51
|
Mattsson J, Israelsson E, Björhall K, Yrlid LF, Thörn K, Thorén A, Toledo EA, Jinton L, Öberg L, Wingren C, Tapani S, Jackson SG, Skogberg G, Lundqvist AJ, Hendrickx R, Cavallin A, Österlund T, Grimster NP, Nilsson M, Åstrand A. Selective Janus kinase 1 inhibition resolves inflammation and restores hair growth offering a viable treatment option for alopecia areata. SKIN HEALTH AND DISEASE 2023; 3:e209. [PMID: 37275428 PMCID: PMC10233092 DOI: 10.1002/ski2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/30/2023]
Abstract
Background Janus Kinase (JAK) inhibition has recently demonstrated therapeutic efficacy in both restoring hair growth and resolving inflammation in Alopecia Areata (AA). These effects are dose dependent and mainly efficacious at ranges close to a questionable risk profile. Objectives We explored the possibility to separate the beneficial and adverse effects of JAK inhibition by selectively inhibiting JAK1 and thereby avoiding side effects associated with JAK2 blockade. Methods The C3H/HeJ mouse model of AA was used to demonstrate therapeutic efficacy in vivo with different regimens of a selection of JAK inhibitors in regards to systemic versus local drug exposure. Human peripheral blood lymphocytes were stimulated in vitro to demonstrate translation to the human situation. Results We demonstrate that selective inhibition of JAK1 produces fast resolution of inflammation and complete restoration of hair growth in the C3H/HeJ mouse model of AA. Furthermore, we show that topical treatment does not restore hair growth and that treatment needs to be extended well beyond that of restored hair growth in order to reach treatment-free remission. For translatability to human disease, we show that cytokines involved in AA pathogenesis are similarly inhibited by selective JAK1 and pan-JAK inhibition in stimulated human peripheral lymphocytes and specifically in CD8+ T cells. Conclusion This study demonstrates that systemic exposure is required for efficacy in AA and we propose that a selective JAK1 inhibitor will offer a treatment option with a superior safety profile to pan-JAK inhibitors for these patients.
Collapse
Affiliation(s)
- Johan Mattsson
- Bioscience, Research and Early DevelopmentRespiratory & Immunology (R&I)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Elisabeth Israelsson
- Translational Science and Experimental MedicineResearch and Early DevelopmentRespiratory & Immunology (R&I)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Karin Björhall
- Bioscience, Research and Early DevelopmentRespiratory & Immunology (R&I)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Linda Fahlén Yrlid
- Bioscience, Research and Early DevelopmentRespiratory & Immunology (R&I)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Kristoffer Thörn
- Translational Science and Experimental MedicineResearch and Early DevelopmentRespiratory & Immunology (R&I)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Anna Thorén
- Animal Science and TechnologiesClinical Pharmacology & Safety SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Emelie Andersén Toledo
- Animal Science and TechnologiesClinical Pharmacology & Safety SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Lisa Jinton
- Bioscience, Research and Early DevelopmentRespiratory & Immunology (R&I)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Lisa Öberg
- Translational Science and Experimental MedicineResearch and Early DevelopmentRespiratory & Immunology (R&I)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Cecilia Wingren
- Bioscience, Research and Early DevelopmentRespiratory & Immunology (R&I)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Sofia Tapani
- Early Biometrics & Statistical InnovationData Science & AIBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Sonya G. Jackson
- Bioscience, Research and Early DevelopmentRespiratory & Immunology (R&I)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Gabriel Skogberg
- Bioscience, Research and Early DevelopmentRespiratory & Immunology (R&I)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Anders J. Lundqvist
- Drug Metabolism & PharmacokineticsResearch and Early DevelopmentRespiratory & Immunology (R&I)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Ramon Hendrickx
- Drug Metabolism & PharmacokineticsResearch and Early DevelopmentRespiratory & Immunology (R&I)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Anders Cavallin
- Bioscience, Research and Early DevelopmentRespiratory & Immunology (R&I)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Torben Österlund
- The Discovery Sciences UnitBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | | | - Magnus Nilsson
- Medicinal ChemistryBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Annika Åstrand
- Bioscience, Research and Early DevelopmentRespiratory & Immunology (R&I)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
52
|
Dhanushkodi NR, Prakash S, Quadiri A, Zayou L, Singer M, Takashi N, Vahed H, BenMohamed L. High Frequencies of Antiviral Effector Memory T EM Cells and Memory B Cells Mobilized into Herpes Infected Vaginal Mucosa Associated With Protection Against Genital Herpes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.542021. [PMID: 37292784 PMCID: PMC10245907 DOI: 10.1101/2023.05.23.542021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vaginal mucosa-resident anti-viral effector memory B- and T cells appeared to play a crucial role in protection against genital herpes. However, how to mobilize such protective immune cells into the vaginal tissue close to infected epithelial cells remains to be determined. In the present study, we investigate whether and how, CCL28, a major mucosal-associated chemokine, mobilizes effector memory B- and T cells in leading to protecting mucosal surfaces from herpes infection and disease. The CCL28 is a chemoattractant for the CCR10 receptor-expressing immune cells and is produced homeostatically in the human vaginal mucosa (VM). We found the presence of significant frequencies of HSV-specific memory CCR10+CD44+CD8+ T cells, expressing high levels of CCR10 receptor, in herpes-infected asymptomatic (ASYMP) women compared to symptomatic (SYMP) women. A significant amount of the CCL28 chemokine (a ligand of CCR10), was detected in the VM of herpes-infected ASYMP B6 mice, associated with the mobilization of high frequencies of HSV-specific effector memory CCR10+CD44+ CD62L- CD8+ TEM cells and memory CCR10+B220+CD27+ B cells in the VM of HSV-infected asymptomatic mice. In contrast, compared to wild-type (WT) B6 mice, the CCL28 knockout (CCL28(-/-)) mice: (i) Appeared more susceptible to intravaginal infection and re-infection with HSV-2; (ii) Exhibited a significant decrease in the frequencies of HSV-specific effector memory CCR10+CD44+ CD62L- CD8+ TEM cells and of memory CD27+B220+ B cells in the infected VM. The results imply a critical role of the CCL28/CCR10 chemokine axis in the mobilization of anti-viral memory B and T cells within the VM to protect against genital herpes infection and disease.
Collapse
Affiliation(s)
- Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | | | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Institute for Immunology; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| |
Collapse
|
53
|
Arkatkar T, Davé V, Cruz Talavera I, Graham JB, Swarts JL, Hughes SM, Bell TA, Hock P, Farrington J, Shaw GD, Kirby A, Fialkow M, Huang ML, Jerome KR, Ferris MT, Hladik F, Schiffer JT, Prlic M, Lund JM. Memory T cells possess an innate-like function in local protection from mucosal infection. J Clin Invest 2023; 133:e162800. [PMID: 36951943 PMCID: PMC10178838 DOI: 10.1172/jci162800] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/22/2023] [Indexed: 03/24/2023] Open
Abstract
Mucosal infections pose a significant global health burden. Antigen-specific tissue-resident T cells are critical to maintaining barrier immunity. Previous studies in the context of systemic infection suggest that memory CD8+ T cells may also provide innate-like protection against antigenically unrelated pathogens independent of T cell receptor engagement. Whether bystander T cell activation is also an important defense mechanism in the mucosa is poorly understood. Here, we investigated whether innate-like memory CD8+ T cells could protect against a model mucosal virus infection, herpes simplex virus 2 (HSV-2). We found that immunization with an irrelevant antigen delayed disease progression from lethal HSV-2 challenge, suggesting that memory CD8+ T cells may mediate protection despite the lack of antigen specificity. Upon HSV-2 infection, we observed an early infiltration, rather than substantial local proliferation, of antigen-nonspecific CD8+ T cells, which became bystander-activated only within the infected mucosal tissue. Critically, we show that bystander-activated CD8+ T cells are sufficient to reduce early viral burden after HSV-2 infection. Finally, local cytokine cues within the tissue microenvironment after infection were sufficient for bystander activation of mucosal tissue memory CD8+ T cells from mice and humans. Altogether, our findings suggest that local bystander activation of CD8+ memory T cells contributes a fast and effective innate-like response to infection in mucosal tissue.
Collapse
Affiliation(s)
- Tanvi Arkatkar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
| | - Veronica Davé
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
| | - Irene Cruz Talavera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
| | - Jessica B. Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica L. Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sean M. Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Timothy A. Bell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joe Farrington
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna Kirby
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Michael Fialkow
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | | | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology and
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Florian Hladik
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
| |
Collapse
|
54
|
Weeden CE, Gayevskiy V, Marceaux C, Batey D, Tan T, Yokote K, Ribera NT, Clatch A, Christo S, Teh CE, Mitchell AJ, Trussart M, Rankin L, Obers A, McDonald JA, Sutherland KD, Sharma VJ, Starkey G, D'Costa R, Antippa P, Leong T, Steinfort D, Irving L, Swanton C, Gordon CL, Mackay LK, Speed TP, Gray DHD, Asselin-Labat ML. Early immune pressure initiated by tissue-resident memory T cells sculpts tumor evolution in non-small cell lung cancer. Cancer Cell 2023; 41:837-852.e6. [PMID: 37086716 DOI: 10.1016/j.ccell.2023.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/05/2023] [Accepted: 03/24/2023] [Indexed: 04/24/2023]
Abstract
Tissue-resident memory T (TRM) cells provide immune defense against local infection and can inhibit cancer progression. However, it is unclear to what extent chronic inflammation impacts TRM activation and whether TRM cells existing in tissues before tumor onset influence cancer evolution in humans. We performed deep profiling of healthy lungs and lung cancers in never-smokers (NSs) and ever-smokers (ESs), finding evidence of enhanced immunosurveillance by cells with a TRM-like phenotype in ES lungs. In preclinical models, tumor-specific or bystander TRM-like cells present prior to tumor onset boosted immune cell recruitment, causing tumor immune evasion through loss of MHC class I protein expression and resistance to immune checkpoint inhibitors. In humans, only tumors arising in ES patients underwent clonal immune evasion, unrelated to tobacco-associated mutagenic signatures or oncogenic drivers. These data demonstrate that enhanced TRM-like activity prior to tumor development shapes the evolution of tumor immunogenicity and can impact immunotherapy outcomes.
