51
|
Cosentino C, Alberio L, Gazzarrini S, Aquila M, Romano E, Cermenati S, Zuccolini P, Petersen J, Beltrame M, Van Etten JL, Christie JM, Thiel G, Moroni A. Optogenetics. Engineering of a light-gated potassium channel. Science 2015; 348:707-10. [PMID: 25954011 DOI: 10.1126/science.aaa2787] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/07/2015] [Indexed: 12/18/2022]
Abstract
The present palette of opsin-based optogenetic tools lacks a light-gated potassium (K(+)) channel desirable for silencing of excitable cells. Here, we describe the construction of a blue-light-induced K(+) channel 1 (BLINK1) engineered by fusing the plant LOV2-Jα photosensory module to the small viral K(+) channel Kcv. BLINK1 exhibits biophysical features of Kcv, including K(+) selectivity and high single-channel conductance but reversibly photoactivates in blue light. Opening of BLINK1 channels hyperpolarizes the cell to the K(+) equilibrium potential. Ectopic expression of BLINK1 reversibly inhibits the escape response in light-exposed zebrafish larvae. BLINK1 therefore provides a single-component optogenetic tool that can establish prolonged, physiological hyperpolarization of cells at low light intensities.
Collapse
Affiliation(s)
| | - Laura Alberio
- Department of Biosciences, University of Milano, Italy
| | | | - Marco Aquila
- Department of Biosciences, University of Milano, Italy
| | | | | | | | - Jan Petersen
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| | | | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA
| | - John M Christie
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| | - Gerhard Thiel
- Membrane Biophysics, Technical University of Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milano, Italy.
| |
Collapse
|
52
|
Large dsDNA chloroviruses encode diverse membrane transport proteins. Virology 2015; 479-480:38-45. [PMID: 25766639 DOI: 10.1016/j.virol.2015.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/20/2015] [Accepted: 02/07/2015] [Indexed: 10/23/2022]
Abstract
Many large DNA viruses that infect certain isolates of chlorella-like green algae (chloroviruses) are unusual because they often encode a diverse set of membrane transport proteins, including functional K(+) channels and aquaglyceroporins as well as K(+) transporters and calcium transporting ATPases. Some chloroviruses also encode putative ligand-gated-like channel proteins. No one protein is present in all of the chloroviruses that have been sequenced, but the K(+) channel is the most common as only two chloroviruses have been isolated that lack this complete protein. This review describes the properties of these membrane-transporting proteins and suggests possible physiological functions and evolutionary histories for some of them.
Collapse
|
53
|
Engineering a Ca⁺⁺⁺-sensitive (bio)sensor from the pore-module of a potassium channel. SENSORS 2015; 15:4913-24. [PMID: 25734643 PMCID: PMC4435187 DOI: 10.3390/s150304913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/19/2014] [Accepted: 02/02/2015] [Indexed: 11/30/2022]
Abstract
Signals recorded at the cell membrane are meaningful indicators of the physiological vs. pathological state of a cell and will become useful diagnostic elements in nanomedicine. In this project we present a coherent strategy for the design and fabrication of a bio-nano-sensor that monitors changes in intracellular cell calcium concentration and allows an easy read out by converting the calcium signal into an electrical current in the range of microampere that can be easily measured by conventional cell electrophysiology apparatus.
Collapse
|
54
|
Moran Y, Barzilai MG, Liebeskind BJ, Zakon HH. Evolution of voltage-gated ion channels at the emergence of Metazoa. J Exp Biol 2015; 218:515-25. [DOI: 10.1242/jeb.110270] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Voltage-gated ion channels are large transmembrane proteins that enable the passage of ions through their pore across the cell membrane. These channels belong to one superfamily and carry pivotal roles such as the propagation of neuronal and muscular action potentials and the promotion of neurotransmitter secretion in synapses. In this review, we describe in detail the current state of knowledge regarding the evolution of these channels with a special emphasis on the metazoan lineage. We highlight the contribution of the genomic revolution to the understanding of ion channel evolution and for revealing that these channels appeared long before the appearance of the first animal. We also explain how the elucidation of channel selectivity properties and function in non-bilaterian animals such as cnidarians (sea anemones, corals, jellyfish and hydroids) can contribute to the study of channel evolution. Finally, we point to open questions and future directions in this field of research.
Collapse
Affiliation(s)
- Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maya Gur Barzilai
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Benjamin J. Liebeskind
- Department of Integrative Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712, USA
| | - Harold H. Zakon
- Department of Integrative Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712, USA
- Department of Neuroscience, University of Texas at Austin, TX 78712, USA
- Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
55
|
Siotto F, Martin C, Rauh O, Van Etten JL, Schroeder I, Moroni A, Thiel G. Viruses infecting marine picoplancton encode functional potassium ion channels. Virology 2014; 466-467:103-11. [PMID: 25441713 DOI: 10.1016/j.virol.2014.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/29/2014] [Accepted: 05/03/2014] [Indexed: 01/19/2023]
Abstract
Phycodnaviruses are dsDNA viruses, which infect algae. Their large genomes encode many gene products, like small K(+) channels, with homologs in prokaryotes and eukaryotes. Screening for K(+) channels revealed their abundance in viruses from fresh-water habitats. Recent sequencing of viruses from marine algae or from salt water in Antarctica revealed sequences with the predicted characteristics of K(+) channels but with some unexpected features. Two genes encode either 78 or 79 amino acid proteins, which are the smallest known K(+) channels. Also of interest is an unusual sequence in the canonical α-helixes in K(+) channels. Structural prediction algorithms indicate that the new channels have the conserved α-helix folds but the algorithms failed to identify the expected transmembrane domains flanking the K(+) channel pores. In spite of these unexpected properties electophysiological studies confirmed that the new proteins are functional K(+) channels.
Collapse
Affiliation(s)
- Fenja Siotto
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - Corinna Martin
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - Oliver Rauh
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - Indra Schroeder
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - Anna Moroni
- Dipartimento di Biologia Università degli Studi di Milano e Istituto di Biofisica, CNR, Milano, Italy
| | - Gerhard Thiel
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany.
| |
Collapse
|
56
|
von Charpuis C, Meckel T, Moroni A, Thiel G. The sorting of a small potassium channel in mammalian cells can be shifted between mitochondria and plasma membrane. Cell Calcium 2014; 58:114-21. [PMID: 25449299 DOI: 10.1016/j.ceca.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
The two small and similar viral K(+) channels Kcv and Kesv are sorted in mammalian cells and yeast to different destinations. Analysis of the sorting pathways shows that Kcv is trafficking via the secretory pathway to the plasma membrane, while Kesv is inserted via the TIM/TOM complex to the inner membrane of mitochondria. Studies with Kesv mutants show that an N-terminal mitochondrial targeting sequence in this channel is neither necessary nor sufficient for sorting of Kesv the mitochondria. Instead the sorting of Kesv can be redirected from the mitochondria to the plasma membrane by an insertion of ≥2 amino acids in a position sensitive manner into the C-terminal transmembrane domain (TMD2) of this channel. The available data advocate the presence of a C-terminal sorting signal in TMD2 of Kesv channel, which is presumably not determined by the length of this domain.
Collapse
Affiliation(s)
- Charlotte von Charpuis
- Plant Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Tobias Meckel
- Plant Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Anna Moroni
- Department of Biology and CNR IBF-Mi, and Istituto Nazionale di Fisica della Materia, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Gerhard Thiel
- Plant Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany.
| |
Collapse
|
57
|
DiFrancesco ML, Hansen UP, Thiel G, Moroni A, Schroeder I. Effect of cytosolic pH on inward currents reveals structural characteristics of the proton transport cycle in the influenza A protein M2 in cell-free membrane patches of Xenopus oocytes. PLoS One 2014; 9:e107406. [PMID: 25211283 PMCID: PMC4174909 DOI: 10.1371/journal.pone.0107406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/17/2014] [Indexed: 01/01/2023] Open
Abstract
Transport activity through the mutant D44A of the M2 proton channel from influenza virus A was measured in excised inside-out macro-patches of Xenopus laevis oocytes at cytosolic pH values of 5.5, 7.5 and 8.2. The current-voltage relationships reveal some peculiarities: 1. "Transinhibition", i.e., instead of an increase of unidirectional outward current with increasing cytosolic H(+) concentration, a decrease of unidirectional inward current was found. 2. Strong inward rectification. 3. Exponential rise of current with negative potentials. In order to interpret these findings in molecular terms, different kinetic models have been tested. The transinhibition basically results from a strong binding of H(+) to a site in the pore, presumably His37. This assumption alone already provides inward rectification and exponential rise of the IV curves. However, it results in poor global fits of the IV curves, i.e., good fits were only obtained for cytosolic pH of 8.2, but not for 7.5. Assuming an additional transport step as e.g. caused by a constriction zone at Val27 resulted in a negligible improvement. In contrast, good global fits for cytosolic pH of 7.5 and 8.2 were immediately obtained with a cyclic model. A "recycling step" implies that the protein undergoes conformational changes (assigned to Trp41 and Val27) during transport which have to be reset before the next proton can be transported. The global fit failed at the low currents at pHcyt = 5.5, as expected from the interference of putative transport of other ions besides H(+). Alternatively, a regulatory effect of acidic cytosolic pH may be assumed which strongly modifies the rate constants of the transport cycle.
