51
|
Dong S, Lei Y, Bi H, Xu K, Li T, Jian Z. Biological Response of Planktic Foraminifera to Decline in Seawater pH. BIOLOGY 2022; 11:biology11010098. [PMID: 35053097 PMCID: PMC8773009 DOI: 10.3390/biology11010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Understanding the way in which a decline in ocean pH can affect calcareous organisms could enhance our ability to predict the impacts of the potential decline in seawater pH on marine ecosystems, and could help to reconstruct the paleoceanographic events over a geological time scale. Planktic foraminifera are among the most important biological proxies for these studies; however, the existing research on planktic foraminifera is almost exclusively based on their geochemical indices, without the inclusion of information on their biological development. Through a series of on-board experiments in the western tropical Pacific (134°33′54″ E, 12°32′47″ N), the present study showed that the symbiont-bearing calcifier Trilobatus sacculifer—a planktic foraminifer—responded rapidly to a decline in seawater pH, including losing symbionts, bleaching, etc. Several indices were established to quantify the relationships between these biological parameters and seawater pH, which could be used to reconstruct the paleoceanographic seawater pH. We further postulated that the loss of symbionts in planktic foraminifera acts as an adaptive response to the stress of low pH. Our results indicate that an ongoing decline in seawater pH may hinder the growth and calcification of planktic foraminifera by altering their biological processes. A reduction in carbonate deposition and predation could have profound effects on the carbon cycle and energy flow in the marine food web.
Collapse
Affiliation(s)
- Shuaishuai Dong
- Laboratory of Marine Organism Taxonomy and Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.D.); (K.X.)
| | - Yanli Lei
- Laboratory of Marine Organism Taxonomy and Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.D.); (K.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.L.); (T.L.); (Z.J.)
| | - Hongsheng Bi
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomon, MD 20688, USA;
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.D.); (K.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiegang Li
- Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Correspondence: (Y.L.); (T.L.); (Z.J.)
| | - Zhimin Jian
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
- Correspondence: (Y.L.); (T.L.); (Z.J.)
| |
Collapse
|
52
|
Desforges JP, Outridge P, Hobson KA, Heide-Jørgensen MP, Dietz R. Anthropogenic and Climatic Drivers of Long-Term Changes of Mercury and Feeding Ecology in Arctic Beluga ( Delphinapterus leucas) Populations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:271-281. [PMID: 34914363 DOI: 10.1021/acs.est.1c05389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We assessed long-term changes in the feeding ecology and mercury (Hg) accumulation in Eastern High Arctic-Baffin Bay beluga (Delphinapterus leucas) using total Hg and stable isotope (δ13C, δ15N) assays in teeth samples from historical (1854-1905) and modern (1985-2000) populations. Mean δ13C values in teeth declined significantly over time, from -13.01 ± 0.55‰ historically to -14.41 ± 0.28‰ in 2000, while no consistent pattern was evident for δ15N due to high individual variability within each period. The temporal shift in isotopic niche is consistent with beluga feeding ecology changing in recent decades to a more pelagic and less isotopically diverse diet or an ecosystem wide change in isotope profiles. Mercury concentrations in modern beluga teeth were 3-5 times higher on average than those in historical beluga. These results are similar to the long-term trends of Hg and feeding ecology reported in other beluga populations and in other Arctic marine predators. Similar feeding ecology shifts across regions and species indicate a consistent increased pelagic diet response to climate change as the Arctic Ocean progressively warmed and lost sea ice. Previously, significant temporal Hg increase in beluga and other Arctic animals was attributed solely to direct inputs of anthropogenic Hg from long-range sources. Recent advances in understanding the Arctic marine Hg cycle suggest an additional, complementary possibility─increased inputs of terrestrial Hg of mixed anthropogenic-natural origin, mobilized from permafrost and other Arctic soils by climate warming. At present, it is not possible to assign relative importance to the two processes in explaining the rise of Hg concentrations in modern Arctic marine predators.
Collapse
Affiliation(s)
- Jean-Pierre Desforges
- Department of Environmental Studies and Sciences, University of Winnipeg, Winnipeg, Manitoba R3B 2E9, Canada
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Peter Outridge
- Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario K1A 0E8, Canada
- Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba R3T 2N6, Canada
| | - Keith A Hobson
- Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 0X4, Canada
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | | | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, DK-4000 Roskilde, Denmark
| |
Collapse
|
53
|
Verma P, Zhang S, Song S, Mori K, Kuwahara Y, Wen M, Yamashita H, An T. Recent strategies for enhancing the catalytic activity of CO2 hydrogenation to formate/formic acid over Pd-based catalyst. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
54
|
Seok MW, Kim D, Park GH, Lee K, Kim TH, Jung J, Kim K, Park KT, Kim YH, Mo A, Park S, Ko YH, Kang J, Kim H, Kim TW. Atmospheric deposition of inorganic nutrients to the Western North Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148401. [PMID: 34166903 DOI: 10.1016/j.scitotenv.2021.148401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
We evaluated the potential impacts of atmospheric deposition on marine productivity and inorganic carbon chemistry in the northwestern Pacific Ocean (8-39°N, 125-157°E). The nutrient concentration in atmospheric total suspended particles decreased exponentially with increasing distance from the closest land-mass (Asia), clearly revealing anthropogenic and terrestrial contributions. The predicted mean depositional fluxes of inorganic nitrogen were approximately 34 and 15 μmol m-2 d-1 to the west and east of 140°E, respectively, which were at least two orders of magnitude greater than the inorganic phosphorus flux. On average, atmospheric particulate deposition would support 3-4% of the net primary production along the surveyed tracks, which is equivalent to ~2% of the dissolved carbon increment caused by the penetration of anthropogenic CO2. Our observations generally fell within the ranges observed over the past 18 years, despite an increasing trend of atmospheric pollution in the source regions during the same period, which implies high temporal and spatial variabilities of atmospheric nutrient concentration in the study area. Continued atmospheric anthropogenic nitrogen deposition may alter the relative abundances of nitrogen and phosphorus.
Collapse
Affiliation(s)
- Min-Woo Seok
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongseon Kim
- Marine Environmental Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Geun-Ha Park
- Marine Environmental Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Kitack Lee
- Division of Environmental Science and Engineering, Pohang University of Science & Technology, Pohang 37673, Republic of Korea
| | - Tae-Hoon Kim
- Faculty of Earth Systems and Environmental Sciences, College of Natural Sciences, Chonnam National University, 61186 Gwangju, Republic of Korea
| | - Jinyoung Jung
- Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Ki-Tae Park
- Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Yeo-Hun Kim
- Global Ocean Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Ahra Mo
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seunghee Park
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Ho Ko
- OJEong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Jeongwon Kang
- Korean Seas Geosystem Research Unit, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Haryun Kim
- East Sea Research Institute, Korea Institute of Ocean Science & Technology, Uljin 36315, Republic of Korea
| | - Tae-Wook Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; OJEong Resilience Institute, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
55
|
Mor Khalifa G, Levy S, Mass T. The calcifying interface in a stony coral primary polyp: An interplay between seawater and an extracellular calcifying space. J Struct Biol 2021; 213:107803. [PMID: 34695544 DOI: 10.1016/j.jsb.2021.107803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Stony coral exoskeletons build the foundation for the most biologically diverse marine ecosystems on Earth, coral reefs, which face major threats due to many anthropogenic-related stressors. Therefore, understanding coral biomineralization mechanisms is crucial for coral reef management in the coming decades and for using coral skeletons in geochemical studies. This study combines in-vivo imaging with cryo-electron microscopy and cryo-elemental mapping to gain novel insights into the biological microenvironment and the ion pathways that facilitate biomineralization in primary polyps of the stony coral Stylophora pistillata. We document increased tissue permeability in the primary polyp and a highly dispersed cell packing in the tissue directly responsible for producing the coral skeleton. This tissue arrangement may facilitate the intimate involvement of seawater at the mineralization site, also documented here. We further observe an extensive filopodial network containing carbon-rich vesicles extruding from some of the calicoblastic cells. Single-cell RNA-Sequencing data interrogation supports these morphological observations by showing higher expression of genes involved in filopodia and vesicle structure and function in the calicoblastic cells. These observations provide a new conceptual framework for resolving the ion pathway from the external seawater to the tissue-mineral interface in stony coral biomineralization processes.
Collapse
Affiliation(s)
- Gal Mor Khalifa
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| | - Shani Levy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
56
|
Chen X, Guo H, Yao H, Han K, Wang H. Processes and forcing mechanisms of the carbon cycle perturbation during Cretaceous Oceanic Anoxic Event 2. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
57
|
Bach LT, Boyd PW. Seeking natural analogs to fast-forward the assessment of marine CO 2 removal. Proc Natl Acad Sci U S A 2021; 118:e2106147118. [PMID: 34544897 PMCID: PMC8501766 DOI: 10.1073/pnas.2106147118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Mitigating global climate change will require gigaton-scale carbon dioxide removal (CDR) as a supplement to rapid emissions reduction. The oceans cover 71% of the Earth surface and have the potential to provide much of the required CDR. However, none of the proposed marine CDR (mCDR) methods is sufficiently well understood to determine their real-world efficiency and environmental side effects. Here, we argue that using natural mCDR analogs should become the third interconnecting pillar in the mCDR assessment as they bridge the gap between numerical simulations (i.e., large scale/reduced complexity) and experimental studies (i.e., small scale/high complexity). Natural mCDR analogs occur at no cost, can provide a wealth of data to inform mCDR, and do not require legal permission or social license for their study. We propose four simple criteria to identify particularly useful analogs: 1) large scale, 2) abruptness of perturbation, 3) availability of unperturbed control sites, and 4) reoccurrence. Based on these criteria, we highlight four examples: 1) equatorial upwelling as a natural analog for artificial upwelling, 2) downstream of Kerguelen Island for ocean iron fertilization, 3) the Black and Caspian Seas for ocean alkalinity enhancement, and 4) the Great Atlantic Sargassum Belt for ocean afforestation. These natural analogs provide a reality check for experimental assessments and numerical modeling of mCDR. Ultimately, projections of mCDR efficacy and sustainability supported by observations from natural analogs will provide the real-world context for the public debate and will facilitate political decisions on mCDR implementation. We anticipate that a rigorous investigation of natural analogs will fast-forward the urgently needed assessment of mCDR.
Collapse
Affiliation(s)
- Lennart T Bach
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia
| |
Collapse
|
58
|
Peña V, Harvey BP, Agostini S, Porzio L, Milazzo M, Horta P, Le Gall L, Hall-Spencer JM. Major loss of coralline algal diversity in response to ocean acidification. GLOBAL CHANGE BIOLOGY 2021; 27:4785-4798. [PMID: 34268846 DOI: 10.1111/gcb.15757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Calcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary history and evaluate their potential future biodiversity and abundance. We found a decrease in the taxonomic diversity of coralline algae with increasing acidification with more than half of the species lost in high pCO2 conditions. Sporolithales is the oldest order (Lower Cretaceous) and diversified when ocean chemistry favoured low Mg calcite deposition; it is less diverse today and was the most sensitive to ocean acidification. Corallinales were also reduced in cover and diversity but several species survived at high pCO2 ; it is the most recent order of coralline algae and originated when ocean chemistry favoured aragonite and high Mg calcite deposition. The sharp decline in cover and thickness of coralline algal carbonate deposits at high pCO2 highlighted their lower fitness in response to ocean acidification. Reductions in CO2 emissions are needed to limit the risk of losing coralline algal diversity.