Collapse
Affiliation(s)
- Clare E Weeden
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Velimir Gayevskiy
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Claire Marceaux
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Daniel Batey
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Tania Tan
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Kenta Yokote
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Nina Tubau Ribera
- Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Allison Clatch
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Susan Christo
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Charis E Teh
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Andrew J Mitchell
- Materials Characterisation and Fabrication Platform, Department of Chemical Engineering, the University of Melbourne, Parkville, VIC, Australia
| | - Marie Trussart
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Lucille Rankin
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jackson A McDonald
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Kate D Sutherland
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Varun J Sharma
- Department of Surgery, the University of Melbourne, Parkville, VIC, Australia; Liver and Intestinal Transplant Unit, Austin Health, Heidelberg, VIC, Australia; Department of Cardiothoracic Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Graham Starkey
- Department of Surgery, the University of Melbourne, Parkville, VIC, Australia; Liver and Intestinal Transplant Unit, Austin Health, Heidelberg, VIC, Australia
| | - Rohit D'Costa
- DonateLife Victoria, Carlton, VIC, Australia; Department of Intensive Care Medicine, Melbourne Health, Melbourne, VIC, Australia
| | - Phillip Antippa
- Department of Surgery, the University of Melbourne, Parkville, VIC, Australia; The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Tracy Leong
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia; Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, VIC, Australia
| | - Daniel Steinfort
- Department of Medicine, the University of Melbourne, Parkville, VIC, Australia; The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Louis Irving
- Department of Medicine, the University of Melbourne, Parkville, VIC, Australia; The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK; University College London Hospitals, London, UK
| | - Claire L Gordon
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia; Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia; North Eastern Public Health Unit, Austin Health, Heidelberg, VIC, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Terence P Speed
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; School of Mathematics and Statistics, the University of Melbourne, Parkville, VIC, Australia
| | - Daniel H D Gray
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia.
| | - Marie-Liesse Asselin-Labat
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
55
|
Qiu Z, Khairallah C, Chu TH, Imperato JN, Lei X, Romanov G, Atakilit A, Puddington L, Sheridan BS. Retinoic acid signaling during priming licenses intestinal CD103+ CD8 TRM cell differentiation. J Exp Med 2023; 220:e20210923. [PMID: 36809399 PMCID: PMC9960115 DOI: 10.1084/jem.20210923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/02/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
CD8 tissue-resident memory T (TRM) cells provide frontline protection at barrier tissues; however, mechanisms regulating TRM cell development are not completely understood. Priming dictates the migration of effector T cells to the tissue, while factors in the tissue induce in situ TRM cell differentiation. Whether priming also regulates in situ TRM cell differentiation uncoupled from migration is unclear. Here, we demonstrate that T cell priming in the mesenteric lymph nodes (MLN) regulates CD103+ TRM cell differentiation in the intestine. In contrast, T cells primed in the spleen were impaired in the ability to differentiate into CD103+ TRM cells after entry into the intestine. MLN priming initiated a CD103+ TRM cell gene signature and licensed rapid CD103+ TRM cell differentiation in response to factors in the intestine. Licensing was regulated by retinoic acid signaling and primarily driven by factors other than CCR9 expression and CCR9-mediated gut homing. Thus, the MLN is specialized to promote intestinal CD103+ CD8 TRM cell development by licensing in situ differentiation.
Collapse
Affiliation(s)
- Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Timothy H. Chu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jessica N. Imperato
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Xinyuan Lei
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Galina Romanov
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Amha Atakilit
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lynn Puddington
- Department of Immunology, University of Connecticut Health, Farmington, CT, USA
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
56
|
Helm EY, Zelenka T, Cismasiu VB, Islam S, Silvane L, Zitti B, Holmes TD, Drashansky TT, Kwiatkowski AJ, Tao C, Dean J, Obermayer AN, Chen X, Keselowsky BG, Zhang W, Huo Z, Zhou L, Sheridan BS, Conejo-Garcia JR, Shaw TI, Bryceson YT, Avram D. Bcl11b sustains multipotency and restricts effector programs of intestinal-resident memory CD8 + T cells. Sci Immunol 2023; 8:eabn0484. [PMID: 37115913 DOI: 10.1126/sciimmunol.abn0484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The networks of transcription factors (TFs) that control intestinal-resident memory CD8+ T (TRM) cells, including multipotency and effector programs, are poorly understood. In this work, we investigated the role of the TF Bcl11b in TRM cells during infection with Listeria monocytogenes using mice with post-activation, conditional deletion of Bcl11b in CD8+ T cells. Conditional deletion of Bcl11b resulted in increased numbers of intestinal TRM cells and their precursors as well as decreased splenic effector and circulating memory cells and precursors. Loss of circulating memory cells was in part due to increased intestinal homing of Bcl11b-/- circulating precursors, with no major alterations in their programs. Bcl11b-/- TRM cells had altered transcriptional programs, with diminished expression of multipotent/multifunctional (MP/MF) program genes, including Tcf7, and up-regulation of the effector program genes, including Prdm1. Bcl11b also limits the expression of Ahr, another TF with a role in intestinal CD8+ TRM cell differentiation. Deregulation of TRM programs translated into a poor recall response despite TRM cell accumulation in the intestine. Reduced expression of MP/MF program genes in Bcl11b-/- TRM cells was linked to decreased chromatin accessibility and a reduction in activating histone marks at these loci. In contrast, the effector program genes displayed increased activating epigenetic status. These findings demonstrate that Bcl11b is a frontrunner in the tissue residency program of intestinal memory cells upstream of Tcf1 and Blimp1, promoting multipotency and restricting the effector program.
Collapse
Affiliation(s)
- Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tomas Zelenka
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Valeriu B Cismasiu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Shamima Islam
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Leonardo Silvane
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Beatrice Zitti
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Tim D Holmes
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway
| | - Theodore T Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Christine Tao
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joseph Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Alyssa N Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Yenan T Bryceson
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, S-14186 Stockholm, Sweden
| | - Dorina Avram
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| |
Collapse
|
57
|
Tieu R, Zeng Q, Zhao D, Zhang G, Feizi N, Manandhar P, Williams AL, Popp B, Wood-Trageser MA, Demetris AJ, Tso JY, Johnson AJ, Kane LP, Abou-Daya KI, Shlomchik WD, Oberbarnscheidt MH, Lakkis FG. Tissue-resident memory T cell maintenance during antigen persistence requires both cognate antigen and interleukin-15. Sci Immunol 2023; 8:eadd8454. [PMID: 37083450 PMCID: PMC10334460 DOI: 10.1126/sciimmunol.add8454] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Our understanding of tissue-resident memory T (TRM) cell biology has been largely developed from acute infection models in which antigen is cleared and sterilizing immunity is achieved. Less is known about TRM cells in the context of chronic antigen persistence and inflammation. We investigated factors that underlie TRM maintenance in a kidney transplantation model in which TRM cells drive rejection. In contrast to acute infection, we found that TRM cells declined markedly in the absence of cognate antigen, antigen presentation, or antigen sensing by the T cells. Depletion of graft-infiltrating dendritic cells or interruption of antigen presentation after TRM cells were established was sufficient to disrupt TRM maintenance and reduce allograft pathology. Likewise, removal of IL-15 transpresentation or of the IL-15 receptor on T cells during TRM maintenance led to a decline in TRM cells, and IL-15 receptor blockade prevented chronic rejection. Therefore, antigen and IL-15 presented by dendritic cells play nonredundant key roles in CD8 TRM cell maintenance in settings of antigen persistence and inflammation. These findings provide insights that could lead to improved treatment of chronic transplant rejection and autoimmunity.
Collapse
Affiliation(s)
- Roger Tieu
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Qiang Zeng
- Nationwide Children’s Hospital, Columbus, Ohio 43205, USA
| | - Daqiang Zhao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Gang Zhang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Neda Feizi
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Priyanka Manandhar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amanda L. Williams
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Benjamin Popp
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michelle A. Wood-Trageser
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - J. Yun Tso
- JN Biosciences, Mountain View, California 94043, USA
| | - Aaron J. Johnson
- Departments of Immunology, Neurology, and Molecular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lawrence P. Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Khodor I. Abou-Daya
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Warren D. Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Martin H. Oberbarnscheidt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Fadi G. Lakkis
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
58
|
van de Wall S, Crooks S, Varga SM, Badovinac VP, Harty JT. Cutting Edge: Influenza-Induced CD11alo Airway CD103+ Tissue Resident Memory T Cells Exhibit Compromised IFN-γ Production after In Vivo TCR Stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1025-1030. [PMID: 36912465 PMCID: PMC10229141 DOI: 10.4049/jimmunol.2200931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
Although tissue resident memory T cells (TRM) in the lung confer robust protection against secondary influenza infection, their in vivo production of IFN-γ is unknown. In this study, using a mouse model, we evaluated production of IFN-γ by influenza-induced TRM (defined as CD103+) that localize to the airways or lung parenchyma. Airway TRM consist of both CD11ahi and CD11alo populations, with low CD11a expression signifying prolonged airway residence. In vitro, high-dose peptide stimulation evoked IFN-γ from most CD11ahi airway and parenchymal TRM, whereas most CD11alo airway TRM did not produce IFN-γ. In vivo production of IFN-γ was clearly detectable in CD11ahi airway and parenchymal TRM but essentially absent in CD11alo airway TRM, irrespective of airway-instilled peptide concentration or influenza reinfection. The majority of IFN-γ-producing airway TRM in vivo were CD11ahi, suggesting recent airway entry. These results question the contribution of long-term CD11alo airway TRM to influenza immunity and reinforce the importance of defining TRM tissue compartment-specific contributions to protective immunity.
Collapse
Affiliation(s)
| | - Sequoia Crooks
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven M. Varga
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - John T. Harty
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
59
|
Brown MC, Beasley GM, McKay ZP, Yang Y, Desjardins A, Randazzo DM, Landi D, Ashley DM, Bigner DD, Nair SK, Gromeier M. Intratumor childhood vaccine-specific CD4 + T-cell recall coordinates antitumor CD8 + T cells and eosinophils. J Immunother Cancer 2023; 11:jitc-2022-006463. [PMID: 37072349 PMCID: PMC10124325 DOI: 10.1136/jitc-2022-006463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Antitumor mechanisms of CD4+ T cells remain crudely defined, and means to effectively harness CD4+ T-cell help for cancer immunotherapy are lacking. Pre-existing memory CD4+ T cells hold potential to be leveraged for this purpose. Moreover, the role of pre-existing immunity in virotherapy, particularly recombinant poliovirus immunotherapy where childhood polio vaccine specific immunity is ubiquitous, remains unclear. Here we tested the hypothesis that childhood vaccine-specific memory T cells mediate antitumor immunotherapy and contribute to the antitumor efficacy of polio virotherapy. METHODS The impact of polio immunization on polio virotherapy, and the antitumor effects of polio and tetanus recall were tested in syngeneic murine melanoma and breast cancer models. CD8+ T-cell and B-cell knockout, CD4+ T-cell depletion, CD4+ T-cell adoptive transfer, CD40L blockade, assessments of antitumor T-cell immunity, and eosinophil depletion defined antitumor mechanisms of recall antigens. Pan-cancer transcriptome data sets and polio virotherapy clinical trial correlates were used to assess the relevance of these findings in humans. RESULTS Prior vaccination against poliovirus substantially bolstered the antitumor efficacy of polio virotherapy in mice, and intratumor recall of poliovirus or tetanus immunity delayed tumor growth. Intratumor recall antigens augmented antitumor T-cell function, caused marked tumor infiltration of type 2 innate lymphoid cells and eosinophils, and decreased proportions of regulatory T cells (Tregs). Antitumor effects of recall antigens were mediated by CD4+ T cells, limited by B cells, independent of CD40L, and dependent on eosinophils and CD8+ T cells. An inverse relationship between eosinophil and Treg signatures was observed across The Cancer Genome Atlas (TCGA) cancer types, and eosinophil depletion prevented Treg reductions after polio recall. Pretreatment polio neutralizing antibody titers were higher in patients living longer, and eosinophil levels increased in the majority of patients, after polio virotherapy. CONCLUSION Pre-existing anti-polio immunity contributes to the antitumor efficacy of polio virotherapy. This work defines cancer immunotherapy potential of childhood vaccines, reveals their utility to engage CD4+ T-cell help for antitumor CD8+ T cells, and implicates eosinophils as antitumor effectors of CD4+ T cells.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Georgia M Beasley
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zachary P McKay
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yuanfan Yang
- Department of Neurosurgery, University of Alabama Division of Neurosurgery, Birmingham, Alabama, USA
| | - Annick Desjardins
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dina M Randazzo
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daniel Landi
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Darell D Bigner
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Smita K Nair
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
60
|
Wang Y, Ge F, Wang J, Li H, Zheng B, Li W, Chen S, Zheng X, Deng Y, Wang Y, Zeng R. Mycobacterium bovis BCG Given at Birth Followed by Inactivated Respiratory Syncytial Virus Vaccine Prevents Vaccine-Enhanced Disease by Promoting Trained Macrophages and Resident Memory T Cells. J Virol 2023; 97:e0176422. [PMID: 36779760 PMCID: PMC10062174 DOI: 10.1128/jvi.01764-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/25/2023] [Indexed: 02/14/2023] Open
Abstract
Respiratory syncytial virus (RSV) infects more than 60% of infants in their first year of life. Since an experimental formalin-inactivated (FI) RSV vaccine tested in the 1960s caused enhanced respiratory disease (ERD), few attempts have been made to vaccinate infants. ERD is characterized by Th2-biased responses, lung inflammation, and poor protective immune memory. Innate immune memory displays an increased nonspecific effector function upon restimulation, a process called trained immunity, or a repressed effector function upon restimulation, a process called tolerance, which participates in host defense and inflammatory disease. Mycobacterium bovis bacillus Calmette-Guérin (BCG) given at birth can induce trained immunity as well as heterologous Th1 responses. We speculate that BCG given at birth followed by FI-RSV may alleviate ERD and enhance protection through promoting trained immunity and balanced Th immune memory. Neonatal mice were given BCG at birth and then vaccinated with FI-RSV+Al(OH)3. BCG/FI-RSV+Al(OH)3 induced trained macrophages, tissue-resident memory T cells (TRM), and specific cytotoxic T lymphocytes (CTL) in lungs and inhibited Th2 and Th17 cell immune memory, all of which contributed to inhibition of ERD and increased protection. Notably, FI-RSV+Al(OH)3 induced tolerant macrophages, while BCG/FI-RSV+Al(OH)3 prevented the innate tolerance through promoting trained macrophages. Moreover, inhibition of ERD was attributed to trained macrophages or TRM in lungs but not memory T cells in spleens. Therefore, BCG given at birth to regulate trained immunity and TRM may be a new strategy for developing safe and effective RSV killed vaccines for young infants. IMPORTANCE RSV is the leading cause of severe lower respiratory tract infection of infants. ERD, characterized by Th2-biased responses, inflammation, and poor immune memory, has been an obstacle to the development of safe and effective killed RSV vaccines. Innate immune memory participates in host defense and inflammatory disease. BCG given at birth can induce trained immunity as well as heterologous Th1 responses. Our results showed that BCG/FI-RSV+Al(OH)3 induced trained macrophages, TRM, specific CTL, and balanced Th cell immune memory, which contributed to inhibition of ERD and increased protection. Notably, FI-RSV+Al(OH)3 induced tolerant macrophages, while BCG/FI-RSV+Al(OH)3 prevented tolerance through promoting trained macrophages. Moreover, inhibition of ERD was attributed to trained macrophages or TRM in lungs but not memory T cells in spleens. BCG at birth as an adjuvant to regulate trained immunity and TRM may be a new strategy for developing safe and effective RSV killed vaccines for young infants.