Collapse
Affiliation(s)
| | - Ulf-Peter Hansen
- Department of Structural Biology, University of Kiel, Kiel, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technical University of Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences and CNR-IBF, University of Milan, Milan, Italy
| | - Indra Schroeder
- Plant Membrane Biophysics, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
58
|
Minakshi R, Padhan K, Rehman S, Hassan MI, Ahmad F. The SARS Coronavirus 3a protein binds calcium in its cytoplasmic domain. Virus Res 2014; 191:180-3. [PMID: 25116391 PMCID: PMC7114474 DOI: 10.1016/j.virusres.2014.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/01/2014] [Accepted: 08/01/2014] [Indexed: 01/17/2023]
Abstract
We expressed and purified the cytoplasmic domain of the 3a protein. Cyto3a domain binds calcium. Calcium binding causes a conformational change. 3a protein in vivo to have significant role in viral pathogenesis.
The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a positive stranded RNA virus with ∼30 kb genome. Among all open reading frames (orfs) of this virus, the orf3a is the largest, and encodes a protein of 274 amino acids, named as 3a protein. Sequence analysis suggests that the orf3a aligned to one calcium pump present in Plasmodium falciparum and the enzyme glutamine synthetase found in Leptospira interrogans. This sequence similarity was found to be limited only to amino acid residues 209–264 which form the cytoplasmic domain of the orf3a. Furthermore, this region was predicted to be involved in the calcium binding. Owing to this hypothesis, we were driven to establish its calcium binding property in vitro. Here, we expressed and purified the cytoplasmic domain of the 3a protein, called Cyto3a, as a recombinant His-tagged protein in the E. coli. The calcium binding nature was established by performing various staining methods such as ruthenium red and stains-all. 45Ca overlay method was also done to further support the data. Since the 3a protein forms ion channels, we were interested to see any conformational changes occurring in the Cyot3a upon calcium binding, using fluorescence spectroscopy and circular dichroism. These studies clearly indicate a significant change in the conformation of the Cyto3a protein after binding with calcium. Our results strongly suggest that the cytoplasmic domain of the 3a protein of SARS-CoV binds calcium in vitro, causing a change in protein conformation.
Collapse
Affiliation(s)
- Rinki Minakshi
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Kartika Padhan
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Safikur Rehman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
59
|
Quarato G, Scrima R, Ripoli M, Agriesti F, Moradpour D, Capitanio N, Piccoli C. Protective role of amantadine in mitochondrial dysfunction and oxidative stress mediated by hepatitis C virus protein expression. Biochem Pharmacol 2014; 89:545-56. [PMID: 24726442 DOI: 10.1016/j.bcp.2014.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 12/16/2022]
Abstract
Amantadine is an antiviral and antiparkinsonian drug that has been evaluated in combination therapies against hepatitis C virus (HCV) infection. Controversial results have been reported concerning its efficacy, and its mechanism of action remains unclear. Data obtained in vitro suggested a role of amantadine in inhibiting HCV p7-mediated cation conductance. In keeping with the fact that mitochondria are responsible to ionic fluxes and that HCV infection impairs mitochondrial function, we investigated a potential role of amantadine in modulating mitochondrial function. Using a well-characterized inducible cell line expressing the full-length HCV polyprotein, we found that amantadine not only prevented but also rescued HCV protein-mediated mitochondrial dysfunction. Specifically, amantadine corrected (i) overload of mitochondrial Ca²⁺; (ii) inhibition of respiratory chain activity and oxidative phosphorylation; (iii) reduction of membrane potential; and (iv) overproduction of reactive oxygen species. The effects of amantadine were observed within 15 min following drug administration and confirmed in Huh-7.5 cells transfected with an infectious HCV genome. These effects were also observed in cells expressing subgenomic HCV constructs, indicating that they are not mediated or only in part mediated by p7. Single organelle analyzes carried out on isolated mouse liver mitochondria demonstrated that amantadine induces hyperpolarization of the membrane potential. Moreover, amantadine treatment increased the calcium threshold required to trigger mitochondrial permeability transition opening. In conclusion, these results support a role of amantadine in preserving cellular bioenergetics and redox homeostasis in HCV-infected cells and unveil an effect of the drug which might be exploited for a broader therapeutic utilization.
Collapse
Affiliation(s)
- Giovanni Quarato
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100 Foggia, Italy
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100 Foggia, Italy
| | - Maria Ripoli
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100 Foggia, Italy
| | - Francesca Agriesti
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PT, Italy
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100 Foggia, Italy.
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100 Foggia, Italy.
| |
Collapse
|
60
|
OuYang B, Chou JJ. The minimalist architectures of viroporins and their therapeutic implications. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:1058-67. [PMID: 24055819 PMCID: PMC3943691 DOI: 10.1016/j.bbamem.2013.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 11/23/2022]
Abstract
Many viral genomes encode small, integral membrane proteins that form homo-oligomeric channels in membrane, and they transport protons, cations, and other molecules across the membrane barrier to aid various steps of viral entry and maturation. These viral proteins, collectively named viroporins, are crucial for viral pathogenicity. In the past five years, structures obtained by nuclear magnetic resonance (NMR), X-ray crystallography, and electron microscopy (EM) showed that viroporins often adopt minimalist architectures to achieve their functions. A number of small molecules have been identified to interfere with their channel activities and thereby inhibit viral infection, making viroporins potential drug targets for therapeutic intervention. The known architectures and inhibition mechanisms of viroporins differ significantly from each other, but some common principles are shared between them. This review article summarizes the recent developments in the structural investigation of viroporins and their inhibition by antiviral compounds. This article is part of a Special Issue entitled: Viral Membrane Proteins-Channels for Cellular Networking.
Collapse
Affiliation(s)
- Bo OuYang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; National Center for Protein Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - James J Chou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; National Center for Protein Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
61
|
Arrigoni C, Schroeder I, Romani G, Van Etten JL, Thiel G, Moroni A. The voltage-sensing domain of a phosphatase gates the pore of a potassium channel. ACTA ACUST UNITED AC 2013; 141:389-95. [PMID: 23440279 PMCID: PMC3581695 DOI: 10.1085/jgp.201210940] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The modular architecture of voltage-gated K(+) (Kv) channels suggests that they resulted from the fusion of a voltage-sensing domain (VSD) to a pore module. Here, we show that the VSD of Ciona intestinalis phosphatase (Ci-VSP) fused to the viral channel Kcv creates Kv(Synth1), a functional voltage-gated, outwardly rectifying K(+) channel. Kv(Synth1) displays the summed features of its individual components: pore properties of Kcv (selectivity and filter gating) and voltage dependence of Ci-VSP (V(1/2) = +56 mV; z of ~1), including the depolarization-induced mode shift. The degree of outward rectification of the channel is critically dependent on the length of the linker more than on its amino acid composition. This highlights a mechanistic role of the linker in transmitting the movement of the sensor to the pore and shows that electromechanical coupling can occur without coevolution of the two domains.
Collapse
Affiliation(s)
- Cristina Arrigoni
- Department of Biosciences, Consiglio Nazionale delle Ricerche, Università degli Studi di Milano, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
62
|
Romani G, Piotrowski A, Hillmer S, Gurnon J, Van Etten JL, Moroni A, Thiel G, Hertel B. A virus-encoded potassium ion channel is a structural protein in the chlorovirus Paramecium bursaria chlorella virus 1 virion. J Gen Virol 2013; 94:2549-2556. [PMID: 23918407 DOI: 10.1099/vir.0.055251-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most chloroviruses encode small K(+) channels, which are functional in electrophysiological assays. The experimental finding that initial steps in viral infection exhibit the same sensitivity to channel inhibitors as the viral K(+) channels has led to the hypothesis that the channels are structural proteins located in the internal membrane of the virus particles. This hypothesis was questioned recently because proteomic studies failed to detect the channel protein in virions of the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1). Here, we used a mAb raised against the functional K(+) channel from chlorovirus MA-1D to search for the viral K(+) channel in the virus particle. The results showed that the antibody was specific and bound to the tetrameric channel on the extracellular side. The antibody reacted in a virus-specific manner with protein extracts from chloroviruses that encoded channels similar to that from MA-1D. There was no cross-reactivity with chloroviruses that encoded more diverse channels or with a chlorovirus that lacked a K(+) channel gene. Together with electron microscopic imaging, which revealed labelling of individual virus particles with the channel antibody, these results establish that the viral particles contain an active K(+) channel, presumably located in the lipid membrane that surrounds the DNA in the mature virions.
