51
|
Curtis AF, Nair N, Hayse B, McGovney K, Mikula C, Halder P, Craggs JG, Kiselica A, McCrae CS. Preliminary investigation of the interactive role of physiological arousal and insomnia complaints in gray matter volume alterations in chronic widespread pain. J Clin Sleep Med 2024; 20:293-302. [PMID: 37823586 PMCID: PMC10835766 DOI: 10.5664/jcsm.10860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
STUDY OBJECTIVES Brain regions involved in insomnia and chronic pain are overlapping and diffuse. The interactive role of physiological arousal in associations between insomnia symptoms and neural regions is unknown. This preliminary study examined whether arousal interacted with sleep in associations with gray matter volume of frontal (dorsolateral prefrontal cortex, anterior cingulate cortex) and temporal (right/left hippocampus) regions in adults with chronic widespread pain and insomnia complaints. METHODS Forty-seven adults with chronic widespread pain and insomnia (mean age = 46.00, standard deviation = 13.88, 89% women) completed 14 daily diaries measuring sleep onset latency (SOL), wake time after sleep onset, and total sleep time (TST), as well as Holter monitor assessments of heart rate variability (measuring physiological arousal), and magnetic resonance imaging. Multiple regressions examined whether average SOL, wake time after sleep onset, or TST were independently or interactively (with arousal/heart rate variability) associated with dorsolateral prefrontal cortex, anterior cingulate cortex, and left/right hippocampus gray matter volumes. RESULTS Shorter TST was associated with lower right hippocampus volume. TST also interacted with arousal in its association with right hippocampal volume, Specifically, shorter TST was associated with lower volume at highest and average arousal levels. SOL interacted with arousal in its association with anterior cingulate cortex volume, such that, among individuals with lowest arousal, longer SOL was associated with lower volume. CONCLUSIONS Preliminary findings highlight the interactive roles of physiological arousal and insomnia symptoms in associations with neural structure in chronic widespread pain and insomnia. Individuals with the highest physiological arousal may be particularly vulnerable to the impact of shorter TST on hippocampal volume loss. Reducing SOL may only impact anterior cingulate cortex volume in those with lower physiological arousal. CITATION Curtis AF, Nair N, Hayse B, et al. Preliminary investigation of the interactive role of physiological arousal and insomnia complaints in gray matter volume alterations in chronic widespread pain. J Clin Sleep Med. 2024;20(2):293-302.
Collapse
Affiliation(s)
- Ashley F. Curtis
- College of Nursing, University of South Florida, Tampa, Florida
- Department of Psychiatry, University of Missouri-Columbia, Columbia, Missouri
- Department of Psychological Sciences, University of Missouri-Columbia, Columbia, Missouri
| | - Neetu Nair
- Department of Psychiatry, University of Missouri-Columbia, Columbia, Missouri
| | - Braden Hayse
- Department of Psychiatry, University of Missouri-Columbia, Columbia, Missouri
| | - Kevin McGovney
- Department of Psychological Sciences, University of Missouri-Columbia, Columbia, Missouri
| | - Cynthia Mikula
- Department of Health Psychology, University of Missouri-Columbia, Columbia, Missouri
| | - Puja Halder
- Department of Psychiatry, University of Missouri-Columbia, Columbia, Missouri
| | - Jason G. Craggs
- Department of Psychiatry, University of Missouri-Columbia, Columbia, Missouri
- Department of Physical Therapy, University of Missouri-Columbia, Columbia, Missouri
- Department of Psychiatry & Behavioral Neurosciences, University of South Florida, Tampa, FL
| | - Andrew Kiselica
- Department of Health Psychology, University of Missouri-Columbia, Columbia, Missouri
| | - Christina S. McCrae
- College of Nursing, University of South Florida, Tampa, Florida
- Department of Psychiatry, University of Missouri-Columbia, Columbia, Missouri
| |
Collapse
|
52
|
Bissonnette J, Dumont E, Pinard AM, Landry M, Rainville P, Ogez D. Hypnosis and music interventions for anxiety, pain, sleep and well-being in palliative care: systematic review and meta-analysis. BMJ Support Palliat Care 2024; 13:e503-e514. [PMID: 35292511 DOI: 10.1136/bmjspcare-2022-003551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Maintaining quality of life is a primary goal of palliative care (PC). Complementary interventions can help meet the needs of patients at the end of life. OBJECTIVES This meta-analysis aims to (1) evaluate the feasibility, acceptability and fidelity of music and hypnosis interventions designed for patients in PC and (2) evaluate the impact of these interventions on pain, anxiety, sleep and well-being. METHODS Relevant studies were sourced from major databases. We selected both randomised controlled trials (RCTs) and studies relying on pre-post design with details of the intervention(s). RESULTS Four RCT and seven non-randomised pre-post studies met the inclusion criteria. Overall, the feasibility and acceptability of the interventions reached an adequate level of satisfaction. However, only three studies reported using a written protocol. The meta-analysis of RCT indicated a significant decrease in pain with an effect size of -0.42, p=0.003. The small number of RCT studies did not allow us to quantify the effects for other variables. Analyses of data from pre-post designs indicated a favourable outcome for pain, anxiety, sleep and well-being. CONCLUSION Despite the limited number of studies included in our meta-analysis, hypnosis and music intervention in the context of PC shows promising results in terms of feasibility and acceptability, as well as improvements on pain, anxiety, sleep and well-being. The available studies are insufficient to compare the efficacy across interventions and assess the potential benefits of their combinations. These results underscore the importance of further research on well-described complementary interventions relying on hypnosis and music. PROSPERO REGISTRATION NUMBER CRD-42021236610.
Collapse
Affiliation(s)
- Josiane Bissonnette
- Department of Anaesthesiology and Pain Medicine, Université de Montréal, Montréal, Québec, Canada
- Faculty of Music, Université Laval, Québec, Québec, Canada
| | - Emilie Dumont
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Anne-Marie Pinard
- Department of Anaesthesiology and Intensive Care, Université Laval, Québec, Québec, Canada
- Centre intégré de recherche en réadaptation et intégration sociale (CIRRIS), CIUSSS de la Capitale-Nationale, Québec, Québec, Canada
| | - Mathieu Landry
- Departement of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Rainville
- Department of Stomatology, Université de Montréal, Montréal, Québec, Canada
- Research Center, Institut universitaire de gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada
| | - David Ogez
- Department of Anaesthesiology and Pain Medicine, Université de Montréal, Montréal, Québec, Canada
- Research Center, Hôpital Maisonneuve-Rosemont (CR-HMR), Montréal, Québec, Canada
| |
Collapse
|
53
|
Hoy CW, Quiroga-Martinez DR, Sandoval E, King-Stephens D, Laxer KD, Weber P, Lin JJ, Knight RT. Asymmetric coding of reward prediction errors in human insula and dorsomedial prefrontal cortex. Nat Commun 2023; 14:8520. [PMID: 38129440 PMCID: PMC10739882 DOI: 10.1038/s41467-023-44248-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The signed value and unsigned salience of reward prediction errors (RPEs) are critical to understanding reinforcement learning (RL) and cognitive control. Dorsomedial prefrontal cortex (dMPFC) and insula (INS) are key regions for integrating reward and surprise information, but conflicting evidence for both signed and unsigned activity has led to multiple proposals for the nature of RPE representations in these brain areas. Recently developed RL models allow neurons to respond differently to positive and negative RPEs. Here, we use intracranially recorded high frequency activity (HFA) to test whether this flexible asymmetric coding strategy captures RPE coding diversity in human INS and dMPFC. At the region level, we found a bias towards positive RPEs in both areas which paralleled behavioral adaptation. At the local level, we found spatially interleaved neural populations responding to unsigned RPE salience and valence-specific positive and negative RPEs. Furthermore, directional connectivity estimates revealed a leading role of INS in communicating positive and unsigned RPEs to dMPFC. These findings support asymmetric coding across distinct but intermingled neural populations as a core principle of RPE processing and inform theories of the role of dMPFC and INS in RL and cognitive control.
Collapse
Affiliation(s)
- Colin W Hoy
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - David R Quiroga-Martinez
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Center for Music in the Brain, Aarhus University & The Royal Academy of Music, Aarhus, Denmark
| | - Eduardo Sandoval
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth D Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Peter Weber
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Jack J Lin
- Department of Neurology, University of California, Davis, Davis, CA, USA
- Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
54
|
Gurdiel-Álvarez F, González-Zamorano Y, Lerma-Lara S, Gómez-Soriano J, Sánchez-González JL, Fernández-Carnero J, Navarro-López V. Transcranial Direct Current Stimulation (tDCS) Effects on Quantitative Sensory Testing (QST) and Nociceptive Processing in Healthy Subjects: A Systematic Review and Meta-Analysis. Brain Sci 2023; 14:9. [PMID: 38275514 PMCID: PMC10813344 DOI: 10.3390/brainsci14010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The aim of this study is to determine the effect that different tDCS protocols have on pain processing in healthy people, assessed using quantitative sensory tests (QST) and evoked pain intensity. METHODS We systematically searched in EMBASE, CINAHL, PubMed, PEDro, PsycInfo, and Web of Science. Articles on tDCS on a healthy population and regarding QST, such as pressure pain thresholds (PPT), heat pain thresholds (HPT), cold pain threshold (CPT), or evoked pain intensity were selected. Quality was analyzed using the Cochrane Risk of Bias Tool and PEDro scale. RESULTS Twenty-six RCTs were included in the qualitative analysis and sixteen in the meta-analysis. There were no significant differences in PPTs between tDCS and sham, but differences were observed when applying tDCS over S1 in PPTs compared to sham. Significant differences in CPTs were observed between tDCS and sham over DLPFC and differences in pain intensity were observed between tDCS and sham over M1. Non-significant effects were found for the effects of tDCS on HPTs. CONCLUSION tDCS anodic over S1 stimulation increases PPTs, while a-tDCS over DLPFC affects CPTs. The HPTs with tDCS are worse. Finally, M1 a-tDCS seems to reduce evoked pain intensity in healthy subjects.
Collapse
Affiliation(s)
- Francisco Gurdiel-Álvarez
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain; (F.G.-Á.); (Y.G.-Z.)
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, 28032 Madrid, Spain
| | - Yeray González-Zamorano
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain; (F.G.-Á.); (Y.G.-Z.)
