51
|
Activity of antimicrobial peptides and conventional antibiotics against superantigen positive Staphylococcus aureus isolated from patients with atopic dermatitis. Postepy Dermatol Alergol 2018; 35:74-82. [PMID: 29599675 PMCID: PMC5872235 DOI: 10.5114/ada.2018.62141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 01/31/2023] Open
Abstract
Introduction Staphylococcus aureus causes a diverse array of diseases, ranging from relatively harmless localized skin infections to life-threatening systemic conditions. It secretes toxins directly associated with particular disease symptoms. Aim To determine the prevalence of methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) colonization among patients with atopic dermatitis and to assess the antimicrobial susceptibility to conventional antibiotics and selected antimicrobial peptides among toxin-producing strains and nonproducing strains. Material and methods One hundred patients with atopic dermatitis and 50 healthy people were microbiologically assessed for the carriage of S. aureus. Antimicrobial susceptibility tests were performed using the broth microdilution method for conventional antibiotics and antimicrobial peptides (CAMEL, Citropin 1.1, LL-37, Temporin A). Detection of genes lukS/lukF-PV, tst, sea-sed, eta and etb by multiplex PCR was performed. Results Staphylococcus aureus strains were isolated from the majority of patients, from either the skin (75%) or the anterior nares (73%). Among the conventional antibiotics tested, the highest rates of resistance were observed for ampicillin, daptomycin, lincomycin and erythromycin. Antimicrobial peptides did not show significant diversity in activity. Among MSSA strains greater differentiation of secreted toxins was observed (sec, eta, pvl, tsst, etb, seb), while in the group of MRSA strains secretion of 3 toxins (pvl, eta, seb) was noted. Conclusions Antimicrobial resistance continues to evolve. It is important to monitor S. aureus infections. The profile of toxins produced by S. aureus strains is an important consideration in the selection of an antimicrobial agent to treat infections.
Collapse
|
52
|
Mittal P, Abblett R, Ryan JM, Hagymasi AT, Agyekum-Yamoah A, Svedova J, Reiner SL, St Rose MC, Hanley MP, Vella AT, Adler AJ. An Immunotherapeutic CD137 Agonist Releases Eomesodermin from ThPOK Repression in CD4 T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:1513-1526. [PMID: 29305435 DOI: 10.4049/jimmunol.1701039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/06/2017] [Indexed: 12/24/2022]
Abstract
Agonists to the TNF/TNFR costimulatory receptors CD134 (OX40) and CD137 (4-1BB) elicit antitumor immunity. Dual costimulation with anti-CD134 plus anti-CD137 is particularly potent because it programs cytotoxic potential in CD8+ and CD4+ T cells. Cytotoxicity in dual-costimulated CD4 T cells depends on the T-box transcription factor eomesodermin (Eomes), which we report is induced via a mechanism that does not rely on IL-2, in contrast to CD8+ CTL, but rather depends on the CD8 T cell lineage commitment transcription factor Runx3, which supports Eomes expression in mature CD8+ CTLs. Further, Eomes and Runx3 were indispensable for dual-costimulated CD4 T cells to mediate antitumor activity in an aggressive melanoma model. Runx3 is also known to be expressed in standard CD4 Th1 cells where it fosters IFN-γ expression; however, the CD4 T cell lineage commitment factor ThPOK represses transcription of Eomes and other CD8 lineage genes, such as Cd8a Hence, CD4 T cells can differentiate into Eomes+ cytotoxic CD4+CD8+ double-positive T cells by terminating ThPOK expression. In contrast, dual-costimulated CD4 T cells express Eomes, despite the continued expression of ThPOK and the absence of CD8α, indicating that Eomes is selectively released from ThPOK repression. Finally, although Eomes was induced by CD137 agonist, but not CD134 agonist, administered individually, CD137 agonist failed to induce CD134-/- CD4 T cells to express Eomes or Runx3, indicating that both costimulatory pathways are required for cytotoxic Th1 programming, even when only CD137 is intentionally engaged with a therapeutic agonist.
Collapse
Affiliation(s)
- Payal Mittal
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Rebecca Abblett
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Joseph M Ryan
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Adam T Hagymasi
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | | | - Julia Svedova
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Steven L Reiner
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and.,Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Marie-Clare St Rose
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Matthew P Hanley
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Anthony T Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Adam J Adler
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030;
| |
Collapse
|
53
|
Nataf S. Autoimmunity as a Driving Force of Cognitive Evolution. Front Neurosci 2017; 11:582. [PMID: 29123465 PMCID: PMC5662758 DOI: 10.3389/fnins.2017.00582] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
In the last decades, increasingly robust experimental approaches have formally demonstrated that autoimmunity is a physiological process involved in a large range of functions including cognition. On this basis, the recently enunciated “brain superautoantigens” theory proposes that autoimmunity has been a driving force of cognitive evolution. It is notably suggested that the immune and nervous systems have somehow co-evolved and exerted a mutual selection pressure benefiting to both systems. In this two-way process, the evolutionary-determined emergence of neurons expressing specific immunogenic antigens (brain superautoantigens) has exerted a selection pressure on immune genes shaping the T-cell repertoire. Such a selection pressure on immune genes has translated into the emergence of a finely tuned autoimmune T-cell repertoire that promotes cognition. In another hand, the evolutionary-determined emergence of brain-autoreactive T-cells has exerted a selection pressure on neural genes coding for brain superautoantigens. Such a selection pressure has translated into the emergence of a neural repertoire (defined here as the whole of neurons, synapses and non-neuronal cells involved in cognitive functions) expressing brain superautoantigens. Overall, the brain superautoantigens theory suggests that cognitive evolution might have been primarily driven by internal cues rather than external environmental conditions. Importantly, while providing a unique molecular connection between neural and T-cell repertoires under physiological conditions, brain superautoantigens may also constitute an Achilles heel responsible for the particular susceptibility of Homo sapiens to “neuroimmune co-pathologies” i.e., disorders affecting both neural and T-cell repertoires. These may notably include paraneoplastic syndromes, multiple sclerosis as well as autism, schizophrenia and neurodegenerative diseases. In the context of this theoretical frame, a specific emphasis is given here to the potential evolutionary role exerted by two families of genes, namely the MHC class II genes, involved in antigen presentation to T-cells, and the Foxp genes, which play crucial roles in language (Foxp2) and the regulation of autoimmunity (Foxp3).
Collapse
Affiliation(s)
- Serge Nataf
- CarMeN Laboratory, Bank of Tissues and Cells, Institut National de la Santé et de la Recherche Médicale 1060, INRA 1397, INSA Lyon, Lyon University Hospital (Hospices Civils de Lyon), Université Claude Bernard Lyon-1, Lyon, France
| |
Collapse
|
54
|
Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells. Proc Natl Acad Sci U S A 2017; 114:10226-10231. [PMID: 28794279 DOI: 10.1073/pnas.1700858114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The globally prominent pathogen Streptococcus pyogenes secretes potent immunomodulatory proteins known as superantigens (SAgs), which engage lateral surfaces of major histocompatibility class II molecules and T-cell receptor (TCR) β-chain variable domains (Vβs). These interactions result in the activation of numerous Vβ-specific T cells, which is the defining activity of a SAg. Although streptococcal SAgs are known virulence factors in scarlet fever and toxic shock syndrome, mechanisms by how SAgs contribute to the life cycle of S. pyogenes remain poorly understood. Herein, we demonstrate that passive immunization against the Vβ8-targeting SAg streptococcal pyrogenic exotoxin A (SpeA), or active immunization with either wild-type or a nonfunctional SpeA mutant, protects mice from nasopharyngeal infection; however, only passive immunization, or vaccination with inactive SpeA, resulted in high-titer SpeA-specific antibodies in vivo. Mice vaccinated with wild-type SpeA rendered Vβ8+ T cells poorly responsive, which prevented infection. This phenotype was reproduced with staphylococcal enterotoxin B, a heterologous SAg that also targets Vβ8+ T cells, and rendered mice resistant to infection. Furthermore, antibody-mediated depletion of T cells prevented nasopharyngeal infection by S. pyogenes, but not by Streptococcus pneumoniae, a bacterium that does not produce SAgs. Remarkably, these observations suggest that S. pyogenes uses SAgs to manipulate Vβ-specific T cells to establish nasopharyngeal infection.
Collapse
|
55
|
Hudson Reichenberg LC, Garg R, Fernalld R, Bost KL, Piller KJ. Systemic cytokine and chemokine responses in immunized mice challenged with staphylococcal enterotoxin B. Toxicon 2017; 133:82-90. [PMID: 28478060 PMCID: PMC5534135 DOI: 10.1016/j.toxicon.2017.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
The cytokine storm induced by staphylococcal enterotoxin B (SEB) describes the rapid and dramatic induction of mediators which are likely responsible for the toxin's deleterious effects. However despite the use of numerous animal models for investigating SEB related illness in humans, mechanisms of toxicity and correlates of protection remain unclear. In the present study, we used an LPS-potentiated model of SEB lethality to investigate the toxin-induced cytokine and chemokine responses in untreated and immunized mice. Of 30 separate mediators analyzed, serum levels for 28 or 27 of these cytokines and chemokines were elevated following administration of dosages of 3 or 30 LD50 of native SEB, respectively. Mice immunized with a non-toxic SEB vaccine candidate expressed in either E. coli or transgenic soy expression systems were protected from lethality when challenged with potentiated SEB. The majority of SEB-induced cytokines and chemokines (21 of 28 or 23 of 27 following challenge with dosages of 3 or 30 LD50 of native SEB, respectively) were significantly decreased in mice immunized with an SEB vaccine candidate when compared to control animals. Together, these studies provide the most comprehensive evaluation of the cytokine storm induced in this LPS-potentiated model of SEB lethality to date. As with other animal models, the identification of those mediators which are necessary and sufficient for SEB-induced toxicity remains unclear.
