51
|
Zheng Q, Luo Z, Xu M, Ye S, Lei Y, Xi Y. HMGA1 and FOXM1 Cooperate to Promote G2/M Cell Cycle Progression in Cancer Cells. Life (Basel) 2023; 13:life13051225. [PMID: 37240870 DOI: 10.3390/life13051225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
HMGA1 is a chromatin-binding protein and performs its biological function by remodeling chromatin structure or recruiting other transcription factors. However, the role of abnormally high level of HMGA1 in cancer cells and its regulatory mechanism still require further investigation. In this study, we performed a prognostic analysis and showed that high level of either HMGA1 or FOXM1 was associated with poor prognosis in various cancers based on the TCGA database. Furthermore, the expression pattern of HMGA1 and FOXM1 showed a significant strong positive correlation in most type of cancers, especially lung adenocarcinoma, pancreatic cancer and liver cancer. Further analysis of the biological effects of their high correlation in cancers suggested that cell cycle was the most significant related pathway commonly regulated by HMGA1 and FOXM1. After knockdown of HMGA1 and FOXM1 by specific siRNAs, an obvious increased G2/M phase was observed in the siHMGA1 and siFOXM1 groups compared to the siNC group. The expression levels of key G2/M phase regulatory genes PLK1 and CCNB1 were significantly downregulated. Importantly, HMGA1 and FOXM1 were identified to form a protein complex and co-located in the nucleus based on co-immunoprecipitation and immunofluorescence staining, respectively. Thus, our results provide the basic evidence that HMGA1 and FOXM1 cooperatively accelerate cell cycle progression by up-regulating PLK1 and CCNB1 to promote cancer cell proliferation.
Collapse
Affiliation(s)
- Qingfang Zheng
- Institute of Biochemistry and Molecular Biology, Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Ziyang Luo
- Institute of Biochemistry and Molecular Biology, Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Mingjun Xu
- Institute of Biochemistry and Molecular Biology, Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Shazhou Ye
- Institute of Biochemistry and Molecular Biology, Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yuxin Lei
- Institute of Biochemistry and Molecular Biology, Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yang Xi
- Institute of Biochemistry and Molecular Biology, Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
52
|
Uchida C, Niida H, Sakai S, Iijima K, Kitagawa K, Ohhata T, Shiotani B, Kitagawa M. p130RB2 positively contributes to ATR activation in response to replication stress via the RPA32-ETAA1 axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119484. [PMID: 37201767 DOI: 10.1016/j.bbamcr.2023.119484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 03/17/2023] [Accepted: 04/23/2023] [Indexed: 05/20/2023]
Abstract
Ataxia-telangiectasia mutated and Rad3-related (ATR) kinase is a crucial regulator of the cell cycle checkpoint and activated in response to DNA replication stress by two independent pathways via RPA32-ETAA1 and TopBP1. However, the precise activation mechanism of ATR by the RPA32-ETAA1 pathway remains unclear. Here, we show that p130RB2, a member of the retinoblastoma protein family, participates in the pathway under hydroxyurea-induced DNA replication stress. p130RB2 binds to ETAA1, but not TopBP1, and depletion of p130RB2 inhibits the RPA32-ETAA1 interaction under replication stress. Moreover, p130RB2 depletion reduces ATR activation accompanied by phosphorylation of its targets RPA32, Chk1, and ATR itself. It also causes improper re-progression of S phase with retaining single-stranded DNA after cancelation of the stress, which leads to an increase in the anaphase bridge phenotype and a decrease in cell survival. Importantly, restoration of p130RB2 rescued the disrupted phenotypes of p130RB2 knockdown cells. These results suggest positive involvement of p130RB2 in the RPA32-ETAA1-ATR axis and proper re-progression of the cell cycle to maintain genome integrity.
Collapse
Affiliation(s)
- Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kenta Iijima
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kyoko Kitagawa
- Department of Environmental Health, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
53
|
Yano K, Shiotani B. Emerging strategies for cancer therapy by ATR inhibitors. Cancer Sci 2023. [PMID: 37189251 DOI: 10.1111/cas.15845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
DNA replication stress (RS) causes genomic instability and vulnerability in cancer cells. To counteract RS, cells have evolved various mechanisms involving the ATR kinase signaling pathway, which regulates origin firing, cell cycle checkpoints, and fork stabilization to secure the fidelity of replication. However, ATR signaling also alleviates RS to support cell survival by driving RS tolerance, thereby contributing to therapeutic resistance. Cancer cells harboring genetic mutations and other changes that disrupt normal DNA replication increase the risk of DNA damage and the levels of RS, conferring addiction to ATR activity for sustainable replication and susceptibility to therapeutic approaches using ATR inhibitors (ATRis). Therefore, clinical trials are currently being conducted to evaluate the efficacy of ATRis as monotherapies or in combination with other drugs and biomarkers. In this review, we discuss recent advances in the elucidation of the mechanisms by which ATR functions in the RS response and its therapeutic relevance when utilizing ATRis.
Collapse
Affiliation(s)
- Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
54
|
Briggs EM, Marques CA, Oldrieve GR, Hu J, Otto TD, Matthews KR. Profiling the bloodstream form and procyclic form Trypanosoma brucei cell cycle using single-cell transcriptomics. eLife 2023; 12:e86325. [PMID: 37166108 PMCID: PMC10212563 DOI: 10.7554/elife.86325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
African trypanosomes proliferate as bloodstream forms (BSFs) and procyclic forms in the mammal and tsetse fly midgut, respectively. This allows them to colonise the host environment upon infection and ensure life cycle progression. Yet, understanding of the mechanisms that regulate and drive the cell replication cycle of these forms is limited. Using single-cell transcriptomics on unsynchronised cell populations, we have obtained high resolution cell cycle regulated (CCR) transcriptomes of both procyclic and slender BSF Trypanosoma brucei without prior cell sorting or synchronisation. Additionally, we describe an efficient freeze-thawing protocol that allows single-cell transcriptomic analysis of cryopreserved T. brucei. Computational reconstruction of the cell cycle using periodic pseudotime inference allowed the dynamic expression patterns of cycling genes to be profiled for both life cycle forms. Comparative analyses identify a core cycling transcriptome highly conserved between forms, as well as several genes where transcript levels dynamics are form specific. Comparing transcript expression patterns with protein abundance revealed that the majority of genes with periodic cycling transcript and protein levels exhibit a relative delay between peak transcript and protein expression. This work reveals novel detail of the CCR transcriptomes of both forms, which are available for further interrogation via an interactive webtool.