Collapse
Affiliation(s)
- Giulia Romani
- Dipartimento di Bioscienze, Università degli Studi di Milano e Istituto di Biofisica, CNR, Milano, Italy
| | - Adrianna Piotrowski
- Membrane Biophysics Group, Department of Biology, Technical University Darmstadt, Germany
| | - Stefan Hillmer
- COS - Entwicklungsbiologie der Pflanzen, University of Heidelberg, Germany
| | - James Gurnon
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - Anna Moroni
- Dipartimento di Bioscienze, Università degli Studi di Milano e Istituto di Biofisica, CNR, Milano, Italy
| | - Gerhard Thiel
- Membrane Biophysics Group, Department of Biology, Technical University Darmstadt, Germany
| | - Brigitte Hertel
- Membrane Biophysics Group, Department of Biology, Technical University Darmstadt, Germany
| |
Collapse
|
63
|
Zhang R, Wang K, Lv W, Yu W, Xie S, Xu K, Schwarz W, Xiong S, Sun B. The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1088-95. [PMID: 23906728 PMCID: PMC7094429 DOI: 10.1016/j.bbamem.2013.07.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 12/29/2022]
Abstract
In addition to a set of canonical genes, coronaviruses encode additional accessory proteins. A locus located between the spike and envelope genes is conserved in all coronaviruses and contains a complete or truncated open reading frame (ORF). Previously, we demonstrated that this locus, which contains the gene for accessory protein 3a from severe acute respiratory syndrome coronavirus (SARS-CoV), encodes a protein that forms ion channels and regulates virus release. In the current study, we explored whether the ORF4a protein of HCoV-229E has similar functions. Our findings revealed that the ORF4a proteins were expressed in infected cells and localized at the endoplasmic reticulum/Golgi intermediate compartment (ERGIC). The ORF4a proteins formed homo-oligomers through disulfide bridges and possessed ion channel activity in both Xenopus oocytes and yeast. Based on the measurement of conductance to different monovalent cations, the ORF4a was suggested to form a non-selective channel for monovalent cations, although Li(+) partially reduced the inward current. Furthermore, viral production decreased when the ORF4a protein expression was suppressed by siRNA in infected cells. Collectively, this evidence indicates that the HCoV-229E ORF4a protein is functionally analogous to the SARS-CoV 3a protein, which also acts as a viroporin that regulates virus production. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Ronghua Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Kai Wang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Wei Lv
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Wenjing Yu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Shiqi Xie
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Ke Xu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Wolfgang Schwarz
- Goethe-University Frankfurt, Institute for Biophysics, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany; Shanghai Research Center for Acupuncture and Meridian, 199 Guoshoujing Road, Shanghai 201023, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Bing Sun
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China; State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
64
|
Unusual architecture of the p7 channel from hepatitis C virus. Nature 2013; 498:521-5. [PMID: 23739335 PMCID: PMC3725310 DOI: 10.1038/nature12283] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/22/2013] [Indexed: 12/19/2022]
Abstract
The hepatitis C virus (HCV) has developed a small membrane protein, p7, which remarkably can self-assemble into a large channel complex that selectively conducts cations. We wanted to examine the structural solution that the viroporin adopts in order to achieve selective cation conduction, because p7 has no homology with any of the known prokaryotic or eukaryotic channel proteins. The activity of p7 can be inhibited by amantadine and rimantadine, which are potent blockers of the influenza M2 channel and licensed drugs against influenza infections. The adamantane derivatives have been used in HCV clinical trials, but large variation in drug efficacy among the various HCV genotypes has been difficult to explain without detailed molecular structures. Here we determine the structures of this HCV viroporin as well as its drug-binding site using the latest nuclear magnetic resonance (NMR) technologies. The structure exhibits an unusual mode of hexameric assembly, where the individual p7 monomers, i, not only interact with their immediate neighbours, but also reach farther to associate with the i+2 and i+3 monomers, forming a sophisticated, funnel-like architecture. The structure also points to a mechanism of cation selection: an asparagine/histidine ring that constricts the narrow end of the funnel serves as a broad cation selectivity filter, whereas an arginine/lysine ring that defines the wide end of the funnel may selectively allow cation diffusion into the channel. Our functional investigation using whole-cell channel recording shows that these residues are critical for channel activity. NMR measurements of the channel-drug complex revealed six equivalent hydrophobic pockets between the peripheral and pore-forming helices to which amantadine or rimantadine binds, and compound binding specifically to this position may allosterically inhibit cation conduction by preventing the channel from opening. Our data provide a molecular explanation for p7-mediated cation conductance and its inhibition by adamantane derivatives.
Collapse
|
65
|
Schroeder I, Gazzarrini S, Ferrara G, Thiel G, Hansen UP, Moroni A. Creation of a reactive oxygen species-insensitive Kcv channel. Biochemistry 2013; 52:3130-7. [PMID: 23578303 DOI: 10.1021/bi3016197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The current of the minimal viral K(+) channel Kcv(PCBV-1) heterologously expressed in Xenopus oocytes is strongly inhibited by reactive oxygen species (ROS) like H(2)O(2). Possible targets for the ROS effect are two cysteines (C53 and C79) and four methionines (M1, M15, M23, and M26). The C53A/C79A and M23L/M26L double mutations maintained the same ROS sensitivity as the wild type. However, M15L as a single mutant or in combination with C53A/C79A and/or M23L/M26L caused a complete loss of sensitivity to H(2)O(2). These results indicate a prominent role of M15 at the cytosolic end of the outer transmembrane helix for gating of Kcv(PCBV-1). Furthermore, even though the channel lacks a canonical voltage sensor, it exhibits a weak voltage sensitivity, resulting in a slight activation in the millisecond range after a voltage step to negative potentials. The M15L mutation inverts this kinetics into an inactivation, underlining the critical role of this residue for gating. The negative slope of the I-V curves of M15L is the same as in the wild type, indicating that the selectivity filter is not involved.
Collapse
Affiliation(s)
- Indra Schroeder
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
66
|
Herrero L, Monroy N, González ME. HIV-1 Vpu Protein Mediates the Transport of Potassium in Saccharomyces cerevisiae. Biochemistry 2012; 52:171-7. [DOI: 10.1021/bi3011175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Laura Herrero
- Unidad de Expresión Viral, Centro
Nacional de
Microbiología, Instituto de Salud Carlos III, Carretera de
Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - Noemí Monroy
- Unidad de Expresión Viral, Centro
Nacional de
Microbiología, Instituto de Salud Carlos III, Carretera de
Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - María Eugenia González
- Unidad de Expresión Viral, Centro
Nacional de
Microbiología, Instituto de Salud Carlos III, Carretera de
Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| |
Collapse
|
67
|
Tan Q, Ritzo B, Tian K, Gu LQ. Tuning the tetraethylammonium sensitivity of potassium channel Kcv by subunit combination. ACTA ACUST UNITED AC 2012; 139:295-304. [PMID: 22450486 PMCID: PMC3315146 DOI: 10.1085/jgp.201110725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tetraethylammonium (TEA) is a potassium (K+) channel inhibitor that has been extensively used as a molecular probe to explore the structure of channels’ ion pathway. In this study, we identified that Leu70 of the virus-encoded potassium channel Kcv is a key amino acid that plays an important role in regulating the channel’s TEA sensitivity. Site-directed mutagenesis of Leu70 can change the TEA sensitivity by 1,000-fold from ∼100 µM to ∼100 mM. Because no compelling trends exist to explain this amino acid’s specific interaction with TEA, the role of Leu70 at the binding site is likely to ensure an optimal conformation of the extracellular mouth that confers high TEA affinity. We further assembled the subunits of mutant and wt-Kcv into a series of heterotetramers. The differences in these heterochannels suggest that all of the four subunits in a Kcv channel additively participate in the TEA binding, and each of the four residues at the binding site independently contributes an equal binding energy. We therefore can present a series of mutant/wild-type tetramer combinations that can probe TEA over three orders of magnitude in concentration. This study may give insight into the mechanism for the interaction between the potassium channel and its inhibitor.
