51
|
Wang G, Hu N, Yang HH, Wang L, Su H, Wang C, Clifford R, Dawsey EM, Li JM, Ding T, Han XY, Giffen C, Goldstein AM, Taylor PR, Lee MP. Comparison of global gene expression of gastric cardia and noncardia cancers from a high-risk population in china. PLoS One 2013; 8:e63826. [PMID: 23717493 PMCID: PMC3661768 DOI: 10.1371/journal.pone.0063826] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/05/2013] [Indexed: 12/14/2022] Open
Abstract
Objective To profile RNA expression in gastric cancer by anatomic subsites as an initial step in identifying molecular subtypes and providing targets for early detection and therapy. Methods We performed transcriptome analysis using the Affymetrix GeneChip U133A in gastric cardia adenocarcinomas (n = 62) and gastric noncardia adenocarcinomas (n = 72) and their matched normal tissues from patients in Shanxi Province, and validated selected dysregulated genes with additional RNA studies. Expression of dysregulated genes was also related to survival of cases. Results Principal Component Analysis showed that samples clustered by tumor vs. normal, anatomic location, and histopathologic features. Paired t-tests of tumor/normal tissues identified 511 genes whose expression was dysregulated (P<4.7E-07 and at least two-fold difference in magnitude) in cardia or noncardia gastric cancers, including nearly one-half (n = 239, 47%) dysregulated in both cardia and noncardia, one-fourth dysregulated in cardia only (n = 128, 25%), and about one-fourth in noncardia only (n = 144, 28%). Additional RNA studies confirmed profiling results. Expression was associated with case survival for 20 genes in cardia and 36 genes in noncardia gastric cancers. Conclusions The dysregulated genes identified here represent a comprehensive starting point for future efforts to understand etiologic heterogeneity, develop diagnostic biomarkers for early detection, and test molecularly-targeted therapies for gastric cancer.
Collapse
Affiliation(s)
- Gangshi Wang
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
| | - Nan Hu
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
| | - Howard H. Yang
- Office of the Director, Center for Cancer Research, NCI, Bethesda, Maryland, United States of America
| | - Lemin Wang
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
| | - Hua Su
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
| | - Chaoyu Wang
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
| | - Robert Clifford
- Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Erica M. Dawsey
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
| | - Jian-Min Li
- Shanxi Cancer Hospital, Taiyuan, Shanxi, PR China
| | - Ti Ding
- Shanxi Cancer Hospital, Taiyuan, Shanxi, PR China
| | - Xiao-You Han
- Shanxi Cancer Hospital, Taiyuan, Shanxi, PR China
| | - Carol Giffen
- Information Management Services, Inc., Silver Spring, Maryland, United States of America
| | - Alisa M. Goldstein
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
| | - Philip R. Taylor
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
- * E-mail: (PRT); (MPL)
| | - Maxwell P. Lee
- Office of the Director, Center for Cancer Research, NCI, Bethesda, Maryland, United States of America
- * E-mail: (PRT); (MPL)
| |
Collapse
|
52
|
Nicholson TB, Singh AK, Su H, Hevi S, Wang J, Bajko J, Li M, Valdez R, Goetschkes M, Capodieci P, Loureiro J, Cheng X, Li E, Kinzel B, Labow M, Chen T. A hypomorphic lsd1 allele results in heart development defects in mice. PLoS One 2013; 8:e60913. [PMID: 23637775 PMCID: PMC3634827 DOI: 10.1371/journal.pone.0060913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 03/06/2013] [Indexed: 11/19/2022] Open
Abstract
Lysine-specific demethylase 1 (Lsd1/Aof2/Kdm1a), the first enzyme with specific lysine demethylase activity to be described, demethylates histone and non-histone proteins and is essential for mouse embryogenesis. Lsd1 interacts with numerous proteins through several different domains, most notably the tower domain, an extended helical structure that protrudes from the core of the protein. While there is evidence that Lsd1-interacting proteins regulate the activity and specificity of Lsd1, the significance and roles of such interactions in developmental processes remain largely unknown. Here we describe a hypomorphic Lsd1 allele that contains two point mutations in the tower domain, resulting in a protein with reduced interaction with known binding partners and decreased enzymatic activity. Mice homozygous for this allele die perinatally due to heart defects, with the majority of animals suffering from ventricular septal defects. Molecular analyses revealed hyperphosphorylation of E-cadherin in the hearts of mutant animals. These results identify a previously unknown role for Lsd1 in heart development, perhaps partly through the control of E-cadherin phosphorylation.
Collapse
MESH Headings
- Alleles
- Animals
- Cadherins/metabolism
- Disease Models, Animal
- Enzyme Activation
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Heart Septal Defects, Ventricular/genetics
- Heart Septal Defects, Ventricular/metabolism
- Heart Septal Defects, Ventricular/pathology
- Histone Demethylases
- Homozygote
- Mice
- Mice, Knockout
- Oxidoreductases, N-Demethylating/genetics
- Oxidoreductases, N-Demethylating/metabolism
- Phosphorylation
- Point Mutation
- Pregnancy
- Protein Binding
Collapse
Affiliation(s)
- Thomas B. Nicholson
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Anup K. Singh
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Hui Su
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Sarah Hevi
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jing Wang
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jeff Bajko
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Mei Li
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Reginald Valdez
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Margaret Goetschkes
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Paola Capodieci
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Joseph Loureiro
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University, Atlanta, Georgia, United States of America
| | - En Li
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Bernd Kinzel
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mark Labow
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Taiping Chen
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- * E-mail:
| |
Collapse
|
53
|
Behrens AN, Iacovino M, Lohr JL, Ren Y, Zierold C, Harvey RP, Kyba M, Garry DJ, Martin CM. Nkx2-5 mediates differential cardiac differentiation through interaction with Hoxa10. Stem Cells Dev 2013; 22:2211-20. [PMID: 23477547 DOI: 10.1089/scd.2012.0611] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The regulation of cardiac differentiation is complex and incompletely understood. Recent studies have documented that Nkx2-5-positive cells are not limited to the cardiac lineage, but can give rise to endothelial and smooth muscle lineages. Other work has elucidated that, in addition to promoting cardiac development, Nkx2-5 plays a larger role in mesodermal patterning although the transcriptional networks that govern this developmental patterning are undefined. By profiling early Nkx2-5-positive progenitor cells, we discovered that the progenitor pools of the bisected cardiac crescent are differentiating asynchronously. This asymmetry requires Nkx2-5 as it is lost in the Nkx2-5 mutant. Surprisingly, the posterior Hox genes Hoxa9 and Hoxa10 were expressed on the right side of the cardiac crescent, independently of Nkx2-5. We describe a novel, transient, and asymmetric cardiac-specific expression pattern of the posterior Hox genes, Hoxa9 and Hoxa10, and utilize the embryonic stem cell/embryoid body (ES/EB) model system to illustrate that Hoxa10 impairs cardiac differentiation. We suggest a model whereby Hoxa10 cooperates with Nkx2-5 to regulate the timing of cardiac mesoderm differentiation.
Collapse
Affiliation(s)
- Ann N Behrens
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Gould RA, Aboulmouna LM, Varner JD, Butcher JT. Hierarchical approaches for systems modeling in cardiac development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:289-305. [PMID: 23463736 DOI: 10.1002/wsbm.1217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ordered cardiac morphogenesis and function are essential for all vertebrate life. The heart begins as a simple contractile tube, but quickly grows and morphs into a multichambered pumping organ complete with valves, while maintaining regulation of blood flow and nutrient distribution. Though not identical, cardiac morphogenesis shares many molecular and morphological processes across vertebrate species. Quantitative data across multiple time and length scales have been gathered through decades of reductionist single variable analyses. These range from detailed molecular signaling pathways at the cellular levels to cardiac function at the tissue/organ levels. However, none of these components act in true isolation from others, and each, in turn, exhibits short- and long-range effects in both time and space. With the absence of a gene, entire signaling cascades and genetic profiles may be shifted, resulting in complex feedback mechanisms. Also taking into account local microenvironmental changes throughout development, it is apparent that a systems level approach is an essential resource to accelerate information generation concerning the functional relationships across multiple length scales (molecular data vs physiological function) and structural development. In this review, we discuss relevant in vivo and in vitro experimental approaches, compare different computational frameworks for systems modeling, and the latest information about systems modeling of cardiac development. Finally, we conclude with some important future directions for cardiac systems modeling.