Collapse
Affiliation(s)
- Yang Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Fei Ge
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Junhai Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Hanglin Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Boyang Zheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenjian Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Shunyan Chen
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiaoqing Zheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Yuqing Deng
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Yueling Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Ruihong Zeng
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
61
|
Kitakaze M, Uemura M, Hara T, Chijimatsu R, Motooka D, Hirai T, Konno M, Okuzaki D, Sekido Y, Hata T, Ogino T, Takahashi H, Miyoshi N, Ofusa K, Mizushima T, Eguchi H, Doki Y, Ishii H. Cancer-specific tissue-resident memory T-cells express ZNF683 in colorectal cancer. Br J Cancer 2023; 128:1828-1837. [PMID: 36869093 PMCID: PMC10147592 DOI: 10.1038/s41416-023-02202-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Tissue-resident memory T (Trm) cells are associated with cytotoxicity not only in viral infection and autoimmune disease pathologies but also in many cancers. Tumour-infiltrating CD103+ Trm cells predominantly comprise CD8 T cells that express cytotoxic activation and immune checkpoint molecules called exhausted markers. This study aimed to investigate the role of Trm in colorectal cancer (CRC) and characterise the cancer-specific Trm. METHODS Immunochemical staining with anti-CD8 and anti-CD103 antibodies for resected CRC tissues was used to identify the tumour-infiltrating Trm cells. The Kaplan-Meier estimator was used to evaluate the prognostic significance. Cells immune to CRC were targeted for single-cell RNA-seq analysis to characterise cancer-specific Trm cells in CRC. RESULTS The number of CD103+/CD8+ tumour-infiltrating lymphocytes (TILs) was a favourable prognostic and predictive factor of the overall survival and recurrence-free survival in patients with CRC. Single-cell RNA-seq analysis of 17,257 CRC-infiltrating immune cells revealed a more increased zinc finger protein 683 (ZNF683) expression in cancer Trm cells than in noncancer Trm cells and in high-infiltrating Trm cells than low-infiltrating Trm in cancer, with an upregulated T-cell receptor (TCR)- and interferon-γ (IFN-γ) signalling-related gene expression in ZNF683+ Trm cells. CONCLUSIONS The number of CD103+/CD8+ TILs is a prognostic predictive factor in CRC. In addition, we identified the ZNF683 expression as one of the candidate markers of cancer-specific Trm cells. IFN-γ and TCR signalling and ZNF683 expression are involved in Trm cell activation in tumours and are promising targets for cancer immunity regulation.
Collapse
Affiliation(s)
- Masatoshi Kitakaze
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Ryota Chijimatsu
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshiro Hirai
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masamitsu Konno
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, 135-0064, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuki Sekido
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Ken Ofusa
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,Prophoenix Division, Food and Life-Science Laboratory, Idea Consultants, Inc., Osaka-city, Osaka, 559-8519, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
62
|
Shi F, Zhang S, Zhang N, Yu Y, Sun P, Tang X, Liu X, Suo X. Tissue-resident, memory CD8 + T cells are effective in clearing intestinal Eimeria falciformis reinfection in mice. Front Immunol 2023; 14:1128637. [PMID: 36865534 PMCID: PMC9971219 DOI: 10.3389/fimmu.2023.1128637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Eimeria, a cousin of malarial parasites, causes coccidiosis that results in huge losses in the poultry industry. Although live coccidiosis vaccines have been developed and used widely for the successful control of the disease, the mechanism underlying protective immunity remains largely unknown. Using Eimeria falciformis as a model parasite, we observed that tissue-resident memory CD8+ T (Trm) cells accumulated in cecal lamina propria following E. falciformis infection in mice, especially after reinfection. In convalescent mice challenged with a second infection, E. falciformis burden diminished within 48-72 h. Deep-sequencing revealed that CD8+ Trm cells were characterized by rapid up-regulation of effector genes encoding pro-inflammatory cytokines and cytotoxic effector molecules. While FTY720 (Fingolimod) treatment prevented the trafficking of CD8+ T cells in peripheral circulation and exacerbated primary E. falciformis infection, such treatment had no impact on the expansion of CD8+ Trm cells in convalescent mice receiving secondary infection. Adoptive transfer of cecal CD8+ Trm cells conferred immune protection in naïve mice, indicating that these cells provide direct and effective protection against infection. Overall, our findings not only explain a protective mechanism of live oocyst-based anti-Eimeria vaccines but also provide a valuable correlate for assessing vaccines against other protozoan diseases.
Collapse
Affiliation(s)
- Fangyun Shi
- National Key Laboratory of Veterinary Public Health Security, Beijing, China,Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sixin Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing, China,Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
| | - Ning Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing, China,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ying Yu
- National Key Laboratory of Veterinary Public Health Security, Beijing, China,Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
| | - Pei Sun
- National Key Laboratory of Veterinary Public Health Security, Beijing, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Beijing, China,Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Beijing, China,Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China,*Correspondence: Xun Suo,
| |
Collapse
|
63
|
Rosato PC, Lotfi-Emran S, Joag V, Wijeyesinghe S, Quarnstrom CF, Degefu HN, Nedellec R, Schenkel JM, Beura LK, Hangartner L, Burton DR, Masopust D. Tissue-resident memory T cells trigger rapid exudation and local antibody accumulation. Mucosal Immunol 2023; 16:17-26. [PMID: 36657662 PMCID: PMC10338064 DOI: 10.1016/j.mucimm.2022.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 01/18/2023]
Abstract
Adaptive immunity is didactically partitioned into humoral and cell-mediated effector mechanisms, which may imply that each arm is separate and does not function together. Here, we report that the activation of CD8+ resident memory T cells (TRM) in nonlymphoid tissues triggers vascular permeability, which facilitates rapid distribution of serum antibodies into local tissues. TRM reactivation was associated with transcriptional upregulation of antiviral signaling pathways as well as Fc receptors and components of the complement cascade. Effects were local, but evidence is presented that TRM in brain and reproductive mucosa are both competent to induce rapid antibody exudation. TRM reactivation in the mouse female genital tract increased local concentrations of virus-specific neutralizing antibodies, including anti-vesicular stomatitis virus, and passively transferred anti-HIV antibodies. We showed that this response was sufficient to increase the efficacy of ex vivo vesicular stomatitis virus neutralization. These results indicate that CD8+ TRM antigen recognition can enhance local humoral immunity.
Collapse
Affiliation(s)
- Pamela C Rosato
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA; Geisel School of Medicine at Dartmouth College, Dartmouth Cancer Center, Department of Microbiology and Immunology, Lebanon, NH, USA
| | - Sahar Lotfi-Emran
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Vineet Joag
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Sathi Wijeyesinghe
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Clare F Quarnstrom
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Hanna N Degefu
- Geisel School of Medicine at Dartmouth College, Dartmouth Cancer Center, Department of Microbiology and Immunology, Lebanon, NH, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jason M Schenkel
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Lalit K Beura
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA; Brown University, Department of Molecular Microbiology and Immunology, Providence, RI, USA
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - David Masopust
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA.
| |
Collapse
|
64
|
Zhang B, Roesner LM, Traidl S, Koeken VACM, Xu CJ, Werfel T, Li Y. Single-cell profiles reveal distinctive immune response in atopic dermatitis in contrast to psoriasis. Allergy 2023; 78:439-453. [PMID: 35986602 DOI: 10.1111/all.15486] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Understanding the complex orchestrated inflammation in atopic dermatitis (AD), one of the most common chronic inflammatory diseases worldwide, is essential for therapeutic approaches. However, a comparative analysis on the single-cell level of the inflammation signatures correlated with the severity is missing so far. METHODS We applied single-cell RNA and T-cell receptor (TCR) sequencing on immune cells enriched from skin biopsies and matched blood samples of AD in comparison with psoriasis (PS) patients. RESULTS Clonally propagated skin-derived T cells showed disease-specific TCR motifs shared between patients which was more pronounced in PS compared to AD. The disease-specific T-cell clusters were mostly of a Th2/Th22 sub-population in AD and Th17/Tc17 in PS, and their numbers were associated with severity scores in both diseases. Herein, we provide for the first time a list that associates cell type-specific gene expression with the severity of the two most common chronic inflammatory skin diseases. Investigating the cell signatures in the patients´ PBMCs and skin stromal cells, a systemic involvement of type-3 inflammation was clearly detectable in PS circulating cells, while in AD inflammatory signatures were most pronounced in fibroblasts, pericytes, and keratinocytes. Compositional and functional analyses of myeloid cells revealed the activation of antiviral responses in macrophages in association with disease severity in both diseases. CONCLUSION Different disease-driving cell types and subtypes which contribute to the hallmarks of type-2 and type-3 inflammatory signatures and are associated with disease activities could be identified by single-cell RNA-seq and TCR-seq in AD and PS.
