of the drug. Subjects were grouped into three independent cohorts of four subjects each. All subjects underwent positron emission tomography (PET) scans with two different radiotracers at baseline prior to brexpiprazole administration, and again on Day 10 after daily doses of either 4 mg (Cohorts 1 and 2), or 1 mg (Cohort 3). Cohort 1 received scans with [11C]-(+)-PHNO to measure D2 and D3 receptor occupancy and [11C]CUMI101 to measure 5-HT1A occupancy; Cohort 2 received [11C]MDL100907 for 5-HT2A occupancy and [11C]DASB for SERT occupancy; Cohort 3 underwent scanning with [11C]-(+)-PHNO and [11C]MDL100907. Five female and seven male subjects, aged 42 ± 8 years (range, 28-55 years), participated in this study. Dose dependency was observed at D2 receptors, with occupancies reaching 64 ± 8% (mean +/- SD) following 1 mg/day and 80 ± 12% following 4 mg/day. D3 receptor availability increased following 1 mg brexpiprazole treatment and did not change with 4 mg. Robust and dose-related occupancy was also observed at 5-HT2A receptors. Negligible occupancy (<5%) was observed at 5-HT1A and SERT at 4 mg/day. In summary, brexpiprazole demonstrated in vivo binding to D2 receptors and 5-HT2A receptors at steady state after 10 days of daily administration in a dose dependent manner, while binding to D3, 5-HT1A receptors and SERT was not detectable with the radiotracers used for these targets. This pharmacologic profile is consistent with the observed antipsychotic and antidepressant effects.
Collapse
Affiliation(s)
- Ragy R Girgis
- New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA.
| | - Andy Forbes
- Otsuka Pharmaceutical Development & Commercialization Inc., Princeton, NJ, USA
| | - Anissa Abi-Dargham
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Mark Slifstein
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
58
|
Tarumi R, Tsugawa S, Noda Y, Plitman E, Honda S, Matsushita K, Chavez S, Sawada K, Wada M, Matsui M, Fujii S, Miyazaki T, Chakravarty MM, Uchida H, Remington G, Graff-Guerrero A, Mimura M, Nakajima S. Levels of glutamatergic neurometabolites in patients with severe treatment-resistant schizophrenia: a proton magnetic resonance spectroscopy study. Neuropsychopharmacology 2020; 45:632-640. [PMID: 31842203 PMCID: PMC7021829 DOI: 10.1038/s41386-019-0589-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/08/2019] [Accepted: 12/07/2019] [Indexed: 01/20/2023]
Abstract
Approximately 30% of patients with schizophrenia do not respond to antipsychotics and are thus considered to have treatment-resistant schizophrenia (TRS). To date, only four studies have examined glutamatergic neurometabolite levels using proton magnetic resonance spectroscopy (1H-MRS) in patients with TRS, collectively suggesting that glutamatergic dysfunction may be implicated in the pathophysiology of TRS. Notably, the TRS patient population in these studies had mild-to-moderate illness severity, which is not entirely reflective of what is observed in clinical practice. In this present work, we compared glutamate + glutamine (Glx) levels in the dorsal anterior cingulate cortex (dACC) and caudate among patients with TRS, patients with non-TRS, and healthy controls (HCs), using 3T 1H-MRS (PRESS, TE = 35 ms). TRS criteria were defined by severe positive symptoms (i.e., ≥5 on 2 Positive and Negative Syndrome Scale (PANSS)-positive symptom items or ≥4 on 3 PANSS-positive symptom items), despite standard antipsychotic treatment. A total of 95 participants were included (29 TRS patients [PANSS = 111.2 ± 20.4], 33 non-TRS patients [PANSS = 49.8 ± 13.7], and 33 HCs). dACC Glx levels were higher in the TRS group vs. HCs (group effect: F[2,75] = 4.74, p = 0.011; TRS vs. HCs: p = 0.012). No group differences were identified in the caudate. There were no associations between Glx levels and clinical severity in either patient group. Our results are suggestive of greater heterogeneity in TRS relative to non-TRS with respect to dACC Glx levels, necessitating further research to determine biological subtypes of TRS.
Collapse
Affiliation(s)
- Ryosuke Tarumi
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan ,grid.415439.eDepartment of Psychiatry, Komagino Hospital, Hachioji, Japan
| | - Sakiko Tsugawa
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshihiro Noda
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Eric Plitman
- 0000 0004 1936 8649grid.14709.3bCerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, McGill University, Montreal, QC Canada
| | - Shiori Honda
- 0000 0004 1936 9959grid.26091.3cGraduate School of Media and Governance, Keio University, Tokyo, Japan
| | - Karin Matsushita
- 0000 0004 1936 9959grid.26091.3cFaculty of Environment and Information Studies, Keio University, Tokyo, Japan
| | - Sofia Chavez
- 0000 0000 8793 5925grid.155956.bCampbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Kyosuke Sawada
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Masataka Wada
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Mie Matsui
- 0000 0001 2308 3329grid.9707.9Department of Clinical Cognitive Neuroscience, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
| | - Shinya Fujii
- 0000 0004 1936 9959grid.26091.3cFaculty of Environment and Information Studies, Keio University, Tokyo, Japan
| | - Takahiro Miyazaki
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - M. Mallar Chakravarty
- 0000 0004 1936 8649grid.14709.3bCerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, McGill University, Montreal, QC Canada ,0000 0004 1936 8649grid.14709.3bDepartment of Biomedical Engineering, McGill University, Montreal, QC Canada
| | - Hiroyuki Uchida
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan ,0000 0000 8793 5925grid.155956.bCampbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Gary Remington
- 0000 0000 8793 5925grid.155956.bCampbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Ariel Graff-Guerrero
- 0000 0000 8793 5925grid.155956.bCampbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Masaru Mimura
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan. .,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
59
|
Howell KR, Law AJ. Neurodevelopmental concepts of schizophrenia in the genome-wide association era: AKT/mTOR signaling as a pathological mediator of genetic and environmental programming during development. Schizophr Res 2020; 217:95-104. [PMID: 31522868 PMCID: PMC7065975 DOI: 10.1016/j.schres.2019.08.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 12/14/2022]
Abstract
Normative brain development is contingent on the complex interplay between genes and environment. Schizophrenia (SCZ) is considered a highly polygenic, neurodevelopmental disorder associated with impaired neural circuit development, neurocognitive function and variations in neurotransmitter signaling systems, including dopamine. Significant evidence, accumulated over the last 30 years indicates a role for the in utero environment in SCZ pathophysiology. Emerging data suggests that changes in placental programming and function may mediate the link between genetic risk, early life complications (ELC) and adverse neurodevelopmental outcomes, with risk highlighted in key developmental drivers that converge on AKT/mTOR signaling. In this article we overview select risk genes identified through recent genome-wide association studies of SCZ including AKT3, miR-137, DRD2, and AKT1 itself. We propose that through convergence on AKT/mTOR signaling, these genes are critical factors directing both placentation and neurodevelopment, influencing risk for SCZ through dysregulation of placental function, metabolism and early brain development. We discuss association of risk genes in the context of their known roles in neurodevelopment, placental expression and their possible mechanistic links to SCZ in the broad context of the 'developmental origins of adult disease' construct. Understanding how common genetic variation impacts early fetal programming may advance our knowledge of disease etiology and identify early critical developmental windows for prevention and intervention.
Collapse
Affiliation(s)
| | - Amanda J. Law
- Corresponding Author: Amanda J. Law, PhD, Professor of Psychiatry, Medicine and Cell and Developmental Biology, Nancy L. Gary Endowed Chair in Children’s Mental Disorders Research, University of Colorado, School of Medicine, , Phone: 303-724-4418, Fax: 303-724-4425, 12700 E. 19th Ave., MS 8619, Aurora, CO 80045
| |
Collapse
|
60
|
Zakharyan R, Ghazaryan H, Kocourkova L, Chavushyan A, Mkrtchyan A, Zizkova V, Arakelyan A, Petrek M. Association of Genetic Variants of Dopamine and Serotonin In Schizophrenia. Arch Med Res 2020; 51:13-20. [PMID: 32086104 DOI: 10.1016/j.arcmed.2019.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Several studies indicated that antipsychotic treatment response and side effect manifestation can be different due to inter-individual variability in genetic variations. AIM OF THE STUDY Here we perform a case-control study to explore a potential association between schizophrenia and variants within the antipsychotic drug molecular targets (DRD1, DRD2, DRD3, HTR2A, HTR6) and metabolizing enzymes (CYP2D6, COMT) genes in Armenian population including also analysis of their possible relationship with disease clinical symptoms. METHODS A total of 18 SNPs was studied in patients with schizophrenia (n = 78) and healthy control subjects (n = 77) using MassARRAY genotyping. RESULTS We found that two studied genetic variants, namely DRD2 rs4436578*C and HTR2A rs6314*A are underrepresented in the group of patients compared to healthy subjects. After the correction for multiple testing, the rs4436578*C variant remained significant while the rs6314*A reported borderline significance. No significant differences in minor allele frequencies for other studied variants were identified. Also, a relationship between the genotypes and age of onset as well as disease duration has been detected. CONCLUSIONS The DRD2 rs4436578*C genetic variant might have protective role against schizophrenia, at least in Armenians.