Collapse
Affiliation(s)
- Laura C Hudson Reichenberg
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; SoyMeds, Inc., Davidson, NC, USA.
| | - Renu Garg
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; SoyMeds, Inc., Davidson, NC, USA.
| | | | - Kenneth L Bost
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Kenneth J Piller
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; SoyMeds, Inc., Davidson, NC, USA
| |
Collapse
|
56
|
Chua WC, Mazlan MZ, Ali S, Che Omar S, Wan Hassan WMN, Seevaunnantum SP, Mohd Zaini RH, Hassan MH, Muhd Besari A, Abd Rahman Z, Salmuna Ayub ZN, Abd Ghani S, Yaacob N, Wan Rosli WR. Post-partum streptococcal toxic shock syndrome associated with necrotizing fasciitis. IDCases 2017; 9:91-94. [PMID: 28725564 PMCID: PMC5506869 DOI: 10.1016/j.idcr.2017.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 01/22/2023] Open
Abstract
We report a fatal case of post-partum streptococcal toxic shock syndrome in a patient who was previously healthy and had presented to the emergency department with an extensive blistering ecchymotic lesions over her right buttock and thigh associated with severe pain. The pregnancy had been uncomplicated, and the mode of delivery had been spontaneous vaginal delivery with an episiotomy. She was found to have septicemic shock requiring high inotropic support. Subsequently, she was treated for necrotizing fasciitis, complicated by septicemic shock and multiple organ failures. A consensus was reached for extensive wound debridement to remove the source of infection; however, this approach was abandoned due to the patient's hemodynamic instability and the extremely high risks of surgery. Both the high vaginal swab and blister fluid culture revealed Group A beta hemolytic streptococcus infection. Intravenous carbapenem in combination with clindamycin was given. Other strategies attempted for streptococcal toxic removal included continuous veno-venous hemofiltration and administration of intravenous immunoglobulin. Unfortunately, the patient's condition worsened, and she succumbed to death on day 7 of hospitalization.
Collapse
Affiliation(s)
- Wei Chuan Chua
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Mohd Zulfakar Mazlan
- Department of Anaesthesiology and Intensive Care, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Saedah Ali
- Department of Anaesthesiology and Intensive Care, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Sanihah Che Omar
- Department of Anaesthesiology and Intensive Care, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Wan Mohd Nazaruddin Wan Hassan
- Department of Anaesthesiology and Intensive Care, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - S Praveena Seevaunnantum
- Department of Anaesthesiology and Intensive Care, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Rhendra Hardy Mohd Zaini
- Department of Anaesthesiology and Intensive Care, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Mohd Hasyizan Hassan
- Department of Anaesthesiology and Intensive Care, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Alwi Muhd Besari
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Zaidah Abd Rahman
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Zeti Norfidiyati Salmuna Ayub
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Sabrina Abd Ghani
- Department of Orthopaedic, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Normalinda Yaacob
- Department of Emergency Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Wan Rosilawati Wan Rosli
- Department of Obstetrics & Gynaecology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
57
|
Xu J, Wu T, Sun Y, Wang B, Zhang J, Lee WYW, Chai Y, Li G. Staphylococcal enterotoxin C2 expedites bone consolidation in distraction osteogenesis. J Orthop Res 2017; 35:1215-1225. [PMID: 27431811 DOI: 10.1002/jor.23372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/18/2016] [Indexed: 02/04/2023]
Abstract
Distraction osteogenesis (DO) technique could be used to manage large-size bone defect successfully, but DO process usually requires long duration of bone consolidation. Innovative approaches for augmenting bone consolidation are of great need. Staphylococcal enterotoxin C2 (SEC2) has been found to suppress osteoclastogenesis of mesenchymal stem cells in vitro. In this study, we investigated the effect of SEC2 on proliferation and osteogenic differentiation of rat bone marrow derived mesenchymal stem cells (rBMSCs). Further, we locally administrated SEC2 (10 ng/ml) or PBS into the distraction gap in Sprague-Dawley male rat DO model every 3 days till termination at 3 and 6 weeks. The regenerates were subjected to X-rays, micro-computed tomography, mechanical testing, histology, and immunohischemistry examinations to assess new bone quality. SEC2 had no effect on cell viability. The calcium deposition was remarkably increased and osteogenic marker genes were significantly up-regulated in rBMSCs treated with SEC2. In rat DO model, SEC2 group had higher bone volume/total tissue volume in the regenerates. At 6 weeks, mechanical properties were significantly higher in SEC2-treated tibiae comparing to the control group. Histological analysis confirmed that the new bone had improved quality in SEC2 treated group, where the osteocalcin and osterix expression in the regenerates was up-regulated, indicating faster bone formation. The current study demonstrated that SEC2 local injection promotes osteogenesis and enhanced bone consolidation in DO. The findings support application of SEC2 as a potential novel strategy to expedite bone consolidation in patients undergoing DO treatment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1215-1225, 2017.
Collapse
Affiliation(s)
- Jia Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China.,Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Room 904, 9/F, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
| | - Tianyi Wu
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Room 904, 9/F, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
| | - Yuxin Sun
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Room 904, 9/F, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
| | - Bin Wang
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Room 904, 9/F, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
| | - Jinfang Zhang
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Room 904, 9/F, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China.,The CUHK-ACC Space Medicine Centre, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Room 904, 9/F, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
| | - Yimin Chai
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Room 904, 9/F, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China.,The CUHK-ACC Space Medicine Centre, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| |
Collapse
|
58
|
Reddy PN, Srirama K, Dirisala VR. An Update on Clinical Burden, Diagnostic Tools, and Therapeutic Options of Staphylococcus aureus. Infect Dis (Lond) 2017; 10:1179916117703999. [PMID: 28579798 PMCID: PMC5443039 DOI: 10.1177/1179916117703999] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/18/2017] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is an important pathogen responsible for a variety of diseases ranging from mild skin and soft tissue infections, food poisoning to highly serious diseases such as osteomyelitis, endocarditis, and toxic shock syndrome. Proper diagnosis of pathogen and virulence factors is important for providing timely intervention in the therapy. Owing to the invasive nature of infections and the limited treatment options due to rampant spread of antibiotic-resistant strains, the trend for development of vaccines and antibody therapy is increasing at rapid rate than development of new antibiotics. In this article, we have discussed elaborately about the host-pathogen interactions, clinical burden due to S aureus infections, status of diagnostic tools, and treatment options in terms of prophylaxis and therapy.
Collapse
|
59
|
Staphylococcus enterotoxin profile of China isolates and the superantigenicity of some novel enterotoxins. Arch Microbiol 2017; 199:723-736. [PMID: 28235987 DOI: 10.1007/s00203-017-1345-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 12/28/2016] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
The genus of staphylococcus widely distributes in environments and contributes to a variety of animal and human diseases. The enterotoxins (SEs) secreted by this type of pathogen have been the leading cause of bacterial toxic shock syndrome and food poisoning, and thus present a substantial concern to public health. In this study, we analyzed the superantigen profile of 122 staphylococcus strains isolated from diverse sources. When screened for the presence and prevalence of 17 known se or se-like (sel) genes, except selj, all other genes were detected in these isolates. In particular, 95.9% of the isolates harbored at least one se/sel gene. Moreover, 47.5% of them bore at least 5. Remarkably, several non-pathogenic species of animal- and environment-origin were also found to carry multiple se/sels. The most frequent genes detected were tsst (62.3%), sei (54.1%), and seb (46.7%), followed by some sel genes (selo, selu, and selm), which also were present at relatively high frequency (20-30%). The generated data improved understanding of strain-specific differences in enterotoxin expression. The gene products of the latter (selo and selu) were subsequently analyzed for their antigenicity in a mouse model using purified E. coli-based recombinant proteins. The studies revealed a strong activity for SEO in induction of T-lymphocyte proliferation and production of various inflammatory cytokines either in vivo or in vitro. In contrast, SEU exhibited little superantigenic effects. The molecular basis for the difference in antigenicity was analyzed by 3D homology remodeling, which revealed a difference in binding and affinities for MHC-II molecules and TCR Vβ region.