Collapse
Affiliation(s)
- Bowen Zhang
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Valerie A C M Koeken
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cheng-Jian Xu
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Werfel
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Yang Li
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
65
|
Dean JW, Helm EY, Fu Z, Xiong L, Sun N, Oliff KN, Muehlbauer M, Avram D, Zhou L. The aryl hydrocarbon receptor cell intrinsically promotes resident memory CD8 + T cell differentiation and function. Cell Rep 2023; 42:111963. [PMID: 36640340 PMCID: PMC9940759 DOI: 10.1016/j.celrep.2022.111963] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
The Aryl hydrocarbon receptor (Ahr) regulates the differentiation and function of CD4+ T cells; however, its cell-intrinsic role in CD8+ T cells remains elusive. Herein we show that Ahr acts as a promoter of resident memory CD8+ T cell (TRM) differentiation and function. Genetic ablation of Ahr in mouse CD8+ T cells leads to increased CD127-KLRG1+ short-lived effector cells and CD44+CD62L+ T central memory cells but reduced granzyme-B-producing CD69+CD103+ TRM cells. Genome-wide analyses reveal that Ahr suppresses the circulating while promoting the resident memory core gene program. A tumor resident polyfunctional CD8+ T cell population, revealed by single-cell RNA-seq, is diminished upon Ahr deletion, compromising anti-tumor immunity. Human intestinal intraepithelial CD8+ T cells also highly express AHR that regulates in vitro TRM differentiation and granzyme B production. Collectively, these data suggest that Ahr is an important cell-intrinsic factor for CD8+ T cell immunity.
Collapse
Affiliation(s)
- Joseph W Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Zheng Fu
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Na Sun
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Kristen N Oliff
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Marcus Muehlbauer
- Division of Gastroenterology, Hepatology and Nutrition, College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Dorina Avram
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
66
|
Heidarian M, Griffith TS, Badovinac VP. Sepsis-induced changes in differentiation, maintenance, and function of memory CD8 T cell subsets. Front Immunol 2023; 14:1130009. [PMID: 36756117 PMCID: PMC9899844 DOI: 10.3389/fimmu.2023.1130009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Formation of long-lasting memory lymphocytes is one of the foundational characteristics of adaptive immunity and the basis of many vaccination strategies. Following the rapid expansion and contraction of effector CD8 T cells, the surviving antigen (Ag)-specific cells give rise to the memory CD8 T cells that persist for a long time and are phenotypically and functionally distinct from their naïve counterparts. Significant heterogeneity exists within the memory CD8 T cell pool, as different subsets display distinct tissue localization preferences, cytotoxic ability, and proliferative capacity, but all memory CD8 T cells are equipped to mount an enhanced immune response upon Ag re-encounter. Memory CD8 T cells demonstrate numerical stability under homeostatic conditions, but sepsis causes a significant decline in the number of memory CD8 T cells and diminishes their Ag-dependent and -independent functions. Sepsis also rewires the transcriptional profile of memory CD8 T cells, which profoundly impacts memory CD8 T cell differentiation and, ultimately, the protective capacity of memory CD8 T cells upon subsequent stimulation. This review delves into different aspects of memory CD8 T cell subsets as well as the immediate and long-term impact of sepsis on memory CD8 T cell biology.
Collapse
Affiliation(s)
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN, United States,Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa, IA, United States,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa, IA, United States,*Correspondence: Vladimir P. Badovinac,
| |
Collapse
|
67
|
Mora-Buch R, Akbaba H, Bromley SK. Interactions of Tissue-Resident T Cells. Methods Mol Biol 2023; 2654:437-452. [PMID: 37106199 DOI: 10.1007/978-1-0716-3135-5_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Resident memory T cells (TRM) are non-circulating cells that play a critical role in protection from local infections and cancers. Flow cytometric and transcriptional analyses of these cells have defined their distinct phenotypes; imaging allows study of their morphology, localization, and interactions within tissues. Here, we describe commonly used methods to generate cutaneous CD8+ TRM and to prepare skin samples for analysis, including staining of cryostat sections, epidermal sheets, and tissue whole mounts.
Collapse
Affiliation(s)
- Rut Mora-Buch
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cell Therapy Services, Blood and Tissue Bank, Barcelona, Spain
| | - Hasan Akbaba
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Shannon K Bromley
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
68
|
Sei S, Ahadova A, Keskin DB, Bohaumilitzky L, Gebert J, von Knebel Doeberitz M, Lipkin SM, Kloor M. Lynch syndrome cancer vaccines: A roadmap for the development of precision immunoprevention strategies. Front Oncol 2023; 13:1147590. [PMID: 37035178 PMCID: PMC10073468 DOI: 10.3389/fonc.2023.1147590] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Hereditary cancer syndromes (HCS) account for 5~10% of all cancer diagnosis. Lynch syndrome (LS) is one of the most common HCS, caused by germline mutations in the DNA mismatch repair (MMR) genes. Even with prospective cancer surveillance, LS is associated with up to 50% lifetime risk of colorectal, endometrial, and other cancers. While significant progress has been made in the timely identification of germline pathogenic variant carriers and monitoring and early detection of precancerous lesions, cancer-risk reduction strategies are still centered around endoscopic or surgical removal of neoplastic lesions and susceptible organs. Safe and effective cancer prevention strategies are critically needed to improve the life quality and longevity of LS and other HCS carriers. The era of precision oncology driven by recent technological advances in tumor molecular profiling and a better understanding of genetic risk factors has transformed cancer prevention approaches for at-risk individuals, including LS carriers. MMR deficiency leads to the accumulation of insertion and deletion mutations in microsatellites (MS), which are particularly prone to DNA polymerase slippage during DNA replication. Mutations in coding MS give rise to frameshift peptides (FSP) that are recognized by the immune system as neoantigens. Due to clonal evolution, LS tumors share a set of recurrent and predictable FSP neoantigens in the same and in different LS patients. Cancer vaccines composed of commonly recurring FSP neoantigens selected through prediction algorithms have been clinically evaluated in LS carriers and proven safe and immunogenic. Preclinically analogous FSP vaccines have been shown to elicit FSP-directed immune responses and exert tumor-preventive efficacy in murine models of LS. While the immunopreventive efficacy of "off-the-shelf" vaccines consisting of commonly recurring FSP antigens is currently investigated in LS clinical trials, the feasibility and utility of personalized FSP vaccines with individual HLA-restricted epitopes are being explored for more precise targeting. Here, we discuss recent advances in precision cancer immunoprevention approaches, emerging enabling technologies, research gaps, and implementation barriers toward clinical translation of risk-tailored prevention strategies for LS carriers. We will also discuss the feasibility and practicality of next-generation cancer vaccines that are based on personalized immunogenic epitopes for precision cancer immunoprevention.
Collapse
Affiliation(s)
- Shizuko Sei
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
- *Correspondence: Shizuko Sei, ; Steven M. Lipkin, ; Matthias Kloor,
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Derin B. Keskin
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Broad Institute of The Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Lena Bohaumilitzky
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Steven M. Lipkin
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- *Correspondence: Shizuko Sei, ; Steven M. Lipkin, ; Matthias Kloor,
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- *Correspondence: Shizuko Sei, ; Steven M. Lipkin, ; Matthias Kloor,
| |
Collapse
|
69
|
von Werdt D, Gungor B, Barreto de Albuquerque J, Gruber T, Zysset D, Kwong Chung CKC, Corrêa-Ferreira A, Berchtold R, Page N, Schenk M, Kehrl JH, Merkler D, Imhof BA, Stein JV, Abe J, Turchinovich G, Finke D, Hayday AC, Corazza N, Mueller C. Regulator of G-protein signaling 1 critically supports CD8 + T RM cell-mediated intestinal immunity. Front Immunol 2023; 14:1085895. [PMID: 37153600 PMCID: PMC10158727 DOI: 10.3389/fimmu.2023.1085895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 05/09/2023] Open
Abstract
Members of the Regulator of G-protein signaling (Rgs) family regulate the extent and timing of G protein signaling by increasing the GTPase activity of Gα protein subunits. The Rgs family member Rgs1 is one of the most up-regulated genes in tissue-resident memory (TRM) T cells when compared to their circulating T cell counterparts. Functionally, Rgs1 preferentially deactivates Gαq, and Gαi protein subunits and can therefore also attenuate chemokine receptor-mediated immune cell trafficking. The impact of Rgs1 expression on tissue-resident T cell generation, their maintenance, and the immunosurveillance of barrier tissues, however, is only incompletely understood. Here we report that Rgs1 expression is readily induced in naïve OT-I T cells in vivo following intestinal infection with Listeria monocytogenes-OVA. In bone marrow chimeras, Rgs1 -/- and Rgs1 +/+ T cells were generally present in comparable frequencies in distinct T cell subsets of the intestinal mucosa, mesenteric lymph nodes, and spleen. After intestinal infection with Listeria monocytogenes-OVA, however, OT-I Rgs1 +/+ T cells outnumbered the co-transferred OT-I Rgs1- /- T cells in the small intestinal mucosa already early after infection. The underrepresentation of the OT-I Rgs1 -/- T cells persisted to become even more pronounced during the memory phase (d30 post-infection). Remarkably, upon intestinal reinfection, mice with intestinal OT-I Rgs1 +/+ TRM cells were able to prevent the systemic dissemination of the pathogen more efficiently than those with OT-I Rgs1 -/- TRM cells. While the underlying mechanisms are not fully elucidated yet, these data thus identify Rgs1 as a critical regulator for the generation and maintenance of tissue-resident CD8+ T cells as a prerequisite for efficient local immunosurveillance in barrier tissues in case of reinfections with potential pathogens.
Collapse
Affiliation(s)
- Diego von Werdt
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Bilgi Gungor
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Thomas Gruber
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Daniel Zysset
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Cheong K. C. Kwong Chung
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Gastrointestinal Health, Immunology, Nestlé Research, Lausanne, Switzerland
| | - Antonia Corrêa-Ferreira
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Regina Berchtold
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Nicolas Page
- Department of Pathology, Division of Clinical Pathology, University & University Hospitals of Geneva, Geneva, Switzerland
| | - Mirjam Schenk
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - John H. Kehrl
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Doron Merkler
- Department of Pathology, Division of Clinical Pathology, University & University Hospitals of Geneva, Geneva, Switzerland
| | - Beat A. Imhof
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
| | - Jens V. Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Gleb Turchinovich
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniela Finke
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Nadia Corazza
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- *Correspondence: Christoph Mueller, ; Nadia Corazza,
| | - Christoph Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- *Correspondence: Christoph Mueller, ; Nadia Corazza,
| |
Collapse
|
70
|
Lee CC, Tsai CH, Chen CH, Yeh YC, Chung WH, Chen CB. An updated review of the immunological mechanisms of keloid scars. Front Immunol 2023; 14:1117630. [PMID: 37033989 PMCID: PMC10075205 DOI: 10.3389/fimmu.2023.1117630] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Keloid is a type of disfiguring pathological scarring unique to human skin. The disorder is characterized by excessive collagen deposition. Immune cell infiltration is a hallmark of both normal and pathological tissue repair. However, the immunopathological mechanisms of keloid remain unclear. Recent studies have uncovered the pivotal role of both innate and adaptive immunity in modulating the aberrant behavior of keloid fibroblasts. Several novel therapeutics attempting to restore regulation of the immune microenvironment have shown variable efficacy. We review the current understanding of keloid immunopathogenesis and highlight the potential roles of immune pathway-specific therapeutics.