Collapse
Affiliation(s)
- Qiulin Tan
- Department of Biological Engineering, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
68
|
Gebhardt M, Henkes LM, Tayefeh S, Hertel B, Greiner T, Van Etten JL, Baumeister D, Cosentino C, Moroni A, Kast SM, Thiel G. Relevance of lysine snorkeling in the outer transmembrane domain of small viral potassium ion channels. Biochemistry 2012; 51:5571-9. [PMID: 22734656 DOI: 10.1021/bi3006016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called "snorkeling" of a cationic amino acid, which is conserved in the outer TMD of small viral K(+) channels. Experimentally, snorkeling activity is not mandatory for Kcv(PBCV-1) because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, Kcv(ATCV-1) and Kcv(MT325), lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of Kcv(PBCV-1) and N-terminally truncated mutants; the truncated mutants mimic Kcv(ATCV-1) and Kcv(MT325). Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K(+) channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains.
Collapse
Affiliation(s)
- Manuela Gebhardt
- Botany Institute, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Viroporins are small virally encoded hydrophobic proteins that oligomerize in the membrane of host cells, leading to the formation of hydrophilic pores. This activity modifies several cellular functions, including membrane permeability, Ca2+ homeostasis, membrane remodelling and glycoprotein trafficking. A classification scheme for viroporins is proposed on the basis of their structure and membrane topology. Thus, class I and class II viroporins are defined according to the number of transmembrane domains in the protein (one and two, respectively), and subclasses are defined according to their orientation in the membrane. The main function of viroporins during viral replication is to participate in virion morphogenesis and release from host cells. In addition, some viroporins are involved in viral entry and genome replication. The structure and activity of several viroporins, such as picornavirus protein 2B (P2B), influenza A virus matrix protein 2 (M2), hepatitis C virus p7 and HIV-1 viral protein U (Vpu), have been analysed in detail. New members of this expanding family of viral proteins have been described, from both RNA and DNA viruses. In addition to having a common general structure, all of these new viroporins have the ability to increase membrane permeability. Viroporins represent ideal targets to block viral replication and the spread of infection. Although a number of selective inhibitors of viroporin ion channels have been analysed in detail, optimized screening systems promise to provide new and more potent antiviral compounds in the near future.
Viroporins belong to a growing family of virally encoded proteins that form aqueous channels in the membranes of host cells. Here, Carrasco and colleagues review the structure and diverse biological functions of these proteins during the viral life cycle, as well as their potential as antiviral therapeutic targets. Viroporins are small, hydrophobic proteins that are encoded by a wide range of clinically relevant animal viruses. When these proteins oligomerize in host cell membranes, they form hydrophilic pores that disrupt a number of physiological properties of the cell. Viroporins are crucial for viral pathogenicity owing to their involvement in several diverse steps of the viral life cycle. Thus, these viral proteins, which include influenza A virus matrix protein 2 (M2), HIV-1 viral protein U (Vpu) and hepatitis C virus p7, represent ideal targets for therapeutic intervention, and several compounds that block their pore-forming activity have been identified. Here, we review recent studies in the field that have advanced our knowledge of the structure and function of this expanding family of viral proteins.
Collapse
|
70
|
Hamacher K, Greiner T, Ogata H, Van Etten JL, Gebhardt M, Villarreal LP, Cosentino C, Moroni A, Thiel G. Phycodnavirus potassium ion channel proteins question the virus molecular piracy hypothesis. PLoS One 2012; 7:e38826. [PMID: 22685610 PMCID: PMC3369850 DOI: 10.1371/journal.pone.0038826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/11/2012] [Indexed: 11/26/2022] Open
Abstract
Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K(+) channels. To determine if these viral K(+) channels are the product of molecular piracy from their hosts, we compared the sequences of the K(+) channel pore modules from seven phycodnaviruses to the K(+) channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K(+) channels are not related to any lineage of the host channel homologs and that they are more closely related to each other than to their host homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium. However, the bacterial protein lacks the consensus motif of all K(+) channels and it does not form a functional channel in yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the viruses did not acquire their K(+) channel-encoding genes from their current algal hosts by gene transfer; thus alternative explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K(+) channels in algae and perhaps even all cellular organisms.
Collapse
Affiliation(s)
- Kay Hamacher
- Computational Biology Group, Technische Universität Darmstadt, Darmstadt, Germany
| | - Timo Greiner
- Membrane Biophysics Group, Technische Universität Darmstadt, Darmstadt, Germany
| | - Hiroyuki Ogata
- Structural and Genomic Information Laboratory, Aix-Marseille University, Marseille, France
| | - James L. Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Manuela Gebhardt
- Membrane Biophysics Group, Technische Universität Darmstadt, Darmstadt, Germany
| | - Luis P. Villarreal
- Center of Virus Research, University of California Irvine, Irvine, California, United States of America
| | | | - Anna Moroni
- Department of Biology, Università degli Studi di Milano, Milan, Italy
| | - Gerhard Thiel
- Membrane Biophysics Group, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
71
|
Wang K, Lu W, Chen J, Xie S, Shi H, Hsu H, Yu W, Xu K, Bian C, Fischer WB, Schwarz W, Feng L, Sun B. PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS Lett 2012; 586:384-91. [PMID: 22245155 PMCID: PMC7094521 DOI: 10.1016/j.febslet.2012.01.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 12/29/2011] [Accepted: 01/04/2012] [Indexed: 11/26/2022]
Abstract
Several studies suggest that the open reading frame 3 (ORF3) gene of porcine epidemic diarrhea virus (PEDV) is related to viral infectivity and pathogenicity, but its function remains unknown. Here, we propose a structure model of the ORF3 protein consisting of four TM domains and forming a tetrameric assembly. ORF3 protein can be detected in PEDV‐infected cells and it functions as an ion channel in both Xenopus laevis oocytes and yeast. Mutation analysis showed that Tyr170 in TM4 is important for potassium channel activity. Furthermore, viral production is reduced in infected Vero cells when ORF3 gene is silenced by siRNA. Interestingly, the ORF3 gene from an attenuated PEDV encodes a truncated protein with 49 nucleotide deletions, which lacks the ion channel activity. ► Computational modeling of PEDV OFR3 protein. ► Wild‐type PEDV ORF3 protein functions as an ion channel and regulates virus production. ► The truncated protein encoded by an attenuated‐type PEDV ORF3 shows less channel activity.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Fischer WB, Wang YT, Schindler C, Chen CP. Mechanism of function of viral channel proteins and implications for drug development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:259-321. [PMID: 22364876 PMCID: PMC7149447 DOI: 10.1016/b978-0-12-394305-7.00006-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viral channel-forming proteins comprise a class of viral proteins which, similar to their host companions, are made to alter electrochemical or substrate gradients across lipid membranes. These proteins are active during all stages of the cellular life cycle of viruses. An increasing number of proteins are identified as channel proteins, but the precise role in the viral life cycle is yet unknown for the majority of them. This review presents an overview about these proteins with an emphasis on those with available structural information. A concept is introduced which aligns the transmembrane domains of viral channel proteins with those of host channels and toxins to give insights into the mechanism of function of the viral proteins from potential sequence identities. A summary of to date investigations on drugs targeting these proteins is given and discussed in respect of their mode of action in vivo.
Collapse
Affiliation(s)
- Wolfgang B. Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Ting Wang
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Christina Schindler
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Chin-Pei Chen
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
73
|
Van Etten JL, Dunigan DD. Chloroviruses: not your everyday plant virus. TRENDS IN PLANT SCIENCE 2012; 17:1-8. [PMID: 22100667 PMCID: PMC3259250 DOI: 10.1016/j.tplants.2011.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/20/2011] [Accepted: 10/25/2011] [Indexed: 05/29/2023]
Abstract
Viruses infecting higher plants are among the smallest viruses known and typically have four to ten protein-encoding genes. By contrast, many viruses that infect algae (classified in the virus family Phycodnaviridae) are among the largest viruses found to date and have up to 600 protein-encoding genes. This brief review focuses on one group of plaque-forming phycodnaviruses that infect unicellular chlorella-like green algae. The prototype chlorovirus PBCV-1 has more than 400 protein-encoding genes and 11 tRNA genes. About 40% of the PBCV-1 encoded proteins resemble proteins of known function including many that are completely unexpected for a virus. In many respects, chlorovirus infection resembles bacterial infection by tailed bacteriophages.
Collapse
Affiliation(s)
- James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA.
| | | |
Collapse
|
74
|
Greiner T, Ramos J, Alvarez MC, Gurnon JR, Kang M, Van Etten JL, Moroni A, Thiel G. Functional HAK/KUP/KT-like potassium transporter encoded by chlorella viruses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:977-986. [PMID: 21848655 DOI: 10.1111/j.1365-313x.2011.04748.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chlorella viruses are a source of interesting membrane transport proteins. Here we examine a putative K(+) transporter encoded by virus FR483 and related chlorella viruses. The protein shares sequence and structural features with HAK/KUP/KT-like K(+) transporters from plants, bacteria and fungi. Yeast complementation assays and Rb(+) uptake experiments show that the viral protein, termed HAKCV (high-affinity K(+) transporter of chlorella virus), is functional, with transport characteristics that are similar to those of known K(+) transporters. Expression studies revealed that the protein is expressed as an early gene during viral replication, and proteomics data indicate that it is not packaged in the virion. The function of HAKCV is unclear, but the data refute the hypothesis that the transporter acts as a substitute for viral-encoded K(+) channels during virus infection.