Collapse
Affiliation(s)
- Emma M Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Catarina A Marques
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Guy R Oldrieve
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Jihua Hu
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Thomas D Otto
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
55
|
Brison O, Gnan S, Azar D, Koundrioukoff S, Melendez-Garcia R, Kim SJ, Schmidt M, El-Hilali S, Jaszczyszyn Y, Lachages AM, Thermes C, Chen CL, Debatisse M. Mistimed origin licensing and activation stabilize common fragile sites under tight DNA-replication checkpoint activation. Nat Struct Mol Biol 2023; 30:539-550. [PMID: 37024657 DOI: 10.1038/s41594-023-00949-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/28/2023] [Indexed: 04/08/2023]
Abstract
Genome integrity requires replication to be completed before chromosome segregation. The DNA-replication checkpoint (DRC) contributes to this coordination by inhibiting CDK1, which delays mitotic onset. Under-replication of common fragile sites (CFSs), however, escapes surveillance, resulting in mitotic chromosome breaks. Here we asked whether loose DRC activation induced by modest stresses commonly used to destabilize CFSs could explain this leakage. We found that tightening DRC activation or CDK1 inhibition stabilizes CFSs in human cells. Repli-Seq and molecular combing analyses showed a burst of replication initiations implemented in mid S-phase across a subset of late-replicating sequences, including CFSs, while the bulk genome was unaffected. CFS rescue and extra-initiations required CDC6 and CDT1 availability in S-phase, implying that CDK1 inhibition permits mistimed origin licensing and firing. In addition to delaying mitotic onset, tight DRC activation therefore supports replication completion of late origin-poor domains at risk of under-replication, two complementary roles preserving genome stability.
Collapse
Affiliation(s)
- Olivier Brison
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Stefano Gnan
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
| | - Dana Azar
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Université Saint-Joseph, Beirut, Lebanon
| | - Stéphane Koundrioukoff
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Sorbonne University, Paris, France
| | - Rodrigo Melendez-Garcia
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Su-Jung Kim
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Mélanie Schmidt
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Sami El-Hilali
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
- Villefranche sur mer Developmental Biology Laboratory, CNRS UMR7009, Villefranche-sur-Mer, France
| | - Yan Jaszczyszyn
- Paris-Saclay University, Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198CNRS, CEA, Paris-Sud University, Gif-sur-Yvette, France
| | - Anne-Marie Lachages
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- UTCBS, CNRS UMR 8258/ INSERM U 1267, Sorbonne-Paris-Cité University, Paris, France
| | - Claude Thermes
- Paris-Saclay University, Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198CNRS, CEA, Paris-Sud University, Gif-sur-Yvette, France
| | - Chun-Long Chen
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
| | - Michelle Debatisse
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France.
- Sorbonne University, Paris, France.
| |
Collapse
|
56
|
Yu W, Wang G, Li LX, Zhang H, Gui X, Zhou JX, Calvet JP, Li X. Transcription factor FoxM1 promotes cyst growth in PKD1 mutant ADPKD. Hum Mol Genet 2023; 32:1114-1126. [PMID: 36322156 PMCID: PMC10026255 DOI: 10.1093/hmg/ddac273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is driven by mutations in the PKD1 and PKD2 genes, and it is characterized by renal cyst formation, inflammation and fibrosis. Forkhead box protein M1 (FoxM1), a transcription factor of the Forkhead box (Fox) protein super family, has been reported to promote tumor formation, inflammation and fibrosis in many organs. However, the role and mechanism of FoxM1 in regulation of ADPKD progression is still poorly understood. Here, we show that FoxM1 is an important regulator of cyst growth in ADPKD. FoxM1 is upregulated in cyst-lining epithelial cells in Pkd1 mutant mouse kidneys and human ADPKD kidneys. FoxM1 promotes cystic renal epithelial cell proliferation by increasing the expression of Akt and Stat3 and the activation of ERK and Rb. FoxM1 also regulates cystic renal epithelial cell apoptosis through NF-κB signaling pathways. In addition, FoxM1 regulates the recruitment and retention of macrophages in Pkd1 mutant mouse kidneys, a process that is associated with FoxM1-mediated upregulation of monocyte chemotactic protein 1. Targeting FoxM1 with its specific inhibitor, FDI-6, delays cyst growth in rapidly progressing and slowly progressing Pkd1 mutant mouse kidneys. This study suggests that FoxM1 is a central and upstream regulator of ADPKD pathogenesis and provides a rationale for targeting FoxM1 as a therapeutic strategy for ADPKD treatment.
Collapse
Affiliation(s)
- Wenyan Yu
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Guojuan Wang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, The Affiliated Hospital of University of Jiangxi of Traditional Chinese Medicine, Nanchang 330006, China
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hongbing Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Eye Institute of Shaanxi Province; Xi’an First Hospital, Xi’an 710002, Shaanxi Province, China
| | - Xuehong Gui
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - James P Calvet
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
57
|
Heyza JR, Ekinci E, Lindquist J, Lei W, Yunker C, Vinothkumar V, Rowbotham R, Polin L, Snider N, Van Buren E, Watza D, Back J, Chen W, Mamdani H, Schwartz A, Turchi J, Bepler G, Patrick S. ATR inhibition overcomes platinum tolerance associated with ERCC1- and p53-deficiency by inducing replication catastrophe. NAR Cancer 2023; 5:zcac045. [PMID: 36644397 PMCID: PMC9832712 DOI: 10.1093/narcan/zcac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
ERCC1/XPF is a heterodimeric DNA endonuclease critical for repair of certain chemotherapeutic agents. We recently identified that ERCC1- and p53-deficient lung cancer cells are tolerant to platinum-based chemotherapy. ATR inhibition synergistically re-stored platinum sensitivity to platinum tolerant ERCC1-deficient cells. Mechanistically we show this effect is reliant upon several functions of ATR including replication fork protection and altered cell cycle checkpoints. Utilizing an inhibitor of replication protein A (RPA), we further demonstrate that replication fork protection and RPA availability are critical for platinum-based drug tolerance. Dual treatment led to increased formation of DNA double strand breaks and was associated with chromosome pulverization. Combination treatment was also associated with increased micronuclei formation which were capable of being bound by the innate immunomodulatory factor, cGAS, suggesting that combination platinum and ATR inhibition may also enhance response to immunotherapy in ERCC1-deficient tumors. In vivo studies demonstrate a significant effect on tumor growth delay with combination therapy compared with single agent treatment. Results of this study have led to the identification of a feasible therapeutic strategy combining ATR inhibition with platinum and potentially immune checkpoint blockade inhibitors to overcome platinum tolerance in ERCC1-deficient, p53-mutant lung cancers.