Collapse
Affiliation(s)
- Chih-Chun Lee
- 1 Department of Medical Education, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chia-Hsuan Tsai
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Chieh Yeh
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Hung Chung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Linkou, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chun-Bing Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Linkou, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- *Correspondence: Chun-Bing Chen, ;
| |
Collapse
|
71
|
Unique properties of tissue-resident memory T cells in the lungs: implications for COVID-19 and other respiratory diseases. Nat Rev Immunol 2022; 23:329-335. [PMID: 36494455 PMCID: PMC9735123 DOI: 10.1038/s41577-022-00815-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Tissue-resident memory T (TRM) cells were originally identified as a tissue-sequestered population of memory T cells that show lifelong persistence in non-lymphoid organs. That definition has slowly evolved with the documentation of TRM cells having variable terms of tissue residency combined with a capacity to return to the wider circulation. Nonetheless, reductionist experiments have identified an archetypical population of TRM cells showing intrinsic permanent residency in a wide range of non-lymphoid organs, with one notable exception: the lungs. Despite the fact that memory T cells generated during a respiratory infection are maintained in the circulation, local TRM cell numbers in the lung decline concomitantly with a decay in T cell-mediated protection. This Perspective describes the mechanisms that underpin long-term T cell lodgement in non-lymphoid tissues and explains why residency is transient for select TRM cell subsets. In doing so, it highlights the unusual nature of memory T cell egress from the lungs and speculates on the broader disease implications of this process, especially during infection with SARS-CoV-2.
Collapse
|
72
|
Gao A, Zhao W, Wu R, Su R, Jin R, Luo J, Gao C, Li X, Wang C. Tissue-resident memory T cells: The key frontier in local synovitis memory of rheumatoid arthritis. J Autoimmun 2022; 133:102950. [PMID: 36356551 DOI: 10.1016/j.jaut.2022.102950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) is a highly disabling, systemic autoimmune disease. It presents a remarkable tendency to recur, which renders it almost impossible for patients to live without drugs. Under such circumstances, many patients have to suffer the pain of recurrent attacks as well as the side effects of long-term medication. Current therapies for RA are primarily systemic treatments without targeting the problem that RA is more likely to recur locally. Emerging studies suggest the existence of a mechanism mediating local memory during RA, which is closely related to the persistent residence of tissue-resident memory T cells (TRM). TRM, one of the memory T cell subsets, reside in tissues providing immediate immune protection but driving recurrent local inflammation on the other hand. The heterogeneity among synovial TRM is unclear, with the dominated CD8+ TRM observed in inflamed synovium of RA patients coming into focus. Besides local arthritis relapse, TRM may also contribute to extra-articular organ involvement in RA due to their migration potential. Future integration of single-cell RNA sequencing (scRNA-seq) with spatial transcriptomics to explore the gene expression patterns of TRM in both temporal dimension and spatial dimension may help us identify specific therapeutic targets. Targeting synovial TRM to suppress local arthritis flares while using systemic therapies to prevent extra-articular organ involvement may provide a new perspective to address RA recurrence.
Collapse
Affiliation(s)
- Anqi Gao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Wenpeng Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Ruqing Jin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China.
| |
Collapse
|
73
|
Agrawal K, Ong LC, Monkley S, Thörn K, Israelsson E, Baturcam E, Rist C, Schön K, Blake S, Magnusson B, Cartwright J, Mitra S, Ravi A, Zounemat-Kermani N, Krishnaswamy JK, Lycke NY, Gehrmann U, Mattsson J. Allergic sensitization impairs lung resident memory CD8 T-cell response and virus clearance. J Allergy Clin Immunol 2022; 150:1415-1426.e9. [PMID: 35917932 DOI: 10.1016/j.jaci.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Patients with asthma often suffer from frequent respiratory viral infections and reduced virus clearance. Lung resident memory T cells provide rapid protection against viral reinfections. OBJECTIVE Because the development of resident memory T cells relies on the lung microenvironment, we investigated the impact of allergen sensitization on the development of virus-specific lung resident memory T cells and viral clearance. METHODS Mice were sensitized with house dust mite extract followed by priming with X47 and a subsequent secondary influenza infection. Antiviral memory T-cell response and protection to viral infection was assessed before and after secondary influenza infection, respectively. Gene set variation analysis was performed on data sets from the U-BIOPRED asthma cohort using an IFN-γ-induced epithelial cell signature and a tissue resident memory T-cell signature. RESULTS Viral loads were higher in lungs of sensitized compared with nonsensitized mice after secondary infection, indicating reduced virus clearance. X47 priming induced fewer antiviral lung resident memory CD8 T cells and resulted in lower pulmonary IFN-γ levels in the lungs of sensitized as compared with nonsensitized mice. Using data from the U-BIOPRED cohort, we found that patients with enrichment of epithelial IFN-γ-induced genes in nasal brushings and bronchial biopsies were also enriched in resident memory T-cell-associated genes, had more epithelial CD8 T cells, and reported significantly fewer exacerbations. CONCLUSIONS The allergen-sensitized lung microenvironment interferes with the formation of antiviral resident memory CD8 T cells in lungs and virus clearance. Defective antiviral memory response might contribute to increased susceptibility of patients with asthma to viral exacerbations.
Collapse
Affiliation(s)
- Komal Agrawal
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Li Ching Ong
- Department of Microbiology and Immunology, Gothenburg University, Gothenburg, Sweden
| | - Susan Monkley
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kristofer Thörn
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Israelsson
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Engin Baturcam
- Early Clinical Research, R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cassie Rist
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Gothenburg University, Gothenburg, Sweden
| | - Sophia Blake
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Björn Magnusson
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - James Cartwright
- Respiratory & Immunology (IA) Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Suman Mitra
- Inserm UMR1277 CNRS UMR9020 - CANTHER, Institut pour la Recherche sur le Cancer de Lille, Lille, France
| | - Abilash Ravi
- the Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Jayendra Kumar Krishnaswamy
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Nils Y Lycke
- Department of Microbiology and Immunology, Gothenburg University, Gothenburg, Sweden
| | - Ulf Gehrmann
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Johan Mattsson
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | | |
Collapse
|
74
|
von Hoesslin M, Kuhlmann M, de Almeida GP, Kanev K, Wurmser C, Gerullis AK, Roelli P, Berner J, Zehn D. Secondary infections rejuvenate the intestinal CD103
+
tissue-resident memory T cell pool. Sci Immunol 2022; 7:eabp9553. [DOI: 10.1126/sciimmunol.abp9553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Resident T lymphocytes (T
RM
) protect tissues during pathogen reexposure. Although T
RM
phenotype and restricted migratory pattern are established, we have a limited understanding of their response kinetics, stability, and turnover during reinfections. Such characterizations have been restricted by the absence of in vivo fate-mapping systems. We generated two mouse models, one to stably mark CD103
+
T cells (a marker of T
RM
cells) and the other to specifically deplete CD103
−
T cells. Using these models, we observed that intestinal CD103
+
T cells became activated during viral or bacterial reinfection, remained organ-confined, and retained their original phenotype but failed to reexpand. Instead, the population was largely rejuvenated by CD103
+
T cells formed de novo during reinfections. This pattern remained unchanged upon deletion of antigen-specific circulating T cells, indicating that the lack of expansion was not due to competition with circulating subsets. Thus, although intestinal CD103
+
resident T cells survived long term without antigen, they lacked the ability of classical memory T cells to reexpand. This indicated that CD103
+
T cell populations could not autonomously maintain themselves. Instead, their numbers were sustained during reinfection via de novo formation from CD103
−
precursors. Moreover, in contrast to CD103
-
cells, which require antigen plus inflammation for their activation, CD103
+
T
RM
became fully activated follwing exposure to inflammation alone. Together, our data indicate that primary CD103
+
resident memory T cells lack secondary expansion potential and require CD103
−
precursors for their long-term maintenance.
Collapse
Affiliation(s)
- Madlaina von Hoesslin
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Miriam Kuhlmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gustavo Pereira de Almeida
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Kristiyan Kanev
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Christine Wurmser
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Ann-Katrin Gerullis
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Jacqueline Berner
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
75
|
Fung HY, Teryek M, Lemenze AD, Bergsbaken T. CD103 fate mapping reveals that intestinal CD103 - tissue-resident memory T cells are the primary responders to secondary infection. Sci Immunol 2022; 7:eabl9925. [PMID: 36332012 PMCID: PMC9901738 DOI: 10.1126/sciimmunol.abl9925] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tissue-resident memory T (TRM) cells remain poised in the tissue and mediate robust protection from secondary infection. TRM cells within the intestine and other tissues are heterogeneous in their phenotype and function; however, the contributions of these TRM subsets to secondary infection remain poorly defined. To address the plasticity of intestinal TRM subsets and their role in local and systemic immunity, we generated mice to fate map intestinal CD103+ TRM cells and track their location and function during secondary infection with Yersinia pseudotuberculosis. We found that CD103+ TRM cells remained lodged in the tissue and were poorly reactivated during secondary challenge. CD103- TRM cells were the primary responders to secondary infection and expanded within the tissue, with limited contribution from circulating memory T cells. The transcriptional profile of CD103- TRM cells demonstrated maintenance of a gene signature similar to circulating T cells along with increased cytokine production and migratory potential. CD103- TRM cells also expressed genes associated with T cell receptor (TCR) activation and displayed enhanced TCR-mediated reactivation both in vitro and in vivo compared with their CD103+ counterparts. These studies reveal the limited recall potential of CD103+ TRM subsets and the role of CD103- TRM cells as central memory-like T cells within peripheral tissues.
Collapse
|
76
|
Suryadevara N, Kumar A, Ye X, Rogers M, Williams JV, Wilson JT, Karijolich J, Joyce S. A molecular signature of lung-resident CD8 + T cells elicited by subunit vaccination. Sci Rep 2022; 12:19101. [PMID: 36351985 PMCID: PMC9645351 DOI: 10.1038/s41598-022-21620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Natural infection as well as vaccination with live or attenuated viruses elicit tissue resident, CD8+ memory T cell (Trm) response. Trm cells so elicited act quickly upon reencounter with the priming agent to protect the host. These Trm cells express a unique molecular signature driven by the master regulators-Runx3 and Hobit. We previously reported that intranasal instillation of a subunit vaccine in a prime boost vaccination regimen installed quick-acting, CD8+ Trm cells in the lungs that protected against lethal vaccinia virus challenge. It remains unexplored whether CD8+ Trm responses so elicited are driven by a similar molecular signature as those elicited by microbes in a real infection or by live, attenuated pathogens in conventional vaccination. We found that distinct molecular signatures distinguished subunit vaccine-elicited lung interstitial CD8+ Trm cells from subunit vaccine-elicited CD8+ effector memory and splenic memory T cells. Nonetheless, the transcriptome signature of subunit vaccine elicited CD8+ Trm resembled those elicited by virus infection or vaccination. Clues to the basis of tissue residence and function of vaccine specific CD8+ Trm cells were found in transcripts that code for chemokines and chemokine receptors, purinergic receptors, and adhesins when compared to CD8+ effector and splenic memory T cells. Our findings inform the utility of protein-based subunit vaccination for installing CD8+ Trm cells in the lungs to protect against respiratory infectious diseases that plague humankind.