Collapse
|
60
|
Stevens DL, Aldape MJ, Bryant AE. Necrotizing Fasciitis, Gas Gangrene, Myositis and Myonecrosis. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
61
|
Doxorubicin enhances the capacity of B cells to activate T cells in urothelial urinary bladder cancer. Clin Immunol 2016; 176:63-70. [PMID: 28025135 DOI: 10.1016/j.clim.2016.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/02/2023]
Abstract
Cancer is currently treated by a combination of therapies, including chemotherapy which is believed to suppress the immune system. Combination of immunotherapy and chemotherapy correlates with improved survival but needs careful planning in order to achieve a synergistic effect. In this study, we have demonstrated that doxorubicin treatment of B cells resulted in increased expression of CD86 and concordantly increased CD4+ T cell activation in the presence of superantigen, an effect that was inhibited by the addition of a CD86 blocking antibody. Furthermore, doxorubicin resulted in decreased expression of the anti-inflammatory cytokines IL-10 and TNF-α. Finally, B cells from urinary bladder cancer patients, treated with a neoadjuvant regiment containing doxorubicin, displayed increased CD86-expression. We conclude that doxorubicin induces CD86 expression on B cells and hence enhances their antigen-presenting ability in vitro, a finding verified in patients. Development of tailored time and dose schedules may increase the effectiveness of combining chemotherapy and immunotherapy.
Collapse
|
62
|
Temporal and Racial Differences Associated with Atopic Dermatitis Staphylococcusaureus and Encoded Virulence Factors. mSphere 2016; 1:mSphere00295-16. [PMID: 27981233 PMCID: PMC5143412 DOI: 10.1128/msphere.00295-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/18/2016] [Indexed: 11/25/2022] Open
Abstract
Monitoring pathogen emergence provides insight into how pathogens adapt in the human population. Secreted virulence factors, important contributors to infections, may differ in a manner dependent on the strain and host. Temporal changes of Staphylococcus aureus toxigenic potential, for example, in encoding toxic shock syndrome toxin 1 (TSST-1), contributed to an epidemic of TSS with significant health impact. This study monitored changes in atopic dermatitis (AD) S. aureus isolates and demonstrated both temporal and host infection differences according to host race based on secreted superantigen potential. The current temporal increase in enterotoxin gene cluster superantigen prevalence and lack of the gene encoding TSST-1 in AAs predict differences in infection types and presentations. Atopic dermatitis (AD) is an inflammatory skin condition strongly associated with Staphylococcus aureus colonization and infection. S. aureus strains shift in populations in ~10-year intervals depending on virulence factors. Shifts in S. aureus virulence factors may in part explain the racial differences observed in the levels of prevalence and severity of AD. AD S. aureus isolates collected from 2011 to 2014 (103 isolates) and in 2008 (100 isolates) were examined for the prevalence of genes encoding superantigens (SAgs). The strains from 2011 to 2014 were obtained from AD patients as a part of the National Institute of Allergy and Infectious Diseases (NIAID) Atopic Dermatitis Research Network (ADRN). The prevalence of SAg genes was investigated temporally and racially. The enterotoxin gene cluster (EGC) was more prevalent in the 2011–2014 AD isolates than in the 2008 AD isolates. The prevalences of virulence factor genes were similar in European American (EA) and Mexican American (MA) patients but differed in 6 of 22 SAg genes between EA and African American (AA) or MA and AA isolates; notably, AA isolates lacked tstH, the gene encoding toxic shock syndrome toxin 1 (TSST-1). The presence of tstH and sel-p (enterotoxin-like P) was associated with decreased clinical severity and increased blood eosinophils, respectively. The EGC is becoming more prevalent, consistent with the previously observed 10 years of cycling of S. aureus strains. Race-specific S. aureus selection may account for differences in virulence factor profiles. The lack of TSST-1-positive (TSST-1+) AD S. aureus in AA is consistent with the lack of AAs acquiring TSST-1-associated menstrual toxic shock syndrome (TSS). IMPORTANCE Monitoring pathogen emergence provides insight into how pathogens adapt in the human population. Secreted virulence factors, important contributors to infections, may differ in a manner dependent on the strain and host. Temporal changes of Staphylococcus aureus toxigenic potential, for example, in encoding toxic shock syndrome toxin 1 (TSST-1), contributed to an epidemic of TSS with significant health impact. This study monitored changes in atopic dermatitis (AD) S. aureus isolates and demonstrated both temporal and host infection differences according to host race based on secreted superantigen potential. The current temporal increase in enterotoxin gene cluster superantigen prevalence and lack of the gene encoding TSST-1 in AAs predict differences in infection types and presentations.
Collapse
|
63
|
Biological toxins of potential bioterrorism risk: Current status of detection and identification technology. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
64
|
van Gessel YA, Mani S, Bi S, Hammamieh R, Shupp JW, Das R, Coleman GD, Jett M. Functional Piglet Model for the Clinical Syndrome and Postmortem Findings Induced by Staphylococcal Enterotoxin B. Exp Biol Med (Maywood) 2016; 229:1061-71. [PMID: 15522843 DOI: 10.1177/153537020422901011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Staphylococcal enterotoxin (SE) B causes serious gastrointestinal illness, and intoxication with this exotoxin can lead to lethal toxic shock syndrome. In order to overcome significant shortcomings of current rodent and nonhuman primate models, we developed a piglet model of lethal SEB intoxication. Fourteen-day-old Yorkshire piglets were given intravenous SEB, observed clinically, and sacrificed at 4, 6, 24, 48, 72, or 96 hrs posttreatment. Clinical signs were biphasic with pyrexia, vomiting, and diarrhea within 4 hrs, followed by terminal hypotension and shock by 96 hrs. Mild lymphoid lesions were identified as early as 24 hrs, with severe lymphadenopathy, splenomegaly, and prominent Peyer's patches found by 72 hrs. Widespread edema—most prominent in the mesentery, between loops of spiral colon, and in retroperitoneal connective tissue—was found in animals at 72 hrs. Additional histologic changes included perivascular aggregates of large lymphocytes variably present in the lung and brain, circulating lymphoblasts, and lymphocytic portal hepatitis. Preliminary molecular investigation using gene array has uncovered several gene profile changes that may have implications in the pathophysiology leading to irreversible shock. Five genes were selected for further study, and all showed increased mRNA levels subsequent to SEB exposure. The use of this piglet model will continue to elucidate the pathogenesis of SEB intoxication and facilitate the testing of new therapeutic regimens that may better correlate with human lesions.
Collapse
Affiliation(s)
- Yvonne A van Gessel
- Division of Pathology, Department of Molecular Pathology, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Torres BA, Kominsky S, Perrin GQ, Hobeika AC, Johnson HM. Superantigens: The Good, the Bad, and the Ugly. Exp Biol Med (Maywood) 2016; 226:164-76. [PMID: 11361034 DOI: 10.1177/153537020122600303] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Increasing evidence suggests that superantigens play a role in Immune-mediated diseases. Superantigens are potent activators of CD4* T cells, causing rapid and massive proliferation of cells and cytokine production. This characteristic of superantigens can be exploited in diseases where strong immunologic responses are required, such as in the B16F10 animal model of melanoma. Superantigen administration is able to significantly enhance Ineffective anti-tumor Immune responses, resulting in potent and long-lived protective anti-tumor immunity. However, superantigens are more well-known for the role they play in diseases. Studies using an animal model for neurologic demy-elinatlng diseases such as multiple sclerosis show that superantigens can induce severe relapses and activate auto-reactive T cells not involved in the Initial bout of disease. This may also involve epitope spreading of disease. Superantigens have also been implicated in acute diseases such as food poisoning and TSS, and in chronic diseases such as psoriasis and rheumatoid arthritis. Viral superantigens are also involved in the disease process, including superantigens derived from human Immunodeficiency virus and mouse mammary tumor virus. Finally, immunotherapies that ameliorate the role played by superantigens in disease are discussed.
Collapse
Affiliation(s)
- B A Torres
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, USA
| | | | | | | | | |
Collapse
|
66
|
Yasuda S, Nagaki M, Moriwaki H. Staphylococcal enterotoxin B induces hepatic injury and lethal shock in endotoxin-resistant C3H/HeJ mice despite a deficient macrophage response. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519020080040201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacterial toxins, including endotoxin/LPS as well as superantigens, are major causative agents of multi-organ failure associated with sepsis and liver disease. However, the precise mechanisms initiating cell activation by the toxins have not been clarified. We compared lethal shock and cytokine production in response to LPS with responses to the superantigen staphylococcal enterotoxin B (SEB) in both LPS-responsive C3H/HeN mice and LPS-hyporesponsive C3H/HeJ mice treated with D-galactosamine (GalN). LPS was not lethal and did not induce production of TNF-α in C3H/HeJ mice. In contrast, SEB produced lethal shock associated with liver failure and induced cytokines such as TNF-α, IFN-γ, and IL-2 in both C3H/HeN and C3H/HeJ mice. Peritoneal macrophages from C3H/HeJ mice did not produce TNF-α in vitro in response to SEB or LPS. However, no significant difference was observed in production of TNF-α in response to stimulation in vitro by SEB between C3H/HeN and C3H/HeJ splenic lymphocytes. We have demonstrated that SEB causes lethal toxicity associated with liver injury in LPS-hyporesponsive C3H/HeJ mice and that as the underlying mechanism, the normal T-cell function in these mice still maintained the sensitivity to SEB since the genetic defect of C3H/HeJ mice unresponsive to LPS and SEB is restricted in macrophages/monocytes and does not extend to T cells.