Collapse
Affiliation(s)
- Timo Greiner
- Institute of Botany at the Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287 Darmstadt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Voltage-gated sodium channel (NaV) protein dissection creates a set of functional pore-only proteins. Proc Natl Acad Sci U S A 2011; 108:12313-8. [PMID: 21746903 DOI: 10.1073/pnas.1106811108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many voltage-gated ion channel (VGIC) superfamily members contain six-transmembrane segments in which the first four form a voltage-sensing domain (VSD) and the last two form the pore domain (PD). Studies of potassium channels from the VGIC superfamily together with identification of voltage-sensor only proteins have suggested that the VSD and the PD can fold independently. Whether such transmembrane modularity is common to other VGIC superfamily members has remained untested. Here we show, using protein dissection, that the Silicibacter pomeroyi voltage-gated sodium channel (Na(V)Sp1) PD forms a stand-alone, ion selective pore (Na(V)Sp1p) that is tetrameric, α-helical, and that forms functional, sodium-selective channels when reconstituted into lipid bilayers. Mutation of the Na(V)Sp1p selectivity filter from LESWSM to LDDWSD, a change similar to that previously shown to alter ion selectivity of the bacterial sodium channel Na(V)Bh1 (NaChBac), creates a calcium-selective pore-only channel, Ca(V)Sp1p. We further show that production of PDs can be generalized by making pore-only proteins from two other extremophile Na(V)s: one from the hydrocarbon degrader Alcanivorax borkumensis (Na(V)Ab1p), and one from the arsenite oxidizer Alkalilimnicola ehrlichei (Na(V)Ae1p). Together, our data establish a family of active pore-only ion channels that should be excellent model systems for study of the factors that govern both sodium and calcium selectivity and permeability. Further, our findings suggest that similar dissection approaches may be applicable to a wide range of VGICs and, thus, serve as a means to simplify and accelerate biophysical, structural, and drug development efforts.
Collapse
|
76
|
Gebhardt M, Hoffgaard F, Hamacher K, Kast SM, Moroni A, Thiel G. Membrane anchoring and interaction between transmembrane domains are crucial for K+ channel function. J Biol Chem 2011; 286:11299-306. [PMID: 21310959 PMCID: PMC3064186 DOI: 10.1074/jbc.m110.211672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 01/27/2011] [Indexed: 11/06/2022] Open
Abstract
The small viral channel Kcv is a Kir-like K(+) channel of only 94 amino acids. With this simple structure, the tetramer of Kcv represents the pore module of all complex K(+) channels. To examine the structural contribution of the transmembrane domains (TMDs) to channel function, we performed Ala scanning mutagenesis of the two domains and tested the functionality of the mutants in a yeast complementation assay. The data reveal, in combination with computational models, that the upper halves of both TMDs, which face toward the external medium, are rather rigid, whereas the inner parts are more flexible. The rigidity of the outer TMD is conferred by a number of essential aromatic amino acids that face the membrane and probably anchor this domain in the bilayer. The inner TMD is intimately connected with the rigid part of the outer TMD via π···π interactions between a pair of aromatic amino acids. This structural principle is conserved within the viral K(+) channels and also present in Kir2.2, implying a general importance of this architecture for K(+) channel function.
Collapse
Affiliation(s)
| | - Franziska Hoffgaard
- the Computational Biology Group, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Kay Hamacher
- the Computational Biology Group, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Stefan M. Kast
- the Physikalische Chemie III, Technische Universität Dortmund, 44227 Dortmund, Germany, and
| | - Anna Moroni
- the Department of Biology and Consiglio Nazionale delle Ricerche Istituto di Biofisica-Milano, Università degli Studi di Milano, 20122 Milan, Italy
| | | |
Collapse
|
77
|
Raychaudhuri P, Li Q, Mason A, Mikhailova E, Heron AJ, Bayley H. Fluorinated amphiphiles control the insertion of α-hemolysin pores into lipid bilayers. Biochemistry 2011; 50:1599-606. [PMID: 21275394 DOI: 10.1021/bi1012386] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The insertion of fully folded and assembled ion channels and pores into planar lipid bilayers for electrical recording has been facilitated by the use of conventional detergents at a final concentration below the critical micelle concentration (CMC). After the desired number of channels or pores (often one) has been incorporated into a bilayer, it is important to prevent further insertion events, which is often done by awkward techniques such as perfusion. Here, we show that the addition of single-chain fluorinated amphiphiles (F-amphiphiles) with zwitterionic, simple neutral, and neutral oligomeric headgroups at a concentration above the CMC prevents the further insertion of staphylococcal α-hemolysin pores, MspA pores, and Kcv potassium channels into lipid bilayers. We found the commercially available F(6)FC (fluorinated fos-choline with a C(6)F(13)C(2)H(4) chain) to be the least perturbing and most effective agent for this purpose. Bilayers are known to be resistant to F-amphiphiles, which in this case we suppose sequester the pores and channels within amphiphile aggregates. We suggest that F-amphiphiles might be useful in the fabrication of bilayer arrays for nanopore sensor devices and the rapid screening of membrane proteins.
Collapse
Affiliation(s)
- Pinky Raychaudhuri
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | | | | | | | | | | |
Collapse
|
78
|
Fischer WB, Hsu HJ. Viral channel forming proteins - modeling the target. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:561-71. [PMID: 20546700 PMCID: PMC7094444 DOI: 10.1016/j.bbamem.2010.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 01/02/2023]
Abstract
The cellular and subcellular membranes encounter an important playground for the activity of membrane proteins encoded by viruses. Viral membrane proteins, similar to their host companions, can be integral or attached to the membrane. They are involved in directing the cellular and viral reproduction, the fusion and budding processes. This review focuses especially on those integral viral membrane proteins which form channels or pores, the classification to be so, modeling by in silico methods and potential drug candidates. The sequence of an isolate of Vpu from HIV-1 is aligned with host ion channels and a toxin. The focus is on the alignment of the transmembrane domains. The results of the alignment are mapped onto the 3D structures of the respective channels and toxin. The results of the mapping support the idea of a 'channel-pore dualism' for Vpu.
Collapse
Affiliation(s)
- Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.
| | | |
Collapse
|
79
|
Van Etten JL. Another really, really big virus. Viruses 2011; 3:32-46. [PMID: 21994725 PMCID: PMC3187590 DOI: 10.3390/v3010032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/25/2022] Open
Abstract
Viruses with genomes larger than 300 kb and up to 1.2 Mb, which encode hundreds of proteins, are being discovered and characterized with increasing frequency. Most, but not all, of these large viruses (often referred to as giruses) infect protists that live in aqueous environments. Bioinformatic analyses of metagenomes of aqueous samples indicate that large DNA viruses are quite common in nature and await discovery. One issue that is perhaps not appreciated by the virology community is that large viruses, even those classified in the same family, can differ significantly in morphology, lifestyle, and gene complement. This brief commentary, which will mention some of these unique properties, was stimulated by the characterization of the newest member of this club, virus CroV (Fischer, M.G.; Allen, M.J.; Wilson, W.H.; Suttle, C.A. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc. Natl. Acad. Sci. USA2010, 107, 19508–19513 [1]). CroV has a 730 kb genome (with ∼544 protein-encoding genes) and infects the marine microzooplankton Cafeteria roenbergensis producing a lytic infection.