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, 28032 Madrid, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28032 Madrid, Spain;
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain
| | - Sergio Lerma-Lara
- Department of Physical Therapy, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
| | - Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Universidad Castilla La Mancha, 45071 Toledo, Spain;
| | - Juan Luis Sánchez-González
- Faculty of Nursing and Physiotherapy, Department of Nursing and Physiotherapy, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Josué Fernández-Carnero
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, 28032 Madrid, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28032 Madrid, Spain;
- La Paz Hospital Institute for Health Research, IdiPAZ, 28922 Madrid, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Víctor Navarro-López
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28032 Madrid, Spain;
- Movement Analysis, Biomechanics, Ergonomics, and Motor Control Laboratory, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| |
Collapse
|
55
|
Boissoneault J, Stennett-Blackmon B, Gilmour C, Blaes S. Neural and Psychosocial Mechanisms Underlying Alcohol Use and Pain Interactions: Overview of Current Evidence and Future Directions. CURRENT ADDICTION REPORTS 2023; 10:677-689. [PMID: 38645279 PMCID: PMC11031255 DOI: 10.1007/s40429-023-00518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 04/23/2024]
Abstract
Purpose of Review A growing body of research indicates bidirectional associations between alcohol use and pain. In this review, we highlight common neural and psychosocial mechanisms underlying pain and alcohol use and identify current gaps in the literature regarding alcohol/pain interactions. We also suggest future directions for the field moving forward, including more nuanced conceptualization of alcohol's negative reinforcing effects in the context of pain, broader use of clinically-relevant experimental pain induction modalities, and characterization of age, biological sex, gender, race, and ethnicity as moderators of pain/alcohol interactions. Recent Findings Acute alcohol intake has analgesic and negative-reinforcing effects in the context of pain, and chronic heavy alcohol use appears to increase risk for development of chronic pain. At the same time, pain, both acute and chronic, acts as a proximal antecedent for alcohol use and is associated with relapse risk for individuals in recovery from alcohol use disorder. Summary Although the links between alcohol use and pain are increasingly appreciated, significant gaps in understanding remain and systematic study of alcohol/pain interactions at all levels, including basic, preclinical, translational, and interventional, is needed.
Collapse
Affiliation(s)
- Jeff Boissoneault
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Center for Pain Research and Behavioral Health, University of Florida, Gainesville, FL, USA
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, USA
| | - Bethany Stennett-Blackmon
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Center for Pain Research and Behavioral Health, University of Florida, Gainesville, FL, USA
| | - Christina Gilmour
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Center for Pain Research and Behavioral Health, University of Florida, Gainesville, FL, USA
| | - Shelby Blaes
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Center for Pain Research and Behavioral Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
56
|
Lu C, Moliadze V, Nees F. Dynamic processes of mindfulness-based alterations in pain perception. Front Neurosci 2023; 17:1253559. [PMID: 38027503 PMCID: PMC10665508 DOI: 10.3389/fnins.2023.1253559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Mindfulness-based processes have been shown to enhance attention and related behavioral responses, including analgesia, which is discussed as an effective method in the context of pain interventions. In the present review, we introduce the construct of mindfulness, delineating the concepts, factors, and processes that are summarized under this term and might serve as relevant components of the underlying mechanistic pathways in the field of pain. We also discuss how differences in factors such as definitions of mindfulness, study design, and strategies in mindfulness-based attention direction may need to be considered when putting the findings from previous studies into a whole framework. In doing so, we capitalize on a potential dynamic process model of mindfulness-based analgesia. In this respect, the so-called mindfulness-based analgesia may initially result from improved cognitive regulation strategies, while at later stages of effects may be driven by a reduction of interference between both cognitive and affective factors. With increasing mindfulness practice, pathways and mechanisms of mindfulness analgesia may change dynamically, which could result from adaptive coping. This is underlined by the fact that the neural mechanism of mindfulness analgesia is manifested as increased activation in the ACC and aINS at the beginner level while increased activation in the pINS and reduced activation in the lPFC at the expert level.
Collapse
Affiliation(s)
| | | | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
57
|
Valentinova K, Acuña MA, Ntamati NR, Nevian NE, Nevian T. An amygdala-to-cingulate cortex circuit for conflicting choices in chronic pain. Cell Rep 2023; 42:113125. [PMID: 37733589 PMCID: PMC10636611 DOI: 10.1016/j.celrep.2023.113125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/12/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Chronic pain is a complex experience with multifaceted behavioral manifestations, often leading to pain avoidance at the expense of reward approach. How pain facilitates avoidance in situations with mixed outcomes is unknown. The anterior cingulate cortex (ACC) plays a key role in pain processing and in value-based decision-making. Distinct ACC inputs inform about the sensory and emotional quality of pain. However, whether specific ACC circuits underlie pathological conflict assessment in pain remains underexplored. Here, we demonstrate that mice with chronic pain favor cold avoidance rather than reward approach in a conflicting task. This occurs along with selective strengthening of basolateral amygdala inputs onto ACC layer 2/3 pyramidal neurons. The amygdala-cingulate projection is necessary and sufficient for the conflicting cold avoidance. Further, low-frequency stimulation of this pathway restores AMPA receptor function and reduces avoidance in pain mice. Our findings provide insights into the circuits and mechanisms underlying cognitive aspects of pain and offer potential targets for treatment.
Collapse
Affiliation(s)
- Kristina Valentinova
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland.
| | - Mario A Acuña
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Niels R Ntamati
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Natalie E Nevian
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas Nevian
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland.
| |
Collapse
|
58
|
Hervert EA, Birdsong W. The opioid peptide met-enkephalin modulates thalamo-cortical excitation inhibition balance in a medial thalamus-anterior cingulate cortex circuit. Neuropharmacology 2023; 242:109785. [PMID: 39491147 DOI: 10.1016/j.neuropharm.2023.109785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Activation of opioid receptors in the anterior cingulate cortex (ACC) mediates aspects of analgesia induced by both exogenous and endogenous opioids. We have previously shown that opioid signaling disrupts both afferent excitatory and indirect inhibitory synaptic transmission from the medial thalamus (MThal) to the ACC, but the effects of non-selective opioid peptides such as [Met]5-enkephalin (ME) within this circuit remain poorly understood. The goal of the current study was to understand how ME modulates thalamic-driven excitatory and inhibitory synaptic transmission onto layer V pyramidal neurons in the ACC. We used pharmacology, brain slice electrophysiology and optogenetic stimulation to study opioid-mediated modulation of optically evoked glutamatergic and GABAergic transmission. The results revealed that bath perfused ME inhibited both AMPA-mediated excitatory and GABA-mediated inhibitory synaptic transmission in the ACC. However, inhibitory transmission was more potently inhibited than excitatory transmission by ME. This preferential reduction in GABAA-mediated synaptic transmission was primarily due to the activation of delta opioid receptors by ME and resulted in a net disinhibition of MThal-ACC excitatory pathway. These results suggest that moderate concentrations of ME can lead to a net increase in excitatory drive of ACC circuitry and that analgesia may be associated with disinhibition rather than inhibition of ACC subcircuits.
Collapse
Affiliation(s)
- Erwin Arias Hervert
- Department of Pharmacology, University of Michigan. Ann Arbor, Michigan, USA.
| | - William Birdsong
- Department of Pharmacology, University of Michigan. Ann Arbor, Michigan, USA.
| |
Collapse
|
59
|
Lançon K, Séguéla P. Dysregulated neuromodulation in the anterior cingulate cortex in chronic pain. Front Pharmacol 2023; 14:1289218. [PMID: 37954846 PMCID: PMC10634228 DOI: 10.3389/fphar.2023.1289218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Chronic pain is a significant global socioeconomic burden with limited long-term treatment options. The intractable nature of chronic pain stems from two primary factors: the multifaceted nature of pain itself and an insufficient understanding of the diverse physiological mechanisms that underlie its initiation and maintenance, in both the peripheral and central nervous systems. The development of novel non-opioidergic analgesic approaches is contingent on our ability to normalize the dysregulated nociceptive pathways involved in pathological pain processing. The anterior cingulate cortex (ACC) stands out due to its involvement in top-down modulation of pain perception, its abnormal activity in chronic pain conditions, and its contribution to cognitive functions frequently impaired in chronic pain states. Here, we review the roles of the monoamines dopamine (DA), norepinephrine (NE), serotonin (5-HT), and other neuromodulators in controlling the activity of the ACC and how chronic pain alters their signaling in ACC circuits to promote pathological hyperexcitability. Additionally, we discuss the potential of targeting these monoaminergic pathways as a therapeutic strategy for treating the cognitive and affective symptoms associated with chronic pain.
Collapse
Affiliation(s)
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Alan Edwards Centre for Research on Pain, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
60
|
Jee HJ, Zhu E, Sun M, Liu W, Zhang Q, Wang J. Anterior cingulate cortex regulates pain catastrophizing-like behaviors in rats. Mol Brain 2023; 16:71. [PMID: 37833814 PMCID: PMC10576271 DOI: 10.1186/s13041-023-01060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Negative pain expectation including pain catastrophizing is a well-known clinical phenomenon whereby patients amplify the aversive value of a painful or oftentimes even a similar, non-painful stimulus. Mechanisms of pain catastrophizing, however, remain elusive. Here, we modeled pain catastrophizing behavior in rats, and found that rats subjected to repeated noxious pin pricks on one paw demonstrated an aversive response to similar but non-noxious mechanical stimuli delivered to the contralateral paw. Optogenetic inhibition of pyramidal neuron activity in the anterior cingulate cortex (ACC) during the application of repetitive noxious pin pricks eliminated this catastrophizing behavior. Time-lapse calcium (Ca2+) imaging in the ACC further revealed an increase in spontaneous neural activity after the delivery of noxious stimuli. Together these results suggest that the experience of repeated noxious stimuli may drive hyperactivity in the ACC, causing increased avoidance of subthreshold stimuli, and that reducing this hyperactivity may play a role in treating pain catastrophizing.
Collapse
Affiliation(s)
- Hyun Jung Jee
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
| | - Elaine Zhu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Mengqi Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Weizhuo Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA.
