51
|
Cao L, Wu XM, Nie P, Chang MX. The negative regulation of piscine CD44c in viral and bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:135-143. [PMID: 30885554 DOI: 10.1016/j.dci.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
CD44 gene is a cell surface receptor which undergoes complex alternative splicing and extensive post-translational modifications. Although many studies have showed that CD44 is involved in the process of host defense, the function of piscine CD44 in antibacterial or antiviral defense response remains unclear. In the present study, we report the functional characterization of zebrafish CD44c, which is more similar to CD44b antigen isoforms rather than CD44a based on amino acid composition and phylogenetic analysis. The expression of zebrafish CD44c was inducible in response to bacterial and viral infections. During SVCV infection, the in vivo studies revealed that CD44c overexpression led to the increased virus loads and decreased survival rate. The attenuated response by zebrafish CD44c in response to SVCV infection were characterized by the impaired production of inflammatory cytokines and the impaired expressions of IFNs, IFN-stimulated genes, MHC class I and II genes. During Edwardsiella piscicida infection, the overexpression of zebrafish CD44c facilitated bacterial growth and dissemination, but did not impact on larvae survival. The detrimental role of CD44c in host defense against E. piscicida infection was supported by a decreased production of several antibacterial molecules including defbl2, defbl3, NK-lysin and RNase3. All together, these results firstly demonstrate the negative regulation of piscine CD44c in viral and bacterial infection.
Collapse
Affiliation(s)
- Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
52
|
Cao Y, Liu X, Guo SW. Plasma High Mobility Group Box 1 (HMGB1), Osteopontin (OPN), and Hyaluronic Acid (HA) as Admissible Biomarkers for Endometriosis. Sci Rep 2019; 9:9272. [PMID: 31239500 PMCID: PMC6592882 DOI: 10.1038/s41598-019-45785-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
Identification of biomarkers for endometriosis is an unmet medical need that demands to be fulfilled. In this study, we first used a mouse model of endometriosis and evaluated the potential utility of select biomarkers based on serial observations. Since fibrosis is the end result of lesional development, we chose high mobility group box 1 (HMGB1), osteopontin (OPN), and hyaluronic acid (HA), all three of them have been well documented to be involved in endometriosis and fibrosis, as potential biomarkers. In addition, we performed immunohistochemistry analysis of HMGB1, OPN, and the receptors for HMGB1, such as toll-like receptor 4 (TLR4), nuclear factor κB (NF-κB), proliferating cell nuclear antigen (PCNA), interleukin-33 (IL-33), and receptor for advanced glycation endproducts (RAGE)–a pattern recognition receptor, with HMGB1 being its important ligand. We then evaluated the same set of putative markers in 30 women with ovarian endometriomas and 20 without endometriosis, and reevaluated the 3 plasma markers 3 months after the surgical removal of all visible endometriotic lesions. In mouse, the lesional staining levels of OPN, RAGE, and IL-33 were all significantly higher than that of normal endometrium, and increased progressively as lesions progressed. In contrast to HMGB1, TLR4, p-p65 and PCNA staining levels were decreased progressively. In humans, lesional staining levels of OPN correlated positively, while that of HMGB1 correlated negatively with the extent of fibrosis. All three plasma markers correlated positively with the extent of lesional fibrosis. Through this integrated approach, we identified plasma HMGB1, OPN and HA as promising admissible biomarkers for endometriosis.
Collapse
Affiliation(s)
- Yunlei Cao
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China
| | - Xishi Liu
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
53
|
Lim HW, Pak K, Kurabi A, Ryan AF. Lack of the hyaluronan receptor CD44 affects the course of bacterial otitis media and reduces leukocyte recruitment to the middle ear. BMC Immunol 2019; 20:20. [PMID: 31226944 PMCID: PMC6588864 DOI: 10.1186/s12865-019-0302-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND CD44 is a multifunctional molecule that plays major roles in both leukocyte recruitment and tissue proliferation. Since mucosal hyperplasia and leukocyte infiltration of the middle ear cavity are major features of otitis media, we evaluated the role of CD44 in the pathophysiology and course of this disease in a mouse model of middle ear infection. Expression of genes related to CD44 function were evaluated using gene arrays in wild-type mice. The middle ears of mice deficient in CD44 were inoculated with non-typeable Haemophilus influenzae. Histopathology and bacterial clearance were compared to that seen in wild-type controls. RESULTS We observed strong up-regulation of CD44 and of genes related to its role in leukocyte extravasation into the middle ear, during the course of acute otitis media. Mice deficient in CD44 exhibited reduced early mucosal hyperplasia and leukocyte recruitment, followed by delayed resolution of infection and persistent inflammation. CONCLUSIONS CD44 plays an important role in OM pathogenesis by altering the mucosal growth and neutrophil enlistment. Targeted therapies based on CD44 could be useful adjuncts to the treatment of middle ear infections.
Collapse
Affiliation(s)
- Hyun Woo Lim
- Department of Surgery/Otolaryngology, University of California-San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0666 USA
- Department of Otolaryngology, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Kwang Pak
- Department of Surgery/Otolaryngology, University of California-San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0666 USA
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, University of California-San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0666 USA
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, University of California-San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0666 USA
- San Diego VA Medical Center, La Jolla, CA USA
| |
Collapse
|
54
|
Wang X, Zou W, Yu H, Lin Y, Dai G, Zhang T, Zhang G, Xie K, Wang J, Shi H. RNA Sequencing Analysis of Chicken Cecum Tissues Following Eimeria tenella Infection in Vivo. Genes (Basel) 2019; 10:E420. [PMID: 31159150 PMCID: PMC6627390 DOI: 10.3390/genes10060420] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Eimeria tenella (E. tenella) is one of the most frequent and pathogenic species of protozoan parasites of the genus Eimeria that exclusively occupies the cecum, exerting a high economic impact on the poultry industry. To investigate differentially expressed genes (DEGs) in the cecal tissue of Jinghai yellow chickens infected with E. tenella, the molecular response process, and the immune response mechanism during coccidial infection, RNA-seq was used to analyze the cecal tissues of an E. tenella infection group (JS) and an uninfected group (JC) on the seventh day post-infection. The DEGs were screened by functional and pathway enrichment analyses. The results indicated that there were 5477 DEGs (p-value < 0.05) between the JS and the JC groups, of which 2942 were upregulated, and 2535 were downregulated. GO analysis indicated that the top 30 significantly enriched GO terms mainly involved signal transduction, angiogenesis, inflammatory response, and blood vessel development. KEGG analysis revealed that the top significantly enriched signaling pathways included focal adhesion, extracellular matrix-receptor interaction, and peroxisome proliferator-activated receptor. The key DEGs in these pathways included ANGPTL4, ACSL5, VEGFC, MAPK10, and CD44. These genes play an important role in the infection of E. tenella. This study further enhances our understanding of the molecular mechanism of E. tenella infection in chickens.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Wenbin Zou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Yuxin Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Animal Husbandry and Veterinary Station of Kunshan City, Kunshan 215300, Jiangsu, China.
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Huiqiang Shi
- Jiangsu Jinghai Poultry Group Co., Ltd., Haimen 226100, Jiangsu, China.
| |
Collapse
|
55
|
Huo X, Dai Y, Yang T, Zhang Y, Li M, Xu X. Decreased erythrocyte CD44 and CD58 expression link e-waste Pb toxicity to changes in erythrocyte immunity in preschool children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:690-697. [PMID: 30763849 DOI: 10.1016/j.scitotenv.2019.02.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/02/2018] [Accepted: 02/02/2019] [Indexed: 02/08/2023]
Abstract
Lead (Pb) toxicity damages blood cells and disturbs the immune micro-environment. When Pb enters the circulatory system, >95% of Pb accumulates in erythrocytes. We therefore conducted this study to explore the long-term effect of Pb exposure on expression of erythrocyte adhesion molecules (CD44 and CD58) and related downstream cytokine concentrations. We enrolled a total of 267 preschool children, 2-7 years of age, from Guiyu (e-waste-exposed group, n = 132) and Haojiang (reference group, n = 135) in November and December 2015. We measured child blood Pb, biomarkers including erythrocyte CD44 and CD58, erythrocyte count, leukocyte count and inflammatory cytokines (IL-1β, IL-12p70 and IFN-γ), and calculated erythrocyte Pb levels. Regression model demonstrated that higher erythrocyte Pb was associated with lower CD44 and CD58. Compared to low erythrocyte Pb levels (quartile 1), high erythrocyte Pb levels (quartile 4) were related to lower levels of erythrocyte CD44 and CD58. Elevated blood Pb correlated with higher IL-12p70 and IFN-γ, and lower IL-2. The mediation effect of erythrocyte CD44 on the relationship of erythrocyte Pb with IL-1β and IL-12p70 was significant, and the effect of erythrocyte Pb on IFN-γ was mediated by erythrocyte CD58. The data provides novel translational insight into the relationship between elevated Pb exposure and the change of erythrocyte immunity and downstream cytokine secretion in preschool children.
Collapse
Affiliation(s)
- Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Tian Yang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
56
|
Davies HS, Baranova NS, El Amri N, Coche-Guérente L, Verdier C, Bureau L, Richter RP, Débarre D. An integrated assay to probe endothelial glycocalyx-blood cell interactions under flow in mechanically and biochemically well-defined environments. Matrix Biol 2019; 78-79:47-59. [DOI: 10.1016/j.matbio.2018.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 01/15/2023]
|
57
|
Werner RA, Wakabayashi H, Bauer J, Schütz C, Zechmeister C, Hayakawa N, Javadi MS, Lapa C, Jahns R, Ergün S, Jahns V, Higuchi T. Longitudinal 18F-FDG PET imaging in a rat model of autoimmune myocarditis. Eur Heart J Cardiovasc Imaging 2019; 20:467-474. [PMID: 30102319 PMCID: PMC6429237 DOI: 10.1093/ehjci/jey119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/25/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
AIMS Although mortality rate is very high, diagnosis of acute myocarditis remains challenging with conventional tests. We aimed to elucidate the potential role of longitudinal 2-Deoxy-2-18F-fluoro-D-glucose (18F-FDG) positron emission tomography (PET) inflammation monitoring in a rat model of experimental autoimmune myocarditis. METHODS AND RESULTS Autoimmune myocarditis was induced in Lewis rats by immunizing with porcine cardiac myosin emulsified in complete Freund's adjuvant. Time course of disease was assessed by longitudinal 18F-FDG PET imaging. A correlative analysis between in- and ex vivo18F-FDG signalling and macrophage infiltration using CD68 staining was conducted. Finally, immunohistochemistry analysis of the cell-adhesion markers CD34 and CD44 was performed at different disease stages determined by longitudinal 18F-FDG PET imaging. After immunization, myocarditis rats revealed a temporal increase in 18F-FDG uptake (peaked at week 3), which was followed by a rapid decline thereafter. Localization of CD68 positive cells was well correlated with in vivo18F-FDG PET signalling (R2 = 0.92) as well as with ex vivo18F-FDG autoradiography (R2 = 0.9, P < 0.001, respectively). CD44 positivity was primarily observed at tissue samples obtained at acute phase (i.e. at peak 18F-FDG uptake), while CD34-positive staining areas were predominantly identified in samples harvested at both sub-acute and chronic phases (i.e. at 18F-FDG decrease). CONCLUSION 18F-FDG PET imaging can provide non-invasive serial monitoring of cardiac inflammation in a rat model of acute myocarditis.