Collapse
Affiliation(s)
- Joshua R Heyza
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Elmira Ekinci
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Jacob Lindquist
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Wen Lei
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Christopher Yunker
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Vilvanathan Vinothkumar
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Rachelle Rowbotham
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Natalie G Snider
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Eric Van Buren
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Donovan Watza
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Jessica B Back
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Wei Chen
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Hirva Mamdani
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Ann G Schwartz
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - John J Turchi
- Departments of Medicine and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- NERx Biosciences, Indianapolis, IN, USA
| | - Gerold Bepler
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Steve M Patrick
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
58
|
DNA Damage Response Mechanisms in Head and Neck Cancer: Significant Implications for Therapy and Survival. Int J Mol Sci 2023; 24:ijms24032760. [PMID: 36769087 PMCID: PMC9917521 DOI: 10.3390/ijms24032760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Head and neck cancer (HNC) is a term collectively used to describe a heterogeneous group of tumors that arise in the oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx, and represents the sixth most common type of malignancy worldwide. Despite advances in multimodality treatment, the disease has a recurrence rate of around 50%, and the prognosis of metastatic patients remains poor. HNCs are characterized by a high degree of genomic instability, which involves a vicious circle of accumulating DNA damage, defective DNA damage repair (DDR), and replication stress. Nonetheless, the damage that is induced on tumor cells by chemo and radiotherapy relies on defective DDR processes for a successful response to treatment, and may play an important role in the development of novel and more effective therapies. This review summarizes the current knowledge on the genes and proteins that appear to be deregulated in DDR pathways, their implication in HNC pathogenesis, and the rationale behind targeting these genes and pathways for the development of new therapies. We give particular emphasis on the therapeutic targets that have shown promising results at the pre-clinical stage and on those that have so far been associated with a therapeutic advantage in the clinical setting.
Collapse
|
59
|
Abstract
High-fidelity DNA replication is critical for the faithful transmission of genetic information to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways are activated to ensure replication fork progression. These pathways include translesion DNA synthesis, template switching and repriming. In this Review, we describe how DNA damage tolerance pathways impact genome stability, their connection with tumorigenesis and their effects on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation impacts chemoresponse and explore a growing body of evidence that suggests that different DNA damage tolerance factors, including translesion synthesis polymerases, template switching proteins and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further outline how the consequences of DNA damage tolerance mechanisms could inform the discovery of new biomarkers to refine cancer therapies.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
60
|
Serhatlioglu M, Jensen EA, Niora M, Hansen AT, Nielsen CF, Jansman MMT, Hosta-Rigau L, Dziegiel MH, Berg-Sørensen K, Hickson ID, Kristensen A. Viscoelastic Capillary Flow Cytometry. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Murat Serhatlioglu
- Department of Health Technology Technical University of Denmark Ørsteds Plads Building 345C 2800 Kongens Lyngby Denmark
| | - Emil Alstrup Jensen
- Department of Health Technology Technical University of Denmark Ørsteds Plads Building 345C 2800 Kongens Lyngby Denmark
| | - Maria Niora
- Department of Health Technology Technical University of Denmark Ørsteds Plads Building 345C 2800 Kongens Lyngby Denmark
| | - Anne Todsen Hansen
- Department of Clinical Immunology University of Copenhagen Blegdamsvej 9 2100 København Ø Denmark
| | - Christian Friberg Nielsen
- Center for Chromosome Stability Department of Cellular and Molecular Medicine University of Copenhagen 2200 København N. Denmark
| | | | - Leticia Hosta-Rigau
- Department of Health Technology Technical University of Denmark Ørsteds Plads Building 345C 2800 Kongens Lyngby Denmark
| | - Morten Hanefeld Dziegiel
- Department of Clinical Immunology University of Copenhagen Blegdamsvej 9 2100 København Ø Denmark
- Department of Clinical Medicine University of Copenhagen Blegdamsvej 3B 2200 København N. Denmark
| | - Kirstine Berg-Sørensen
- Department of Health Technology Technical University of Denmark Ørsteds Plads Building 345C 2800 Kongens Lyngby Denmark
| | - Ian David Hickson
- Center for Chromosome Stability Department of Cellular and Molecular Medicine University of Copenhagen 2200 København N. Denmark
| | - Anders Kristensen
- Department of Health Technology Technical University of Denmark Ørsteds Plads Building 345C 2800 Kongens Lyngby Denmark
| |
Collapse
|
61
|
Fischer M, Schade AE, Branigan TB, Müller GA, DeCaprio JA. Coordinating gene expression during the cell cycle. Trends Biochem Sci 2022; 47:1009-1022. [PMID: 35835684 DOI: 10.1016/j.tibs.2022.06.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023]
Abstract
Cell cycle-dependent gene transcription is tightly controlled by the retinoblastoma (RB):E2F and DREAM complexes, which repress all cell cycle genes during quiescence. Cyclin-dependent kinase (CDK) phosphorylation of RB and DREAM allows for the expression of two gene sets. The first set of genes, with peak expression in G1/S, is activated by E2F transcription factors (TFs) and is required for DNA synthesis. The second set, with maximum expression during G2/M, is required for mitosis and is coordinated by the MuvB complex, together with B-MYB and Forkhead box M1 (FOXM1). In this review, we summarize the key findings that established the distinct control mechanisms regulating G1/S and G2/M gene expression in mammals and discuss recent advances in the understanding of the temporal control of these genes.
