51
|
Chandra A, Yoon S, Michieletto MF, Goldman N, Ferrari EK, Abedi M, Johnson I, Fasolino M, Pham K, Joannas L, Kee BL, Henao-Mejia J, Vahedi G. Quantitative control of Ets1 dosage by a multi-enhancer hub promotes Th1 cell differentiation and protects from allergic inflammation. Immunity 2023; 56:1451-1467.e12. [PMID: 37263273 PMCID: PMC10979463 DOI: 10.1016/j.immuni.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
Multi-enhancer hubs are spatial clusters of enhancers present across numerous developmental programs. Here, we studied the functional relevance of these three-dimensional structures in T cell biology. Mathematical modeling identified a highly connected multi-enhancer hub at the Ets1 locus, comprising a noncoding regulatory element that was a hotspot for sequence variation associated with allergic disease in humans. Deletion of this regulatory element in mice revealed that the multi-enhancer connectivity was dispensable for T cell development but required for CD4+ T helper 1 (Th1) differentiation. These mice were protected from Th1-mediated colitis but exhibited overt allergic responses. Mechanistically, the multi-enhancer hub controlled the dosage of Ets1 that was required for CTCF recruitment and assembly of Th1-specific genome topology. Our findings establish a paradigm wherein multi-enhancer hubs control cellular competence to respond to an inductive cue through quantitative control of gene dosage and provide insight into how sequence variation within noncoding elements at the Ets1 locus predisposes individuals to allergic responses.
Collapse
Affiliation(s)
- Aditi Chandra
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sora Yoon
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Naomi Goldman
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily K Ferrari
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maryam Abedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Isabelle Johnson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Fasolino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth Pham
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leonel Joannas
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Barbara L Kee
- Department of Pathology, Committees on Cancer Biology and Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jorge Henao-Mejia
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
52
|
Butcher MJ, Gurram RK, Zhu X, Chen X, Hu G, Lazarevic V, Zhao K, Zhu J. GATA3 induces the pathogenicity of Th17 cells via regulating GM-CSF expression. Front Immunol 2023; 14:1186580. [PMID: 37449212 PMCID: PMC10337884 DOI: 10.3389/fimmu.2023.1186580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
T-bet-expressing Th17 (T-bet+RORγt+) cells are associated with the induction of pathology during experimental autoimmune encephalomyelitis (EAE) and the encephalitic nature of these Th17 cells can be explained by their ability to produce GM-CSF. However, the upstream regulatory mechanisms that control Csf2 (gene encoding GM-CSF) expression are still unclear. In this study, we found that Th17 cells dynamically expressed GATA3, the master transcription factor for Th2 cell differentiation, during their differentiation both in vitro and in vivo. Early deletion of Gata3 in three complimentary conditional knockout models by Cre-ERT2, hCd2 Cre and Tbx21 Cre, respectively, limited the pathogenicity of Th17 cells during EAE, which was correlated with a defect in generating pathogenic T-bet-expressing Th17 cells. These results indicate that early GATA3-dependent gene regulation is critically required to generate a de novo encephalitogenic Th17 response. Furthermore, a late deletion of Gata3 via Cre-ERT2 in the adoptive transfer EAE model resulted in a cell intrinsic failure to induce EAE symptoms which was correlated with a substantial reduction in GM-CSF production without affecting the generation and/or maintenance of T-bet-expressing Th17 cells. RNA-Seq analysis of Gata3-sufficient and Gata3-deficient CNS-infiltrating CD4+ effector T cells from mixed congenic co-transfer recipient mice revealed an important, cell-intrinsic, function of GATA3 in regulating the expression of Egr2, Bhlhe40, and Csf2. Thus, our data highlights a novel role for GATA3 in promoting and maintaining the pathogenicity of T-bet-expressing Th17 cells in EAE, via putative regulation of Egr2, Bhlhe40, and GM-CSF expression.
Collapse
Affiliation(s)
- Matthew J Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rama Krishna Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Xi Chen
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
53
|
Lindrova I, Kolackova M, Svadlakova T, Vankova R, Chmelarova M, Rosecka M, Jozifkova E, Sembera M, Krejsek J, Slezak R. Unsolved mystery of Fas: mononuclear cells may have trouble dying in patients with Sjögren's syndrome. BMC Immunol 2023; 24:12. [PMID: 37353767 PMCID: PMC10288785 DOI: 10.1186/s12865-023-00544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/01/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Patients with Sjögren's syndrome, like other patients with autoimmune disorders, display dysregulation in the function of their immune system. Fas and Fas Ligand (FasL) are among the dysregulated proteins. METHODS We studied Fas and FasL on IL-2Rα+ cells and in serum of patients with Sjögren's syndrome (n = 16) and healthy individuals (n = 16); both from same ethnic and geographical background. We used flow cytometry and enzyme-linked immunosorbent for this purpose. We also measured the expression of Bcl-2 and Bax by reverse transcription quantitative real-time PCR (RT-qPCR) and percentage of apoptotic and dead cells using Annexin V and 7-AAD staining in lymphocytes. RESULTS FasL was increased in patients' T and B cells while Fas was increased in patients' monocytes, T and B cells. No signs of increased apoptosis were found. sFas and sFasL in patients' serum were increased, although the increase in sFasL was not significant. We suspect an effect of non-steroidal anti-inflammatory therapy on B cells, explaining the decrease of the percentage Fas+ B cells found within our samples. In healthy individuals, there was a noticeable pattern in the expression of FasL which mutually correlated to populations of mononuclear cells; this correlation was absent in the patients with Sjögren's syndrome. CONCLUSIONS Mononuclear cells expressing IL-2Rα+ had upregulated Fas in Sjögren's syndrome. However, the rate of apoptosis based on Annexin V staining and the Bcl-2/Bax expression was not observed in mononuclear cells. We suspect a functional role of abnormal levels of Fas and FasL which has not been cleared yet.
Collapse
Affiliation(s)
- Irena Lindrova
- Department of Dentistry, Faculty of Medicine in Hradec Kralove, Charles University and University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic.
| | - Tereza Svadlakova
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Radka Vankova
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Marcela Chmelarova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Michaela Rosecka
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Eva Jozifkova
- Department of Biology, Jan Evangelista Purkyne University, Za Valcovnou 1000/8, 400 96, Usti and Labem, Czech Republic
| | - Martin Sembera
- Department of Dentistry, Faculty of Medicine in Hradec Kralove, Charles University and University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Radovan Slezak
- Department of Dentistry, Faculty of Medicine in Hradec Kralove, Charles University and University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| |
Collapse
|
54
|
Nowill AE, Caruso M, de Campos-Lima PO. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front Immunol 2023; 14:1133225. [PMID: 37388738 PMCID: PMC10303130 DOI: 10.3389/fimmu.2023.1133225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
Humanity did surprisingly well so far, considering how unprepared it was to respond to the coronavirus disease 2019 (COVID-19) threat. By blending old and ingenious new technology in the context of the accumulated knowledge on other human coronaviruses, several vaccine candidates were produced and tested in clinical trials in record time. Today, five vaccines account for the bulk of the more than 13 billion doses administered worldwide. The ability to elicit biding and neutralizing antibodies most often against the spike protein is a major component of the protection conferred by immunization but alone it is not enough to limit virus transmission. Thus, the surge in numbers of infected individuals by newer variants of concern (VOCs) was not accompanied by a proportional increase in severe disease and death rate. This is likely due to antiviral T-cell responses, whose evasion is more difficult to achieve. The present review helps navigating the very large literature on T cell immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination. We examine the successes and shortcomings of the vaccinal protection in the light of the emergence of VOCs with breakthrough potential. SARS-CoV-2 and human beings will likely coexist for a long while: it will be necessary to update existing vaccines to improve T-cell responses and attain better protection against COVID-19.
Collapse
Affiliation(s)
- Alexandre E. Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas, SP, Brazil
| | - Manuel Caruso
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Québec, QC, Canada
| | - Pedro O. de Campos-Lima
- Boldrini Children’s Center, Campinas, SP, Brazil
- Molecular and Morphofunctional Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
55
|
Gao CF, Vaikuntanathan S, Riesenfeld SJ. Dissection and Integration of Bursty Transcriptional Dynamics for Complex Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544828. [PMID: 37398022 PMCID: PMC10312759 DOI: 10.1101/2023.06.13.544828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
RNA velocity estimation is a potentially powerful tool to reveal the directionality of transcriptional changes in single-cell RNA-seq data, but it lacks accuracy, absent advanced metabolic labeling techniques. We developed a novel approach, TopicVelo, that disentangles simultaneous, yet distinct, dynamics by using a probabilistic topic model, a highly interpretable form of latent space factorization, to infer cells and genes associated with individual processes, thereby capturing cellular pluripotency or multifaceted functionality. Focusing on process-associated cells and genes enables accurate estimation of process-specific velocities via a master equation for a transcriptional burst model accounting for intrinsic stochasticity. The method obtains a global transition matrix by leveraging cell topic weights to integrate process-specific signals. In challenging systems, this method accurately recovers complex transitions and terminal states, while our novel use of first-passage time analysis provides insights into transient transitions. These results expand the limits of RNA velocity, empowering future studies of cell fate and functional responses.
Collapse
Affiliation(s)
| | | | - Samantha J Riesenfeld
- Institute for Biophysical Dynamics, University of Chicago, IL
- Pritzker School of Molecular Engineering, University of Chicago, IL
- Department of Medicine, University of Chicago, IL
- Committee on Immunology, University of Chicago, IL
| |
Collapse
|
56
|
Tangye SG, Puel A. The Th17/IL-17 Axis and Host Defense Against Fungal Infections. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1624-1634. [PMID: 37116791 DOI: 10.1016/j.jaip.2023.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Chronic mucocutaneous candidiasis (CMC) was recognized as a primary immunodeficiency in the early 1970s. However, for almost 40 years, its genetic etiology remained unknown. The progressive molecular and cellular description of inborn errors of immunity (IEI) with syndromic CMC pointed toward a possible role of IL-17-mediated immunity in protecting against fungal infection and CMC. Since 2011, novel IEI affecting either the response to or production of IL-17A and/or IL-17F (IL-17A/F) in patients with isolated or syndromic CMC provided formal proof of the pivotal role of the IL-17 axis in mucocutaneous immunity to Candida spp, and, to a lesser extent, to Staphylococcus aureus in humans. In contrast, IL-17-mediated immunity seems largely redundant against other common microbes in humans. In this review, we outline the current knowledge of IEI associated with impaired IL-17A/F-mediated immunity, highlighting our current understanding of the role of IL-17A/F in human immunity.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; School of Clinical Medicine, UNSW Faculty of Medicine & Health, Darlinghurst, NSW, Australia.