Collapse
Affiliation(s)
- Rudolf A Werner
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline Street, Baltimore, MD, USA
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacherstr. 6, Würzburg, Germany
- Else-Kröner-Forschungskolleg, Interdisciplinary Center for Clinical Research (IZKF), University of Würzburg, Josef-Schneider-Str. 2, Würzburg, Germany
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, Würzburg, Germany
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacherstr. 6, Würzburg, Germany
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, Würzburg, Germany
| | - Jochen Bauer
- Institute for Anatomy and Cell Biology, University Würzburg, Koellikerstr. 6, Würzburg, Germany
| | - Claudia Schütz
- Department of Pharmacology, University Hospital Würzburg, Versbacher Str. 9, Würzburg, Germany
| | - Christina Zechmeister
- Department of Pharmacology, University Hospital Würzburg, Versbacher Str. 9, Würzburg, Germany
| | - Nobuyuki Hayakawa
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacherstr. 6, Würzburg, Germany
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, Würzburg, Germany
| | - Mehrbod S Javadi
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline Street, Baltimore, MD, USA
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacherstr. 6, Würzburg, Germany
| | - Roland Jahns
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, Würzburg, Germany
- Interdisciplinary Bank of Biomaterials and Data Würzburg (IBDW), University Hospital Würzburg, Straubmühlweg 2a, Würzburg, Germany
| | - Süleyman Ergün
- Institute for Anatomy and Cell Biology, University Würzburg, Koellikerstr. 6, Würzburg, Germany
| | - Valerie Jahns
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, Würzburg, Germany
- Department of Pharmacology, University Hospital Würzburg, Versbacher Str. 9, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacherstr. 6, Würzburg, Germany
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, Würzburg, Germany
- Department of Biomedical Imaging, National Cerebral and Cardiovascular Research Center, 5 Chome-7-1 Fujishirodai, Suita, Osaka Prefecture, Japan
| |
Collapse
|
58
|
Frühbauer B, Mateos B, Konrat R. 1H, 15N, 13C resonance assignment of the human CD44 cytoplasmic tail (669-742). BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:109-113. [PMID: 30474821 PMCID: PMC6439174 DOI: 10.1007/s12104-018-9861-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
CD44 is a universally and abundantly expressed single-pass type I protein that spans the cytoplasmic membrane and is considered the principal receptor for hyaluronan in the extracellular matrix. CD44 exerts a multitude of biological functions, especially in cell adhesion and migration, and its deregulation has several pathological implications, including a putative role in cancer cell dissemination. Here we report the NMR chemical shift assignment of the recombinant intrinsically disordered CD44 cytoplasmic region (669-742).
Collapse
Affiliation(s)
- Benjamin Frühbauer
- Max F. Perutz Laboratories, Department of Computational and Structural Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Borja Mateos
- Max F. Perutz Laboratories, Department of Computational and Structural Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Robert Konrat
- Max F. Perutz Laboratories, Department of Computational and Structural Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
| |
Collapse
|
59
|
Chao T, Liu Z, Zhang Y, Zhang L, Huang R, He L, Gu Y, Chen Z, Zheng Q, Shi L, Zheng W, Qi X, Kong E, Zhang Z, Lawrence T, Liang Y, Lu L. Precise and Rapid Validation of Candidate Gene by Allele Specific Knockout With CRISPR/Cas9 in Wild Mice. Front Genet 2019; 10:124. [PMID: 30838037 PMCID: PMC6390232 DOI: 10.3389/fgene.2019.00124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
It is a tempting goal to identify causative genes underlying phenotypic differences among inbred strains of mice, which is a huge reservoir of genetic resources to understand mammalian pathophysiology. In particular, the wild-derived mouse strains harbor enormous genetic variations that have been acquired during evolutionary divergence over 100s of 1000s of years. However, validating the genetic variation in non-classical strains was extremely difficult, until the advent of CRISPR/Cas9 genome editing tools. In this study, we first describe a T cell phenotype in both wild-derived PWD/PhJ parental mice and F1 hybrids, from a cross to C57BL/6 (B6) mice, and we isolate a genetic locus on Chr2, using linkage mapping and chromosome substitution mice. Importantly, we validate the identification of the functional gene controlling this T cell phenotype, Cd44, by allele specific knockout of the PWD copy, leaving the B6 copy completely intact. Our experiments using F1 mice with a dominant phenotype, allowed rapid validation of candidate genes by designing sgRNA PAM sequences that only target the DNA of the PWD genome. We obtained 10 animals derived from B6 eggs fertilized with PWD sperm cells which were subjected to microinjection of CRISPR/Cas9 gene targeting machinery. In the newborns of F1 hybrids, 80% (n = 10) had allele specific knockout of the candidate gene Cd44 of PWD origin, and no mice showed mistargeting of the B6 copy. In the resultant allele-specific knockout F1 mice, we observe full recovery of T cell phenotype. Therefore, our study provided a precise and rapid approach to functionally validate genes that could facilitate gene discovery in classic mouse genetics. More importantly, as we succeeded in genetic manipulation of mice, allele specific knockout could provide the possibility to inactivate disease alleles while keeping the normal allele of the gene intact in human cells.
Collapse
Affiliation(s)
- Tianzhu Chao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Zhuangzhuang Liu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yu Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lichen Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Rong Huang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Le He
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yanrong Gu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Zhijun Chen
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Qianqian Zheng
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lijin Shi
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Wenping Zheng
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xinhui Qi
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Eryan Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Toby Lawrence
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Yinming Liang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liaoxun Lu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
60
|
Bekele Y, Lakshmikanth T, Chen Y, Mikes J, Nasi A, Petkov S, Hejdeman B, Brodin P, Chiodi F. Mass cytometry identifies distinct CD4+ T cell clusters distinguishing HIV-1-infected patients according to antiretroviral therapy initiation. JCI Insight 2019; 4:125442. [PMID: 30728327 DOI: 10.1172/jci.insight.125442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/20/2018] [Indexed: 01/13/2023] Open
Abstract
Recent guidelines recommend antiretroviral therapy (ART) to be administered as early as possible during HIV-1 infection. Few studies addressed the immunological benefit of commencing ART during the acute phase of infection. We used mass cytometry to characterize blood CD4+ T cells from HIV-1-infected patients who initiated ART during acute or chronic phase of infection. Using this method, we analyzed a large number of markers on millions of individual immune cells. The results revealed that CD4+ T cell clusters with high expression of CD27, CD28, CD127, and CD44, whose function involves T cell migration to inflamed tissues and survival, are more abundant in healthy controls and patients initiating ART during the acute phase; on the contrary, CD4+ T cell clusters in patients initiating ART during the chronic phase had reduced expression of these markers. The results are suggestive of a better preserved immune function in HIV-1-infected patients initiating ART during acute infection.
Collapse
Affiliation(s)
- Yonas Bekele
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, and
| | - Tadepally Lakshmikanth
- Science for Life Laboratory, Division of Clinical Pediatrics, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Yang Chen
- Science for Life Laboratory, Division of Clinical Pediatrics, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jaromir Mikes
- Science for Life Laboratory, Division of Clinical Pediatrics, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Aikaterini Nasi
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, and
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, and
| | - Bo Hejdeman
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, and Unit of Infectious Diseases, Venhälsan, Södersjukhuset, Stockholm, Sweden
| | - Petter Brodin
- Science for Life Laboratory, Division of Clinical Pediatrics, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Newborn Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, and
| |
Collapse
|
61
|
Mishra MN, Chandavarkar V, Sharma R, Bhargava D. Structure, function and role of CD44 in neoplasia. J Oral Maxillofac Pathol 2019; 23:267-272. [PMID: 31516234 PMCID: PMC6714250 DOI: 10.4103/jomfp.jomfp_246_18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
CD44 is a group of protein molecules which perform a variety of functions. Their wide range of functions are mainly based on their multiple variations in their molecular structure. Furthermore, they are distributed in various tissues of the human body. They have a unique property of cell adhesion, which can lead to interaction between two different cells or a cell and its pericellular matrix. CD44 as a cell surface adhesive molecule helps in aggregation and migration of tumor cells. CD44 plays an important role in cancer of bladder, liver, lungs, pancreas, etc. Expression profile of CD44 has been seen in the epithelia of the lip, tongue, gingiva, hard palate, floor of the mouth, buccal mucosa and pharynx. The relationship between the expression of CD44 v6 and regional lymph node metastasis has been studied immunohistochemically. The expression of CD44 v6 was apparently downregulated in oral squamous cell carcinoma, but not in normal oral mucosa. Carcinomas expressing lower levels of CD44 v6 exhibited more frequent regional lymph node metastasis. No significant relation was found between the expression of CD44 v6 in primary and metastatic lesions. Still, the precise function of CD44 in the metastatic process and the degree of involvement in human malignancies is yet to be established.
Collapse
Affiliation(s)
- Mithilesh N Mishra
- Department of Oral Pathology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vidyadevi Chandavarkar
- Department of Oral Pathology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ritika Sharma
- Department of Oral Pathology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Deepak Bhargava
- Department of Oral Pathology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
62
|
Koizumi SI, Sasaki D, Hsieh TH, Taira N, Arakaki N, Yamasaki S, Wang K, Sarkar S, Shirahata H, Miyagi M, Ishikawa H. JunB regulates homeostasis and suppressive functions of effector regulatory T cells. Nat Commun 2018; 9:5344. [PMID: 30559442 PMCID: PMC6297218 DOI: 10.1038/s41467-018-07735-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/22/2018] [Indexed: 01/12/2023] Open
Abstract
Foxp3-expressing CD4+ regulatory T (Treg) cells need to differentiate into effector Treg (eTreg) cells to maintain immune homeostasis. T-cell receptor (TCR)-dependent induction of the transcription factor IRF4 is essential for eTreg differentiation, but how IRF4 activity is regulated in Treg cells is still unclear. Here we show that the AP-1 transcription factor, JunB, is expressed in eTreg cells and promotes an IRF4-dependent transcription program. Mice lacking JunB in Treg cells develop multi-organ autoimmunity, concomitant with aberrant activation of T helper cells. JunB promotes expression of Treg effector molecules, such as ICOS and CTLA4, in BATF-dependent and BATF-independent manners, and is also required for homeostasis and suppressive functions of eTreg. Mechanistically, JunB facilitates the accumulation of IRF4 at a subset of IRF4 target sites, including those located near Icos and Ctla4. Thus, JunB is a critical regulator of IRF4-dependent Treg effector programs, highlighting important functions for AP-1 in Treg-mediated immune homeostasis.