Collapse
Affiliation(s)
- Naveenchandra Suryadevara
- grid.418356.d0000 0004 0478 7015Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN 37212 USA ,grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Amrendra Kumar
- grid.418356.d0000 0004 0478 7015Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN 37212 USA ,grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Xiang Ye
- grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Meredith Rogers
- grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA ,grid.21925.3d0000 0004 1936 9000Department of Paediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224 USA
| | - John V. Williams
- grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA ,grid.21925.3d0000 0004 1936 9000Department of Paediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224 USA ,Institute for Infection, Immunity, and Inflammation in Children (i4Kids), Pittsburgh, PA 15224 USA
| | - John T. Wilson
- grid.152326.10000 0001 2264 7217Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - John Karijolich
- grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN, 37212, USA. .,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
77
|
Notarbartolo S, Abrignani S. Human T lymphocytes at tumor sites. Semin Immunopathol 2022; 44:883-901. [PMID: 36385379 PMCID: PMC9668216 DOI: 10.1007/s00281-022-00970-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022]
Abstract
CD4+ and CD8+ T lymphocytes mediate most of the adaptive immune response against tumors. Naïve T lymphocytes specific for tumor antigens are primed in lymph nodes by dendritic cells. Upon activation, antigen-specific T cells proliferate and differentiate into effector cells that migrate out of peripheral blood into tumor sites in an attempt to eliminate cancer cells. After accomplishing their function, most effector T cells die in the tissue, while a small fraction of antigen-specific T cells persist as long-lived memory cells, circulating between peripheral blood and lymphoid tissues, to generate enhanced immune responses when re-encountering the same antigen. A subset of memory T cells, called resident memory T (TRM) cells, stably resides in non-lymphoid peripheral tissues and may provide rapid immunity independently of T cells recruited from blood. Being adapted to the tissue microenvironment, TRM cells are potentially endowed with the best features to protect against the reemergence of cancer cells. However, when tumors give clinical manifestation, it means that tumor cells have evaded immune surveillance, including that of TRM cells. Here, we review the current knowledge as to how TRM cells are generated during an immune response and then maintained in non-lymphoid tissues. We then focus on what is known about the role of CD4+ and CD8+ TRM cells in antitumor immunity and their possible contribution to the efficacy of immunotherapy. Finally, we highlight some open questions in the field and discuss how new technologies may help in addressing them.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- INGM, Istituto Nazionale Genetica Molecolare "Romeo Ed Enrica Invernizzi", Milan, Italy.
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare "Romeo Ed Enrica Invernizzi", Milan, Italy.
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
78
|
Hassert M, Harty JT. Tissue resident memory T cells- A new benchmark for the induction of vaccine-induced mucosal immunity. Front Immunol 2022; 13:1039194. [PMID: 36275668 PMCID: PMC9581298 DOI: 10.3389/fimmu.2022.1039194] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Historically, the gold-standard benchmark for vaccine immunogenicity has been the induction of neutralizing antibodies detectable in the serum of peripheral blood. However, in recent years there has been a new appreciation for the mucosa as an important site for vaccine induced immunity. As a point of first contact, the mucosal tissue represents a major site of immune based detection and restriction of pathogen entry and dissemination. Tissue resident memory T cells (Trm) are one of the critical cell types involved in this early detection and restriction of mucosal pathogens. Following tissue-specific infection or vaccination, Trm lodge themselves within tissues and can perform rapid sensing and alarm functions to control local re-infections, in an effort that has been defined as important for restriction of a number of respiratory pathogens including influenza and respiratory syncytial virus. Despite this characterized importance, only minor attention has been paid to the importance of Trm as a benchmark for vaccine immunogenicity. The purpose of this review is to highlight the functions of Trm with particular emphasis on respiratory infections, and to suggest the inclusion of Trm elicitation as a benchmark for vaccine immunogenicity in animal models, and where possible, human samples.
Collapse
|
79
|
Al Moussawy M, Abdelsamed HA. Non-cytotoxic functions of CD8 T cells: “repentance of a serial killer”. Front Immunol 2022; 13:1001129. [PMID: 36172358 PMCID: PMC9511018 DOI: 10.3389/fimmu.2022.1001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Cytotoxic CD8 T cells (CTLs) are classically described as the “serial killers” of the immune system, where they play a pivotal role in protective immunity against a wide spectrum of pathogens and tumors. Ironically, they are critical drivers of transplant rejection and autoimmune diseases, a scenario very similar to the famous novel “The strange case of Dr. Jekyll and Mr. Hyde”. Until recently, it has not been well-appreciated whether CTLs can also acquire non-cytotoxic functions in health and disease. Several investigations into this question revealed their non-cytotoxic functions through interactions with various immune and non-immune cells. In this review, we will establish a new classification for CD8 T cell functions including cytotoxic and non-cytotoxic. Further, we will discuss this novel concept and speculate on how these functions could contribute to homeostasis of the immune system as well as immunological responses in transplantation, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Mouhamad Al Moussawy
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hossam A. Abdelsamed
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Hossam A. Abdelsamed,
| |
Collapse
|
80
|
Yenyuwadee S, Sanchez-Trincado Lopez JL, Shah R, Rosato PC, Boussiotis VA. The evolving role of tissue-resident memory T cells in infections and cancer. SCIENCE ADVANCES 2022; 8:eabo5871. [PMID: 35977028 PMCID: PMC9385156 DOI: 10.1126/sciadv.abo5871] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/05/2022] [Indexed: 06/12/2023]
Abstract
Resident memory T cells (TRM) form a distinct type of T memory cells that stably resides in tissues. TRM form an integral part of the immune sensing network and have the ability to control local immune homeostasis and participate in immune responses mediated by pathogens, cancer, and possibly autoantigens during autoimmunity. TRM express residence gene signatures, functional properties of both memory and effector cells, and remarkable plasticity. TRM have a well-established role in pathogen immunity, whereas their role in antitumor immune responses and immunotherapy is currently evolving. As TRM form the most abundant T memory cell population in nonlymphoid tissues, they are attractive targets for therapeutic exploitation. Here, we provide a concise review of the development and physiological role of CD8+ TRM, their involvement in diseases, and their potential therapeutic exploitation.
Collapse
Affiliation(s)
- Sasitorn Yenyuwadee
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jose Luis Sanchez-Trincado Lopez
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Laboratory of Immunomedicine, School of Medicine, Complutense University of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Rushil Shah
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Cornell University, Ithaca, NY 14850 , USA
| | - Pamela C Rosato
- The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
81
|
Zhang M, Li N, He Y, Shi T, Jie Z. Pulmonary resident memory T cells in respiratory virus infection and their inspiration on therapeutic strategies. Front Immunol 2022; 13:943331. [PMID: 36032142 PMCID: PMC9412965 DOI: 10.3389/fimmu.2022.943331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
The immune system generates memory cells on infection with a virus for the first time. These memory cells play an essential role in protection against reinfection. Tissue-resident memory T (TRM) cells can be generated in situ once attacked by pathogens. TRM cells dominate the defense mechanism during early stages of reinfection and have gradually become one of the most popular focuses in recent years. Here, we mainly reviewed the development and regulation of various TRM cell signaling pathways in the respiratory tract. Moreover, we explored the protective roles of TRM cells in immune response against various respiratory viruses, such as Respiratory Syncytial Virus (RSV) and influenza. The complex roles of TRM cells against SARS-CoV-2 infection are also discussed. Current evidence supports the therapeutic strategies targeting TRM cells, providing more possibilities for treatment. Rational utilization of TRM cells for therapeutics is vital for defense against respiratory viruses.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- *Correspondence: Zhijun Jie,
| |
Collapse
|
82
|
Merkler D, Vincenti I, Masson F, Liblau RS. Tissue-resident CD8 T cells in central nervous system inflammatory diseases: present at the crime scene and …guilty. Curr Opin Immunol 2022; 77:102211. [DOI: 10.1016/j.coi.2022.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
|
83
|
Ning J, Gavil NV, Wu S, Wijeyesinghe S, Weyu E, Ma J, Li M, Grigore FN, Dhawan S, Skorput AGJ, Musial SC, Chen CC, Masopust D, Rosato PC. Functional virus-specific memory T cells survey glioblastoma. Cancer Immunol Immunother 2022; 71:1863-1875. [DOI: 10.1007/s00262-021-03125-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/24/2021] [Indexed: 02/05/2023]
|
84
|
Fonseca R, Burn TN, Gandolfo LC, Devi S, Park SL, Obers A, Evrard M, Christo SN, Buquicchio FA, Lareau CA, McDonald KM, Sandford SK, Zamudio NM, Zanluqui NG, Zaid A, Speed TP, Satpathy AT, Mueller SN, Carbone FR, Mackay LK. Runx3 drives a CD8 + T cell tissue residency program that is absent in CD4 + T cells. Nat Immunol 2022; 23:1236-1245. [PMID: 35882933 DOI: 10.1038/s41590-022-01273-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Tissue-resident memory T cells (TRM cells) provide rapid and superior control of localized infections. While the transcription factor Runx3 is a critical regulator of CD8+ T cell tissue residency, its expression is repressed in CD4+ T cells. Here, we show that, as a direct consequence of this Runx3-deficiency, CD4+ TRM cells lacked the transforming growth factor (TGF)-β-responsive transcriptional network that underpins the tissue residency of epithelial CD8+ TRM cells. While CD4+ TRM cell formation required Runx1, this, along with the modest expression of Runx3 in CD4+ TRM cells, was insufficient to engage the TGF-β-driven residency program. Ectopic expression of Runx3 in CD4+ T cells incited this TGF-β-transcriptional network to promote prolonged survival, decreased tissue egress, a microanatomical redistribution towards epithelial layers and enhanced effector functionality. Thus, our results reveal distinct programming of tissue residency in CD8+ and CD4+ TRM cell subsets that is attributable to divergent Runx3 activity.
Collapse
Affiliation(s)
- Raíssa Fonseca
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Thomas N Burn
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Luke C Gandolfo
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia
| | - Sapna Devi
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Frank A Buquicchio
- Department of Pathology, Stanford University, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
| | - Keely M McDonald
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah K Sandford
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Natasha M Zamudio
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nagela G Zanluqui
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ali Zaid
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Terence P Speed
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Francis R Carbone
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
85
|
Rahimi RA, Cho JL, Jakubzick CV, Khader SA, Lambrecht BN, Lloyd CM, Molofsky AB, Talbot S, Bonham CA, Drake WP, Sperling AI, Singer BD. Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 67:e1-18. [PMID: 35776495 PMCID: PMC9273224 DOI: 10.1165/rcmb.2022-0167st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mammalian airways and lungs are exposed to a myriad of inhaled particulate matter, allergens, and pathogens. The immune system plays an essential role in protecting the host from respiratory pathogens, but a dysregulated immune response during respiratory infection can impair pathogen clearance and lead to immunopathology. Furthermore, inappropriate immunity to inhaled antigens can lead to pulmonary diseases. A complex network of epithelial, neural, stromal, and immune cells has evolved to sense and respond to inhaled antigens, including the decision to promote tolerance versus a rapid, robust, and targeted immune response. Although there has been great progress in understanding the mechanisms governing immunity to respiratory pathogens and aeroantigens, we are only beginning to develop an integrated understanding of the cellular networks governing tissue immunity within the lungs and how it changes after inflammation and over the human life course. An integrated model of airway and lung immunity will be necessary to improve mucosal vaccine design as well as prevent and treat acute and chronic inflammatory pulmonary diseases. Given the importance of immunology in pulmonary research, the American Thoracic Society convened a working group to highlight central areas of investigation to advance the science of lung immunology and improve human health.