Collapse
Affiliation(s)
- Roksana Zakharyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia; Russian-Armenian, University, Yerevan, Armenia.
| | - Hovsep Ghazaryan
- Andranik Chavushyan, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Lenka Kocourkova
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Andranik Chavushyan
- Andranik Chavushyan, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Artur Mkrtchyan
- Department of Psychiatry, National Institute of Health, MH RA, Yerevan, Armenia
| | - Veronika Zizkova
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Arsen Arakelyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia; Russian-Armenian, University, Yerevan, Armenia
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
61
|
Disconnectivity between the raphe nucleus and subcortical dopamine-related regions contributes altered salience network in schizophrenia. Schizophr Res 2020; 216:382-388. [PMID: 31801675 DOI: 10.1016/j.schres.2019.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/28/2019] [Accepted: 11/03/2019] [Indexed: 02/04/2023]
Abstract
Numerous studies strongly have suggested the significant role of serotonin in the pathomechanism of schizophrenia. However, few studies have directly explored the altered serotonin function in schizophrenia. In the current study, we explored the altered serotonin function in first-episode treatment-naive patients with schizophrenia with resting-state functional magnetic resonance imaging. A total 42 first-episode treatment-naive patients with schizophrenia and carefully matched healthy controls are included in the study. Considering that the raphe nucleus providing a substantial proportion of the serotonin innervation to the forebrain, the raphe nucleus was chosen as the seed to construct voxel-based functional connectivity (FC) maps. In the results, subcortical dopamine-related regions presented decreased FC with the raphe nucleus, such as the bilateral striatum, pallidum, and thalamus, in patients with schizophrenia. Decreased FC in these regions was significantly correlated with the total negative scores in PANSS. Furthermore, these regions presented with decreased FC connection to salience network. Our results presented that the raphe nucleus played an important role in the dysfunction of subcortical DA-related regions, and contributed to the altered salience network in schizophrenia. Our study emphasized the importance of the raphe nucleus in the pathophysiology of schizophrenia.
Collapse
|
62
|
McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020; 19:15-33. [PMID: 31922684 PMCID: PMC6953551 DOI: 10.1002/wps.20693] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate and dopamine systems play distinct roles in terms of neuronal signalling, yet both have been proposed to contribute significantly to the pathophysiology of schizophrenia. In this paper we assess research that has implicated both systems in the aetiology of this disorder. We examine evidence from post-mortem, preclinical, pharmacological and in vivo neuroimaging studies. Pharmacological and preclinical studies implicate both systems, and in vivo imaging of the dopamine system has consistently identified elevated striatal dopamine synthesis and release capacity in schizophrenia. Imaging of the glutamate system and other aspects of research on the dopamine system have produced less consistent findings, potentially due to methodological limitations and the heterogeneity of the disorder. Converging evidence indicates that genetic and environmental risk factors for schizophrenia underlie disruption of glutamatergic and dopaminergic function. However, while genetic influences may directly underlie glutamatergic dysfunction, few genetic risk variants directly implicate the dopamine system, indicating that aberrant dopamine signalling is likely to be predominantly due to other factors. We discuss the neural circuits through which the two systems interact, and how their disruption may cause psychotic symptoms. We also discuss mechanisms through which existing treatments operate, and how recent research has highlighted opportunities for the development of novel pharmacological therapies. Finally, we consider outstanding questions for the field, including what remains unknown regarding the nature of glutamate and dopamine function in schizophrenia, and what needs to be achieved to make progress in developing new treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| | - John H Krystal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| |
Collapse
|
63
|
Robison A, Thakkar K, Diwadkar VA. Cognition and Reward Circuits in Schizophrenia: Synergistic, Not Separate. Biol Psychiatry 2020; 87:204-214. [PMID: 31733788 PMCID: PMC6946864 DOI: 10.1016/j.biopsych.2019.09.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/29/2023]
Abstract
Schizophrenia has been studied from the perspective of cognitive or reward-related impairments, yet it cannot be wholly related to one or the other process and their corresponding neural circuits. We posit a comprehensive circuit-based model proposing that dysfunctional interactions between the brain's cognitive and reward circuits underlie schizophrenia. The model is underpinned by how the relationship between glutamatergic and dopaminergic dysfunction in schizophrenia drives interactions between cognition and reward circuits. We argue that this interaction is synergistic: that is, deficits of cognition and reward processing interact, and this interaction is a core feature of schizophrenia. In adopting this position, we undertake a focused review of animal physiology and human clinical data, and in proposing this synergistic model, we highlight dopaminergic afferents from the ventral tegmental area to nucleus accumbens (mesolimbic circuit) and frontal cortex (mesocortical circuit). We then expand on the role of glutamatergic inputs to these dopamine circuits and dopaminergic modulation of critical excitatory pathways with attention given to the role of glutamatergic hippocampal outputs onto nucleus accumbens. Finally, we present evidence for how in schizophrenia, dysfunction in the mesolimbic and mesocortical circuits and their corresponding glutamatergic inputs gives rise to clinical and cognitive phenotypes and is associated with positive and negative symptom dimensions. The synthesis attempted here provides an impetus for a conceptual shift that links cognitive and motivational aspects of schizophrenia and that can lead to treatment approaches that seek to harmonize network interactions between the brain's cognition and reward circuits with ameliorative effects in each behavioral domain.
Collapse
Affiliation(s)
| | - Katharine Thakkar
- Dept. of Psychology, Michigan State University,Division of Psychiatry and Behavioral Medicine, Michigan State University
| | | |
Collapse
|
64
|
Distinct striatum pathways connected to salience network predict symptoms improvement and resilient functioning in schizophrenia following risperidone monotherapy. Schizophr Res 2020; 215:89-96. [PMID: 31759811 DOI: 10.1016/j.schres.2019.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/09/2019] [Accepted: 11/12/2019] [Indexed: 11/23/2022]
Abstract
Abnormal interactions between the striatum and salience network (SN) are considered as etiological and treatment-sensitive marker in schizophrenia. However, whether alterations in the intrinsic dynamics as reflected by resting-state functional connectivity (RSFC) between the striatum and salience network may predict treatment response to the widely used antipsychotic treatment strategies (risperidone, monotherapy) has not been examined systematically. To this end, treatment-naive first-episode schizophrenia patients (n = 41) underwent task-free resting-state fMRI assessment before (baseline) and after 8 weeks of risperidone monotherapy (n = 38). Intrinsic connectivity between striatal sub-regions and core salience processing nodes were examined and compared to carefully matched healthy controls (HC) to determine disorder-specific and treatment-predictive neural markers. Findings demonstrate hypo-connectivity of both ventral and dorsal striatal-SN pathways in patients at baseline. Importantly, specifically the dorsal striatal pathway at baseline could predict negative symptoms improvement in patients; while ventral striatal pathways could predict positive symptoms improvement. Together, results indicate that distinct striatal-SN pathways represent specific treatment-success markers for the effects of risperidone, suggesting that alterations in dorsal versus ventral striatal network markers may represent brain-based markers for specific symptomatologic improvements following risperidone mono-therapy.
Collapse
|
65
|
de Bartolomeis A, Manchia M, Marmo F, Vellucci L, Iasevoli F, Barone A. Glycine Signaling in the Framework of Dopamine-Glutamate Interaction and Postsynaptic Density. Implications for Treatment-Resistant Schizophrenia. Front Psychiatry 2020; 11:369. [PMID: 32477178 PMCID: PMC7240307 DOI: 10.3389/fpsyt.2020.00369] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) or suboptimal response to antipsychotics affects almost 30% of schizophrenia (SCZ) patients, and it is a relevant clinical issue with significant impact on the functional outcome and on the global burden of disease. Among putative novel treatments, glycine-centered therapeutics (i.e. sarcosine, glycine itself, D-Serine, and bitopertin) have been proposed, based on a strong preclinical rationale with, however, mixed clinical results. Therefore, a better appraisal of glycine interaction with the other major players of SCZ pathophysiology and specifically in the framework of dopamine - glutamate interactions is warranted. New methodological approaches at cutting edge of technology and drug discovery have been applied to study the role of glycine in glutamate signaling, both at presynaptic and post-synaptic level and have been instrumental for unveiling the role of glycine in dopamine-glutamate interaction. Glycine is a non-essential amino acid that plays a critical role in both inhibitory and excitatory neurotransmission. In caudal areas of central nervous system (CNS), such as spinal cord and brainstem, glycine acts as a powerful inhibitory neurotransmitter through binding to its receptor, i.e. the Glycine Receptor (GlyR). However, glycine also works as a co-agonist of the N-Methyl-D-Aspartate receptor (NMDAR) in excitatory glutamatergic neurotransmission. Glycine concentration in the synaptic cleft is finely tuned by glycine transporters, i.e. GlyT1 and GlyT2, that regulate the neurotransmitter's reuptake, with the first considered a highly potential target for psychosis therapy. Reciprocal regulation of dopamine and glycine in forebrain, glycine modulation of glutamate, glycine signaling interaction with postsynaptic density proteins at glutamatergic synapse, and human genetics of glycinergic pathways in SCZ are tackled in order to highlight the exploitation of this neurotransmitters and related molecules in SCZ and TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Federica Marmo
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Annarita Barone
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| |
Collapse
|
66
|
Faron-Górecka A, Kuśmider M, Solich J, Górecki A, Dziedzicka-Wasylewska M. Genetic variants in dopamine receptors influence on heterodimerization in the context of antipsychotic drug action. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 169:279-296. [PMID: 31952689 DOI: 10.1016/bs.pmbts.2019.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human dopamine D2 receptor (D2R) gene has polymorphic variants, three of them alter its amino acid sequence: Val96Ala, Pro310Ser and Ser311Cys. Their functional role never became the object of extensive studies, even though there are some evidence that they correlate with schizophrenia. The present work reviews data indicating that these mutations play a role in dimer formation with dopamine D1 receptor (D1R), with the strongest effect observed for Ser311Cys variant. Similarly, the affinity for antipsychotic drugs of this genetic variant depends on whether it is expressed together with D1R or not. Better understanding of altered ability of genetic variants of D2R to form dimers with D1R, as well as of altered affinity for antipsychotic drugs, depending on the absence or presence of the second dopamine receptor is of great importance-since these two receptors are not always co-expressed in the same cell. It may well be that targeting new compounds toward the D1R-D2R dimers, which the most probably form under conditions of excessive dopamine release, will result in antipsychotic drugs devoid of serious side effects.