Collapse
Affiliation(s)
- James L Van Etten
- Department of Plant Pathology, Nebraska Center for Virology, 205 Morrison Hall, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
80
|
Shabala S, Babourina O, Rengel Z, Nemchinov LG. Non-invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus-host compatibility in plants. PLANTA 2010; 232:807-15. [PMID: 20623138 DOI: 10.1007/s00425-010-1213-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 06/20/2010] [Indexed: 05/18/2023]
Abstract
Diseases caused by plant viruses are widespread, resulting in severe economic losses worldwide. Understanding the cellular basis of defense responses and developing efficient diagnostic tools for early recognition of host specificity to viral infection is, therefore, of great importance. In this work, non-invasive ion selective microelectrodes (the MIFE technique) were used to measure net ion fluxes in mesophyll tissue of host (potato, tomato, tobacco) and non-host (sugar beet and periwinkle) plants in response to infection with Potato virus X (PVX). These results were complemented by FLIM (Fluorescence Lifetime Imaging) measurements of PVX-induced changes in intracellular Ca(2+) concentrations. Our results demonstrate that, unlike in other plant-pathogen interactions, Ca(2+) signaling appears to be non-essential in recognition of the early stages of viral infection. Instead, we observed significant changes in K(+) fluxes as early as 10 min after inoculation. Results of pharmacological experiments and membrane potential measurements pointed out that a significant part of these fluxes may be mediated by depolarization-activated outward-rectifying K(+) channels. This may suggest that viral infections trigger a different mechanism of plant defense signaling as compared to signals derived from other microbial pathogens; hence, altered Ca(2+) fluxes across the plasma membrane may not be a prerequisite for all elicitor-activated defense reactions. Clearly pronounced host specificity in K(+) flux responses suggests that the MIFE technique can be effectively used as a screening tool for the early diagnostics of virus-host compatibility.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | |
Collapse
|
81
|
Bonza MC, Martin H, Kang M, Lewis G, Greiner T, Giacometti S, Van Etten JL, De Michelis MI, Thiel G, Moroni A. A functional calcium-transporting ATPase encoded by chlorella viruses. J Gen Virol 2010; 91:2620-9. [PMID: 20573858 PMCID: PMC3052600 DOI: 10.1099/vir.0.021873-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium-transporting ATPases (Ca2+ pumps) are major players in maintaining calcium homeostasis in the cell and have been detected in all cellular organisms. Here, we report the identification of two putative Ca2+ pumps, M535L and C785L, encoded by chlorella viruses MT325 and AR158, respectively, and the functional characterization of M535L. Phylogenetic and sequence analyses place the viral proteins in group IIB of P-type ATPases even though they lack a typical feature of this class, a calmodulin-binding domain. A Ca2+ pump gene is present in 45 of 47 viruses tested and is transcribed during virus infection. Complementation analysis of the triple yeast mutant K616 confirmed that M535L transports calcium ions and, unusually for group IIB pumps, also manganese ions. In vitro assays show basal ATPase activity. This activity is inhibited by vanadate, but, unlike that of other Ca2+ pumps, is not significantly stimulated by either calcium or manganese. The enzyme forms a 32P-phosphorylated intermediate, which is inhibited by vanadate and not stimulated by the transported substrate Ca2+, thus confirming the peculiar properties of this viral pump. To our knowledge this is the first report of a functional P-type Ca2+-transporting ATPase encoded by a virus.
Collapse
Affiliation(s)
- Maria Cristina Bonza
- Dipartimento di Biologia e Istituto di Biofisica del CNR, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Wang K, Xie S, Sun B. Viral proteins function as ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:510-5. [PMID: 20478263 PMCID: PMC7094589 DOI: 10.1016/j.bbamem.2010.05.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/30/2010] [Accepted: 05/06/2010] [Indexed: 11/26/2022]
Abstract
Viral ion channels are short membrane proteins with 50–120 amino acids and play an important role either in regulating virus replication, such as virus entry, assembly and release or modulating the electrochemical balance in the subcellular compartments of host cells. This review summarizes the recent advances in viral encoded ion channel proteins (or viroporins), including PBCV-1 KcV, influenza M2, HIV-1 Vpu, HCV p7, picornavirus 2B, and coronavirus E and 3a. We focus on their function and mechanisms, and also discuss viral ion channel protein serving as a potential drug target.
Collapse
Affiliation(s)
- Kai Wang
- Laboratory of Molecular Virology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200025, China
| | | | | |
Collapse
|
83
|
Thiel G, Baumeister D, Schroeder I, Kast SM, Van Etten JL, Moroni A. Minimal art: or why small viral K(+) channels are good tools for understanding basic structure and function relations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:580-8. [PMID: 20417613 DOI: 10.1016/j.bbamem.2010.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 11/17/2022]
Abstract
Some algal viruses contain genes that encode proteins with the hallmarks of K(+) channels. One feature of these proteins is that they are less than 100 amino acids in size, which make them truly minimal for a K(+) channel protein. That is, they consist of only the pore module present in more complex K(+) channels. The combination of miniature size and the functional robustness of the viral K(+) channels make them ideal model systems for studying how K(+) channels work. Here we summarize recent structure/function correlates from these channels, which provide insight into functional properties such as gating, pharmacology and sorting in cells.
Collapse
Affiliation(s)
- Gerhard Thiel
- Institute of Botany, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany.
| | | | | | | | | | | |
Collapse
|
84
|
K+ transport characteristics of the plasma membrane tandem-pore channel TPK4 and pore chimeras with its vacuolar homologs. FEBS Lett 2010; 584:2433-9. [PMID: 20412800 DOI: 10.1016/j.febslet.2010.04.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 04/08/2010] [Accepted: 04/14/2010] [Indexed: 11/23/2022]
Abstract
Vacuolar tandem-pore channels could not be analysed in Xenopus oocytes so far, due to misguided translocation. Owing to the conservation of their pore regions, we were able to prepare functional pore-chimeras between the plasma membrane localised TPK4 and vacuolar TPKs. Thereby, we found evidence that TPK2, TPK3 and TPK5, just like TPK4, form potassium-selective channels with instantaneous current kinetics. Homology modelling and mutational analyses identified a pore-located aspartate residue (Asp110), which is involved in potassium permeation as well as in inward rectification of TPK4. Furthermore, dominant-negative mutations in the selectivity filter of either pore one or two (Asp86,Asp200) rendered TPK4 non-functional. This observation supports the notion that the functional TPK4 channel complex is formed by two subunits.
Collapse
|
85
|
Tan Q, Shim JW, Gu LQ. Separation of heteromeric potassium channel Kcv towards probing subunit composition-regulated ion permeation and gating. FEBS Lett 2010; 584:1602-8. [PMID: 20303961 PMCID: PMC2866631 DOI: 10.1016/j.febslet.2010.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 11/19/2022]
Abstract
The chlorella virus-encoded Kcv can form a homo-tetrameric potassium channel in lipid membranes. This miniature peptide can be synthesized in vitro, and the tetramer purified from the SDS-polyacrylamide gel retains the K(+) channel functionality. Combining this capability with the mass-tagging method, we propose a simple, straightforward approach that can generically manipulate individual subunits in the tetramer, thereby enabling the detection of contribution from individual subunits to the channel functions. Using this approach, we showed that the structural change in the selectivity filter from only one subunit is sufficient to cause permanent channel inactivation ("all-or-none" mechanism), whereas the mutation near the extracellular entrance additively modifies the ion permeation with the number of mutant subunits in the tetramer ("additive" mechanism).
Collapse
Affiliation(s)
- Qiulin Tan
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Ji Wook Shim
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Li-Qun Gu
- Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
86
|
Chlorella viruses encode most, if not all, of the machinery to glycosylate their glycoproteins independent of the endoplasmic reticulum and Golgi. Biochim Biophys Acta Gen Subj 2010; 1800:152-9. [DOI: 10.1016/j.bbagen.2009.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/15/2009] [Accepted: 07/18/2009] [Indexed: 11/19/2022]
|
87
|
Ogura K, Yamasaki M, Yamada T, Mikami B, Hashimoto W, Murata K. Crystal structure of family 14 polysaccharide lyase with pH-dependent modes of action. J Biol Chem 2010; 284:35572-9. [PMID: 19846561 DOI: 10.1074/jbc.m109.068056] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Chlorella virus enzyme vAL-1 (38 kDa), a member of polysaccharide lyase family 14, degrades the Chlorella cell wall by cleaving the glycoside bond of the glucuronate residue (GlcA) through a beta-elimination reaction. The enzyme consists of an N-terminal cell wall-attaching domain (11 kDa) and a C-terminal catalytic module (27 kDa). Here, we show the enzyme characteristics of vAL-1, especially its pH-dependent modes of action, and determine the structure of the catalytic module. vAL-1 also exhibited alginate lyase activity at alkaline pH, and truncation of the N-terminal domain increased the lyase activity by 50-fold at pH 7.0. The truncated form vAL-1(S) released di- to hexasaccharides from alginate at pH 7.0, whereas disaccharides were preferentially generated at pH 10.0. This indicates that vAL-1(S) shows two pH-dependent modes of action: endo- and exotypes. The x-ray crystal structure of vAL-1(S) at 1.2 A resolution showed two antiparallel beta-sheets with a deep cleft showing a beta-jelly roll fold. The structure of GlcA-bound vAL-1(S) at pH 7.0 and 10.0 was determined: GlcA was found to be bound outside and inside the cleft at pH 7.0 and 10.0, respectively. This suggests that the electric charges at the active site greatly influence the binding mode of substrates and regulate endo/exo activity. Site-directed mutagenesis demonstrated that vAL-1(S) has a specific amino acid arrangement distinct from other alginate lyases crucial for catalysis. This is, to our knowledge, the first study in which the structure of a family 14 polysaccharide lyase with two different modes of action has been determined.