Collapse
|
86
|
Activated-memory T cells influence naïve T cell fate: a noncytotoxic function of human CD8 T cells. Commun Biol 2022; 5:634. [PMID: 35768564 PMCID: PMC9243096 DOI: 10.1038/s42003-022-03596-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/15/2022] [Indexed: 01/26/2023] Open
Abstract
T cells are endowed with the capacity to sense their environment including other T cells around them. They do so to set their numbers and activation thresholds. This form of regulation has been well-studied within a given T cell population - i.e., within the naïve or memory pool; however, less is known about the cross-talk between T cell subsets. Here, we tested whether memory T cells interact with and influence surrounding naïve T cells. We report that human naïve CD8 T cells (TN) undergo phenotypic and transcriptional changes in the presence of autologous activated-memory CD8 T cells (TMem). Following in vitro co-culture with activated central memory cells (TCM), ~3% of the TN acquired activation/memory canonical markers (CD45RO and CD95) in an MHC-I dependent-fashion. Using scRNA-seq, we also observed that ~3% of the TN acquired an activated/memory signature, while ~84% developed a unique activated transcriptional profile hybrid between naïve and activated memory. Pseudotime trajectory analysis provided further evidence that TN with an activated/memory or hybrid phenotype were derived from TN. Our data reveal a non-cytotoxic function of TMem with potential to activate autologous TN into the activated/memory pool. These findings may have implications for host-protection and autoimmunity that arises after vaccination, infection or transplantation.
Collapse
|
87
|
La Manna MP, Shekarkar Azgomi M, Tamburini B, Badami GD, Mohammadnezhad L, Dieli F, Caccamo N. Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8+ T Cells. Front Immunol 2022; 13:884148. [PMID: 35784300 PMCID: PMC9247337 DOI: 10.3389/fimmu.2022.884148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system, smartly and surprisingly, saves the exposure of a particular pathogen in its memory and reacts to the pathogen very rapidly, preventing serious diseases.Immunologists have long been fascinated by understanding the ability to recall and respond faster and more vigorously to a pathogen, known as “memory”.T-cell populations can be better described by using more sophisticated techniques to define phenotype, transcriptional and epigenetic signatures and metabolic pathways (single-cell resolution), which uncovered the heterogeneity of the memory T-compartment. Phenotype, effector functions, maintenance, and metabolic pathways help identify these different subsets. Here, we examine recent developments in the characterization of the heterogeneity of the memory T cell compartment. In particular, we focus on the emerging role of CD8+ TRM and TSCM cells, providing evidence on how their immunometabolism or modulation can play a vital role in their generation and maintenance in chronic conditions such as infections or autoimmune diseases.
Collapse
Affiliation(s)
- Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Leila Mohammadnezhad
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Nadia Caccamo,
| |
Collapse
|
88
|
Zhang H, Zhu Z, Modrak S, Little A. Tissue-Resident Memory CD4 + T Cells Play a Dominant Role in the Initiation of Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2837-2846. [PMID: 35589124 DOI: 10.4049/jimmunol.2100852] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/03/2022] [Indexed: 01/22/2023]
Abstract
Tumor immunology has been studied extensively. Tumor immunology-based cancer immunotherapy has become one of the most promising approaches for cancer treatment. However, one of the fundamental aspects of tumor immunology-the initiation of antitumor immunity-is not fully understood. Compared to that of CD8+ T cells, the effect of CD4+ T cells on antitumor immunity has not been fully appreciated. Using a gene knockout mouse model, the mice of which are deficient in the TCRα repertoire, specifically lacking invariant NKT and mucosal-associated invariant T cells, we found that the deficiency in TCRα repertoire diversity did not affect the antitumor immunity, at least to B16BL6 melanoma and EO771 breast cancer. However, after acquiring thymocytes or splenocytes from wild-type mice, these knockout mice exhibited greatly enhanced and long-lasting antitumor immunity. This enhanced antitumor immunity depended on CD4+ T cells, especially CD4+ tissue-resident memory T (TRM) cells, but not invariant NKT or CD8+ T cells. We also present evidence that CD4+ TRM cells initiate antitumor immunity through IFN-γ, and the process is dependent on NK cells. The CD4+ TRM/NK axis appears to control tumor formation and development by eliminating tumor cells and modulating the tumor microenvironment. Taken together, our results demonstrated that CD4+ TRM cells play a dominant role in the initiation of antitumor immunity.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| | - Zhaohui Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| | - Samantha Modrak
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| | - Alex Little
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| |
Collapse
|
89
|
Lyu Y, Zhou Y, Shen J. An Overview of Tissue-Resident Memory T Cells in the Intestine: From Physiological Functions to Pathological Mechanisms. Front Immunol 2022; 13:912393. [PMID: 35711464 PMCID: PMC9192946 DOI: 10.3389/fimmu.2022.912393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023] Open
Abstract
The human intestine contains a complex network of innate and adaptive immune cells that provide protective immunity. The dysfunction of this network may cause various chronic diseases. A large number of T cells in the human intestine have been identified as tissue-resident memory T cells (TRM). TRM are present in the peripheral tissues, and they do not recirculate through the blood. It is known that TRM provide rapid immune responses at the frontline of pathogen invasion. Recent evidence also suggests that these cells play a role in tumor surveillance and the pathogenesis of autoimmune diseases. In this review, we discuss the general features of intestinal TRM together with their role in intestinal infection, colorectal cancer (CRC), and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
| | | | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
90
|
Loi JK, Alexandre YO, Senthil K, Schienstock D, Sandford S, Devi S, Christo SN, Mackay LK, Chinnery HR, Osborne PB, Downie LE, Sloan EK, Mueller SN. Corneal tissue-resident memory T cells form a unique immune compartment at the ocular surface. Cell Rep 2022; 39:110852. [PMID: 35613584 DOI: 10.1016/j.celrep.2022.110852] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/27/2022] [Accepted: 04/29/2022] [Indexed: 11/03/2022] Open
Abstract
The eye is considered immune privileged such that immune responses are dampened to protect vision. As the most anterior compartment of the eye, the cornea is exposed to pathogens and can mount immune responses that recruit effector T cells. However, presence of immune memory in the cornea is not defined. Here, we use intravital 2-photon microscopy to examine T cell responses in the cornea in mice. We show that recruitment of CD8+ T cells in response to ocular virus infection results in the formation of tissue-resident memory T (TRM) cells. Motile corneal TRM cells patrol the cornea and rapidly respond in situ to antigen rechallenge. CD103+ TRM cell generation requires antigen and transforming growth factor β. In vivo imaging in humans also reveals highly motile cells that patrol the healthy cornea. Our study finds that TRM cells form in the cornea where they can provide local protective immunity.
Collapse
Affiliation(s)
- Joon Keit Loi
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kirthana Senthil
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dominik Schienstock
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sarah Sandford
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sapna Devi
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Peregrine B Osborne
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; Division of Surgery, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
91
|
Parsa R, London M, Rezende de Castro TB, Reis B, Buissant des Amorie J, Smith JG, Mucida D. Newly recruited intraepithelial Ly6A+CCR9+CD4+ T cells protect against enteric viral infection. Immunity 2022; 55:1234-1249.e6. [DOI: 10.1016/j.immuni.2022.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/07/2022] [Accepted: 05/03/2022] [Indexed: 12/31/2022]
|
92
|
Towards Understanding the Lymph Node Response to Skin Infection with Saprophytic Staphylococcus epidermidis. Biomedicines 2022; 10:biomedicines10051021. [PMID: 35625758 PMCID: PMC9138836 DOI: 10.3390/biomedicines10051021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
In individuals with lymphedema, diabetic foot, or other diseases, infections with saprophytes are common. The response of major cell subpopulations in the draining lymph nodes to skin infection with Staphylococcus epidermidis was assessed using the rat model. After massive subepidermal infection, a cytometric evaluation showed an increase in cytotoxic and helper T lymphocytes and major subpopulations of the innate immune response. Three weeks later, signs of inflammation reduction with an increase in the content of memory T helper lymphocytes and effector memory T cytotoxic lymphocytes were observed. After skin re-infection, a rapid response of cytotoxic, helper, and memory T lymphocytes, memory B lymphocytes and plasmablasts, and macrophages was detected. In addition, a reduction in the number of naïve B lymphocytes, activated MHC class II+ cells, and some cells of the innate immune system was observed. T regulatory lymphocyte response after the initial and secondary S. epidermidis skin infection was not detected. The morphometric evaluation showed significant changes in the main cell subpopulations in each functional zone of the node and then confirmed the efficient elimination of the administered antigen, as evidenced by the observations on day 28. Notably, after re-infection, the cellular response did not exceed the level after the initial infection and was reduced in many cell subpopulations. Understanding how the lymph nodes eliminate S. epidermidis can provide valuable insights into creating immunological therapies against infections with saprophytes.
Collapse
|
93
|
Vincenti I, Page N, Steinbach K, Yermanos A, Lemeille S, Nunez N, Kreutzfeldt M, Klimek B, Di Liberto G, Egervari K, Piccinno M, Shammas G, Mariotte A, Fonta N, Liaudet N, Shlesinger D, Liuzzi AR, Wagner I, Saadi C, Stadelmann C, Reddy S, Becher B, Merkler D. Tissue-resident memory CD8 + T cells cooperate with CD4 + T cells to drive compartmentalized immunopathology in the CNS. Sci Transl Med 2022; 14:eabl6058. [PMID: 35417190 DOI: 10.1126/scitranslmed.abl6058] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In chronic inflammatory diseases of the central nervous system (CNS), immune cells persisting behind the blood-brain barrier are supposed to promulgate local tissue destruction. The drivers of such compartmentalized inflammation remain unclear, but tissue-resident memory T cells (TRM) represent a potentially important cellular player in this process. Here, we investigated whether resting CD8+ TRM persisting after cleared infection with attenuated lymphocytic choriomeningitis virus (LCMV) can initiate immune responses directed against cognate self-antigen in the CNS. We demonstrated that time-delayed conditional expression of the LCMV glycoprotein as neo-self-antigen by glia cells reactivated CD8+ TRM. Subsequently, CD8+ TRM expanded and initiated CNS inflammation and immunopathology in an organ-autonomous manner independently of circulating CD8+ T cells. However, in the absence of CD4+ T cells, TCF-1+ CD8+ TRM failed to expand and differentiate into terminal effectors. Similarly, in human demyelinating CNS autoimmune lesions, we found CD8+ T cells expressing TCF-1 that predominantly exhibited a TRM-like phenotype. Together, our study provides evidence for CD8+ TRM-driven CNS immunopathology and sheds light on why inflammatory processes may evade current immunomodulatory treatments in chronic autoimmune CNS conditions.
Collapse
Affiliation(s)
- Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Karin Steinbach
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Alexander Yermanos
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.,Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Nunez
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Kristof Egervari
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Margot Piccinno
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Ghazal Shammas
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Alexandre Mariotte
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Fonta
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Liaudet
- Bioimaging core facility, University of Geneva, 1211 Geneva, Switzerland
| | - Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Anna Rita Liuzzi
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Cynthia Saadi
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Sai Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| |
Collapse
|
94
|
Arnous R, Arshad S, Sandgren K, Cunningham AL, Carnt N, White A. Tissue resident memory T cells inhabit the deep human conjunctiva. Sci Rep 2022; 12:6077. [PMID: 35414674 PMCID: PMC9005529 DOI: 10.1038/s41598-022-09886-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Mucosal linings of the body, including the conjunctiva, are enriched in tissue-resident memory T cells (TRMs) whose defining feature is their continual tissue protection that does not rely on migration to lymphoid organs to elicit immune responses. Hitherto, conjunctival TRMs have only been identified in the superficial epithelium. This work aims to develop a more complete understanding of the conjunctival immunological capacity by investigating the presence of TRMs within the deeper, more stable layers of the healthy human conjunctiva. Using immunofluorescence microscopy and antibodies against CD3, CD4, CD69 and HLA-DR on bulbar conjunctival biopsies obtained from 7 healthy adults (age range = 32-77 years; females = 4), we identified CD69+TRM subsets in all layers of the human conjunctiva: the superficial epithelium, the basal epithelium, the adenoid, and the fibrous layers. Interestingly, the adenoid layer showed significantly higher densities of both CD4 and CD8 TRMs when compared to the fibrous layer and conjunctival epithelia. Additionally, CD4 TRMs predominated significantly over CD8 TRMs in the adenoid layer. The abundance of deep conjunctival CD69+TRMs within the healthy human may suggest the presence of defence mechanisms capable of inducing long-term immunogenic memory. Understanding this spatial distribution of conjunctival CD69+TRMs is essential to improving mucosal vaccine design.