Collapse
Affiliation(s)
- Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany.
| | - Amy E Schade
- Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Timothy B Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
62
|
Li S, Wang T, Fei X, Zhang M. ATR Inhibitors in Platinum-Resistant Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14235902. [PMID: 36497387 PMCID: PMC9740197 DOI: 10.3390/cancers14235902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Platinum-resistant ovarian cancer (PROC) is one of the deadliest types of epithelial ovarian cancer, and it is associated with a poor prognosis as the median overall survival (OS) is less than 12 months. Targeted therapy is a popular emerging treatment method. Several targeted therapies, including those using bevacizumab and poly (ADP-ribose) polymerase inhibitor (PARPi), have been used to treat PROC. Ataxia telangiectasia and RAD3-Related Protein Kinase inhibitors (ATRi) have attracted attention as a promising class of targeted drugs that can regulate the cell cycle and influence homologous recombination (HR) repair. In recent years, many preclinical and clinical studies have demonstrated the efficacy of ATRis in PROC. This review focuses on the anticancer mechanism of ATRis and the progress of research on ATRis for PROC.
Collapse
Affiliation(s)
- Siyu Li
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Tao Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Xichang Fei
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Mingjun Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
- Correspondence:
| |
Collapse
|
63
|
Llorca-Cardenosa MJ, Aronson LI, Krastev DB, Nieminuszczy J, Alexander J, Song F, Dylewska M, Broderick R, Brough R, Zimmermann A, Zenke FT, Gurel B, Riisnaes R, Ferreira A, Roumeliotis T, Choudhary J, Pettitt SJ, de Bono J, Cervantes A, Haider S, Niedzwiedz W, Lord CJ, Chong IY. SMG8/SMG9 Heterodimer Loss Modulates SMG1 Kinase to Drive ATR Inhibitor Resistance. Cancer Res 2022; 82:3962-3973. [PMID: 36273494 PMCID: PMC9627126 DOI: 10.1158/0008-5472.can-21-4339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 01/07/2023]
Abstract
Gastric cancer represents the third leading cause of global cancer mortality and an area of unmet clinical need. Drugs that target the DNA damage response, including ATR inhibitors (ATRi), have been proposed as novel targeted agents in gastric cancer. Here, we sought to evaluate the efficacy of ATRi in preclinical models of gastric cancer and to understand how ATRi resistance might emerge as a means to identify predictors of ATRi response. A positive selection genome-wide CRISPR-Cas9 screen identified candidate regulators of ATRi resistance in gastric cancer. Loss-of-function mutations in either SMG8 or SMG9 caused ATRi resistance by an SMG1-mediated mechanism. Although ATRi still impaired ATR/CHK1 signaling in SMG8/9-defective cells, other characteristic responses to ATRi exposure were not seen, such as changes in ATM/CHK2, γH2AX, phospho-RPA, or 53BP1 status or changes in the proportions of cells in S- or G2-M-phases of the cell cycle. Transcription/replication conflicts (TRC) elicited by ATRi exposure are a likely cause of ATRi sensitivity, and SMG8/9-defective cells exhibited a reduced level of ATRi-induced TRCs, which could contribute to ATRi resistance. These observations suggest ATRi elicits antitumor efficacy in gastric cancer but that drug resistance could emerge via alterations in the SMG8/9/1 pathway. SIGNIFICANCE These findings reveal how cancer cells acquire resistance to ATRi and identify pathways that could be targeted to enhance the overall effectiveness of these inhibitors.
Collapse
Affiliation(s)
| | | | - Dragomir B. Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | - John Alexander
- The Institute of Cancer Research, London, United Kingdom
| | - Feifei Song
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | | | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Astrid Zimmermann
- The healthcare business of Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Frank T. Zenke
- The healthcare business of Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Bora Gurel
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Ruth Riisnaes
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Ana Ferreira
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | | | | | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Johann de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Andres Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, 46010, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Syed Haider
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | - Christopher J. Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Irene Y. Chong
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
64
|
Ors A, Chitsazan AD, Doe AR, Mulqueen RM, Ak C, Wen Y, Haverlack S, Handu M, Naldiga S, Saldivar J, Mohammed H. Estrogen regulates divergent transcriptional and epigenetic cell states in breast cancer. Nucleic Acids Res 2022; 50:11492-11508. [PMID: 36318267 PMCID: PMC9723652 DOI: 10.1093/nar/gkac908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancers are known to be driven by the transcription factor estrogen receptor and its ligand estrogen. While the receptor's cis-binding elements are known to vary between tumors, heterogeneity of hormone signaling at a single-cell level is unknown. In this study, we systematically tracked estrogen response across time at a single-cell level in multiple cell line and organoid models. To accurately model these changes, we developed a computational tool (TITAN) that quantifies signaling gradients in single-cell datasets. Using this approach, we found that gene expression response to estrogen is non-uniform, with distinct cell groups expressing divergent transcriptional networks. Pathway analysis suggested the two most distinct signatures are driven separately by ER and FOXM1. We observed that FOXM1 was indeed activated by phosphorylation upon estrogen stimulation and silencing of FOXM1 attenuated the relevant gene signature. Analysis of scRNA-seq data from patient samples confirmed the existence of these divergent cell groups, with the FOXM1 signature predominantly found in ER negative cells. Further, multi-omic single-cell experiments indicated that the different cell groups have distinct chromatin accessibility states. Our results provide a comprehensive insight into ER biology at the single-cell level and potential therapeutic strategies to mitigate resistance to therapy.
Collapse
Affiliation(s)
| | | | - Aaron Reid Doe
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Ryan M Mulqueen
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Cigdem Ak
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Yahong Wen
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Syber Haverlack
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Mithila Handu
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Spandana Naldiga
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | - Joshua C Saldivar
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA,Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97201, USA
| | | |
Collapse
|
65
|
Baxter JS, Zatreanu D, Pettitt SJ, Lord CJ. Resistance to DNA repair inhibitors in cancer. Mol Oncol 2022; 16:3811-3827. [PMID: 35567571 PMCID: PMC9627783 DOI: 10.1002/1878-0261.13224] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The DNA damage response (DDR) represents a complex network of proteins which detect and repair DNA damage, thereby maintaining the integrity of the genome and preventing the transmission of mutations and rearranged chromosomes to daughter cells. Faults in the DDR are a known driver and hallmark of cancer. Furthermore, inhibition of DDR enzymes can be used to treat the disease. This is exemplified by PARP inhibitors (PARPi) used to treat cancers with defects in the homologous recombination DDR pathway. A series of novel DDR targets are now also under pre-clinical or clinical investigation, including inhibitors of ATR kinase, WRN helicase or the DNA polymerase/helicase Polθ (Pol-Theta). Drug resistance is a common phenomenon that impairs the overall effectiveness of cancer treatments and there is already some understanding of how resistance to PARPi occurs. Here, we discuss how an understanding of PARPi resistance could inform how resistance to new drugs targeting the DDR emerges. We also discuss potential strategies that could limit the impact of these therapy resistance mechanisms in cancer.