Collapse
Affiliation(s)
- Shigeo Yasuda
- First Department of Internal Medicine, Gifu University School of Medicine, Gifu, Japan
| | - Masahito Nagaki
- First Department of Internal Medicine, Gifu University School of Medicine, Gifu, Japan, -u.ac.jp
| | - Hisataka Moriwaki
- First Department of Internal Medicine, Gifu University School of Medicine, Gifu, Japan
| |
Collapse
|
67
|
Abstract
Superantigens trigger polyclonal activation of T lymphocytes with cytokine release that eventually may lead to lethal cytokine syndrome (toxic shock). In contrast, bacterial components that are recognized by Toll-like receptors ( e.g. LPS or CpG DNA) primarily target macrophages and dendritic cells. We have analyzed whether superantigens and TLR ligands interact with each other. We found that superantigens synergize with LPS in an IFN-γ-dependent pathway. More important, we found compelling evidence that superantigens prime the innate immune cell system to a subsequent challenge with endotoxin. This sensitization was critically dependent on T-cell derived IFN-γ. When we analyzed the underlying molecular mechanisms, we additionally found that TLR stimulation enhanced IFN-γ-mediated cellular responses. Moreover, TLR ligands induced proteins of the SOCS family thus shutting off IFN-γ-mediated cellular activation. Since IFN-γ is synthesized by T cells after superantigen triggering, these results show that superantigen and TLR pathways are interconnected and regulate each other. They further show that the outcome of this interaction may include activation as well as down-regulation of the respective response pattern.
Collapse
Affiliation(s)
- Alexander H. Dalpke
- Institute of Medical Microbiology and Hygiene, University of Marburg, Marburg, Germany
| | - Klaus Heeg
- Institute of Medical Microbiology and Hygiene, University of Marburg, Marburg, Germany, -marburg.de
| |
Collapse
|
68
|
Johansson MA, Björkander S, Mata Forsberg M, Qazi KR, Salvany Celades M, Bittmann J, Eberl M, Sverremark-Ekström E. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK Cells. Front Immunol 2016; 7:273. [PMID: 27462316 PMCID: PMC4939411 DOI: 10.3389/fimmu.2016.00273] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022] Open
Abstract
Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulatory in vitro. In contrast, Staphylococcus aureus (S. aureus) is known to induce excessive T cell activation. In this study, we aimed to investigate S. aureus-induced activation of human mucosal-associated invariant T cells (MAIT cells), γδ T cells, NK cells, as well as of conventional CD4+ and CD8+ T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation. PBMC were cultured with S. aureus 161:2 cell-free supernatants (CFS), staphylococcal enterotoxin A or CD3/CD28-beads alone, or in combination with Lactobacillus rhamnosus GG-CFS or Lactobacillus reuteri DSM 17938-CFS and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Costimulation with lactobacilli-CFS dampened lymphocyte-activation in all cell types analyzed. Preincubation with lactobacilli-CFS was enough to reduce subsequent activation, and the absence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Finally, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune-modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in the modulation of induced T and NK cell activation.
Collapse
Affiliation(s)
- Maria A Johansson
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Sophia Björkander
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Manuel Mata Forsberg
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Khaleda Rahman Qazi
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Maria Salvany Celades
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Julia Bittmann
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Eva Sverremark-Ekström
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
69
|
Soo Yean CY, Selva Raju K, Xavier R, Subramaniam S, Gopinath SCB, Chinni SV. Molecular Detection of Methicillin-Resistant Staphylococcus aureus by Non-Protein Coding RNA-Mediated Monoplex Polymerase Chain Reaction. PLoS One 2016; 11:e0158736. [PMID: 27367909 PMCID: PMC4930178 DOI: 10.1371/journal.pone.0158736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/21/2016] [Indexed: 12/20/2022] Open
Abstract
Non-protein coding RNA (npcRNA) is a functional RNA molecule that is not translated into a protein. Bacterial npcRNAs are structurally diversified molecules, typically 50-200 nucleotides in length. They play a crucial physiological role in cellular networking, including stress responses, replication and bacterial virulence. In this study, by using an identified npcRNA gene (Sau-02) in Methicillin-resistant Staphylococcus aureus (MRSA), we identified the Gram-positive bacteria S. aureus. A Sau-02-mediated monoplex Polymerase Chain Reaction (PCR) assay was designed that displayed high sensitivity and specificity. Fourteen different bacteria and 18 S. aureus strains were tested, and the results showed that the Sau-02 gene is specific to S. aureus. The detection limit was tested against genomic DNA from MRSA and was found to be ~10 genome copies. Further, the detection was extended to whole-cell MRSA detection, and we reached the detection limit with two bacteria. The monoplex PCR assay demonstrated in this study is a novel detection method that can replicate other npcRNA-mediated detection assays.
Collapse
Affiliation(s)
- Cheryl Yeap Soo Yean
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Malaysia
| | - Kishanraj Selva Raju
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Malaysia
| | - Rathinam Xavier
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Malaysia
| | | | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis, Malaysia
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Suresh V. Chinni
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Malaysia
- * E-mail:
| |
Collapse
|
70
|
Wu S, Duan N, Gu H, Hao L, Ye H, Gong W, Wang Z. A Review of the Methods for Detection of Staphylococcus aureus Enterotoxins. Toxins (Basel) 2016; 8:E176. [PMID: 27348003 PMCID: PMC4963824 DOI: 10.3390/toxins8070176] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/30/2016] [Indexed: 01/08/2023] Open
Abstract
Food safety has attracted extensive attention around the world, and food-borne diseases have become one of the major threats to health. Staphylococcus aureus is a major food-borne pathogen worldwide and a frequent contaminant of foodstuffs. Staphylococcal enterotoxins (SEs) produced by some S. aureus strains will lead to staphylococcal food poisoning (SFP) outbreaks. The most common symptoms caused by ingestion of SEs within food are nausea, vomiting, diarrhea and cramps. Children will suffer SFP by ingesting as little as 100 ng of SEs, and only a few micrograms of SEs are enough to cause SPF in vulnerable populations. Therefore, it is a great challenge and of urgent need to detect and identify SEs rapidly and accurately for governmental and non-governmental agencies, including the military, public health departments, and health care facilities. Herein, an overview of SE detection has been provided through a comprehensive literature survey.
Collapse
Affiliation(s)
- Shijia Wu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Huajie Gu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Liling Hao
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hua Ye
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wenhui Gong
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
71
|
Ahanotu E, Alvelo-Ceron D, Ravita T, Gaunt E. Staphylococcal Enterotoxin B as a Biological Weapon: Recognition, Management, and Surveillance of Staphylococcal Enterotoxin. APPLIED BIOSAFETY 2016. [DOI: 10.1177/153567600601100303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Ed Gaunt
- Constella Health Sciences, Atlanta, Georgia
| |
Collapse
|
72
|
Nagaraj S, Ramlal S, Venkataswamachari BP, Paul S, Kingston J, Batra HV. Differentiation of entC1 from entC2/entC3 with a single primer pair using simple and rapid SYBR Green-based RT-PCR melt curve analysis. Appl Microbiol Biotechnol 2016; 100:8495-506. [PMID: 27245675 DOI: 10.1007/s00253-016-7637-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/09/2016] [Accepted: 05/15/2016] [Indexed: 12/11/2022]
Abstract
In spite of their involvement in foodborne illness, the epidemiological relevance of staphylococcal enterotoxin C (SEC) subtypes is poorly documented may be due to high sequence similarity. Among subtypes, SEC1, SEC2, and SEC3 exhibit more than 97 % homology because of which specific detection tools are seldom available to identify and differentiate them. In this study, a SYBR Green-based RT-PCR followed by melt curve analysis was developed for differentiation of entC1 from entC2/entC3 using a single primer pair. Nucleotide sequences of all three subtypes were analyzed using Clustal Omega program and the region with significant sequence variation/heterogeneity (where utmost SNPs were closely located and accessible for RT-PCR) was selected for amplification by designing a single primer pair that could amplify all three subtypes. In spite of same amplicon size, entC1 showed distinct melt peak at 76 °C. However, due to high similarity between entC2 and entC3, the developed format was deficient to discriminate between them and both showed melt peak at 82 °C. Reliability of developed RT-PCR was evaluated using various naturally contaminated samples and 91 food and clinical Staphylococcus aureus isolates where satisfactory results were obtained in comparison with commercial immunoassay kit and conventional PCRs using validated primers. To the best of our knowledge, this is the first method being reported to differentiate entC1 from entC2/entC3 using single primer pair which is unachievable by conventional PCR due to same amplicon size. As benefits, the method is sensitive, rapid, and inexpensive with no requirement of fluorescent probes, multiple primers, and post-PCR procedures. Thus, the assay might find its utility as a detection tool in epidemiological survey of foodborne outbreaks for simultaneous identification and differentiation of entC1 from entC2/entC3.