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
61
|
Giommi F, Bauer PR, Berkovich-Ohana A, Barendregt H, Brown KW, Gallagher S, Nyklíček I, Ostafin B, Raffone A, Slagter HA, Trautwein FM, Vago DR. The (In)flexible self: Psychopathology, mindfulness, and neuroscience. Int J Clin Health Psychol 2023; 23:100381. [PMID: 36969914 PMCID: PMC10033904 DOI: 10.1016/j.ijchp.2023.100381] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
Clinical and neuroscientific evidence indicates that transdiagnostic processes contribute to the generation and maintenance of psychopathological symptoms and disorders. Rigidity (inflexibility) appears a core feature of most transdiagnostic pathological processes. Decreasing rigidity may prove important to restore and maintain mental health. One of the primary domains in which rigidity and flexibility plays a role concerns the self. We adopt the pattern theory of self (PTS) for a working definition of self. This incorporates the pluralist view on self as constituted by multiple aspects or processes, understood to constitute a self-pattern, i.e. processes organized in non-linear dynamical relations across a number of time scales. The use of mindfulness meditation in the format of Mindfulness Based Interventions (MBIs) has been developed over four decades in Clinical Psychology. MBIs are promising as evidence-based treatments, shown to be equivalent to gold-standard treatments and superior to specific active controls in several randomized controlled trials. Notably, MBIs have been shown to target transdiagnostic symptoms. Given the hypothesized central role of rigid, habitual self-patterns in psychopathology, PTS offers a useful frame to understand how mindfulness may be beneficial in decreasing inflexibility. We discuss the evidence that mindfulness can alter the psychological and behavioral expression of individual aspects of the self-pattern, as well as favour change in the self-pattern as a whole gestalt. We discuss neuroscientific research on how the phenomenology of the self (pattern) is reflected in associated cortical networks and meditation-related alterations in cortical networks. Creating a synergy between these two aspects can increase understanding of psychopathological processes and improve diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Fabio Giommi
- NOUS-School of Specialization (PsyD) in Psychotherapy, Milano, Italy
- Insight Dialogue Community [insightdialogue.org/teachers]
| | - Prisca R. Bauer
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Aviva Berkovich-Ohana
- Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Israel
- Faculty of Education, Department of Learning and Instructional Sciences, University of Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Israel
- Faculty of Education, Department of Counseling and Human Development, University of Haifa, Israel
| | - Henk Barendregt
- Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | | | - Shaun Gallagher
- Department of Philosophy, University of Memphis, USA and SOLA, University of Wollongong, Australia
| | - Ivan Nyklíček
- Department of Medical and Clinical Psychology, Tilburg University, the Netherlands
| | - Brian Ostafin
- Department of Clinical Psychology, University of Groningen, the Netherlands
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Italy
- School of Buddhist Studies, Philosophy and Comparative Religions, Nalanda University, India
| | | | - Fynn-Mathis Trautwein
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - David R. Vago
- Contemplative Sciences Center, University of Virginia
| |
Collapse
|
62
|
Journée SH, Mathis VP, Fillinger C, Veinante P, Yalcin I. Janus effect of the anterior cingulate cortex: Pain and emotion. Neurosci Biobehav Rev 2023; 153:105362. [PMID: 37595650 DOI: 10.1016/j.neubiorev.2023.105362] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Over the past 20 years, clinical and preclinical studies point to the anterior cingulate cortex (ACC) as a site of interest for several neurological and psychiatric conditions. The ACC plays a critical role in emotion, autonomic regulation, pain processing, attention, memory and decision making. An increasing number of studies have demonstrated the involvement of the ACC in the emotional component of pain and its comorbidity with emotional disorders such as anxiety and depression. Thanks to the development of animal models combined with state-of-the-art technologies, we now have a better mechanistic understanding of the functions of the ACC. Hence, the primary aim of this review is to compile the most recent preclinical studies on the role of ACC in the emotional component and consequences of chronic pain. Herein, we thus thoroughly describe the pain-induced electrophysiological, molecular and anatomical alterations in the ACC and in its related circuits. Finally, we discuss the next steps that are needed to strengthen our understanding of the involvement of the ACC in emotional and pain processing.
Collapse
Affiliation(s)
- Sarah H Journée
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Victor P Mathis
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Clémentine Fillinger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre Veinante
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
63
|
Fougère M, Greco-Vuilloud J, Arnous C, Abel F, Lowe C, Elie V, Marchand S. Sensory stimulations potentializing digital therapeutics pain control. FRONTIERS IN PAIN RESEARCH 2023; 4:1168377. [PMID: 37745799 PMCID: PMC10511651 DOI: 10.3389/fpain.2023.1168377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
For the past two decades, using Digital Therapeutics (DTx) to counter painful symptoms has emerged as a novel pain relief strategy. Several studies report that DTx significantly diminish pain while compensating for the limitations of pharmacological analgesics (e.g., addiction, side effects). Virtual reality (VR) is a major component of the most effective DTx for pain reduction. Notably, various stimuli (e.g., auditory, visual) appear to be frequently associated with VR in DTx. This review aims to compare the hypoalgesic power of specific stimuli with or without a VR environment. First, this review will briefly describe VR technology and known elements related to its hypoalgesic effect. Second, it will non-exhaustively list various stimuli known to have a hypoalgesic effect on pain independent of the immersive environment. Finally, this review will focus on studies that investigate a possible potentialized effect on pain reduction of these stimuli in a VR environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Serge Marchand
- Lucine, Bordeaux, France
- Faculté de Médecine et des Sciences de la Santé, Centre de Recherche Clinique du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
64
|
Oane I, Barborica A, Mindruta IR. Cingulate Cortex: Anatomy, Structural and Functional Connectivity. J Clin Neurophysiol 2023; 40:482-490. [PMID: 36930223 DOI: 10.1097/wnp.0000000000000970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
SUMMARY The cingulate cortex is a paired brain region located on the medial wall of each hemisphere. This review explores the anatomy as well as the structural and functional connectivity of the cingulate cortex underlying essential roles this region plays in emotion, autonomic, cognitive, motor control, visual-spatial processing, and memory.
Collapse
Affiliation(s)
- Irina Oane
- Epilepsy Monitoring Unit, Neurology Department, University Emergency Hospital Bucharest, Bucharest, Romania
| | - Andrei Barborica
- Physics Department, University of Bucharest, Bucharest, Romania; and
| | - Ioana R Mindruta
- Epilepsy Monitoring Unit, Neurology Department, University Emergency Hospital Bucharest, Bucharest, Romania
- Neurology Department, Carol Davila University of Medicine and Pharmacy Bucharest, Bucharest, Romania
| |
Collapse
|
65
|
Berwal D, Telkes I, Agarwal S, Paniccioli S, McCarthy K, DiMarzio M, McLaughlin B, Pilitsis JG. Investigation of the intraoperative cortical responses to spinal motor mapping in a patient with chronic pain. J Neurophysiol 2023; 130:768-774. [PMID: 37609700 PMCID: PMC10649839 DOI: 10.1152/jn.00221.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Intraoperative neurophysiological monitoring (IONM) in spinal cord stimulation (SCS) surgery for chronic pain is shown to provide effective guidance during device placement. Electromyography (EMG) is used to determine the laterality of the paddle. In some SCS cases, laterality cannot be obtained via EMG due to patient physiology. Electroencephalography (EEG) is already used in IONM to monitor cortical responses. Here, we show proof-of-concept of assessing the responses of epidurally evoked EMGs simultaneously with EEGs to determine laterality during IONM using a high-resolution (HR) SCS paddle. An 8-column HR-SCS paddle was acutely placed at T9-T10 interspace in patients with failed back surgery syndrome. EMG signals from 18 muscle groups were recorded simultaneously with 60-channel EEG signals at various stimulation amplitudes (0-10 mA). Particular attention was paid to regions associated with pain including the somatosensory cortex (S1), prefrontal cortex (PFC), and motor cortex (M1). When left and right lateral contacts were stimulated at low amplitudes (1-2 mA), significant changes were seen in θ, α, and β powers in the contralateral PFC but not in M1 or S1. There was a significant correlation between M1 and contralateral contacts in α power. At higher currents (7-8 mA), right-sided contacts resulted in α power change. We found significant differences in α, θ, and β powers in PFC for contralateral stimulation of the lateral SCS contacts at low amplitudes and in α power at higher amplitudes. The changes in PFC suggest the potential of EEG for understanding a cortical mechanism of action of SCS and provide insight into the pathophysiology of chronic pain.NEW & NOTEWORTHY Here, we present proof of concept of assessing the responses of epidurally evoked electromyography simultaneously with scalp electroencephalography to determine whether both laterality and insights into pain mechanisms can be elucidated. With stimulation, significant changes were seen in θ, α, and β band power in the contralateral prefrontal cortex and in α power in the motor cortex. We provide insight into the mechanism of action of SCS in preventing pain in this patient.
Collapse
Affiliation(s)
- Deepak Berwal
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States
| | - Ilknur Telkes
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States
| | - Shruti Agarwal
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States
| | | | - Kevin McCarthy
- Nuvasive Clinical Services, San Diego, California, United States
| | - Marisa DiMarzio
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, United States
| | | | - Julie G Pilitsis
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States
| |
Collapse
|
66
|
Motzkin JC, Hiser J, Carroll I, Wolf R, Baskaya MK, Koenigs M, Atlas LY. Human ventromedial prefrontal cortex lesions enhance the effect of expectations on pain perception. Cortex 2023; 166:188-206. [PMID: 37390595 PMCID: PMC10528632 DOI: 10.1016/j.cortex.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 07/02/2023]
Abstract
Pain is strongly modulated by expectations and beliefs. Across species, subregions of ventromedial prefrontal cortex (VMPFC) are implicated in a variety of functions germane to pain, predictions, and learning. Human fMRI studies show that VMPFC activity tracks expectations about pain and mediates expectancy effects on pain-related activity in other brain regions. Prior lesion studies suggest that VMPFC may instead play a more general role in generating affective responses to painful stimuli. To test whether VMPFC is required to generate affective responses to pain or is more specifically involved in expectancy-based pain modulation, we studied responses to heat stimuli in five adults with bilateral surgical lesions of VMPFC and twenty healthy adults without brain damage. All participants underwent a quantitative sensory testing procedure followed by a pain expectancy task in which cues predicting either low or high pain were followed by intermittent medium intensity heat stimuli. Compared to adults without brain damage, individuals with VMPFC lesions reported larger differences in expected pain based on predictive cues and failed to update expectations following the covert introduction of unexpected medium temperature stimuli. Consistent with observed expectancy differences, subjective pain unpleasantness ratings in the VMPFC lesion group were more strongly modulated by cue during thermal stimulation. We found no group differences in overall pain sensitivity, nor in relationships between pain and autonomic arousal, suggesting that VMPFC damage specifically enhances the effect of expectations on pain processing, likely driven by impaired integration of new sensory feedback to update expectations about pain. These results provide essential new data regarding the specific functional contribution of VMPFC to pain modulation.