Collapse
Affiliation(s)
- Joseph S. Baxter
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Diana Zatreanu
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
66
|
Manolakou T, Nikolopoulos D, Gkikas D, Filia A, Samiotaki M, Stamatakis G, Fanouriakis A, Politis P, Banos A, Alissafi T, Verginis P, Boumpas DT. ATR-mediated DNA damage responses underlie aberrant B cell activity in systemic lupus erythematosus. SCIENCE ADVANCES 2022; 8:eabo5840. [PMID: 36306362 PMCID: PMC9616496 DOI: 10.1126/sciadv.abo5840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
B cells orchestrate autoimmune responses in patients with systemic lupus erythematosus (SLE), but broad-based B cell-directed therapies show only modest efficacy while blunting humoral immune responses to vaccines and inducing immunosuppression. Development of more effective therapies targeting pathogenic clones is a currently unmet need. Here, we demonstrate enhanced activation of the ATR/Chk1 pathway of the DNA damage response (DDR) in B cells of patients with active SLE disease. Treatment of B cells with type I IFN, a key driver of immunity in SLE, induced expression of ATR via binding of interferon regulatory factor 1 to its gene promoter. Pharmacologic targeting of ATR in B cells, via a specific inhibitor (VE-822), attenuated their immunogenic profile, including proinflammatory cytokine secretion, plasmablast formation, and antibody production. Together, these findings identify the ATR-mediated DDR axis as the orchestrator of the type I IFN-mediated B cell responses in SLE and as a potential novel therapeutic target.
Collapse
Affiliation(s)
- Theodora Manolakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Corresponding author. (T.M.); (P.V.); (D.T.B.)
| | - Dionysis Nikolopoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece
| | - Anastasia Filia
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Vari, Attica, Greece
- Centre of New Biotechnologies and Precision Medicine (CNBPM) School of Medicine, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - George Stamatakis
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Vari, Attica, Greece
- Centre of New Biotechnologies and Precision Medicine (CNBPM) School of Medicine, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | | | - Panagiotis Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece
- School of Medicine, European University Cyprus, 1516, Nicosia, Cyprus
| | - Aggelos Banos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Themis Alissafi
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece
- Laboratory of Biology, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Panayotis Verginis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 700 13 Heraklion, Greece
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, 700 13 Heraklion, Greece
- Corresponding author. (T.M.); (P.V.); (D.T.B.)
| | - Dimitrios T. Boumpas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- Joint Rheumatology Program, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
- Corresponding author. (T.M.); (P.V.); (D.T.B.)
| |
Collapse
|
67
|
Yu F, He H, Nastoupil LJ, Xu-Monette ZY, Pham K, Liang Y, Chen G, Fowler NH, Yin CC, Tan D, Yang Y, Hu S, Young KH, Pham LV, You MJ. Targetable vulnerability of deregulated FOXM1/PLK1 signaling axis in diffuse large B cell lymphoma. Am J Cancer Res 2022; 12:4666-4679. [PMID: 36381323 PMCID: PMC9641390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023] Open
Abstract
FOXM1 is a transcription factor that controls cell cycle regulation, cell proliferation, and differentiation. Overexpression of FOXM1 has been implicated in various cancer types. However, the activation status and functional significance of FOXM1 in diffuse large B cell lymphoma (DLBCL) have not been well investigated. Using proteomic approaches, we discovered that the protein expression levels of FOXM1 and PLK1 were positively correlated in DLBCL cell lines and primary DLBCL. Expression levels of FOXM1 and PLK1 mRNAs were also significantly higher in DLBCL than in normal human B cells and could predict poor prognosis of DLBCL, particularly in patients with germinal center B cell-like (GCB) DLBCL. Furthermore, proteomic studies defined a FOXM1-PLK1 signature that consisted of proteins upstream and downstream of that axis involved in the p38-MAPK-AKT pathway, cell cycle, and DNA damage/repair. Further studies demonstrated a mechanistic function of the FOXM1/PLK1 axis in connection with the DNA damage response pathways regulating the S/G2 checkpoint of the cell cycle. Therapeutic targeting of FOXM1/PLK1 using a FOXM1 or PLK1 inhibitor, as well as other clinically relevant small-molecule inhibitors targeting ATR-CHK1, was highly effective in DLBCL in vitro models. These findings are instrumental for lymphoma drug discovery aiming at the FOXM1/PLK1/ATR/CHK1 axis.