Collapse
Affiliation(s)
- Shin-Ichi Koizumi
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Daiki Sasaki
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Tsung-Han Hsieh
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Naoyuki Taira
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Nana Arakaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Shinichi Yamasaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Ke Wang
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Shukla Sarkar
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Hiroki Shirahata
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Mio Miyagi
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|
63
|
Papah MB, Brannick EM, Schmidt CJ, Abasht B. Gene expression profiling of the early pathogenesis of wooden breast disease in commercial broiler chickens using RNA-sequencing. PLoS One 2018; 13:e0207346. [PMID: 30517117 PMCID: PMC6281187 DOI: 10.1371/journal.pone.0207346] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/30/2018] [Indexed: 01/22/2023] Open
Abstract
Wooden Breast Disease (WBD), a myopathy in commercial broiler chickens characterized by abnormally firm consistency of the pectoral muscle, impacts the poultry industry negatively due to severe reduction in meat quality traits. To unravel the molecular profile associated with the onset and early development of WBD in broiler chickens, we compared time-series gene expression profiles of Pectoralis (P.) major muscles between unaffected and affected birds from a high-breast-muscle-yield, purebred broiler line. P. major biopsy samples were collected from the cranial and caudal aspects of the muscle belly in birds that were raised up to 7 weeks of age (i.e. market age). Three subsets of biopsy samples comprising 6 unaffected (U) and 10 affected (A) from week 2 (cranial) and 4 (caudal), and 4U and 11A from week 3 (cranial) were processed for RNA-sequencing analysis. Sequence reads generated were processed using a suite of bioinformatics programs producing differentially expressed (DE) genes for each dataset at fold-change (A/U or U/A) >1.3 and False Discovery Ratio (FDR) <0.05 (week 2: 41 genes; week 3: 618 genes and week 4: 39 genes). Functional analysis of DE genes using literature mining, BioDBnet and IPA revealed several biological processes and pathways associated with onset and progress of WBD. Top among them were dysregulation of energy metabolism, response to inflammation, vascular disease and remodeling of extracellular matrix. This study reveals that presence of molecular perturbations involving the vasculature, extracellular matrix and metabolism are pertinent to the onset and early pathogenesis of WBD in commercial meat-type chickens.
Collapse
Affiliation(s)
- Michael B. Papah
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Erin M. Brannick
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Carl J. Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
64
|
Muscate F, Stetter N, Schramm C, Schulze Zur Wiesch J, Bosurgi L, Jacobs T. HVEM and CD160: Regulators of Immunopathology During Malaria Blood-Stage. Front Immunol 2018; 9:2611. [PMID: 30483269 PMCID: PMC6243049 DOI: 10.3389/fimmu.2018.02611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022] Open
Abstract
CD8+ T cells are key players during infection with the malaria parasite Plasmodium berghei ANKA (PbA). While they cannot provide protection against blood-stage parasites, they can cause immunopathology, thus leading to the severe manifestation of cerebral malaria. Hence, the tight control of CD8+ T cell function is key in order to prevent fatal outcomes. One major mechanism to control CD8+ T cell activation, proliferation and effector function is the integration of co-inhibitory and co-stimulatory signals. In this study, we show that one such pathway, the HVEM-CD160 axis, significantly impacts CD8+ T cell regulation and thereby the incidence of cerebral malaria. Here, we show that the co-stimulatory molecule HVEM is indeed required to maintain CD8+ T effector populations during infection. Additionally, by generating a CD160-/- mouse line, we observe that the HVEM ligand CD160 counterbalances stimulatory signals in highly activated and cytotoxic CD8+ T effector cells, thereby restricting immunopathology. Importantly, CD160 is also induced on cytotoxic CD8+ T cells during acute Plasmodium falciparum malaria in humans. In conclusion, CD160 is specifically expressed on highly activated CD8+ T effector cells that are harmful during the blood-stage of malaria.
Collapse
Affiliation(s)
- Franziska Muscate
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Nadine Stetter
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christoph Schramm
- 1st Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Lidia Bosurgi
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,1st Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
65
|
Unger MS, Schernthaner P, Marschallinger J, Mrowetz H, Aigner L. Microglia prevent peripheral immune cell invasion and promote an anti-inflammatory environment in the brain of APP-PS1 transgenic mice. J Neuroinflammation 2018; 15:274. [PMID: 30241479 PMCID: PMC6151006 DOI: 10.1186/s12974-018-1304-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/03/2018] [Indexed: 01/14/2023] Open
Abstract
Background Undoubtedly, neuroinflammation is a major contributor to Alzheimer’s disease (AD) progression. Neuroinflammation is characterized by the activity of brain resident glial cells, in particular microglia, but also by peripheral immune cells, which infiltrate the brain at certain stages of disease progression. The specific role of microglia in shaping AD pathology is still controversially discussed. Moreover, a possible role of microglia in the interaction and recruitment of peripheral immune cells has so far been completely ignored. Methods We ablated microglia cells in 12-month-old WT and APP-PS1 transgenic mice for 4 weeks using the CSF1R inhibitor PLX5622 and analyzed its consequences to AD pathology and in particular to peripheral immune cell infiltration. Results PLX5622 treatment successfully reduced microglia numbers. Interestingly, it uncovered a treatment-resistant macrophage population (Iba1+/TMEM119−). These cells strongly expressed the phagocytosis marker CD68 and the lymphocyte activation, homing, and adhesion molecule CD44, specifically at sites of amyloid-beta plaques in the brains of APP-PS1 mice. In consequence, ablation of microglia significantly raised the number of CD3+/CD8+ T-cells and reduced the expression of anti-inflammatory genes in the brains of APP-PS1 mice. Conclusion We conclude that in neurodegenerative conditions, chronically activated microglia might limit CD3+/CD8+ T-cell recruitment to the brain and that local macrophages connect innate with adaptive immune responses. Investigating the role of peripheral immune cells, their interaction with microglia, and understanding the link between innate and adaptive immune responses in the brain might be a future directive in treating AD pathology. Electronic supplementary material The online version of this article (10.1186/s12974-018-1304-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M S Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - P Schernthaner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - J Marschallinger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
| | - H Mrowetz
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - L Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria. .,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
66
|
Lee-Sayer SSM, Dougan MN, Cooper J, Sanderson L, Dosanjh M, Maxwell CA, Johnson P. CD44-mediated hyaluronan binding marks proliferating hematopoietic progenitor cells and promotes bone marrow engraftment. PLoS One 2018; 13:e0196011. [PMID: 29684048 PMCID: PMC5912764 DOI: 10.1371/journal.pone.0196011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
CD44 is a widely expressed cell adhesion molecule that binds to the extracellular matrix component, hyaluronan. However, this interaction is not constitutive in most immune cells at steady state, as the ability of CD44 to engage hyaluronan is highly regulated. While activated T cells and macrophages gain the ability to bind hyaluronan by CD44, the status in other immune cells is less studied. Here we found a percentage of murine eosinophils, natural killer and natural killer T cells were capable of interacting with hyaluronan at steady state. To further investigate the consequences of hyaluronan binding by CD44 in the hematopoietic system, point mutations of CD44 that either cannot bind hyaluronan (LOF-CD44) or have an increased affinity for hyaluronan (GOF-CD44) were expressed in CD44-deficient bone marrow. Competitive bone marrow reconstitution of irradiated mice revealed an early preference for GOF-CD44 over WT-CD44 expressing cells, and for WT-CD44 over LOF-CD44 expressing cells, in the hematopoietic progenitor cell compartment. The advantage of the hyaluronan-binding cells was observed in the hematopoietic stem and progenitor populations, and was maintained throughout the immune system. Hematopoietic stem cells bound minimal hyaluronan at steady state, and this was increased when the cells were induced to proliferate whereas multipotent progenitors had an increased ability to bind hyaluronan at steady state. In vitro, the addition of hyaluronan promoted their proliferation. Thus, proliferating hematopoietic progenitors bind hyaluronan, and hyaluronan binding cells have a striking competitive advantage in bone marrow engraftment.
Collapse
Affiliation(s)
- Sally S. M. Lee-Sayer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C., Canada
| | - Meghan N. Dougan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C., Canada
- Department of Pediatrics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, B.C., Canada
| | - Jesse Cooper
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C., Canada
| | - Leslie Sanderson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C., Canada
| | - Manisha Dosanjh
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C., Canada
| | - Christopher A. Maxwell
- Department of Pediatrics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, B.C., Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C., Canada
- * E-mail:
| |
Collapse
|
67
|
Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julio M. Rios de la Rosa
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Annalisa Tirella
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Nicola Tirelli
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; Genova 16163 Italy
| |
Collapse
|
68
|
Wu XM, Chen WQ, Hu YW, Cao L, Nie P, Chang MX. RIP2 Is a Critical Regulator for NLRs Signaling and MHC Antigen Presentation but Not for MAPK and PI3K/Akt Pathways. Front Immunol 2018; 9:726. [PMID: 29692779 PMCID: PMC5903030 DOI: 10.3389/fimmu.2018.00726] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/23/2018] [Indexed: 12/25/2022] Open
Abstract
RIP2 is an adaptor protein which is essential for the activation of NF-κB and NOD1- and NOD2-dependent signaling. Although NOD-RIP2 axis conservatively existed in the teleost, the function of RIP2 was only reported in zebrafish, goldfish, and rainbow trout in vitro. Very little is known about the role and mechanisms of piscine NOD-RIP2 axis in vivo. Our previous study showed the protective role of zebrafish NOD1 in larval survival through CD44a-mediated activation of PI3K-Akt signaling. In this study, we examined whether RIP2 was required for larval survival with or without pathogen infection, and determined the signaling pathways modulated by RIP2. Based on our previous report and the present study, our data demonstrated that NOD1-RIP2 axis was important for larval survival in the early ontogenesis. Similar to NOD1, RIP2 deficiency significantly affected immune system processes. The significantly enriched pathways were mainly involved in immune system, such as “Antigen processing and presentation” and “NOD-like receptor signaling pathway” and so on. Furthermore, both transcriptome analysis and qRT-PCR revealed that RIP2 was a critical regulator for expression of NLRs (NOD-like receptors) and those genes involved in MHC antigen presentation. Different from NOD1, the present study showed that NOD1, but not RIP2 deficiency significantly impaired protein levels of MAPK pathways. Although RIP2 deficiency also significantly impaired the expression of CD44a, the downstream signaling of CD44a-Lck-PI3K-Akt pathway remained unchanged. Collectively, our works highlight the similarity and discrepancy of NOD1 and RIP2 in the regulation of immune signaling pathways in the zebrafish early ontogenesis, and confirm the crucial role of RIP2 in NLRs signaling and MHC antigen presentation, but not for MAPK and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen Qin Chen
- Hubei Vocational College of Bio-Technology, Wuhan, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
69
|
Jackson DG. Hyaluronan in the lymphatics: The key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. Matrix Biol 2018; 78-79:219-235. [PMID: 29425695 DOI: 10.1016/j.matbio.2018.02.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
LYVE-1, a close relative of the leucocyte receptor, CD44, is the main receptor for hyaluronan (HA) in lymphatic vessel endothelium and a widely used marker for distinguishing between blood and lymphatic vessels. Enigmatic for many years because of its anomalous HA-binding characteristics, the function of LYVE-1 has just recently been identified as that of a lymphatic docking receptor for dendritic cells, selectively engaging with their surface HA glycocalyx to regulate entry to peripheral lymphatics and migration to downstream lymph nodes for immune activation. Furthermore, LYVE-1 mediates the trafficking of macrophages, and is also exploited by HA-encapsulated Group A streptococci for lymphatic invasion and host dissemination. Consistent with a role in lymphatic trafficking, the interaction of LYVE-1 with HA and its degradation products can also activate intracellular signalling pathways for endothelial junctional retraction and lymphatic endothelial proliferation. Here we outline the latest findings on the receptor in the context of its peculiar biochemical properties and speculate on how the interaction of LYVE-1 with different HA sizes and conformations might variably influence cell function as a consequence of avidity and receptor crosslinking. Finally, we evaluate evidence that LYVE-1 can also bind growth factors and associate with kinase-linked growth factor receptors and conclude on how the LYVE-1·HA axis may be exploited as a target to either block inflammation or tissue allograft rejection, or potentiate vaccine and drug delivery.