Collapse
Affiliation(s)
- Julian C Motzkin
- Department of Neurology, University of California, San Francisco, CA, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco CA, USA
| | - Jaryd Hiser
- Department of Psychiatry, University of Wisconsin-Madison, WI, USA
| | - Ian Carroll
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | - Richard Wolf
- Department of Psychiatry, University of Wisconsin-Madison, WI, USA
| | - Mustafa K Baskaya
- Department of Neurological Surgery, University of Wisconsin-Madison, WI, USA
| | - Michael Koenigs
- Department of Psychiatry, University of Wisconsin-Madison, WI, USA
| | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA; National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
67
|
Borisova B, Nocheva H, Gérard S, Laronze-Cochard M, Dobrev S, Angelova S, Petrin S, Danalev D. Synthesis, In Silico Log p Study, and In Vitro Analgesic Activity of Analogs of Tetrapeptide FELL. Pharmaceuticals (Basel) 2023; 16:1183. [PMID: 37631098 PMCID: PMC10458596 DOI: 10.3390/ph16081183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The inflammatory process represents a specific response of the organism's immune system. More often, it is related to the rising pain in the affected area. Independently of its origin, pain represents a complex and multidimensional acute or chronic subjective unpleasant perception. Currently, medical doctors prescribe various analgesics for pain treatment, but unfortunately, many of them have adverse effects or are not strong enough to suppress the pain. Thus, the search for new pain-relieving medical drugs continues. METHODS New tetrapeptide analogs of FELL with a generaanalgesic-Glu-X3-X4-Z, where X = Nle, Ile, or Val and Z = NH2 or COOH, containing different hydrophobic amino acids at positions 3 and 4, were synthesized by means of standard solid-phase peptide synthesis using the Fmoc/OtBu strategy in order to study the influence of structure and hydrophobicity on the analgesic activity. The purity of all compounds was monitored by HPLC, and their structures were proven by ESI-MS. Logp values (partition coefficient in octanol/water) for FELL analogs were calculated. Analgesic activity was examined by the Paw-pressure test (Randall-Selitto test). RESULTS The obtained results reveal that Leu is the best choice as a hydrophobic amino acid in the FELL structure. CONCLUSIONS The best analgesic activity is found in the parent compound FELL and its C-terminal amide analog.
Collapse
Affiliation(s)
- Boryana Borisova
- Biotechnology Department, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (B.B.); (S.P.)
| | - Hristina Nocheva
- Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Sofia, Sv. Georgi Sofiyski Blvd. 1, 1431 Sofia, Bulgaria;
| | - Stéphane Gérard
- Institut de Chimie Moléculaire de Reims (ICMR)-UMR CNRS 7312, Université de Reims Champagne-Ardenne, UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France; (S.G.); (M.L.-C.)
| | - Marie Laronze-Cochard
- Institut de Chimie Moléculaire de Reims (ICMR)-UMR CNRS 7312, Université de Reims Champagne-Ardenne, UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France; (S.G.); (M.L.-C.)
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 109, 1113 Sofia, Bulgaria; (S.D.); (S.A.)
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 109, 1113 Sofia, Bulgaria; (S.D.); (S.A.)
| | - Stoyko Petrin
- Biotechnology Department, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (B.B.); (S.P.)
| | - Dancho Danalev
- Biotechnology Department, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (B.B.); (S.P.)
| |
Collapse
|
68
|
Kumar VJ, Scheffler K, Grodd W. The structural connectivity mapping of the intralaminar thalamic nuclei. Sci Rep 2023; 13:11938. [PMID: 37488187 PMCID: PMC10366221 DOI: 10.1038/s41598-023-38967-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
The intralaminar nuclei of the thalamus play a pivotal role in awareness, conscious experience, arousal, sleep, vigilance, as well as in cognitive, sensory, and sexual processing. Nonetheless, in humans, little is known about the direct involvement of these nuclei in such multifaceted functions and their structural connections in the brain. Thus, examining the versatility of structural connectivity of the intralaminar nuclei with the rest of the brain seems reasonable. Herein, we attempt to show the direct structural connectivity of the intralaminar nuclei to diencephalic, mesencephalic, and cortical areas using probabilistic tracking of the diffusion data from the human connectome project. The intralaminar nuclei fiber distributions span a wide range of subcortical and cortical areas. Moreover, the central medial and parafascicular nucleus reveal similar connectivity to the temporal, visual, and frontal cortices with only slight variability. The central lateral nucleus displays a refined projection to the superior colliculus and fornix. The centromedian nucleus seems to be an essential component of the subcortical somatosensory system, as it mainly displays connectivity via the medial and superior cerebellar peduncle to the brainstem and the cerebellar lobules. The subparafascicular nucleus projects to the somatosensory processing areas. It is interesting to note that all intralaminar nuclei have connections to the brainstem. In brief, the structural connectivity of the intralaminar nuclei aligns with the structural core of various functional demands for arousal, emotion, cognition, sensory, vision, and motor processing. This study sheds light on our understanding of the structural connectivity of the intralaminar nuclei with cortical and subcortical structures, which is of great interest to a broader audience in clinical and neuroscience research.
Collapse
Affiliation(s)
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University Clinic Tübingen, Tübingen, Germany
| | - Wolfgang Grodd
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
69
|
Hervert EA, Birdsong W. The Endogenous Opioid Met-Enkephalin Modulates Thalamo-Cortical Excitation Inhibition Balance in a Medial Thalamus-Anterior Cingulate Cortex Circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.547220. [PMID: 37503144 PMCID: PMC10369945 DOI: 10.1101/2023.07.13.547220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Activation of opioid receptors in the anterior cingulate cortex (ACC) mediates aspects of analgesia induced by both exogenous and endogenous opioids. We have previously shown that opioid signaling disrupts both afferent excitatory and indirect inhibitory synaptic transmission from the medial thalamus (MThal) to the ACC, but the effects of endogenous opioids within this circuit remain poorly understood. The goal of the current study was to understand how the endogenous opioid, [Met]5-enkephalin (ME), modulates thalamic-driven excitatory and inhibitory synaptic transmission onto layer V pyramidal neurons in the ACC. We used pharmacology, brain slice electrophysiology and optogenetic stimulation to study opioid-mediated modulation of optically evoked glutamatergic and GABAergic transmission. The results revealed that ME inhibited both AMPA-mediated excitatory and GABA-mediated inhibitory synaptic transmission in the ACC. However, inhibitory transmission was more potently inhibited than excitatory transmission by ME. This preferential reduction in GABAA-mediated synaptic transmission was primarily due to the activation of delta opioid receptors by ME and resulted in a net disinhibition of MThal-ACC excitatory pathway. These results suggest that moderate concentrations of ME can lead to net excitation of ACC circuitry and that analgesia may be associated with disinhibition rather than inhibition of ACC subcircuits.
Collapse
Affiliation(s)
| | - William Birdsong
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
70
|
Vanneste S, De Ridder D. BurstDR spinal cord stimulation rebalances pain input and pain suppression in the brain in chronic neuropathic pain. Brain Stimul 2023; 16:1186-1195. [PMID: 37541579 DOI: 10.1016/j.brs.2023.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
OBJECTIVE Chronic pain is processed by at least three well-known pathways, two pain provoking pathways including a medial 'suffering' and lateral 'painfulness' pathway. A third descending pain pathway modulates pain but is predominantly inhibitory. Chronic pain can be seen as an imbalance between the two pain-provoking and the pain inhibitory pathways. If this assumption is correct, then the imbalance between pain input and pain suppression should reverse and normalize in response to successful, i.e., pain reducing burstDR spinal cord stimulation, one of the current treatment options for neuropathic pain. MATERIALS AND METHODS Fifteen patients, who received spinal cord stimulation for failed back surgery were included in this study, using source localized electrical brain activity and connectivity recording via EEG to identify the purported imbalance. RESULTS BurstDR spinal cord stimulation induces a significant change in EEG activity in both the left and right somatosensory cortex (SSC) for both θ and γ oscillations. In the dorsal anterior cingulate cortex (dACC), we observed a significant drop in both α and β oscillations. This reduction is accompanied by a change in pain intensity and suffering. BurstDR spinal cord stimulation is also associated with a reduction in θ at the pregenual anterior cingulate cortex (pgACC). Analyzing effective connectivity indicates that for the θ band, more information is sent from the pgACC to the left and right SSC. For α, increased information is sent from the pgACC to the dACC and both the left and right SSC. This is associated with a reduced θ-γ coupling in the SSC and reduced α-β coupling in dACC. CONCLUSION This study suggests that chronic pain is indeed an imbalance between the ascending and descending pathways in the brain and that burst spinal cord stimulation can normalize this imbalance in the brain.
Collapse
Affiliation(s)
- Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, New Zealand
| |
Collapse
|
71
|
Rockholt MM, Kenefati G, Doan LV, Chen ZS, Wang J. In search of a composite biomarker for chronic pain by way of EEG and machine learning: where do we currently stand? Front Neurosci 2023; 17:1186418. [PMID: 37389362 PMCID: PMC10301750 DOI: 10.3389/fnins.2023.1186418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023] Open
Abstract
Machine learning is becoming an increasingly common component of routine data analyses in clinical research. The past decade in pain research has witnessed great advances in human neuroimaging and machine learning. With each finding, the pain research community takes one step closer to uncovering fundamental mechanisms underlying chronic pain and at the same time proposing neurophysiological biomarkers. However, it remains challenging to fully understand chronic pain due to its multidimensional representations within the brain. By utilizing cost-effective and non-invasive imaging techniques such as electroencephalography (EEG) and analyzing the resulting data with advanced analytic methods, we have the opportunity to better understand and identify specific neural mechanisms associated with the processing and perception of chronic pain. This narrative literature review summarizes studies from the last decade describing the utility of EEG as a potential biomarker for chronic pain by synergizing clinical and computational perspectives.
Collapse
Affiliation(s)
- Mika M. Rockholt
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Lisa V. Doan
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience & Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience & Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
72
|
Lee C, Oh J, Lee JH, Kaang BK, Ko HG. Loosely synchronized activation of anterior cingulate cortical neurons for scratching response during histamine-induced itch. Mol Brain 2023; 16:51. [PMID: 37312130 DOI: 10.1186/s13041-023-01037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
Itch is a distinctive sensation that causes a specific affection and scratching reaction. The anterior cingulate cortex (ACC) has been linked to itch sensation in numerous studies; however, its precise function in processing pruritic inputs remains unknown. Distinguishing the precise role of the ACC in itch sensation can be challenging because of its capacity to conduct heterologous neurophysiological activities. Here, we used in vivo calcium imaging to examine how ACC neurons in free-moving mice react to pruritogenic histamine. In particular, we focused on how the activity of the ACC neurons varied before and after the scratching response. We discovered that although the change in neuronal activity was not synchronized with the scratching reaction, the overall activity of itch-responsive neurons promptly decreased after the scratching response. These findings suggest that the ACC does not directly elicit the feeling of itchiness.
Collapse
Affiliation(s)
- Chiwoo Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jihae Oh
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jae-Hyung Lee
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, 02447, South Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| | - Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Daegu, 41940, South Korea.
| |
Collapse
|
73
|
Motzkin JC, Kanungo I, D’Esposito M, Shirvalkar P. Network targets for therapeutic brain stimulation: towards personalized therapy for pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1156108. [PMID: 37363755 PMCID: PMC10286871 DOI: 10.3389/fpain.2023.1156108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Precision neuromodulation of central brain circuits is a promising emerging therapeutic modality for a variety of neuropsychiatric disorders. Reliably identifying in whom, where, and in what context to provide brain stimulation for optimal pain relief are fundamental challenges limiting the widespread implementation of central neuromodulation treatments for chronic pain. Current approaches to brain stimulation target empirically derived regions of interest to the disorder or targets with strong connections to these regions. However, complex, multidimensional experiences like chronic pain are more closely linked to patterns of coordinated activity across distributed large-scale functional networks. Recent advances in precision network neuroscience indicate that these networks are highly variable in their neuroanatomical organization across individuals. Here we review accumulating evidence that variable central representations of pain will likely pose a major barrier to implementation of population-derived analgesic brain stimulation targets. We propose network-level estimates as a more valid, robust, and reliable way to stratify personalized candidate regions. Finally, we review key background, methods, and implications for developing network topology-informed brain stimulation targets for chronic pain.