Collapse
Affiliation(s)
- Fang Yu
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Department of Pathology, The First Affiliated Hospital of Zhejiang UniversityHangzhou, Zhejiang, China
| | - Hua He
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Loretta J Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Division of Hematopathology, Duke University Medical Center and Duke Cancer InstituteDurham, NC, USA
| | - Ky Pham
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Department of Neurology, McGovern Medical School, University of Texas Health Science CenterHouston, TX, USA
| | - Yong Liang
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Taizhou University College of MedicineTaizhou, Zhejiang, China
| | - Guang Chen
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Taizhou University College of MedicineTaizhou, Zhejiang, China
| | - Nathan H Fowler
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Dongfeng Tan
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Yaling Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Division of Hematopathology, Duke University Medical Center and Duke Cancer InstituteDurham, NC, USA
| | - Lan V Pham
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Oncology Discovery, AbbVie Inc.South San Francisco, CA, USA
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- The University of Texas MD Anderson Cancer Center and UTHealth Graduate School of Biomedical SciencesHouston, TX, USA
| |
Collapse
|
68
|
Serra V, Wang AT, Castroviejo-Bermejo M, Polanska UM, Palafox M, Herencia-Ropero A, Jones GN, Lai Z, Armenia J, Michopoulos F, Llop-Guevara A, Brough R, Gulati A, Pettitt SJ, Bulusu KC, Nikkilä J, Wilson Z, Hughes A, Wijnhoven PW, Ahmed A, Bruna A, Gris-Oliver A, Guzman M, Rodríguez O, Grueso J, Arribas J, Cortés J, Saura C, Lau A, Critchlow S, Dougherty B, Caldas C, Mills GB, Barrett JC, Forment JV, Cadogan E, Lord CJ, Cruz C, Balmaña J, O'Connor MJ. Identification of a Molecularly-Defined Subset of Breast and Ovarian Cancer Models that Respond to WEE1 or ATR Inhibition, Overcoming PARP Inhibitor Resistance. Clin Cancer Res 2022; 28:4536-4550. [PMID: 35921524 PMCID: PMC9561606 DOI: 10.1158/1078-0432.ccr-22-0568] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE PARP inhibitors (PARPi) induce synthetic lethality in homologous recombination repair (HRR)-deficient tumors and are used to treat breast, ovarian, pancreatic, and prostate cancers. Multiple PARPi resistance mechanisms exist, most resulting in restoration of HRR and protection of stalled replication forks. ATR inhibition was highlighted as a unique approach to reverse both aspects of resistance. Recently, however, a PARPi/WEE1 inhibitor (WEE1i) combination demonstrated enhanced antitumor activity associated with the induction of replication stress, suggesting another approach to tackling PARPi resistance. EXPERIMENTAL DESIGN We analyzed breast and ovarian patient-derived xenoimplant models resistant to PARPi to quantify WEE1i and ATR inhibitor (ATRi) responses as single agents and in combination with PARPi. Biomarker analysis was conducted at the genetic and protein level. Metabolite analysis by mass spectrometry and nucleoside rescue experiments ex vivo were also conducted in patient-derived models. RESULTS Although WEE1i response was linked to markers of replication stress, including STK11/RB1 and phospho-RPA, ATRi response associated with ATM mutation. When combined with olaparib, WEE1i could be differentiated from the ATRi/olaparib combination, providing distinct therapeutic strategies to overcome PARPi resistance by targeting the replication stress response. Mechanistically, WEE1i sensitivity was associated with shortage of the dNTP pool and a concomitant increase in replication stress. CONCLUSIONS Targeting the replication stress response is a valid therapeutic option to overcome PARPi resistance including tumors without an underlying HRR deficiency. These preclinical insights are now being tested in several clinical trials where the PARPi is administered with either the WEE1i or the ATRi.
Collapse
Affiliation(s)
- Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- CIBERONC, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | | | | | - Marta Palafox
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Andrea Herencia-Ropero
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Zhongwu Lai
- AstraZeneca Oncology R&D, Waltham, Massachusetts
| | | | | | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Rachel Brough
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Aditi Gulati
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | | | - Zena Wilson
- AstraZeneca Oncology R&D, Cambridge, United Kingdom
| | - Adina Hughes
- AstraZeneca Oncology R&D, Cambridge, United Kingdom
| | | | - Ambar Ahmed
- AstraZeneca Oncology R&D, Waltham, Massachusetts
| | - Alejandra Bruna
- Cancer Research UK, Cambridge Institute, Cambridge, United Kingdom
| | - Albert Gris-Oliver
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Guzman
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Olga Rodríguez
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judit Grueso
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Joaquin Arribas
- CIBERONC, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Growth Factors Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Javier Cortés
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Cristina Saura
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Alan Lau
- AstraZeneca Oncology R&D, Cambridge, United Kingdom
| | | | | | - Carlos Caldas
- Cancer Research UK, Cambridge Institute, Cambridge, United Kingdom
| | - Gordon B. Mills
- Department of Cell Development and Cancer Biology, Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Cristina Cruz
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- High Risk and Familial Cancer, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judith Balmaña
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- High Risk and Familial Cancer, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | |
Collapse
|
69
|
Kloeber JA, Lou Z. Critical DNA damaging pathways in tumorigenesis. Semin Cancer Biol 2022; 85:164-184. [PMID: 33905873 PMCID: PMC8542061 DOI: 10.1016/j.semcancer.2021.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
The acquisition of DNA damage is an early driving event in tumorigenesis. Premalignant lesions show activated DNA damage responses and inactivation of DNA damage checkpoints promotes malignant transformation. However, DNA damage is also a targetable vulnerability in cancer cells. This requires a detailed understanding of the cellular and molecular mechanisms governing DNA integrity. Here, we review current work on DNA damage in tumorigenesis. We discuss DNA double strand break repair, how repair pathways contribute to tumorigenesis, and how double strand breaks are linked to the tumor microenvironment. Next, we discuss the role of oncogenes in promoting DNA damage through replication stress. Finally, we discuss our current understanding on DNA damage in micronuclei and discuss therapies targeting these DNA damage pathways.
Collapse
Affiliation(s)
- Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
70
|
The TRESLIN-MTBP complex couples completion of DNA replication with S/G2 transition. Mol Cell 2022; 82:3350-3365.e7. [PMID: 36049481 PMCID: PMC9506001 DOI: 10.1016/j.molcel.2022.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/16/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
It has been proposed that ATR kinase senses the completion of DNA replication to initiate the S/G2 transition. In contrast to this model, we show here that the TRESLIN-MTBP complex prevents a premature entry into G2 from early S-phase independently of ATR/CHK1 kinases. TRESLIN-MTBP acts transiently at pre-replication complexes (preRCs) to initiate origin firing and is released after the subsequent recruitment of CDC45. This dynamic behavior of TRESLIN-MTBP implements a monitoring system that checks the activation of replication forks and senses the rate of origin firing to prevent the entry into G2. This system detects the decline in the number of origins of replication that naturally occurs in very late S, which is the signature that cells use to determine the completion of DNA replication and permit the S/G2 transition. Our work introduces TRESLIN-MTBP as a key player in cell-cycle control independent of canonical checkpoints.