Collapse
Affiliation(s)
- Kohei Ogura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji 611-0011 , Japan
| | | | | | | | | | | |
Collapse
|
88
|
Thiel G, Moroni A, Dunigan D, Van Etten JL. Initial Events Associated with Virus PBCV-1 Infection of Chlorella NC64A. PROGRESS IN BOTANY. FORTSCHRITTE DER BOTANIK 2010; 71:169-183. [PMID: 21152366 PMCID: PMC2997699 DOI: 10.1007/978-3-642-02167-1_7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chlorella viruses (or chloroviruses) are very large, plaque-forming viruses. The viruses are multilayered structures containing a large double-stranded DNA genome, a lipid bilayered membrane, and an outer icosahedral capsid shell. The viruses replicate in certain isolates of the coccal green alga, Chlorella. Sequence analysis of the 330-kbp genome of Paramecium bursaria Chlorella virus 1 (PBCV-1), the prototype of the virus family Phycodnaviridae, reveals <365 protein-encoding genes and 11 tRNA genes. Products of about 40% of these genes resemble proteins of known function, including many that are unexpected for a virus. Among these is a virus-encoded protein, called Kcv, which forms a functional K(+) channel. This chapter focuses on the initial steps in virus infection and provides a plausible role for the function of the viral K(+) channel in lowering the turgor pressure of the host. This step appears to be a prerequisite for delivery of the viral genome into the host.
Collapse
Affiliation(s)
- Gerhard Thiel
- Institute of Botany, Technische Universitat Darmstadt, 64287, Darmstadt, Germany
| | | | | | | |
Collapse
|
89
|
Abenavoli A, DiFrancesco ML, Schroeder I, Epimashko S, Gazzarrini S, Hansen UP, Thiel G, Moroni A. Fast and slow gating are inherent properties of the pore module of the K+ channel Kcv. ACTA ACUST UNITED AC 2009; 134:219-29. [PMID: 19720961 PMCID: PMC2737228 DOI: 10.1085/jgp.200910266] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kcv from the chlorella virus PBCV-1 is a viral protein that forms a tetrameric, functional K+ channel in heterologous systems. Kcv can serve as a model system to study and manipulate basic properties of the K+ channel pore because its minimalistic structure (94 amino acids) produces basic features of ion channels, such as selectivity, gating, and sensitivity to blockers. We present a characterization of Kcv properties at the single-channel level. In symmetric 100 mM K+, single-channel conductance is 114 ± 11 pS. Two different voltage-dependent mechanisms are responsible for the gating of Kcv. “Fast” gating, analyzed by β distributions, is responsible for the negative slope conductance in the single-channel current–voltage curve at extreme potentials, like in MaxiK potassium channels, and can be explained by depletion-aggravated instability of the filter region. The presence of a “slow” gating is revealed by the very low (in the order of 1–4%) mean open probability that is voltage dependent and underlies the time-dependent component of the macroscopic current.
Collapse
Affiliation(s)
- Alessandra Abenavoli
- Dipartimento di Biologia and Istituto di Biofisica-Consiglio Nazionale delle Ricerche, Università degli Studi di Milano, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Chatelain FC, Gazzarrini S, Fujiwara Y, Arrigoni C, Domigan C, Ferrara G, Pantoja C, Thiel G, Moroni A, Minor DL. Selection of inhibitor-resistant viral potassium channels identifies a selectivity filter site that affects barium and amantadine block. PLoS One 2009; 4:e7496. [PMID: 19834614 PMCID: PMC2759520 DOI: 10.1371/journal.pone.0007496] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 09/23/2009] [Indexed: 12/02/2022] Open
Abstract
Background Understanding the interactions between ion channels and blockers remains an important goal that has implications for delineating the basic mechanisms of ion channel function and for the discovery and development of ion channel directed drugs. Methodology/Principal Findings We used genetic selection methods to probe the interaction of two ion channel blockers, barium and amantadine, with the miniature viral potassium channel Kcv. Selection for Kcv mutants that were resistant to either blocker identified a mutant bearing multiple changes that was resistant to both. Implementation of a PCR shuffling and backcrossing procedure uncovered that the blocker resistance could be attributed to a single change, T63S, at a position that is likely to form the binding site for the inner ion in the selectivity filter (site 4). A combination of electrophysiological and biochemical assays revealed a distinct difference in the ability of the mutant channel to interact with the blockers. Studies of the analogous mutation in the mammalian inward rectifier Kir2.1 show that the T→S mutation affects barium block as well as the stability of the conductive state. Comparison of the effects of similar barium resistant mutations in Kcv and Kir2.1 shows that neighboring amino acids in the Kcv selectivity filter affect blocker binding. Conclusions/Significance The data support the idea that permeant ions have an integral role in stabilizing potassium channel structure, suggest that both barium and amantadine act at a similar site, and demonstrate how genetic selections can be used to map blocker binding sites and reveal mechanistic features.
Collapse
Affiliation(s)
- Franck C. Chatelain
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Sabrina Gazzarrini
- Dipartimento di Biologia e Istituto di Biofisica del Consiglio Nazionale delle Ricerche, Università degli Studi di Milano, Milan, Italy
| | - Yuichiro Fujiwara
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Cristina Arrigoni
- Dipartimento di Biologia e Istituto di Biofisica del Consiglio Nazionale delle Ricerche, Università degli Studi di Milano, Milan, Italy
| | - Courtney Domigan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Giuseppina Ferrara
- Dipartimento di Biologia e Istituto di Biofisica del Consiglio Nazionale delle Ricerche, Università degli Studi di Milano, Milan, Italy
| | - Carlos Pantoja
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Gerhard Thiel
- Technische Universität Darmstadt, Institute für Botanik, Darmstadt, Germany
| | - Anna Moroni
- Dipartimento di Biologia e Istituto di Biofisica del Consiglio Nazionale delle Ricerche, Università degli Studi di Milano, Milan, Italy
| | - Daniel L. Minor
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- Department of California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
91
|
Greiner T, Frohns F, Kang M, Van Etten JL, Käsmann A, Moroni A, Hertel B, Thiel G. Chlorella viruses prevent multiple infections by depolarizing the host membrane. J Gen Virol 2009; 90:2033-2039. [PMID: 19386783 PMCID: PMC2887576 DOI: 10.1099/vir.0.010629-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 04/18/2009] [Indexed: 11/18/2022] Open
Abstract
Previous experiments established that when the unicellular green alga Chlorella NC64A is inoculated with two viruses, usually only one virus replicates in a single cell. That is, the viruses mutually exclude one another. In the current study, we explore the possibility that virus-induced host membrane depolarization, at least partially caused by a virus-encoded K(+) channel (Kcv), is involved in this mutual exclusion. Two chlorella viruses, PBCV-1 and NY-2A, were chosen for the study because (i) they can be distinguished by real-time PCR and (ii) they exhibit differential sensitivity to Cs(+), a well-known K(+) channel blocker. PBCV-1-induced host membrane depolarization, Kcv channel activity and plaque formation are only slightly affected by Cs(+), whereas all three NY-2A-induced events are strongly inhibited by Cs(+). The addition of one virus 5-15 min before the other results primarily in replication of the first virus. However, if virus NY-2A-induced membrane depolarization of the host is blocked by Cs(+), PBCV-1 is not excluded. We conclude that virus-induced membrane depolarization is at least partially responsible for the exclusion phenomenon.
Collapse
Affiliation(s)
- Timo Greiner
- Institute of Botany TU-Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Florian Frohns
- Institute of Botany TU-Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Ming Kang
- Department of Plant Pathology and Nebraska Center for Virology, 205 Morrison Hall, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - James L. Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, 205 Morrison Hall, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - Anja Käsmann
- Institute of Botany TU-Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Anna Moroni
- Department of Biology and CNR IBF-Mi, and Istituto Nazionale di Fisica della Materia, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Brigitte Hertel
- Institute of Botany TU-Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Gerhard Thiel
- Institute of Botany TU-Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| |
Collapse
|
92
|
Papanastasiou I, Tsotinis A, Zoidis G, Kolocouris N, Prathalingam S, Kelly J. Design and Synthesis ofTrypanosoma bruceiActive 1-Alkyloxy and 1-Benzyloxyadamantano 2-Guanylhydrazones. ChemMedChem 2009; 4:1059-62. [DOI: 10.1002/cmdc.200900019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
93
|
Grunwald I, Rischka K, Kast SM, Scheibel T, Bargel H. Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineered proteins. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:1727-1747. [PMID: 19376768 DOI: 10.1098/rsta.2009.0012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteins are ubiquitous biopolymers that adopt distinct three-dimensional structures and fulfil a multitude of elementary functions in organisms. Recent systematic studies in molecular biology and biotechnology have improved the understanding of basic functional and architectural principles of proteins, making them attractive candidates as concept generators for technological development in material science, particularly in biomedicine and nano(bio)technology. This paper highlights the potential of molecular biomimetics in mimicking high-performance proteins and provides concepts for applications in four case studies, i.e. spider silk, antifreeze proteins, blue mussel adhesive proteins and viral ion channels.