Collapse
Affiliation(s)
- Julian C. Motzkin
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
| | - Ishan Kanungo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Prasad Shirvalkar
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
74
|
Shirvalkar P, Prosky J, Chin G, Ahmadipour P, Sani OG, Desai M, Schmitgen A, Dawes H, Shanechi MM, Starr PA, Chang EF. First-in-human prediction of chronic pain state using intracranial neural biomarkers. Nat Neurosci 2023; 26:1090-1099. [PMID: 37217725 PMCID: PMC10330878 DOI: 10.1038/s41593-023-01338-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Chronic pain syndromes are often refractory to treatment and cause substantial suffering and disability. Pain severity is often measured through subjective report, while objective biomarkers that may guide diagnosis and treatment are lacking. Also, which brain activity underlies chronic pain on clinically relevant timescales, or how this relates to acute pain, remains unclear. Here four individuals with refractory neuropathic pain were implanted with chronic intracranial electrodes in the anterior cingulate cortex and orbitofrontal cortex (OFC). Participants reported pain metrics coincident with ambulatory, direct neural recordings obtained multiple times daily over months. We successfully predicted intraindividual chronic pain severity scores from neural activity with high sensitivity using machine learning methods. Chronic pain decoding relied on sustained power changes from the OFC, which tended to differ from transient patterns of activity associated with acute, evoked pain states during a task. Thus, intracranial OFC signals can be used to predict spontaneous, chronic pain state in patients.
Collapse
Affiliation(s)
- Prasad Shirvalkar
- UCSF Department of Anesthesiology and Perioperative Care, Division of Pain Medicine, University of California San Francisco, San Francisco, CA, USA.
- UCSF Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| | - Jordan Prosky
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Gregory Chin
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Parima Ahmadipour
- Departments of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Omid G Sani
- Departments of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Maansi Desai
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Ashlyn Schmitgen
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Heather Dawes
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Maryam M Shanechi
- Departments of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Philip A Starr
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
75
|
Ziegler K, Folkard R, Gonzalez AJ, Burghardt J, Antharvedi-Goda S, Martin-Cortecero J, Isaías-Camacho E, Kaushalya S, Tan LL, Kuner T, Acuna C, Kuner R, Mease RA, Groh A. Primary somatosensory cortex bidirectionally modulates sensory gain and nociceptive behavior in a layer-specific manner. Nat Commun 2023; 14:2999. [PMID: 37225702 DOI: 10.1038/s41467-023-38798-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
The primary somatosensory cortex (S1) is a hub for body sensation of both innocuous and noxious signals, yet its role in somatosensation versus pain is debated. Despite known contributions of S1 to sensory gain modulation, its causal involvement in subjective sensory experiences remains elusive. Here, in mouse S1, we reveal the involvement of cortical output neurons in layers 5 (L5) and 6 (L6) in the perception of innocuous and noxious somatosensory signals. We find that L6 activation can drive aversive hypersensitivity and spontaneous nocifensive behavior. Linking behavior to neuronal mechanisms, we find that L6 enhances thalamic somatosensory responses, and in parallel, strongly suppresses L5 neurons. Directly suppressing L5 reproduced the pronociceptive phenotype induced by L6 activation, suggesting an anti-nociceptive function for L5 output. Indeed, L5 activation reduced sensory sensitivity and reversed inflammatory allodynia. Together, these findings reveal a layer-specific and bidirectional role for S1 in modulating subjective sensory experiences.
Collapse
Affiliation(s)
- Katharina Ziegler
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Ross Folkard
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Antonio J Gonzalez
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jan Burghardt
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sailaja Antharvedi-Goda
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jesus Martin-Cortecero
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Emilio Isaías-Camacho
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sanjeev Kaushalya
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Linette Liqi Tan
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rebecca Audrey Mease
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.
| | - Alexander Groh
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
76
|
Stankewitz A, Mayr A, Irving S, Witkovsky V, Schulz E. Pain and the emotional brain: pain-related cortical processes are better reflected by affective evaluation than by cognitive evaluation. Sci Rep 2023; 13:8273. [PMID: 37217563 DOI: 10.1038/s41598-023-35294-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
The experience of pain has been dissociated into two interwoven aspects: a sensory-discriminative aspect and an affective-motivational aspect. We aimed to explore which of the pain descriptors is more deeply rooted in the human brain. Participants were asked to evaluate applied cold pain. The majority of the trials showed distinct ratings: some were rated higher for unpleasantness and others for intensity. We compared the relationship between functional data recorded from 7 T MRI with unpleasantness and intensity ratings and revealed a stronger relationship between cortical data and unpleasantness ratings. The present study underlines the importance of the emotional-affective aspects of pain-related cortical processes in the brain. The findings corroborate previous studies showing a higher sensitivity to pain unpleasantness compared to ratings of pain intensity. For the processing of pain in healthy subjects, this effect may reflect the more direct and intuitive evaluation of emotional aspects of the pain system, which is to prevent harm and to preserve the physical integrity of the body.
Collapse
Affiliation(s)
- Anne Stankewitz
- Department of Neuroradiology, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Astrid Mayr
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, A: Marchioninistr. 15, 81377, München, Germany
| | - Stephanie Irving
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktor Witkovsky
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Enrico Schulz
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, A: Marchioninistr. 15, 81377, München, Germany.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Department of Medical Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
77
|
Cushnie AK, Tang W, Heilbronner SR. Connecting Circuits with Networks in Addiction Neuroscience: A Salience Network Perspective. Int J Mol Sci 2023; 24:9083. [PMID: 37240428 PMCID: PMC10219092 DOI: 10.3390/ijms24109083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Human neuroimaging has demonstrated the existence of large-scale functional networks in the cerebral cortex consisting of topographically distant brain regions with functionally correlated activity. The salience network (SN), which is involved in detecting salient stimuli and mediating inter-network communication, is a crucial functional network that is disrupted in addiction. Individuals with addiction display dysfunctional structural and functional connectivity of the SN. Furthermore, while there is a growing body of evidence regarding the SN, addiction, and the relationship between the two, there are still many unknowns, and there are fundamental limitations to human neuroimaging studies. At the same time, advances in molecular and systems neuroscience techniques allow researchers to manipulate neural circuits in nonhuman animals with increasing precision. Here, we describe attempts to translate human functional networks to nonhuman animals to uncover circuit-level mechanisms. To do this, we review the structural and functional connections of the salience network and its homology across species. We then describe the existing literature in which circuit-specific perturbation of the SN sheds light on how functional cortical networks operate, both within and outside the context of addiction. Finally, we highlight key outstanding opportunities for mechanistic studies of the SN.
Collapse
Affiliation(s)
- Adriana K. Cushnie
- Department of Neuroscience, University of Minnesota Twin Cities, 2-164 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA;
| | - Wei Tang
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Sarah R. Heilbronner
- Department of Neuroscience, University of Minnesota Twin Cities, 2-164 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA;
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
78
|
Kim J, Namgung E, Lee S, Ha E, Hong H, Song Y, Lee H, Oh S, Lyoo IK, Yoon S, Jeong H. Disturbed insular functional connectivity and its clinical implication in patients with complex regional pain syndrome. Neuroimage Clin 2023; 38:103440. [PMID: 37224606 PMCID: PMC10220260 DOI: 10.1016/j.nicl.2023.103440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/21/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is characterized by continued amplification of pain intensity. Given the pivotal roles of the insula in the perception and interpretation of pain, we examined insular functional connectivity and its associations with clinical characteristics in patients with CRPS. METHODS Twenty-one patients with CRPS and 49 healthy controls underwent resting-state functional magnetic resonance imaging. The seed-to-seed functional connectivity analysis was performed for the bilateral insulae and cognitive control regions including the dorsal anterior cingulate cortex (dACC) and bilateral dorsolateral prefrontal cortex (DLPFC) between the two groups. Correlations between altered functional connectivity and clinical characteristics were assessed in CRPS patients. RESULTS CRPS patients exhibited lower functional connectivity within the bilateral anterior insulae, between the insular and cognitive control regions (the bilateral anterior/posterior insulae-dACC; the right posterior insula-left DLPFC), as compared with healthy controls at false discovery rate-corrected p < 0.05. In CRPS patients, pain severity was associated negatively with the left-right anterior insular functional connectivity (r = -0.49, p = 0.03), yet positively with the left anterior insula-dACC functional connectivity (r = 0.51, p = 0.02). CONCLUSIONS CRPS patients showed lower functional connectivity both within the bilateral anterior insulae and between the insular and cognitive control regions. The current findings may suggest pivotal roles of the insula in dysfunctional pain processing of CRPS patients.
Collapse
Affiliation(s)
- Jinsol Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Eun Namgung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Suji Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Eunji Ha
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Haejin Hong
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Yumi Song
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Hyangwon Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Sohyun Oh
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| | - Hyeonseok Jeong
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
79
|
Schirmer A, Croy I, Ackerley R. What are C-tactile afferents and how do they relate to "affective touch"? Neurosci Biobehav Rev 2023; 151:105236. [PMID: 37196923 DOI: 10.1016/j.neubiorev.2023.105236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Since their initial discovery in cats, low-threshold C-fiber mechanoreceptors have become a central interest of scientists studying the affective aspects of touch. Their pursuit in humans, here termed C-tactile (CT) afferents, has led to the establishment of a research field referred to as "affective touch", which is differentiated from "discriminative touch". Presently, we review these developments based on an automated semantic analysis of more than 1000 published abstracts as well as empirical evidence and the solicited opinions of leading experts in the field. Our review provides a historical perspective and update of CT research, it reflects on the meaning of "affective touch", and discusses how current insights challenge established views on the relation between CTs and affective touch. We conclude that CTs support gentle, affective touch, but that not every affective touch experience relies on CTs or must necessarily be pleasant. Moreover, we speculate that currently underappreciated aspects of CT signaling will prove relevant for the manner in which these unique fibers support how humans connect both physically and emotionally.