Collapse
Affiliation(s)
- Russell A Gould
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | |
Collapse
|
55
|
Behrens AN, Ren Y, Ferdous A, Garry DJ, Martin CM. Nkx2-5 Regulates Tdgf1 (Cripto) Early During Cardiac Development. ACTA ACUST UNITED AC 2013; Suppl 11:1-4. [PMID: 24069547 DOI: 10.4172/2155-9880.s11-003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Congenital Heart Disease (CHD) is the most frequent and deadly birth defect. Patients with CHD that survive the neonatal period often progress to develop advanced heart failure requiring specialized treatment including cardiac transplantation. A full understanding of the transcriptional networks that direct cardiac progenitors during heart development will enhance our understanding of both normal cardiac function and pathological states. These findings will also have important applications for emerging therapies and the treatment of congenital heart disease. Furthermore, a number of shared transcriptional pathways or networks have been proposed to regulate the development and regeneration of tissues such as the heart. We have utilized transgenic technology to isolate and characterize cardiac progenitor cells from the developing mouse heart and have begun to define specific transcriptional networks of cardiovascular development. Initial studies identified Tdgf1 as a potential target of Nkx2-5. To mechanistically dissect the regulation of this molecular program, we utilized an array of molecular biological techniques to confirm that Nkx2-5 is an upstream regulator of the Tdgf1 gene in early cardiac development. These studies further define Nkx2-5 mediated transcriptional networks and enhance our understanding of cardiac morphogenesis.
Collapse
Affiliation(s)
- Ann N Behrens
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
56
|
Neckameyer WS, Argue KJ. Comparative approaches to the study of physiology: Drosophila as a physiological tool. Am J Physiol Regul Integr Comp Physiol 2012; 304:R177-88. [PMID: 23220476 DOI: 10.1152/ajpregu.00084.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Numerous studies have detailed the extensive conservation of developmental signaling pathways between the model system, Drosophila melanogaster, and mammalian models, but researchers have also profited from the unique and highly tractable genetic tools available in this system to address critical questions in physiology. In this review, we have described contributions that Drosophila researchers have made to mathematical dynamics of pattern formation, cardiac pathologies, the way in which pain circuits are integrated to elicit responses from sensation, as well as the ways in which gene expression can modulate diverse behaviors and shed light on human cognitive disorders. The broad and diverse array of contributions from Drosophila underscore its translational relevance to modeling human disease.
Collapse
Affiliation(s)
- Wendi S Neckameyer
- Dept. of Pharmacological and Physiological Science, St. Louis Univ. School of Medicine, St. Louis, MO 63104, USA.
| | | |
Collapse
|
57
|
Zhang Q, He X, Chen L, Zhang C, Gao X, Yang Z, Liu G. Synergistic regulation of p53 by Mdm2 and Mdm4 is critical in cardiac endocardial cushion morphogenesis during heart development. J Pathol 2012; 228:416-28. [DOI: 10.1002/path.4077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 07/08/2012] [Accepted: 07/11/2012] [Indexed: 12/23/2022]
|
58
|
Varner VD, Taber LA. Not just inductive: a crucial mechanical role for the endoderm during heart tube assembly. Development 2012; 139:1680-90. [PMID: 22492358 DOI: 10.1242/dev.073486] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The heart is the first functioning organ to form during development. During gastrulation, the cardiac progenitors reside in the lateral plate mesoderm but maintain close contact with the underlying endoderm. In amniotes, these bilateral heart fields are initially organized as a pair of flat epithelia that move towards the embryonic midline and fuse above the anterior intestinal portal (AIP) to form the heart tube. This medial motion is typically attributed to active mesodermal migration over the underlying endoderm. In this model, the role of the endoderm is twofold: to serve as a mechanically passive substrate for the crawling mesoderm and to secrete various growth factors necessary for cardiac specification and differentiation. Here, using computational modeling and experiments on chick embryos, we present evidence supporting an active mechanical role for the endoderm during heart tube assembly. Label-tracking experiments suggest that active endodermal shortening around the AIP accounts for most of the heart field motion towards the midline. Results indicate that this shortening is driven by cytoskeletal contraction, as exposure to the myosin-II inhibitor blebbistatin arrested any shortening and also decreased both tissue stiffness (measured by microindentation) and mechanical tension (measured by cutting experiments). In addition, blebbistatin treatment often resulted in cardia bifida and abnormal foregut morphogenesis. Moreover, finite element simulations of our cutting experiments suggest that the endoderm (not the mesoderm) is the primary contractile tissue layer during this process. Taken together, these results indicate that contraction of the endoderm actively pulls the heart fields towards the embryonic midline, where they fuse to form the heart tube.
Collapse
Affiliation(s)
- Victor D Varner
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | | |
Collapse
|
59
|
Abstract
Congenital heart disease (CHD) is a highly prevalent problem with mostly unknown origins. Many cases of CHD likely involve an environmental exposure coupled with genetic susceptibility, but practical and ethical considerations make nongenetic causes of CHD difficult to assess in humans. The development of the heart is highly conserved across all vertebrate species, making animal models an excellent option for screening potential cardiac teratogens. This review will discuss exposures known to cause cardiac defects, stages of heart development that are most sensitive to teratogen exposure, benefits and limitations of animal models of cardiac development, and future considerations for cardiac developmental toxicity research.
Collapse
Affiliation(s)
- Gretchen J Mahler
- Department of Bioengineering, Binghamton University, New York 13902, USA
| | | |
Collapse
|
60
|
VanDusen NJ, Firulli AB. Twist factor regulation of non-cardiomyocyte cell lineages in the developing heart. Differentiation 2012; 84:79-88. [PMID: 22516205 DOI: 10.1016/j.diff.2012.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/14/2012] [Accepted: 03/07/2012] [Indexed: 12/31/2022]
Abstract
The heart is a complex organ that is composed of numerous cell types, which must integrate their programs for proper specification, differentiation and cardiac morphogenesis. During cardiogenesis members of the Twist-family of basic helix-loop-helix (bHLH) transcription factors play distinct roles within cardiac lineages such as the endocardium and extra-cardiac lineages such as the cardiac neural crest (cNCC) and epicardium. While the study of these cell populations is often eclipsed by that of cardiomyocytes, the contributions of non-cardiomyocytes to development and disease are increasingly being appreciated as both dynamic and essential. This review summarizes what is known regarding Twist-family bHLH function in extra-cardiac cell populations and the endocardium, with a focus on regulatory mechanisms, downstream targets, and expression profiles. Improving our understanding of the molecular pathways that Twist-family bHLH factors mediate in these lineages will be necessary to ascertain how their dysfunction leads to congenital disease and adult pathologies such as myocardial infarctions and cardiac fibroblast induced fibrosis. Indeed, this knowledge will prove to be critical to clinicians seeking to improve current treatments.
Collapse
Affiliation(s)
- Nathan J VanDusen
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Department of Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | | |
Collapse
|
61
|
Sun L, Cheng L, Dong H, Wang B, Huang G, Li Z, Xie X, Shen A, Li X, Wang J, Li H, Ma X. Novel mutations of NODAL gene in Chinese patients with congenital heart disease. Genet Test Mol Biomarkers 2012; 16:306-9. [PMID: 22352765 DOI: 10.1089/gtmb.2011.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Congenital heart disease (CHD) is one of most common birth defects threatening newborns' health. Over the past few decades, a variety of CHD-causing gene mutations have been identified, but the pathogenic mechanism of congenital heart disease is yet not very clear. The aim of this study was to identify potential pathologic mutations in the NODAL gene and to gain insight into the etiology of CHD. By using amplification with polymerase chain reaction and sequence analysis of NODAL in 800 patients with nonsyndromic CHD and 250 healthy controls, we identified 3 nonsynonymous variants. One of them was first identified in the present study. These variants were not observed in 250 controls. To our knowledge, this is the first study to suggest that NODAL may be involved in the etiology of nonsyndromic CHD in a Chinese population.