Collapse
Affiliation(s)
- David G Jackson
- University of Oxford, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
70
|
Lee-Sayer SSM, Maeshima N, Dougan MN, Dahiya A, Arif AA, Dosanjh M, Maxwell CA, Johnson P. Hyaluronan-binding by CD44 reduces the memory potential of activated murine CD8 T cells. Eur J Immunol 2018; 48:803-814. [DOI: 10.1002/eji.201747263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Sally S. M. Lee-Sayer
- Department of Microbiology and Immunology; University of British Columbia; Vancouver BC Canada
| | - Nina Maeshima
- Department of Microbiology and Immunology; University of British Columbia; Vancouver BC Canada
| | - Meghan N. Dougan
- Department of Microbiology and Immunology; University of British Columbia; Vancouver BC Canada
- Department of Pediatrics; British Columbia Children's Hospital Research Institute; University of British Columbia; Vancouver BC Canada
| | - Anita Dahiya
- Department of Microbiology and Immunology; University of British Columbia; Vancouver BC Canada
- Department of Pediatrics; British Columbia Children's Hospital Research Institute; University of British Columbia; Vancouver BC Canada
| | - Arif A. Arif
- Department of Microbiology and Immunology; University of British Columbia; Vancouver BC Canada
| | - Manisha Dosanjh
- Department of Microbiology and Immunology; University of British Columbia; Vancouver BC Canada
| | - Christopher A. Maxwell
- Department of Pediatrics; British Columbia Children's Hospital Research Institute; University of British Columbia; Vancouver BC Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
71
|
George N, Geller HM. Extracellular matrix and traumatic brain injury. J Neurosci Res 2018; 96:573-588. [PMID: 29344975 DOI: 10.1002/jnr.24151] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 12/27/2022]
Abstract
The brain extracellular matrix (ECM) plays a crucial role in both the developing and adult brain by providing structural support and mediating cell-cell interactions. In this review, we focus on the major constituents of the ECM and how they function in both normal and injured brain, and summarize the changes in the composition of the ECM as well as how these changes either promote or inhibit recovery of function following traumatic brain injury (TBI). Modulation of ECM composition to facilitates neuronal survival, regeneration and axonal outgrowth is a potential therapeutic target for TBI treatment.
Collapse
Affiliation(s)
- Naijil George
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| |
Collapse
|
72
|
Hanke-Roos M, Fuchs K, Maleschlijski S, Sleeman J, Orian-Rousseau V, Rosenhahn A. CD44 mediates the catch-bond activated rolling of HEPG2Iso epithelial cancer cells on hyaluronan. Cell Adh Migr 2017; 11:476-487. [PMID: 27874296 DOI: 10.1080/19336918.2016.1260809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The attachment of cancer cells to the endothelium is an essential step during metastatic dissemination. The cell surface receptor CD44 is capable of binding to hyaluronan (HA) produced by tumor cells and by cells of the tumor microenvironment, including blood endothelial cells. Here, we investigated the role of CD44 in the interaction between the liver cancer cell line HepG2Iso and HA surfaces. The rolling interaction was quantitatively analyzed using a microfluidic shear force setup. It was found that rolling of the liver cancer cells on HA depends on CD44, which mediates a catch-bond interaction and thus a flow-induced rolling of the cells. Reduction of CD44 expression by means of siRNA, inhibition of the interaction of CD44 with HA by antibody blocking, and treatment with low molecular weight HA inhibited liver cancer cell rolling on HA-coated surfaces. The results not only clearly show the dependency of the shear-induced catch-bond interaction of HepG2Iso cells on CD44 and HA, but also for the first time demonstrate CD44-mediated rolling for epithelium-derived cells that are typically adherent.
Collapse
Affiliation(s)
- Maximilian Hanke-Roos
- a Department of Medicine V , University Hospital Heidelberg , Heidelberg , Germany.,b Analytical Chemistry - Biointerfaces, Ruhr-University Bochum , Bochum , Germany.,c Institute of Functional Interfaces, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen , Germany
| | - Katharina Fuchs
- d Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - Stojan Maleschlijski
- b Analytical Chemistry - Biointerfaces, Ruhr-University Bochum , Bochum , Germany.,c Institute of Functional Interfaces, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen , Germany
| | - Jonathan Sleeman
- d Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Karlsruhe , Germany.,e Centre for Biomedicine and Medical Technology Mannheim (CBTM), Universitätsmedizin Mannheim, University of Heidelberg , Mannheim , Germany
| | | | - Axel Rosenhahn
- b Analytical Chemistry - Biointerfaces, Ruhr-University Bochum , Bochum , Germany
| |
Collapse
|
73
|
Patouraux S, Rousseau D, Bonnafous S, Lebeaupin C, Luci C, Canivet CM, Schneck AS, Bertola A, Saint-Paul MC, Iannelli A, Gugenheim J, Anty R, Tran A, Bailly-Maitre B, Gual P. CD44 is a key player in non-alcoholic steatohepatitis. J Hepatol 2017; 67:328-338. [PMID: 28323124 DOI: 10.1016/j.jhep.2017.03.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 02/01/2017] [Accepted: 03/02/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Cluster of differentiation (CD)44 regulates adipose tissue inflammation in obesity and hepatic leukocyte recruitment in a lithogenic context. However, its role in hepatic inflammation in a mouse model of steatohepatitis and its relevance in humans have not yet been investigated. We aimed to evaluated the contribution of CD44 to non-alcoholic steatohepatitis (NASH) development and liver injury in mouse models and in patients at various stages of non-alcoholic fatty liver disease (NAFLD) progression. METHODS The role of CD44 was evaluated in CD44-/- mice and after injections of an αCD44 antibody in wild-type mice challenged with a methionine- and choline-deficient diet (MCDD). In obese patients, hepatic CD44 (n=30 and 5 NASH patients with a second liver biopsy after bariatric surgery) and serum sCD44 (n=64) were evaluated. RESULTS Liver inflammation (including inflammatory foci number, macrophage and neutrophil infiltration and CCL2/CCR2 levels), liver injury and fibrosis strongly decreased in CD44-/- mice compared to wild-type mice on MCDD. CD44 deficiency enhanced the M2 polarization and strongly decreased the activation of macrophages by lipopolysaccharide (LPS), hepatocyte damage-associated molecular patterns (DAMPs) and saturated fatty acids. Neutralization of CD44 in mice with steatohepatitis strongly decreased the macrophage infiltration and chemokine ligand (CCL)2 expression with a partial correction of liver inflammation and injury. In obese patients, hepatic CD44 was strongly upregulated in NASH patients (p=0.0008) and correlated with NAFLD activity score (NAS) (p=0.001), ballooning (p=0.003), alanine transaminase (p=0.005) and hepatic CCL2 (p<0.001) and macrophage marker CD68 (p<0.001) expression. Correction of NASH was associated with a strong decrease in liver CD44+ cells. Finally, the soluble form of CD44 increased with severe steatosis (p=0.0005) and NASH (p=0.007). CONCLUSION Human and experimental data suggest that CD44 is a marker and key player of hepatic inflammation and its targeting partially corrects NASH. LAY SUMMARY Human and experimental data suggest that CD44, a cellular protein mainly expressed in immune cells, is a marker and key player of non-alcoholic steatohepatitis (NASH). Indeed, CD44 enhances the non-alcoholic fatty liver (NAFL) (hepatic steatosis) to NASH progression by regulating hepatic macrophage polarization (pro-inflammatory phenotype) and infiltration (macrophage motility and the MCP1/CCL2/CCR2 system). Targeting CD44 partially corrects NASH, making it a potential therapeutic strategy.
Collapse
Affiliation(s)
- Stéphanie Patouraux
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Biological Center, Pasteur Hôpital, Nice, France
| | - Déborah Rousseau
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Stéphanie Bonnafous
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Cynthia Lebeaupin
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Carmelo Luci
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Clémence M Canivet
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Anne-Sophie Schneck
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Adeline Bertola
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Marie-Christine Saint-Paul
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Biological Center, Pasteur Hôpital, Nice, France
| | - Antonio Iannelli
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Jean Gugenheim
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Rodolphe Anty
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Albert Tran
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Béatrice Bailly-Maitre
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Philippe Gual
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France.
| |
Collapse
|
74
|
Gatford KL, Wooldridge AL, Kind KL, Bischof R, Clifton VL. Pre-birth origins of allergy and asthma. J Reprod Immunol 2017; 123:88-93. [PMID: 28760578 DOI: 10.1016/j.jri.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 07/15/2017] [Indexed: 12/18/2022]
Abstract
Allergy is a chronic disease that can develop as early as infancy, suggesting that early life factors are important in its aetiology. Variable associations between size at birth, a crude marker of the fetal environment, and allergy have been reported in humans and require comprehensive review. Associations between birth weight and allergy are however confounded in humans, and we and others have therefore begun exploring the effects of early life events on allergy in experimental models. In particular, we are using ovine models to investigate whether and how a restricted environment before birth protects against allergy, whether methyl donor availability contributes to allergic protection in IUGR, and why maternal asthma during pregnancy is associated with increased risks of allergic disease in children. We found that experimental intrauterine growth restriction (IUGR) in sheep reduced cutaneous responses to antigens in progeny, despite normal or elevated IgE responses. Furthermore, maternal methyl donor supplementation in late pregnancy partially reversed effects of experimental IUGR, consistent with the proposal that epigenetic pathways underlie some but not all effects of IUGR on allergic susceptibility. Ovine experimental allergic asthma with exacerbations reduces relative fetal size in late gestation, with some changes in immune populations in fetal thymus suggestive of increased activation. Maternal allergic asthma in mice also predisposes progeny to allergy development. In conclusion, these findings in experimental models provide direct evidence that a perturbed environment before birth alters immune system development and postnatal function, and provide opportunities to investigate underlying mechanisms and develop and evaluate interventions.
Collapse
Affiliation(s)
- K L Gatford
- Robinson Research Institute, Australia; Adelaide Medical School, Australia.
| | - A L Wooldridge
- Robinson Research Institute, Australia; Adelaide Medical School, Australia; School of Anatomy, Physiology and Human Biology, University of Western Australia, Australia
| | - K L Kind
- Robinson Research Institute, Australia; School of Animal and Veterinary Sciences, University of Adelaide, Australia
| | - R Bischof
- Department of Physiology, Monash University, Australia; Hudson Institute of Medical Research, Melbourne, Australia
| | - V L Clifton
- Robinson Research Institute, Australia; Adelaide Medical School, Australia; Mater Research Institute and Translational Research Institute, University of Queensland, Australia
| |
Collapse
|
75
|
Hu YW, Wu XM, Ren SS, Cao L, Nie P, Chang MX. NOD1 deficiency impairs CD44a/Lck as well as PI3K/Akt pathway. Sci Rep 2017; 7:2979. [PMID: 28592872 PMCID: PMC5462776 DOI: 10.1038/s41598-017-03258-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
Pattern recognition receptors (PRRs) are crucial for host defense and tissue homeostasis against infecting pathogens. PRRs are highly conserved cross species, suggesting their key roles in fundamental biological processes. Though much have been learned for NOD1 receptor in the innate and adaptive immune responses, the roles of NOD1 during embryonic and larval stages remain poorly understood. Here, we report that NOD1 is necessary for the modulation of PI3K-Akt pathway and larval survival in zebrafish. Transcriptome analysis revealed that the significantly enriched pathways in NOD1 -/- zebrafish larvae were mainly involved in metabolism and immune system processes. Biochemical analysis demonstrated that NOD1 was required for the expression of CD44a that, in turn, activated the PI3K-Akt pathway during larval development. Conversely, over-expression of CD44a in NOD1-deficient zebrafish restored the modulation of the PI3K-Akt pathway and improved larval survival. Collectively, our work indicates that NOD1 plays a previously undetected protective role in larval survival through CD44a-mediated activation of the PI3K-Akt signaling.