Collapse
Affiliation(s)
- Annett Schirmer
- Department of Psychology, University of Innsbruck, Innsbruck, Austria.
| | - Ilona Croy
- Department of Psychology, Friedrich Schiller University, Jena, Germany
| | - Rochelle Ackerley
- Aix Marseille Univ, CNRS, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), Marseille, France.
| |
Collapse
|
80
|
Bucsea O, Rupawala M, Shiff I, Wang X, Meek J, Fitzgerald M, Fabrizi L, Pillai Riddell R, Jones L. Clinical thresholds in pain-related facial activity linked to differences in cortical network activation in neonates. Pain 2023; 164:1039-1050. [PMID: 36633530 PMCID: PMC10108588 DOI: 10.1097/j.pain.0000000000002798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023]
Abstract
ABSTRACT In neonates, a noxious stimulus elicits pain-related facial expression changes and distinct brain activity as measured by electroencephalography, but past research has revealed an inconsistent relationship between these responses. Facial activity is the most commonly used index of neonatal pain in clinical settings, with clinical thresholds determining if analgesia should be provided; however, we do not know if these thresholds are associated with differences in how the neonatal brain processes a noxious stimulus. The objective of this study was to examine whether subclinical vs clinically significant levels of pain-related facial activity are related to differences in the pattern of nociceptive brain activity in preterm and term neonates. We recorded whole-head electroencephalography and video in 78 neonates (0-14 days postnatal age) after a clinically required heel lance. Using an optimal constellation of Neonatal Facial Coding System actions (brow bulge, eye squeeze, and nasolabial furrow), we compared the serial network engagement (microstates) between neonates with and without clinically significant pain behaviour. Results revealed a sequence of nociceptive cortical network activation that was independent of pain-related behavior; however, a separate but interleaved sequence of early activity was related to the magnitude of the immediate behavioural response. Importantly, the degree of pain-related behavior is related to how the brain processes a stimulus and not simply the degree of cortical activation. This suggests that neonates who exhibit clinically significant pain behaviours process the stimulus differently and that neonatal pain-related behaviours reflect just a portion of the overall cortical pain response.
Collapse
Affiliation(s)
- Oana Bucsea
- Psychology, Faculty of Health, York University, Toronto, ON, Canada
| | - Mohammed Rupawala
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Ilana Shiff
- Psychology, Faculty of Health, York University, Toronto, ON, Canada
| | - Xiaogang Wang
- Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Judith Meek
- University College London Hospital, London, United Kingdom
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Rebecca Pillai Riddell
- Psychology, Faculty of Health, York University, Toronto, ON, Canada
- Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
- Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
81
|
Xu H, Xu C, Gu P, Hu Y, Guo Y, Bai G. Neuroanatomical restoration of salience network links reduced headache impact to cognitive function improvement in mild traumatic brain injury with posttraumatic headache. J Headache Pain 2023; 24:43. [PMID: 37081382 PMCID: PMC10120179 DOI: 10.1186/s10194-023-01579-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Neuroanatomical alterations have been associated with cognitive deficits in mild traumatic brain injury (MTBI). However, most studies have focused on the abnormal gray matter volume in widespread brain regions using a cross-sectional design in MTBI. This study investigated the neuroanatomical restoration of key regions in salience network and the outcomes in MTBI. METHODS Thirty-six MTBI patients with posttraumatic headache (PTH) and 34 matched healthy controls were enrolled in this study. All participants underwent magnetic resonance imaging scans and were assessed with clinical measures during the acute and subacute phases. Surface-based morphometry was conducted to get cortical thickness (CT) and cortical surface area (CSA) of neuroanatomical regions which were defined by the Desikan atlas. Then mixed analysis of variance models were performed to examine CT and CSA restoration in patients from acute to subacute phase related to controls. Finally, mediation effects models were built to explore the relationships between neuroanatomical restoration and symptomatic improvement in patients. RESULTS MTBI patients with PTH showed reduced headache impact and improved cognitive function from the acute to subacute phase. Moreover, patients experienced restoration of CT of the left caudal anterior cingulate cortex (ACC) and left insula and cortical surface area of the right superior frontal gyrus from acute to subacute phase. Further mediation analysis found that CT restoration of the ACC and insula mediated the relationship between reduced headache impact and improved cognitive function in patients. CONCLUSIONS These results showed that neuroanatomical restoration of key regions in salience network correlated reduced headache impact with cognitive function improvement in MTBI with PTH, which further substantiated the vital role of salience network and provided an alternative clinical target for cognitive improvement in MTBI patients with PTH.
Collapse
Affiliation(s)
- Hui Xu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, 100 West 5Th Street, Hamilton, ON, L8P 3R2, Canada.
| | - Cheng Xu
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, 100 West 5Th Street, Hamilton, ON, L8P 3R2, Canada
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Pengpeng Gu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yike Hu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yunyu Guo
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
82
|
LoTemplio SB, Lopes CL, McDonnell AS, Scott EE, Payne BR, Strayer DL. Updating the relationship of the Ne/ERN to task-related behavior: A brief review and suggestions for future research. Front Hum Neurosci 2023; 17:1150244. [PMID: 37082151 PMCID: PMC10110987 DOI: 10.3389/fnhum.2023.1150244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
The error negativity/error-related negativity (Ne/ERN) is one of the most well-studied event-related potential (ERP) components in the electroencephalography (EEG) literature. Peaking about 50 ms after the commission of an error, the Ne/ERN is a negative deflection in the ERP waveform that is thought to reflect error processing in the brain. While its relationships to trait constructs such as anxiety are well-documented, there is still little known about how the Ne/ERN may subsequently influence task-related behavior. In other words, does the occurrence of the Ne/ERN trigger any sort of error corrective process, or any other behavioral adaptation to avoid errors? Several theories have emerged to explain how the Ne/ERN may implement or affect behavior on a task, but evidence supporting each has been mixed. In the following manuscript, we review these theories, and then systematically discuss the reasons that there may be discrepancies in the literature. We review both the inherent biological factors of the neural regions that underlie error-processing in the brain, and some of the researcher-induced factors in analytic and experimental choices that may be exacerbating these discrepancies. We end with a table of recommendations for future researchers who aim to understand the relationship between the Ne/ERN and behavior.
Collapse
Affiliation(s)
- Sara B. LoTemplio
- Human Dimensions of Natural Resources, Colorado State University, Fort Collins, CO, United States
| | - Clara Louise Lopes
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
| | - Amy S. McDonnell
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
| | - Emily E. Scott
- Department of Psychology, Vermont State University, Johnson, VT, United States
| | - Brennan R. Payne
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT, United States
| | - David L. Strayer
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
83
|
Weinrich JA, Liu CD, Jewell ME, Andolina CR, Bernstein MX, Benitez J, Rodriguez-Rosado S, Braz JM, Maze M, Nemenov MI, Basbaum AI. Paradoxical increases in anterior cingulate cortex activity during nitrous oxide-induced analgesia reveal a signature of pain affect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.534475. [PMID: 37066151 PMCID: PMC10104003 DOI: 10.1101/2023.04.03.534475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The general consensus is that increases in neuronal activity in the anterior cingulate cortex (ACC) contribute to pain's negative affect. Here, using in vivo imaging of neuronal calcium dynamics in mice, we report that nitrous oxide, a general anesthetic that reduces pain affect, paradoxically, increases ACC spontaneous activity. As expected, a noxious stimulus also increased ACC activity. However, as nitrous oxide increases baseline activity, the relative change in activity from pre-stimulus baseline was significantly less than the change in the absence of the general anesthetic. We suggest that this relative change in activity represents a neural signature of the affective pain experience. Furthermore, this signature of pain persists under general anesthesia induced by isoflurane, at concentrations in which the mouse is unresponsive. We suggest that this signature underlies the phenomenon of connected consciousness, in which use of the isolated forelimb technique revealed that pain percepts can persist in anesthetized patients.
Collapse
Affiliation(s)
- Jarret Ap Weinrich
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Cindy D Liu
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Madison E Jewell
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Christopher R Andolina
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mollie X Bernstein
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jorge Benitez
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sian Rodriguez-Rosado
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Joao M Braz
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mikhail I Nemenov
- Lasmed, Mountain View, CA 94043, USA
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
84
|
Zhang Q, Hu S, Talay R, Xiao Z, Rosenberg D, Liu Y, Sun G, Li A, Caravan B, Singh A, Gould JD, Chen ZS, Wang J. A prototype closed-loop brain-machine interface for the study and treatment of pain. Nat Biomed Eng 2023; 7:533-545. [PMID: 34155354 PMCID: PMC9516430 DOI: 10.1038/s41551-021-00736-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
Chronic pain is characterized by discrete pain episodes of unpredictable frequency and duration. This hinders the study of pain mechanisms and contributes to the use of pharmacological treatments associated with side effects, addiction and drug tolerance. Here, we show that a closed-loop brain-machine interface (BMI) can modulate sensory-affective experiences in real time in freely behaving rats by coupling neural codes for nociception directly with therapeutic cortical stimulation. The BMI decodes the onset of nociception via a state-space model on the basis of the analysis of online-sorted spikes recorded from the anterior cingulate cortex (which is critical for pain processing) and couples real-time pain detection with optogenetic activation of the prelimbic prefrontal cortex (which exerts top-down nociceptive regulation). In rats, the BMI effectively inhibited sensory and affective behaviours caused by acute mechanical or thermal pain, and by chronic inflammatory or neuropathic pain. The approach provides a blueprint for demand-based neuromodulation to treat sensory-affective disorders, and could be further leveraged for nociceptive control and to study pain mechanisms.
Collapse
Affiliation(s)
- Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Sile Hu
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Robert Talay
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Zhengdong Xiao
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - David Rosenberg
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Guanghao Sun
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Bassir Caravan
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Amrita Singh
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Jonathan D Gould
- College of Arts and Sciences, New York University, New York, NY, USA
| | - Zhe S Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
85
|
Zamfir M, Sharif B, Locke S, Ehrlich AT, Ochandarena NE, Scherrer G, Ribeiro-da-Silva A, Kieffer BL, Séguéla P. Distinct and sex-specific expression of mu opioid receptors in anterior cingulate and somatosensory S1 cortical areas. Pain 2023; 164:703-716. [PMID: 35973045 PMCID: PMC10026835 DOI: 10.1097/j.pain.0000000000002751] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/24/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT The anterior cingulate cortex (ACC) processes the affective component of pain, whereas the primary somatosensory cortex (S1) is involved in its sensory-discriminative component. Injection of morphine in the ACC has been reported to be analgesic, and endogenous opioids in this area are required for pain relief. Mu opioid receptors (MORs) are expressed in both ACC and S1; however, the identity of MOR-expressing cortical neurons remains unknown. Using the Oprm1-mCherry mouse line, we performed selective patch clamp recordings of MOR+ neurons, as well as immunohistochemistry with validated neuronal markers, to determine the identity and laminar distribution of MOR+ neurons in ACC and S1. We found that the electrophysiological signatures of MOR+ neurons differ significantly between these 2 areas, with interneuron-like firing patterns more frequent in ACC. While MOR+ somatostatin interneurons are more prominent in ACC, MOR+ excitatory neurons and MOR+ parvalbumin interneurons are more prominent in S1. Our results suggest a differential contribution of MOR-mediated modulation to ACC and S1 outputs. We also found that females had a greater density of MOR+ neurons compared with males in both areas. In summary, we conclude that MOR-dependent opioidergic signaling in the cortex displays sexual dimorphisms and likely evolved to meet the distinct function of pain-processing circuits in limbic and sensory cortical areas.