Collapse
Affiliation(s)
- Sowmya Nagaraj
- Microbiology Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, 570011, India
| | - Shylaja Ramlal
- Microbiology Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, 570011, India.
| | | | - Soumya Paul
- Microbiology Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, 570011, India
| | - Joseph Kingston
- Microbiology Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, 570011, India
| | - Harsh Vardhan Batra
- Microbiology Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, 570011, India
| |
Collapse
|
73
|
Two common structural motifs for TCR recognition by staphylococcal enterotoxins. Sci Rep 2016; 6:25796. [PMID: 27180909 PMCID: PMC4867771 DOI: 10.1038/srep25796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 12/29/2022] Open
Abstract
Superantigens are toxins produced by Staphylococcus aureus, called staphylococcal enterotoxins (abbreviated SEA to SEU). They can cross-link the T cell receptor (TCR) and major histocompatibility complex class II, triggering a massive T cell activation and hence disease. Due to high stability and toxicity, superantigens are potential agents of bioterrorism. Hence, antagonists may not only be useful in the treatment of disease but also serve as countermeasures to biological warfare. Of particular interest are inhibitors against SEA and SEB. SEA is the main cause of food poisoning, while SEB is a common toxin manufactured as a biological weapon. Here, we present the crystal structures of SEA in complex with TCR and SEE in complex with the same TCR, complemented with computational alanine-scanning mutagenesis of SEA, SEB, SEC3, SEE, and SEH. We have identified two common areas that contribute to the general TCR binding for these superantigens. This paves the way for design of single antagonists directed towards multiple toxins.
Collapse
|
74
|
Gogoi-Tiwari J, Waryah CB, Eto KY, Tau M, Wells K, Costantino P, Tiwari HK, Isloor S, Hegde N, Mukkur T. Relative distribution of virulence-associated factors among Australian bovine Staphylococcus aureus isolates: Potential relevance to development of an effective bovine mastitis vaccine. Virulence 2016; 6:419-23. [PMID: 26103596 DOI: 10.1080/21505594.2015.1043508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jully Gogoi-Tiwari
- a School of Biomedical Sciences; Faculty of Health Sciences; Curtin Health Innovation Research Institute; CHIRI Biosciences Research Precinct; Curtin University ; Perth , Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Hodille E, Alekseeva L, Berkova N, Serrier A, Badiou C, Gilquin B, Brun V, Vandenesch F, Terman DS, Lina G. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity. Front Microbiol 2016; 7:441. [PMID: 27148168 PMCID: PMC4832122 DOI: 10.3389/fmicb.2016.00441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/18/2016] [Indexed: 11/13/2022] Open
Abstract
Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO's potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy.
Collapse
Affiliation(s)
- Elisabeth Hodille
- International Center for Infectiology ResearchLyon, France; CNRS UMR5308, Inserm U1111, Ecole Normale Supérieure de Lyon - Université Lyon 1Lyon, France; Institut des Agents Infectieux, Hospices Civils de LyonLyon, France
| | - Ludmila Alekseeva
- UMR1253 STLO, Agrocampus Ouest, Institut National de la Recherche AgronomiqueRennes, France; Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscow, Russia
| | - Nadia Berkova
- UMR1253 STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique Rennes, France
| | - Asma Serrier
- International Center for Infectiology ResearchLyon, France; CNRS UMR5308, Inserm U1111, Ecole Normale Supérieure de Lyon - Université Lyon 1Lyon, France
| | - Cedric Badiou
- International Center for Infectiology ResearchLyon, France; CNRS UMR5308, Inserm U1111, Ecole Normale Supérieure de Lyon - Université Lyon 1Lyon, France
| | - Benoit Gilquin
- iRTSV-BGE, Université Grenoble AlpesGrenoble, France; CEA, iRTSV-BGEGrenoble, France; Biologie à Grande Echelle, Institut National de la Santé et de la Recherche MédicaleGrenoble, France
| | - Virginie Brun
- iRTSV-BGE, Université Grenoble AlpesGrenoble, France; CEA, iRTSV-BGEGrenoble, France; Biologie à Grande Echelle, Institut National de la Santé et de la Recherche MédicaleGrenoble, France
| | - François Vandenesch
- International Center for Infectiology ResearchLyon, France; CNRS UMR5308, Inserm U1111, Ecole Normale Supérieure de Lyon - Université Lyon 1Lyon, France; Institut des Agents Infectieux, Hospices Civils de LyonLyon, France
| | | | - Gerard Lina
- International Center for Infectiology ResearchLyon, France; CNRS UMR5308, Inserm U1111, Ecole Normale Supérieure de Lyon - Université Lyon 1Lyon, France; Institut des Agents Infectieux, Hospices Civils de LyonLyon, France
| |
Collapse
|
76
|
Björkander S, Hell L, Johansson MA, Forsberg MM, Lasaviciute G, Roos S, Holmlund U, Sverremark-Ekström E. Staphylococcus aureus-derived factors induce IL-10, IFN-γ and IL-17A-expressing FOXP3+CD161+ T-helper cells in a partly monocyte-dependent manner. Sci Rep 2016; 6:22083. [PMID: 26917055 PMCID: PMC4768154 DOI: 10.1038/srep22083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/05/2016] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a human pathogen as well as a frequent colonizer of skin and mucosa. This bacterium potently activates conventional T-cells through superantigens and it is suggested to induce T-cell cytokine-production as well as to promote a regulatory phenotype in T-cells in order to avoid clearance. This study aimed to investigate how S. aureus impacts the production of regulatory and pro-inflammatory cytokines and the expression of CD161 and HELIOS by peripheral CD4(+)FOXP3(+) T-cells. Stimulation of PBMC with S. aureus 161:2-cell free supernatant (CFS) induced expression of IL-10, IFN-γ and IL-17A in FOXP3(+) cells. Further, CD161 and HELIOS separated the FOXP3(+) cells into four distinct populations regarding cytokine-expression. Monocyte-depletion decreased S. aureus 161:2-induced activation of FOXP3(+) cells while pre-stimulation of purified monocytes with S. aureus 161:2-CFS and subsequent co-culture with autologous monocyte-depleted PBMC was sufficient to mediate activation of FOXP3(+) cells. Together, these data show that S. aureus potently induces FOXP3(+) cells and promotes a diverse phenotype with expression of regulatory and pro-inflammatory cytokines connected to increased CD161-expression. This could indicate potent regulation or a contribution of FOXP3(+) cells to inflammation and repression of immune-suppression upon encounter with S. aureus.
Collapse
Affiliation(s)
- Sophia Björkander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lena Hell
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Maria A Johansson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Manuel Mata Forsberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Gintare Lasaviciute
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Stefan Roos
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ulrika Holmlund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
77
|
Parker D, Ahn D, Cohen T, Prince A. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev 2016; 96:19-53. [PMID: 26582515 DOI: 10.1152/physrev.00009.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation.
Collapse
Affiliation(s)
- Dane Parker
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Danielle Ahn
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Taylor Cohen
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Alice Prince
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| |
Collapse
|
78
|
Abstract
Staphylococcus aureus is a highly significant cause of serious human infections in the USA. Many of these illnesses are mediated by interactions between the host immune system and staphylococcal superantigens (SAgs). Several of these severe staphylococcal infections are initiated in the lungs, making this an important site to study. Here, we describe the rabbit model for investigating the role of staphylococcal SAgs in pulmonary-associated lethal infection and intoxication.
Collapse
|
79
|
Stach CS, Schlievert PM. Lipopolysaccharide-Induced Toxic Shock Syndrome in Rabbits. Methods Mol Biol 2016; 1396:67-71. [PMID: 26676037 DOI: 10.1007/978-1-4939-3344-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Enhancement of susceptibility to lipopolysaccharide (LPS; endotoxin) is a defining characteristic of Staphylococcus aureus superantigens. At the time of this publication, there are 24 identified staphylococcal superantigens (SAgs), some of which have yet to be fully characterized. Testing the capacity of superantigens to potentiate LPS sensitivity is essential to characterize the role of these proteins in disease development. Here we describe how to perform studies of the enhancement of LPS-induced toxic shock syndrome in rabbits. This protocol also provides information on a second important activity of superantigens: the production of fever.
Collapse
Affiliation(s)
- Christopher S Stach
- Department of Microbiology, University of Iowa, 51 Newton Road, Bowen Science Building 3-403, Iowa City, IA, 52242, USA
| | - Patrick M Schlievert
- Department of Microbiology, University of Iowa, 51 Newton Road, Bowen Science Building 3-403, Iowa City, IA, 52242, USA.
| |
Collapse
|
80
|
Kawamoto Y, Ueno Y, Nakahashi E, Obayashi M, Sugihara K, Qiao S, Iida M, Kumasaka MY, Yajima I, Goto Y, Ohgami N, Kato M, Takeda K. Prevention of allergic rhinitis by ginger and the molecular basis of immunosuppression by 6-gingerol through T cell inactivation. J Nutr Biochem 2016; 27:112-22. [PMID: 26403321 DOI: 10.1016/j.jnutbio.2015.08.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 11/22/2022]
Abstract
The incidence of allergies has recently been increasing worldwide. Immunoglobulin E (IgE)-mediated hypersensitivity is central to the pathogenesis of asthma, hay fever and other allergic diseases. Ginger (Zingiber officinale Roscoe) and its extracts have been valued for their medical properties including antinausea, antiinflammation, antipyresis and analgesia properties. In this study, we investigated the antiallergic effects of ginger and 6-gingerol, a major compound of ginger, using a mouse allergy model and primary/cell line culture system. In mice with ovalbumin (OVA)-induced allergic rhinitis, oral administration of 2% ginger diet reduced the severity of sneezing and nasal rubbing by nasal sensitization of OVA and suppressed infiltration of mast cells in nasal mucosa and secretion of OVA-specific IgE in serum. 6-Gingerol inhibited the expression of not only Th2 cytokines but also Th1 cytokines in OVA-sensitized spleen cells. Accordingly, 6-gingerol suppressed in vitro differentiation of both Th1 cells and Th2 cells from naïve T cells. In addition, 6-gingerol suppressed both superantigen staphylococcal enterotoxin B (SEB)- and anti-CD3-induced T cell proliferation. 6-Gingerol also abrogated PMA plus ionomycin- and SEB-induced IL-2 production in T cells, suggesting that 6-gingerol affected T cell receptor-mediated signal transduction rather than the antigen-presentation process. Indeed, 6-gingerol inhibited the phosphorylation of MAP kinases, calcium release and nuclear localization of c-fos and NF-κB by PMA and ionomycin stimulation. Thus, our results demonstrate that 6-gingerol suppresses cytokine production for T cell activation and proliferation, thereby not causing B cell and mast cell activation and resulting in prevention or alleviation of allergic rhinitis symptoms.