Collapse
Affiliation(s)
- Viviana Peña
- BioCost Research Group, Facultad de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Ben P Harvey
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Lucia Porzio
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Marco Milazzo
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| | - Paulo Horta
- Laboratory of Phycology, Department of Botany, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Line Le Gall
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Jason M Hall-Spencer
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
59
|
Lotterhos KE, Láruson ÁJ, Jiang LQ. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci Rep 2021; 11:15535. [PMID: 34446758 PMCID: PMC8390509 DOI: 10.1038/s41598-021-94872-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Marine ecosystems are experiencing unprecedented warming and acidification caused by anthropogenic carbon dioxide. For the global sea surface, we quantified the degree that present climates are disappearing and novel climates (without recent analogs) are emerging, spanning from 1800 through different emission scenarios to 2100. We quantified the sea surface environment based on model estimates of carbonate chemistry and temperature. Between 1800 and 2000, no gridpoints on the ocean surface were estimated to have experienced an extreme degree of global disappearance or novelty. In other words, the majority of environmental shifts since 1800 were not novel, which is consistent with evidence that marine species have been able to track shifting environments via dispersal. However, between 2000 and 2100 under Representative Concentrations Pathway (RCP) 4.5 and 8.5 projections, 10-82% of the surface ocean is estimated to experience an extreme degree of global novelty. Additionally, 35-95% of the surface ocean is estimated to experience an extreme degree of global disappearance. These upward estimates of climate novelty and disappearance are larger than those predicted for terrestrial systems. Without mitigation, many species will face rapidly disappearing or novel climates that cannot be outpaced by dispersal and may require evolutionary adaptation to keep pace.
Collapse
Affiliation(s)
- Katie E. Lotterhos
- grid.261112.70000 0001 2173 3359Northeastern University Marine Science Center, 430 Nahant Rd, Nahant, MA 01908 USA
| | - Áki J. Láruson
- grid.261112.70000 0001 2173 3359Northeastern University Marine Science Center, 430 Nahant Rd, Nahant, MA 01908 USA ,grid.5386.8000000041936877XDepartment of Natural Resources, Cornell University, Ithaca, NY 14850 USA
| | - Li-Qing Jiang
- grid.164295.d0000 0001 0941 7177Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740 USA ,grid.3532.70000 0001 1266 2261National Centers for Environmental Information, National Oceanic and Atmospheric Administration, Silver Spring, MD 20910 USA
| |
Collapse
|
60
|
Bitter MC, Wong JM, Dam HG, Donelan SC, Kenkel CD, Komoroske LM, Nickols KJ, Rivest EB, Salinas S, Burgess SC, Lotterhos KE. Fluctuating selection and global change: a synthesis and review on disentangling the roles of climate amplitude, predictability and novelty. Proc Biol Sci 2021; 288:20210727. [PMID: 34428970 PMCID: PMC8385344 DOI: 10.1098/rspb.2021.0727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
A formidable challenge for global change biologists is to predict how natural populations will respond to the emergence of conditions not observed at present, termed novel climates. Popular approaches to predict population vulnerability are based on the expected degree of novelty relative to the amplitude of historical climate fluctuations experienced by a population. Here, we argue that predictions focused on amplitude may be inaccurate because they ignore the predictability of environmental fluctuations in driving patterns of evolution and responses to climate change. To address this disconnect, we review major findings of evolutionary theory demonstrating the conditions under which phenotypic plasticity is likely to evolve in natural populations, and how plasticity decreases population vulnerability to novel environments. We outline key criteria that experimental studies should aim for to effectively test theoretical predictions, while controlling for the degree of climate novelty. We show that such targeted tests of evolutionary theory are rare, with marine systems being overall underrepresented in this venture despite exhibiting unique opportunities to test theory. We conclude that with more robust experimental designs that manipulate both the amplitude and predictability of fluctuations, while controlling for the degree of novelty, we may better predict population vulnerability to climate change.
Collapse
Affiliation(s)
- M. C. Bitter
- Department of Biology, Stanford University, Stanford, CA, USA
| | - J. M. Wong
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, USA
| | - H. G. Dam
- Department of Marine Sciences, University of Connecticut Groton, CT, USA
| | - S. C. Donelan
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - C. D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - L. M. Komoroske
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, USA
| | - K. J. Nickols
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - E. B. Rivest
- Department of Biological Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| | - S. Salinas
- Department of Biology, Kalamazoo College, Kalamazoo, MI, USA
| | - S. C. Burgess
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - K. E. Lotterhos
- Northeastern University Marine Science Center, Nahant, MA, USA
| |
Collapse
|
61
|
Viera JSC, Marques MRC, Nazareth MC, Jimenez PC, Sanz-Lázaro C, Castro ÍB. Are biodegradable plastics an environmental rip off? JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125957. [PMID: 34492874 DOI: 10.1016/j.jhazmat.2021.125957] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
While the use of biodegradable polymers is recognized as a global strategy to minimize plastic pollution, the technical standards (TS) used to attest their biodegradability may not be in compliance with most environmental parameters observed aquatic ecosystems. Indeed, through a careful assessment of the TS currently in use, this study evidenced that these guidelines cover only a fraction of the biogeochemical parameters seen in nature and largely disregard those that occur in the deep-sea. Thus, these TS may not be able to ensure the degradation of such polymers in natural environments, where microbial activity, pH, temperature, salinity, UV radiation and pressure are highly variable. This raises environmental concern, since relevant parcel of plastic ends up in the oceans reaching deep zones. Therefore, there is an urgent need to revise these TS, which must consider the actual fate of most plastic debris and include assessments under the challenging conditions found at these types of environment, alongside microplastic formation and ecotoxicology effects. Moreover, the next generation of biodegradability tests must be designed to enable a cost-effective implementation and incorporate accurate analytical techniques to assess polymer transformation. Furthermore, certification should provide information on time scale and degradation rates and, preferably, be globally harmonized.
Collapse
Affiliation(s)
- João S C Viera
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo, 11030-100 Santos, SP, Brazil
| | - Mônica R C Marques
- Programa de Pós-Graduação em Química do Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524 Pavilhão Haroldo Lisboa da Cunha, 20559-900 RJ, Brazil
| | - Monick Cruz Nazareth
- Programa de Pós-Graduação em Química do Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524 Pavilhão Haroldo Lisboa da Cunha, 20559-900 RJ, Brazil
| | - Paula Christine Jimenez
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo, 11030-100 Santos, SP, Brazil
| | - Carlos Sanz-Lázaro
- Department of Ecology, University of Alicante, PO Box 99, E-03080 Alicante, Spain
| | - Ítalo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo, 11030-100 Santos, SP, Brazil.
| |
Collapse
|
62
|
Scenario Simulation of the Impact of China’s Free-Trade Zone Construction on Regional Sustainable Development: A Case Study of the Pearl River Delta Urban Agglomeration. SUSTAINABILITY 2021. [DOI: 10.3390/su13148083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regional sustainable development is a complex process driven by multiple factors, such as the economy, society, and environment. China has made a series of major adjustments and devised plans, including the establishment of a pilot free-trade zone, to promote regional sustainable development. The pilot free-trade zone, characterized by free trade and the opening up of institutions, changes the path and mode of regional sustainable development to a certain extent. However, an effective empirical quantitative analysis to verify the impact of the pilot free-trade zone on regional sustainable development is lacking. This paper employs the system dynamics method to predict the social–economic–environmental development trends and key control factors of the Pearl River Delta urban agglomeration by considering the unique advantages of system dynamics. The construction of a pilot free-trade zone was set as a control variable to analyze its promoting effect on regional sustainable development. Next, the most suitable model for sustainable development for the future was determined. The results indicate that the construction of the pilot free-trade zone led to significant growth in indicators such as import and export trade, total economic volume, income, and labor force, all of which are conducive to regional sustainable development. Practically, the simulation results provide decision support for promoting the sustainable development of the Pearl River Delta urban agglomeration.
Collapse
|
63
|
Meloni G, Giustini A, Park H. CO 2 Activation Within a Superalkali-Doped Fullerene. Front Chem 2021; 9:712960. [PMID: 34336795 PMCID: PMC8317170 DOI: 10.3389/fchem.2021.712960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/28/2021] [Indexed: 11/15/2022] Open
Abstract
With the aim of finding a suitable synthesizable superalkali species, using the B3LYP/6-31G* density functional level of theory we provide results for the interaction between the buckminsterfullerene C60 and the superalkali Li3F2. We show that this endofullerene is stable and provides a closed environment in which the superalkali can exist and interact with CO2. It is worthwhile to mention that the optimized Li3F2 structure inside C60 is not the most stable C2v isomer found for the "free" superalkali but the D3h geometry. The binding energy at 0 K between C60 and Li3F2 (D3h) is computed to be 119 kJ mol-1. Once CO2 is introduced in the endofullerene, it is activated, and theO C O ^ angle is bent to 132°. This activation does not follow the previously studied CO2 reduction by an electron transfer process from the superalkali, but it is rather an actual reaction where a F (from Li3F2) atom is bonded to the CO2. From a thermodynamic analysis, both CO2 and the encapsulated [Li3F2⋅CO2] are destabilized in C60 with solvation energies at 0 K of 147 and < -965 kJ mol-1, respectively.
Collapse
Affiliation(s)
- Giovanni Meloni
- Department of Chemistry, University of San Francisco, San Francisco, CA, United States
- Department of Physical and Chemical Sciences, Università degli Studi de L’Aquila, L’Aquila, Italy
| | - Andrea Giustini
- Department of Physical and Chemical Sciences, Università degli Studi de L’Aquila, L’Aquila, Italy
| | - Heejune Park
- Department of Chemistry, University of San Francisco, San Francisco, CA, United States
| |
Collapse
|
64
|
Koerich G, Costa GB, Sissini MN, Ortiz CL, Canever BF, Oliveira W, Tonkin JD, Horta PA. Physiology, niche characteristics and extreme events: Current and future habitat suitability of a rhodolith-forming species in the Southwestern Atlantic. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105394. [PMID: 34166865 DOI: 10.1016/j.marenvres.2021.105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Given the ecological and biogeochemical importance of rhodolith beds, it is necessary to investigate how future environmental conditions will affect these organisms. We investigated the impacts of increased nutrient concentrations, acidification, and marine heatwaves on the performance of the rhodolith-forming species Lithothamnion crispatum in a short-term experiment, including the recovery of individuals after stressor removal. Furthermore, we developed an ecological niche model to establish which environmental conditions determine its current distribution along the Brazilian coast and to project responses to future climate scenarios. Although L. crispatum suffered a reduction in photosynthetic performance when exposed to stressors, they returned to pre-experiment values following the return of individuals to control conditions. The model showed that the most important variables in explaining the current distribution of L. crispatum on the Brazilian coast were maximum nitrate and temperature. In future ocean conditions, the model predicted a range expansion of habitat suitability for this species of approximately 58.5% under RCP 8.5. Physiological responses to experimental future environmental conditions corroborated model predictions of the expansion of this species' habitat suitability in the future. This study, therefore, demonstrates the benefits of applying combined approaches to examine potential species responses to climate-change drivers from multiple angles.