Collapse
Affiliation(s)
- Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | - Maciej Kuśmider
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland; Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
67
|
Ji JL, Diehl C, Schleifer C, Tamminga CA, Keshavan MS, Sweeney JA, Clementz BA, Hill SK, Pearlson G, Yang G, Creatura G, Krystal JH, Repovs G, Murray J, Winkler A, Anticevic A. Schizophrenia Exhibits Bi-directional Brain-Wide Alterations in Cortico-Striato-Cerebellar Circuits. Cereb Cortex 2019; 29:4463-4487. [PMID: 31157363 PMCID: PMC6917525 DOI: 10.1093/cercor/bhy306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/17/2018] [Indexed: 01/05/2023] Open
Abstract
Distributed neural dysconnectivity is considered a hallmark feature of schizophrenia (SCZ), yet a tension exists between studies pinpointing focal disruptions versus those implicating brain-wide disturbances. The cerebellum and the striatum communicate reciprocally with the thalamus and cortex through monosynaptic and polysynaptic connections, forming cortico-striatal-thalamic-cerebellar (CSTC) functional pathways that may be sensitive to brain-wide dysconnectivity in SCZ. It remains unknown if the same pattern of alterations persists across CSTC systems, or if specific alterations exist along key functional elements of these networks. We characterized connectivity along major functional CSTC subdivisions using resting-state functional magnetic resonance imaging in 159 chronic patients and 162 matched controls. Associative CSTC subdivisions revealed consistent brain-wide bi-directional alterations in patients, marked by hyper-connectivity with sensory-motor cortices and hypo-connectivity with association cortex. Focusing on the cerebellar and striatal components, we validate the effects using data-driven k-means clustering of voxel-wise dysconnectivity and support vector machine classifiers. We replicate these results in an independent sample of 202 controls and 145 patients, additionally demonstrating that these neural effects relate to cognitive performance across subjects. Taken together, these results from complementary approaches implicate a consistent motif of brain-wide alterations in CSTC systems in SCZ, calling into question accounts of exclusively focal functional disturbances.
Collapse
Affiliation(s)
- Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Caroline Diehl
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Charles Schleifer
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Carol A Tamminga
- Department of Psychiatry and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Brett A Clementz
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - S Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Godfrey Pearlson
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Genevieve Yang
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Gina Creatura
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Grega Repovs
- Department of Psychology, University of Ljubljana, Ljubljana, Slovenia
| | - John Murray
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Anderson Winkler
- Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, Oxford University, Headington, Oxford, UK
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| |
Collapse
|
68
|
Zhou Y, Cao C, He L, Wang X, Zhang XC. Crystal structure of dopamine receptor D4 bound to the subtype selective ligand, L745870. eLife 2019; 8:e48822. [PMID: 31750832 PMCID: PMC6872212 DOI: 10.7554/elife.48822] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple subtypes of dopamine receptors within the GPCR superfamily regulate neurological processes through various downstream signaling pathways. A crucial question about the dopamine receptor family is what structural features determine the subtype-selectivity of potential drugs. Here, we report the 3.5-angstrom crystal structure of mouse dopamine receptor D4 (DRD4) complexed with a subtype-selective antagonist, L745870. Our structure reveals a secondary binding pocket extended from the orthosteric ligand-binding pocket to a DRD4-specific crevice located between transmembrane helices 2 and 3. Additional mutagenesis studies suggest that the antagonist L745870 prevents DRD4 activation by blocking the relative movement between transmembrane helices 2 and 3. These results expand our knowledge of the molecular basis for the physiological functions of DRD4 and assist new drug design.
Collapse
Affiliation(s)
- Ye Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Can Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Lingli He
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Xianping Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Xuejun Cai Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
69
|
Rakovska A, Javitt D, Petkova-Kirova P, Balla A, Ang R, Kalfin R. Neurochemical evidence that cysteamine modulates amphetamine-induced dopaminergic neuronal activity in striatum by decreasing dopamine release: an in vivo microdialysis study in freely moving rats. Brain Res Bull 2019; 153:39-46. [DOI: 10.1016/j.brainresbull.2019.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023]
|
70
|
Clark SD, Abi-Dargham A. The Role of Dynorphin and the Kappa Opioid Receptor in the Symptomatology of Schizophrenia: A Review of the Evidence. Biol Psychiatry 2019; 86:502-511. [PMID: 31376930 DOI: 10.1016/j.biopsych.2019.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Accepted: 05/05/2019] [Indexed: 01/17/2023]
Abstract
Schizophrenia is a debilitating mental illness that affects approximately 1% of the world's population. Despite much research in its neurobiology to aid in developing new treatments, little progress has been made. One system that has not received adequate attention is the kappa opioid system and its potential role in the emergence of symptoms, as well as its therapeutic potential. Here we present an overview of the kappa system and review various lines of evidence derived from clinical studies for dynorphin and kappa opioid receptor involvement in the pathology of both the positive and negative symptoms of schizophrenia. This overview includes evidence for the psychotomimetic effects of kappa opioid receptor agonists in healthy volunteers and their reversal by the pan-opioid antagonists naloxone and naltrexone and evidence for a therapeutic benefit in schizophrenia for 4 pan-opioid antagonists. We describe the interactions between kappa opioid receptors and the dopaminergic pathways that are disrupted in schizophrenia and the histologic evidence suggesting abnormal kappa opioid receptor signaling in schizophrenia. We conclude by discussing future directions.
Collapse
Affiliation(s)
- Samuel David Clark
- Columbia University Medical Center, New York; Terran Biosciences Inc., New York.
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
71
|
Lieberman JA, Small SA, Girgis RR. Early Detection and Preventive Intervention in Schizophrenia: From Fantasy to Reality. Am J Psychiatry 2019; 176:794-810. [PMID: 31569988 DOI: 10.1176/appi.ajp.2019.19080865] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scientific progress in understanding human disease can be measured by the effectiveness of its treatment. Antipsychotic drugs have been proven to alleviate acute psychotic symptoms and prevent their recurrence in schizophrenia, but the outcomes of most patients historically have been suboptimal. However, a series of findings in studies of first-episode schizophrenia patients transformed the psychiatric field's thinking about the pathophysiology, course, and potential for disease-modifying effects of treatment. These include the relationship between the duration of untreated psychotic symptoms and outcome; the superior responses of first-episode patients to antipsychotics compared with patients with chronic illness, and the reduction in brain gray matter volume over the course of the illness. Studies of the effectiveness of early detection and intervention models of care have provided encouraging but inconclusive results in limiting the morbidity and modifying the course of illness. Nevertheless, first-episode psychosis studies have established an evidentiary basis for considering a team-based, coordinated specialty approach as the standard of care for treating early psychosis, which has led to their global proliferation. In contrast, while clinical high-risk research has developed an evidence-based care model for decreasing the burden of attenuated symptoms, no treatment has been shown to reduce risk or prevent the transition to syndromal psychosis. Moreover, the current diagnostic criteria for clinical high risk lack adequate specificity for clinical application. What limits our ability to realize the potential of early detection and intervention models of care are the lack of sensitive and specific diagnostic criteria for pre-syndromal schizophrenia, validated biomarkers, and proven therapeutic strategies. Future research requires methodologically rigorous studies in large patient samples, across multiple sites, that ideally are guided by scientifically credible pathophysiological theories for which there is compelling evidence. These caveats notwithstanding, we can reasonably expect future studies to build on the research of the past four decades to advance our knowledge and enable this game-changing model of care to become a reality.
Collapse
Affiliation(s)
- Jeffrey A Lieberman
- Department of Psychiatry (Lieberman, Small, Girgis) and Department of Neurology (Small), College of Physicians and Surgeons, Columbia University, New York; New York State Psychiatric Institute, New York (Lieberman, Small, Girgis)
| | - Scott A Small
- Department of Psychiatry (Lieberman, Small, Girgis) and Department of Neurology (Small), College of Physicians and Surgeons, Columbia University, New York; New York State Psychiatric Institute, New York (Lieberman, Small, Girgis)
| | - Ragy R Girgis
- Department of Psychiatry (Lieberman, Small, Girgis) and Department of Neurology (Small), College of Physicians and Surgeons, Columbia University, New York; New York State Psychiatric Institute, New York (Lieberman, Small, Girgis)
| |
Collapse
|
72
|
Duan J, Sanders AR, Gejman PV. From Schizophrenia Genetics to Disease Biology: Harnessing New Concepts and Technologies. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2019; 4:e190014. [PMID: 31555746 PMCID: PMC6760308 DOI: 10.20900/jpbs.20190014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Schizophrenia (SZ) is a severe mental disorder afflicting around 1% of the population. It is highly heritable but with complex genetics. Recent research has unraveled a plethora of risk loci for SZ. Accordingly, our conceptual understanding of SZ genetics has been rapidly evolving, from oligogenic models towards polygenic or even omnigenic models. A pressing challenge to the field, however, is the translation of the many genetic findings of SZ into disease biology insights leading to more effective treatments. Bridging this gap requires the integration of genetic findings and functional genomics using appropriate cellular models. Harnessing new technologies, such as the development of human induced pluripotent stem cells (hiPSC) and the CRISPR/Cas-based genome/epigenome editing approach are expected to change our understanding of SZ disease biology to a fundamentally higher level. Here, we discuss some new developments.