Collapse
Affiliation(s)
- Yoshiyuki Kawamoto
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan.
| | - Yuki Ueno
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Emiko Nakahashi
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Momoko Obayashi
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Kento Sugihara
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Shanlou Qiao
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Machiko Iida
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayuko Y Kumasaka
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ichiro Yajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Goto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozue Takeda
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
81
|
Bost KL, Piller KJ, Odle J, Stahl CH. A Sublethal Swine Model for Defining In Vivo Superantigen-Induced Responses Following Exposure to Staphylococcal Enterotoxin B. Methods Mol Biol 2016; 1396:115-124. [PMID: 26676042 DOI: 10.1007/978-1-4939-3344-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In vivo responses to bacterially derived superantigen-like toxins have been difficult to define due to the inherent limitations with rodent models and the relevance that the results obtained from such models may, or may not, have for human pathophysiology. Further the use of challenge doses of superantigen toxins that are lethal or supra-lethal complicates analogies to human exposures which are rarely fatal. Here, we utilize the superantigen, staphylococcal enterotoxin B, at doses that are sublethal in a swine model of toxin-induced incapacitation. Relevant dosing using an animal species for which this toxin is a true superantigen distinguishes this model.
Collapse
Affiliation(s)
- Kenneth L Bost
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Kenneth J Piller
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Jack Odle
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Chad H Stahl
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
82
|
Jauregui JJ, Bor N, Thakral R, Standard SC, Paley D, Herzenberg JE. Life- and limb-threatening infections following the use of an external fixator. Bone Joint J 2015; 97-B:1296-300. [PMID: 26330600 DOI: 10.1302/0301-620x.97b9.35626] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
External fixation is widely used in orthopaedic and trauma surgery. Infections around pin or wire sites, which are usually localised, non-invasive, and are easily managed, are common. Occasionally, more serious invasive complications such as necrotising fasciitis (NF) and toxic shock syndrome (TSS) may occur. We retrospectively reviewed all patients who underwent external fixation between 1997 and 2012 in our limb lengthening and reconstruction programme. A total of eight patients (seven female and one male) with a mean age of 20 years (5 to 45) in which pin/wire track infections became limb- or life-threatening were identified. Of these, four were due to TSS and four to NF. Their management is described. A satisfactory outcome was obtained with early diagnosis and aggressive medical and surgical treatment. Clinicians caring for patients who have external fixation and in whom infection has developed should be aware of the possibility of these more serious complications. Early diagnosis and aggressive treatment are required in order to obtain a satisfactory outcome.
Collapse
Affiliation(s)
- J J Jauregui
- Sinai Hospital of Baltimore, Baltimore, Maryland, USA
| | - N Bor
- Emek Medical Center, Afula, Israel
| | - R Thakral
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - S C Standard
- Sinai Hospital of Baltimore, Baltimore, Maryland, USA
| | - D Paley
- Paley Advanced Limb Lengthening Institute, West Palm Beach, Florida, USA
| | | |
Collapse
|
83
|
Stach CS, Vu BG, Schlievert PM. Determining the Presence of Superantigens in Coagulase Negative Staphylococci from Humans. PLoS One 2015; 10:e0143341. [PMID: 26599862 PMCID: PMC4658126 DOI: 10.1371/journal.pone.0143341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/03/2015] [Indexed: 01/23/2023] Open
Abstract
Superantigens (SAgs) are important virulence factors in S. aureus. Recent studies identified their presence in animal coagulase-negative staphylococci (CNS). The emergence of human-associated SAg+ CNS would mark a prodigious shift in virulence capabilities. We examined CNS isolates from healthy human nares and diseased individuals, and determined that no known SAgs were present.
Collapse
Affiliation(s)
- Christopher S. Stach
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Bao G. Vu
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
84
|
Sallam KI, Abd-Elghany SM, Elhadidy M, Tamura T. Molecular Characterization and Antimicrobial Resistance Profile of Methicillin-Resistant Staphylococcus aureus in Retail Chicken. J Food Prot 2015; 78:1879-84. [PMID: 26408138 DOI: 10.4315/0362-028x.jfp-15-150] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The emergence of livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) in food-producing animals is of increasing interest, raising questions about the presence of MRSA in food of animal origin and potential sources of transmission to humans via the food chain. In this study, the prevalence, molecular characterization, virulence factors, and antimicrobial susceptibility patterns of MRSA isolates from 200 retail raw chicken samples in Egypt were determined. MRSA was detected by positive amplification of the mecA gene in 38% (76 of 200) of chicken samples analyzed. This represents a potential public health threat in Egypt, as this contamination rate seems to be the highest among other studies reported worldwide. Furthermore, genes encoding α-hemolysin (hla) and staphylococcal enterotoxins (sea, seb, and sec) were detected in all of the 288 MRSA isolates. Nonetheless, none of the strains tested carried tst, the gene encoding toxic shock syndrome toxin 1. Antimicrobial resistance of MRSA isolates was most frequently detected against penicillin (93.4%), ampicillin (88.9%), and cloxacillin (83.3%). These results suggest that retail chicken might be a significant potential source for transmission of multidrug-resistant and toxigenic S. aureus in Egypt. This underlines the need for stricter hygienic measures in chicken production in Egypt to minimize the risk of transmission of these strains to consumers. To the best of our knowledge, this is the first study that reports the isolation and molecular characterization of MRSA in retail chicken samples in Egypt.
Collapse
Affiliation(s)
- Khalid Ibrahim Sallam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Samir Mohammed Abd-Elghany
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Elhadidy
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Tomohiro Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| |
Collapse
|
85
|
|
86
|
Wei H, Yuan H, Zhu Z, Liu Z, Xin J, Wu X, Cao Z. Staphylococcal enterotoxin burden determines the type of T helper cell response and pathology of the maxillary sinus mucosa in rabbits. Int Immunopharmacol 2015; 23:633-41. [PMID: 25466272 DOI: 10.1016/j.intimp.2014.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/02/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
Staphylococcal enterotoxin (SE) induces T lymphocyte activation along with nasal allergic inflammation during rhinosinusitis, but it is under debate on which types of T helper (Th) cells respond exclusively or whether they respond synergically. We hypothesize that their responses may vary based on dose of SE. To test this hypothesis, we initiated to determine the nature of the T cell response and pathological feature upon repeated exposure to staphylococcal enterotoxin A (SEA) at different doses in the maxillary sinus of rabbits. SEA (0.6 or 60 ng) was instilled daily into the left maxillary sinus of rabbits for 28 days. The right maxillary sinus receiving normal saline was used as control. Mucosal histological changes were examined by hematoxylin-eosin and toluidine blue staining. Tissue expression of myeloperoxidase (MPO), eosinophil cationic protein (ECP), T-box expressed in T cells (T-bet), and GATA binding protein 3 (GATA-3) were examined using immunohistochemistry. Mucosal levels of representative pro-inflammatory cytokines were measured using ELISA. SEA at 60 ng/day induced acute rhinosinusitis, as confirmed by CT scan. Histopathologic examination revealed epithelial disruption, subepithelial edema, and inflammatory cell infiltration. MPO and T-bet expression, as well as interleukin (IL)-2 and interferon (IFN)-γ levels, were up-regulated. However, 0.6 ng/day SEA did not cause discharge. Histological examination revealed prominent eosinophilic infiltration. ECP and GATA-3 expression, as well as IL-4 and IL-5 levels, were increased at this lower dose. In conclusion, SEA induces acute rhinosinusitis associated with a Th1-type immune response at high dose, and a predominantly Th2-biased allergic inflammation at low dose.
Collapse
|
87
|
Rödström KEJ, Regenthal P, Lindkvist-Petersson K. Structure of Staphylococcal Enterotoxin E in Complex with TCR Defines the Role of TCR Loop Positioning in Superantigen Recognition. PLoS One 2015; 10:e0131988. [PMID: 26147596 PMCID: PMC4492778 DOI: 10.1371/journal.pone.0131988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022] Open
Abstract
T cells are crucial players in cell-mediated immunity. The specificity of their receptor, the T cell receptor (TCR), is central for the immune system to distinguish foreign from host antigens. Superantigens are bacterial toxins capable of inducing a toxic immune response by cross-linking the TCR and the major histocompatibility complex (MHC) class II and circumventing the antigen specificity. Here, we present the structure of staphylococcal enterotoxin E (SEE) in complex with a human T cell receptor, as well as the unligated T cell receptor structure. There are clear structural changes in the TCR loops upon superantigen binding. In particular, the HV4 loop moves to circumvent steric clashes upon complex formation. In addition, a predicted ternary model of SEE in complex with both TCR and MHC class II displays intermolecular contacts between the TCR α-chain and the MHC, suggesting that the TCR α-chain is of importance for complex formation.