Collapse
Affiliation(s)
- Gabrielle Koerich
- Phycology Laboratory, Botanical Department, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil; Postgraduate Program in Ecology, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| | - Giulia Burle Costa
- Phycology Laboratory, Botanical Department, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil; Postgraduate Program in Oceanography, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Marina Nasri Sissini
- Phycology Laboratory, Botanical Department, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil; Postgraduate Program in Ecology, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Carlos Lopez Ortiz
- Phycology Laboratory, Botanical Department, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil; Postgraduate Program in Ecology, Federal University of Bahia, Salvador, Brazil
| | | | - Willian Oliveira
- Phycology Laboratory, Botanical Department, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Jonathan D Tonkin
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Paulo Antunes Horta
- Phycology Laboratory, Botanical Department, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil; Postgraduate Program in Ecology, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil; Postgraduate Program in Oceanography, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
65
|
Chan WY, Oakeshott JG, Buerger P, Edwards OR, van Oppen MJH. Adaptive responses of free-living and symbiotic microalgae to simulated future ocean conditions. GLOBAL CHANGE BIOLOGY 2021; 27:1737-1754. [PMID: 33547698 DOI: 10.1111/gcb.15546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Marine microalgae are a diverse group of microscopic eukaryotic and prokaryotic organisms capable of photosynthesis. They are important primary producers and carbon sinks but their physiology and persistence are severely affected by global climate change. Powerful experimental evolution technologies are being used to examine the potential of microalgae to respond adaptively to current and predicted future conditions, as well as to develop resources to facilitate species conservation and restoration of ecosystem functions. This review synthesizes findings and insights from experimental evolution studies of marine microalgae in response to elevated temperature and/or pCO2 . Adaptation to these environmental conditions has been observed in many studies of marine dinoflagellates, diatoms and coccolithophores. An enhancement in traits such as growth and photo-physiological performance and an increase in upper thermal limit have been shown to be possible, although the extent and rate of change differ between microalgal taxa. Studies employing multiple monoclonal replicates showed variation in responses among replicates and revealed the stochasticity of mutations. The work to date is already providing valuable information on species' climate sensitivity or resilience to managers and policymakers but extrapolating these insights to ecosystem- and community-level impacts continues to be a challenge. We recommend future work should include in situ experiments, diurnal and seasonal fluctuations, multiple drivers and multiple starting genotypes. Fitness trade-offs, stable versus plastic responses and the genetic bases of the changes also need investigating, and the incorporation of genome resequencing into experimental designs will be invaluable.
Collapse
Affiliation(s)
- Wing Yan Chan
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - John G Oakeshott
- CSIRO Synthetic Biology Future Science Platform, Land & Water, Canberra, ACT, Australia
- Applied Biosciences, Macquarie University, North Ryde, NSW, Australia
| | - Patrick Buerger
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
- CSIRO Synthetic Biology Future Science Platform, Land & Water, Canberra, ACT, Australia
| | - Owain R Edwards
- CSIRO Synthetic Biology Future Science Platform, Land & Water, Canberra, ACT, Australia
- Applied Biosciences, Macquarie University, North Ryde, NSW, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
66
|
Good AM, Bahr KD. The coral conservation crisis: interacting local and global stressors reduce reef resiliency and create challenges for conservation solutions. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04319-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractCoral reefs are one of the most productive and biodiverse ecosystems in the world. Humans rely on these coral reef ecosystems to provide significant ecological and economic resources; however, coral reefs are threatened by numerous local and global anthropogenic factors that cause significant environmental change. The interactions of these local and global human impacts may increase the rate of coral reef degradation. For example, there are many local influences (i.e., sedimentation and submarine groundwater discharge) that may exacerbate coral bleaching and mortality. Therefore, researchers and resource managers cannot limit their narratives and actions to mitigating a sole stressor. With the continued increase in greenhouse gas emissions, management strategies and restoration techniques need to account for the scale at which environmental change occurs. This review aims to outline the various local and global anthropogenic stressors threatening reef resiliency and address the recent disagreements surrounding present-day conservation practices. Unfortunately, there is no one solution to preserve and restore all coral reefs. Each coral reef region is challenged by numerous interactive stressors that affect its ecosystem response, recovery, and services in various ways. This review discusses, while global reef degradation occurs, local solutions should be implemented to efficiently protect the coral reef ecosystem services that are valuable to marine and terrestrial environments.
Collapse
|
67
|
Li Z, Lan T, Zhang J, Gao K, Beardall J, Wu Y. Nitrogen Limitation Decreases the Repair Capacity and Enhances Photoinhibition of Photosystem II in a Diatom. Photochem Photobiol 2021; 97:745-752. [PMID: 33496343 DOI: 10.1111/php.13386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/30/2023]
Abstract
Macronutrient limitation and increased solar exposure coincide with ocean warming-enhanced stratification, with consequences for phytoplankton within the upper mixing layer. In this study, we grew a diatom, Thalassiosira punctigera, under nitrogen-limited and replete conditions for more than 14 generations and investigated both the biochemical composition of treated cells and their photochemical responses to high light and UV exposure. The photosynthetic pigment and the particulate organic nitrogen (PON) content significantly decreased in the low nitrate grown cells, with drastic decline of the absorption of UV absorbing compounds. Under an acute exposure to high light or UV radiation, we observed a significant decline in the photochemical yield along with an increase of nonphotosynthetic quenching (NPQ), with the former lowered and the latter raised in the low-nitrogen grown cells. The results reveal a decreased repair rate and enhanced photoinhibition of the diatom under nitrogen limitation when exposed to increased levels of light and UV radiation, suggesting a higher vulnerability of the diatom phytoplankton under influences of oceanic global change.
Collapse
Affiliation(s)
- Zhenzhen Li
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China.,The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ting Lan
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Jiaojiao Zhang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Yaping Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
68
|
Early-Stage Recovery of Lithium from Tailored Thermal Conditioned Black Mass Part I: Mobilizing Lithium via Supercritical CO2-Carbonation. METALS 2021. [DOI: 10.3390/met11020177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the frame of global demand for electrical storage based on lithium-ion batteries (LIBs), their recycling with a focus on the circular economy is a critical topic. In terms of political incentives, the European legislative is currently under revision. Most industrial recycling processes target valuable battery components, such as nickel and cobalt, but do not focus on lithium recovery. Especially in the context of reduced cobalt shares in the battery cathodes, it is important to investigate environmentally friendly and economic and robust recycling processes to ensure lithium mobilization. In this study, the method early-stage lithium recovery (“ESLR”) is studied in detail. Its concept comprises the shifting of lithium recovery to the beginning of the chemo-metallurgical part of the recycling process chain in comparison to the state-of-the-art. In detail, full NCM (Lithium Nickel Manganese Cobalt Oxide)-based electric vehicle cells are thermally treated to recover heat-treated black mass. Then, the heat-treated black mass is subjected to an H2O-leaching step to examine the share of water-soluble lithium phases. This is compared to a carbonation treatment with supercritical CO2, where a higher extent of lithium from the heat-treated black mass can be transferred to an aqueous solution than just by H2O-leaching. Key influencing factors on the lithium yield are the filter cake purification, the lithium separation method, the solid/liquid ratio, the pyrolysis temperature and atmosphere, and the setup of autoclave carbonation, which can be performed in an H2O-environment or in a dry autoclave environment. The carbonation treatments in this study are reached by an autoclave reactor working with CO2 in a supercritical state. This enables selective leaching of lithium in H2O followed by a subsequent thermally induced precipitation as lithium carbonate. In this approach, treatment with supercritical CO2 in an autoclave reactor leads to lithium yields of up to 79%.
Collapse
|
69
|
Yang Y, Li W, Li Y, Xu N. Photophysiological responses of the marine macroalga Gracilariopsis lemaneiformis to ocean acidification and warming. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105204. [PMID: 33213860 DOI: 10.1016/j.marenvres.2020.105204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
To study the combined effects of ocean acidification (OA) and warming on the growth and photosynthetic performance of the economically important marine macroalga Gracilariopsis lemaneiformis, thalli were grown under ambient low CO2 (390 μatm, LC) and elevated high CO2 (1000 μatm, HC) conditions with culture temperatures of 20 °C and 24 °C. Based on the evaluation of growth and photosynthetic responses to light and dissolved inorganic carbon (DIC), HC decreased the growth rate and phycoerythrin (PE) and phycocyanin (PC) levels but increased contents of UV-absorbing compounds (UVACs) in G. lemaneiformis at 20 °C, and high temperature counteracted these effects. Photosynthetic responses such as chlorophyll fluorescence parameters (maximum relative electron transport rate, rETRmax; light use efficiency, α; saturation light intensity, Ik; maximum quantum yield, FV/FM; effective quantum yield, Y(II) and non-photochemical quenching, NPQ) were not different among the treatments. However, increased oxygen evolution (Pn) and dark respiration (Rd) rates were observed at 20 °C in the HC treatment. No significant effects of HC on apparent carboxylation efficiency (ACE), maximum oxygen evolution rate (Vmax) and DIC affinity for oxygen evolution (K1/2DIC) were found, and HC synergy with high temperature increased K1/2DIC. A lower C/N ratio with decreased tissue carbon but increased nitrogen was observed under HC and high-temperature treatment. Our results indicate that high temperature may counteract the negative effects of OA on the growth and pigment characteristics of G. lemaneiformis and improve food quality, as evidenced by enhanced N per biomass.
Collapse
Affiliation(s)
- Yuling Yang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; College of Life and Environmental Sciences, Huangshan University, Huangshan, 245021, China
| | - Wei Li
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245021, China.
| | - Yahe Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
70
|
Brandenburg KM, Krock B, Klip HCL, Sluijs A, Garbeva P, Van de Waal DB. Intraspecific variation in multiple trait responses of Alexandrium ostenfeldii towards elevated pCO 2. HARMFUL ALGAE 2021; 101:101970. [PMID: 33526186 DOI: 10.1016/j.hal.2020.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Dissolved oceanic CO2 concentrations are rising as result of increasing atmospheric partial pressure of CO2 (pCO2), which has large consequences for phytoplankton. To test how higher CO2 availability affects different traits of the toxic dinoflagellate Alexandrium ostenfeldii, we exposed three strains of the same population to 400 and 1,000 µatm CO2, and measured traits including growth rate, cell volume, elemental composition, 13C fractionation, toxin content, and volatile organic compounds (VOCs). Strains largely increased their growth rates and particulate organic carbon and nitrogen production with higher pCO2 and showed significant changes in their VOC profile. One strain showed a significant decrease in both PSP and cyclic imine content and thereby in cellular toxicity. Fractionation against 13C increased in response to elevated pCO2, which may point towards enhanced CO2 acquisition and/or a downscaling of the carbon concentrating mechanisms. Besides consistent responses in some traits, other traits showed large variation in both direction and strength of responses towards elevated pCO2. The observed intraspecific variation in phenotypic plasticity of important functional traits within the same population may help A. ostenfeldii to negate the effects of immediate environmental fluctuations and allow populations to adapt more quickly to changing environments.