Collapse
Affiliation(s)
- Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shi Si Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China.
| |
Collapse
|
76
|
Kosciuczuk EM, Lisowski P, Jarczak J, Majewska A, Rzewuska M, Zwierzchowski L, Bagnicka E. Transcriptome profiling of Staphylococci-infected cow mammary gland parenchyma. BMC Vet Res 2017; 13:161. [PMID: 28587645 PMCID: PMC5477815 DOI: 10.1186/s12917-017-1088-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genome-wide gene expression profiling allows for identification of genes involved in the defense response of the host against pathogens. As presented here, transcriptomic analysis and bioinformatics tools were applied in order to identify genes expressed in the mammary gland parenchyma of cows naturally infected with coagulase-positive and coagulase-negative Staphylococci. RESULTS In cows infected with coagulase-positive Staphylococci, being in 1st or 2nd lactation, 1700 differentially expressed genes (DEGs) were identified. However, examination of the 3rd or 4th lactations revealed 2200 DEGs. Gene ontology functional classification showed the molecular functions of the DEGs overrepresented the activity of cytokines, chemokines, and their receptors. In cows infected with coagulase-negative Staphylococci, in the 1st or 2nd lactations 418 DEGs, while in the 3rd or 4th lactations, 1200 DEGs were identified that involved in molecular functions such as protein, calcium ion and lipid binding, chemokine activity, and protein homodimerization. Gene network analysis showed DEGs associated with inflammation, cell migration, and immune response to infection, development of cells and tissues, and humoral responses to infections caused by both types of Staphylococci. CONCLUSION A coagulase-positive Staphylococci infection caused a markedly stronger host response than that of coagulase-negative, resulting in vastly increased DEGs. A significant increase in the expression of the FOS, TNF, and genes encoding the major histocompatibility complex proteins (MHC) was observed. It suggests these genes play a key role in the synchronization of the immune response of the cow's parenchyma against mastitis-causing bacteria. Moreover, the following genes that belong to several physiological pathways (KEGG pathways) were selected for further studies as candidate genes of mammary gland immune response for use in Marker Assisted Selection (MAS): chemokine signaling pathway (CCL2, CXCL5, HCK, CCR1), cell adhesion molecules (CAMs) pathway (BOLA-DQA2, BOLA-DQA1, F11R, ITGAL, CD86), antigen processing and presentation pathway (CD8A, PDIA3, LGMN, IFI30, HSPA1A), and NOD-like receptor signaling pathway (TNF, IL8, IL18, NFKBIA).
Collapse
Affiliation(s)
- Ewa M Kosciuczuk
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland.,Present address: Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Paweł Lisowski
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland
| | - Justyna Jarczak
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland
| | - Alicja Majewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Pre-Clinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Lech Zwierzchowski
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland
| | - Emilia Bagnicka
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland.
| |
Collapse
|
77
|
Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 2017; 542:110-114. [PMID: 28150777 DOI: 10.1038/nature20810] [Citation(s) in RCA: 733] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/18/2016] [Indexed: 12/24/2022]
Abstract
CD4+ T cells are central mediators of autoimmune pathology; however, defining their key effector functions in specific autoimmune diseases remains challenging. Pathogenic CD4+ T cells within affected tissues may be identified by expression of markers of recent activation. Here we use mass cytometry to analyse activated T cells in joint tissue from patients with rheumatoid arthritis, a chronic immune-mediated arthritis that affects up to 1% of the population. This approach revealed a markedly expanded population of PD-1hiCXCR5-CD4+ T cells in synovium of patients with rheumatoid arthritis. However, these cells are not exhausted, despite high PD-1 expression. Rather, using multidimensional cytometry, transcriptomics, and functional assays, we define a population of PD-1hiCXCR5- 'peripheral helper' T (TPH) cells that express factors enabling B-cell help, including IL-21, CXCL13, ICOS, and MAF. Like PD-1hiCXCR5+ T follicular helper cells, TPH cells induce plasma cell differentiation in vitro through IL-21 secretion and SLAMF5 interaction (refs 3, 4). However, global transcriptomics highlight differences between TPH cells and T follicular helper cells, including altered expression of BCL6 and BLIMP1 and unique expression of chemokine receptors that direct migration to inflamed sites, such as CCR2, CX3CR1, and CCR5, in TPH cells. TPH cells appear to be uniquely poised to promote B-cell responses and antibody production within pathologically inflamed non-lymphoid tissues.
Collapse
|
78
|
Persistent p55TNFR expression impairs T cell responses during chronic tuberculosis and promotes reactivation. Sci Rep 2016; 6:39499. [PMID: 27995986 PMCID: PMC5171238 DOI: 10.1038/srep39499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/23/2016] [Indexed: 11/26/2022] Open
Abstract
The pleiotropic activities of TNF are mediated by two structurally related but functionally distinct type I transmembrane receptors, p55TNFR and p75TNFR expressed in most cell types, that can be cleaved and act as TNF scavengers. Here, we investigated the effect of persistent p55TNFR cell surface expression during aerosol inhalation challenge with virulent M. tuberculosis H37Rv. We demonstrated that persistency of p55TNFR in macrophage cultures increased the synthesis of soluble TNF, p75TNFR and NO, however, had no effects on bacteria killing ability. Furthermore, it did not facilitate enhanced protection to primary acute M. tuberculosis infection in p55∆NS mice. Without exacerbated lung inflammation, we found a compensatory increase in p75TNFR shedding and decrease in bioactive TNF in BAL of p55∆NS mice after M. tuberculosis challenge. Defective expressions of CD44 and INFγ attributed to an impaired T cell response during persistent p55TNFR expression that caused marginal transient susceptibility during chronic infection. Moreover, persistent p55TNFR expression induced early reactivation during latent tuberculosis infection. These data indicate a prominent role of p55TNFR shedding in Th1 mediated protection against chronic and latent tuberculosis infection.
Collapse
|
79
|
Su H, Kong C, Zhu L, Huang Q, Luo L, Wang H, Xu Y. PPE26 induces TLR2-dependent activation of macrophages and drives Th1-type T-cell immunity by triggering the cross-talk of multiple pathways involved in the host response. Oncotarget 2016; 6:38517-37. [PMID: 26439698 PMCID: PMC4770718 DOI: 10.18632/oncotarget.5956] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/12/2015] [Indexed: 12/27/2022] Open
Abstract
The pathophysiological functions and the underlying molecular basis of PE /PPE proteins of M. tuberculosis remain largely unknown. In this study, we focused on the link between PPE26 and host response. We demonstrated that PPE26 can induce extensive inflammatory responses in macrophages through triggering the cross-talk of multiple pathways involved in the host response, as revealed by iTRAQ-based subcellular quantitative proteomics. We observed that PPE26 is able to specifically bind to TLR2 leading to the subsequent activation of MAPKs and NF-κB signaling. PPE26 functionally stimulates macrophage activation by augmenting pro-inflammatory cytokine production (TNF-α, IL-6 and IL-12 p40) and the expression of cell surface markers (CD80, CD86, MHC class I and II). We observed that PPE26-treated macrophages effectively polarizes naïve CD4+ T cells to up-regulate CXCR3 expression, and to secrete IFN-γ and IL-2, indicating PPE26 contributes to the Th1 polarization during the immune response. Importantly, rBCG::PPE26 induces stronger antigen-specific TNF-α and IFN-γ activity, and higher levels of the Th1 cytokines TNF-α and IFN-γ comparable to BCG. Moreover, PPE26 effectively induces the reciprocal expansion of effector/memory CD4+/CD8+ CD44highCD62Llow T cells in the spleens of mice immunized with this strain. These results suggest that PPE26 may be a TLR2 agonist that stimulates innate immunity and adaptive immunity, indicating that PPE26 is a potential antigen for the rational design of an efficient vaccine against M. tuberculosis.
Collapse
Affiliation(s)
- Haibo Su
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Cong Kong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Lin Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Qi Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Liulin Luo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China.,Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|
80
|
Petrey AC, de la Motte CA. Thrombin Cleavage of Inter-α-inhibitor Heavy Chain 1 Regulates Leukocyte Binding to an Inflammatory Hyaluronan Matrix. J Biol Chem 2016; 291:24324-24334. [PMID: 27679489 DOI: 10.1074/jbc.m116.755660] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 02/06/2023] Open
Abstract
Dynamic alterations of the extracellular matrix in response to injury directly modulate inflammation and consequently the promotion and resolution of disease. During inflammation, hyaluronan (HA) is increased at sites of inflammation where it may be covalently modified with the heavy chains (HC) of inter-α-trypsin inhibitor. Deposition of this unique, pathological form of HA (HC-HA) leads to the formation of cable-like structures that promote adhesion of leukocytes. Naive mononuclear leukocytes bind specifically to inflammation-associated HA matrices but do not adhere to HA constitutively expressed under homeostatic conditions. In this study, we have directly investigated a role for the blood-coagulation protease thrombin in regulating the adhesion of monocytic cells to smooth muscle cells producing an inflammatory matrix. Our data demonstrate that the proteolytic activity of thrombin negatively regulates the adhesion of monocytes to an inflammatory HC-HA complex. This effect is independent of protease-activated receptor activation but requires proteolytic activity toward a novel substrate. Components of HC-HA complexes were predicted to contain conserved thrombin-susceptible cleavage sites based on sequence analysis, and heavy chain 1 (HC1) was confirmed to be a substrate of thrombin. Thrombin treatment is sufficient to cleave HC1 associated with either cell-surface HA or serum inter-α-trypsin inhibitor. Furthermore, thrombin treatment of the inflammatory matrix leads to dissolution of HC-HA cable structures and abolishes leukocyte adhesion. These data establish a novel mechanism whereby thrombin cleavage of HC1 regulates the adhesive properties of an inflammatory HA matrix.
Collapse
Affiliation(s)
- Aaron C Petrey
- From the Department of Pathobiology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Carol A de la Motte
- From the Department of Pathobiology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195.
| |
Collapse
|
81
|
Enhancement of Oral Tolerance Induction in DO11.10 Mice by Lactobacillus gasseri OLL2809 via Increase of Effector Regulatory T Cells. PLoS One 2016; 11:e0158643. [PMID: 27472281 PMCID: PMC4966961 DOI: 10.1371/journal.pone.0158643] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022] Open
Abstract
Food allergy is a serious problem for infants and young children. Induction of antigen-specific oral tolerance is one therapeutic strategy. Enhancement of oral tolerance induction by diet is a promising strategy to prevent food allergy in infants. Thus, in this study, we evaluate the effect of probiotic Lactobacillus gasseri OLL2809 (LG2809) on oral tolerance induction in a mouse model. The degree of oral tolerance induction was evaluated by measuring the proliferation and level of IL-2 production of splenic CD4+ T cells from DO11.10 mice fed ovalbumin (OVA) alone or OVA with LG2809. Oral administration of LG2809 significantly decreased the rate of proliferation and IL-2 production by CD4+ T cells from OVA-fed mice. LG2809 increased a ratio of CD4+ T-cell population, producing high levels of IL-10 and having strong suppressive activity. Moreover, LG2809 increased a ratio of plasmacytoid dendritic cells (pDCs) among the lamina propria (LP) in small intestine. When used as antigen presenting cells to naïve CD4+ T cells from DO11.10 mice, LP cells from BALB/c mice fed LG2809 induced higher IL-10 production and stronger suppressive activity than those from non-treated mice. These results suggest that oral administration of LG2809 increases the population of pDCs in the LP, resulting in the enhancement of oral tolerance induction by increasing the ratio of effector regulatory T cells. LG2809 could, therefore, act as a potent immunomodulator to prevent food allergies by promoting oral tolerance.