Collapse
Affiliation(s)
- Lei Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Takagaki Y, Yamagishi H, Matsuoka R. Factors Involved in Signal Transduction During Vertebrate Myogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:187-272. [DOI: 10.1016/b978-0-12-394307-1.00004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
63
|
Kang H, Kwak HI, Kaunas R, Bayless KJ. Fluid shear stress and sphingosine 1-phosphate activate calpain to promote membrane type 1 matrix metalloproteinase (MT1-MMP) membrane translocation and endothelial invasion into three-dimensional collagen matrices. J Biol Chem 2011; 286:42017-42026. [PMID: 22002053 PMCID: PMC3234924 DOI: 10.1074/jbc.m111.290841] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/10/2011] [Indexed: 12/31/2022] Open
Abstract
The vascular endothelium continually senses and responds to biochemical and mechanical stimuli to appropriately initiate angiogenesis. We have shown previously that fluid wall shear stress (WSS) and sphingosine 1-phosphate (S1P) cooperatively initiate the invasion of human umbilical vein endothelial cells into collagen matrices (Kang, H., Bayless, K. J., and Kaunas, R. (2008) Am. J. Physiol. Heart Circ. Physiol. 295, H2087-2097). Here, we investigated the role of calpains in the regulation of endothelial cell invasion in response to WSS and S1P. Calpain inhibition significantly decreased S1P- and WSS-induced invasion. Short hairpin RNA-mediated gene silencing demonstrated that calpain 1 and 2 were required for WSS and S1P-induced invasion. Also, S1P synergized with WSS to induce invasion and to activate calpains and promote calpain membrane localization. Calpain inhibition results in a cell morphology consistent with reduced matrix proteolysis. Membrane type 1-matrix metalloproteinase (MT1-MMP) has been shown by others to regulate endothelial cell invasion, prompting us to test whether calpain acted upstream of MT1-MMP. S1P and WSS synergistically activated MT1-MMP and induced cell membrane localization of MT1-MMP in a calpain-dependent manner. Calpain activation, MT1-MMP activation and MT1-MMP membrane localization were all maximal with 5.3 dynes/cm(2) WSS and S1P treatment, which correlated with maximal invasion responses. Our data show for the first time that 5.3 dynes/cm(2) WSS in the presence of S1P combine to activate calpains, which direct MT1-MMP membrane localization to initiate endothelial sprouting into three-dimensional collagen matrices.
Collapse
Affiliation(s)
- Hojin Kang
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843
| | - Hyeong-Il Kwak
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843-1114
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843
| | - Kayla J Bayless
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843-1114.
| |
Collapse
|
64
|
Nicholson TB, Su H, Hevi S, Wang J, Bajko J, Li M, Valdez R, Loureiro J, Cheng X, Li E, Kinzel B, Labow M, Chen T. Defective heart development in hypomorphic LSD1 mice. Cell Res 2011:cr2011194. [PMID: 22143567 DOI: 10.1038/cr.2011.194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/07/2011] [Accepted: 10/14/2010] [Indexed: 11/09/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1/AOF2/KDM1A), the first enzyme with specific lysine demethylase activity to be described, demethylates histone and non-histone proteins and is essential for mouse embryogenesis. LSD1 interacts with numerous proteins through several different domains, most notably the tower domain, an extended helical structure that protrudes from the core of the protein. While there is evidence that LSD1-interacting proteins regulate the activity and specificity of LSD1, the significance and roles of such interactions in developmental processes remain largely unknown. Here we describe a hypomorphic LSD1 allele that contains two point mutations in the tower domain, resulting in a protein with reduced interaction with known binding partners and decreased enzymatic activity. Mice homozygous for this allele die perinatally due to heart defects, with the majority of animals suffering from ventricular septal defects. Transcriptional profiling revealed altered expression of a limited subset of genes in the hearts. This includes an increase in calmodulin kinase (CK) 2β, the regulatory subunit of the CK2 kinase, which correlates with E-cadherin hyperphosphorylation. These results identify a previously unknown role for LSD1 in heart development, perhaps partly through the control of E-cadherin phosphorylation.Cell Research advance online publication 6 December 2011; doi:10.1038/cr.2011.194.
Collapse
Affiliation(s)
- Thomas B Nicholson
- 1] Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [2] Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Hui Su
- 1] Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [2] Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Sarah Hevi
- 1] Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [2] Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jing Wang
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jeff Bajko
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Mei Li
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Reginald Valdez
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Joseph Loureiro
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - En Li
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Bernd Kinzel
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Novartis Pharma AG Forum 1 Novartis Campus CH-4056, Basel, Switzerland
| | - Mark Labow
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Taiping Chen
- 1] Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [2] Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [3] Current address: Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| |
Collapse
|
65
|
Franco D, Chinchilla A, Daimi H, Dominguez JN, Aránega A. Modulation of conductive elements by Pitx2 and their impact on atrial arrhythmogenesis. Cardiovasc Res 2011; 91:223-31. [PMID: 21427120 DOI: 10.1093/cvr/cvr078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The development of the heart is a complex process during which different cell types progressively contribute to shape a four-chambered pumping organ. Over the last decades, our understanding of the specification and transcriptional regulation of cardiac development has been greatly augmented as has our understanding of the functional bases of cardiac electrophysiology during embryogenesis. The nascent heart gradually acquires distinct cellular and functional characteristics, such as the formation of contractile structures, the development of conductive capabilities, and soon thereafter the co-ordinated conduction of the electrical impulse, in order to fulfil its functional properties. Over the last decade, we have learnt about the consequences of impairing cardiac morphogenesis, which in many cases leads to congenital heart defects; however, we are not yet aware of the consequences of impairing electrical function during cardiogenesis. The most prevalent cardiac arrhythmia is atrial fibrillation (AF), although its genetic aetiology remains rather elusive. Recent genome-wide association studies have identified several genetic variants highly associated with AF. Among them are genetic variants located on chromosome 4q25 adjacent to PITX2, a transcription factor known to play a critical role in left-right asymmetry and cardiogenesis. Here, we review new insights into the cellular and molecular links between PITX2 and AF.
Collapse
Affiliation(s)
- Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, 23071 Jáen, Spain.
| | | | | | | | | |
Collapse
|
66
|
McBride KL, Zender GA, Fitzgerald-Butt SM, Seagraves NJ, Fernbach SD, Zapata G, Lewin M, Towbin JA, Belmont JW. Association of common variants in ERBB4 with congenital left ventricular outflow tract obstruction defects. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2011; 91:162-8. [PMID: 21290564 PMCID: PMC3736588 DOI: 10.1002/bdra.20764] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/10/2010] [Accepted: 10/15/2010] [Indexed: 12/29/2022]
Abstract
BACKGROUND The left ventricular outflow tract (LVOT) defects aortic valve stenosis (AVS), coarctation of the aorta (COA), and hypoplastic left heart syndrome (HLHS) represent an embryologically related group of congenital cardiovascular malformations. They are common and cause substantial morbidity and mortality. Prior evidence suggests a strong genetic component in their causation. METHODS We selected NRG1, ERBB3, and ERBB4 of the epidermal growth factor receptor (EGFR) signaling pathway as candidate genes for investigation of association with LVOT defects based on the importance of this pathway in cardiac development and the phenotypes in knockout mouse models. Single nucleotide polymorphism (SNP) genotyping was performed on 343 affected case-parent trios of European ancestry. RESULTS We identified a specific haplotype in intron 3 of ERBB4 that was positively associated with the combined LVOT defects phenotype (p=0.0005) and in each anatomic defect AVS, COA, and HLHS separately. Mutation screening of individuals with an LVOT defect failed to identify a coding sequence or splice site change in ERBB4. RT-PCR on lymphoblastoid cells from LVOT subjects did not show altered splice variant ratios among those homozygous for the associated haplotype. CONCLUSION These results suggest ERBB4 is associated with LVOT defects. Further replication will be required in separate cohorts to confirm the consistency of the observed association.