Collapse
Affiliation(s)
- Karen M Brandenburg
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, Netherlands.
| | - Bernd Krock
- Section Ecological Chemistry, Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Helena C L Klip
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, Netherlands; Section Shelf Sea System Ecology, Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung (AWI), Biologische Anstalt Helgoland (BAH), Kurpromenade 201, 27498 Helgoland, Germany
| | - Appy Sluijs
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708PB Wageningen, Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands
| |
Collapse
|
71
|
Ji Y, Gao K. Effects of climate change factors on marine macroalgae: A review. ADVANCES IN MARINE BIOLOGY 2020; 88:91-136. [PMID: 34119047 DOI: 10.1016/bs.amb.2020.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Marine macroalgae, the main primary producers in coastal waters, play important roles in the fishery industry and global carbon cycles. With progressive ocean global changes, however, they are increasingly exposed to enhanced levels of multiple environmental drivers, such as ocean acidification, warming, heatwaves, UV radiation and deoxygenation. While most macroalgae have developed physiological strategies against variations of these drivers, their eco-physiological responses to each or combinations of the drivers differ spatiotemporally and species-specifically. Many freshwater macroalgae are tolerant of pH drop and its diel fluctuations and capable of acclimating to changes in carbonate chemistry. However, calcifying species, such as coralline algae, are very sensitive to acidification of seawater, which reduces their calcification, and additionally, temperature rise and UV further decrease their physiological performance. Except for these calcifying species, both economically important and harmful macroalgae can benefit from elevated CO2 concentrations and moderate temperature rise, which might be responsible for increasing events of harmful macroalgal blooms including green macroalgal blooms caused by Ulva spp. and golden tides caused by Sargassum spp. Upper intertidal macroalgae, especially those tolerant of dehydration during low tide, increase their photosynthesis under elevated CO2 concentrations during the initial dehydration period, however, these species might be endangered by heatwaves, which can expose them to high temperature levels above their thermal windows' upper limit. On the other hand, since macroalgae are distributed in shallow waters, they are inevitably exposed to solar UV radiation. The effects of UV radiation, depending on weather conditions and species, can be harmful as well as beneficial to many species. Moderate levels of UV-A (315-400nm) can enhance photosynthesis of green, brown and red algae, while UV-B (280-315nm) mainly show inhibitory impacts. Although little has been documented on the combined effects of elevated CO2, temperature or heatwaves with UV radiation, exposures to heatwaves during midday under high levels of UV radiation can be detrimental to most species, especially to their microscopic stages which are less tolerant of climate change induced stress. In parallel, reduced availability of dissolved O2 in coastal water along with eutrophication might favour the macroalgae's carboxylation process by suppressing their oxygenation or photorespiration. In this review, we analyse effects of climate change-relevant drivers individually and/or jointly on different macroalgal groups and different life cycle stages based on the literatures surveyed, and provide perspectives for future studies.
Collapse
Affiliation(s)
- Yan Ji
- State Key Laboratory of Marine Environmental Science, Xiamen University/College of Ocean and Earth Sciences, Xiamen, China; School of Biological & Chemical Engineering, Qingdao Technical College, Qingdao, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University/College of Ocean and Earth Sciences, Xiamen, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
72
|
Landrigan PJ, Stegeman JJ, Fleming LE, Allemand D, Anderson DM, Backer LC, Brucker-Davis F, Chevalier N, Corra L, Czerucka D, Bottein MYD, Demeneix B, Depledge M, Deheyn DD, Dorman CJ, Fénichel P, Fisher S, Gaill F, Galgani F, Gaze WH, Giuliano L, Grandjean P, Hahn ME, Hamdoun A, Hess P, Judson B, Laborde A, McGlade J, Mu J, Mustapha A, Neira M, Noble RT, Pedrotti ML, Reddy C, Rocklöv J, Scharler UM, Shanmugam H, Taghian G, van de Water JA, Vezzulli L, Weihe P, Zeka A, Raps H, Rampal P. Human Health and Ocean Pollution. Ann Glob Health 2020; 86:151. [PMID: 33354517 PMCID: PMC7731724 DOI: 10.5334/aogh.2831] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Pollution - unwanted waste released to air, water, and land by human activity - is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood. Goals (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health. Methods Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention. Environmental Findings Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources - coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths. Ecosystem Findings Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks. Human Health Findings Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children's risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals - phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste - can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South - environmental injustice on a planetary scale. Conclusions Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth's resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted.Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored.Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries. Recommendations World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health.Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress.Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries.Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.
Collapse
Affiliation(s)
| | - John J. Stegeman
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - Lora E. Fleming
- European Centre for Environment and Human Health, GB
- University of Exeter Medical School, GB
| | | | - Donald M. Anderson
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | | | | | - Nicolas Chevalier
- Université Côte d’Azur, FR
- Centre Hospitalier Universitaire de Nice, Inserm, C3M, FR
| | - Lilian Corra
- International Society of Doctors for the Environment (ISDE), CH
- Health and Environment of the Global Alliance on Health and Pollution (GAHP), AR
| | | | - Marie-Yasmine Dechraoui Bottein
- Intergovernmental Oceanographic Commission of UNESCO, FR
- IOC Science and Communication Centre on Harmful Algae, University of Copenhagen, DK
- Ecotoxicologie et développement durable expertise ECODD, Valbonne, FR
| | - Barbara Demeneix
- Centre National de la Recherche Scientifique, FR
- Muséum National d’Histoire Naturelle, Paris, FR
| | | | - Dimitri D. Deheyn
- Scripps Institution of Oceanography, University of California San Diego, US
| | | | - Patrick Fénichel
- Université Côte d’Azur, FR
- Centre Hospitalier Universitaire de Nice, Inserm, C3M, FR
| | | | | | | | | | | | | | - Mark E. Hahn
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | | | - Philipp Hess
- Institut Français de Recherche pour l’Exploitation des Mers, FR
| | | | | | - Jacqueline McGlade
- Institute for Global Prosperity, University College London, GB
- Strathmore University Business School, Nairobi, KE
| | | | - Adetoun Mustapha
- Nigerian Institute for Medical Research, Lagos, NG
- Imperial College London, GB
| | | | | | | | - Christopher Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, US
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, SE
| | | | | | | | | | | | - Pál Weihe
- University of the Faroe Islands and Department of Occupational Medicine and Public Health, FO
| | | | - Hervé Raps
- Centre Scientifique de Monaco, MC
- WHO Collaborating Centre for Health and Sustainable Development, MC
| | - Patrick Rampal
- Centre Scientifique de Monaco, MC
- WHO Collaborating Centre for Health and Sustainable Development, MC
| |
Collapse
|
73
|
Barclay KM, Gingras MK, Packer ST, Leighton LR. The role of gastropod shell composition and microstructure in resisting dissolution caused by ocean acidification. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105105. [PMID: 32841915 DOI: 10.1016/j.marenvres.2020.105105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Organisms, such as molluscs, that produce their hard parts from calcium carbonate are expected to show increased difficulties growing and maintaining their skeletons under ocean acidification (OA). Any loss of shell integrity increases vulnerability, as shells provide protection against predation, desiccation, and disease. Not all species show the same responses to OA, which may be due to the composition and microstructural arrangement of their shells. We explore the role of shell composition and microstructure in resisting dissolution caused by decreases in seawater pH using a combination of microCT scans, XRD analysis, and SEM imaging. Two gastropods with different shell compositions and microstructure, Tegula funebralis and Nucella ostrina, were exposed to simulated ocean acidification conditions for six months. Both species showed signs of dissolution on the exterior of their shells, but changes in density were significantly more pronounced in T. funebralis. XRD analysis indicated that the exterior layer of both shell types was made of calcite. T. funebralis may be more prone to dissolution because their outer fibrous calcite layer has more crystal edges and faces exposed, potentially increasing the surface area on which dissolution can occur. These results support a previous study where T. funebralis showed significant decreases in both shell growth and strength, but N. ostrina only showed slight reductions in shell strength, and unaffected growth. We suggest that microstructural arrangement of shell layers in molluscs, more so than their composition alone, is critical for determining the vulnerability of mollusc shells to OA.
Collapse
Affiliation(s)
- Kristina M Barclay
- Earth and Atmospheric Sciences Department, University of Alberta, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB, T6G 2E3, Canada.
| | - Murray K Gingras
- Earth and Atmospheric Sciences Department, University of Alberta, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Stephen T Packer
- Earth and Atmospheric Sciences Department, University of Alberta, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Lindsey R Leighton
- Earth and Atmospheric Sciences Department, University of Alberta, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
74
|
Asnaghi V, Chindris A, Leggieri F, Scolamacchia M, Brundu G, Guala I, Loi B, Chiantore M, Farina S. Decreased pH impairs sea urchin resistance to predatory fish: A combined laboratory-field study to understand the fate of top-down processes in future oceans. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105194. [PMID: 33126114 DOI: 10.1016/j.marenvres.2020.105194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Changing oceans represent a serious threat for a wide range of marine organisms, with severe cascading effects on ecosystems and their services. Sea urchins are particularly sensitive to decreased pH expected for the end of the century and their key ecological role in regulating community structure and functioning could be seriously compromised. An integrated approach of laboratory and field experiments has been implemented to investigate the effects of decreased pH on predator-prey interaction involving sea urchins and their predators. Our results suggest that under future Ocean Acidification scenarios adult sea urchins defence strategies, such as spine length, test robustness and oral plate thickness, could be compromised together with their survival chance to natural predators. Sea urchins represent the critical linkage between top-down and bottom-up processes along Mediterranean rocky reefs, and the cumulative impacts of global and local stressors could lead to a decline producing cascading effects on benthic ecosystems.
Collapse
Affiliation(s)
- V Asnaghi
- DISTAV, University of Genoa, C.so Europa 26, 16132, Genoa, Italy.
| | - A Chindris
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy
| | - F Leggieri
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy; CNR - National Research Council, IAS - Institute of Anthropic Impacts and Sustainability in Marine Environment, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy
| | - M Scolamacchia
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy; CNR - National Research Council, IAS - Institute of Anthropic Impacts and Sustainability in Marine Environment, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy
| | - G Brundu
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy
| | - I Guala
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy
| | - B Loi
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy
| | - M Chiantore
- DISTAV, University of Genoa, C.so Europa 26, 16132, Genoa, Italy
| | - S Farina
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170, Oristano, Italy
| |
Collapse
|
75
|
Pousse E, Poach ME, Redman DH, Sennefelder G, White LE, Lindsay JM, Munroe D, Hart D, Hennen D, Dixon MS, Li Y, Wikfors GH, Meseck SL. Energetic response of Atlantic surfclam Spisula solidissima to ocean acidification. MARINE POLLUTION BULLETIN 2020; 161:111740. [PMID: 33128982 DOI: 10.1016/j.marpolbul.2020.111740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
In this study, we assessed the Atlantic surfclam (Spisula solidissima) energy budget under different ocean acidification conditions (OA). During 12 weeks, 126 individuals were maintained at three different ρCO2 concentrations. Every two weeks, individuals were sampled for physiological measurements and scope for growth (SFG). In the high ρCO2 treatment, clearance rate decreased and excretion rate increased relative to the low ρCO2 treatment, resulting in reduced SFG. Moreover, oxygen:nitrogen (O:N) excretion ratio dropped, suggesting that a switch in metabolic strategy occurred. The medium ρCO2 treatment had no significant effects upon SFG; however, metabolic loss increased, suggesting a rise in energy expenditure. In addition, a significant increase in food selection efficiency was observed in the medium treatment, which could be a compensatory reaction to the metabolic over-costs. Results showed that surfclams are particularly sensitive to OA; however, the different compensatory mechanisms observed indicate that they are capable of some temporary resilience.