Collapse
Affiliation(s)
- Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| | - Pablo V. Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
73
|
Lee NR, Zheng G, Leggas M, Janganati V, Nickell JR, Crooks PA, Bardo MT, Dwoskin LP. GZ-11608, a Vesicular Monoamine Transporter-2 Inhibitor, Decreases the Neurochemical and Behavioral Effects of Methamphetamine. J Pharmacol Exp Ther 2019; 371:526-543. [PMID: 31413138 DOI: 10.1124/jpet.119.258699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/01/2019] [Indexed: 11/22/2022] Open
Abstract
Despite escalating methamphetamine use and high relapse rates, pharmacotherapeutics for methamphetamine use disorders are not available. Our iterative drug discovery program had found that R-N-(1,2-dihydroxypropyl)-2,6-cis-di-(4-methoxyphenethyl)piperidine hydrochloride (GZ-793A), a selective vesicular monoamine transporter-2 (VMAT2) inhibitor, specifically decreased methamphetamine's behavioral effects. However, GZ-793A inhibited human-ether-a-go-go-related gene (hERG) channels, suggesting cardiotoxicity and prohibiting clinical development. The current study determined if replacement of GZ-793A's piperidine ring with a phenylalkyl group to yield S-3-(4-methoxyphenyl)-N-(1-phenylpropan-2-yl)propan-1-amine (GZ-11608) diminished hERG interaction while retaining pharmacological efficacy. VMAT2 inhibition, target selectivity, and mechanism of GZ-11608-induced inhibition of methamphetamine-evoked vesicular dopamine release were determined. We used GZ-11608 doses that decreased methamphetamine-sensitized activity to evaluate the potential exacerbation of methamphetamine-induced dopaminergic neurotoxicity. GZ-11608-induced decreases in methamphetamine reinforcement and abuse liability were determined using self-administration, reinstatement, and substitution assays. Results show that GZ-11608 exhibited high affinity (Ki = 25 nM) and selectivity (92-1180-fold) for VMAT2 over nicotinic receptors, dopamine transporter, and hERG, suggesting low side-effects. GZ-11608 (EC50 = 620 nM) released vesicular dopamine 25-fold less potently than it inhibited VMAT2 dopamine uptake. GZ-11608 competitively inhibited methamphetamine-evoked vesicular dopamine release (Schild regression slope = 0.9 ± 0.13). GZ-11608 decreased methamphetamine sensitization without altering striatal dopamine content or exacerbating methamphetamine-induced dopamine depletion, revealing efficacy without neurotoxicity. GZ-11608 exhibited linear pharmacokinetics and rapid brain penetration. GZ-11608 decreased methamphetamine self-administration, and this effect was not surmounted by increasing methamphetamine unit doses. GZ-11608 reduced cue- and methamphetamine-induced reinstatement, suggesting potential to prevent relapse. GZ-11608 neither served as a reinforcer nor substituted for methamphetamine, suggesting low abuse liability. Thus, GZ-11608, a potent and selective VMAT2 inhibitor, shows promise as a therapeutic for methamphetamine use disorder. SIGNIFICANCE STATEMENT: GZ-11608 is a potent and selective vesicular monoamine transporter-2 inhibitor that decreases methamphetamine-induced dopamine release from isolated synaptic vesicles from brain dopaminergic neurons. Results from behavioral studies show that GZ-11608 specifically decreases methamphetamine-sensitized locomotor activity, methamphetamine self-administration, and reinstatement of methamphetamine-seeking behavior, without exhibiting abuse liability. Tolerance does not develop to the efficacy of GZ-11608 to decrease the behavioral effects of methamphetamine. In conclusion, GZ-11608 is an outstanding lead in our search for a therapeutic to treat methamphetamine use disorder.
Collapse
Affiliation(s)
- Na-Ra Lee
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| | - Markos Leggas
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| | - Venumadhav Janganati
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| | - Justin R Nickell
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| | - Michael T Bardo
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy (N.-R.L., M.L., J.R.N., L.P.D.), and Department of Psychology, College of Arts & Sciences (M.T.B.), University of Kentucky, Lexington, Kentucky; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida (G.Z.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (V.J., P.A.C.)
| |
Collapse
|
74
|
Analysis of methylation and -141C Ins/Del polymorphisms of the dopamine receptor D2 gene in patients with schizophrenia. Psychiatry Res 2019; 278:135-140. [PMID: 31176829 DOI: 10.1016/j.psychres.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 12/20/2022]
Abstract
The gene for dopamine receptor D2 (DRD2) is associated with schizophrenia (SCZ). Epigenetic changes may be related to SCZ pathology. The -141C Ins/Del polymorphism in DRD2 (rs1799732) is functional and associated with SCZ. Fifty SCZ patients and 50 control subjects were newly recruited and analyzed in addition to 50 previously reported SCZ samples and 50 previously reported control samples. Genomic DNA from peripheral leukocytes was analyzed. We replicated analysis of DNA methylation rates at seven CpG sites (CpG 1-1 to 1-7) and also analyzed five additional sites (CpG 2-1 to 2-5) in the upstream region of DRD2. We also performed genotyping of -141C IIns/Del and analyzed the effects of -141C Ins/Del on methylation of DRD2. Methylation rates were significantly lower in SCZ patients compared to control subjects, respectively. In control subjects, the methylation rates were significantly lower in individuals with the Ins/Ins genotype than in Del allele carriers. We replicated hypomethylation of the DRD2 promoter region in SCZ patients compared to age-matched control subjects. The -141C Ins/Del polymorphism affected the methylation rates in regions of DRD2. Hypomethylation and the -141C Ins/Del polymorphism of DRD2 may be biomarkers for SCZ.
Collapse
|
75
|
Nikolaus S, Mamlins E, Hautzel H, Müller HW. Acute anxiety disorder, major depressive disorder, bipolar disorder and schizophrenia are related to different patterns of nigrostriatal and mesolimbic dopamine dysfunction. Rev Neurosci 2019; 30:381-426. [PMID: 30269107 DOI: 10.1515/revneuro-2018-0037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/30/2018] [Indexed: 11/15/2022]
Abstract
Dopamine (DA) receptor and transporter dysfunctions play a major role in the pathophysiology of neuropsychiatric diseases including anxiety disorder (AD), major depressive disorder (MDD), bipolar disorder (BD) in the manic (BDman) or depressive (BDdep) state and schizophrenia (SZ). We performed a PUBMED search, which provided a total of 239 in vivo imaging studies with either positron emission tomography (PET) or single-proton emission computed tomography (SPECT). In these studies, DA transporter binding, D1 receptor (R) binding, D2R binding, DA synthesis and/or DA release in patients with the primary diagnosis of acute AD (n=310), MDD (n=754), BDman (n=15), BDdep (n=49) or SZ (n=1532) were compared to healthy individuals. A retrospective analysis revealed that AD, MDD, BDman, BDdep and SZ differed as to affected brain region(s), affected synaptic constituent(s) and extent as well as direction of dysfunction in terms of either sensitization or desensitization of transporter and/or receptor binding sites. In contrast to AD and SZ, in MDD, BDman and BDdep, neostriatal DA function was normal, whereas MDD, BDman, and BDdep were characterized by the increased availability of prefrontal and frontal DA. In contrast to AD, MDD, BDman and BDdep, DA function in SZ was impaired throughout the nigrostriatal and mesolimbocortical system with an increased availability of DA in the striatothalamocortical and a decreased availability in the mesolimbocortical pathway.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
76
|
Kaar SJ, Natesan S, McCutcheon R, Howes OD. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology 2019; 172:107704. [PMID: 31299229 DOI: 10.1016/j.neuropharm.2019.107704] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Antipsychotic drugs are central to the treatment of schizophrenia and other psychotic disorders but are ineffective for some patients and associated with side-effects and nonadherence in others. We review the in vitro, pre-clinical, clinical and molecular imaging evidence on the mode of action of antipsychotics and their side-effects. This identifies the key role of striatal dopamine D2 receptor blockade for clinical response, but also for endocrine and motor side-effects, indicating a therapeutic window for D2 blockade. We consider how partial D2/3 receptor agonists fit within this framework, and the role of off-target effects of antipsychotics, particularly at serotonergic, histaminergic, cholinergic, and adrenergic receptors for efficacy and side-effects such as weight gain, sedation and dysphoria. We review the neurobiology of schizophrenia relevant to the mode of action of antipsychotics, and for the identification of new treatment targets. This shows elevated striatal dopamine synthesis and release capacity in dorsal regions of the striatum underlies the positive symptoms of psychosis and suggests reduced dopamine release in cortical regions contributes to cognitive and negative symptoms. Current drugs act downstream of the major dopamine abnormalities in schizophrenia, and potentially worsen cortical dopamine function. We consider new approaches including targeting dopamine synthesis and storage, autoreceptors, and trace amine receptors, and the cannabinoid, muscarinic, GABAergic and glutamatergic regulation of dopamine neurons, as well as post-synaptic modulation through phosphodiesterase inhibitors. Finally, we consider treatments for cognitive and negative symptoms such dopamine agonists, nicotinic agents and AMPA modulators before discussing immunological approaches which may be disease modifying. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Stephen J Kaar
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom.
| | - Sridhar Natesan
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Robert McCutcheon
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Oliver D Howes
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom.
| |
Collapse
|
77
|
Olivetti PR, Balsam PD, Simpson EH, Kellendonk C. Emerging roles of striatal dopamine D2 receptors in motivated behaviour: Implications for psychiatric disorders. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:47-55. [PMID: 31188541 DOI: 10.1111/bcpt.13271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
Impaired motivation has been a long recognized negative symptom of schizophrenia, as well as a common feature of non-psychotic psychiatric disorders, responsible for a significant share of functional burden, and with limited treatment options. The striatum and dopamine signalling system play a central role in extracting motivationally relevant information from the environment, selecting which behavioural direction the animal should follow, and the vigour with which to engage it. Much of this function relies on striatal projection neurons, known as medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2Rs), or D2-MSNs. However, determining the precise nature of D2-MSNs in regulating motivated behaviour in both healthy individuals and experimental manipulations of D2-MSN function has at times yielded a somewhat confusing picture since their activity has been linked to either enhancement or dampening of motivation in animal models. In this MiniReview, we describe the latest data from rodent studies that investigated how D2Rs exert their modulatory effect on motivated behaviour by regulating striatal indirect pathway neuronal activity. We will include a discussion about how functional selectivity of D2Rs towards G protein-dependent or β-arrestin-dependent signalling differentially affects motivated behaviour. Lastly, we will describe a recent preclinical attempt to improve motivation by exploiting serotonin receptor-mediated modulation of dopamine transmission in the striatum.