Collapse
Affiliation(s)
- Ingo Grunwald
- Department of Adhesive Bonding Technology and Surfaces, Fraunhofer Institute for Manufacturing Technology and Applied Materials Research (IFAM)28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
94
|
Gazzarrini S, Kang M, Abenavoli A, Romani G, Olivari C, Gaslini D, Ferrara G, van Etten JL, Kreim M, Kast SM, Thiel G, Moroni A. Chlorella virus ATCV-1 encodes a functional potassium channel of 82 amino acids. Biochem J 2009; 420:295-303. [PMID: 19267691 PMCID: PMC2903877 DOI: 10.1042/bj20090095] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chlorella virus PBCV-1 (Paramecium bursaria chlorella virus-1) encodes the smallest protein (94 amino acids, named Kcv) previously known to form a functional K+ channel in heterologous systems. In this paper, we characterize another chlorella virus encoded K+ channel protein (82 amino acids, named ATCV-1 Kcv) that forms a functional channel in Xenopus oocytes and rescues Saccharomyces cerevisiae mutants that lack endogenous K+ uptake systems. Compared with the larger PBCV-1 Kcv, ATCV-1 Kcv lacks a cytoplasmic N-terminus and has a reduced number of charged amino acids in its turret domain. Despite these deficiencies, ATCV-1 Kcv accomplishes all the major features of K+ channels: it assembles into a tetramer, is K+ selective and is inhibited by the canonical K+ channel blockers, barium and caesium. Single channel analyses reveal a stochastic gating behaviour and a voltage-dependent conductance that resembles the macroscopic I/V relationship. One difference between PBCV-1 and ATCV-1 Kcv is that the latter is more permeable to K+ than Rb+. This difference is partially explained by the presence of a tyrosine residue in the selective filter of ATCV-1 Kcv, whereas PBCV-1 Kcv has a phenylalanine. Hence, ATCV-1 Kcv is the smallest protein to form a K+ channel and it will serve as a model for studying structure-function correlations inside the potassium channel pore.
Collapse
Affiliation(s)
- Sabrina Gazzarrini
- Department of Biology and CNR - Istituto di Biofisica, Università degli Studi di Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Salt bridges in the miniature viral channel Kcv are important for function. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:1057-68. [PMID: 19390850 DOI: 10.1007/s00249-009-0451-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/14/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
Abstract
The viral potassium channel Kcv comprises only 94 amino acids, which represent the pore module of more complex K(+) channels. As for Kir-type channels, Kcv also has a short N-terminal helix exposed to the cytoplasm, upstream of the first transmembrane domain. Here we show that this helix is relevant for Kcv function. The presence of charged amino acids, which form dynamic inter- and intra-subunit salt bridges is crucial. Electrophysiological measurements, yeast rescue experiments and molecular dynamics simulations show that mutants in which the critical salt bridge formation is impaired have no or reduced channel activity. We conclude that these salt bridges destabilise the complexation of K(+) ions by negative charges on the inner transmembrane domain at the entrance into the cavity. This feature facilitates a continuous and coordinated transfer of ions between the cavity and the cytoplasm for channels without the canonical bundle crossing.
Collapse
|
96
|
Tayefeh S, Kloss T, Kreim M, Gebhardt M, Baumeister D, Hertel B, Richter C, Schwalbe H, Moroni A, Thiel G, Kast SM. Model development for the viral Kcv potassium channel. Biophys J 2009; 96:485-98. [PMID: 19167299 DOI: 10.1016/j.bpj.2008.09.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 09/29/2008] [Indexed: 11/24/2022] Open
Abstract
A computational model for the open state of the short viral Kcv potassium channel was created and tested based on homology modeling and extensive molecular-dynamics simulation in a membrane environment. Particular attention was paid to the structure of the highly flexible N-terminal region and to the protonation state of membrane-exposed lysine residues. Data from various experimental sources, NMR spectroscopy, and electrophysiology, as well as results from three-dimensional reference interaction site model integral equation theory were taken into account to select the most reasonable model among possible variants. The final model exhibits spontaneous ion transitions across the complete pore, with and without application of an external field. The nonequilibrium transport events could be induced reproducibly without abnormally large driving potential and without the need to place ions artificially at certain key positions along the transition path. The transport mechanism through the filter region corresponds to the classic view of single-file motion, which in our case is coupled to frequent exchange of ions between the innermost filter position and the cavity.
Collapse
Affiliation(s)
- Sascha Tayefeh
- Eduard Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Channel-forming proteins are found in a number of viral genomes. In some cases, their role in the viral life cycle is well understood, in some cases it needs still to be elucidated. A common theme is that their mode of action involves a change of electrochemical or proton gradient across the lipid membrane which modulates the viral or cellular activity. Blocking these proteins can be a suitable therapeutic strategy as for some viruses this may be "lethal." Besides the many biological relevant questions still to be answered, there are also many open questions concerning the biophysical side as well as structural information and the mechanism of function on a molecular level. The immanent biophysical issues are addressed and the work in the field is summarized.
Collapse
|
98
|
Abstract
The family Phycodnaviridae encompasses a diverse and rapidly expanding collection of large icosahedral, dsDNA viruses that infect algae. These lytic and lysogenic viruses have genomes ranging from 160 to 560 kb. The family consists of six genera based initially on host range and supported by sequence comparisons. The family is monophyletic with branches for each genus, but the phycodnaviruses have evolutionary roots that connect them with several other families of large DNA viruses, referred to as the nucleocytoplasmic large DNA viruses (NCLDV). The phycodnaviruses have diverse genome structures, some with large regions of noncoding sequence and others with regions of ssDNA. The genomes of members in three genera in the Phycodnaviridae have been sequenced. The genome analyses have revealed more than 1000 unique genes, with only 14 homologous genes in common among the three genera of phycodnaviruses sequenced to date. Thus, their gene diversity far exceeds the number of so-called core genes. Not much is known about the replication of these viruses, but the consequences of these infections on phytoplankton have global affects, including influencing geochemical cycling and weather patterns.
Collapse
Affiliation(s)
- W H Wilson
- Bigelow Laboratory for Ocean Sciences, 180 McKown Point, P.O. Box 475, West Boothbay Harbor, ME 04575-0475, USA.
| | | | | |
Collapse
|
99
|
Agarkova I, Dunigan D, Gurnon J, Greiner T, Barres J, Thiel G, Van Etten JL. Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes. J Virol 2008; 82:12181-90. [PMID: 18842725 PMCID: PMC2593333 DOI: 10.1128/jvi.01687-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 09/30/2008] [Indexed: 11/20/2022] Open
Abstract
Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions. This report examines the relationship between cellular depolarization and solute uptake. Annotation of the virus host Chlorella strain NC64A genome revealed 482 putative transporter-encoding genes; 224 are secondary active transporters. Solute uptake experiments using seven radioactive compounds revealed that virus infection alters the transport of all the solutes. However, the degree of inhibition varied depending on the solute. Experiments with nystatin, a drug known to depolarize cell membranes, produced changes in solute uptake that are similar but not identical to those that occurred during virus infection. Therefore, these studies indicate that chlorovirus infection causes a rapid and sustained depolarization of the host plasma membrane and that this depolarization leads to the inhibition of secondary active transporters that changes solute uptake.
Collapse
Affiliation(s)
- Irina Agarkova
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Syeda R, Holden MA, Hwang WL, Bayley H. Screening blockers against a potassium channel with a droplet interface bilayer array. J Am Chem Soc 2008; 130:15543-8. [PMID: 18950170 DOI: 10.1021/ja804968g] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Droplet interface bilayers (DIBs) form between two lipid monolayer-encased aqueous droplets submerged in oil. Both major structural classes of membrane proteins, alpha-helix bundles and beta barrels, represented by channels and pores, respectively, spontaneously insert into DIBs when freshly expressed by cell-free transcription and translation. Electrodes embedded within the droplets allow the measurement of transmembrane ionic currents carried by individual channels and pores. On the basis of these findings, we have devised a chip-based approach for the rapid screening of blockers against ion channels. The technique is demonstrated here with the viral potassium channel, Kcv.
Collapse
Affiliation(s)
- Ruhma Syeda
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | |
Collapse
|