Collapse
Affiliation(s)
- Emilien Pousse
- National Research Council Post-Doctoral Associate at NOAA NMFS, 212 Rogers Ave., Milford, CT 06418, USA.
| | - Matthew E Poach
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT 06460, USA
| | - Dylan H Redman
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT 06460, USA
| | - George Sennefelder
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT 06460, USA
| | - Lauren E White
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT 06460, USA
| | - Jessica M Lindsay
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT 06460, USA
| | - Daphne Munroe
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Ave., Port Norris, NJ 8349, USA
| | - Deborah Hart
- NOAA/NMFS, 166 Water St. Woods Hole, MA 02543, USA
| | | | - Mark S Dixon
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT 06460, USA
| | - Yaqin Li
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT 06460, USA
| | - Gary H Wikfors
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT 06460, USA
| | - Shannon L Meseck
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT 06460, USA
| |
Collapse
|
76
|
Wang X, Wang M, Wang W, Liu Z, Xu J, Jia Z, Chen H, Qiu L, Lv Z, Wang L, Song L. Transcriptional changes of Pacific oyster Crassostrea gigas reveal essential role of calcium signal pathway in response to CO 2-driven acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140177. [PMID: 32570066 DOI: 10.1016/j.scitotenv.2020.140177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
There is increasing evidence that ocean acidification (OA) has a significant impact on marine organisms. However, the ability of most marine organisms to acclimate to OA and the underlying mechanisms are still not well understood. In the present study, whole transcriptome analysis was performed to compare the impacts of short- (7 days, named as short group) and long- (60 days, named as long group) term CO2 exposure (pH 7.50) on Pacific oyster Crassostrea gigas. The responses of C. gigas to short- and long-term CO2 exposure shared common mechanisms in metabolism, membrane-associated transportation and binding processes. Long-term CO2 exposure induced significant expression of genes involved in DNA or RNA binding, indicating the activated transcription after long-term CO2 exposure. Oysters in the short-term group underwent significant intracellular calcium variation and oxidative stress. In contrast, the intracellular calcium, ROS level in hemocytes and H2O2 in serum recovered to normal levels after long-term CO2 exposure, suggesting the compensation of physiological status and mutual interplay between calcium and oxidative level. The compensation was supported by the up-regulation of a series of calcium binding proteins (CBPs) and calmodulins (CaMs) related signal pathway. The results provided valuable information to understand the molecular mechanism underlying the responses of Pacific oyster to the acidified ocean and might have implications for predicting the possible effects of global climate changes on oyster aquaculture.
Collapse
Affiliation(s)
- Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Jiachao Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
77
|
Cupp AR, Smerud JR, Thomas LM, Waller DL, Smith DL, Erickson RA, Gaikowski MP. Toxicity of Carbon Dioxide to Freshwater Fishes: Implications for Aquatic Invasive Species Management. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2247-2255. [PMID: 32813922 DOI: 10.1002/etc.4855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Carbon dioxide (CO2 ) has been approved by the US Environmental Protection Agency as a new aquatic pesticide to control invasive Asian carps and other aquatic nuisance species in the United States. However, limited CO2 toxicity data could make it challenging for resource managers to characterize the potential risk to nontarget species during CO2 applications. The present study quantified the toxicity of CO2 to 2 native riverine fishes, bluegill (Lepomis macrochirus) and fathead minnow (Pimephales promelas), using 12-h continuous flow-through CO2 exposure at 5, 15, and 25 °C water temperatures. Resulting survival indicated that bluegill (median lethal concentration [LC50] range 91-140 mg/L CO2 ) were more sensitive to CO2 than fathead minnow (LC50 range 235-306 mg/L CO2 ) across all water temperatures. Bluegill were also more sensitive to CO2 at 5 °C (LC50 91 mg/L CO2 , 95% CI 85-96 mg/L CO2 ) than at 25 °C (LC50 140 mg/L CO2 , 95% CI 135-146 mg/L CO2 ). Fathead minnow showed an opposite response and were less sensitive at 5 °C (LC50 306 mg/L CO2 , 95% CI 286-327 mg/L CO2 ) relative to 25 °C (LC50 235 mg/L CO2 , 95% CI 224-246 mg/L CO2 ). Our results show that CO2 toxicity can differ by species and water temperature. Data from the present study may inform decisions related to the use of CO2 as a control tool. Environ Toxicol Chem 2020;39:2247-2255. Published 2020. This article is a U.S. government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Aaron R Cupp
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - Justin R Smerud
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - Linnea M Thomas
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - Diane L Waller
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - David L Smith
- Engineer Research and Development Center, US Army Corps of Engineers, Vicksburg, Mississippi
| | - Richard A Erickson
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - Mark P Gaikowski
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| |
Collapse
|
78
|
Fabricius KE, Neill C, Van Ooijen E, Smith JN, Tilbrook B. Progressive seawater acidification on the Great Barrier Reef continental shelf. Sci Rep 2020; 10:18602. [PMID: 33110129 PMCID: PMC7592051 DOI: 10.1038/s41598-020-75293-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
Coral reefs are highly sensitive to ocean acidification due to rising atmospheric CO2 concentrations. We present 10 years of data (2009-2019) on the long-term trends and sources of variation in the carbon chemistry from two fixed stations in the Australian Great Barrier Reef. Data from the subtropical mid-shelf GBRWIS comprised 3-h instrument records, and those from the tropical coastal NRSYON were monthly seawater samples. Both stations recorded significant variation in seawater CO2 fugacity (fCO2), attributable to seasonal, daytime, temperature and salinity fluctuations. Superimposed over this variation, fCO2 progressively increased by > 2.0 ± 0.3 µatm year-1 at both stations. Seawater temperature and salinity also increased throughout the decade, whereas seawater pH and the saturation state of aragonite declined. The decadal upward fCO2 trend remained significant in temperature- and salinity-normalised data. Indeed, annual fCO2 minima are now higher than estimated fCO2 maxima in the early 1960s, with mean fCO2 now ~ 28% higher than 60 years ago. Our data indicate that carbonate dissolution from the seafloor is currently unable to buffer the Great Barrier Reef against ocean acidification. This is of great concern for the thousands of coral reefs and other diverse marine ecosystems located in this vast continental shelf system.
Collapse
Affiliation(s)
| | - Craig Neill
- CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, 7004, Australia
| | - Erik Van Ooijen
- CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, 7004, Australia
| | - Joy N Smith
- Australian Institute of Marine Science, PMB 3, Townsville, QLD, 4810, Australia
| | - Bronte Tilbrook
- CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, 7004, Australia.,Australian Antarctic Program Partnership, University of Tasmania, Hobart, 7001, Australia
| |
Collapse
|
79
|
A possible link between coral reef success, crustose coralline algae and the evolution of herbivory. Sci Rep 2020; 10:17748. [PMID: 33082388 PMCID: PMC7575568 DOI: 10.1038/s41598-020-73900-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/21/2020] [Indexed: 12/03/2022] Open
Abstract
Crustose coralline red algae (CCA) play a key role in the consolidation of many modern tropical coral reefs. It is unclear, however, if their function as reef consolidators was equally pronounced in the geological past. Using a comprehensive database on ancient reefs, we show a strong correlation between the presence of CCA and the formation of true coral reefs throughout the last 150 Ma. We investigated if repeated breakdowns in the potential capacity of CCA to spur reef development were associated with sea level, ocean temperature, CO2 concentration, CCA species diversity, and/or the evolution of major herbivore groups. Model results show that the correlation between the occurrence of CCA and the development of true coral reefs increased with CCA diversity and cooler ocean temperatures while the diversification of herbivores had a transient negative effect. The evolution of novel herbivore groups compromised the interaction between CCA and true reef growth at least three times in the investigated time interval. These crises have been overcome by morphological adaptations of CCA.
Collapse
|
80
|
Peijnenburg KTCA, Janssen AW, Wall-Palmer D, Goetze E, Maas AE, Todd JA, Marlétaz F. The origin and diversification of pteropods precede past perturbations in the Earth's carbon cycle. Proc Natl Acad Sci U S A 2020; 117:25609-25617. [PMID: 32973093 PMCID: PMC7568333 DOI: 10.1073/pnas.1920918117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pteropods are a group of planktonic gastropods that are widely regarded as biological indicators for assessing the impacts of ocean acidification. Their aragonitic shells are highly sensitive to acute changes in ocean chemistry. However, to gain insight into their potential to adapt to current climate change, we need to accurately reconstruct their evolutionary history and assess their responses to past changes in the Earth's carbon cycle. Here, we resolve the phylogeny and timing of pteropod evolution with a phylogenomic dataset (2,654 genes) incorporating new data for 21 pteropod species and revised fossil evidence. In agreement with traditional taxonomy, we recovered molecular support for a division between "sea butterflies" (Thecosomata; mucus-web feeders) and "sea angels" (Gymnosomata; active predators). Molecular dating demonstrated that these two lineages diverged in the early Cretaceous, and that all main pteropod clades, including shelled, partially-shelled, and unshelled groups, diverged in the mid- to late Cretaceous. Hence, these clades originated prior to and subsequently survived major global change events, including the Paleocene-Eocene Thermal Maximum (PETM), the closest analog to modern-day ocean acidification and warming. Our findings indicate that planktonic aragonitic calcifiers have shown resilience to perturbations in the Earth's carbon cycle over evolutionary timescales.
Collapse
Affiliation(s)
- Katja T C A Peijnenburg
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands;
- Department Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Arie W Janssen
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands
| | - Deborah Wall-Palmer
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands
| | - Erica Goetze
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI 96822
| | - Amy E Maas
- Bermuda Institute of Ocean Sciences, St. Georges GE01, Bermuda
| | - Jonathan A Todd
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, United Kingdom
| | - Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom;
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna-son 904-0495, Japan
| |
Collapse
|
81
|
Bergstrom E, Ordoñez A, Ho M, Hurd C, Fry B, Diaz-Pulido G. Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105107. [PMID: 32890983 DOI: 10.1016/j.marenvres.2020.105107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Dissolved inorganic carbon (DIC) assimilation is essential to the reef-building capacity of crustose coralline algae (CCA). Little is known, however, about the DIC uptake strategies and their potential plasticity under ongoing ocean acidification (OA) and warming. The persistence of CCA lineages throughout historical oscillations of pCO2 and temperature suggests that evolutionary history may play a role in selecting for adaptive traits. We evaluated the effects of pCO2 and temperature on the plasticity of DIC uptake strategies and associated energetic consequences in reef-building CCA from different evolutionary lineages. We simulated past, present, moderate (IPCC RCP 6.0) and high pCO2 (RCP 8.5) and present and high (RCP 8.5) temperature conditions and quantified stable carbon isotope fractionation (13ε), organic carbon content, growth and photochemical efficiency. All investigated CCA species possess CO2-concentrating mechanisms (CCMs) and assimilate CO2 via diffusion to varying degrees. Under OA and warming, CCA either increased or maintained CCM capacity, which was associated with overall neutral effects on metabolic performance. More basal taxa, Sporolithales and Hapalidiales, had greater capacity for diffusive CO2 use than Corallinales. We suggest that CCMs are an adaptation that supports a robust carbon physiology and are likely responsible for the endurance of CCA in historically changing oceans.