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, University of Paris, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, NY, USA
| |
Collapse
|
57
|
León B. A model of Th2 differentiation based on polarizing cytokine repression. Trends Immunol 2023; 44:399-407. [PMID: 37100645 PMCID: PMC10219849 DOI: 10.1016/j.it.2023.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Conventional dendritic cells (cDCs) can integrate multiple stimuli from the environment and provide three separate outputs in terms of antigen presentation, costimulation, and cytokine production; this guides the activation, expansion, and differentiation of distinct functional T helper subsets. Accordingly, the current dogma posits that T helper cell specification requires these three signals in sequence. Data show that T helper 2 (Th2) cell differentiation requires antigen presentation and costimulation from cDCs but does not require polarizing cytokines. In this opinion article, we propose that the 'third signal' driving Th2 cell responses is, in fact, the absence of polarizing cytokines; indeed, the secretion of the latter is actively suppressed in cDCs, concomitant with acquired pro-Th2 functions.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
58
|
Greten TF, Schwabe R, Bardeesy N, Ma L, Goyal L, Kelley RK, Wang XW. Immunology and immunotherapy of cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 2023; 20:349-365. [PMID: 36697706 DOI: 10.1038/s41575-022-00741-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 01/27/2023]
Abstract
Cholangiocarcinoma is the second most common primary liver cancer. Its incidence is low in the Western world but is rising globally. Surgery, chemotherapy and radiation therapy have been the only treatment options for decades. Progress in our molecular understanding of the disease and the identification of druggable targets, such as IDH1 mutations and FGFR2 fusions, has provided new treatment options. Immunotherapy has emerged as a potent strategy for many different types of cancer and has shown efficacy in combination with chemotherapy for cholangiocarcinoma. In this Review, we discuss findings related to key immunological aspects of cholangiocarcinoma, including the heterogeneous landscape of immune cells within the tumour microenvironment, the immunomodulatory effect of the microbiota and IDH1 mutations, and the association of immune-related signatures and patient outcomes. We introduce findings from preclinical immunotherapy studies, discuss future immune-mediated treatment options, and provide a summary of results from clinical trials testing immune-based approaches in patients with cholangiocarcinoma. This Review provides a thorough survey of our knowledge on immune signatures and immunotherapy in cholangiocarcinoma.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Liver Cancer Program, Bethesda, MD, USA.
| | - Robert Schwabe
- Institute of Human Nutrition, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Nabeel Bardeesy
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lipika Goyal
- Division of Oncology, Stanford School of Medicine, Palo Alto, CA, USA
| | - Robin K Kelley
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Xin W Wang
- Liver Cancer Program, Bethesda, MD, USA
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
59
|
Buzzelli AA, McWilliams IL, Shin B, Bryars MT, Harrington LE. Intrinsic STAT4 Expression Controls Effector CD4 T Cell Migration and Th17 Pathogenicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1667-1676. [PMID: 37093664 PMCID: PMC11302403 DOI: 10.4049/jimmunol.2200606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
Effector CD4 T cells are central to the development of autoimmune chronic inflammatory diseases, yet factors that mediate pathogenicity remain ill-defined. Single-nucleotide polymorphisms in the human STAT4 locus are associated with susceptibility to multiple autoimmune disorders, and Stat4 is linked to the pathogenic Th17 gene signature; however, Th17 cells differentiate independently of STAT4. Hence the interplay between STAT4 and CD4 T cell function, especially Th17 cells, during autoimmune disease is unclear. In this article, we demonstrate that CD4 T cell-intrinsic STAT4 expression is essential for the induction of autoimmune CNS inflammation in mice, in part by regulating the migration of CD4 T cells to the inflamed CNS. Moreover, unbiased transcriptional profiling revealed that STAT4 controls the expression of >200 genes in Th17 cells and is important for the upregulation of genes associated with IL-23-stimulated, pathogenic Th17 cells. Importantly, we show that Th17 cells specifically require STAT4 to evoke autoimmune inflammation, highlighting, to our knowledge, a novel function for STAT4 in Th17 pathogenicity.
Collapse
Affiliation(s)
- Ashlyn A. Buzzelli
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Ian L. McWilliams
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Boyoung Shin
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Morgan T. Bryars
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Laurie E. Harrington
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| |
Collapse
|
60
|
Iacobazzi D, Convertini P, Todisco S, Santarsiero A, Iacobazzi V, Infantino V. New Insights into NF-κB Signaling in Innate Immunity: Focus on Immunometabolic Crosstalks. BIOLOGY 2023; 12:776. [PMID: 37372061 DOI: 10.3390/biology12060776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The nuclear factor kappa B (NF-κB) is a family of transcription factors that, beyond their numberless functions in various cell processes, play a pivotal role in regulating immune cell activation. Two main pathways-canonical and non-canonical-are responsible for NF-κB activation and heterodimer translocation into the nucleus. A complex crosstalk between NF-κB signaling and metabolism is emerging in innate immunity. Metabolic enzymes and metabolites regulate NF-κB activity in many cases through post-translational modifications such as acetylation and phosphorylation. On the other hand, NF-κB affects immunometabolic pathways, including the citrate pathway, thereby building an intricate network. In this review, the emerging findings about NF-κB function in innate immunity and the interplay between NF-κB and immunometabolism have been discussed. These outcomes allow for a deeper comprehension of the molecular mechanisms underlying NF-κB function in innate immune cells. Moreover, the new insights are important in order to perceive NF-κB signaling as a potential therapeutic target for inflammatory/immune chronic diseases.
Collapse
Affiliation(s)
- Dominga Iacobazzi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Paolo Convertini
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
61
|
Hao Y, Miraghazadeh B, Chand R, Davies AR, Cardinez C, Kwong K, Downes MB, Sweet RA, Cañete PF, D'Orsogna LJ, Fulcher DA, Choo S, Yip D, Peters G, Yip S, Witney MJ, Nekrasov M, Feng ZP, Tscharke DC, Vinuesa CG, Cook MC. CTLA4 protects against maladaptive cytotoxicity during the differentiation of effector and follicular CD4 + T cells. Cell Mol Immunol 2023:10.1038/s41423-023-01027-8. [PMID: 37161048 PMCID: PMC10166697 DOI: 10.1038/s41423-023-01027-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
As chronic antigenic stimulation from infection and autoimmunity is a feature of primary antibody deficiency (PAD), analysis of affected patients could yield insights into T-cell differentiation and explain how environmental exposures modify clinical phenotypes conferred by single-gene defects. CD57 marks dysfunctional T cells that have differentiated after antigenic stimulation. Indeed, while circulating CD57+ CD4+ T cells are normally rare, we found that they are increased in patients with PAD and markedly increased with CTLA4 haploinsufficiency or blockade. We performed single-cell RNA-seq analysis of matched CD57+ CD4+ T cells from blood and tonsil samples. Circulating CD57+ CD4+ T cells (CD4cyt) exhibited a cytotoxic transcriptome similar to that of CD8+ effector cells, could kill B cells, and inhibited B-cell responses. CTLA4 restrained the formation of CD4cyt. While CD57 also marked an abundant subset of follicular helper T cells, which is consistent with their antigen-driven differentiation, this subset had a pre-exhaustion transcriptomic signature marked by TCF7, TOX, and ID3 expression and constitutive expression of CTLA4 and did not become cytotoxic even after CTLA4 inhibition. Thus, CD57+ CD4+ T-cell cytotoxicity and exhaustion phenotypes are compartmentalised between blood and germinal centers. CTLA4 is a key modifier of CD4+ T-cell cytotoxicity, and the pathological CD4cyt phenotype is accentuated by infection.
Collapse
Affiliation(s)
- Yuwei Hao
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Bahar Miraghazadeh
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Rochna Chand
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Ainsley R Davies
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Chelisa Cardinez
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kristy Kwong
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Morgan B Downes
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Rebecca A Sweet
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Pablo F Cañete
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Lloyd J D'Orsogna
- Department of Immunology, Fiona Stanley Hospital, Perth, WA, Australia
| | - David A Fulcher
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sharon Choo
- Department of Immunology, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Desmond Yip
- Department of Medical Oncology, The Canberra Hospital, Canberra, ACT, Australia
- ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Geoffrey Peters
- Department of Medical Oncology, The Canberra Hospital, Canberra, ACT, Australia
- ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Sonia Yip
- NHMRC Clinical Trials Unit, The University of Sydney, Sydney, NSW, Australia
| | - Matthew J Witney
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Maxim Nekrasov
- The ACRF Biomolecular Resource Facility, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Zhi-Ping Feng
- ANU Bioinformatics Consultancy, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C Tscharke
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Carola G Vinuesa
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Matthew C Cook
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
- Translational Research Unit, The Canberra Hospital, Canberra, ACT, Australia.
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
- ANU Medical School, The Australian National University, Canberra, ACT, Australia.
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
62
|
Cui K, Chen Z, Cao Y, Liu S, Ren G, Hu G, Fang D, Wei D, Liu C, Zhu J, Wu C, Zhao K. Restraint of IFN-γ expression through a distal silencer CNS-28 for tissue homeostasis. Immunity 2023; 56:944-958.e6. [PMID: 37040761 PMCID: PMC10175192 DOI: 10.1016/j.immuni.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.
Collapse
Affiliation(s)
- Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Difeng Fang
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core Facility, DIR, NHLBI, NIH, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|
63
|
McFarlane A, Pohler E, Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J 2023; 290:2525-2552. [PMID: 35246947 PMCID: PMC10952290 DOI: 10.1111/febs.16420] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Cytokines are soluble factors vital for mammalian physiology. Cytokines elicit highly pleiotropic activities, characterized by their ability to induce a wide spectrum of functional responses in a diverse range of cell subsets, which makes their study very challenging. Cytokines activate signalling via receptor dimerization/oligomerization, triggering activation of the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) signalling pathway. Given the strong crosstalk and shared usage of key components of cytokine signalling pathways, a long-standing question in the field pertains to how functional diversity is achieved by cytokines. Here, we discuss how biophysical - for example, ligand-receptor binding affinity and topology - and cellular - for example, receptor, JAK and STAT protein levels, endosomal compartment - parameters contribute to the modulation and diversification of cytokine responses. We review how these parameters ultimately converge into a common mechanism to fine-tune cytokine signalling that involves the control of the number of Tyr residues phosphorylated in the receptor intracellular domain upon cytokine stimulation. This results in different kinetics of STAT activation, and induction of specific gene expression programs, ensuring the generation of functional diversity by cytokines using a limited set of signalling intermediaries. We describe how these first principles of cytokine signalling have been exploited using protein engineering to design cytokine variants with more specific and less toxic responses for immunotherapy.