Collapse
Affiliation(s)
- Racha Arnous
- Centre for Vision Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sana Arshad
- Centre for Vision Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kerrie Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nicole Carnt
- Centre for Vision Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.,School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, 2033, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Andrew White
- Centre for Vision Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia. .,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia. .,Save Sight Institute, The University of Sydney, Sydney, NSW, 2000, Australia.
| |
Collapse
|
95
|
Parga-Vidal L, van Aalderen MC, Stark R, van Gisbergen KPJM. Tissue-resident memory T cells in the urogenital tract. Nat Rev Nephrol 2022; 18:209-223. [PMID: 35079143 DOI: 10.1038/s41581-021-00525-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Our understanding of T cell memory responses changed drastically with the discovery that specialized T cell memory populations reside within peripheral tissues at key pathogen entry sites. These tissue-resident memory T (TRM) cells can respond promptly to an infection without the need for migration, proliferation or differentiation. This rapid and local deployment of effector functions maximizes the ability of TRM cells to eliminate pathogens. TRM cells do not circulate through peripheral tissues but instead form isolated populations in the skin, gut, liver, kidneys, the reproductive tract and other organs. This long-term retention in the periphery might allow TRM cells to fully adapt to the local conditions of their environment and mount customized responses to counter infection and tumour growth in a tissue-specific manner. In the urogenital tract, TRM cells must adapt to a unique microenvironment to confer protection against potential threats, including cancer and infection, while preventing the onset of auto-inflammatory disease. In this Review, we discuss insights into the diversification of TRM cells from other memory T cell lineages, the adaptations of TRM cells to their local environment, and their enhanced capacity to counter infection and tumour growth compared with other memory T cell populations, especially in the urogenital tract.
Collapse
Affiliation(s)
- Loreto Parga-Vidal
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel C van Aalderen
- Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Internal Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
96
|
Huang Y, Zhou L, Zhang H, Zhang L, Xi X, Sun Y. BMDCs induce the generation of the CD103+CD8+ tissue-resident memory T cell subtype, which amplifies local tumor control in the genital tract. Cell Immunol 2022; 374:104502. [DOI: 10.1016/j.cellimm.2022.104502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/21/2022] [Accepted: 03/06/2022] [Indexed: 12/15/2022]
|
97
|
Vrba SM, Hickman HD. Imaging viral infection in vivo to gain unique perspectives on cellular antiviral immunity. Immunol Rev 2022; 306:200-217. [PMID: 34796538 PMCID: PMC9073719 DOI: 10.1111/imr.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022]
Abstract
The past decade has seen near continual global public health crises caused by emerging viral infections. Extraordinary increases in our knowledge of the mechanisms underlying successful antiviral immune responses in animal models and during human infection have accompanied these viral outbreaks. Keeping pace with the rapidly advancing field of viral immunology, innovations in microscopy have afforded a previously unseen view of viral infection occurring in real-time in living animals. Here, we review the contribution of intravital imaging to our understanding of cell-mediated immune responses to viral infections, with a particular focus on studies that visualize the antiviral effector cells responding to infection as well as virus-infected cells. We discuss methods to visualize viral infection in vivo using intravital microscopy (IVM) and significant findings arising through the application of IVM to viral infection. Collectively, these works underscore the importance of developing a comprehensive spatial understanding of the relationships between immune effectors and virus-infected cells and how this has enabled unique discoveries about virus/host interactions and antiviral effector cell biology.
Collapse
Affiliation(s)
- Sophia M. Vrba
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather D. Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Correspondence to: HDH. . 10 Center Drive, Rm 11N244A. Bethesda, MD. 20892. 301-761-6330
| |
Collapse
|
98
|
Kortekaas Krohn I, Aerts JL, Breckpot K, Goyvaerts C, Knol E, Van Wijk F, Gutermuth J. T-cell subsets in the skin and their role in inflammatory skin disorders. Allergy 2022; 77:827-842. [PMID: 34559894 DOI: 10.1111/all.15104] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 12/20/2022]
Abstract
T lymphocytes (T cells) are major players of the adaptive immune response. Naive T cells are primed in the presence of cytokines, leading to polarization into distinct T-cell subsets with specific functions. These subsets are classified based on their T-cell receptor profile, expression of transcription factors, surface cytokine and chemokine receptors, and their cytokine production, which together determine their specific function. This review provides an overview of the various T-cell subsets and their function in several inflammatory skin disorders ranging from allergic inflammation to skin tumors. Moreover, we highlight similarities of T-cell responses across different skin disorders, demonstrating the presence of similar and opposing functions for the different T-cell subsets. Finally, we discuss the effects of currently available and promising therapeutic approaches to harness T cells in inflammatory skin diseases for which efficacy next to unwanted side effects provide new insights into the pathophysiology of skin disorders.
Collapse
Affiliation(s)
- Inge Kortekaas Krohn
- Vrije Universiteit Brussel (VUB)Skin Immunology & Immune Tolerance (SKIN) Research Group Brussels Belgium
- Vrije Universiteit Brussel (VUB)Universitair Ziekenhuis Brussel (UZ Brussel)Department of DermatologyUniversitair Ziekenhuis Brussel Brussels Belgium
| | - Joeri L. Aerts
- Vrije Universiteit Brussel (VUB)Neuro‐Aging and Viro‐Immunotherapy (NAVI) Research Group Brussels Belgium
| | - Karine Breckpot
- Vrije Universiteit Brussel (VUB)Laboratory for Molecular and Cellular Therapy (LMCT)Department of Biomedical Sciences Brussels Belgium
| | - Cleo Goyvaerts
- Vrije Universiteit Brussel (VUB)Laboratory for Molecular and Cellular Therapy (LMCT)Department of Biomedical Sciences Brussels Belgium
| | - Edward Knol
- Center for Translational Immunology University Medical Center Utrecht Utrecht The Netherlands
- Department Dermatology/Allergology University Medical Center Utrecht Utrecht The Netherlands
| | - Femke Van Wijk
- Center for Translational Immunology University Medical Center Utrecht Utrecht The Netherlands
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB)Skin Immunology & Immune Tolerance (SKIN) Research Group Brussels Belgium
- Vrije Universiteit Brussel (VUB)Universitair Ziekenhuis Brussel (UZ Brussel)Department of DermatologyUniversitair Ziekenhuis Brussel Brussels Belgium
| |
Collapse
|
99
|
Jiang L, Liu L, Zhang M, Zhang L, Zhu C, He Q, Ye L, Zhao C, Li Z, Xu J, Zhang X. Prompt Antiviral Action of Pulmonary CD8+ T RM Cells Is Mediated by Rapid IFN-γ Induction and Its Downstream ISGs in the Lung. Front Immunol 2022; 13:839455. [PMID: 35296070 PMCID: PMC8920550 DOI: 10.3389/fimmu.2022.839455] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Growing lines of evidence supported the importance of CD8+ lung tissue resident memory T (TRM) cells in protection against respiratory viruses, exemplified by influenza A virus. However, the underlying in vivo mechanism remains largely undetermined. Here, we used mouse infection models to dissect in vivo cross-protective activity of lung CD8+ TRM cells. By simultaneously interrogating transcriptional dynamics in lung CD8+ TRM cells and surrounding tissues during the early course of infection, we demonstrated that lung CD8+ TRM cells react to antigen re-exposure within hours, manifested by IFN-γ upregulation, and a tissue-wide interferon-stimulated gene (ISG) program is subsequently elicited. Using antibody-mediated IFN-γ neutralization and IFN-γ receptor knockout mice, we could show that the induction of several important antiviral ISGs required IFN-γ signaling, so did the suppression of key inflammatory cytokines. Interestingly, there were also examples of ISGs unaffected in the absence of IFN-γ activity. Collectively, focusing on in situ characterization of lung CD8+ TRM cells during very early stage of infection, a critical period of host antiviral defense that has been poorly investigated, our studies highlight that these cells, once triggered by antigen re-exposure, are programmed to produce IFN-γ expeditiously to promote a lung-wide antiviral response for effective virus control.
Collapse
Affiliation(s)
- Lang Jiang
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lu Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Obstetrics & Gynecology Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Miaomiao Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Linxia Zhang
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qian He
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai, China
| | - Jianqing Xu
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
100
|
Funch AB, Mraz V, Gadsbøll AØ, Jee MH, Weber JF, Ødum N, Woetmann A, Johansen JD, Geisler C, Bonefeld CM. CD8 + tissue-resident memory T cells recruit neutrophils that are essential for flare-ups in contact dermatitis. Allergy 2022; 77:513-524. [PMID: 34169536 DOI: 10.1111/all.14986] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Allergic contact dermatitis (ACD) is classically described as a delayed-type hypersensitivity reaction. However, patients often experience flare-ups characterized by itching erythema, edema, and often vesicles occurring within hours after re-exposure of previously sensitized skin to the specific contact allergen. Recent studies have indicated that skin-resident memory T (TRM ) cells play a central role in ACD. However, the pathogenic role of TRM cells in allergen-induced flare-ups is not known. METHODS By the use of various mouse models and cell depletion protocols, we investigated the role of epidermal TRM cells in flare-up reactions to the experimental contact allergen 1-fluoro-2,4-dinitrobenzene. The inflammatory response was measured by changes in ear thickness, and the cellular composition in epidermis was determined by flow cytometry and confocal microscopy. Finally, adaptive transfer and inhibitors were used to determine the role of TRM cells, neutrophils, and CXCL1/CXCL2 in the response. RESULTS We show that CD8+ TRM cells initiate massive infiltration of neutrophils in the epidermis within 12 h after re-exposure to the contact allergen. Depletion of neutrophils before re-exposure to the allergen abrogated the flare-up reactions. Furthermore, we demonstrate that CD8+ TRM cells mediate neutrophil recruitment by inducing CXCL1 and CXCL2 production in the skin, and that blockage of the C-X-C chemokine receptor type 1 and 2 inhibits flare-up reactions and neutrophil infiltration. CONCLUSION As the first, we show that epidermal CD8+ TRM cells cause ACD flare-ups by rapid recruitment of neutrophils to the epidermis.
Collapse
Affiliation(s)
- Anders B. Funch
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
- Department of Dermatology and Allergy National Allergy Research Center Copenhagen University Hospital Gentofte Hellerup Denmark
| | - Veronika Mraz
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
| | - Anne‐Sofie Ø. Gadsbøll
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
| | - Mia H. Jee
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
- Department of Dermatology and Allergy National Allergy Research Center Copenhagen University Hospital Gentofte Hellerup Denmark
| | - Julie F. Weber
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
| | - Jeanne D. Johansen
- Department of Dermatology and Allergy National Allergy Research Center Copenhagen University Hospital Gentofte Hellerup Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
| | - Charlotte M. Bonefeld
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
| |
Collapse
|