Collapse
Affiliation(s)
- Ellie Bergstrom
- School of Environment & Science and Australian Rivers Institute - Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, Nathan, Queensland, 4111, Australia.
| | - Alexandra Ordoñez
- School of Environment & Science and Australian Rivers Institute - Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, Nathan, Queensland, 4111, Australia
| | - Maureen Ho
- School of Environment & Science and Australian Rivers Institute - Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, Nathan, Queensland, 4111, Australia
| | - Catriona Hurd
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, 28 Morrison St., Hobart, TAS, 7000, Australia
| | - Brian Fry
- School of Environment & Science and Australian Rivers Institute - Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, Nathan, Queensland, 4111, Australia
| | - Guillermo Diaz-Pulido
- School of Environment & Science and Australian Rivers Institute - Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, Nathan, Queensland, 4111, Australia.
| |
Collapse
|
82
|
The seawater carbon inventory at the Paleocene-Eocene Thermal Maximum. Proc Natl Acad Sci U S A 2020; 117:24088-24095. [PMID: 32929018 DOI: 10.1073/pnas.2003197117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Paleocene-Eocene Thermal Maximum (PETM) (55.6 Mya) was a geologically rapid carbon-release event that is considered the closest natural analog to anthropogenic CO2 emissions. Recent work has used boron-based proxies in planktic foraminifera to characterize the extent of surface-ocean acidification that occurred during the event. However, seawater acidity alone provides an incomplete constraint on the nature and source of carbon release. Here, we apply previously undescribed culture calibrations for the B/Ca proxy in planktic foraminifera and use them to calculate relative changes in seawater-dissolved inorganic carbon (DIC) concentration, surmising that Pacific surface-ocean DIC increased by [Formula: see text] µmol/kg during the peak-PETM. Making reasonable assumptions for the pre-PETM oceanic DIC inventory, we provide a fully data-driven estimate of the PETM carbon source. Our reconstruction yields a mean source carbon δ13C of -10‰ and a mean increase in the oceanic C inventory of +14,900 petagrams of carbon (PgC), pointing to volcanic CO2 emissions as the main carbon source responsible for PETM warming.
Collapse
|
83
|
Anagnostou E, John EH, Babila TL, Sexton PF, Ridgwell A, Lunt DJ, Pearson PN, Chalk TB, Pancost RD, Foster GL. Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nat Commun 2020; 11:4436. [PMID: 32895377 PMCID: PMC7477227 DOI: 10.1038/s41467-020-17887-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 07/22/2020] [Indexed: 11/08/2022] Open
Abstract
Despite recent advances, the link between the evolution of atmospheric CO2 and climate during the Eocene greenhouse remains uncertain. In particular, modelling studies suggest that in order to achieve the global warmth that characterised the early Eocene, warmer climates must be more sensitive to CO2 forcing than colder climates. Here, we test this assertion in the geological record by combining a new high-resolution boron isotope-based CO2 record with novel estimates of Global Mean Temperature. We find that Equilibrium Climate Sensitivity (ECS) was indeed higher during the warmest intervals of the Eocene, agreeing well with recent model simulations, and declined through the Eocene as global climate cooled. These observations indicate that the canonical IPCC range of ECS (1.5 to 4.5 °C per doubling) is unlikely to be appropriate for high-CO2 warm climates of the past, and the state dependency of ECS may play an increasingly important role in determining the state of future climate as the Earth continues to warm.
Collapse
Affiliation(s)
- E Anagnostou
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstrasse 1-3, 24148, Kiel, Germany.
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, SO14 3ZH, UK.
| | - E H John
- School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | - T L Babila
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, SO14 3ZH, UK
| | - P F Sexton
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - A Ridgwell
- Department of Earth Sciences, University of California, Riverside, CA, 92521, USA
| | - D J Lunt
- School of Geographical Sciences, University of Bristol, University Rd, Bristol, BS8 1SS, UK
| | - P N Pearson
- School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | - T B Chalk
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, SO14 3ZH, UK
| | - R D Pancost
- Organic Geochemistry Unit, School of Chemistry and School of Earth Sciences, Cabot Institute for the Environment, University of Bristol, Queens Rd, Bristol, BS8 1UJ, UK
| | - G L Foster
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, SO14 3ZH, UK
| |
Collapse
|
84
|
Li W, Wang T, Campbell DA, Gao K. Ocean acidification interacts with variable light to decrease growth but increase particulate organic nitrogen production in a diatom. MARINE ENVIRONMENTAL RESEARCH 2020; 160:104965. [PMID: 32291249 DOI: 10.1016/j.marenvres.2020.104965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/06/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Phytoplankton in the upper oceans are exposed to changing light levels due to mixing, diurnal solar cycles and weather conditions. Consequently, effects of ocean acidification are superimposed upon responses to variable light levels. We therefore grew a model diatom Thalassiosira pseudonana under either constant or variable light but at the same daily photon dose, with current low (400 μatm, LC) and future high CO2 (1000 μatm, HC) treatments. Variable light, compared with the constant light regime, decreased the growth rate, Chl a, Chl c, and carotenoid contents under both LC and HC conditions. Cells grown under variable light appeared more tolerant of high light as indicated by higher maximum relative electron transport rate and saturation light. Light variation interacted with high CO2/lowered pH to decrease the carbon fixation rate, but increased particulate organic carbon (POC) and particularly nitrogen (PON) per cell, which drove a decrease in C/N ratio, reflecting changes in the efficiency of energy transfer from photo-chemistry to net biomass production. Our results imply that elevated pCO2 under varying light conditions can lead to less primary productivity but more PON per biomass of the diatom, which might improve the food quality of diatoms and thereby influence biogeochemical nitrogen cycles.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China; College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China
| | - Tifeng Wang
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Douglas A Campbell
- Biology Department, Mount Allison University, Sackville, NB, E4L 1G7, Canada
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
85
|
Doo SS, Leplastrier A, Graba‐Landry A, Harianto J, Coleman RA, Byrne M. Amelioration of ocean acidification and warming effects through physiological buffering of a macroalgae. Ecol Evol 2020; 10:8465-8475. [PMID: 32788994 PMCID: PMC7417211 DOI: 10.1002/ece3.6552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
Concurrent anthropogenic global climate change and ocean acidification are expected to have a negative impact on calcifying marine organisms. While knowledge of biological responses of organisms to oceanic stress has emerged from single-species experiments, these do not capture ecologically relevant scenarios where the potential for multi-organism physiological interactions is assessed. Marine algae provide an interesting case study, as their photosynthetic activity elevates pH in the surrounding microenvironment, potentially buffering more acidic conditions for associated epiphytes. We present findings that indicate increased tolerance of an important epiphytic foraminifera, Marginopora vertebralis, to the effects of increased temperature (±3°C) and pCO2 (~1,000 µatm) when associated with its common algal host, Laurencia intricata. Specimens of M. vertebralis were incubated for 15 days in flow-through aquaria simulating current and end-of-century temperature and pH conditions. Physiological measures of growth (change in wet weight), calcification (measured change in total alkalinity in closed bottles), photochemical efficiency (Fv/Fm), total chlorophyll, photosynthesis (oxygen flux), and respiration were determined. When incubated in isolation, M. vertebralis exhibited reduced growth in end-of-century projections of ocean acidification conditions, while calcification rates were lowest in the high-temperature, low-pH treatment. Interestingly, association with L. intricata ameliorated these stress effects with the growth and calcification rates of M. vertebralis being similar to those observed in ambient conditions. Total chlorophyll levels in M. vertebralis decreased when in association with L. intricata, while maximum photochemical efficiency increased in ambient conditions. Net production estimates remained similar between M. vertebralis in isolation and in association with L. intricata, although both production and respiration rates of M. vertebralis were significantly higher when associated with L. intricata. These results indicate that the association with L. intricata increases the resilience of M. vertebralis to climate change stress, providing one of the first examples of physiological buffering by a marine alga that can ameliorate the negative effects of changing ocean conditions.
Collapse
Affiliation(s)
- Steve S. Doo
- Coastal & Marine Ecosystems GroupSchool of Life & Environmental SciencesThe University of SydneySydneyNSWAustralia
- Geoecology and Carbonate Sedimentology GroupLeibniz Centre for Tropical Marine Research (ZMT)BremenGermany
| | - Aero Leplastrier
- Research School of Earth SciencesThe Australian National UniversityCanberraACTAustralia
| | - Alexia Graba‐Landry
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQldAustralia
| | - Januar Harianto
- Coastal & Marine Ecosystems GroupSchool of Life & Environmental SciencesThe University of SydneySydneyNSWAustralia
| | - Ross A. Coleman
- Coastal & Marine Ecosystems GroupSchool of Life & Environmental SciencesThe University of SydneySydneyNSWAustralia
| | - Maria Byrne
- Coastal & Marine Ecosystems GroupSchool of Life & Environmental SciencesThe University of SydneySydneyNSWAustralia
| |
Collapse
|
86
|
Page TM, Diaz-Pulido G. Plasticity of adult coralline algae to prolonged increased temperature and pCO2 exposure but reduced survival in their first generation. PLoS One 2020; 15:e0235125. [PMID: 32574214 PMCID: PMC7310705 DOI: 10.1371/journal.pone.0235125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
Crustose coralline algae (CCA) are vital to coral reefs worldwide, providing structural integrity and inducing the settlement of important invertebrate larvae. CCA are known to be impacted by changes in their environment, both during early development and adulthood. However, long-term studies on either life history stage are lacking in the literature, therefore not allowing time to explore the acclimatory or potential adaptive responses of CCA to future global change scenarios. Here, we exposed a widely distributed, slow growing, species of CCA, Sporolithon cf. durum, to elevated temperature and pCO2 for five months and their first set of offspring (F1) for eleven weeks. Survival, reproductive output, and metabolic rate were measured in adult S. cf. durum, and survival and growth were measured in the F1 generation. Adult S. cf. durum experienced 0% mortality across treatments and reduced their O2 production after five months exposure to global stressors, indicating a possible expression of plasticity. In contrast, the combined stressors of elevated temperature and pCO2 resulted in 50% higher mortality and 61% lower growth on germlings. On the other hand, under the independent elevated pCO2 treatment, germling growth was higher than all other treatments. These results show the robustness and plasticity of S. cf. durum adults, indicating the potential for them to acclimate to increased temperature and pCO2. However, the germlings of this species are highly sensitive to global stressors and this could negatively impact this species in future oceans, and ultimately the structure and stability of coral reefs.