Collapse
Affiliation(s)
- Alison McFarlane
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Elizabeth Pohler
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Ignacio Moraga
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| |
Collapse
|
64
|
Yan S, Si Y, Zhou W, Cheng R, Wang P, Wang D, Ding W, Shi W, Jiang Q, Yang F, Yao L. Single-cell transcriptomics reveals the interaction between peripheral CD4+ CTLs and mesencephalic endothelial cells mediated by IFNG in Parkinson's disease. Comput Biol Med 2023; 158:106801. [PMID: 36989741 DOI: 10.1016/j.compbiomed.2023.106801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Parkinson's disease (PD) is characterized by dopaminergic neurons degeneration in the substantia nigra pars compacta. Increasing evidence indicates that peripheral CD4+ T cells, a vital pathological component of PD, have been implicated in systemic inflammation activation, blood-brain barrier (BBB) dysfunction, central nervous system infiltration, and consequent neurons degeneration. However, there is no consensus on CD4+ T cell types' exact phenotypic characteristics in systemic inflammation and the mechanism of CD4+ T cells traffic into the BBB in patients with PD. In this study, we employed single-cell RNA sequencing (scRNA-seq) to elucidate the potential mechanism of T cells on the breakdown of BBB. The PD-associated Cytotoxic CD4+ T cells (CD4+ CTLs) were characterized by a significant increase in proportion as well as enhancement of interferon-gamma (IFNG) response and cell adhesion. Meanwhile, TBX21, IRF1 and NFATC2, identified as the key transcription factors in effector CD4+ T cells differentiation, induced overexpression of target genes-IFNG in CD4+ CTLs. Interestingly, endothelial cells (ECs) in PD patients were discovered to be more responsive to IFNG than other cell types of midbrain. Furthermore, the cell-cell communication analysis between CD4+ T cells and midbrain cells identified IFNG/IFNGR1 and SPP1/ITGB1 as the ligand-receptor pairs to mediate CD4+ CTLs' infiltration into the central nervous system (CNS) through the weakened ECs' tight junction. Together, these results suggested that PD-specific peripheral CD4+ CTLs might influence BBB function by migrating to mesencephalic endothelial cells (ECs) and activating the IFNG response in ECs.
Collapse
|
65
|
Kanno T, Nakajima T, Miyako K, Endo Y. Lipid metabolism in Th17 cell function. Pharmacol Ther 2023; 245:108411. [PMID: 37037407 DOI: 10.1016/j.pharmthera.2023.108411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Among the subset of T helper cells, Th17 cells are known to play a crucial role in the pathogenesis of various autoimmune disorders, such as psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. The master transcription factor retinoid-related orphan receptor gamma t (RORγt), a nuclear hormone receptor, plays a vital role in inducing Th17-cell differentiation. Recent findings suggest that metabolic control is critical for Th17-cell differentiation, particularly through the engagement of de novo lipid biosynthesis. Inhibition of lipid biosynthesis, either through the use of pharmacological inhibitors or by the deficiency of related enzymes in CD4+ T cells, results in significant suppression of Th17-cell differentiation. Mechanistic studies indicate that metabolic fluxes through both the fatty acid and cholesterol biosynthetic pathways are essential for controlling RORγt activity through the generation of a lipid ligand of RORγt. This review highlights recent findings that underscore the significant role of lipid metabolism in the differentiation and function of Th17 cells, as well as elucidating the distinctive molecular pathways that drive the activation of RORγt by cellular lipid metabolism. We further elaborate on a pioneering therapeutic approach for ameliorating autoimmune disorders via the inhibition of RORγt.
Collapse
Affiliation(s)
- Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Takahiro Nakajima
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan.
| |
Collapse
|
66
|
Tian H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Cytokine networks provide sufficient evidence for the differentiation of CD4 + T cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104627. [PMID: 36587713 DOI: 10.1016/j.dci.2022.104627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Cytokines, a class of small molecular proteins with a wide range of biological activities, are secreted mainly by immune cells and function by binding to the corresponding receptors to regulate cell growth, differentiation and effects. CD4+ T cells can be defined into different lineages based on the unique set of signature cytokines and transcription factors, including helper T cells (Th1, Th2, Th17) and regulatory T cells (Treg). In teleost, CD4+ T cells have been identified in a variety of fish species, thought to play roles as Th cells, and shown to be involved in the immune response following specific antigen stimulation. With the update of sequencing technologies, a variety of cytokines and transcription factors capable of characterizing CD4+ T cell subsets also have been described in fish, including hallmark cytokines such as IFN-γ, TNF-α, IL-4, IL-17, IL-10, TGF-β and unique transcription factors such as T-bet, GATA3, RORγt, and Foxp3. Hence, there is increasing evidence that the subpopulation of Th and Treg cells present in mammals may also exist in teleost fish. However, the differentiation, plasticity and precise roles of Th cell subsets in mammals remain controversial. Research on the identification and differentiation of fish Th cells is still in its infancy and requires more significant effort. Here we will review recent research advances in characterizing the differentiation of fish CD4+ T cells by cytokines and transcription factors, mainly including the identification of Th and Treg cell hallmark cytokines and transcription factors, the regulatory role of cytokines on Th cell differentiation, and the function of Th and Treg cells in the immune response. The primary purpose of this review is to deepen our understanding of cytokine networks in characterizing the differentiation of CD4+ T cells in teleost.
Collapse
Affiliation(s)
- Hongfei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
67
|
Kim MH, Lee CW. Phosphatase Ssu72 Is Essential for Homeostatic Balance Between CD4 + T Cell Lineages. Immune Netw 2023; 23:e12. [PMID: 37179750 PMCID: PMC10166661 DOI: 10.4110/in.2023.23.e12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 05/15/2023] Open
Abstract
Ssu72, a dual-specificity protein phosphatase, not only participates in transcription biogenesis, but also affects pathophysiological functions in a tissue-specific manner. Recently, it has been shown that Ssu72 is required for T cell differentiation and function by controlling multiple immune receptor-mediated signals, including TCR and several cytokine receptor signaling pathways. Ssu72 deficiency in T cells is associated with impaired fine-tuning of receptor-mediated signaling and a defect in CD4+ T cell homeostasis, resulting in immune-mediated diseases. However, the mechanism by which Ssu72 in T cells integrates the pathophysiology of multiple immune-mediated diseases is still poorly elucidated. In this review, we will focus on the immunoregulatory mechanism of Ssu72 phosphatase in CD4+ T cell differentiation, activation, and phenotypic function. We will also discuss the current understanding of the correlation between Ssu72 in T cells and pathological functions which suggests that Ssu72 might be a therapeutic target in autoimmune disorders and other diseases.
Collapse
Affiliation(s)
- Min-Hee Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
68
|
Kim YJ, Oh J, Jung S, Kim CJ, Choi J, Jeon YK, Kim HJ, Kim JW, Suh CH, Lee Y, Im SH, Crotty S, Choi YS. The transcription factor Mef2d regulates B:T synapse-dependent GC-T FH differentiation and IL-21-mediated humoral immunity. Sci Immunol 2023; 8:eadf2248. [PMID: 36961907 PMCID: PMC10311795 DOI: 10.1126/sciimmunol.adf2248] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/15/2023] [Indexed: 03/26/2023]
Abstract
Communication between CD4 T cells and cognate B cells is key for the former to fully mature into germinal center-T follicular helper (GC-TFH) cells and for the latter to mount a CD4 T cell-dependent humoral immune response. Although this interaction occurs in a B:T synapse-dependent manner, how CD4 T cells transcriptionally regulate B:T synapse formation remains largely unknown. Here, we report that Mef2d, an isoform of the myocyte enhancer factor 2 (Mef2) transcription factor family, is a critical regulator of this process. In CD4 T cells, Mef2d negatively regulates expression of Sh2d1a, which encodes SLAM-associated protein (SAP), a critical regulator of B:T synapses. We found that Mef2d regulates Sh2d1a expression via DNA binding-dependent transcriptional repression, inhibiting SAP-dependent B:T synapse formation and preventing antigen-specific CD4 T cells from differentiating into GC-TFH cells. Mef2d also impeded IL-21 production by CD4 T cells, an important B cell help signaling molecule, via direct repression of the Il21 gene. In contrast, CD4 T cell-specific disruption of Mef2d led to a substantial increase in GC-TFH differentiation in response to protein immunization, concurrent with enhanced SAP expression. MEF2D mRNA expression inversely correlates with human systemic lupus erythematosus (SLE) patient autoimmune parameters, including circulating TFH-like cell frequencies, autoantibodies, and SLEDAI scores. These findings highlight Mef2d as a pivotal rheostat in CD4 T cells for controlling GC formation and antibody production by B cells.
Collapse
Affiliation(s)
- Ye-Ji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jeein Oh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Soohan Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Jinyong Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul, Korea
| | - Ji-Won Kim
- Department of Rheumatology, Ajou University School of Medicine, Gyeonggi-do, Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Gyeonggi-do, Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
- ImmunoBiome Inc., Pohang, Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Korea
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- University of California San Diego, Department of Medicine, Division of Infectious Diseases and Global Public Health, La Jolla, CA, USA
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
69
|
Paust HJ, Song N, De Feo D, Asada N, Tuzlak S, Zhao Y, Riedel JH, Hellmig M, Sivayoganathan A, Peters A, Kaffke A, Borchers A, Wenzel UO, Steinmetz OM, Tiegs G, Meister E, Mack M, Kurts C, von Vietinghoff S, Lindenmeyer MT, Hoxha E, Stahl RAK, Huber TB, Bonn S, Meyer-Schwesinger C, Wiech T, Turner JE, Becher B, Krebs CF, Panzer U. CD4 + T cells produce GM-CSF and drive immune-mediated glomerular disease by licensing monocyte-derived cells to produce MMP12. Sci Transl Med 2023; 15:eadd6137. [PMID: 36921033 DOI: 10.1126/scitranslmed.add6137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
GM-CSF in glomerulonephritisDespite glomerulonephritis being an immune-mediated disease, the contributions of individual immune cell types are not clear. To address this gap in knowledge, Paust et al. characterized pathological immune cells in samples from patients with glomerulonephritis and in samples from mice with the disease. The authors found that CD4+ T cells producing granulocyte-macrophage colony-stimulating factor (GM-CSF) licensed monocytes to promote disease by producing matrix metalloproteinase 12 and disrupting the glomerular basement membrane. Targeting GM-CSF to inhibit this axis reduced disease severity in mice, implicating this cytokine as a potential therapeutic target for patients with glomerulonephritis. -CM.