Collapse
|
71
|
Zhang Z, Liu W, Bao X, Sun T, Wang J, Li M, Liu C. USP39 facilitates breast cancer cell proliferation through stabilization of FOXM1. Am J Cancer Res 2022; 12:3644-3661. [PMID: 36119839 PMCID: PMC9442023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/09/2022] [Indexed: 06/15/2023] Open
Abstract
Deubiquitinating enzyme dysregulation has been linked to the development of a variety of human malignancies, including breast cancer. However, the exact involvement of the deubiquitinating enzyme USP39 in the progression of breast cancer is yet unknown. Cell viability and colony formation analysis was used to assess the effects of USP39 knockdown on breast cancer cells in this study. The interaction between USP39 and FOXM1 was investigated using co-immunoprecipitation (co-IP) and in vitro deubiquitination analysis. The expression of USP39 and FOXM1 in breast cancer tissues was studied using the TCGA database. According to our findings, USP39 deubiquitinates and stabilizes FOXM1, promoting breast cancer cell proliferation, colony formation, and tumor growth in vivo. Furthermore, elevated USP39 expression lowers FOXM1 ubiquitination, resulting in increased transcriptional activity. In addition, the high expression of USP39 reduces the ubiquitination of FOXM1, thereby enhancing the transcriptional activity of FOXM1 and regulating the expression of downstream genes Cdc25b and Plk1. USP39 is positively correlated with the expression level of FOXM1 in breast cancer cells. In general, our research revealed the USP39-FOXM1 axis as a critical driver of breast cancer cell proliferation and provided a theoretical foundation for targeting the USP39-FOXM1 axis for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and TechnologyXianning 437000, Hubei, China
- Hubei University of Science and Technology of Medicine, Xianning Medical CollegeXianning 437000, Hubei, China
| | - Wu Liu
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and TechnologyXianning 437000, Hubei, China
- Hubei University of Science and Technology of Medicine, Xianning Medical CollegeXianning 437000, Hubei, China
| | - Xiajun Bao
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and TechnologyXianning 437000, Hubei, China
- Hubei University of Science and Technology of Medicine, Xianning Medical CollegeXianning 437000, Hubei, China
| | - Tian Sun
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and TechnologyXianning 437000, Hubei, China
- Hubei University of Science and Technology of Medicine, Xianning Medical CollegeXianning 437000, Hubei, China
| | - Jiawei Wang
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and TechnologyXianning 437000, Hubei, China
- Hubei University of Science and Technology of Medicine, Xianning Medical CollegeXianning 437000, Hubei, China
| | - Mengxi Li
- Science and Technology Industry Management Office, Hubei University of Science and TechnologyXianning 437000, Hubei, China
| | - Chao Liu
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and TechnologyXianning 437000, Hubei, China
- Hubei University of Science and Technology of Medicine, Xianning Medical CollegeXianning 437000, Hubei, China
| |
Collapse
|
72
|
Mujib A, Fatima S, Malik MQ. Gamma ray-induced tissue responses and improved secondary metabolites accumulation in Catharanthus roseus. Appl Microbiol Biotechnol 2022; 106:6109-6123. [PMID: 35962802 DOI: 10.1007/s00253-022-12122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
The present study investigated the impact of gamma ray irradiation on callus biomass growth and the yield of vincristine and vinblastine of in vitro grown tissues of Catharanthus roseus. The biochemical alteration underlying the synthesis of secondary metabolites has also been studied and a comparison of yield was prepared. The embryogenic tissues were exposed to 20, 40, 60, 80, and 100 Gy gamma ray doses and the callus biomass fresh weight, the embryogenesis (the embryo numbers, germination, plant regeneration), the alteration of protein, proline, and sugar attributes at different morphogenetic stages were monitored. The callus biomass growth was maximum (1.65 g) in 20 Gy exposed tissues and was less in 100 Gy treatment (0.33 g). The gamma-irradiated embryogenic tissues differentiated into embryos but the embryogenesis % and somatic embryo number per culture reduced with increasing doses. It was least in 80 Gy where very low numbers of embryos were formed (3.45 and 3.30 mean torpedo and cotyledonary embryo numbers per callus mass, respectively) which later germinated into plantlets. Protein, proline, sugar, and different antioxidant enzymes, i.e., superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) activities, were investigated as the tissues were exposed to gamma ray elicitation/signaling, evoking cellular stress. Increased 80 Gy gamma dose inhibited a 42.73% decrease in protein accumulation at initiation stages of embryogenic tissue. Soluble sugar level also declined gradually being least in 80 Gy treated tissues (14.51 mg gm-1 FW) compared to control (20.2 mg gm-1 FW). Proline content, however, increased with increasing gamma doses, maximum at 80 Gy (8.28 mg gm-1 FW). The SOD, APX, and CAT activity increased linearly with enhanced level of gamma doses and maximum, i.e., 3.91 EU min-1 mg-1, 1.71 EU min-1 mg-1, and 4.89 EU min-1 mg-1, protein activity was noted for SOD, APX, and CAT, respectively, at 80 Gy gamma rays treated tissues. The quantification of vinblastine and vincristine in gamma ray elicitated tissues was made by using high-pressure thin layer chromatography (HPTLC). Somatic embryo-regenerated plant's leaves had the maximum yield of vinblastine (15.13 µgm gm-1 DW) at 40 Gy irradiation dose compared to control (13.30 µgm gm-1 DW)-the increased yield % is 13.75. The stem is also rich source producing 11.98 µgm gm-1 DW of vinblastine. Among the various developmental stages of embryos, vinblastine content was highest in germinating stage of embryos (10.14 µgm gm-1 DW) compared to other three, i.e., initiation, proliferation, and maturation embryo stages. Similarly, highest accumulation of vincristine (6.32 µg gm-1 DW) was noted at low gamma irradiation dose (20 Gy) in leaf tissues. The present study indicates that the synthesis of vinblastine and vincristine was growth- and development-specific and the lower 20-40 Gy gamma levels were more effective in enriching alkaloids while higher doses declined yield. KEY POINTS: • Vinblastine and vincristine yield was quantified in in vitro grown tissues and leaves of embryo regenerated Catharanthus roseus after gamma ray treatment. • The accumulation of vinblastine and vincristine was maximum in regenerated leaves; low doses were more efficient in improving yield. • Gamma ray irradiation impacted biochemical profiles, caused cellular stress, and perhaps responsible for improved alkaloid yield.