Collapse
Affiliation(s)
- Tessa M. Page
- Griffth University School of Environment and Science and Australia Rivers Institute, Griffith University, Brisbane, Queensland, Australia
| | - Guillermo Diaz-Pulido
- Griffth University School of Environment and Science and Australia Rivers Institute, Griffith University, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
87
|
Brown NEM, Bernhardt JR, Harley CDG. Energetic context determines species and community responses to ocean acidification. Ecology 2020; 101:e03073. [DOI: 10.1002/ecy.3073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Norah E. M. Brown
- Department of Zoology University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
| | - Joey R. Bernhardt
- Department of Zoology University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
| | - Christopher D. G. Harley
- Department of Zoology University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
- Institute for the Oceans and Fisheries University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
| |
Collapse
|
88
|
Li K, Li M, He Y, Gu X, Pang K, Ma Y, Lu D. Effects of pH and nitrogen form on Nitzschia closterium growth by linking dynamic with enzyme activity. CHEMOSPHERE 2020; 249:126154. [PMID: 32062215 DOI: 10.1016/j.chemosphere.2020.126154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/16/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
In this study, Nitzschia closterium was incubated in seawater at different pH values (8.10, 7.71, and 7.45) and using different nitrogen forms (NO3-N and NH4-N) in the laboratory. The results showed that the growth of N. closterium was inhibited by ocean acidification, with individuals under lower pH levels showing lower growth rates and lower nitrogen uptake rates for both nitrogen forms. The Vmax/Ks ratio decreased with decreasing pH, indicating the inhibition of nitrogen uptake, whereas the ratios for NH4-N cultures were higher than those for NO3-N cultures, implying the highly competitive position of NH4-N. Acidification might induce reactive oxygen species based on the result that the maximum enzyme activities of SuperOxide Dismutase (SOD) and CATalase (CAT) increased under lower pH levels. The SOD and CAT activities for the NO3-N cultures were higher than those for NH4-N cultures at the low pH level, indicating that acidification might cause more oxidative stress for NO3-N cultures than for NH4-N cultures. Thus, ocean acidification might have a more detrimental effect on the growth of N. closterium under NO3-N conditions than NH4-N conditions, with a lower ratio (γ) of the maximum growth rate to the maximum nutrient uptake rate, and a drop in nitrate reductase activity under lower pH levels.
Collapse
Affiliation(s)
- Keqiang Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qing Dao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Min Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qing Dao, 266100, China
| | - Yunfeng He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qing Dao, 266100, China
| | - Xingyan Gu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qing Dao, 266100, China
| | - Kai Pang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qing Dao, 266100, China
| | - Yunpeng Ma
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qing Dao, 266100, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Dongliang Lu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, 535011, China
| |
Collapse
|
89
|
Development Trends and Frontiers of Ocean Big Data Research Based on CiteSpace. WATER 2020. [DOI: 10.3390/w12061560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modern socio-economic development and climate prediction depend greatly on the application of ocean big data. With the accelerated development of ocean observation methods and the continuous improvement of the big data science, the challenges of multiple data sources and data diversity have emerged in the ocean field. As a result, the current data magnitude has reached the terabyte scale. Currently, the traditional theoretical foundation and technical methods have their inherent limitations and demerits that cannot satisfied the temporal and spatial attributes of the current ocean big data. Numerous scholars and countries were involved in ocean big data research. To explore the focus and current status, and determine the topics of research on bursts and acquisition of trend related to ocean big data, 400 articles between 1990 and 2019 were collected from the “Web of Science.” Combined with visualization software CiteSpace, bibliometrics method and literature combing technology, the pivotal literature related to ocean big data, including significant level countries, institutions, authors, journals and keywords were recognized. A synthetical analysis has revealed research hot spots and research frontiers. The purpose of this study is to provide researchers and practitioners in the field of ocean big data with the main research domains and research hotspots, and orientation for further research.
Collapse
|
90
|
Wu Y, Zhang M, Li Z, Xu J, Beardall J. Differential Responses of Growth and Photochemical Performance of Marine Diatoms to Ocean Warming and High Light Irradiance. Photochem Photobiol 2020; 96:1074-1082. [DOI: 10.1111/php.13268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/20/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Yaping Wu
- College of Marine Life and Fisheries Jiangsu Ocean University Lianyungang China
- Co‐Innovation Center of Jiangsu Marine Bio‐industry Technology Jiangsu Ocean University Lianyungang China
| | - Mengjuan Zhang
- College of Marine Life and Fisheries Jiangsu Ocean University Lianyungang China
| | - Zhenzhen Li
- The Swire Institute of Marine Science and School of Biological Sciences The University of Hong Kong Hong Kong China
| | - Juntian Xu
- College of Marine Life and Fisheries Jiangsu Ocean University Lianyungang China
- Co‐Innovation Center of Jiangsu Marine Bio‐industry Technology Jiangsu Ocean University Lianyungang China
| | - John Beardall
- School of Biological Sciences Monash University Clayton Vic. Australia
| |
Collapse
|
91
|
Hopkins FE, Suntharalingam P, Gehlen M, Andrews O, Archer SD, Bopp L, Buitenhuis E, Dadou I, Duce R, Goris N, Jickells T, Johnson M, Keng F, Law CS, Lee K, Liss PS, Lizotte M, Malin G, Murrell JC, Naik H, Rees AP, Schwinger J, Williamson P. The impacts of ocean acidification on marine trace gases and the implications for atmospheric chemistry and climate. Proc Math Phys Eng Sci 2020; 476:20190769. [PMID: 32518503 PMCID: PMC7277135 DOI: 10.1098/rspa.2019.0769] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/03/2020] [Indexed: 11/12/2022] Open
Abstract
Surface ocean biogeochemistry and photochemistry regulate ocean-atmosphere fluxes of trace gases critical for Earth's atmospheric chemistry and climate. The oceanic processes governing these fluxes are often sensitive to the changes in ocean pH (or pCO2) accompanying ocean acidification (OA), with potential for future climate feedbacks. Here, we review current understanding (from observational, experimental and model studies) on the impact of OA on marine sources of key climate-active trace gases, including dimethyl sulfide (DMS), nitrous oxide (N2O), ammonia and halocarbons. We focus on DMS, for which available information is considerably greater than for other trace gases. We highlight OA-sensitive regions such as polar oceans and upwelling systems, and discuss the combined effect of multiple climate stressors (ocean warming and deoxygenation) on trace gas fluxes. To unravel the biological mechanisms responsible for trace gas production, and to detect adaptation, we propose combining process rate measurements of trace gases with longer term experiments using both model organisms in the laboratory and natural planktonic communities in the field. Future ocean observations of trace gases should be routinely accompanied by measurements of two components of the carbonate system to improve our understanding of how in situ carbonate chemistry influences trace gas production. Together, this will lead to improvements in current process model capabilities and more reliable predictions of future global marine trace gas fluxes.
Collapse
Affiliation(s)
| | - Parvadha Suntharalingam
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Marion Gehlen
- Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace, Orme des Merisiers, Gif-sur-Yvette cedex, France
| | - Oliver Andrews
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
| | | | - Laurent Bopp
- Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS-ENS-UPMC-X, Département de Géosciences, Ecole Normale Supérieure, France
- Université Ecole Polytechnique, Sorbonne Université, Paris, France
| | - Erik Buitenhuis
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Isabelle Dadou
- Laboratoire d'Etudes en Géophysique et Oceanographie Spatiales, University of Toulouse, Toulouse, France
| | - Robert Duce
- Department of Oceanography, Texas A&M University, College Station, TX, USA
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA
| | - Nadine Goris
- NORCE Climate, Bjerknes Centre for Climate Research, Bergen, Norway
| | - Tim Jickells
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Martin Johnson
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Fiona Keng
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, Kuala Lumpur, Malaysia
- Institute of Graduate Studies (IGS), University of Malaya, Kuala Lumpur, Malaysia
| | - Cliff S. Law
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Kitack Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Peter S. Liss
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Martine Lizotte
- Department of Biology, Université Laval, Quebec City, Canada
| | - Gillian Malin
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Hema Naik
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India
| | - Andrew P. Rees
- Plymouth Marine Laboratory, Prospect Place, Plymouth, UK
| | - Jörg Schwinger
- NORCE Climate, Bjerknes Centre for Climate Research, Bergen, Norway
| | - Philip Williamson
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
92
|
Bove CB, Ries JB, Davies SW, Westfield IT, Umbanhowar J, Castillo KD. Common Caribbean corals exhibit highly variable responses to future acidification and warming. Proc Biol Sci 2020; 286:20182840. [PMID: 30940056 DOI: 10.1098/rspb.2018.2840] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We conducted a 93-day experiment investigating the independent and combined effects of acidification (280-3300 µatm pCO2) and warming (28°C and 31°C) on calcification and linear extension rates of four key Caribbean coral species ( Siderastrea siderea, Pseudodiploria strigosa, Porites astreoides, Undaria tenuifolia) from inshore and offshore reefs on the Belize Mesoamerican Barrier Reef System. All species exhibited nonlinear declines in calcification rate with increasing pCO2. Warming only reduced calcification in Ps. strigosa. Of the species tested, only S. siderea maintained positive calcification in the aragonite-undersaturated treatment . Temperature and pCO2 had no effect on the linear extension of S. siderea and Po. astreoides, and natal reef environment did not impact any parameter examined. Results suggest that S. siderea is the most resilient of these corals to warming and acidification owing to its ability to maintain positive calcification in all treatments, Ps. strigosa and U. tenuifolia are the least resilient, and Po. astreoides falls in the middle. These results highlight the diversity of calcification responses of Caribbean corals to projected global change.
Collapse
Affiliation(s)
- Colleen B Bove
- 1 Environment, Ecology, and Energy Program, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Justin B Ries
- 4 Department of Marine and Environmental Sciences, Northeastern University , Nahant, MA , USA
| | - Sarah W Davies
- 2 Department of Marine Sciences, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA.,5 Department of Biology, Boston University , Boston, MA , USA
| | - Isaac T Westfield
- 4 Department of Marine and Environmental Sciences, Northeastern University , Nahant, MA , USA
| | - James Umbanhowar
- 1 Environment, Ecology, and Energy Program, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA.,3 Department of Biology, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Karl D Castillo
- 1 Environment, Ecology, and Energy Program, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA.,2 Department of Marine Sciences, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| |
Collapse
|
93
|
Layglon N, Misson B, Mounier S, Lenoble V, Omanović D, Garnier C. Have decades of abiotic studies in sediments been misinterpreted? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135949. [PMID: 31863987 DOI: 10.1016/j.scitotenv.2019.135949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Sterilization techniques are largely employed to distinguish biotic and abiotic processes in biogeochemical studies as they inhibit microbial activity. Since one century, chemical sterilizers, supposed to preserve original environmental samples, have taken precedence over physical sterilization techniques considered too destructive. Sodium azide (NaN3) is nowadays the most commonly used inorganic chemical sterilizer. It is sufficiently purified to study trace metals, as well. Nevertheless, its (in)activity in physico-chemical processes was never ascertained. Through the investigation of sediment resuspension in seawater, the present work unequivocally demonstrated that NaN3 can impact carbon and trace metals' transfers by altering the redox balance and pH. Unlike decades of blind practice, NaN3 should be used with great care to track abiotic processes from organic matter rich and reductive matrices.