Collapse
Affiliation(s)
- Hans-Joachim Paust
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ning Song
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Nariaki Asada
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Selma Tuzlak
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Yu Zhao
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.,Institute of Medical Systems Biology, Center for Biomedical AI, Center for Molecular Neurobiology Hamburg, Hamburg 20246, Germany
| | - Jan-Hendrik Riedel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Malte Hellmig
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | | | - Anett Peters
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Anna Kaffke
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Alina Borchers
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ulrich O Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Oliver M Steinmetz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf 20246, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Elisabeth Meister
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg 93042, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn 53127, Germany
| | | | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Rolf A K Stahl
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Biomedical AI, Center for Molecular Neurobiology Hamburg, Hamburg 20246, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thorsten Wiech
- Institute of Pathology, Division of Nephropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Christian F Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
70
|
Abstract
Inflammatory bowel diseases (IBD) are currently recognized to involve chronic intestinal inflammation in genetically susceptible individuals. Patients with IBD mainly develop gastrointestinal inflammation, but it is sometimes accompanied by extraintestinal manifestations such as arthritis, erythema nodosum, episcleritis, pyoderma gangrenosum, uveitis, and primary sclerosing cholangitis. These clinical aspects imply the importance of interorgan networks in IBD. In the gastrointestinal tract, immune cells are influenced by multiple local environmental factors including microbiota, dietary environment, and intercellular networks, which further alter molecular networks in immune cells. Therefore, deciphering networks at interorgan, intercellular, and intracellular levels should help to obtain a comprehensive understanding of IBD. This review focuses on the intestinal immune system, which governs the physiological and pathological functions of the digestive system in harmony with the other organs.
Collapse
|
71
|
Wang YR, Cui WQ, Wu HY, Xu XD, Xu XQ. The role of T cells in acute ischemic stroke. Brain Res Bull 2023; 196:20-33. [PMID: 36906042 DOI: 10.1016/j.brainresbull.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Acute ischemic stroke (AIS) is associated with high rates of disability and mortality, exerting a substantial impact on overall survival and health-related quality of life. Treatment of AIS remains challenging given that the underlying pathologic mechanisms remain unclear. However, recent research has demonstrated that the immune system plays a key role in the development of AIS. Numerous studies have reported infiltration of T cells into ischemic brain tissue. While some types of T cells can promote the development of inflammatory responses and aggravate ischemic damage in patients with AIS, other T cells appear to exert neuroprotective effects via immunosuppression and other mechanisms. In this review, we discuss the recent findings regarding the infiltration of T cells into ischemic brain tissue, and the mechanisms governing how T cells can facilitate tissue injury or neuroprotection in AIS. Factors influencing the function of T cells, such as intestinal microflora and sex differences, are also discussed. We also explore the recent research on the effect of non-coding RNA on T cells after stroke, as well as the potential for specifically targeting T cells in the treatment of stroke patients.
Collapse
Affiliation(s)
- Yi-Ran Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Dong Xu
- Experimental Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Qing Xu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
72
|
Schwarz C, Eschenhagen P, Schmidt H, Hohnstein T, Iwert C, Grehn C, Roehmel J, Steinke E, Stahl M, Lozza L, Tikhonova E, Rosati E, Stervbo U, Babel N, Mainz JG, Wisplinghoff H, Ebel F, Jia LJ, Blango MG, Hortschansky P, Brunke S, Hube B, Brakhage AA, Kniemeyer O, Scheffold A, Bacher P. Antigen specificity and cross-reactivity drive functionally diverse anti-Aspergillus fumigatus T cell responses in cystic fibrosis. J Clin Invest 2023; 133:161593. [PMID: 36701198 PMCID: PMC9974102 DOI: 10.1172/jci161593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUNDThe fungus Aspergillus fumigatus causes a variety of clinical phenotypes in patients with cystic fibrosis (pwCF). Th cells orchestrate immune responses against fungi, but the types of A. fumigatus-specific Th cells in pwCF and their contribution to protective immunity or inflammation remain poorly characterized.METHODSWe used antigen-reactive T cell enrichment (ARTE) to investigate fungus-reactive Th cells in peripheral blood of pwCF and healthy controls.RESULTSWe show that clonally expanded, high-avidity A. fumigatus-specific effector Th cells, which were absent in healthy donors, developed in pwCF. Individual patients were characterized by distinct Th1-, Th2-, or Th17-dominated responses that remained stable over several years. These different Th subsets target different A. fumigatus proteins, indicating that differential antigen uptake and presentation directs Th cell subset development. Patients with allergic bronchopulmonary aspergillosis (ABPA) are characterized by high frequencies of Th2 cells that cross-recognize various filamentous fungi.CONCLUSIONOur data highlight the development of heterogenous Th responses targeting different protein fractions of a single fungal pathogen and identify the development of multispecies cross-reactive Th2 cells as a potential risk factor for ABPA.FUNDINGGerman Research Foundation (DFG), under Germany's Excellence Strategy (EXC 2167-390884018 "Precision Medicine in Chronic Inflammation" and EXC 2051-390713860 "Balance of the Microverse"); Oskar Helene Heim Stiftung; Christiane Herzog Stiftung; Mukoviszidose Institut gGmb; German Cystic Fibrosis Association Mukoviszidose e.V; German Federal Ministry of Education and Science (BMBF) InfectControl 2020 Projects AnDiPath (BMBF 03ZZ0838A+B).
Collapse
Affiliation(s)
- Carsten Schwarz
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany
| | - Patience Eschenhagen
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany
| | - Henrijette Schmidt
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany.,Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| | - Thordis Hohnstein
- Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Christina Iwert
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Translational Immunology, Berlin, Germany
| | - Claudia Grehn
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Roehmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt – Universität zu Berlin, Berlin, Germany
| | - Eva Steinke
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt – Universität zu Berlin, Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Mirjam Stahl
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt – Universität zu Berlin, Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Laura Lozza
- Cell Biology Laboratory, Precision for Medicine GmbH, Berlin, Germany
| | - Ekaterina Tikhonova
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany.,Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany.,Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - Nina Babel
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany.,Center for Translational Medicine and Immune Diagnostics Laboratory, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - Jochen G. Mainz
- Brandenburg Medical School/Medizinische Hochschule Brandenburg (MHB), University, Pediatric Pulmonology/Cystic Fibrosis, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Hilmar Wisplinghoff
- Labor Dr. Wisplinghoff, Cologne, Germany.,Institute for Virology and Microbiology, Witten/Herdecke University, Witten, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, LMU, Munich, Germany
| | - Lei-Jie Jia
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Matthew G. Blango
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| | - Petra Bacher
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany.,Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
73
|
Blood Biomarkers in Patients with Parkinson's Disease: A Review in Context of Anesthetic Care. Diagnostics (Basel) 2023; 13:diagnostics13040693. [PMID: 36832181 PMCID: PMC9955162 DOI: 10.3390/diagnostics13040693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Parkinson's disease (PD) is the second most common inflammatory neurodegenerative disorder after dementia. Preclinical and epidemiological data strongly suggest that chronic neuroinflammation slowly induces neuronal dysfunction. Activated microglia secrete several neurotoxic substances, such as chemokines and proinflammatory cytokines, which may promote blood-brain barrier (BBB) permeabilization. CD4+ T cells comprise proinflammatory cells such as T helper (Th) 1 and Th17 cells, as well as anti-inflammatory cells such as Th2 and T regulatory cells (Tregs). Th1 and Th17 cells can be detrimental to dopamine neurons, whereas Th2 and Tregs are neuroprotective. The results of studies on the serum levels of cytokines such as IFN-γ and TNF-α secreted by Th1 T cells, IL-8 and IL-10 secreted by Th2 T cells, and IL-17 secreted by Th17 cells in PD patients are not uniform. In addition, the relationships between serum cytokine levels and motor and non-motor symptoms of PD are controversial. Surgical stress and anesthesia induce inflammatory responses by disturbing the balance between pro- and anti-inflammatory cytokines, which may exacerbate the neuroinflammatory response in PD patients. Here we review studies on blood inflammatory biomarkers in PD patients and discuss the roles of surgery and anesthesia in PD progression.
Collapse
|
74
|
Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4 + T cells. Cytokine Growth Factor Rev 2023; 69:14-27. [PMID: 36028461 DOI: 10.1016/j.cytogfr.2022.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.
Collapse
Affiliation(s)
| | - Girdhari Lal
- National Centre for Cell Science, SPPU campus, Ganeshkhind, Pune, MH 411007, India.
| |
Collapse
|
75
|
Lee GR. Molecular Mechanisms of T Helper Cell Differentiation and Functional Specialization. Immune Netw 2023; 23:e4. [PMID: 36911803 PMCID: PMC9995992 DOI: 10.4110/in.2023.23.e4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 03/07/2023] Open
Abstract
Th cells, which orchestrate immune responses to various pathogens, differentiate from naïve CD4 T cells into several subsets that stimulate and regulate immune responses against various types of pathogens, as well as a variety of immune-related diseases. Decades of research have revealed that the fate decision processes are controlled by cytokines, cytokine receptor signaling, and master transcription factors that drive the differentiation programs. Since the Th1 and Th2 paradigm was proposed, many subsets have been added to the list. In this review, I will summarize these events, including the fate decision processes, subset functions, transcriptional regulation, metabolic regulation, and plasticity and heterogeneity. I will also introduce current topics of interest.