Collapse
Affiliation(s)
- Karin E. J. Rödström
- Department of Experimental Medical Science, Lund University, BMC C13, 22 184, Lund, Sweden
| | - Paulina Regenthal
- Department of Experimental Medical Science, Lund University, BMC C13, 22 184, Lund, Sweden
| | | |
Collapse
|
88
|
Adipose Tissue-Derived Mesenchymal Stem Cells Attenuate Staphylococcal Enterotoxin A-Induced Toxic Shock. Infect Immun 2015; 83:3490-6. [PMID: 26099581 DOI: 10.1128/iai.00730-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/13/2015] [Indexed: 12/29/2022] Open
Abstract
Adipose tissue-derived stem cells (ASCs), which are mesenchymal stromal cells isolated from adipose tissues, exhibit immunomodulatory effects that are promising for several applications, including the therapeutics of inflammatory diseases. In the present study, the effect of ASCs on bacterial toxin-induced inflammation was investigated. Intraperitoneal administration of ASCs rescued mice from lethal shock induced by staphylococcal enterotoxin A (SEA) potentiated with lipopolysaccharide. In the sera and/or spleens of mice administered ASCs, the production of proinflammatory cytokines, including interferon gamma, tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-2 was reduced. By quantitative real-time PCR, the expression of Foxp3 in the mice administered ASCs was not altered. On the other hand, the expression of IL-12 receptor and STAT4 was decreased with ASC administration. These results imply that the effect of ASCs is not involved in the lineage of regulatory T cells but that these cells may modulate TH1 differentiation. This information provides evidence that ASCs have properties that are effective to attenuate SEA-induced toxic shock and should prompt further exploration on other inflammatory diseases caused by bacterial toxins or bacterial infections.
Collapse
|
89
|
Li J, Yang J, Lu YW, Wu S, Wang MR, Zhu JM. Possible Role of Staphylococcal Enterotoxin B in the Pathogenesis of Autoimmune Diseases. Viral Immunol 2015; 28:354-9. [PMID: 26086678 DOI: 10.1089/vim.2015.0017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
As a member of superantigens (SAgs) produced by Staphylococcus aureus, staphylococcal enterotoxin B (SEB) is a exotoxin superantigen that can regulate the activity of immunomodulatory and pro-inflammatory cell types. In addition, SEB plays a critical role in the pathogenesis of autoimmune disorders either by initiating the autoimmune process or by inducing a relapse in an individual in clinical remission from an autoimmune disorder. SEB can directly activate T lymphocytes, leading to the release of cytokines, superoxides, or other mediators of inflammation either directly or indirectly, because of its unique ability to cross-link human major histocompatibility complex (MHC) class II and T cell receptors (TCR), forming a trimolecular complex. This review discusses the potential effects of SEB in the pathogenesis of autoimmune diseases such as multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis, and explores some updated therapeutic medications to neutralize SEB.
Collapse
Affiliation(s)
- Jing Li
- 1 Department of Public Health and General Medicine, School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine , Hefei, China
| | - Jie Yang
- 1 Department of Public Health and General Medicine, School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine , Hefei, China
| | - Yu-wei Lu
- 2 Department of Information, The Second Hospital of Anhui Medical University , Hefei, China
| | - Song Wu
- 1 Department of Public Health and General Medicine, School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine , Hefei, China
| | - Ming-rui Wang
- 1 Department of Public Health and General Medicine, School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine , Hefei, China
| | - Ji-min Zhu
- 1 Department of Public Health and General Medicine, School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine , Hefei, China
| |
Collapse
|
90
|
Stach CS, Herrera A, Schlievert PM. Staphylococcal superantigens interact with multiple host receptors to cause serious diseases. Immunol Res 2015; 59:177-81. [PMID: 24838262 DOI: 10.1007/s12026-014-8539-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus strains that cause human diseases produce a large family of pyrogenic toxin superantigens (SAgs). These include toxic shock syndrome toxin-1 (TSST-1), the staphylococcal enterotoxins (SEs), and the SE-like proteins; to date, 23 staphylococcal SAgs have been described. Among the SAgs, three have been highly associated with human diseases (TSST-1, SEB, and SEC), likely because they are produced in high concentrations compared to other SAgs. Another major family of exotoxins produced by S. aureus is the cytolysins, particularly α-, β-, γ-, and δ-toxins, phenol soluble modulins, and leukocidins. This review discusses the association of SAgs with human diseases and particularly the "outside-in" signaling mechanism that leads to SAg-associated diseases. We discuss SAg interactions with three host immune cell receptors, including variable regions of the β-chain of the T cell receptor, MHC II α- and/or β-chains, and an epithelial/endothelial cell receptor that may include CD40. To a lesser extent, we discuss the role of cytolysins in facilitating disease production by SAgs.
Collapse
Affiliation(s)
- Christopher S Stach
- Department of Microbiology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242, USA
| | | | | |
Collapse
|
91
|
Hui J, Lin JS, Hu Y, Li H, Hu FQ. Expression and characterization of bifunctional fusion proteins possessing antitumor and thrombolytic function for targeting therapy. Biotechnol Appl Biochem 2015; 63:170-7. [PMID: 25644017 DOI: 10.1002/bab.1356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 01/23/2015] [Indexed: 11/12/2022]
Abstract
It is a usual clinical phenomenon that cancer patients are prone to thrombosis. Until now, there have been no efficient methods or appropriate drugs to prevent and cure tumor thrombus. ΔSEC2, N-terminal deletion of 17 amino acids and C-terminal deletion of 132 amino acids, retained antitumor activity of SEC2. ΔSak, N-terminal deletion of 10 amino acids, had thrombolytic activity and specificity advantages. By utilizing bioactivities of ΔSEC2 and ΔSak, ΔSEC2-ΔSak and ΔSak-ΔSEC2 were constructed. Octreotide is a tumor targeting peptide and it can be combined with somatostatin (SST) receptors of tumor surface in ligand-receptor binding way. It can be used to increase specificity for tumor therapy. Based on previous studies, DNA sequence encoding octreotide gene was inserted into plasmid pET-28a-Δsec2-Δsak and pET-28a-Δsak-Δsec2. After expression and purification, fusion proteins could significantly stimulate proliferation of mouse spleen lymphocyte, obviously inhibit the growth of human gastric carcinoma BGC-823, and have thrombolytic activity, indicating that fusion proteins retained bioactivities of staphylococcal enterotoxin C2 and Sak. Furthermore, tumor binding capacity of fusion protein was confirmed through the coimmunoprecipitation method. The result showed that they could bind SST receptor 2 antibody, indicating that fusion proteins could be specifically targeted to tumor surface. It has important significance and may be used for targeted therapy.
Collapse
Affiliation(s)
- Jing Hui
- Laboratory of Biomaterials and Biopharmaceuticals, School of Life Sciences, Liaoning University, Shenyang, Liaoning, People's Republic of China
| | - Jia-shuai Lin
- Laboratory of Biomaterials and Biopharmaceuticals, School of Life Sciences, Liaoning University, Shenyang, Liaoning, People's Republic of China
| | - Ying Hu
- Laboratory of Biomaterials and Biopharmaceuticals, School of Life Sciences, Liaoning University, Shenyang, Liaoning, People's Republic of China
| | - Hui Li
- Laboratory of Biomaterials and Biopharmaceuticals, School of Life Sciences, Liaoning University, Shenyang, Liaoning, People's Republic of China
| | - Feng-qing Hu
- Laboratory of Biomaterials and Biopharmaceuticals, School of Life Sciences, Liaoning University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
92
|
Kang H, Deng H, Shen M, He X, Xia Y, Li Y, Liang Z, Wang H, Huang J. Superantigenicity analysis of staphylococcal enterotoxins SElK and SElQ in a mouse model. RSC Adv 2015. [DOI: 10.1039/c4ra16649c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Staphylococcal enterotoxins (SEs) are superantigenic toxins secreted byStaphylococcus aureusthat is involved in causing food poisoning and human diseases.