Collapse
Affiliation(s)
- Maria Zamfir
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Behrang Sharif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Samantha Locke
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Aliza T. Ehrlich
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Douglas Hospital Research Institute, McGill University, Montreal, QC, Canada
| | - Nicole E. Ochandarena
- Department of Cell Biology and Physiology The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Grégory Scherrer
- Department of Cell Biology and Physiology The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Neuroscience Center The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alfredo Ribeiro-da-Silva
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Brigitte L. Kieffer
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Douglas Hospital Research Institute, McGill University, Montreal, QC, Canada
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
86
|
Hasan SS, Ballou S, Keefer L, Vasant DH. Improving access to gut-directed hypnotherapy for irritable bowel syndrome in the digital therapeutics' era: Are mobile applications a "smart" solution? Neurogastroenterol Motil 2023; 35:e14554. [PMID: 36847206 DOI: 10.1111/nmo.14554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Gut-directed hypnotherapy (GDH) is a highly effective brain-gut behavioral therapy which is recommended in international guidelines for the treatment of irritable bowel syndrome (IBS). There is increasing recognition of the value of GDH as part of integrated care alongside medical and dietary approaches. This has led to recent innovations to widen access to GDH to meet the increasing demand. Recent advances include streamlined courses of individualized GDH, group therapy, and remote delivery. In this issue of Neurogastroenterology and Motility, Peters et al. retrospectively report outcomes of smartphone app-delivered GDH in a population with self-reported IBS. While adherence was low, those that completed smart phone-delivered GDH-achieved symptom benefit. This mini-review summarizes the current evidence-base for available modalities of GDH and discusses the current and future utility and development of mobile health applications in the digital therapeutics' era.
Collapse
Affiliation(s)
- Syed S Hasan
- Neurogastroenterology Unit, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, UK
| | - Sarah Ballou
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Laurie Keefer
- The Henry D. Janowitz Division of Gastroenterology, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dipesh H Vasant
- Neurogastroenterology Unit, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, UK
| |
Collapse
|
87
|
Wang JJ, Yang FPG, Tsai CC, Chao AS. The neural basis of pain during labor. Am J Obstet Gynecol 2023; 228:S1241-S1245. [PMID: 36948996 DOI: 10.1016/j.ajog.2023.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/24/2023]
Abstract
Characterizing a labor pain-related neural signature is a key prerequisite for devising optimized pharmacologic and nonpharmacologic labor pain relief methods. The aim of this study was to describe the neural basis of labor pain and to provide a brief summary of how epidural anesthesia may affect pain-related neuronal activity during labor. Possible future directions are also highlighted. By taking advantage of functional magnetic resonance imaging, brain activation maps and functional neural networks of women during labor that have been recently characterized were compared between pregnant women who received epidural anesthesia and those who did not. In the subgroup of women who did not receive epidural anesthesia, labor-related pain elicited activations in a distributed brain network that included regions within the primary somatosensory cortex (postcentral gyrus and left parietal operculum cortex) and within the traditional pain network (lentiform nucleus, insula, and anterior cingulate gyrus). The activation maps of women who had been administered epidural anesthesia were found to be different-especially with respect to the postcentral gyrus, the insula, and the anterior cingulate gyrus. Parturients who received epidural anesthesia were also compared with those who did not in terms of functional connectivity from selected sensory and affective regions. When analyzing women who did not receive epidural anesthesia, marked bilateral connections from the postcentral gyrus to the superior parietal lobule, supplementary motor area, precentral gyrus, and the right anterior supramarginal gyrus were observed. In contrast, women who received epidural anesthesia showed fewer connections from the postcentral gyrus-being limited to the superior parietal lobule and supplementary motor area. Importantly, one of the most noticeable effects of epidural anesthesia was observed in the anterior cingulate cortex-a primary region that modulates pain perception. The increased outgoing connectivity from the anterior cingulate cortex in women who received epidural anesthesia indicates that the cognitive control exerted by this area might play a major role in the relief from labor pain. These findings not only affirmed the existence of a brain signature for pain experienced during labor, but they also showed that this signature can be altered by the administration of epidural anesthesia. This finding raises a question about the extent to which the cingulo-frontal cortex may exert top-down influences to gate women's experiences of labor-related pain. Because the anterior cingulate cortex is also involved in the processing and modulation of emotional content, such as fear and anxiety, a related question is about the extent to which the use of epidural anesthesia can affect different components of pain perception. Finally, inhibition of anterior cingulate cortex neurons may represent a potential new therapeutic target for alleviating labor-associated pain.
Collapse
Affiliation(s)
- Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Fan-Pei Gloria Yang
- Department of Foreign Languages and Literature, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Chien Tsai
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - An-Shine Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Department of Obstetrics and Gynecology, New Taipei City Municipal Tu Cheng Hospital, New Taipei City, Taiwan.
| |
Collapse
|
88
|
Reynolds CA, Minic Z. Chronic Pain-Associated Cardiovascular Disease: The Role of Sympathetic Nerve Activity. Int J Mol Sci 2023; 24:5378. [PMID: 36982464 PMCID: PMC10049654 DOI: 10.3390/ijms24065378] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Chronic pain affects many people world-wide, and this number is continuously increasing. There is a clear link between chronic pain and the development of cardiovascular disease through activation of the sympathetic nervous system. The purpose of this review is to provide evidence from the literature that highlights the direct relationship between sympathetic nervous system dysfunction and chronic pain. We hypothesize that maladaptive changes within a common neural network regulating the sympathetic nervous system and pain perception contribute to sympathetic overactivation and cardiovascular disease in the setting of chronic pain. We review clinical evidence and highlight the basic neurocircuitry linking the sympathetic and nociceptive networks and the overlap between the neural networks controlling the two.
Collapse
Affiliation(s)
- Christian A. Reynolds
- Department of Emergency Medicine, Wayne State University School of Medicine, 540 E Canfield St., Detroit, MI 48201, USA
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Zeljka Minic
- Department of Emergency Medicine, Wayne State University School of Medicine, 540 E Canfield St., Detroit, MI 48201, USA
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
89
|
Rupawala M, Bucsea O, Laudiano-Dray MP, Whitehead K, Meek J, Fitzgerald M, Olhede S, Jones L, Fabrizi L. A developmental shift in habituation to pain in human neonates. Curr Biol 2023; 33:1397-1406.e5. [PMID: 36931271 DOI: 10.1016/j.cub.2023.02.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/22/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Habituation to recurrent non-threatening or unavoidable noxious stimuli is an important aspect of adaptation to pain. Neonates, especially if preterm, are exposed to repeated noxious procedures during their clinical care. They can mount strong behavioral, autonomic, spinal, and cortical responses to a single noxious stimulus; however, it is not known whether the developing nervous system can adapt to the recurrence of these inputs. Here, we used electroencephalography to investigate changes in cortical microstates (representing the complex sequential processing of noxious inputs) following two consecutive clinically required heel lances in term and preterm infants. We show that stimulus repetition dampens the engagement of initial microstates and associated behavioral and autonomic responses in term infants, while preterm infants do not show signs of habituation. Nevertheless, both groups engage different longer-latency cortical microstates to each lance, which is likely to reflect changes in higher-level stimulus processing with repeated stimulation. These data suggest that while both age groups are capable of encoding contextual differences in pain, the preterm brain does not regulate the initial cortical, behavioral, and autonomic responses to repeated noxious stimuli. Habituation mechanisms to pain are already in place at term age but mature over the equivalent of the last trimester of gestation and are not fully functional in preterm neonates.
Collapse
Affiliation(s)
- Mohammed Rupawala
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Oana Bucsea
- Faculty of Health, Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| | | | - Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London WC1E 6DB, UK
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Sofia Olhede
- Department of Statistical Science, University College London, London WC1E 6BT, UK; Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
90
|
Chen ZS. Hierarchical predictive coding in distributed pain circuits. Front Neural Circuits 2023; 17:1073537. [PMID: 36937818 PMCID: PMC10020379 DOI: 10.3389/fncir.2023.1073537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Predictive coding is a computational theory on describing how the brain perceives and acts, which has been widely adopted in sensory processing and motor control. Nociceptive and pain processing involves a large and distributed network of circuits. However, it is still unknown whether this distributed network is completely decentralized or requires networkwide coordination. Multiple lines of evidence from human and animal studies have suggested that the cingulate cortex and insula cortex (cingulate-insula network) are two major hubs in mediating information from sensory afferents and spinothalamic inputs, whereas subregions of cingulate and insula cortices have distinct projections and functional roles. In this mini-review, we propose an updated hierarchical predictive coding framework for pain perception and discuss its related computational, algorithmic, and implementation issues. We suggest active inference as a generalized predictive coding algorithm, and hierarchically organized traveling waves of independent neural oscillations as a plausible brain mechanism to integrate bottom-up and top-down information across distributed pain circuits.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY, United States
| |
Collapse
|
91
|
Kutafina E, Becker S, Namer B. Measuring pain and nociception: Through the glasses of a computational scientist. Transdisciplinary overview of methods. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1099282. [PMID: 36926544 PMCID: PMC10013045 DOI: 10.3389/fnetp.2023.1099282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
In a healthy state, pain plays an important role in natural biofeedback loops and helps to detect and prevent potentially harmful stimuli and situations. However, pain can become chronic and as such a pathological condition, losing its informative and adaptive function. Efficient pain treatment remains a largely unmet clinical need. One promising route to improve the characterization of pain, and with that the potential for more effective pain therapies, is the integration of different data modalities through cutting edge computational methods. Using these methods, multiscale, complex, and network models of pain signaling can be created and utilized for the benefit of patients. Such models require collaborative work of experts from different research domains such as medicine, biology, physiology, psychology as well as mathematics and data science. Efficient work of collaborative teams requires developing of a common language and common level of understanding as a prerequisite. One of ways to meet this need is to provide easy to comprehend overviews of certain topics within the pain research domain. Here, we propose such an overview on the topic of pain assessment in humans for computational researchers. Quantifications related to pain are necessary for building computational models. However, as defined by the International Association of the Study of Pain (IASP), pain is a sensory and emotional experience and thus, it cannot be measured and quantified objectively. This results in a need for clear distinctions between nociception, pain and correlates of pain. Therefore, here we review methods to assess pain as a percept and nociception as a biological basis for this percept in humans, with the goal of creating a roadmap of modelling options.