Collapse
|
82
|
Kawanishi K. Diverse properties of the mesothelial cells in health and disease. Pleura Peritoneum 2016; 1:79-89. [PMID: 30911611 DOI: 10.1515/pp-2016-0009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Mesothelial cells (MCs) form the superficial anatomic layer of serosal membranes, including pleura, pericardium, peritoneum, and the tunica of the reproductive organs. MCs produce a protective, non-adhesive barrier against physical and biochemical damages. MCs express a wide range of phenotypic markers, including vimentin and cytokeratins. MCs play key roles in fluid transport and inflammation, as reflected by the modulation of biochemical markers such as transporters, adhesion molecules, cytokines, growth factors, reactive oxygen species and their scavengers. MCs synthesize extracellular matrix related molecules, and the surface of MC microvilli secretes a highly hydrophilic protective barrier, "glycocalyx", consisting mainly of glycosaminoglycans. MCs maintain a balance between procoagulant and fibrinolytic activation by producing a whole range of regulators, can synthetize fibrin and therefore form adhesions. Synthesis and recognition of hyaluronan and sialic acids might be a new insight to explain immunoactive and immunoregulatory properties of MCs. Epithelial to mesenchymal transition of MCs may involve serosal repair and remodeling. MCs might also play a role in the development and remodeling of visceral adipose tissue. Taken together, MCs play important roles in health and disease in serosal cavities of the body. The mesothelium is not just a membrane and should be considered as an organ.
Collapse
|
83
|
Galgoczi E, Jeney F, Gazdag A, Erdei A, Katko M, Nagy DM, Ujhelyi B, Steiber Z, Gyory F, Berta E, Nagy EV. Cell density-dependent stimulation of PAI-1 and hyaluronan synthesis by TGF-β in orbital fibroblasts. J Endocrinol 2016; 229:187-96. [PMID: 26979769 DOI: 10.1530/joe-15-0524] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/15/2016] [Indexed: 02/06/2023]
Abstract
During the course of Graves' orbitopathy (GO), orbital fibroblasts are exposed to factors that lead to proliferation and extracellular matrix (ECM) overproduction. Increased levels of tissue plasminogen activator inhibitor type 1 (PAI-1 (SERPINE1)) might promote the accumulation of ECM components. PAI-1 expression is regulated by cell density and various cytokines and growth factors including transforming growth factorβ(TGF-β). We examined the effects of increasing cell densities and TGF-β on orbital fibroblasts obtained from GO patients and controls. Responses were evaluated by the measurement of proliferation, PAI-1 expression, and ECM production. There was an inverse correlation between cell density and the per cell production of PAI-1. GO orbital, normal orbital, and dermal fibroblasts behaved similarly in this respect. Proliferation rate also declined with increasing cell densities. Hyaluronan (HA) production was constant throughout the cell densities tested in all cell lines. In both GO and normal orbital fibroblasts, but not in dermal fibroblasts, TGF-β stimulated PAI-1 production in a cell density-dependent manner, reaching up to a five-fold increase above baseline. This has been accompanied by increased HA secretion and pericellular HA levels at high cell densities. Increasing cell density is a negative regulator of proliferation and PAI-1 secretion both in normal and GO orbital fibroblasts; these negative regulatory effects are partially reversed in the presence of TGF-β. Cell density-dependent regulation of PAI-1 expression in the orbit, together with the local cytokine environment, may have a regulatory role in the turnover of the orbital ECM and may contribute to the expansion of orbital soft tissue in GO.
Collapse
Affiliation(s)
- Erika Galgoczi
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florence Jeney
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamaria Gazdag
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamaria Erdei
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Monika Katko
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Domonkos M Nagy
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bernadett Ujhelyi
- Department of OphthalmologyFaculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zita Steiber
- Department of OphthalmologyFaculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Gyory
- Department of SurgeryFaculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Berta
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre V Nagy
- Division of EndocrinologyDepartment of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
84
|
Genkwadaphnin promotes leukocyte migration by increasing CD44 expression via PKD1/NF-κB signaling pathway. Immunol Lett 2016; 173:69-76. [DOI: 10.1016/j.imlet.2016.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 11/21/2022]
|
85
|
Racine RR, Manalo NA, Hall JMF, Dibas A, Raffel GD, Mummert ME. CD44 induced enhancement of phosphatase activity and calcium influx: Modifications of EGR-1 expression and cell proliferation. Biochem Biophys Rep 2016; 6:172-178. [PMID: 28955875 PMCID: PMC5600419 DOI: 10.1016/j.bbrep.2016.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to investigate how CD44 impaired Akt phosphorylation, EGR-1 expression and cell proliferation. E6.1 Jurkat cells, which lack endogenous CD44 expression, were engineered to express CD44. Previously we showed that Akt is hypophosphorylated, EGR-1 expression is reduced and proliferation is impaired in CD44 expressing E6.1 Jurkat cells. The cell cycle was studied using flow cytometry and the role of calcium (Ca2+) in Akt phosphorylation and EGR-1 expression was investigated using Western blotting. Phosphatase activity was assessed using a commercially available kit. CD44 expressing cells showed disruption at the G1 to S transition. Chelation of Ca2+ from the culture media impaired Akt phosphorylation and EGR-1 expression in both CD44 expressing cells and the open vector control. Moreover, Ni2+ disrupted cell proliferation in both cell types suggesting Ca2+ import through calcium release activated calcium channels (CRAC). Staining of cells with fura-2 AM showed significantly higher Ca2+ in CD44 expressing cells as compared with the vehicle control. Finally, non-calcium mediated phosphatase activity was significantly greater in CD44 expressing cells. We propose that the enhanced phosphatase activity in the CD44 cells increased the dephosphorylation rate of Akt; at the same time, the increased intracellular concentration of Ca2+ in the CD44 cells ensured that the phosphorylation of Akt remains intact albeit at lower concentrations as compared with the vector control. Reduced Akt phosphorylation resulted in lowered expression of EGR-1 and hence, reduced the cell proliferation rate.
Collapse
Affiliation(s)
- Ronny R Racine
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, 3500, Camp Bowie Boulevard, Fort Worth TX 76104, United States
| | - Nathan A Manalo
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, United States
| | - Jessica M F Hall
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, 3500, Camp Bowie Boulevard, Fort Worth TX 76104, United States
| | - Adnan Dibas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500, Camp Bowie Boulevard, Fort Worth TX 76104, United States
| | - Glen D Raffel
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, United States
| | - Mark E Mummert
- Mental Sciences Institute, University of North Texas Health Science Center, 3500, Camp Bowie Boulevard, Fort Worth TX 76104, United States.,Center for Biochemistry and Cancer Biology, University of North Texas Health Science Center, 3500, Camp Bowie Boulevard, Fort Worth TX 76104, United States
| |
Collapse
|
86
|
Catch bond interaction allows cells to attach to strongly hydrated interfaces. Biointerphases 2016; 11:018905. [PMID: 26753785 DOI: 10.1116/1.4939040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hyaluronans are a class of glycosaminoglycans that are widespread in the mammalian body and serve a variety of functions. Their most striking characteristic is their pronounced hydrophilicity and their capability to inhibit unspecific adhesion when present at interfaces. Catch-bond interactions are used by the CD44 receptor to interact with this inert material and to roll on the surfaces coated with hyaluronans. In this minireview, the authors discuss the general properties of hyaluronans and the occurrence and relevance of the CD44 catch-bond interaction in the context of hematopoiesis, cancer development, and leukemia.
Collapse
|
87
|
Amash A, Wang L, Wang Y, Bhakta V, Fairn GD, Hou M, Peng J, Sheffield WP, Lazarus AH. CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcγ Receptor– and Complement Receptor 3–Dependent Mechanisms. THE JOURNAL OF IMMUNOLOGY 2016; 196:3331-40. [DOI: 10.4049/jimmunol.1502198] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/08/2016] [Indexed: 11/19/2022]
|
88
|
Lawrance W, Banerji S, Day AJ, Bhattacharjee S, Jackson DG. Binding of Hyaluronan to the Native Lymphatic Vessel Endothelial Receptor LYVE-1 Is Critically Dependent on Receptor Clustering and Hyaluronan Organization. J Biol Chem 2016; 291:8014-30. [PMID: 26823460 PMCID: PMC4825007 DOI: 10.1074/jbc.m115.708305] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 01/13/2023] Open
Abstract
The lymphatic endothelial receptor LYVE-1 has been implicated in both uptake of hyaluronan (HA) from tissue matrix and in facilitating transit of leukocytes and tumor cells through lymphatic vessels based largely on in vitro studies with recombinant receptor in transfected fibroblasts. Curiously, however, LYVE-1 in lymphatic endothelium displays little if any binding to HA in vitro, and this has led to the conclusion that the native receptor is functionally silenced, a feature that is difficult to reconcile with its proposed in vivo functions. Nonetheless, as we reported recently, LYVE-1 can function as a receptor for HA-encapsulated Group A streptococci and mediate lymphatic dissemination in mice. Here we resolve these paradoxical findings and show that the capacity of LYVE-1 to bind HA is strictly dependent on avidity, demanding appropriate receptor self-association and/or HA multimerization. In particular, we demonstrate the prerequisite of a critical LYVE-1 threshold density and show that HA binding may be elicited in lymphatic endothelium by surface clustering with divalent LYVE-1 mAbs. In addition, we show that cross-linking of biotinylated HA in streptavidin multimers or supramolecular complexes with the inflammation-induced protein TSG-6 enables binding even in the absence of LYVE-1 cross-linking. Finally, we show that endogenous HA on the surface of macrophages can engage LYVE-1, facilitating their adhesion and transit across lymphatic endothelium. These results reveal LYVE-1 as a low affinity receptor tuned to discriminate between different HA configurations through avidity and establish a new mechanistic basis for the functions ascribed to LYVE-1 in matrix HA binding and leukocyte trafficking in vivo.