Collapse
Affiliation(s)
- Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea
| |
Collapse
|
76
|
Mukherjee I, Singh S, Karmakar A, Kashyap N, Mridha AR, Sharma JB, Luthra K, Sharma RS, Biswas S, Dhar R, Karmakar S. New immune horizons in therapeutics and diagnostic approaches to Preeclampsia. Am J Reprod Immunol 2023; 89:e13670. [PMID: 36565013 DOI: 10.1111/aji.13670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 11/02/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are one of the commonest maladies, affecting 5%-10% of pregnancies worldwide. The American College of Obstetricians and Gynecologists (ACOG) identifies four categories of HDP, namely gestational hypertension (GH), Preeclampsia (PE), chronic hypertension (CH), and CH with superimposed PE. PE is a multisystem, heterogeneous disorder that encompasses 2%-8% of all pregnancy-related complications, contributing to about 9% to 26% of maternal deaths in low-income countries and 16% in high-income countries. These translate to 50 000 maternal deaths and over 500 000 fetal deaths worldwide, therefore demanding high priority in understanding clinical presentation, screening, diagnostic criteria, and effective management. PE is accompanied by uteroplacental insufficiency leading to vascular and metabolic changes, vasoconstriction, and end-organ ischemia. PE is diagnosed after 20 weeks of pregnancy in women who were previously normotensive or hypertensive. Besides shallow trophoblast invasion and inadequate remodeling of uterine arteries, dysregulation of the nonimmune system has been the focal point in PE. This results from aberrant immune system activation and imbalanced differentiation of T cells. Further, a failure of tolerance toward the semi-allogenic fetus results due to altered distribution of Tregs such as CD4+FoxP3+ or CD4+CD25+CD127(low) FoxP3+ cells, thereby creating a cytotoxic environment by suboptimal production of immunosuppressive cytokines like IL-10, IL-4, and IL-13. Also, intracellular production of complement protein C5a may result in decreased FoxP3+ regulatory T cells. With immune system dysfunction as a major driver in PE pathogenesis, it is logical that therapeutic targeting of components of the immune system with pharmacologic agents like anti-inflammatory and immune-modulating molecules are either being used or under clinical trial. Cholesterol synthesis inhibitors like Pravastatin may improve placental perfusion in PE, while Eculizumab (monoclonal antibody inhibiting C5) and small molecular inhibitor of C5a, Zilucoplan are under investigation. Monoclonal antibody against IL-17(Secukinumab) has been proposed to alter the Th imbalance in PE. Autologous Treg therapy and immune checkpoint inhibitors like anti-CTLA-4 are emerging as new candidates in immune horizons for PE management in the future.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Abhibrato Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Neha Kashyap
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Asit Ranjan Mridha
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Jai Bhagwan Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Radhey Shyam Sharma
- Ex-Head and Scientist G, Indian Council of Medical Research, New Delhi, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
77
|
Abstract
T cells are one of few cell types in adult mammals that can proliferate extensively and differentiate diversely upon stimulation, which serves as an excellent example to dissect the metabolic basis of cell fate decisions. During the last decade, there has been an explosion of research into the metabolic control of T-cell responses. The roles of common metabolic pathways, including glycolysis, lipid metabolism, and mitochondrial oxidative phosphorylation, in T-cell responses have been well characterized, and their mechanisms of action are starting to emerge. In this review, we present several considerations for T-cell metabolism-focused research, while providing an overview of the metabolic control of T-cell fate decisions during their life journey. We try to synthesize principles that explain the causal relationship between cellular metabolism and T-cell fate decision. We also discuss key unresolved questions and challenges in targeting T-cell metabolism to treat disease.
Collapse
Affiliation(s)
- Min Peng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Ming O. Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| |
Collapse
|
78
|
Nicolas A, Sannier G, Dubé M, Nayrac M, Tauzin A, Painter MM, Goel RR, Laporte M, Gendron-Lepage G, Medjahed H, Williams JC, Brassard N, Niessl J, Gokool L, Morrisseau C, Arlotto P, Tremblay C, Martel-Laferrière V, Finzi A, Greenplate AR, Wherry EJ, Kaufmann DE. An extended SARS-CoV-2 mRNA vaccine prime-boost interval enhances B cell immunity with limited impact on T cells. iScience 2023; 26:105904. [PMID: 36594081 PMCID: PMC9797215 DOI: 10.1016/j.isci.2022.105904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/10/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Spacing the first two doses of SARS-CoV-2 mRNA vaccines beyond 3-4 weeks raised initial concerns about vaccine efficacy. While studies have since shown that long-interval regimens induce robust antibody responses, their impact on B and T cell immunity is poorly known. Here, we compare SARS-CoV-2 naive donors B and T cell responses to two mRNA vaccine doses administered 3-4 versus 16 weeks apart. After boost, the longer interval results in a higher magnitude and a more mature phenotype of RBD-specific B cells. While the two geographically distinct cohorts present quantitative and qualitative differences in T cell responses at baseline and after priming, the second dose led to convergent features with overall similar magnitude, phenotype, and function of CD4+ and CD8+ T cell responses at post-boost memory time points. Therefore, compared to standard regimens, a 16-week interval has a favorable impact on the B cell compartment but minimally affects T cell immunity.
Collapse
Affiliation(s)
- Alexandre Nicolas
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Gérémy Sannier
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
| | - Manon Nayrac
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Mark M. Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Immune Health®, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rishi R. Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Immune Health®, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | - Justine C. Williams
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Julia Niessl
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Laurie Gokool
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
| | | | | | - Cécile Tremblay
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Allison R. Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Immune Health®, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - E. John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Immune Health®, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel E. Kaufmann
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9 Canada
- Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Division of Infectious Diseases, Department of Medicine, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
79
|
Fang D, Healy A, Zhu J. Differential regulation of lineage-determining transcription factor expression in innate lymphoid cell and adaptive T helper cell subsets. Front Immunol 2023; 13:1081153. [PMID: 36685550 PMCID: PMC9846361 DOI: 10.3389/fimmu.2022.1081153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
CD4 T helper (Th) cell subsets, including Th1, Th2 and Th17 cells, and their innate counterparts innate lymphoid cell (ILC) subsets consisting of ILC1s, ILC2s and ILC3s, display similar effector cytokine-producing capabilities during pro-inflammatory immune responses. These lymphoid cell subsets utilize the same set of lineage-determining transcription factors (LDTFs) for their differentiation, development and functions. The distinct ontogeny and developmental niches between Th cells and ILCs indicate that they may adopt different external signals for the induction of LDTF during lineage commitment. Increasing evidence demonstrates that many conserved cis-regulatory elements at the gene loci of LDTFs are often preferentially utilized for the induction of LDTF expression during Th cell differentiation and ILC development at different stages. In this review, we discuss the functions of lineage-related cis-regulatory elements in inducing T-bet, GATA3 or RORγt expression based on the genetic evidence provided in recent publications. We also review and compare the upstream signals involved in LDTF induction in Th cells and ILCs both in vitro and in vivo. Finally, we discuss the possible mechanisms and physiological importance of regulating LDTF dynamic expression during ILC development and activation.
Collapse
Affiliation(s)
- Difeng Fang
- *Correspondence: Difeng Fang, ; Jinfang Zhu,
| | | | - Jinfang Zhu
- *Correspondence: Difeng Fang, ; Jinfang Zhu,
| |
Collapse
|
80
|
O'Shea JJ, Gadina M, Sciumè, G, Meylan F. Cytokines and Cytokine Receptors. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
81
|
Vacchio MS. Generation of Murine T Cell Effector Populations In Vitro. Methods Mol Biol 2023; 2580:173-186. [PMID: 36374457 DOI: 10.1007/978-1-0716-2740-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Expansion of T cell subsets in vitro is a valuable tool for exploration of effector function and differentiation. Here we provide protocols for in vitro differentiation of CD4 and CD8 T cell subsets from naïve T cells for functional studies.
Collapse
Affiliation(s)
- Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
82
|
Wong P, Cina DP, Sherwood KR, Fenninger F, Sapir-Pichhadze R, Polychronakos C, Lan J, Keown PA. Clinical application of immune repertoire sequencing in solid organ transplant. Front Immunol 2023; 14:1100479. [PMID: 36865546 PMCID: PMC9971933 DOI: 10.3389/fimmu.2023.1100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Background Measurement of T cell receptor (TCR) or B cell receptor (BCR) gene utilization may be valuable in monitoring the dynamic changes in donor-reactive clonal populations following transplantation and enabling adjustment in therapy to avoid the consequences of excess immune suppression or to prevent rejection with contingent graft damage and to indicate the development of tolerance. Objective We performed a review of current literature to examine research in immune repertoire sequencing in organ transplantation and to assess the feasibility of this technology for clinical application in immune monitoring. Methods We searched MEDLINE and PubMed Central for English-language studies published between 2010 and 2021 that examined T cell/B cell repertoire dynamics upon immune activation. Manual filtering of the search results was performed based on relevancy and predefined inclusion criteria. Data were extracted based on study and methodology characteristics. Results Our initial search yielded 1933 articles of which 37 met the inclusion criteria; 16 of these were kidney transplant studies (43%) and 21 were other or general transplantation studies (57%). The predominant method for repertoire characterization was sequencing the CDR3 region of the TCR β chain. Repertoires of transplant recipients were found to have decreased diversity in both rejectors and non-rejectors when compared to healthy controls. Rejectors and those with opportunistic infections were more likely to have clonal expansion in T or B cell populations. Mixed lymphocyte culture followed by TCR sequencing was used in 6 studies to define an alloreactive repertoire and in specialized transplant settings to track tolerance. Conclusion Methodological approaches to immune repertoire sequencing are becoming established and offer considerable potential as a novel clinical tool for pre- and post-transplant immune monitoring.
Collapse
Affiliation(s)
- Paaksum Wong
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Davide P Cina
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Karen R Sherwood
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Franz Fenninger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ruth Sapir-Pichhadze
- Department of Medicine, Division of Nephrology, McGill University, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Constantin Polychronakos
- Department of Pediatrics, The Research Institute of the McGill University Health Centre and the Montreal Children's Hospital, Montreal, QC, Canada
| | - James Lan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul A Keown
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
83
|
Chopp L, Redmond C, O'Shea JJ, Schwartz DM. From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol 2023; 151:81-97. [PMID: 36272581 PMCID: PMC9825672 DOI: 10.1016/j.jaci.2022.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
T cells are critical orchestrators of the adaptive immune response that optimally eliminate a specific pathogen. Aberrant T-cell development and function are implicated in a broad range of human disease including immunodeficiencies, autoimmune diseases, and allergic diseases. Accordingly, therapies targeting T cells and their effector cytokines have markedly improved the care of patients with immune dysregulatory diseases. Newer discoveries concerning T-cell-mediated antitumor immunity and T-cell exhaustion have further prompted development of highly effective and novel treatment modalities for malignancies, including checkpoint inhibitors and antigen-reactive T cells. Recent discoveries are also uncovering the depth and variability of T-cell phenotypes: while T cells have long been described using a subset-based classification system, next-generation sequencing technologies suggest an astounding degree of complexity and heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda
| | - Christopher Redmond
- Clinical Fellowship Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh.