Collapse
Affiliation(s)
- Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Faculty of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland
| | - Susanne Becker
- Clinical Psychology, Department of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
- Integrative Spinal Research, Department of Chiropractic Medicine, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Barbara Namer
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
92
|
Alam MJ, Chen JDZ. Electrophysiology as a Tool to Decipher the Network Mechanism of Visceral Pain in Functional Gastrointestinal Disorders. Diagnostics (Basel) 2023; 13:627. [PMID: 36832115 PMCID: PMC9955347 DOI: 10.3390/diagnostics13040627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Abdominal pain, including visceral pain, is prevalent in functional gastrointestinal (GI) disorders (FGIDs), affecting the overall quality of a patient's life. Neural circuits in the brain encode, store, and transfer pain information across brain regions. Ascending pain signals actively shape brain dynamics; in turn, the descending system responds to the pain through neuronal inhibition. Pain processing mechanisms in patients are currently mainly studied with neuroimaging techniques; however, these techniques have a relatively poor temporal resolution. A high temporal resolution method is warranted to decode the dynamics of the pain processing mechanisms. Here, we reviewed crucial brain regions that exhibited pain-modulatory effects in an ascending and descending manner. Moreover, we discussed a uniquely well-suited method, namely extracellular electrophysiology, that captures natural language from the brain with high spatiotemporal resolution. This approach allows parallel recording of large populations of neurons in interconnected brain areas and permits the monitoring of neuronal firing patterns and comparative characterization of the brain oscillations. In addition, we discussed the contribution of these oscillations to pain states. In summary, using innovative, state-of-the-art methods, the large-scale recordings of multiple neurons will guide us to better understanding of pain mechanisms in FGIDs.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiande D. Z. Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
93
|
A neurophenomenological approach to non-ordinary states of consciousness: hypnosis, meditation, and psychedelics. Trends Cogn Sci 2023; 27:139-159. [PMID: 36566091 DOI: 10.1016/j.tics.2022.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
No contemporary unifying framework has been provided for the study of non-ordinary states of consciousness (NSCs) despite increased interest in hypnosis, meditation, and psychedelics. NSCs induce shifts in experiential contents (what appears to the experiencer) and/or structure (how it appears). This can allow the investigation of the plastic and dynamic nature of experience from a multiscale perspective that includes mind, brain, body, and context. We propose a neurophenomenological (NP) approach to the study of NSCs which highlights their role as catalysts of transformation in clinical practice by refining our understanding of the relationships between experiential (subjective) and neural dynamics. We outline the ethical implications of the NP approach for standard conceptions of health and pathology as well as the crucial role of experience-based know-how in NSC-related research and application.
Collapse
|
94
|
Albinni B, de Zambotti M, Iacovides S, Baker FC, King CD. The complexities of the sleep-pain relationship in adolescents: A critical review. Sleep Med Rev 2023; 67:101715. [PMID: 36463709 PMCID: PMC9868111 DOI: 10.1016/j.smrv.2022.101715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Chronic pain is a common and disabling condition in adolescents. Disturbed sleep is associated with many detrimental effects in adolescents with acute and chronic pain. While sleep and pain are known to share a reciprocal relationship, the sleep-pain relationship in adolescence warrants further contextualization within normally occurring maturation of several biopsychological processes. Since sleep and pain disorders begin to emerge in early adolescence and are often comorbid, there is a need for a comprehensive picture of their interrelation especially related to temporal relationships and mechanistic drivers. While existing reviews provide a solid foundation for the interaction between disturbed sleep and pain in youth, we will extend this review by highlighting current methodological challenges for both sleep and pain assessments, exploring the recent evidence for directionality in the sleep-pain relationship, reviewing potential mechanisms and factors underlying the relationship, and providing direction for future investigations. We will also highlight the potential role of digital technologies in advancing the understanding of the sleep and pain relationship. Ultimately, we anticipate this information will facilitate further research and inform the management of pain and poor sleep, which will ultimately improve the quality of life in adolescents and reduce the risk of pain persisting into adulthood.
Collapse
Affiliation(s)
- Benedetta Albinni
- Center for Health Sciences, SRI International, Menlo Park, CA, USA; Department of Psychology, University of Campania "Luigi Vanvitelli", Italy
| | | | - Stella Iacovides
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA; Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher D King
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Behavioral Medicine and Clinical Psychology, Pediatric Pain Research Center (PPRC), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
95
|
Abstract
Pain is driven by sensation and emotion, and in turn, it motivates decisions and actions. To fully appreciate the multidimensional nature of pain, we formulate the study of pain within a closed-loop framework of sensory-motor prediction. In this closed-loop cycle, prediction plays an important role, as the interaction between prediction and actual sensory experience shapes pain perception and subsequently, action. In this Perspective, we describe the roles of two prominent computational theories-Bayesian inference and reinforcement learning-in modeling adaptive pain behaviors. We show that prediction serves as a common theme between these two theories, and that each of these theories can explain unique aspects of the pain perception-action cycle. We discuss how these computational theories and models can improve our mechanistic understandings of pain-centered processes such as anticipation, attention, placebo hypoalgesia, and pain chronification.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY 10016, USA
| | - Jing Wang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY 10016, USA
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
96
|
Iqbal Z, Lei Z, Ramkrishnan AS, Liu S, Hasan M, Akter M, Lam YY, Li Y. Adrenergic signalling to astrocytes in anterior cingulate cortex contributes to pain-related aversive memory in rats. Commun Biol 2023; 6:10. [PMID: 36604595 PMCID: PMC9816175 DOI: 10.1038/s42003-022-04405-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Pain contains both sensory and affective dimensions. We identify the role of norepinephrine in colorectal distention (sub-threshold for acute pain) induced conditioned place avoidance and plasticity gene expression in the anterior cingulate cortex (ACC). Activating locus coeruleus (LC)-projecting ACC neurons facilitates pain-evoked aversive consolidation and memory, while inhibiting LC-projecting ACC neurons reversibly blocks it. Optogenetic activation of ACC astrocytes facilitates aversive behaviour. ACC astrocytic Gi manipulation suppressed aversive behaviour and early plasticity gene expression induced by opto-activation of LC neurons projecting to ACC. Evidences for the critical role of β2AR in ACC astrocytes were provided using AAV encoding β2AR miRNAi to knockdown β2AR in astrocytes. In contrast, opto-activation of ACC astrocytic β2ARs promotes aversion memory. Our findings suggest that projection-specific adrenergic astrocytic signalling in ACC is integral to system-wide neuromodulation in response to visceral stimuli, and plays a key role in mediating pain-related aversion consolidation and memory formation.
Collapse
Affiliation(s)
- Zafar Iqbal
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Zhuogui Lei
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Aruna S Ramkrishnan
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Shu Liu
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Mahadi Hasan
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Mastura Akter
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Yuk Yan Lam
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Ying Li
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
97
|
Sun G, McCartin M, Liu W, Zhang Q, Kenefati G, Chen ZS, Wang J. Temporal pain processing in the primary somatosensory cortex and anterior cingulate cortex. Mol Brain 2023; 16:3. [PMID: 36604739 PMCID: PMC9817351 DOI: 10.1186/s13041-022-00991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
Pain is known to have sensory and affective components. The sensory pain component is encoded by neurons in the primary somatosensory cortex (S1), whereas the emotional or affective pain experience is in large part processed by neural activities in the anterior cingulate cortex (ACC). The timing of how a mechanical or thermal noxious stimulus triggers activation of peripheral pain fibers is well-known. However, the temporal processing of nociceptive inputs in the cortex remains little studied. Here, we took two approaches to examine how nociceptive inputs are processed by the S1 and ACC. We simultaneously recorded local field potentials in both regions, during the application of a brain-computer interface (BCI). First, we compared event related potentials in the S1 and ACC. Next, we used an algorithmic pain decoder enabled by machine-learning to detect the onset of pain which was used during the implementation of the BCI to automatically treat pain. We found that whereas mechanical pain triggered neural activity changes first in the S1, the S1 and ACC processed thermal pain with a reasonably similar time course. These results indicate that the temporal processing of nociceptive information in different regions of the cortex is likely important for the overall pain experience.
Collapse
Affiliation(s)
- Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
| | - Michael McCartin
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Weizhuo Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
| | - George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA.
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
98
|
Bonin EAC, Lejeune N, Szymkowicz E, Bonhomme V, Martial C, Gosseries O, Laureys S, Thibaut A. Assessment and management of pain/nociception in patients with disorders of consciousness or locked-in syndrome: A narrative review. Front Syst Neurosci 2023; 17:1112206. [PMID: 37021037 PMCID: PMC10067681 DOI: 10.3389/fnsys.2023.1112206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
The assessment and management of pain and nociception is very challenging in patients unable to communicate functionally such as patients with disorders of consciousness (DoC) or in locked-in syndrome (LIS). In a clinical setting, the detection of signs of pain and nociception by the medical staff is therefore essential for the wellbeing and management of these patients. However, there is still a lot unknown and a lack of clear guidelines regarding the assessment, management and treatment of pain and nociception in these populations. The purpose of this narrative review is to examine the current knowledge regarding this issue by covering different topics such as: the neurophysiology of pain and nociception (in healthy subjects and patients), the source and impact of nociception and pain in DoC and LIS and, finally, the assessment and treatment of pain and nociception in these populations. In this review we will also give possible research directions that could help to improve the management of this specific population of severely brain damaged patients.
Collapse
Affiliation(s)
- Estelle A. C. Bonin
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre Hospitalier Neurologique (CHN) William Lennox, Saint-Luc Hospital Group, Ottignies-Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Emilie Szymkowicz
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Vincent Bonhomme
- Department of Anesthesia and Intensive Care Medicine, Liège University Hospital, Liège, Belgium
- Anesthesia and Perioperative Neuroscience Laboratory, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et Services Sociaux (CIUSS), University Laval, Québec City, QC, Canada
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
- *Correspondence: Aurore Thibaut,
| |
Collapse
|
99
|
Mechanistic perspective on conditioned pain modulation. Pain 2023; 164:e1-e2. [PMID: 36538576 DOI: 10.1097/j.pain.0000000000002717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 01/09/2023]
|
100
|
Franco I. Anatomy, physiology, and evaluation: Bowel, bladder, and sexual disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:403-423. [PMID: 37620081 DOI: 10.1016/b978-0-323-98817-9.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Our present understanding of bowel and bladder control has changed dramatically with the introduction of functional imagining technologies such as PET, SPECT, fMRI scanning, and near-infrared spectroscopy of the brain. Urologists tend to see control of urination and defecation as processes that occurred at or below the level of the pons for the most part. In this chapter, we examine the control of storing and emptying of urine and stool from what will be a more neurocentric perspective, integrating the frontal lobes into the process and moving beyond the pons on which most of the literature has focused in the past. Utilizing this approach gives us a better understanding of why there is an overlapping of neuropsychiatric problems in many patients with voiding dysfunction.
Collapse
Affiliation(s)
- Israel Franco
- Yale School of Medicine, Yale-New Haven Children's Bladder and Continence Program, Yale New Haven Children's Hospital, New Haven, CT, United States.
| |
Collapse
|