Collapse
Affiliation(s)
- William Lawrance
- From the MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom and
| | - Suneale Banerji
- From the MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom and
| | - Anthony J Day
- the Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Shaumick Bhattacharjee
- From the MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom and
| | - David G Jackson
- From the MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom and
| |
Collapse
|
89
|
Mohammed RN, Watson HA, Vigar M, Ohme J, Thomson A, Humphreys IR, Ager A. L-selectin Is Essential for Delivery of Activated CD8(+) T Cells to Virus-Infected Organs for Protective Immunity. Cell Rep 2016; 14:760-771. [PMID: 26804910 PMCID: PMC4742564 DOI: 10.1016/j.celrep.2015.12.090] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/01/2015] [Accepted: 12/18/2015] [Indexed: 11/18/2022] Open
Abstract
Cytotoxic CD8+ T lymphocytes play a critical role in the host response to infection by viruses. The ability to secrete cytotoxic chemicals and cytokines is considered pivotal for eliminating virus. Of equal importance is how effector CD8+ T cells home to virus-infected tissues. L-selectin has not been considered important for effector T cell homing, because levels are low on activated T cells. We report here that, although L-selectin expression is downregulated following T cell priming in lymph nodes, L-selectin is re-expressed on activated CD8+ T cells entering the bloodstream, and recruitment of activated CD8+ T cells from the bloodstream into virus-infected tissues is L-selectin dependent. Furthermore, L-selectin on effector CD8+ T cells confers protective immunity to two evolutionally distinct viruses, vaccinia and influenza, which infect mucosal and visceral organs, respectively. These results connect homing and a function of virus-specific CD8+ T cells to a single molecule, L-selectin. L-selectin is re-expressed on activated CD8+ T cells exiting lymph nodes L-selectin does not regulate priming, differentiation, or function of cytotoxic T lymphocytes Entry of activated CD8+ T cells into virus-infected tissues is L-selectin dependent The level of cell-surface L-selectin determines the extent of anti-viral immunity
Collapse
Affiliation(s)
- Rebar N Mohammed
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - H Angharad Watson
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Miriam Vigar
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Julia Ohme
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Amanda Thomson
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ian R Humphreys
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ann Ager
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
90
|
Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proc Natl Acad Sci U S A 2016; 113:1339-44. [PMID: 26787861 DOI: 10.1073/pnas.1525086113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The extracellular matrix polysaccharide hyaluronan (HA) accumulates at sites of autoimmune inflammation, including white matter lesions in multiple sclerosis (MS), but its functional importance in pathogenesis is unclear. We have evaluated the impact of 4-methylumbelliferone (4-MU), an oral inhibitor of HA synthesis, on disease progression in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Treatment with 4-MU decreases the incidence of EAE, delays its onset, and reduces the severity of established disease. 4-MU inhibits the activation of autoreactive T cells and prevents their polarization toward a Th1 phenotype. Instead, 4-MU promotes polarization toward a Th2 phenotpye and induction of Foxp3(+) regulatory T cells. Further, 4-MU hastens trafficking of T cells through secondary lymphoid organs, impairs the infiltration of T cells into the CNS parenchyma, and limits astrogliosis. Together, these data suggest that HA synthesis is necessary for disease progression in EAE and that treatment with 4-MU may be a potential therapeutic strategy in CNS autoimmunity. Considering that 4-MU is already a therapeutic, called hymecromone, that is approved to treat biliary spasm in humans, we propose that it could be repurposed to treat MS.
Collapse
|
91
|
Timmerman I, Daniel AE, Kroon J, van Buul JD. Leukocytes Crossing the Endothelium: A Matter of Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:281-329. [PMID: 26940521 DOI: 10.1016/bs.ircmb.2015.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leukocytes cross the endothelial vessel wall in a process called transendothelial migration (TEM). The purpose of leukocyte TEM is to clear the causing agents of inflammation in underlying tissues, for example, bacteria and viruses. During TEM, endothelial cells initiate signals that attract and guide leukocytes to sites of tissue damage. Leukocytes react by attaching to these sites and signal their readiness to move back to endothelial cells. Endothelial cells in turn respond by facilitating the passage of leukocytes while retaining overall integrity. In this review, we present recent findings in the field and we have endeavored to synthesize a coherent picture of the intricate interplay between endothelial cells and leukocytes during TEM.
Collapse
Affiliation(s)
- Ilse Timmerman
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Anna E Daniel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
92
|
Wang C, Liu CM, Wei LL, Shi LY, Pan ZF, Mao LG, Wan XC, Ping ZP, Jiang TT, Chen ZL, Li ZJ, Li JC. A Group of Novel Serum Diagnostic Biomarkers for Multidrug-Resistant Tuberculosis by iTRAQ-2D LC-MS/MS and Solexa Sequencing. Int J Biol Sci 2016; 12:246-56. [PMID: 26884721 PMCID: PMC4737680 DOI: 10.7150/ijbs.13805] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/11/2015] [Indexed: 01/29/2023] Open
Abstract
The epidemic of pulmonary tuberculosis (TB), especially multidrug-resistance tuberculosis (MDR-TB) presented a major challenge for TB treatment today. We performed iTRAQ labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) and Solexa sequencing among MDR-TB patients, drug-sensitive tuberculosis (DS-TB) patients, and healthy controls. A total of 50 differentially expressed proteins and 43 differentially expressed miRNAs (fold change >1.50 or <0.60, P<0.05) were identified in the MDR-TB patients compared to both DS-TB patients and healthy controls. We found that 22.00% of differentially expressed proteins and 32.56% of differentially expressed miRNAs were related, and could construct a network mainly in complement and coagulation cascades. Significant differences in CD44 antigen (CD44), coagulation factor XI (F11), kininogen-1 (KNG1), miR-4433b-5p, miR-424-5p, and miR-199b-5p were found among MDR-TB patients, DS-TB patients and healthy controls (P<0.05) by enzyme-linked immunosorbent assay (ELISA) and SYBR green qRT-PCR validation. A strong negative correlation, consistent with the target gene prediction, was found between miR-199b-5p and KNG1 (r=-0.232, P=0.017). Moreover, we established the MDR-TB diagnostic model based on five biomarkers (CD44, KNG1, miR-4433b-5p, miR-424-5p, and miR-199b-5p). Our study proposes potential biomarkers for MDR-TB diagnosis, and also provides a new experimental basis to understand the pathogenesis of MDR-TB.
Collapse
Affiliation(s)
- Chong Wang
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chang-Ming Liu
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Li-Liang Wei
- 2. Department of Respiratory Medicine, The Sixth Hospital of Shaoxing, Shaoxing 312000, P.R. China
| | - Li-Ying Shi
- 3. Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, P.R. China
| | - Zhi-Fen Pan
- 4. Department of Tuberculosis, The First Hospital of Jiaxing, Jiaxing 314001, P.R. China
| | - Lian-Gen Mao
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiao-Chen Wan
- 3. Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, P.R. China
| | - Ze-Peng Ping
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ting-Ting Jiang
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhong-Liang Chen
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhong-Jie Li
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ji-Cheng Li
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
93
|
Kellett-Clarke H, Stegmann M, Barclay AN, Metcalfe C. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site. PLoS One 2015; 10:e0138137. [PMID: 26379032 PMCID: PMC4574955 DOI: 10.1371/journal.pone.0138137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/25/2015] [Indexed: 11/19/2022] Open
Abstract
CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the-LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies.
Collapse
Affiliation(s)
- Helena Kellett-Clarke
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Monika Stegmann
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - A. Neil Barclay
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Clive Metcalfe
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
94
|
Murai T. Lipid Raft-Mediated Regulation of Hyaluronan-CD44 Interactions in Inflammation and Cancer. Front Immunol 2015; 6:420. [PMID: 26347743 PMCID: PMC4542320 DOI: 10.3389/fimmu.2015.00420] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/01/2015] [Indexed: 01/19/2023] Open
Abstract
Hyaluronan is a major component of the extracellular matrix and plays pivotal roles in inflammation and cancer. Hyaluronan oligomers are frequently found in these pathological conditions, in which they exert their effects via association with the transmembrane receptor CD44. Lipid rafts are cholesterol- and glycosphingolipid-enriched membrane microdomains that may regulate membrane receptors while serving as platforms for transmembrane signaling at the cell surface. This article focuses on the recent discovery that lipid rafts regulate the interaction between CD44 and hyaluronan, which depends largely on hyaluronan's size. Lipid rafts regulate CD44's ability to bind hyaluronan in T cells, control the rolling adhesion of lymphocytes on vascular endothelial cells, and regulate hyaluronan- and CD44-mediated cancer cell migration. The implications of these findings for preventing inflammatory disorders and cancer are also discussed.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University , Suita , Japan
| |
Collapse
|
95
|
Schumann J, Stanko K, Schliesser U, Appelt C, Sawitzki B. Differences in CD44 Surface Expression Levels and Function Discriminates IL-17 and IFN-γ Producing Helper T Cells. PLoS One 2015; 10:e0132479. [PMID: 26172046 PMCID: PMC4501817 DOI: 10.1371/journal.pone.0132479] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/15/2015] [Indexed: 11/24/2022] Open
Abstract
CD44 is a prominent activation marker which distinguishes memory and effector T cells from their naïve counterparts. It also plays a role in early T cell signaling events as it is bound to the lymphocyte-specific protein kinase and thereby enhances T cell receptor signalling. Here, we investigated whether IFN-γ and IL-17 producing T helper cells differ in their CD44 expression and their dependence of CD44 for differentiation. Stimulation of CD4+ T cells with allogeneic dendritic cells resulted in the formation of three distinguishable populations: CD44+, CD44++ and CD44+++. In vitro and in vivo generated allo-reactive IL-17 producing T helper cells were mainly CD44+++ as compared to IFN-γ+ T helper cells, which were CD44++. This effect was enhanced under polarizing conditions. T helper 17 polarization led to a shift towards the CD44+++ population, whereas T helper 1 polarization diminished this population. Furthermore, blocking CD44 decreased IL-17 secretion, while IFN-γ was barely affected. Titration experiments revealed that low T cell receptor and CD28 stimulation supported T helper 17 rather than T helper 1 development. Under these conditions CD44 could act as a co-stimulatory molecule and replace CD28. Indeed, rested CD44+++CD4+ T cells contained already more total and especially phosphorylated zeta-chain-associated protein kinase 70 as compared to CD44++ cells. Our results support the notion, that CD44 enhances T cell receptor signaling strength by delivering lymphocyte-specific protein kinase, which is required for induction of IL-17 producing T helper cells.