| |
Collapse
|
84
|
Hofland T, Danelli L, Cornish G, Donnarumma T, Hunt DM, de Carvalho LPS, Kassiotis G. CD4 + T cell memory is impaired by species-specific cytotoxic differentiation, but not by TCF-1 loss. Front Immunol 2023; 14:1168125. [PMID: 37122720 PMCID: PMC10140371 DOI: 10.3389/fimmu.2023.1168125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
CD4+ T cells are typically considered as 'helper' or 'regulatory' populations that support and orchestrate the responses of other lymphocytes. However, they can also develop potent granzyme (Gzm)-mediated cytotoxic activity and CD4+ cytotoxic T cells (CTLs) have been amply documented both in humans and in mice, particularly in the context of human chronic infection and cancer. Despite the established description of CD4+ CTLs, as well as of the critical cytotoxic activity they exert against MHC class II-expressing targets, their developmental and memory maintenance requirements remain elusive. This is at least in part owing to the lack of a murine experimental system where CD4+ CTLs are stably induced. Here, we show that viral and bacterial vectors encoding the same epitope induce distinct CD4+ CTL responses in challenged mice, all of which are nevertheless transient in nature and lack recall properties. Consistent with prior reports, CD4+ CTL differentiation is accompanied by loss of TCF-1 expression, a transcription factor considered essential for memory T cell survival. Using genetic ablation of Tcf7, which encodes TCF-1, at the time of CD4+ T cell activation, we further show that, contrary to observations in CD8+ T cells, continued expression of TCF-1 is not required for CD4+ T cell memory survival. Whilst Tcf7-deficient CD4+ T cells persisted normally following retroviral infection, the CD4+ CTL subset still declined, precluding conclusive determination of the requirement for TCF-1 for murine CD4+ CTL survival. Using xenotransplantation of human CD4+ T cells into murine recipients, we demonstrate that human CD4+ CTLs develop and persist in the same experimental conditions where murine CD4+ CTLs fail to persist. These observations uncover a species-specific defect in murine CD4+ CTL persistence with implications for their use as a model system.
Collapse
Affiliation(s)
- Tom Hofland
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Luca Danelli
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Georgina Cornish
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tiziano Donnarumma
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Deborah M. Hunt
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Luiz P. S. de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, United Kingdom
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- *Correspondence: George Kassiotis,
| |
Collapse
|
85
|
The Flavonoid Naringenin Alleviates Collagen-Induced Arthritis through Curbing the Migration and Polarization of CD4 + T Lymphocyte Driven by Regulating Mitochondrial Fission. Int J Mol Sci 2022; 24:ijms24010279. [PMID: 36613721 PMCID: PMC9820519 DOI: 10.3390/ijms24010279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease. Due to local infiltration and damage to the joints, activated CD4+ T cells play a crucial role in the progression of RA. However, the exact regulatory mechanisms are perplexing, which makes the effective management of RA frustrating. This study aimed to investigate the effect of mitochondria fission on the polarization and migration of CD4+ T cells as well as the regulatory mechanism of NAR, so as to provide enlightenment on therapeutic targets and novel strategies for the treatment of RA. In this study, a collagen-induced arthritis (CIA) model was established, and rats were randomly given saline or naringenin (NAR, 10 mg/kg, 20 mg/kg, 50 mg/kg, i.p.) once a day, before being euthanized on the 42nd day of primary immunization. The pain-like behavior, articular index scores, account of synovial-infiltrated CD4+ T cells, and inflammatory factors were investigated in each group. In vitro, spleen CD4+ T lymphocytes were derived from each group. In addition, mitochondrial division inhibitor 1 (Mdivi-1) or NAR was added to the cell medium containing C-X-C motif chemokine ligand 12 (CXCL12) in order to induce CD4+ T lymphocytes, respectively. The polarization capacity of CD4+ T cells was evaluated through the immunofluorescence intensity of the F-actin and myosin light chain phosphorylated at Ser19 (pMLC S19), and the mitochondrial distribution was determined by co-localization analysis of the translocase of outer mitochondrial membrane 20 (TOM20, the mitochondrial marker) and intercellular adhesion molecule 1 (ICAM1, the uropod marker). The mitochondrial fission was investigated by detecting dynamin-related protein 1 (Drp1) and mitochondrial fission protein 1 (Fis1) using Western blot and immunofluorescence. This study revealed that high-dose NAR (50 mg/kg, i.p.) alleviated pain-like behavior and articular index scores, reduced the serum level of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), and accounted for CD4+ T lymphocytes that infiltrated into the synovial membrane of the CIA group. Meanwhile, NAR (50 mg/kg, i.p.) suppressed the polarization of spleen CD4+ T lymphocytes, reduced the redistribution of mitochondria in the uropod, and inhibited the expression of Drp1 and Fis1 in the CIA model. Furthermore, the in vitro experiments confirmed that NAR reduced mitochondrial fission, which in turn inhibited the CXCL12-induced polarization and migration of CD4+ T lymphocytes. Our results demonstrated that the flavonoid NAR was a promising drug for the treatment of RA, which could effectively interfere with mitochondrial fission, thus inhibiting the polarization and migration of CD4+ T cells in the synovial membrane.
Collapse
|
86
|
Lv J, Qin L, Zhao R, Wu D, Wu Z, Zheng D, Li S, Luo M, Wu Q, Long Y, Tang Z, Tang YL, Luo X, Yao Y, Yang LH, Li P. Disruption of CISH promotes the antitumor activity of human T cells and decreases PD-1 expression levels. Mol Ther Oncolytics 2022; 28:46-58. [PMID: 36654786 PMCID: PMC9827364 DOI: 10.1016/j.omto.2022.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor cells and the immunosuppressive tumor microenvironment suppress the antitumor activity of T cells through immune checkpoints, including the PD-L1/PD-1 axis. Cytokine-inducible SH2-containing protein (CISH), a member of the suppressor of cytokine signaling (SOCS) family, inhibits JAK-STAT and T cell receptor (TCR) signaling in T and natural killer (NK) cells. However, its role in the regulation of immune checkpoints in T cells remains unclear. In this study, we ablated CISH in T cells with CRISPR-Cas9 and found that the sensitivity of T cells to TCR and cytokine stimulation was increased. In addition, chimeric antigen receptor T cells with CISH deficiency exhibited longer survival and higher cytokine secretion and antitumor activity. Notably, PD-1 expression was decreased in activated CISH-deficient T cells in vitro and in vivo. The level of FBXO38, a ubiquitination-regulating protein that reduces PD-1 expression, was elevated in activated T cells after CISH ablation. Hence, this study reveals a mechanism by which CISH promotes PD-1 expression by suppressing the expression of FBXO38 and proposes a new strategy for augmenting the therapeutic effect of CAR-T cells by inhibiting CISH.
Collapse
Affiliation(s)
- Jiang Lv
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Qin
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ruocong Zhao
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR 999077, China
| | - Di Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiping Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Siyu Li
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Mintao Luo
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Youguo Long
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhaoyang Tang
- Guangdong Zhaotai InVivo Biomedicine Co., Ltd., Guangzhou 510700, China
| | - Yan-Lai Tang
- Department of Paediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xuequn Luo
- Department of Paediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yao Yao
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Li-Hua Yang
- Department of Paediatrics, Zhujiang Hospital, Southern China Medical University, Guangzhou, Guangdong 510280, China,Corresponding author Li-Hua Yang, Department of Paediatrics, Zhujiang Hospital, Southern China Medical University, Guangzhou, Guangdong 510280, China.
| | - Peng Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR 999077, China,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China,Corresponding author Peng Li, China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
87
|
Kagamu H, Yamasaki S, Kitano S, Yamaguchi O, Mouri A, Shiono A, Nishihara F, Miura Y, Hashimoto K, Imai H, Kaira K, Kobayashi K, Kanai Y, Shibata T, Horimoto K. Single-Cell Analysis Reveals a CD4+ T-cell Cluster That Correlates with PD-1 Blockade Efficacy. Cancer Res 2022; 82:4641-4653. [PMID: 36219677 PMCID: PMC9755963 DOI: 10.1158/0008-5472.can-22-0112] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/30/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023]
Abstract
CD4+ T-cell immunity helps clonal proliferation, migration, and cancer cell killing activity of CD8+ T cells and is essential in antitumor immune responses. To identify CD4+ T-cell clusters responsible for antitumor immunity, we simultaneously analyzed the naïve-effector state, Th polarization, and T-cell receptor clonotype based on single-cell RNA-sequencing data. Unsupervised clustering analysis uncovered the presence of a new CD4+ T-cell metacluster in the CD62Llow CD4+ T-cell subpopulation, which contained multicellular clonotypes associated with efficacy of programmed death-ligand 1 (PD-1) blockade therapy. The CD4+ T-cell metacluster consisted of CXCR3+CCR4-CCR6+ and CXCR3-CCR4-CCR6+ cells and was characterized by high expression of IL7 receptor and TCF7. The frequency of these cells in the peripheral blood significantly correlated with progression-free survival and overall survival of patients with lung cancer after PD-1 blockade therapy. In addition, the CD4+ metacluster in the peripheral blood correlated with CD4+ T-cell infiltration in the tumor microenvironment, whereas peripheral Th1 correlated with local CD8+ T-cell infiltration. Together, these findings suggest that CD62Llow CCR4-CCR6+ CD4+ T cells form a novel metacluster with predictive potential of the immune status and sensitivity to PD-1 blockade, which may pave the way for personalized antitumor immunotherapy strategies for patients. SIGNIFICANCE The identification of a new CD4+ T-cell metacluster that corresponds with immune status could guide effective tumor treatment by predicting response to immunotherapy using peripheral blood samples from patients.
Collapse
Affiliation(s)
- Hiroshi Kagamu
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan.,Corresponding Author: Hiroshi Kagamu, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka City 350-1298, Japan. Phone: 814-2984-4581; Fax: 814-2984-4581; E-mail:
| | - Satoshi Yamasaki
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan.,Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ou Yamaguchi
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Atsuto Mouri
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Ayako Shiono
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Fuyumi Nishihara
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Yu Miura
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Kosuke Hashimoto
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Hisao Imai
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Kyoichi Kaira
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Kunihiko Kobayashi
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Katsuhisa Horimoto
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| |
Collapse
|
88
|
Harlapur P, Duddu AS, Hari K, Kulkarni P, Jolly MK. Functional Resilience of Mutually Repressing Motifs Embedded in Larger Networks. Biomolecules 2022; 12:1842. [PMID: 36551270 PMCID: PMC9775907 DOI: 10.3390/biom12121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Elucidating the design principles of regulatory networks driving cellular decision-making has important implications for understanding cell differentiation and guiding the design of synthetic circuits. Mutually repressing feedback loops between 'master regulators' of cell fates can exhibit multistable dynamics enabling "single-positive" phenotypes: (high A, low B) and (low A, high B) for a toggle switch, and (high A, low B, low C), (low A, high B, low C) and (low A, low B, high C) for a toggle triad. However, the dynamics of these two motifs have been interrogated in isolation in silico, but in vitro and in vivo, they often operate while embedded in larger regulatory networks. Here, we embed these motifs in complex larger networks of varying sizes and connectivity to identify hallmarks under which these motifs maintain their canonical dynamical behavior. We show that an increased number of incoming edges onto a motif leads to a decay in their canonical stand-alone behaviors. We also show that this decay can be exacerbated by adding self-inhibition but not self-activation loops on the 'master regulators'. These observations offer insights into the design principles of biological networks containing these motifs and can help devise optimal strategies for the integration of these motifs into larger synthetic networks.