Collapse
Affiliation(s)
- Pedro R Olivetti
- New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, Columbia University, New York City, New York, USA
| | - Peter D Balsam
- New York State Psychiatric Institute, New York City, New York, USA.,Barnard College, Columbia University, New York City, New York, USA
| | - Eleanor H Simpson
- New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, Columbia University, New York City, New York, USA
| | - Christoph Kellendonk
- New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, Columbia University, New York City, New York, USA.,Department of Pharmacology, Columbia University, New York City, New York, USA
| |
Collapse
|
78
|
Cerveri G, Gesi C, Mencacci C. Pharmacological treatment of negative symptoms in schizophrenia: update and proposal of a clinical algorithm. Neuropsychiatr Dis Treat 2019; 15:1525-1535. [PMID: 31239687 PMCID: PMC6556563 DOI: 10.2147/ndt.s201726] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
The clinical presentation of schizophrenia encompasses symptoms divided into three dimensions: positive, negative, and cognitive. Negative symptoms (NS), in particular, have a major impact on the quality of life of the affected subject, and, differing from positive symptoms, are often associated with a limited response to pharmacotherapy. To date, studies specifically investigating NS in schizophrenia are scant; therefore, proper selection of therapy for NS remains a major unmet medical need. Given the heterogeneity of the clinical presentation of schizophrenia, the treatment of NS, as well as therapy for other associated symptoms, should be largely individualized according to a patient's specific characteristics. In this paper, we review current knowledge on NS and construct a clinical algorithm for the treatment of schizophrenic conditions with pronounced NS. Overall, data from the literature suggest that second-generation antipsychotics, such as cariprazine and amisulpride, should be preferred over first-generation antipsychotics (FGAs), as they are associated with better functional outcomes and lower cognitive impairment. The combination of antipsychotics and antidepressants may also improve NS while addressing some affective disorders associated with schizophrenia; however, no clear information is available on the effects of this combination on primary NS or on the mechanism of action of the combination. In the proposed clinical algorithm, we suggest that cariprazine should be used as first-line treatment for patients with predominant NS, and that amisulpride should be considered as an alternative in cases of cariprazine failure. Further treatment lines may include the use of olanzapine and quetiapine, and add-on therapy with antidepressants.
Collapse
Affiliation(s)
| | - Camilla Gesi
- Mental Health Department, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Claudio Mencacci
- Mental Health Department, ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
79
|
Insights on current and novel antipsychotic mechanisms from the MAM model of schizophrenia. Neuropharmacology 2019; 163:107632. [PMID: 31077730 DOI: 10.1016/j.neuropharm.2019.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/25/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Current antipsychotic drugs (APDs) act on D2 receptors, and preclinical studies demonstrate that repeated D2 antagonist administration downregulates spontaneously active DA neurons by producing overexcitation-induced inactivation of firing (depolarization block). Animal models of schizophrenia based on the gestational MAM administration produces offspring with adult phenotypes consistent with schizophrenia, including ventral hippocampal hyperactivity and a DA neuron overactivity. The MAM model reveals that APDs act differently in a hyperdopamineregic system compared to a normal one, including rapid onset of depolarization block in response to acute D2 antagonist administration and downregulation of DA neuron population activity following acute and repeated D2 partial agonist administration, none of which are observed in normal rats. Novel target compounds have been developed based on the theory that glutamatergic dysfunction is central to schizophrenia pathology. Despite showing promise in preclinical research, none of the novel drugs succeeded in clinical trials. However, preclinical research is generally performed in normal, drug-naïve rats, whereas models with disease-relevant pathology and prior APD exposure may improve the predictive validity of preclinical research. Indeed, in MAM rats, chronic D2 antagonist treatment leads to persistent DA supersensitivity that interferes with the response to drugs that target upstream pathology. Moreover, MAM rats revealed that the peri-pubertal period is a stress-sensitive window that can be targeted to prevent the development of MAM pathology in adulthood. Neurodevelopmental models, such as the MAM model, can thus be used to test potential pharmacotherapies that may be able to treat schizophrenia in early stages of the disease. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
|
80
|
Agarwal SM, Caravaggio F, Costa-Dookhan KA, Castellani L, Kowalchuk C, Asgariroozbehani R, Graff-Guerrero A, Hahn M. Brain insulin action in schizophrenia: Something borrowed and something new. Neuropharmacology 2019; 163:107633. [PMID: 31077731 DOI: 10.1016/j.neuropharm.2019.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
Insulin signaling in the central nervous system is at the intersection of brain and body interactions, and represents a fundamental link between metabolic and cognitive disorders. Abnormalities in brain insulin action could underlie the development of comorbid schizophrenia and type 2 diabetes. Among its functions, central nervous system insulin is involved in regulation of striatal dopamine levels, peripheral glucose homeostasis, and feeding regulation. In this review, we discuss the role and importance of central nervous system insulin in schizophrenia and diabetes pathogenesis from a historical and mechanistic perspective. We describe central nervous system insulin sites and pathways of action, with special emphasis on glucose metabolism, cognitive functioning, inflammation, and food preferences. Finally, we suggest possible mechanisms that may explain the actions of central nervous system insulin in relation to schizophrenia and diabetes, focusing on glutamate and dopamine signaling, intracellular signal transduction pathways, and brain energetics. Understanding the interplay between central nervous system insulin and schizophrenia is essential to disentangling this comorbid relationship and may provide novel treatment approaches for both neuropsychiatric and metabolic dysfunction. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Fernando Caravaggio
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kenya A Costa-Dookhan
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Chantel Kowalchuk
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Margaret Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
81
|
Voss P, Thomas ME, Guercio GD, de Villers-Sidani E. Dysregulation of auditory neuroplasticity in schizophrenia. Schizophr Res 2019; 207:3-11. [PMID: 29703662 DOI: 10.1016/j.schres.2018.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a complex brain syndrome characterized by an array of positive symptoms (delusions, hallucinations, disorganized speech), negative symptoms (alogia, apathy, avolition) and cognitive impairments (memory, executive functions). Although investigations of the cognitive deficits in schizophrenia have primarily concentrated on disturbances affecting higher-order cognitive processes, there is an increasing realization that schizophrenia also affects early sensory processing, which might, in fact, play a significant role in the development of higher-order cognitive impairments. Recent evidence suggests that many of these early sensory processing impairments possibly arise from a dysregulation of plasticity regulators in schizophrenia, resulting in either reduced plasticity or excessive unregulated plasticity. The purpose of the present manuscript is to provide a concise overview of how the dysregulation of cortical plasticity mechanisms contributes to schizophrenia symptoms with an emphasis on auditory dysplasticity and to discuss its relevance for treatment outcomes. The idea that plasticity mechanisms are not constrained only within sensitive periods suggests that many functional properties of sensory neurons can be altered throughout the lifetime.
Collapse
Affiliation(s)
- Patrice Voss
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Maryse E Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gerson D Guercio
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Etienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
82
|
Prenatal treatment with methylazoxymethanol acetate as a neurodevelopmental disruption model of schizophrenia in mice. Neuropharmacology 2019; 150:1-14. [DOI: 10.1016/j.neuropharm.2019.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022]
|
83
|
Adem A, Madjid N, Stiedl O, Bonito-Oliva A, Konradsson-Geuken Å, Holst S, Fisone G, Ögren SO. Atypical but not typical antipsychotic drugs ameliorate phencyclidine-induced emotional memory impairments in mice. Eur Neuropsychopharmacol 2019; 29:616-628. [PMID: 30910381 DOI: 10.1016/j.euroneuro.2019.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 01/09/2023]
Abstract
Schizophrenia is associated with cognitive impairments related to hypofunction in glutamatergic N-methyl-D-aspartate receptor (NMDAR) transmission. Phencyclidine (PCP), a non-competitive NMDAR antagonist, models schizophrenia-like behavioral symptoms including cognitive deficits in rodents. This study examined the effects of PCP on emotional memory function examined in the passive avoidance (PA) task in mice and the ability of typical and atypical antipsychotic drugs (APDs) to rectify the PCP-mediated impairment. Pre-training administration of PCP (0.5, 1, 2 or 3 mg/kg) dose-dependently interfered with memory consolidation in the PA task. In contrast, PCP was ineffective when administered after training, and immediately before the retention test indicating that NMDAR blockade interferes with memory encoding mechanisms. The typical APD haloperidol and the dopamine D2/3 receptor antagonist raclopride failed to block the PCP-induced PA impairment suggesting a negligible role of D2 receptors in the PCP impairment. In contrast, the memory impairment was blocked by the atypical APDs clozapine and olanzapine in a dose-dependent manner while risperidone was effective only at the highest dose tested (1 mg/kg). The PCP-induced impairment involves 5-HT1A receptor mechanisms since the antagonist NAD-299 blocked the memory impairment caused by PCP and the ability of clozapine to attenuate the impairment by PCP. These results indicate that atypical but not typical APDs can ameliorate NMDAR-mediated memory impairments and support the view that atypical APDs such as clozapine can modulate glutamatergic memory dysfunctions through 5-HT1A receptor mechanisms. These findings suggest that atypical APDs may improve cognitive impairments related to glutamatergic dysfunction relevant for emotional memories in schizophrenia.
Collapse
Affiliation(s)
- Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates.
| | - Nather Madjid
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates; Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden
| | - Oliver Stiedl
- Center for Neurogenomics and Cognitive Research, VU University Amsterdam, the Netherlands
| | | | - Åsa Konradsson-Geuken
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden
| | - Sarah Holst
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden
| | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden.
| |
Collapse
|
84
|
Iwata Y, Nakajima S, Plitman E, Caravaggio F, Kim J, Shah P, Mar W, Chavez S, De Luca V, Mimura M, Remington G, Gerretsen P, Graff-Guerrero A. Glutamatergic Neurometabolite Levels in Patients With Ultra-Treatment-Resistant Schizophrenia: A Cross-Sectional 3T Proton Magnetic Resonance Spectroscopy Study. Biol Psychiatry 2019; 85:596-605. [PMID: 30389132 DOI: 10.1016/j.biopsych.2018.09.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND In terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-responsive schizophrenia [non-URS]), and 3) responsive to first-line antipsychotics (non-treatment-resistant schizophrenia). This study aimed to compare glutamatergic neurometabolite levels among these three patient groups and healthy control subjects using proton magnetic resonance spectroscopy. METHODS Glutamate and glutamate+glutamine levels were assessed in the caudate, the dorsal anterior cingulate cortex (dACC), and the dorsolateral prefrontal cortex using 3T proton magnetic resonance spectroscopy (point-resolved spectroscopy, echo time = 35 ms). Glutamatergic neurometabolite levels were compared between the groups. RESULTS A total of 100 participants were included, consisting of 26 patients with URS, 27 patients with non-URS, 21 patients with non-treatment-resistant schizophrenia, and 26 healthy control subjects. Group differences were detected in ACC glutamate+glutamine levels (F3,96 = 2.93, p = .038); patients with URS showed higher dACC glutamate+glutamine levels than healthy control subjects (p = .038). There were no group differences in the caudate or dorsolateral prefrontal cortex. CONCLUSIONS Taken together with previous studies that demonstrated higher ACC glutamate levels in patients with treatment-resistant schizophrenia, this study suggests that higher levels of ACC glutamatergic metabolites may be among the shared biological characteristics of treatment resistance to antipsychotics, including CLZ.