Collapse
Affiliation(s)
- Kim L McBride
- Center for Molecular and Human Genetics, Nationwide Children's Hospital, Department of Pediatrics, Ohio State University, Columbus, Ohio 43205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Shimojo M. RE1-silencing transcription factor (REST) and REST-interacting LIM domain protein (RILP) affect P19CL6 differentiation. Genes Cells 2010; 16:90-100. [DOI: 10.1111/j.1365-2443.2010.01471.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
68
|
Pattern of expression of the CREG gene and CREG protein in the mouse embryo. Mol Biol Rep 2010; 38:2133-40. [PMID: 20857207 DOI: 10.1007/s11033-010-0340-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 09/04/2010] [Indexed: 10/19/2022]
Abstract
The cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein that inhibits cell proliferation and/or enhances differentiation. CREG is widely expressed in adult tissues such as the brain, heart, lungs, liver, intestines and kidneys in mice. We investigated the level of CREG expression during mouse embryogenesis and its distribution at 18.5 days post coitus (dpc) using immunohistochemical staining with diaminobenzidine, western blotting and reverse transcription-polymerase chain reaction. CREG expression was first detected in mouse embryos at 4.5 dpc. It was expressed at almost all stages up to 18.5 dpc. The level of CREG was found to increase gradually and was highest at 18.5 dpc. Western blotting showed that the CREG protein was expressed at higher levels in the brain, heart, intestines and kidneys than in the lungs and liver at 18.5 dpc. In 9.5 dpc embryos, CREG was expressed only in the endothelial cells of blood vessels, after the vascular lumen had formed. With advanced differentiation, vascular smooth muscle cells developed in the embryonic vascular structures; the expression of smooth muscle α-actin protein and CREG were positive and increased gradually in 10.5 dpc embryonic vessels. CREG expression in the embryonic blood vessels peaked at 15.5 dpc and was reduced slightly at 18.5 dpc. These results indicate that CREG is expressed during mouse embryogenesis and might participate in the differentiation of these organs during embryogenesis.
Collapse
|
69
|
Abstract
Serum response factor (SRF) is a ubiquitously expressed transcription factor that binds to a DNA cis element known as the CArG box, which is found in the proximal regulatory regions of over 200 experimentally validated target genes. Genetic deletion of SRF is incompatible with life in a variety of animals from different phyla. In mice, loss of SRF throughout the early embryo results in gastrulation defects precluding analyses in individual organ systems. Genetic inactivation studies using conditional or inducible promoters directing the expression of the bacteriophage Cre recombinase have shown a vital role for SRF in such cellular processes as contractility, cell migration, synaptic activity, inflammation, and cell survival. A growing number of experimental and human diseases are associated with changes in SRF expression, suggesting that SRF has a role in the pathogenesis of disease. This review summarizes data from experimental model systems and human pathology where SRF expression is either deliberately or naturally altered.
Collapse
|
70
|
A novel mutation in GATA4 gene associated with dominant inherited familial atrial septal defect. J Thorac Cardiovasc Surg 2010; 140:684-7. [DOI: 10.1016/j.jtcvs.2010.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/05/2009] [Accepted: 01/02/2010] [Indexed: 11/21/2022]
|
71
|
Liang J, Gui Y, Wang W, Gao S, Li J, Song H. Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos. ACTA ACUST UNITED AC 2010; 88:480-6. [DOI: 10.1002/bdra.20654] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
72
|
Chan MWC, Hinz B, McCulloch CA. Mechanical induction of gene expression in connective tissue cells. Methods Cell Biol 2010; 98:178-205. [PMID: 20816235 DOI: 10.1016/s0091-679x(10)98008-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The extracellular matrices of mammals undergo coordinated synthesis and degradation, dynamic remodeling processes that enable tissue adaptations to a broad range of environmental factors, including applied mechanical forces. The soft and mineralized connective tissues of mammals also exhibit a wide repertoire of mechanical properties, which enable their tissue-specific functions and modulate cellular responses to forces. The expression of genes in response to applied forces are important for maintaining the support, attachment, and function of various organs including kidney, heart, liver, lung, joint, and periodontium. Several high-prevalence diseases of extracellular matrices including arthritis, heart failure, and periodontal diseases involve pathological levels of mechanical forces that impact the gene expression repertoires and function of bone, cartilage, and soft connective tissues. Recent work on the application of mechanical forces to cultured connective tissue cells and various in vivo force models have enabled study of the regulatory networks that control mechanically induced gene expression in connective tissue cells. In addition to the influence of mechanical forces on the expression of type 1 collagen, which is the most abundant protein of mammals, new work has shown that the expression of a wide range of matrix, signaling, and cytoskeletal proteins are regulated by exogenous mechanical forces and by the forces generated by cells themselves. In this chapter, we first discuss the fundamental nature of the extracellular matrix in health and the impact of mechanical forces. Next we consider the utilization of several, widely employed model systems for mechanical stimulation of cells. Finally, we consider in detail how application of tensile forces to cultured cardiac fibroblasts can be used for the characterization of the signaling systems by which mechanical forces regulate myofibroblast differentiation that is seen in cardiac pressure overload.
Collapse
Affiliation(s)
- Matthew W C Chan
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Toronto, ON, Canada M5S 3E2
| | | | | |
Collapse
|
73
|
Ria R, Todoerti K, Berardi S, Coluccia AML, De Luisi A, Mattioli M, Ronchetti D, Morabito F, Guarini A, Petrucci MT, Dammacco F, Ribatti D, Neri A, Vacca A. Gene Expression Profiling of Bone Marrow Endothelial Cells in Patients with Multiple Myeloma. Clin Cancer Res 2009; 15:5369-78. [DOI: 10.1158/1078-0432.ccr-09-0040] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
74
|
Sabirzhanova I, Sabirzhanov B, Bjordahl J, Brandt J, Jay PY, Clark TG. Activation of Tolloid-like 1 gene expression by the cardiac specific homeobox gene Nkx2-5. Dev Growth Differ 2009; 51:403-10. [PMID: 19366374 DOI: 10.1111/j.1440-169x.2009.01097.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian Tolloid-like 1 (Tll-1) is a pleiotropic metalloprotease that is expressed by a small subset of cells within the precardiac mesoderm and is necessary for proper heart development. Following heart tube formation Tll-1 is expressed by the endocardium and regions of myocardium overlying the region of the muscular interventricular septum. Mutations in Tll-1 lead to embryonic lethality due to cardiac defects. We demonstrate that the Tll-1promoter contains Nkx2-5 binding sites and that the Tll-1 promoter is activated by and directly binds Nkx2-5.Tll-1 expression is ablated by a dominant negative Nkx2-5 or by mutation of the Nkx2-5 binding sites within theTll-1 promoter. In vivo, Tll-1 expression is decreased in the hearts of Nkx2-5 knockout embryos when compared with hemizygous and wild-type embryos. These results show that Nkx2-5 is a direct activator of Tll-1 expression and provide insight into the mechanism of the defects found in both the Tll-1 and Nkx2-5 knockout mice.
Collapse
Affiliation(s)
- Inna Sabirzhanova
- University of South Dakota Sanford School of Medicine, Division of Basic Biomedical Sciences, 414 E. Clark St., Vermillion, SD 57069, USA
| | | | | | | | | | | |
Collapse
|
75
|
Di Felice V, De Luca A, Colorito ML, Montalbano A, Ardizzone NM, Macaluso F, Gammazza AM, Cappello F, Zummo G. Cardiac stem cell research: an elephant in the room? Anat Rec (Hoboken) 2009; 292:449-54. [PMID: 19248173 DOI: 10.1002/ar.20858] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heart disease is the leading cause of death in the industrialized world, and stem cell therapy seems to be a promising treatment for injured cardiac tissue. To reach this goal, the scientific community needs to find a good source of stem cells that can be used to obtain new myocardium in a very period range of time. Since there are many ethical and technical problems with using embryonic stem cells as a source of cells with cardiogenic potential, many laboratories have attempted to isolate potential cardiac stem cells from several tissues. The best candidates seem to be cardiac "progenitor" and/or "stem" cells, which can be isolated from subendocardial biopsies from the same patient or from embryonic and/or fetal myocardium. Regardless of the technique used to isolate and characterize these cells, it appears that the different cells isolated from adult myocardium to date are all phenotypic variations of a unique cell type that expresses several markers, such as c-Kit, CD34, MDR-1, Sca-1, CD45, nestin, or Isl-1, in various combinations.