Collapse
Affiliation(s)
- Nicolas Layglon
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| | - Benjamin Misson
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Stéphane Mounier
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Véronique Lenoble
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Dario Omanović
- Center for Marine and Environmental Research, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia
| | - Cédric Garnier
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
94
|
Two-step extinction of Late Cretaceous marine vertebrates in northern Gulf of Mexico prolonged biodiversity loss prior to the Chicxulub impact. Sci Rep 2020; 10:4169. [PMID: 32144332 PMCID: PMC7060338 DOI: 10.1038/s41598-020-61089-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/14/2020] [Indexed: 12/02/2022] Open
Abstract
Recent studies on mass extinctions are often based on the global fossil record, but data from selected paleogeographic regions under a relatively constant paleoenvironmental setting can also provide important information. Eighty-nine marine vertebrate species, including cartilaginous and bony fish and marine reptiles, from northern Gulf of Mexico – located about 500 km from the Chicxulub crater – offer a unique opportunity to determine an extinction process during the last 20 million years of the Late Cretaceous. Our diversity data show two separate extinction events: (i) the ‘Middle Campanian Crisis’ (about 77 Mya) and (ii) the end-Maastrichtian (66 Mya) events. Whether this stepwise pattern of extinctions occurred locally or globally cannot be determined at present due to the lack of a dataset of the marine vertebrate record for reliable comparison. However, this stepwise pattern including the Middle Campanian and end-Maastrichtian events for, at least, a 13 million-year interval indicates long-term global marine environmental changes (e.g., regression, ocean water chemistry change). Because most Cretaceous marine vertebrates already disappeared in the Gulf of Mexico prior to the latest Maastrichtian, the Chicxulub Impact may not be considered as the most devastating extinction event for the community.
Collapse
|
95
|
Dishon G, Grossowicz M, Krom M, Guy G, Gruber DF, Tchernov D. Evolutionary Traits that Enable Scleractinian Corals to Survive Mass Extinction Events. Sci Rep 2020; 10:3903. [PMID: 32127555 PMCID: PMC7054358 DOI: 10.1038/s41598-020-60605-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 02/14/2020] [Indexed: 11/09/2022] Open
Abstract
Scleractinian “stony” corals are major habitat engineers, whose skeletons form the framework for the highly diverse, yet increasingly threatened, coral reef ecosystem. Fossil coral skeletons also present a rich record that enables paleontological analysis of coral origins, tracing them back to the Triassic (~241 Myr). While numerous invertebrate lineages were eradicated at the last major mass extinction boundary, the Cretaceous-Tertiary/K-T (66 Myr), a number of Scleractinian corals survived. We review this history and assess traits correlated with K-T mass extinction survival. Disaster-related “survival” traits that emerged from our analysis are: (1) deep water residing (>100 m); (2) cosmopolitan distributions, (3) non-symbiotic, (4) solitary or small colonies and (5) bleaching-resistant. We then compared these traits to the traits of modern Scleractinian corals, using to IUCN Red List data, and report that corals with these same survival traits have relatively stable populations, while those lacking them are presently decreasing in abundance and diversity. This shows corals exhibiting a similar dynamic survival response as seen at the last major extinction, the K-T. While these results could be seen as promising, that some corals may survive the Anthropocene extinction, they also highlight how our relatively-fragile Primate order does not possess analogous “survival” characteristics, nor have a record of mass extinction survival as some corals are capable.
Collapse
Affiliation(s)
- Gal Dishon
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa, 31905, Israel. .,Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA.
| | | | - Michael Krom
- Morris Kahn Marine Research Station, Environmental Geochemistry Lab., Leon H. Charney School of Marine Sciences, Haifa University, Mount Carmel, Israel.,School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Gilad Guy
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - David F Gruber
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, 10010, USA. .,PhD Program in Biology, The Graduate Center City University of New York, New York, NY, 10010, USA.
| | - Dan Tchernov
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa, 31905, Israel.,Morris Kahn Marine Research Station, Environmental Geochemistry Lab., Leon H. Charney School of Marine Sciences, Haifa University, Mount Carmel, Israel
| |
Collapse
|
96
|
Foster WJ, Garvie CL, Weiss AM, Muscente AD, Aberhan M, Counts JW, Martindale RC. Resilience of marine invertebrate communities during the early Cenozoic hyperthermals. Sci Rep 2020; 10:2176. [PMID: 32034228 PMCID: PMC7005832 DOI: 10.1038/s41598-020-58986-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/16/2020] [Indexed: 11/21/2022] Open
Abstract
The hyperthermal events of the Cenozoic, including the Paleocene-Eocene Thermal Maximum, provide an opportunity to investigate the potential effects of climate warming on marine ecosystems. Here, we examine the shallow benthic marine communities preserved in the late Cretaceous to Eocene strata on the Gulf Coastal Plain (United States). In stark contrast to the ecological shifts following the end-Cretaceous mass extinction, our data show that the early Cenozoic hyperthermals did not have a long-term impact on the generic diversity nor composition of the Gulf Coastal Plain molluscan communities. We propose that these communities were resilient to climate change because molluscs are better adapted to high temperatures than other taxa, as demonstrated by their physiology and evolutionary history. In terms of resilience, these communities differ from other shallow-water carbonate ecosystems, such as reef communities, which record significant changes during the early Cenozoic hyperthermals. These data highlight the strikingly different responses of community types, i.e., the almost imperceptible response of molluscs versus the marked turnover of foraminifera and reef faunas. The impact on molluscan communities may have been low because detrimental conditions did not devastate the entire Gulf Coastal Plain, allowing molluscs to rapidly recolonise vacated areas once harsh environmental conditions ameliorated.
Collapse
Affiliation(s)
- William J Foster
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity, Invalidenstraße 43, Berlin, 10115, Germany. .,University of Potsdam, Institute for Geosciences, Karl-Liebknecht Straße 24-25, Potsdam-Golm, 14476, Germany. .,University College Dublin, School of Earth Sciences, Belfield, Dublin, 4, Ireland.
| | - Christopher L Garvie
- Non-Vertebrate Paleontology Laboratory, Texas Natural Science Center, The University of Texas at Austin, 10100 Burnet Road, Austin, Texas, 78758, USA
| | - Anna M Weiss
- The University of Texas at Austin, Department of Geological Sciences, 2275 Speedway, Austin, Texas, 78712, USA
| | - A D Muscente
- The University of Texas at Austin, Department of Geological Sciences, 2275 Speedway, Austin, Texas, 78712, USA.,Cornell College, Department of Geology, Mount Vernon, Iowa, 600 First Street SW, 52314, USA
| | - Martin Aberhan
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity, Invalidenstraße 43, Berlin, 10115, Germany
| | - John W Counts
- University College Dublin, School of Earth Sciences, Belfield, Dublin, 4, Ireland
| | - Rowan C Martindale
- The University of Texas at Austin, Department of Geological Sciences, 2275 Speedway, Austin, Texas, 78712, USA
| |
Collapse
|
97
|
Choi J, Lee H, Kim SJ. Hierarchical micro/nanoporous ion-exchangeable sponge. LAB ON A CHIP 2020; 20:505-513. [PMID: 31829365 DOI: 10.1039/c9lc00919a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by the versatile properties of a sponge, we propose an ion-exchangeable sponge composed of hierarchical micropores and nanopores for water treatment. Sodium ions in brackish water (10-300 mM) absorbed in the sponge were exchanged for hydrogen ions in a short incubation time and the desalted water was released by squeezing the sponge with a single hand grip. This simple desalination process was attributed to the multi-scale porous structures in the sponge. A number of nanoporous thin films were formed like bubbles surrounded by the closed backbone of the microporous sponge. The hierarchical micro/nanopores maximized the contact area of the ion-exchanging surface with the saline solution so that scaled-up desalination was achieved. Furthermore, the growth of wheat shoots in the desalted water was demonstrated in vivo after using this micro/nanofluidic based water-treatment with the sponges. Wheat shoots grown in NaHCO3/Na2CO3 solutions treated by the sponges were 110 to 226.45% longer than those grown in the original salty water. This implies that the ion-exchangeable sponge could serve as an appropriate technology for the treatment of ground water affected by acid rain and weathered alkaline rocks.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Hyomin Lee
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, Republic of Korea.
| | - Sung Jae Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea. and Inter-University Semiconductor Research Center, Seoul National University, Seoul, South Korea and Nano Systems Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
98
|
Feroze MT, Sami SK, Doonyapisut D, Kim B, Chung C. Electrochemical Reduction of CO
2
into C1 and C2 Hydrocarbons Using Dendritic Cu and Cu
2
O Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.201902035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Syed Kamran Sami
- School of Chemical EngineeringSungkyunkwan University (SKKU) Suwon 16419 Republic of Korea
- Department of Chemical EngineeringBalochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS) Quetta 87300 Pakistan
| | - Dulyawat Doonyapisut
- School of Chemical EngineeringSungkyunkwan University (SKKU) Suwon 16419 Republic of Korea
| | - Byeongkyu Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU) Suwon 16419 Republic of Korea
| | - Chan‐Hwa Chung
- School of Chemical EngineeringSungkyunkwan University (SKKU) Suwon 16419 Republic of Korea
| |
Collapse
|
99
|
Sosdian SM, Babila TL, Greenop R, Foster GL, Lear CH. Ocean Carbon Storage across the middle Miocene: a new interpretation for the Monterey Event. Nat Commun 2020; 11:134. [PMID: 31919344 PMCID: PMC6952451 DOI: 10.1038/s41467-019-13792-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/15/2019] [Indexed: 11/13/2022] Open
Abstract
The Miocene Climatic Optimum (MCO, 14-17 Ma) was ~3-4 °C warmer than present, similar to estimates for 2100. Coincident with the MCO is the Monterey positive carbon isotope (δ13C) excursion, with oceans more depleted in 12C relative to 13C than any time in the past 50 Myrs. The long-standing Monterey Hypothesis uses this excursion to invoke massive marine organic carbon burial and draw-down of atmospheric CO2 as a cause for the subsequent Miocene Climate Transition and Antarctic glaciation. However, this hypothesis cannot explain the multi-Myr lag between the δ13C excursion and global cooling. We use planktic foraminiferal B/Ca, δ11B, δ13C, and Mg/Ca to reconstruct surface ocean carbonate chemistry and temperature. We propose that the MCO was associated with elevated oceanic dissolved inorganic carbon caused by volcanic degassing, global warming, and sea-level rise. A key negative feedback of this warm climate was the organic carbon burial on drowned continental shelves.
Collapse
Affiliation(s)
- S M Sosdian
- Cardiff University School of Earth and Ocean Sciences, Cardiff, CF10 3AT, UK.
| | - T L Babila
- National Oceanography Centre Southampton, School of Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, SO14 3ZA, UK
| | - R Greenop
- School of Earth and Environmental Science, University of St. Andrews, St. Andrews, KY16 9AL, UK
| | - G L Foster
- National Oceanography Centre Southampton, School of Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, SO14 3ZA, UK
| | - C H Lear
- Cardiff University School of Earth and Ocean Sciences, Cardiff, CF10 3AT, UK
| |
Collapse
|
100
|
Clark TD, Raby GD, Roche DG, Binning SA, Speers-Roesch B, Jutfelt F, Sundin J. Ocean acidification does not impair the behaviour of coral reef fishes. Nature 2020; 577:370-375. [DOI: 10.1038/s41586-019-1903-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/21/2019] [Indexed: 11/09/2022]
|