Collapse
Affiliation(s)
- Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Parita Shah
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Wanna Mar
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sofia Chavez
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Vincenzo De Luca
- Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
85
|
Thakkar KN, Silverstein SM, Brascamp JW. A review of visual aftereffects in schizophrenia. Neurosci Biobehav Rev 2019; 101:68-77. [PMID: 30940436 DOI: 10.1016/j.neubiorev.2019.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/13/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022]
Abstract
Psychosis-a cardinal symptom of schizophrenia-has been associated with a failure to appropriately create or use stored regularities about past states of the world to guide the interpretation of incoming information, which leads to abnormal perceptions and beliefs. The visual system provides a test bed for investigating the role of prior experience and prediction, as accumulated knowledge of the world informs our current perception. More specifically, the strength of visual aftereffects, illusory percepts that arise after prolonged viewing of a visual stimulus, can serve as a valuable measure of the influence of prior experience on current visual processing. In this paper, we review findings from a largely older body of work on visual aftereffects in schizophrenia, attempt to reconcile discrepant findings, highlight the role of antipsychotic medication, consider mechanistic interpretations for behavioral effects, and propose directions for future research.
Collapse
Affiliation(s)
- Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, United States; Division of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, MI, United States.
| | - Steven M Silverstein
- Departments of Psychiatry and Ophthalmology, Rutgers University, Piscataway, NJ, United States
| | - Jan W Brascamp
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
86
|
Goyette MA, Cusseddu R, Elkholi I, Abu-Thuraia A, El-Hachem N, Haibe-Kains B, Gratton JP, Côté JF. AXL knockdown gene signature reveals a drug repurposing opportunity for a class of antipsychotics to reduce growth and metastasis of triple-negative breast cancer. Oncotarget 2019; 10:2055-2067. [PMID: 31007848 PMCID: PMC6459349 DOI: 10.18632/oncotarget.26725] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/15/2019] [Indexed: 11/25/2022] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is an aggressive cancer subtype that is associated with a poor prognosis due to its propensity to form metastases. The receptor tyrosine kinase AXL plays a role in tumor cell dissemination and its expression in breast cancers correlates with poor patient survival. Here, we explored whether already used drugs might elicit a gene signature similar to that seen with AXL knockdown in TNBC cells and which could, therefore, offer an opportunity for drug repurposing. To this end, we queried the Connectivity Map with an AXL gene signature which revealed a class of dopamine receptors antagonists named phenothiazines (Thioridazine, Fluphenazine and Trifluoperazine) typically used as anti-psychotics. We next tested if these drugs, similarly to AXL depletion, were able to limit growth and metastatic progression of TNBC cells and found that phenothiazines are able to reduce cell invasion, proliferation, viability and increase apoptosis of TNBC cells in vitro. Mechanistically, these drugs did not affect AXL activity but instead reduced PI3K/AKT/mTOR and ERK signaling. When administered to mice bearing TNBC xenografts, phenothiazines were able to reduce tumor growth and metastatic burden. Collectively, these results suggest that these antipsychotics display anti-tumor and anti-metastatic activity and that they could potentially be repurposed, in combination with standard chemotherapy, for the treatment of TNBC.
Collapse
Affiliation(s)
- Marie-Anne Goyette
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Rebecca Cusseddu
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Islam Elkholi
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Afnan Abu-Thuraia
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Nehme El-Hachem
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, Toronto, University Health Network, ON M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada.,Ontario Institute for Cancer Research, Toronto, ON M5G 1L7, Canada.,Vector Institute, Toronto, ON M5G 1L7, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada
| |
Collapse
|
87
|
Graham-Schmidt KT, Martin-Iverson MT, Waters FAV. Setting the beat of an internal clock: Effects of dexamphetamine on different interval ranges of temporal processing in healthy volunteers. Psych J 2019; 8:90-109. [PMID: 30793518 DOI: 10.1002/pchj.274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/14/2018] [Accepted: 01/09/2019] [Indexed: 12/29/2022]
Abstract
Drug studies are powerful models to investigate the neuropharmacological mechanisms underlying temporal processing in humans. This study administered dexamphetamine to 24 healthy volunteers to investigate time perception at different time scales, along with contributions from working memory. Healthy volunteers were administered 0.45 mg/kg dexamphetamine or placebo in a double-blind, crossover, placebo-controlled design. Time perception was assessed using three experimental tasks: a time-discrimination task, which asked participants to determine whether a comparison interval (1200 ± 0, 50, 100, 150, 200 ms) was shorter or longer than a standard interval (1200 ms); a retrospective time estimation task, which required participants to verbally estimate time intervals (10, 30, 60, 90 and 120 s) retrospectively; and a prospective time-production task, where participants were required to prospectively monitor the passing of time (10, 30, 60, 90 and 120 s). Working memory was assessed with the backwards digit span. On the discrimination task, there was a change in the proportion of long-to-short responses and reaction times in the dexamphetamine condition (but no association with working memory), consistent with an increase in the speed of an internal pacemaker, and an overestimation of durations in the timing of shorter intervals. There was an interaction between dexamphetamine, working memory, and performance on the estimation and production tasks, whereby increasing digit span scores were associated with decreasing interval estimates and increased produced intervals in the placebo condition, but were associated with increased interval estimates and decreased produced intervals after dexamphetamine administration. These findings indicate that the dexamphetamine-induced increase in the speed of the internal pacemaker was modulated by the basal working memory capacity of each participant. These findings in healthy humans have important implications for the role of dopamine, and its contributions to timing deficits, in models of psychiatric disorders.
Collapse
Affiliation(s)
- Kyran T Graham-Schmidt
- Faculty of Medicine, Dentistry and Health Sciences, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Mathew T Martin-Iverson
- Faculty of Medicine, Dentistry and Health Sciences, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia.,Statewide Department of Neurophysiology, Clinical Research Unit, North Metro Area Mental Health, Graylands Hospital, Perth, Western Australia, Australia
| | - Flavie A V Waters
- Faculty of Medicine, Dentistry and Health Sciences, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia.,Clinical Research Centre, Graylands Health Campus, North Metropolitan Health Services - Mental Health, Mount Claremont, Western Australia, Australia
| |
Collapse
|
88
|
Foley PB. Dopamine in psychiatry: a historical perspective. J Neural Transm (Vienna) 2019; 126:473-479. [DOI: 10.1007/s00702-019-01987-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/10/2019] [Indexed: 01/11/2023]
|
89
|
Differential expression of the ghrelin-related mRNAs GHS-R1a, GHS-R1b, and MBOAT4 in Japanese patients with schizophrenia. Psychiatry Res 2019; 272:334-339. [PMID: 30597386 DOI: 10.1016/j.psychres.2018.12.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/26/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Ghrelin regulates appetite and also plays important roles in cognition and may be involved in vulnerability to SCZ. METHODS In this study, we measured mRNA expression of the ghrelin-related molecules, growth hormone secretagogue receptor 1a (GHS-R1a) and 1b (GHS-R1b), and the ghrelin activator, membrane bound O-acyltransferase 4 (MBOAT4). Peripheral leukocytes from Japanese patients with SCZ (n = 49; 23 males, 26 females; age = 61.8 ± 13.3 years) and controls (n = 50; 25 males, 25 females; age = 62.0 ± 14.3 years) were recruited according to their clinical information. We also studied the DNA methylation rates of these genes in DNA from leukocytes. RESULTS The mRNA expression of GHS-R1a was significantly decreased in SCZ (SCZ vs. control: 0.35 ± 0.081 vs. 1.00 ± 0.059, respectively, p = 0.007), but expression levels of GHS-R1b and MBOAT4 were significantly increased in SCZ (SCZ vs. control: 2.02 ± 0.91 vs. 1.00 ± 0.32, p = 0.023, 1.37 ± 0.21 vs. 1.00 ± 0.11, respectively, p = 0.014). No differences in methylation rates for any genes were found. CONCLUSION We conclude that opposite expression of GHS-R1a and GHS-R1b, and elevated MBOAT4 mRNA expression may reflect the mechanisms of SCZ.
Collapse
|
90
|
Sonnenschein SF, Gill KM, Grace AA. State-dependent effects of the D 2 partial agonist aripiprazole on dopamine neuron activity in the MAM neurodevelopmental model of schizophrenia. Neuropsychopharmacology 2019; 44:572-580. [PMID: 30267014 PMCID: PMC6333840 DOI: 10.1038/s41386-018-0219-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/31/2018] [Accepted: 09/09/2018] [Indexed: 01/21/2023]
Abstract
Aripiprazole is an antipsychotic drug characterized by partial agonist activity at D2 receptors to normalize both hyperdopaminergic and hypodopaminergic states. Traditional D2 antagonist antipsychotic drugs have been shown previously to reduce dopamine neuron activity through action on D2 autoreceptors to produce an overexcitation-induced cessation of cell firing, referred to as depolarization block. It is unclear whether aripiprazole reduces dopamine neuron activity via inhibition or, as seen following D2 antagonist administration, depolarization block. The impact of acute and repeated aripiprazole treatment was examined in the methylazoxymethanol acetate (MAM) rodent model to observe its effects on a hyperdopaminergic system, compared to normal rats. We found that administration of aripiprazole acutely or after 1 or 7 days of withdrawal from 21-day repeated treatment led to a decrease in the number of spontaneously active dopamine neurons in MAM rats but not in controls. This reduction was not reversed by apomorphine (100-200 µg/kg i.p. or 20 µg/kg i.v.) administration, suggesting that it was not due to depolarization block. In contrast, 1 h after induction of depolarization block of dopamine neurons by acute haloperidol treatment (0.6 mg/kg i.p.), aripiprazole (1 mg/kg, i.p.) reversed the depolarization block state. Therefore, aripiprazole rapidly reduced the hyperdopaminergic activity selectively in MAM rats. The reduction is unlikely due to depolarization block and persists following 7-day withdrawal from repeated treatment. Aripiprazole also removes haloperidol-induced depolarization block in MAM rats, which may underlie the acute psychotic state often observed with switching to this treatment.