Collapse
Affiliation(s)
- Julia Schumann
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
| | - Katarina Stanko
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
| | - Ulrike Schliesser
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
| | - Christine Appelt
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité University Medicine, Berlin, Germany
- Berlin Brandenburg Center for Regenerative Therapies, Charité University Medicine, Berlin, Germany
| |
Collapse
|
96
|
Liu LF, Kodama K, Wei K, Tolentino LL, Choi O, Engleman EG, Butte AJ, McLaughlin T. The receptor CD44 is associated with systemic insulin resistance and proinflammatory macrophages in human adipose tissue. Diabetologia 2015; 58:1579-86. [PMID: 25952479 DOI: 10.1007/s00125-015-3603-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/07/2015] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Proinflammatory immune cell infiltration in human adipose tissue is associated with the development of insulin resistance. We previously identified, via a gene expression-based genome-wide association study, the cell-surface immune cell receptor CD44 as a functionally important gene associated with type 2 diabetes. We then showed that, compared with controls, Cd44 knockout mice were protected from insulin resistance and adipose tissue inflammation during diet-induced obesity. We thus sought to test whether CD44 is associated with adipose tissue inflammation and insulin resistance in humans. METHODS Participants included 58 healthy, overweight/moderately obese white adults who met predetermined criteria for insulin resistance or insulin sensitivity based on the modified insulin-suppression test. Serum was collected from 43 participants to measure circulating concentrations of CD44. Subcutaneous adipose tissue was obtained from 17 participants to compare CD44, its ligand osteopontin (OPN, also known as SPP1) and pro-inflammatory gene expression. CD44 expression on adipose tissue macrophage (ATM) surfaces was determined by flow cytometry. RESULTS Serum CD44 concentrations were significantly increased in insulin-resistant (IR) participants. CD44 gene expression in subcutaneous adipose tissue was threefold higher in the IR subgroup. The expression of OPN, CD68 and IL6 was also significantly elevated in IR individuals. CD44 gene expression correlated significantly with CD68 and IL6 expression. CD44 density on ATMs was associated with proinflammatory M1 polarisation. CONCLUSIONS/INTERPRETATION CD44 and OPN in human adipose tissue are associated with localised inflammation and systemic insulin resistance. This receptor-ligand pair is worthy of further research as a potentially modifiable contributor to human insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Li Fen Liu
- Division of Endocrinology, Department of Medicine, Stanford University, 300 Pasteur Drive, Rm S025, Stanford, CA, 94305-5103, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Skorska A, von Haehling S, Ludwig M, Lux CA, Gaebel R, Kleiner G, Klopsch C, Dong J, Curato C, Altarche-Xifró W, Slavic S, Unger T, Steinhoff G, Li J, David R. The CD4(+) AT2R(+) T cell subpopulation improves post-infarction remodelling and restores cardiac function. J Cell Mol Med 2015; 19:1975-85. [PMID: 25991381 PMCID: PMC4549048 DOI: 10.1111/jcmm.12574] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction (MI) is a major condition causing heart failure (HF). After MI, the renin angiotensin system (RAS) and its signalling octapeptide angiotensin II (Ang II) interferes with cardiac injury/repair via the AT1 and AT2 receptors (AT1R, AT2R). Our study aimed at deciphering the mechanisms underlying the link between RAS and cellular components of the immune response relying on a rodent model of HF as well as HF patients. Flow cytometric analyses showed an increase in the expression of CD4(+) AT2R(+) cells in the rat heart and spleen post-infarction, but a reduction in the peripheral blood. The latter was also observed in HF patients. The frequency of rat CD4(+) AT2R(+) T cells in circulating blood, post-infarcted heart and spleen represented 3.8 ± 0.4%, 23.2 ± 2.7% and 22.6 ± 2.6% of the CD4(+) cells. CD4(+) AT2R(+) T cells within blood CD4(+) T cells were reduced from 2.6 ± 0.2% in healthy controls to 1.7 ± 0.4% in patients. Moreover, we characterized CD4(+) AT2R(+) T cells which expressed regulatory FoxP3, secreted interleukin-10 and other inflammatory-related cytokines. Furthermore, intramyocardial injection of MI-induced splenic CD4(+) AT2R(+) T cells into recipient rats with MI led to reduced infarct size and improved cardiac performance. We defined CD4(+) AT2R(+) cells as a T cell subset improving heart function post-MI corresponding with reduced infarction size in a rat MI-model. Our results indicate CD4(+) AT2R(+) cells as a promising population for regenerative therapy, via myocardial transplantation, pharmacological AT2R activation or a combination thereof.
Collapse
Affiliation(s)
- Anna Skorska
- Reference and Translation Centre for Cardiac Stem Cell Therapy (RTC)/Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Stephan von Haehling
- Center for Cardiovascular Research and Department of Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany.,University of Göttingen Medical School, Göttingen, Germany
| | - Marion Ludwig
- Reference and Translation Centre for Cardiac Stem Cell Therapy (RTC)/Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Cornelia A Lux
- Reference and Translation Centre for Cardiac Stem Cell Therapy (RTC)/Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Ralf Gaebel
- Reference and Translation Centre for Cardiac Stem Cell Therapy (RTC)/Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Gabriela Kleiner
- Reference and Translation Centre for Cardiac Stem Cell Therapy (RTC)/Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Christian Klopsch
- Reference and Translation Centre for Cardiac Stem Cell Therapy (RTC)/Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Jun Dong
- German Rheumatism Research Centre, Berlin, Germany
| | - Caterina Curato
- Center for Cardiovascular Research (CCR) and Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wassim Altarche-Xifró
- Center for Cardiovascular Research (CCR) and Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Svetlana Slavic
- Center for Cardiovascular Research (CCR) and Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Unger
- Center for Cardiovascular Research (CCR) and Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gustav Steinhoff
- Reference and Translation Centre for Cardiac Stem Cell Therapy (RTC)/Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Jun Li
- Reference and Translation Centre for Cardiac Stem Cell Therapy (RTC)/Department of Cardiac Surgery, University of Rostock, Rostock, Germany.,Clinical Stem Cell Research Center and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Robert David
- Reference and Translation Centre for Cardiac Stem Cell Therapy (RTC)/Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| |
Collapse
|
98
|
Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front Immunol 2015; 6:201. [PMID: 25999946 PMCID: PMC4422082 DOI: 10.3389/fimmu.2015.00201] [Citation(s) in RCA: 541] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/13/2015] [Indexed: 01/04/2023] Open
Abstract
The glycosaminoglycan hyaluronan (HA), a major component of extracellular matrices, and cell surface receptors of HA have been proposed to have pivotal roles in cell proliferation, migration, and invasion, which are necessary for inflammation and cancer progression. CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological functions in human and murine inflammations and tumor cells have been investigated comprehensively. HA was initially considered to be only an inert component of connective tissues, but is now known as a “dynamic” molecule with a constant turnover in many tissues through rapid metabolism that involves HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and oligosaccharides. The intracellular signaling pathways initiated by HA interactions with CD44 and RHAMM that lead to inflammatory and tumorigenic responses are complex. Interestingly, these molecules have dual functions in inflammations and tumorigenesis. For example, the presence of CD44 is involved in initiation of arthritis, while the absence of CD44 by genetic deletion in an arthritis mouse model increases rather than decreases disease severity. Similar dual functions of CD44 exist in initiation and progression of cancer. RHAMM overexpression is most commonly linked to cancer progression, whereas loss of RHAMM is associated with malignant peripheral nerve sheath tumor growth. HA may similarly perform dual functions. An abundance of HMW HA can promote malignant cell proliferation and development of cancer, whereas antagonists to HA-CD44 signaling inhibit tumor cell growth in vitro and in vivo by interfering with HMW HA-CD44 interaction. This review describes the roles of HA interactions with CD44 and RHAMM in inflammatory responses and tumor development/progression, and how therapeutic strategies that block these key inflammatory/tumorigenic processes may be developed in rodent and human diseases.
Collapse
Affiliation(s)
- Suniti Misra
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland , Ohio, OH , USA
| | - Roger R Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Shibnath Ghatak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
99
|
Baboolal TG, Mastbergen SC, Jones E, Calder SJ, Lafeber FPJG, McGonagle D. Synovial fluid hyaluronan mediates MSC attachment to cartilage, a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction. Ann Rheum Dis 2015; 75:908-15. [PMID: 25948596 PMCID: PMC4853581 DOI: 10.1136/annrheumdis-2014-206847] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/05/2015] [Indexed: 12/23/2022]
Abstract
Objectives Knee joint distraction (KJD) is a novel, but poorly understood, treatment for osteoarthritis (OA) associated with remarkable ‘spontaneous’ cartilage repair in which resident synovial fluid (SF) multipotential mesenchymal stromal cells (MSCs) may play a role. We hypothesised that SF hyaluronic acid (HA) inhibited the initial interaction between MSCs and cartilage, a key first step to integration, and postulate that KJD environment favoured MSC/cartilage interactions. Methods Attachment of dual-labelled SF-MSCs were assessed in a novel in vitro human cartilage model using OA and rheumatoid arthritic (RA) SF. SF was digested with hyaluronidase (hyase) and its effect on adhesion was observed using confocal microscopy. MRI and microscopy were used to image autologous dual-labelled MSCs in an in vivo canine model of KJD. SF-HA was investigated using gel electrophoresis and densitometry. Results Osteoarthritic-synovial fluid (OA-SF) and purified high molecular weight (MW) HA inhibited SF-MSC adhesion to plastic, while hyase treatment of OA-SF but not RA-SF significantly increased MSC adhesion to cartilage (3.7-fold, p<0.05) These differences were linked to the SF mediated HA-coat which was larger in OA-SF than in RA-SF. OA-SF contained >9 MDa HA and this correlated with increases in adhesion (r=0.880). In the canine KJD model, MSC adhesion to cartilage was evident and also dependent on HA MW. Conclusions These findings highlight an unappreciated role of SF-HA on MSC interactions and provide proof of concept that endogenous SF-MSCs are capable of adhering to cartilage in a favourable biochemical and biomechanical environment in OA distracted joints, offering novel one-stage strategies towards joint repair.
Collapse
Affiliation(s)
- Thomas G Baboolal
- Faculty of Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, West Yorkshire, UK
| | - Simon C Mastbergen
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elena Jones
- Faculty of Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, West Yorkshire, UK NIHR-Leeds Musculoskeletal and Biomedical Research Unit, Chapel Allerton, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, UK
| | - Stuart J Calder
- Department of Trauma and Orthopaedics, Chapel Allerton, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, UK
| | - Floris P J G Lafeber
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis McGonagle
- Faculty of Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, West Yorkshire, UK NIHR-Leeds Musculoskeletal and Biomedical Research Unit, Chapel Allerton, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, UK
| |
Collapse
|
100
|
Jordan AR, Racine RR, Hennig MJP, Lokeshwar VB. The Role of CD44 in Disease Pathophysiology and Targeted Treatment. Front Immunol 2015; 6:182. [PMID: 25954275 PMCID: PMC4404944 DOI: 10.3389/fimmu.2015.00182] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/02/2015] [Indexed: 12/17/2022] Open
Abstract
The cell-surface glycoprotein CD44 is involved in a multitude of important physiological functions including cell proliferation, adhesion, migration, hematopoiesis, and lymphocyte activation. The diverse physiological activity of CD44 is manifested in the pathology of a number of diseases including cancer, arthritis, bacterial and viral infections, interstitial lung disease, vascular disease, and wound healing. This diversity in biological activity is conferred by both a variety of distinct CD44 isoforms generated through complex alternative splicing, posttranslational modifications (e.g., N- and O-glycosylation), interactions with a number of different ligands, and the abundance and spatial distribution of CD44 on the cell surface. The extracellular matrix glycosaminoglycan hyaluronic acid (HA) is the principle ligand of CD44. This review focuses both CD44-hyaluronan dependent and independent CD44 signaling and the role of CD44–HA interaction in various pathophysiologies. The review also discusses recent advances in novel treatment strategies that exploit the CD44–HA interaction either for direct targeting or for drug delivery.
Collapse
Affiliation(s)
- Andre R Jordan
- Sheila and David Fuente Program in Cancer Biology, University of Miami-Miller School of Medicine , Miami, FL , USA
| | - Ronny R Racine
- Department of Urology, University of Miami-Miller School of Medicine , Miami, FL , USA
| | - Martin J P Hennig
- Department of Urology, University of Miami-Miller School of Medicine , Miami, FL , USA ; Department of Urology and Uro-oncology, Hannover Medical School , Hannover , Germany
| | - Vinata B Lokeshwar
- Department of Urology, University of Miami-Miller School of Medicine , Miami, FL , USA ; Department of Cell Biology, University of Miami-Miller School of Medicine , Miami, FL , USA ; Miami Clinical Translational Institute, University of Miami-Miller School of Medicine , Miami, FL , USA
| |
Collapse
|