Collapse
Affiliation(s)
- Valentina Di Felice
- Human Anatomy Section, Department of Experimental Medicine, University of Palermo, Via del Vespro 129, Palermo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
|
77
|
Junqueira FP, Fernandes FDB, Coutinho AC, De Pontes PV, Domingues RC. Case report. Isolated left ventricular myocardium non-compaction: MR imaging findings from three cases. Br J Radiol 2009; 82:e37-41. [PMID: 19168689 DOI: 10.1259/bjr/14660238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The purpose of this study is to report three cases of left ventricular myocardium non-compaction (LVNC), with emphasis on the MRI findings. From May 2006 to February 2007, three patients -- 2 females (6 years and 42 years of age) and 1 male (18 years of age) -- presented to our radiology department, two of them with fatigue, shortness of breath and episodes of syncope and arrhythmia, for further investigation by cardiac MRI because an apparent asymmetrical pattern of hypertrophy of the left ventricular myocardium was suspected by transthoracic echocardiography. The 18-year-old patient was only experiencing arrhythmia, and arrhythmogenic right ventricular dysplasia was suspected. The images (produced by a 1.5T MRI system) were interpreted by two experienced radiologists and post-processed with Argus software (Siemens, Germany) for ejection fraction calculation. In all three patients, MRI aided in the correct identification of prominent ventricular myocardial trabeculations and deep intertrabecular recesses communicating with the ventricular cavity, as well as areas of hypokinesia with depressed systolic function, and showed the absence of myocardial delayed enhancement and other structural heart defects. In conclusion, cardiac MRI was useful for correctly identifying this rare congenital heart disorder and appears to increase diagnostic accuracy. Although considered a rare anomaly, radiologists should be capable of recognizing LVNC, as current non-invasive imaging methods have increased the frequency of this diagnosis and timely detection is vital in considering early-stage transplantation.
Collapse
Affiliation(s)
- F P Junqueira
- Clinics CDPI, Clínica de Diagnóstico Por Imagem, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
78
|
Nkx2-5 transactivates the Ets-related protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo. Proc Natl Acad Sci U S A 2009; 106:814-9. [PMID: 19129488 DOI: 10.1073/pnas.0807583106] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies support the existence of a common progenitor for the cardiac and endothelial cell lineages, but the underlying transcriptional networks responsible for specification of these cell fates remain unclear. Here we demonstrated that Ets-related protein 71 (Etsrp71), a newly discovered ETS family transcription factor, was a novel downstream target of the homeodomain protein, Nkx2-5. Using genetic mouse models and molecular biological techniques, we demonstrated that Nkx2-5 binds to an evolutionarily conserved Nkx2-5 response element in the Etsrp71 promoter and induces the Etsrp71 gene expression in vitro and in vivo. Etsrp71 was transiently expressed in the endocardium/endothelium of the developing embryo (E7.75-E9.5) and was extinguished during the latter stages of development. Using a gene disruption strategy, we found that Etsrp71 mutant embryos lacked endocardial/endothelial lineages and were nonviable. Moreover, using transgenic technologies and transcriptional and chromatin immunoprecipitation (ChIP) assays, we further established that Tie2 is a direct downstream target of Etsrp71. Collectively, our results uncover a novel functional role for Nkx2-5 and define a transcriptional network that specifies an endocardial/endothelial fate in the developing heart and embryo.
Collapse
|
79
|
Männer J. The anatomy of cardiac looping: A step towards the understanding of the morphogenesis of several forms of congenital cardiac malformations. Clin Anat 2009; 22:21-35. [DOI: 10.1002/ca.20652] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
80
|
McKeown CR, Nowak RB, Moyer J, Sussman MA, Fowler VM. Tropomodulin1 is required in the heart but not the yolk sac for mouse embryonic development. Circ Res 2008; 103:1241-8. [PMID: 18927466 DOI: 10.1161/circresaha.108.178749] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tropomodulin (Tmod)1 caps the pointed ends of actin filaments in sarcomeres of striated muscle myofibrils and in the erythrocyte membrane skeleton. Targeted deletion of mouse Tmod1 leads to defects in cardiac development, fragility of primitive erythroid cells, and an absence of yolk sac vasculogenesis, followed by embryonic lethality at embryonic day 9.5. The Tmod1-null embryonic hearts do not undergo looping morphogenesis and the cardiomyocytes fail to assemble striated myofibrils with regulated F-actin lengths. To test whether embryonic lethality of Tmod1 nulls results from defects in cardiac myofibrillogenesis and development or from erythroid cell fragility and subsequent defects in yolk sac vasculogenesis, we expressed Tmod1 specifically in the myocardium of the Tmod1-null mice under the control of the alpha-myosin heavy chain promoter Tg(alphaMHC-Tmod1). In contrast to Tmod1-null embryos, which fail to undergo cardiac looping and have defective yolk sac vasculogenesis, both cardiac and yolk sac morphology of Tmod1(-/-Tg(alphaMHC-Tmod1)) embryos are normal at embryonic day 9.5. Tmod1(-/-Tg(alphaMHC-Tmod1)) embryos develop into viable and fertile mice, indicating that expression of Tmod1 in the heart is sufficient to rescue the Tmod1-null embryonic defects. Thus, although loss of Tmod1 results in myriad defects and embryonic lethality, the Tmod1(-/-) primary defect is in the myocardium. Moreover, Tmod1 is not required in erythrocytes for viability, nor do the Tmod1(-/-) fragile primitive erythroid cells affect cardiac development, yolk sac vasculogenesis, or viability in the mouse.
Collapse
Affiliation(s)
- Caroline R McKeown
- The Scripps Research Institute, Department of Cell Biology, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
81
|
Mutations in mammalian tolloid-like 1 gene detected in adult patients with ASD. Eur J Hum Genet 2008; 17:344-51. [PMID: 18830233 DOI: 10.1038/ejhg.2008.175] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Atrial septal defect (ASD) is an incomplete septation of atria in human heart causing circulatory problems. Its frequency is estimated at one per 10 000. Actions of numerous genes have been linked to heart development. However, no single gene defect causing ASD has yet been identified. Incomplete heart septation similar to ASD was reported in transgenic mice with both inactive alleles of gene encoding mammalian zinc metalloprotease a mammalian tolloid-like 1 (tll1). Here, we have screened 19 ASD patients and 15 healthy age-matched individuals for mutations in TLL1 gene. All 22 exons were analyzed exon by exon for heteroduplex formation. Subsequently, DNA fragments forming heteroduplexes were sequenced. In four nonrelated patients, three missense mutations in coding sequence, and one single base change in the 5'UTR have been detected. Two mutations (Met182Leu, and Ala238Val) were detected in ASD patients with the same clinical phenotype. As the second mutation locates immediately upstream of the catalytic zinc-binding signature, it might change the enzyme substrate specificity. The third change, Leu627Val in the CUB3 domain, has been found in an ASD patient with interatrial septum aneurysm in addition to ASD. The CUB3 domain is important for substrate-specific recognition. In the remaining 15 patients as well as in 15 reference samples numerous base substitutions, deletions, and insertions have been detected, but no mutations changing the coding sequence have been found. Lack of mutations in relation to ASD of these patients could possibly be because of genetic heterogeneity of the syndrome.