Collapse
Affiliation(s)
- Pradyumna Harlapur
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Atchuta Srinivas Duddu
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Kishore Hari
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
89
|
Chen R, Li J, Fujimoto J, Hong L, Hu X, Quek K, Tang M, Mitra A, Behrens C, Chow CW, Jiang P, Little LD, Gumbs C, Song X, Zhang J, Tan D, Heymach JV, Wistuba I, Futreal PA, Gibbons DL, Byers LA, Zhang J, Reuben A. Immunogenomic intertumor heterogeneity across primary and metastatic sites in a patient with lung adenocarcinoma. J Exp Clin Cancer Res 2022; 41:172. [PMID: 35546239 PMCID: PMC9092788 DOI: 10.1186/s13046-022-02361-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Lung cancer is the leading cause of cancer death, partially owing to its extensive heterogeneity. The analysis of intertumor heterogeneity has been limited by an inability to concurrently obtain tissue from synchronous metastases unaltered by multiple prior lines of therapy.
Methods
In order to study the relationship between genomic, epigenomic and T cell repertoire heterogeneity in a rare autopsy case from a 32-year-old female never-smoker with left lung primary late-stage lung adenocarcinoma (LUAD), we did whole-exome sequencing (WES), DNA methylation and T cell receptor (TCR) sequencing to characterize the immunogenomic landscape of one primary and 19 synchronous metastatic tumors.
Results
We observed heterogeneous mutation, methylation, and T cell patterns across distinct metastases. Only TP53 mutation was detected in all tumors suggesting an early event while other cancer gene mutations were later events which may have followed subclonal diversification. A set of prevalent T cell clonotypes were completely excluded from left-side thoracic tumors indicating distinct T cell repertoire profiles between left-side and non left-side thoracic tumors. Though a limited number of predicted neoantigens were shared, these were associated with homology of the T cell repertoire across metastases. Lastly, ratio of methylated neoantigen coding mutations was negatively associated with T-cell density, richness and clonality, suggesting neoantigen methylation may partially drive immunosuppression.
Conclusions
Our study demonstrates heterogeneous genomic and T cell profiles across synchronous metastases and how restriction of unique T cell clonotypes within an individual may differentially shape the genomic and epigenomic landscapes of synchronous lung metastases.
Collapse
|
90
|
Teng X, Mou DC, Li HF, Jiao L, Wu SS, Pi JK, Wang Y, Zhu ML, Tang M, Liu Y. SIGIRR deficiency contributes to CD4 T cell abnormalities by facilitating the IL1/C/EBPβ/TNF-α signaling axis in rheumatoid arthritis. Mol Med 2022; 28:135. [DOI: 10.1186/s10020-022-00563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Rheumatoid arthritis (RA) is a complex autoimmune disease with multiple etiological factors, among which aberrant memory CD4 T cells activation plays a key role in the initiation and perpetuation of the disease. SIGIRR (single immunoglobulin IL-1R-related receptor), a member of the IL-1 receptor (ILR) family, acts as a negative regulator of ILR and Toll-like receptor (TLR) downstream signaling pathways and inflammation. The aim of this study was to investigate the potential roles of SIGIRR on memory CD4 T cells in RA and the underlying cellular and molecular mechanisms.
Methods
Single-cell transcriptomics and bulk RNA sequencing data were integrated to predict SIGIRR gene distribution on different immune cell types of human PBMCs. Flow cytometry was employed to determine the differential expression of SIGIRR on memory CD4 T cells between the healthy and RA cohorts. A Spearman correlation study was used to determine the relationship between the percentage of SIGIRR+ memory CD4 T cells and RA disease activity. An AIA mouse model (antigen-induced arthritis) and CD4 T cells transfer experiments were performed to investigate the effect of SIGIRR deficiency on the development of arthritis in vivo. Overexpression of SIGIRR in memory CD4 T cells derived from human PBMCs or mouse spleens was utilized to confirm the roles of SIGIRR in the intracellular cytokine production of memory CD4 T cells. Immunoblots and RNA interference were employed to understand the molecular mechanism by which SIGIRR regulates TNF-α production in CD4 T cells.
Results
SIGIRR was preferentially distributed by human memory CD4 T cells, as revealed by single-cell RNA sequencing. SIGIRR expression was substantially reduced in RA patient-derived memory CD4 T cells, which was inversely associated with RA disease activity and related to enhanced TNF-α production. SIGIRR-deficient mice were more susceptible to antigen-induced arthritis (AIA), which was attributed to unleashed TNF-α production in memory CD4 T cells, confirmed by decreased TNF-α production resulting from ectopic expression of SIGIRR. Mechanistically, SIGIRR regulates the IL-1/C/EBPβ/TNF-α signaling axis, as established by experimental evidence and cis-acting factor bioinformatics analysis.
Conclusion
Taken together, SIGIRR deficiency in memory CD4 T cells in RA raises the possibility that receptor induction can target key abnormalities in T cells and represents a potentially novel strategy for immunomodulatory therapy.
Collapse
|
91
|
Fu SP, Chen SY, Pang QM, Zhang M, Wu XC, Wan X, Wan WH, Ao J, Zhang T. Advances in the research of the role of macrophage/microglia polarization-mediated inflammatory response in spinal cord injury. Front Immunol 2022; 13:1014013. [PMID: 36532022 PMCID: PMC9751019 DOI: 10.3389/fimmu.2022.1014013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
It is often difficult to regain neurological function following spinal cord injury (SCI). Neuroinflammation is thought to be responsible for this failure. Regulating the inflammatory response post-SCI may contribute to the recovery of neurological function. Over the past few decades, studies have found that macrophages/microglia are one of the primary effector cells in the inflammatory response following SCI. Growing evidence has documented that macrophages/microglia are plastic cells that can polarize in response to microenvironmental signals into M1 and M2 macrophages/microglia. M1 produces pro-inflammatory cytokines to induce inflammation and worsen tissue damage, while M2 has anti-inflammatory activities in wound healing and tissue regeneration. Recent studies have indicated that the transition from the M1 to the M2 phenotype of macrophage/microglia supports the regression of inflammation and tissue repair. Here, we will review the role of the inflammatory response and macrophages/microglia in SCI and repair. In addition, we will discuss potential molecular mechanisms that induce macrophage/microglia polarization, with emphasis on neuroprotective therapies that modulate macrophage/microglia polarization, which will provide new insights into therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Ming Pang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xue Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei-Hong Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,*Correspondence: Tao Zhang,
| |
Collapse
|
92
|
Ma C, Hoffmann FW, Nunes LG, Urena F, Andrukhiv A, Gerschenson M, Pitts MW, Hoffmann PR. Selenoprotein I deficiency in T cells promotes differentiation into tolerant phenotypes while decreasing Th17 pathology. J Leukoc Biol 2022; 112:1387-1397. [PMID: 35916034 PMCID: PMC9701159 DOI: 10.1002/jlb.1a0122-080r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/28/2022] [Indexed: 01/04/2023] Open
Abstract
Selenoprotein I (SELENOI) is an ethanolamine phospholipid transferase contributing to cellular metabolism and the synthesis of glycosylphosphatidylinositol (GPI) anchors. SELENOI knockout (KO) in T cells has been shown to impair metabolic reprogramming during T cell activation and reduce GPI-anchored Thy-1 levels, which are both crucial for Th17 differentiation. This suggests SELENOI may be important for Th17 differentiation, and we found that SELENOI was indeed up-regulated early during the activation of naïve CD4+ T cells in Th17 conditions. SELENOI KO reduced RORγt mRNA levels by decreasing SOX5 and STAT3 binding to promoter and enhancer regions in the RORC gene encoding this master regulator of Th17 cell differentiation. Differentiation of naïve CD4+ T cells into inflammatory versus tolerogenic Th cell subsets was analyzed and results showed that SELENOI deficiency skewed differentiation away from pathogenic Th17 cells (RORγt+ and IL-17A+ ) while promoting tolerogenic phenotypes (Foxp3+ and IL-10+ ). Wild-type and T cell-specific SELENOI KO mice were subjected to experimental autoimmune encephalitis (EAE), with KO mice exhibiting diminished clinical symptoms, reduced CNS pathology and decreased T cell infiltration. Flow cytometry showed that SELENOI T cell KO mice exhibited lower CD4+ RORγt+ and CD4+ IL-17A+ T cells and higher CD4+ CD25+ FoxP3+ T cells in CNS tissues of mice subjected to EAE. Thus, the metabolic enzyme SELENOI is up-regulated to promote RORγt transcription that drives Th17 differentiation, and SELENOI deficiency shifts differentiation toward tolerogenic phenotypes while protecting against pathogenic Th17 responses.
Collapse
Affiliation(s)
- Chi Ma
- Department of Cell and Molecular Bi ology, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - FuKun W Hoffmann
- Department of Cell and Molecular Bi ology, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - Lance G Nunes
- Department of Cell and Molecular Bi ology, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - Frank Urena
- Department of Cell and Molecular Bi ology, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, USA
| | - Anastasia Andrukhiv
- Department of Cell and Molecular Bi ology, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - Mariana Gerschenson
- Department of Cell and Molecular Bi ology, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Bi ology, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Bi ology, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| |
Collapse
|
93
|
Zhu Y, Zhou J, Zhu L, Hu W, Liu B, Xie L. Adoptive tumor infiltrating lymphocytes cell therapy for cervical cancer. Hum Vaccin Immunother 2022; 18:2060019. [PMID: 35468048 PMCID: PMC9897649 DOI: 10.1080/21645515.2022.2060019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the most common malignancies among females. As a virus-related cancer, cervical cancer has attracted a lot of attention to develop virus-targeted immune therapy, including vaccine and adoptive immune cell therapy (ACT). Adoptive tumor infiltrating lymphocytes (TILs) cell therapy has been found to be able to control advanced disease progression in some cervical cancer patients who have received several lines of treatment in a pilot clinical trial. In addition, sustainable therapeutic effect has been identified in some cases. The safety risks of TIL therapy for patients are minimal or at least manageable. In this review, we focused on the versatility of TILs and tried to summarize potential strategies to improve the therapeutic effect of TILs and discuss related perspectives.