Collapse
Affiliation(s)
- Susan F. Sonnenschein
- 0000 0004 1936 9000grid.21925.3dDepartments of Neuroscience, Psychiatry and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Kathryn M. Gill
- 0000 0004 1936 9000grid.21925.3dDepartments of Neuroscience, Psychiatry and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Anthony A. Grace
- 0000 0004 1936 9000grid.21925.3dDepartments of Neuroscience, Psychiatry and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
91
|
Vanes LD, Mouchlianitis E, Collier T, Averbeck BB, Shergill SS. Differential neural reward mechanisms in treatment-responsive and treatment-resistant schizophrenia. Psychol Med 2018; 48:2418-2427. [PMID: 29439750 PMCID: PMC6704377 DOI: 10.1017/s0033291718000041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The significant proportion of schizophrenia patients refractory to treatment, primarily directed at the dopamine system, suggests that multiple mechanisms may underlie psychotic symptoms. Reinforcement learning tasks have been employed in schizophrenia to assess dopaminergic functioning and reward processing, but these have not directly compared groups of treatment-refractory and non-refractory patients. METHODS In the current functional magnetic resonance imaging study, 21 patients with treatment-resistant schizophrenia (TRS), 21 patients with non-treatment-resistant schizophrenia (NTR), and 24 healthy controls (HC) performed a probabilistic reinforcement learning task, utilizing emotionally valenced face stimuli which elicit a social bias toward happy faces. Behavior was characterized with a reinforcement learning model. Trial-wise reward prediction error (RPE)-related neural activation and the differential impact of emotional bias on these reward signals were compared between groups. RESULTS Patients showed impaired reinforcement learning relative to controls, while all groups demonstrated an emotional bias favoring happy faces. The pattern of RPE signaling was similar in the HC and TRS groups, whereas NTR patients showed significant attenuation of RPE-related activation in striatal, thalamic, precentral, parietal, and cerebellar regions. TRS patients, but not NTR patients, showed a positive relationship between emotional bias and RPE signal during negative feedback in bilateral thalamus and caudate. CONCLUSION TRS can be dissociated from NTR on the basis of a different neural mechanism underlying reinforcement learning. The data support the hypothesis that a favorable response to antipsychotic treatment is contingent on dopaminergic dysfunction, characterized by aberrant RPE signaling, whereas treatment resistance may be characterized by an abnormality of a non-dopaminergic mechanism - a glutamatergic mechanism would be a possible candidate.
Collapse
Affiliation(s)
- Lucy D Vanes
- Institute of Psychiatry, Psychology and Neuroscience,de Crespigny Park,London, SE5 8AF,UK
| | - Elias Mouchlianitis
- Institute of Psychiatry, Psychology and Neuroscience,de Crespigny Park,London, SE5 8AF,UK
| | - Tracy Collier
- Institute of Psychiatry, Psychology and Neuroscience,de Crespigny Park,London, SE5 8AF,UK
| | - Bruno B Averbeck
- Unit on Learning and Decision Making, Laboratory of Neuropsychology,NIMH,NIH, Bethesda, MD 20892,USA
| | - Sukhi S Shergill
- Institute of Psychiatry, Psychology and Neuroscience,de Crespigny Park,London, SE5 8AF,UK
| |
Collapse
|
92
|
Duan J, Göring HHH, Sanders AR, Moy W, Freda J, Drigalenko EI, Kos M, He D, Gejman PV. Transcriptomic signatures of schizophrenia revealed by dopamine perturbation in an ex vivo model. Transl Psychiatry 2018; 8:158. [PMID: 30115913 PMCID: PMC6095865 DOI: 10.1038/s41398-018-0216-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The dopaminergic hypothesis of schizophrenia (SZ) postulates that dopaminergic over activity causes psychosis, a central feature of SZ, based on the observation that blocking dopamine (DA) improves psychotic symptoms. DA is known to have both receptor- and non-receptor-mediated effects, including oxidative mechanisms that lead to apoptosis. The role of DA-mediated oxidative processes in SZ has been little studied. Here, we have used a cell perturbation approach and measured transcriptomic profiles by RNAseq to study the effect of DA exposure on transcription in B-cell transformed lymphoblastoid cell lines (LCLs) from 514 SZ cases and 690 controls. We found that DA had widespread effects on both cell growth and gene expression in LCLs. Overall, 1455 genes showed statistically significant differential DA response in SZ cases and controls. This set of differentially expressed genes is enriched for brain expression and for functions related to immune processes and apoptosis, suggesting that DA may play a role in SZ pathogenesis through modulating those systems. Moreover, we observed a non-significant enrichment of genes near genome-wide significant SZ loci and with genes spanned by SZ-associated copy number variants (CNVs), which suggests convergent pathogenic mechanisms detected by both genetic association and gene expression. The study suggests a novel role of DA in the biological processes of immune and apoptosis that may be relevant to SZ pathogenesis. Furthermore, our results show the utility of pathophysiologically relevant perturbation experiments to investigate the biology of complex mental disorders.
Collapse
Affiliation(s)
- Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
| | - Harald H H Göring
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio, TX, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Winton Moy
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Jessica Freda
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Eugene I Drigalenko
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mark Kos
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio, TX, USA
| | - Deli He
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Pablo V Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
93
|
Aslostovar L, Boyd AL, Almakadi M, Collins TJ, Leong DP, Tirona RG, Kim RB, Julian JA, Xenocostas A, Leber B, Levine MN, Foley R, Bhatia M. A phase 1 trial evaluating thioridazine in combination with cytarabine in patients with acute myeloid leukemia. Blood Adv 2018; 2:1935-1945. [PMID: 30093531 PMCID: PMC6093733 DOI: 10.1182/bloodadvances.2018015677] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
We completed a phase 1 dose-escalation trial to evaluate the safety of a dopamine receptor D2 (DRD2) antagonist thioridazine (TDZ), in combination with cytarabine. Thirteen patients 55 years and older with relapsed or refractory acute myeloid leukemia (AML) were enrolled. Oral TDZ was administered at 3 dose levels: 25 mg (n = 6), 50 mg (n = 4), or 100 mg (n = 3) every 6 hours for 21 days. Intermediate-dose cytarabine was administered on days 6 to 10. Dose-limiting toxicities (DLTs) included grade 3 QTc interval prolongation in 1 patient at 25 mg TDZ and neurological events in 2 patients at 100 mg TDZ (gait disturbance, depressed consciousness, and dizziness). At the 50-mg TDZ dose, the sum of circulating DRD2 antagonist levels approached a concentration of 10 μM, a level noted to be selectively active against human AML in vitro. Eleven of 13 patients completed a 5-day lead-in with TDZ, of which 6 received TDZ with hydroxyurea and 5 received TDZ alone. During this period, 8 patients demonstrated a 19% to 55% reduction in blast levels, whereas 3 patients displayed progressive disease. The extent of blast reduction during this 5-day interval was associated with the expression of the putative TDZ target receptor DRD2 on leukemic cells. These preliminary results suggest that DRD2 represents a potential therapeutic target for AML disease. Future studies are required to corroborate these observations, including the use of modified DRD2 antagonists with improved tolerability in AML patients. This trial was registered at www.clinicaltrials.gov as #NCT02096289.
Collapse
Affiliation(s)
- Lili Aslostovar
- Stem Cell and Cancer Research Institute and
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Mohammed Almakadi
- Stem Cell and Cancer Research Institute and
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Division of Malignant Hematology, Department of Oncology, Juravinski Hospital, Hamilton, ON, Canada
| | | | - Darryl P Leong
- Division of Cardiology, Department of Medicine, Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Rommel G Tirona
- Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London Health Sciences Centre, London, ON, Canada
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London Health Sciences Centre, London, ON, Canada
| | - Jim A Julian
- Department of Oncology, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Anargyros Xenocostas
- Division of Hematology, Department of Medicine, University of Western Ontario, London Health Sciences Centre, London, ON, Canada; and
| | - Brian Leber
- Department of Medicine, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Mark N Levine
- Department of Oncology, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Ronan Foley
- Department of Pathology and Molecular Medicine, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Mickie Bhatia
- Stem Cell and Cancer Research Institute and
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
94
|
Guma E, Rocchetti J, Devenyi GA, Tanti A, Mathieu A, Lerch JP, Elgbeili G, Courcot B, Mechawar N, Chakravarty MM, Giros B. Regional brain volume changes following chronic antipsychotic administration are mediated by the dopamine D2 receptor. Neuroimage 2018; 176:226-238. [PMID: 29704613 DOI: 10.1016/j.neuroimage.2018.04.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Neuroanatomical alterations are well established in patients suffering from schizophrenia, however the extent to which these changes are attributable to illness, antipsychotic drugs (APDs), or their interaction is unclear. APDs have been extremely effective for treatment of positive symptoms in major psychotic disorders. Their therapeutic effects are mediated, in part, through blockade of D2-like dopamine (DA) receptors, i.e. the D2, D3 and D4 dopamine receptors. Furthermore, the dependency of neuroanatomical change on DA system function and D2-like receptors has yet to be explored. METHODS We undertook a preclinical longitudinal study to examine the effects of typical (haloperidol (HAL)) and atypical (clozapine (CLZ)) APDs in wild type (WT) and dopamine D2 knockout (D2KO) mice over 9-weeks using structural magnetic resonance imaging (MRI). RESULTS Chronic typical APD administration in WT mice was associated with reductions in total brain (p = 0.009) and prelimbic area (PL) (p = 0.02) volumes following 9-weeks, and an increase in striatal volume (p = 0.04) after six weeks. These APD-induced changes were not present in D2KOs, where, at baseline, we observed significantly smaller overall brain volume (p < 0.01), thinner cortices (q < 0.05), and enlarged striata (q < 0.05). Stereological assessment revealed increased glial density in PL area of HAL treated wild types. Interestingly, in WT and D2KO mice, chronic CLZ administration caused more limited changes in brain structure. CONCLUSIONS Our results present evidence for the role of D2 DA receptors in structural alterations induced by the administration of the typical APD HAL and that chronic administration of CLZ has a limited influence on brain structure.