Collapse
|
82
|
Jang J, Ku SY, Kim JE, Choi K, Kim YY, Kim HS, Oh SK, Lee EJ, Cho HJ, Song YH, Lee SH, Lee SH, Suh CS, Kim SH, Moon SY, Choi YM. Notch inhibition promotes human embryonic stem cell-derived cardiac mesoderm differentiation. Stem Cells 2008; 26:2782-90. [PMID: 18757302 DOI: 10.1634/stemcells.2007-1053] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The roles of Notch signaling in cardiac differentiation from murine embryonic stem cells have been well documented. We investigated whether Notch signaling plays a similar role in human embryonic stem cells (hESCs). Although, as previously reported, blocking Notch signaling via the addition of gamma-secretase inhibitor (GSI) alone failed to affect hESC differentiation, we found that GSI plus reduced-volume culture medium (GSI/RVCM) accelerated mesodermal differentiation. GSI/RVCM conditions simultaneously suppressed commitment toward neuroectodermal lineages. Furthermore, sustained inhibition of Notch signaling further enhanced differentiation into cardiac mesoderm. Spontaneous beating activity was typically observed from 12 days after initiation of GSI treatment in RVCM. Moreover, hESC-derived cardiomyocytes expressed connexin 43 and possessed spontaneous calcium oscillations and cardiomyocyte beats coupled to neonatal rat cardiomyocytes when cocultured. These findings strongly suggest a distinct role for Notch signaling in the induction and specification of hESC-derived cardiac mesoderm in vitro. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Jiho Jang
- Department of Obstetrics and Gynecology, Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Chongno-ku, Seoul, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Retinoic acid (RA), the active derivative of vitamin A, by acting through retinoid receptors, is involved in signal transduction pathways regulating embryonic development, tissue homeostasis, and cellular differentiation and proliferation. RA is important for the development of the heart. The requirement of RA during early cardiovascular morphogenesis has been studied in targeted gene deletion of retinoic acid receptors and in the vitamin A-deficient avian embryo. The teratogenic effects of high doses of RA on cardiovascular morphogenesis have also been demonstrated in different animal models. Specific cardiovascular targets of retinoid action include effects on the specification of cardiovascular tissues during early development, anteroposterior patterning of the early heart, left/right decisions and cardiac situs, endocardial cushion formation, and in particular, the neural crest. In the postdevelopment period, RA has antigrowth activity in fully differentiated neonatal cardiomyocytes and cardiac fibroblasts. Recent studies have shown that RA has an important role in the cardiac remodeling process in rats with hypertension and following myocardial infarction. This chapter will focus on the role of RA in regulating cardiomyocyte growth and differentiation during embryonic and the postdevelopment period.
Collapse
Affiliation(s)
- Jing Pan
- Division of Molecular Cardiology, The Texas A&M University System Health Science Center, Cardiovascular Research Institute, College of Medicine Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | | |
Collapse
|
84
|
Hernández-Torres F, Pedrajas JR, Aránega AE, Navarro F. Expression in bacteria of small and specific protein domains of two transcription factor isoforms, purification and monospecific polyclonal antibodies generation, by a two-step affinity chromatography procedure. Protein Expr Purif 2008; 60:151-6. [PMID: 18479936 DOI: 10.1016/j.pep.2008.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/10/2008] [Accepted: 03/14/2008] [Indexed: 02/07/2023]
Abstract
The detection and analysis of protein isoforms is a complicated task especially if they differ only in small specific domains. Obtaining specific polyclonal antibodies against these domains is a challenge, but if successful it can have a wide range of applications, such as in proteomics and immunochemical analysis. We show herein a method of overexpression and purification of two small specific domains corresponding to the isoforms b and c of the murine transcription factor Pitx2, and the generation and purification of monospecific polyclonal antibodies against them, by using a two-step affinity purification procedure, based on the use of CNBr-Sepharose matrix. Such a method also allows recovering monospecific polyclonal antibodies against the tag fusion peptide (C-LYTAG tag). The specificity of the isolated polyclonal antibodies was demonstrated by Western blot and immunohistochemical analysis. In addition, our protocol is easily scalable and allows the generation of monospecific polyclonal antibodies for large-scale analysis.
Collapse
Affiliation(s)
- Francisco Hernández-Torres
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071 Jaén, Spain
| | | | | | | |
Collapse
|
85
|
Gambetta K, Al-Ahdab MK, Ilbawi MN, Hassaniya N, Gupta M. Transcription repression and blocks in cell cycle progression in hypoplastic left heart syndrome. Am J Physiol Heart Circ Physiol 2008; 294:H2268-75. [PMID: 18344372 DOI: 10.1152/ajpheart.91494.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoplastic left heart syndrome (HLHS) is characterized by abnormally developed atrial septum and a severe underdevelopment of the left side of the heart. Despite significant advances in its surgical management, little is known about the molecular abnormalities in this syndrome. To gain molecular insights into HLHS, expression profiling by gene-chip microarray (Affymetrix U133 2.0) and by real-time RT-PCR was performed in the atrial septum of patients diagnosed with HLHS and compared with age-matched non-HLHS patients. Hierarchical clustering of all expressed genes with a P < 0.01 of all tissue samples showed two main clusters, one of HLHS and the other of non-HLHS, suggesting different expression patterns by the two groups. Net affix followed by real-time RT-PCR analysis identified the differentially expressed genes to be those involved in chromatin remodeling, cell cycle regulation, and transcriptional regulation. These included remodeling factors, histone deactylase 2 and SET and MYND domain containing 1; transcription factors, FoxP1, and components of the calcineurin-nuclear factor of activated T cells signaling pathway; and cell cycle regulators, cyclin-dependent kinase (CDK)-4, phosphatase and tensin homolog, and p18. Since these factors play essential roles in heart growth and development, the abnormal expression pattern suggests that these molecules may contribute to the pathogenesis of HLHS.
Collapse
Affiliation(s)
- Katheryn Gambetta
- The Heart Institute for Children, Hope Children's Hospital, Oak Lawn, IL, USA
| | | | | | | | | |
Collapse
|
86
|
Groenendijk BCW, Van der Heiden K, Hierck BP, Poelmann RE. The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model. Physiology (Bethesda) 2008; 22:380-9. [PMID: 18073411 DOI: 10.1152/physiol.00023.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, the role of wall shear stress in the chicken embryonic heart is analyzed to determine its effect on cardiac development through regulating gene expression. Therefore, background information is provided for fluid dynamics, normal chicken and human heart development, cardiac malformations, cardiac and vitelline blood flow, and a chicken model to induce cardiovascular anomalies. A set of endothelial shear stress-responsive genes coding for endothelin-1 (ET-1), lung Krüppel-like factor (LKLF/KLF2), and endothelial nitric oxide synthase (eNOS/NOS-3) are active in development and are specifically addressed.
Collapse
|
87
|
Arrell DK, Niederländer NJ, Faustino RS, Behfar A, Terzic A. Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of tumor necrosis factor alpha-primed endodermal secretome. Stem Cells 2007; 26:387-400. [PMID: 17991915 DOI: 10.1634/stemcells.2007-0599] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the developing embryo, instructive guidance from the ventral endoderm secures cardiac program induction within the anterolateral mesoderm. Endoderm-guided cardiogenesis, however, has yet to be resolved at the proteome level. Here, through cardiopoietic priming of the endoderm with the reprogramming cytokine tumor necrosis factor alpha (TNFalpha), candidate effectors of embryonic stem cell cardiac differentiation were delineated by comparative proteomics. Differential two-dimensional gel electrophoretic mapping revealed that more than 75% of protein species increased >1.5-fold in the TNFalpha-primed versus unprimed endodermal secretome. Protein spot identification by linear ion trap quadrupole (LTQ) tandem mass spectrometry (MS/MS) and validation by shotgun LTQ-Fourier transform MS/MS following multidimensional chromatography mapped 99 unique proteins from 153 spot assignments. A definitive set of 48 secretome proteins was deduced by iterative bioinformatic screening using algorithms for detection of canonical and noncanonical indices of secretion. Protein-protein interaction analysis, in conjunction with respective expression level changes, revealed a nonstochastic TNFalpha-centric secretome network with a scale-free hierarchical architecture. Cardiovascular development was the primary developmental function of the resolved TNFalpha-anchored network. Functional cooperativity of the derived cardioinductive network was validated through direct application of the TNFalpha-primed secretome on embryonic stem cells, potentiating cardiac commitment and sarcomerogenesis. Conversely, inhibition of primary network hubs negated the procardiogenic effects of TNFalpha priming. Thus, proteomic cartography establishes a systems biology framework for the endodermal secretome network guiding stem cell cardiopoiesis.