Collapse
Affiliation(s)
- Yahui Zhu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Zhou
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Lijing Zhu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Wenjing Hu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Li Xie
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China,CONTACT Li Xie No. 321, Zhongshan Road, Gulou District, Nanjing, Jiangsu, China
| |
Collapse
|
94
|
Tang W, Li M, Teng F, Cui J, Dong J, Wang W. Single-cell RNA-sequencing in asthma research. Front Immunol 2022; 13:988573. [PMID: 36524132 PMCID: PMC9744750 DOI: 10.3389/fimmu.2022.988573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Asthma is a complex and heterogeneous disease with multicellular involvement, and knowledge gaps remain in our understanding of the pathogenesis of asthma. Efforts are still being made to investigate the immune pathogenesis of asthma in order to identify possible targets for prevention. Single cell RNA sequencing (scRNA-seq) technology is a useful tool for exploring heterogeneous diseases, identifying rare cell types and distinct cell subsets, enabling elucidation of key processes of cell differentiation, and understanding regulatory gene networks that predict immune function. In this article, we provide an overview of the importance of scRNA-seq for asthma research, followed by an in-depth discussion of the results in recent years, in order to provide new ideas for the pathogenesis, drug development and treatment of asthma.
Collapse
Affiliation(s)
- Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mihui Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China,*Correspondence: Wenqian Wang, ; Jingcheng Dong,
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China,*Correspondence: Wenqian Wang, ; Jingcheng Dong,
| |
Collapse
|
95
|
Villarino AV, Laurence ADJ, Davis FP, Nivelo L, Brooks SR, Sun HW, Jiang K, Afzali B, Frasca D, Hennighausen L, Kanno Y, O’Shea JJ. A central role for STAT5 in the transcriptional programing of T helper cell metabolism. Sci Immunol 2022; 7:eabl9467. [PMID: 36427325 PMCID: PMC9844264 DOI: 10.1126/sciimmunol.abl9467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Activated lymphocytes adapt their metabolism to meet the energetic and biosynthetic demands imposed by rapid growth and proliferation. Common gamma chain (cγ) family cytokines are central to these processes, but the role of downstream signal transducer and activator of transcription 5 (STAT5) signaling, which is engaged by all cγ members, is poorly understood. Using genome-, transcriptome-, and metabolome-wide analyses, we demonstrate that STAT5 is a master regulator of energy and amino acid metabolism in CD4+ T helper cells. Mechanistically, STAT5 localizes to an array of enhancers and promoters for genes encoding essential enzymes and transporters, where it facilitates p300 recruitment and epigenetic remodeling. We also find that STAT5 licenses the activity of two other key metabolic regulators, the mTOR signaling pathway and the MYC transcription factor. Building on the latter, we present evidence for transcriptome-wide cooperation between STAT5 and MYC in both normal and transformed T cells. Together, our data provide a molecular framework for transcriptional programing of T cell metabolism downstream of cγ cytokines and highlight the JAK-STAT pathway in mediating cellular growth and proliferation.
Collapse
Affiliation(s)
- Alejandro V. Villarino
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, Bethesda, MD, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Arian DJ Laurence
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Fred P. Davis
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, Bethesda, MD, USA
- Celsius Therapeutics, Cambridge, MA, USA
| | - Luis Nivelo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Stephen R. Brooks
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, Bethesda, MD, USA
| | - Hong-Wei Sun
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, Bethesda, MD, USA
| | - Kan Jiang
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, Bethesda, MD, USA
| | - Behdad Afzali
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Lothar Hennighausen
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, USA
| | - Yuka Kanno
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, Bethesda, MD, USA
| | - John J. O’Shea
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, Bethesda, MD, USA
| |
Collapse
|
96
|
Jang H, Park Y, Jang J. Serum and glucocorticoid-regulated kinase 1: Structure, biological functions, and its inhibitors. Front Pharmacol 2022; 13:1036844. [PMID: 36457711 PMCID: PMC9706101 DOI: 10.3389/fphar.2022.1036844] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 08/11/2023] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine kinase belonging to the protein kinase A, G, and C (AGC) family. Upon initiation of the phosphoinositide 3-kinase (PI3K) signaling pathway, mammalian target of rapamycin complex 2 (mTORC2) and phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylate the hydrophobic motif and kinase domain of SGK1, respectively, inducing SGK1 activation. SGK1 modulates essential cellular processes such as proliferation, survival, and apoptosis. Hence, dysregulated SGK1 expression can result in multiple diseases, including hypertension, cancer, autoimmunity, and neurodegenerative disorders. This review provides a current understanding of SGK1, particularly in sodium transport, cancer progression, and autoimmunity. In addition, we summarize the developmental status of SGK1 inhibitors, their structures, and respective potencies evaluated in pre-clinical experimental settings. Collectively, this review highlights the significance of SGK1 and proposes SGK1 inhibitors as potential drugs for treatment of clinically relevant diseases.
Collapse
Affiliation(s)
- Hyunsoo Jang
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Youngjun Park
- Laboratory of Immune and Inflammatory Disease, College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, South Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Jaebong Jang
- College of Pharmacy, Korea University, Sejong, South Korea
| |
Collapse
|
97
|
Yu W, Li C, Zhang D, Li Z, Xia P, Liu X, Cai X, Yang P, Ling J, Zhang J, Zhang M, Yu P. Advances in T Cells Based on Inflammation in Metabolic Diseases. Cells 2022; 11:cells11223554. [PMID: 36428983 PMCID: PMC9688178 DOI: 10.3390/cells11223554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
With the increasing incidence of metabolic diseases year by year and their impact on the incidence of cardiovascular diseases, metabolic diseases have attracted great attention as a major health care problem, but there is still no effective treatment. Oxidative stress and inflammation are the main mechanisms leading to metabolic diseases. T cells are involved in the inflammatory response, which can also regulate the development of metabolic diseases, CD4+ T cells and CD8+ T cells are mainly responsible for the role. Th1 and Th17 differentiated from CD4+ T promote inflammation, while Th2 and Treg inhibit inflammation. CD8+ T cells also contribute to inflammation. The severity and duration of inflammatory reactions can also lead to different degrees of progression of metabolic diseases. Moreover, mTOR, PI3K-Akt, and AMPK signaling pathways play unique roles in the regulation of T cells, which provide a new direction for the treatment of metabolic diseases in the future. In this review, we will elaborate on the role of T cells in regulating inflammation in various metabolic diseases, the signaling pathways that regulate T cells in metabolic diseases, and the latest research progress.
Collapse
Affiliation(s)
- Wenlu Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330000, China
| | - Chunxiu Li
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330000, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Zhangwang Li
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Xia Cai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Pingping Yang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Jitao Ling
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Correspondence: (J.Z.); (P.Y.)
| | - Meiying Zhang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Correspondence: (J.Z.); (P.Y.)
| |
Collapse
|
98
|
Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy 2022; 77:3267-3292. [PMID: 35842745 DOI: 10.1111/all.15445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
The inflammation of allergic diseases is characterized by a complex interaction between type 2 and type 3 immune responses, explaining clinical symptoms and histopathological patterns. Airborne stimuli activate the mucosal epithelium to release a number of molecules impacting the activity of resident immune and environmental cells. Signals from the mucosal barrier, regulatory cells, and the inflamed tissue are crucial conditions able to modify innate and adaptive effector cells providing the selective homing of eosinophils or neutrophils. The high plasticity of resident T- and innate lymphoid cells responding to external signals is the prerequisite to explain the multiplicity of endotypes of allergic diseases. This notion paved the way for the huge use of specific biologic drugs interfering with pathogenic mechanisms of inflammation. Based on the response of the epithelial barrier, the activity of resident regulatory cells, and functions of structural non-lymphoid environmental cells, this review proposes some immunopathogenic scenarios characterizing the principal endotypes which can be associated with a precise phenotype of asthma. Recent literature indicates that similar concepts can also be applied to the inflammation of other non-respiratory allergic disorders. The next challenges will consist in defining specific biomarker(s) of each endotype allowing for a quick diagnosis and the most effective personalized therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Parronchi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Lorenzo Moretta
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
99
|
Laba S, Mallett G, Amarnath S. The depths of PD-1 function within the tumor microenvironment beyond CD8 + T cells. Semin Cancer Biol 2022; 86:1045-1055. [PMID: 34048897 DOI: 10.1016/j.semcancer.2021.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Programmed cell death-1 (PD-1; CD279) is a cell surface receptor that is expressed in both innate and adaptive immune cells. The role of PD-1 in adaptive immune cells, specifically in CD8+ T cells, has been thoroughly investigated but its significance in other immune cells is yet to be well established. This review will address the role of PD-1 based therapies in enhancing non-CD8+ T cell immune responses within cancer. Specifically, the expression and function of PD-1 in non-CD8+ immune cell compartments such as CD4+ T helper cell subsets, myeloid cells and innate lymphoid cells (ILCs) will be discussed. By understanding the immune cell specific function of PD-1 within tissue resident innate and adaptive immune cells, it will be possible to stratify patients for PD-1 based therapies for both immunogeneic and non-immunogeneic neoplastic disorders. With this knowledge from fundamental and translational studies, PD-1 based therapies can be utilized to enhance T cell independent immune responses in cancers.
Collapse
Affiliation(s)
- Stephanie Laba
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| | - Grace Mallett
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Shoba Amarnath
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
100
|
Bertoletti A, Le Bert N, Tan AT. SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity 2022; 55:1764-1778. [PMID: 36049482 PMCID: PMC9385766 DOI: 10.1016/j.immuni.2022.08.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022]
Abstract
Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increasing ability to evade neutralizing antibodies have emerged. Thus, earlier interest in defining the correlates of protection from infection, mainly mediated by humoral immunity, has shifted to correlates of protection from disease, which require a more comprehensive analysis of both humoral and cellular immunity. In this review, we summarized the evidence that supports the role of SARS-CoV-2-specific T cells induced by infection, by vaccination or by their combination (defined as hybrid immunity) in disease protection. We then analyzed the different epidemiological and virological variables that can modify the magnitude, function, and anatomical localization of SARS-CoV-2-specific T cells and their influence in the possible ability of T cells to protect the host from severe COVID-19 development.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Singapore Immunology Network, A(∗)STAR, Singapore, Singapore.
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Anthony T Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|