Collapse
Affiliation(s)
- Elisa Guma
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada; Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada
| | - Jill Rocchetti
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada
| | - Gabriel A Devenyi
- Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada
| | - Arnaud Tanti
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Axel Mathieu
- Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada
| | - Jason P Lerch
- Mouse Imaging Center - Hospital for Sick Children, Department of Medical Biophysics -University of Toronto, Toronto, Ontario, M5T 3H7, Canada
| | - Guillaume Elgbeili
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada
| | - Blandine Courcot
- Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - M Mallar Chakravarty
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada; Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada; Department of Biological and Biomedical Engineering, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4, Canada
| | - Bruno Giros
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada; Sorbonne University, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U 1130, UPMC Univ Paris 06, UM119, 75005, Paris, France.
| |
Collapse
|
95
|
Plitman E, Chavez S, Nakajima S, Iwata Y, Chung JK, Caravaggio F, Kim J, Alshehri Y, Chakravarty MM, De Luca V, Remington G, Gerretsen P, Graff-Guerrero A. Striatal neurometabolite levels in patients with schizophrenia undergoing long-term antipsychotic treatment: A proton magnetic resonance spectroscopy and reliability study. Psychiatry Res Neuroimaging 2018; 273:16-24. [PMID: 29414127 DOI: 10.1016/j.pscychresns.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/14/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
Previous proton magnetic resonance spectroscopy (1H-MRS) studies have reported disrupted levels of various neurometabolites in patients with schizophrenia. An area of particular interest within this patient population is the striatum, which is highly implicated in the pathophysiology of schizophrenia. The present study examined neurometabolite levels in the striatum of 12 patients with schizophrenia receiving antipsychotic treatment for at least 1 year and 11 healthy controls using 3-Tesla 1H-MRS (PRESS, TE = 35 ms). Glutamate, glutamate+glutamine (Glx), myo-inositol, choline, N-acetylaspartate, and creatine levels were estimated using LCModel, and corrected for fraction of cerebrospinal fluid in the 1H-MRS voxel. Striatal neurometabolite levels were compared between groups. Multiple study visits permitted a reliability assessment for neurometabolite levels (days between paired 1H-MRS acquisitions: average = 90.33; range = 7-306). Striatal neurometabolite levels did not differ between groups. Within the whole sample, intraclass correlation coefficients for glutamate, Glx, myo-inositol, choline, and N-acetylaspartate were fair to excellent (0.576-0.847). The similarity in striatal neurometabolite levels between groups implies a marked difference from the antipsychotic-naïve first-episode state, especially in terms of glutamatergic neurometabolites, and might provide insight regarding illness progression and the influence of antipsychotic medication.
Collapse
Affiliation(s)
- Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Chavez
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jun Ku Chung
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Youssef Alshehri
- Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Departments of Psychiatry and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Vincenzo De Luca
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
96
|
Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 2018; 555:269-273. [PMID: 29466326 PMCID: PMC5843546 DOI: 10.1038/nature25758] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023]
Abstract
Dopamine is a neurotransmitter that has been implicated in processes as diverse as reward, addiction, control of coordinated movement, metabolism and hormonal secretion. Correspondingly, dysregulation of the dopaminergic system has been implicated in diseases such as schizophrenia, Parkinson's disease, depression, attention deficit hyperactivity disorder, and nausea and vomiting. The actions of dopamine are mediated by a family of five G-protein-coupled receptors. The D2 dopamine receptor (DRD2) is the primary target for both typical and atypical antipsychotic drugs, and for drugs used to treat Parkinson's disease. Unfortunately, many drugs that target DRD2 cause serious and potentially life-threatening side effects due to promiscuous activities against related receptors. Accordingly, a molecular understanding of the structure and function of DRD2 could provide a template for the design of safer and more effective medications. Here we report the crystal structure of DRD2 in complex with the widely prescribed atypical antipsychotic drug risperidone. The DRD2-risperidone structure reveals an unexpected mode of antipsychotic drug binding to dopamine receptors, and highlights structural determinants that are essential for the actions of risperidone and related drugs at DRD2.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Anat Levit
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158-2280, USA
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158-2280, USA
| | - Daniel Wacker
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA
- Division of Chemical Biology & Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA
| |
Collapse
|
97
|
Amato D, Vernon AC, Papaleo F. Dopamine, the antipsychotic molecule: A perspective on mechanisms underlying antipsychotic response variability. Neurosci Biobehav Rev 2018; 85:146-159. [DOI: 10.1016/j.neubiorev.2017.09.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
|
98
|
Hudson R, Rushlow W, Laviolette SR. Phytocannabinoids modulate emotional memory processing through interactions with the ventral hippocampus and mesolimbic dopamine system: implications for neuropsychiatric pathology. Psychopharmacology (Berl) 2018; 235:447-458. [PMID: 29063964 DOI: 10.1007/s00213-017-4766-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/13/2017] [Indexed: 11/28/2022]
Abstract
Growing clinical and preclinical evidence suggests a potential role for the phytocannabinoid cannabidiol (CBD) as a pharmacotherapy for various neuropsychiatric disorders. In contrast, delta-9-tetrahydrocannabinol (THC), the primary psychoactive component in cannabis, is associated with acute and neurodevelopmental propsychotic side effects through its interaction with central cannabinoid type 1 receptors (CB1Rs). CB1R stimulation in the ventral hippocampus (VHipp) potentiates affective memory formation through inputs to the mesolimbic dopamine (DA) system, thereby altering emotional salience attribution. These changes in DA activity and salience attribution, evoked by dysfunctional VHipp regulatory actions and THC exposure, could predispose susceptible individuals to psychotic symptoms. Although THC can accelerate the onset of schizophrenia, CBD displays antipsychotic properties, can prevent the acquisition of emotionally irrelevant memories, and reverses amphetamine-induced neuronal sensitization through selective phosphorylation of the mechanistic target of rapamycin (mTOR) molecular signaling pathway. This review summarizes clinical and preclinical evidence demonstrating that distinct phytocannabinoids act within the VHipp and associated corticolimbic structures to modulate emotional memory processing through changes in mesolimbic DA activity states, salience attribution, and signal transduction pathways associated with schizophrenia-related pathology.
Collapse
Affiliation(s)
- Roger Hudson
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Walter Rushlow
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 3K7, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 3K7, Canada. .,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
99
|
Kesby JP, Eyles DW, McGrath JJ, Scott JG. Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Transl Psychiatry 2018; 8:30. [PMID: 29382821 PMCID: PMC5802623 DOI: 10.1038/s41398-017-0071-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/10/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
The stagnation in drug development for schizophrenia highlights the need for better translation between basic and clinical research. Understanding the neurobiology of schizophrenia presents substantial challenges but a key feature continues to be the involvement of subcortical dopaminergic dysfunction in those with psychotic symptoms. Our contemporary knowledge regarding dopamine dysfunction has clarified where and when dopaminergic alterations may present in schizophrenia. For example, clinical studies have shown patients with schizophrenia show increased presynaptic dopamine function in the associative striatum, rather than the limbic striatum as previously presumed. Furthermore, subjects deemed at high risk of developing schizophrenia show similar presynaptic dopamine abnormalities in the associative striatum. Thus, our view of subcortical dopamine function in schizophrenia continues to evolve as we accommodate this newly acquired information. However, basic research in animal models has been slow to incorporate these clinical findings. For example, psychostimulant-induced locomotion, the commonly utilised phenotype for positive symptoms in rodents, is heavily associated with dopaminergic activation in the limbic striatum. This anatomical misalignment has brought into question how we assess positive symptoms in animal models and represents an opportunity for improved translation between basic and clinical research. The current review focuses on the role of subcortical dopamine dysfunction in psychosis and schizophrenia. We present and discuss alternative phenotypes that may provide a more translational approach to assess the neurobiology of positive symptoms in schizophrenia. Incorporation of recent clinical findings is essential if we are to develop meaningful translational animal models.
Collapse
Affiliation(s)
- JP Kesby
- 0000 0000 9320 7537grid.1003.2Queensland Brain Institute, The University of Queensland, St. Lucia, QLD Australia ,0000 0000 9320 7537grid.1003.2Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD Australia
| | - DW Eyles
- 0000 0000 9320 7537grid.1003.2Queensland Brain Institute, The University of Queensland, St. Lucia, QLD Australia ,0000 0004 0606 3563grid.417162.7Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD Australia
| | - JJ McGrath
- 0000 0000 9320 7537grid.1003.2Queensland Brain Institute, The University of Queensland, St. Lucia, QLD Australia ,0000 0004 0606 3563grid.417162.7Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD Australia ,0000 0001 1956 2722grid.7048.bNational Centre for Register-based Research, Aarhus University, Aarhus C, Denmark
| | - JG Scott
- 0000 0000 9320 7537grid.1003.2Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD Australia ,0000 0004 0606 3563grid.417162.7Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD Australia ,0000 0001 0688 4634grid.416100.2Metro North Mental Health, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| |
Collapse
|
100
|
The Altered Supramolecular Structure of Dopamine D2 Receptors in Disc1-deficient Mice. Sci Rep 2018; 8:1692. [PMID: 29374282 PMCID: PMC5785963 DOI: 10.1038/s41598-018-20090-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/12/2018] [Indexed: 12/04/2022] Open
Abstract
Disc1 is a susceptibility gene for psychiatric disorders including schizophrenia. It has been suggested that excess transmission through dopamine type 2 receptors (D2Rs) in the striatum is an underlying mechanism of pathogenesis. In this study, we used super-resolution microscopy to study the distribution of D2Rs at the nanoscale in mice lacking exons 2 and 3 of Disc1 (Disc1-deficient mice). We found that D2Rs in the nucleus accumbens (NAc) of wild-type mice form nanoclusters (~ 20,000 nm2), and that Disc1-deficient mice have larger and more D2R nanoclusters than wild-type mice. Interestingly, administration of clozapine reduced the size and spatial distribution of the nanoclusters only in Disc1-deficient mice. Moreover, we observed that medium spiny neurons in the NAc of Disc1-deficient mice had reduced spine density on their dendrites than did wild-type mice, and this was also reversed by clozapine administration. The altered D2R nanoclusters might be morphological representations of the altered dopaminergic transmission in disease states such as schizophrenia.
Collapse
|