Collapse
Affiliation(s)
- D Kent Arrell
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departmentsof Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
88
|
Abstract
Ischemic heart disease continues to progress at pandemic levels despite current preventive and therapeutic interventions. Recent advances in stem cell biology have provided the impetus for a paradigm shift in treatment options, potentially transforming palliative care into curative therapy. Although delivery of stem cells in clinical trials has resulted in a modest functional improvement of myocardial performance in the setting of infarction, ongoing efforts at the bench and bedside are taking place to increase stem cell propensity for engraftment and homing into diseased myocardium. The newest opportunity has arisen with the delivery of stem cells guided to execute the cardiac program. Here, we examine the recent application of genomic and proteomic technology to decipher the process of cardiopoiesis and to recruit cardiopoietic stem cells for cardioprotection and safe myocardial repair.
Collapse
Affiliation(s)
- Atta Behfar
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
89
|
Snider P, Olaopa M, Firulli AB, Conway SJ. Cardiovascular development and the colonizing cardiac neural crest lineage. ScientificWorldJournal 2007; 7:1090-113. [PMID: 17619792 PMCID: PMC2613651 DOI: 10.1100/tsw.2007.189] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that regulate myocardial proliferation, can signal to the epicardium to subsequently secrete a growth factor/s, or may even contribute directly to the heart. Although there are species differences between mouse, chick, and Xenopus during cardiac neural crest cell morphogenesis, recent data suggest mouse and chick are more similar to each other than to the zebrafish neural crest cell lineage. Several groups have used the genetically defined Pax3 (splotch) mutant mice model to address the role of the cardiac neural crest lineage. Here we review the current literature, the neural crest-related role of the Pax3 transcription factor, and discuss potential function/s of cardiac neural crest-derived cells during cardiovascular developmental remodeling.
Collapse
Affiliation(s)
- Paige Snider
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Michael Olaopa
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Anthony B. Firulli
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Simon J. Conway
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
- *Simon J. Conway:
| |
Collapse
|
90
|
Tian L, Zhu J, Yang J, Zhu Q, Du R, Li J, Li W. Missense mutations in CSX/NKX2.5 are associated with atrial septal defects. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1007-4376(07)60049-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
91
|
Guo T, Wang W, Rudnick PA, Song T, Li J, Zhuang Z, Weil RJ, DeVoe DL, Lee CS, Balgley BM. Proteome analysis of microdissected formalin-fixed and paraffin-embedded tissue specimens. J Histochem Cytochem 2007; 55:763-72. [PMID: 17409379 DOI: 10.1369/jhc.7a7177.2007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Targeted proteomics research, based on the enrichment of disease-relevant proteins from isolated cell populations selected from high-quality tissue specimens, offers great potential for the identification of diagnostic, prognostic, and predictive biological markers for use in the clinical setting and during preclinical testing and clinical trials, as well as for the discovery and validation of new protein drug targets. Formalin-fixed and paraffin-embedded (FFPE) tissue collections, with attached clinical and outcome information, are invaluable resources for conducting retrospective protein biomarker investigations and performing translational studies of cancer and other diseases. Combined capillary isoelectric focusing/nano-reversed-phase liquid chromatography separations equipped with nano-electrospray ionization-tandem mass spectrometry are employed for the studies of proteins extracted from microdissected FFPE glioblastoma tissues using a heat-induced antigen retrieval (AR) technique. A total of 14,478 distinct peptides are identified, leading to the identification of 2733 non-redundant SwissProt protein entries. Eighty-three percent of identified FFPE tissue proteins overlap with those obtained from the pellet fraction of fresh-frozen tissue of the same patient. This large degree of protein overlapping is attributed to the application of detergent-based protein extraction in both the cell pellet preparation protocol and the AR technique.
Collapse
Affiliation(s)
- Tong Guo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Xu C, He JQ, Kamp TJ, Police S, Hao X, O'Sullivan C, Carpenter MK, Lebkowski J, Gold JD. Human embryonic stem cell-derived cardiomyocytes can be maintained in defined medium without serum. Stem Cells Dev 2007; 15:931-41. [PMID: 17253954 DOI: 10.1089/scd.2006.15.931] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current procedures for the maintenance of cardiomyocytes from human embryonic stem (hES) cells rely on either co-culture with mouse cells or medium containing fetal bovine serum (FBS). Due to exposure to animal products, these methods carry the risk of potential pathogen contamination and increased immunogenicity. Additionally, FBS introduces inherent variability in the cultures due to the inevitable differences in serum lots. Here we investigated whether a defined serum-free medium containing creatine, carnitine, taurine, and insulin (CCTI) could maintain hES cell-derived cardiomyocytes. We show that hES cell-derived cardiomyocytes maintained in the CCTI medium in the absence of any feeders exhibit similar phenotypes to those maintained in serum, as indicated by the following observations: (1) comparable levels of cardiac gene transcription were found in cells grown in serum-containing medium versus those in the CCTI medium; (2) cardiomyocyte-associated proteins were expressed in cells cultured in the CCTI medium; (3) beating cells in the CCTI medium responded to pharmacological agents in a dose-dependent manner; and (4) the vast majority of the beating embryoid bodies displayed ventricular-like action potentials (APs), and the ventricular cells in serum-containing medium and the CCTI medium had indistinguishable AP properties. Therefore, culturing hES cell-derived cardiomyocytes in serum-free medium as described here should facilitate the use of the cells for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Chunhui Xu
- Geron Corporation, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Schleiffarth JR, Person AD, Martinsen BJ, Sukovich DJ, Neumann A, Baker CVH, Lohr JL, Cornfield DN, Ekker SC, Petryk A. Wnt5a is required for cardiac outflow tract septation in mice. Pediatr Res 2007; 61:386-91. [PMID: 17515859 DOI: 10.1203/pdr.0b013e3180323810] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lack of septation of the cardiac outflow tract (OFT) results in persistent truncus arteriosus (PTA), a form of congenital heart disease. The outflow myocardium expands through addition of cells originating from the pharyngeal mesoderm referred to as secondary/anterior heart field, whereas cardiac neural crest (CNC) cell-derived mesenchyme condenses to form an aortopulmonary septum. We show for the first time that a mutation in Wnt5a in mice leads to PTA. We provide evidence that Wnt5a is expressed in the pharyngeal mesoderm adjacent to CNC cells in both mouse and chicken embryos and in the myocardial cell layer of the conotruncus at the time when CNC cells begin to form the aortopulmonary septum in mice. Although expression domains of secondary heart field markers are not altered in Wnt5a mutant embryos, the expression of CNC cell marker PlexinA2 is significantly reduced. Stimulation of CNC cells with Wnt5a protein elicits Ca2+ transients, suggesting that CNC cells are capable of responding to Wnt5a. We propose a novel model in which Wnt5a produced in the OFT by cells originating from the pharyngeal mesoderm signals to adjacent CNC cells during formation of the aortopulmonary septum through a noncanonical pathway via localized intracellular increases in Ca2+.