Collapse
Affiliation(s)
- Hongzhi Kang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Hui Deng
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Menglu Shen
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Xianzhi He
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Yihe Xia
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Yi Li
- School of Life Sciences
- Tianjin University
- Tianjin
- China
| | - Zhixuan Liang
- Tianjin Center of Animal Disease Preventive and Control
- Tianjin
- China
| | - Hongjun Wang
- Tianjin Center of Animal Disease Preventive and Control
- Tianjin
- China
| | - Jinhai Huang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
- School of Life Sciences
| |
Collapse
|
93
|
Current Issues in Foodborne Illness Caused by Staphylococcus aureus. Food Saf (Tokyo) 2015. [DOI: 10.1016/b978-0-12-800245-2.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
94
|
Gustafson JE, Muthaiyan A, Dupre JM, Ricke SC. WITHDRAWN: Staphylococcus aureus and understanding the factors that impact enterotoxin production in foods: A review. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
95
|
Giormezis N, Kolonitsiou F, Foka A, Drougka E, Liakopoulos A, Makri A, Papanastasiou AD, Vogiatzi A, Dimitriou G, Marangos M, Christofidou M, Anastassiou ED, Petinaki E, Spiliopoulou I. Coagulase-negative staphylococcal bloodstream and prosthetic-device-associated infections: the role of biofilm formation and distribution of adhesin and toxin genes. J Med Microbiol 2014; 63:1500-1508. [PMID: 25082946 DOI: 10.1099/jmm.0.075259-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coagulase-negative staphylococci (CNS), especially Staphylococcus epidermidis and Staphylococcus haemolyticus, have emerged as opportunistic pathogens in immunocompromised patients and those with indwelling medical devices. In this study, CNS recovered from patients with bloodstream infections (BSIs) or prosthetic-device-associated infections (PDAIs) were compared in terms of biofilm formation, antimicrobial resistance, clonal distribution, and carriage of adhesin and toxin genes. A total of 226 CNS isolates (168 S. epidermidis and 58 S. haemolyticus) recovered from hospital inpatients with BSIs (100 isolates) or PDAIs (126 isolates) were tested for biofilm formation, antimicrobial susceptibility, and mecA, ica operon, adhesin (aap, bap, fnbA, atlE, fbe) and toxin (tst, sea, sec) genes. The selected CNS were classified into pulsotypes by PFGE and assigned to sequence types by multilocus sequence typing. In total, 106/226 isolates (46.9%) produced biofilm, whereas 150 (66.4%) carried the ica operon. Most isolates carried mecA and were multidrug resistant (90.7%). CNS recovered from BSIs were significantly more likely to produce biofilm (P=0.003), be resistant to antimicrobials and carry mecA (P<0.001), as compared with isolates derived from PDAIs. CNS from PDAIs were more likely to carry the aap and bap genes (P=0.006 and P=0.045, respectively). No significant differences in the carriage of toxin genes were identified (P>0.05). Although PFGE revealed genetic diversity, especially among S. epidermidis, analysis of representative strains from the main PFGE types by multilocus sequence typing revealed three major clones (ST2, ST5 and ST16). A clonal relationship was found with respect to antimicrobial susceptibility and ica and aap gene carriage, reinforcing the premise of clonal expansion in hospital settings. The results of this study suggest that the pathogenesis of BSIs is associated with biofilm formation and high-level antimicrobial resistance, whereas PDAIs are related to the adhesion capabilities of S. epidermidis and S. haemolyticus strains.
Collapse
Affiliation(s)
- Nikolaos Giormezis
- National Reference Laboratory for Staphylococci, Patras, Greece.,Department of Microbiology, School of Medicine, University of Patras, Greece
| | - Fevronia Kolonitsiou
- National Reference Laboratory for Staphylococci, Patras, Greece.,Department of Microbiology, School of Medicine, University of Patras, Greece
| | - Antigoni Foka
- National Reference Laboratory for Staphylococci, Patras, Greece.,Department of Microbiology, School of Medicine, University of Patras, Greece
| | - Eleanna Drougka
- National Reference Laboratory for Staphylococci, Patras, Greece.,Department of Microbiology, School of Medicine, University of Patras, Greece
| | - Apostolos Liakopoulos
- Department of Microbiology, School of Medicine, University of Thessaly, Larissa, Greece
| | - Antonia Makri
- Laboratory of Microbiology, General Children Hospital Pentelis, Athens, Greece
| | | | - Aliki Vogiatzi
- Laboratory of Microbiology, General Children Hospital Pentelis, Athens, Greece
| | - Gabriel Dimitriou
- Neonatal Intensive Care Unit, Department of Paediatrics, School of Medicine, University of Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of Patras, Greece
| | - Myrto Christofidou
- Department of Microbiology, School of Medicine, University of Patras, Greece
| | - Evangelos D Anastassiou
- National Reference Laboratory for Staphylococci, Patras, Greece.,Department of Microbiology, School of Medicine, University of Patras, Greece
| | - Efthimia Petinaki
- Department of Microbiology, School of Medicine, University of Thessaly, Larissa, Greece
| | - Iris Spiliopoulou
- National Reference Laboratory for Staphylococci, Patras, Greece.,Department of Microbiology, School of Medicine, University of Patras, Greece
| |
Collapse
|
96
|
Rödström KEJ, Elbing K, Lindkvist-Petersson K. Structure of the superantigen staphylococcal enterotoxin B in complex with TCR and peptide-MHC demonstrates absence of TCR-peptide contacts. THE JOURNAL OF IMMUNOLOGY 2014; 193:1998-2004. [PMID: 25015819 DOI: 10.4049/jimmunol.1401268] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Superantigens are immune-stimulatory toxins produced by Staphylococcus aureus, which are able to interact with host immune receptors to induce a massive release of cytokines, causing toxic shock syndrome and possibly death. In this article, we present the x-ray structure of staphylococcal enterotoxin B (SEB) in complex with its receptors, the TCR and MHC class II, forming a ternary complex. The structure, in combination with functional analyses, clearly shows how SEB adopts a wedge-like position when binding to the β-chain of TCR, allowing for an interaction between the α-chain of TCR and MHC. Furthermore, the binding mode also circumvents contact between TCR and the peptide presented by MHC, which enables SEB to initiate a peptide-independent activation of T cells.
Collapse
Affiliation(s)
- Karin E J Rödström
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Karin Elbing
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | | |
Collapse
|
97
|
Superantigens subvert the neutrophil response to promote abscess formation and enhance Staphylococcus aureus survival in vivo. Infect Immun 2014; 82:3588-98. [PMID: 24914221 DOI: 10.1128/iai.02110-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is a versatile bacterial pathogen that produces T cell-activating toxins known as superantigens (SAgs). Although excessive immune activation by SAgs can induce a dysregulated cytokine storm as a component of what is known as toxic shock syndrome (TSS), the contribution of SAgs to the staphylococcal infection process is not well defined. Here, we evaluated the role of the bacterial superantigen staphylococcal enterotoxin A (SEA) in a bacteremia model using humanized transgenic mice expressing SAg-responsive HLA-DR4 molecules. Infection with S. aureus Newman induced SEA-dependent Vβ skewing of T cells and enhanced bacterial survival in the liver compared with infection by sea knockout strain. SEA-induced gamma interferon, interleukin-12, and chemokine responses resulted in increased infiltration of CD11b(+) Ly6G(+) neutrophils into the liver, promoting the formation of abscesses that contained large numbers of viable staphylococci. Hepatic abscesses occurred significantly more frequently in S. aureus Newman-infected livers than in livers infected with the Newman sea knockout strain, promoting the survival of S. aureus in vivo. This represents a novel mechanism during infection whereby S. aureus utilizes SAgs to form a specialized niche and manipulate the immune system.
Collapse
|
98
|
Principato M, Qian BF. Staphylococcal enterotoxins in the etiopathogenesis of mucosal autoimmunity within the gastrointestinal tract. Toxins (Basel) 2014; 6:1471-89. [PMID: 24776983 PMCID: PMC4052247 DOI: 10.3390/toxins6051471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 01/22/2023] Open
Abstract
The staphylococcal enterotoxins (SEs) are the products of Staphylococcus aureus and are recognized as the causative agents of classical food poisoning in humans following the consumption of contaminated food. While illness evoked by ingestion of the SE or its producer organism in tainted food are often self-limited, our current understanding regarding the evolution of S. aureus provokes the utmost concern. The organism and its associated toxins, has been implicated in a wide variety of disease states including infections of the skin, heart, sinuses, inflammatory gastrointestinal disease, toxic shock, and Sudden Infant Death Syndrome. The intricate relationship between the various subsets of immunocompetent T cells and accessory cells and the ingested material found within the gastrointestinal tract present daunting challenges to the maintenance of immunologic homeostasis. Dysregulation of the intricate balances within this environment has the potential for extreme consequences within the host, some of which are long-lived. The focus of this review is to evaluate the relevance of staphylococcal enterotoxin in the context of mucosal immunity, and the underlying mechanisms that contribute to the pathogenesis of gastrointestinal autoimmune disease.
Collapse
Affiliation(s)
- MaryAnn Principato
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA.
| | - Bi-Feng Qian
- Commissioner's Fellowship Program, Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA.
| |
Collapse
|
99
|
Merriman JA, Nemeth KA, Schlievert PM. Novel antimicrobial peptides that inhibit gram positive bacterial exotoxin synthesis. PLoS One 2014; 9:e95661. [PMID: 24748386 PMCID: PMC3991719 DOI: 10.1371/journal.pone.0095661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 03/29/2014] [Indexed: 01/31/2023] Open
Abstract
Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges.
Collapse
Affiliation(s)
- Joseph A. Merriman
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Kimberly A. Nemeth
- The Procter & Gamble Company, Cincinnati, Ohio, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
100
|
Lyubavina IA, Brovko FA, Valyakina TI, Vertiev YV, Grishin EV. Methods of express analysis of staphylococcal enterotoxin a in food products. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1068162014020101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|