Collapse
Affiliation(s)
- J Robert Schleiffarth
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Behfar A, Perez-Terzic C, Faustino RS, Arrell DK, Hodgson DM, Yamada S, Puceat M, Niederländer N, Alekseev AE, Zingman LV, Terzic A. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. ACTA ACUST UNITED AC 2007; 204:405-20. [PMID: 17283208 PMCID: PMC2118723 DOI: 10.1084/jem.20061916] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Embryonic stem cells have the distinct potential for tissue regeneration, including cardiac repair. Their propensity for multilineage differentiation carries, however, the liability of neoplastic growth, impeding therapeutic application. Here, the tumorigenic threat associated with embryonic stem cell transplantation was suppressed by cardiac-restricted transgenic expression of the reprogramming cytokine TNF-α, enhancing the cardiogenic competence of recipient heart. The in vivo aptitude of TNF-α to promote cardiac differentiation was recapitulated in embryoid bodies in vitro. The procardiogenic action required an intact endoderm and was mediated by secreted cardio-inductive signals. Resolved TNF-α–induced endoderm-derived factors, combined in a cocktail, secured guided differentiation of embryonic stem cells in monolayers produce cardiac progenitors termed cardiopoietic cells. Characterized by a down-regulation of oncogenic markers, up-regulation, and nuclear translocation of cardiac transcription factors, this predetermined population yielded functional cardiomyocyte progeny. Recruited cardiopoietic cells delivered in infarcted hearts generated cardiomyocytes that proliferated into scar tissue, integrating with host myocardium for tumor-free repair. Thus, cardiopoietic programming establishes a strategy to hone stem cell pluripotency, offering a tumor-resistant approach for regeneration.
Collapse
Affiliation(s)
- Atta Behfar
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Stephen LJ, Fawkes AL, Verhoeve A, Lemke G, Brown A. A critical role for the EphA3 receptor tyrosine kinase in heart development. Dev Biol 2007; 302:66-79. [PMID: 17046737 DOI: 10.1016/j.ydbio.2006.08.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 08/23/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
Eph proteins are receptor tyrosine kinases that control changes in cell shape and migration during development. We now describe a critical role for EphA3 receptor signaling in heart development as revealed by the phenotype of EphA3 null mice. During heart development mesenchymal outgrowths, the atrioventricular endocardial cushions, form in the atrioventricular canal. This morphogenetic event requires endocardial cushion cells to undergo an epithelial to mesenchymal transformation (EMT), and results in the formation of the atrioventricular valves and membranous portions of the atrial and ventricular septa. We show that EphA3 knockouts have significant defects in the development of their atrial septa and atrioventricular endocardial cushions, and that these cardiac abnormalities lead to the death of approximately 75% of homozygous EphA3(-/-) mutants. We demonstrate that EphA3 and its ligand, ephrin-A1, are expressed in adjacent cells in the developing endocardial cushions. We further demonstrate that EphA3(-/-) atrioventricular endocardial cushions are hypoplastic compared to wildtype and that EphA3(-/-) endocardial cushion explants give rise to fewer migrating mesenchymal cells than wildtype explants. Thus our results indicate that EphA3 plays a crucial role in the development and morphogenesis of the cells that give rise to the atrioventricular valves and septa.
Collapse
Affiliation(s)
- Lesley J Stephen
- BioTherapeutics Research Group, The John P Robarts Research Institute, and The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
96
|
Anatomy of the Heart. CARDIOVASCULAR MEDICINE 2007. [DOI: 10.1007/978-1-84628-715-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
97
|
Dees E, Robertson JB, Zhu T, Bader D. Specific deletion of CMF1 nuclear localization domain causes incomplete cell cycle withdrawal and impaired differentiation in avian skeletal myoblasts. Exp Cell Res 2006; 312:3000-14. [PMID: 16904105 DOI: 10.1016/j.yexcr.2006.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/31/2006] [Accepted: 06/01/2006] [Indexed: 11/17/2022]
Abstract
CMF1 is a protein expressed in embryonic striated muscle with onset of expression preceding that of contractile proteins. Disruption of CMF1 in myoblasts disrupts muscle-specific protein expression. Preliminary studies indicate both nuclear and cytoplasmic distribution of CMF1 protein, suggesting functional roles in both cellular compartments. Here we examine the nuclear function of CMF1, using a newly characterized antibody generated against the CMF1 nuclear localization domain and a CMF1 nuclear localization domain-deleted stable myocyte line. The antibody demonstrates nuclear distribution of the CMF1 protein both in vivo and in cell lines, with clustering of CMF1 protein around chromatin during mitosis. In more differentiated myocytes, the protein shifts to the cytoplasm. The CMF1 NLS-deleted cell lines have markedly impaired capacity to differentiate. Specifically, these cells express less contractile protein than wild-type or full-length CMF1 stably transfected cells, and do not fuse properly into multinucleate syncytia with linear nuclear alignment. In response to low serum medium, a signal to differentiate, CMF1 NLS-deleted cells enter G0, but continue to express proliferation markers and will reenter the cell cycle when stimulated by restoring growth medium. These data suggest that CMF1 is involved in regulation the transition from proliferation to differentiation in embryonic muscle.
Collapse
Affiliation(s)
- Ellen Dees
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
98
|
König K, Will JC, Berger F, Müller D, Benson DW. Familial congenital heart disease, progressive atrioventricular block and the cardiac homeobox transcription factor gene NKX2.5: identification of a novel mutation. Clin Res Cardiol 2006; 95:499-503. [PMID: 16845574 DOI: 10.1007/s00392-006-0412-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 05/22/2006] [Indexed: 11/29/2022]
|
99
|
Au KW, Kou CYC, Woo AYH, Chim SSC, Fung KP, Cheng CHK, Waye MMY, Tsui SKW. Calcyclin binding protein promotes DNA synthesis and differentiation in rat neonatal cardiomyocytes. J Cell Biochem 2006; 98:555-66. [PMID: 16440310 DOI: 10.1002/jcb.20710] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
During cardiac muscle development, most cardiomyocytes permanently withdraw from the cell cycle. Previously, by suppressive subtractive hybridization, we identified calcyclin-binding protein/Siah-interacting protein (CacyBP/SIP) as one of the candidates being upregulated in the hyperplastic to hypertrophic switch, suggesting an important role of CacyBP/SIP in cardiac development. To show the importance of CacyBP/SIP during myoblast differentiation, we report here that CacyBP/SIP is developmentally regulated in postnatal rat hearts. The overexpression of CacyBP/SIP promotes the differentiation and DNA synthesis of H9C2 cells and primary rat cardiomyocytes, as well as downregulates the expression of beta-catenin. Besides, CacyBP/SIP promotes the formation of myotubes and multinucleation upon differentiation. To investigate the cardioprotective role of CacyBP/SIP in cardiomyocytes, a hypoxia/reoxygenation model was employed. We found that CacyBP/SIP was upregulated during myocardial infarction (MI) and hypoxia/reoxygenation. As a conclusion, CacyBP/SIP may play a role in cardiomyogenic differentiation and possibly protection of cardiomyocytes during hypoxia/reoxygenation injury.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cardiotonic Agents
- Cell Cycle
- Cell Differentiation
- Cell Hypoxia
- Cells, Cultured
- Creatine Kinase/metabolism
- Culture Media
- DNA/biosynthesis
- DNA Replication
- Down-Regulation/genetics
- Gene Expression
- Gene Expression Regulation, Developmental
- Intracellular Signaling Peptides and Proteins
- Muscle Fibers, Skeletal/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Up-Regulation/genetics
- beta Catenin/genetics
Collapse
Affiliation(s)
- Ka-Wing Au
- Department of Biochemistry and Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, NT, China
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Hyun C, Park IC. Congenital heart diseases in small animals: part II. Potential genetic aetiologies based on human genetic studies. Vet J 2006; 171:256-62. [PMID: 16490707 DOI: 10.1016/j.tvjl.2005.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2005] [Indexed: 11/22/2022]
Abstract
Comparative genetics provides veterinary researchers and clinicians with invaluable information for the understanding the possible genetic aetiologies and the disease process in congenital heart defects (CHDs) of dogs and cats. Although, the demand on this type of research has increased in the veterinary field, to date no fundamental genetic studies have been reported in the veterinary literature. In this second part of a two-part review, the general features and pathogenesis of major CHDs in humans and small animals are discussed. In addition, the known genetic aetiologies in human CHDs have been considered in parallel to CHDs in small animals.
Collapse
Affiliation(s)
- Changbaig Hyun
- Victor Chang Cardiac Research Institute, St. Vincent Hospital, 384 Victoria Street, Darlinghurst, NSW 2010, Australia.
| | | |
Collapse
|