Collapse
Affiliation(s)
- A Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India.
| | - Samar Fatima
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Moien Qadir Malik
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| |
Collapse
|
73
|
Shi WW, Guan JZ, Long YP, Song Q, Xiong Q, Qin BY, Ma ZQ, Hu Y, Yang B. Integrative transcriptional characterization of cell cycle checkpoint genes promotes clinical management and precision medicine in bladder carcinoma. Front Oncol 2022; 12:915662. [PMID: 36033441 PMCID: PMC9404245 DOI: 10.3389/fonc.2022.915662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background The aberrant regulation of cell cycle is significantly correlated with cancer carcinogenesis and progression, in which cell cycle checkpoints control phase transitions, cell cycle entry, progression, and exit. However, the integrative role of cell cycle checkpoint-related genes (CRGs) in bladder carcinoma (BC) remains unknown. Methods The transcriptomic data and clinical features of BC patients were downloaded from The Cancer Genome Atlas (TCGA), used to identify CRGs correlated with overall survival (OS) by univariate Cox regression analysis. Then, the multivariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses further developed a prognostic CRG signature, which was validated in three external datasets retrieved from Gene Expression Omnibus (GEO). The receiver operating characteristic curve (ROC) analysis was conducted for evaluating the performance of the CRG signature in prognosis prediction. RNA sequencing (RNA-Seq) was performed to explore the expression difference in the identified CRGs between tumor and normal tissue samples from 11 BC patients in the local cohort. Ultimately, genomic profiles and tumor microenvironment (TME), and the Genomics of Drug Sensitivity in Cancer (GDSC) were investigated to guide precision treatment for BC patients with different CRG features. Results The novel constructed 23-CRG prognostic signature could stratify BC patients into high-risk and low-risk groups with significantly different outcomes (median OS: 13.64 vs. 104.65 months). Notably, 19 CRGs were the first to be identified as being associated with BC progression. In three additional validation datasets (GSE13507, GSE31684, and GSE32548), higher CRG scores all indicated inferior survival, demonstrating the robust ability of the CRG signature in prognosis prediction. Moreover, the CRG signature as an independent prognostic factor had a robust and stable risk stratification for BC patients with different histological or clinical features. Then, a CRG signature-based nomogram with a better performance in prognostic prediction [concordance index (C-index): 0.76] was established. Functional enrichment analysis revealed that collagen-containing extracellular matrix (ECM), and ECM-related and MAPK signaling pathways were significantly associated with the signature. Further analysis showed that low-risk patients were characterized by particularly distinctive prevalence of FGFR3 (17.03% vs. 6.67%, p < 0.01) and POLE alterations (7.97% vs. 2.50%, p < 0.05), and enrichment of immune infiltrated cells (including CD8+ T cells, CD4+ naïve T cells, follicular helper T cells, Tregs, and myeloid dendritic cells). RNA-seq data in our local cohort supported the findings in the differentially expressed genes (DEGs) between tumor and normal tissue samples, and the difference in TME between high-risk and low-risk groups. Additionally, CRG signature score plus FGFR3 status divided BC patients into four molecular subtypes, with distinct prognosis, TME, and transcriptomic profiling of immune checkpoint genes. Of note, CRG signature score plus FGFR3 status could successfully distinguish BC patients who have a higher possibility of response to immunotherapy or chemotherapy drugs. Conclusions The CRG signature is a potent prognostic model for BC patients, and in combination with FGFR3 alterations, it had more practical capacity in the prediction of chemotherapy and immunotherapy response, helping guide clinical decision-making.
Collapse
Affiliation(s)
- Wei-Wei Shi
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Jing-Zhi Guan
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Ya-Ping Long
- School of Medicine, Nankai University, Tianjin, China
| | - Qi Song
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Qi Xiong
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Bo-Yu Qin
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhi-Qiang Ma
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yi Hu
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of People’s Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Yi Hu, ; Bo Yang,
| | - Bo Yang
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of People’s Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Yi Hu, ; Bo Yang,
| |
Collapse
|
74
|
From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation. Exp Cell Res 2022; 420:113275. [PMID: 35931143 DOI: 10.1016/j.yexcr.2022.113275] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
After extensive proliferation during development, the adult skeletal muscle cells remain outside the cell cycle, either as post-mitotic myofibers or as quiescent muscle stem cells (MuSCs). Despite its terminally differentiated state, adult skeletal muscle has a remarkable regeneration potential, driven by MuSCs. Upon injury, MuSC quiescence is reversed to support tissue growth and repair and it is re-established after the completion of muscle regeneration. The distinct cell cycle states and transitions observed in the different myogenic populations are orchestrated by elements of the cell cycle machinery. This consists of i) complexes of cyclins and Cyclin-Dependent Kinases (CDKs) that ensure cell cycle progression and ii) their negative regulators, the Cyclin-Dependent Kinase Inhibitors (CDKIs). In this review we discuss the roles of these factors in developmental and adult myogenesis, with a focus on CDKIs that have emerging roles in stem cell functions.
Collapse
|
75
|
Diehl FF, Miettinen TP, Elbashir R, Nabel CS, Darnell AM, Do BT, Manalis SR, Lewis CA, Vander Heiden MG. Nucleotide imbalance decouples cell growth from cell proliferation. Nat Cell Biol 2022; 24:1252-1264. [PMID: 35927450 PMCID: PMC9359916 DOI: 10.1038/s41556-022-00965-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/21/2022] [Indexed: 12/26/2022]
Abstract
Nucleotide metabolism supports RNA synthesis and DNA replication to enable cell growth and division. Nucleotide depletion can inhibit cell growth and proliferation, but how cells sense and respond to changes in the relative levels of individual nucleotides is unclear. Moreover, the nucleotide requirement for biomass production changes over the course of the cell cycle, and how cells coordinate differential nucleotide demands with cell cycle progression is not well understood. Here we find that excess levels of individual nucleotides can inhibit proliferation by disrupting the relative levels of nucleotide bases needed for DNA replication and impeding DNA replication. The resulting purine and pyrimidine imbalances are not sensed by canonical growth regulatory pathways like mTORC1, Akt and AMPK signalling cascades, causing excessive cell growth despite inhibited proliferation. Instead, cells rely on replication stress signalling to survive during, and recover from, nucleotide imbalance during S phase. We find that ATR-dependent replication stress signalling is activated during unperturbed S phases and promotes nucleotide availability to support DNA replication. Together, these data reveal that imbalanced nucleotide levels are not detected until S phase, rendering cells reliant on replication stress signalling to cope with this metabolic problem and disrupting the coordination of cell growth and division.
Collapse
Affiliation(s)
- Frances F Diehl
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ryan Elbashir
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher S Nabel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
76
|
Nickoloff JA. Targeting Replication Stress Response Pathways to Enhance Genotoxic Chemo- and Radiotherapy. Molecules 2022; 27:4736. [PMID: 35897913 PMCID: PMC9330692 DOI: 10.3390/molecules27154736] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Proliferating cells regularly experience replication stress caused by spontaneous DNA damage that results from endogenous reactive oxygen species (ROS), DNA sequences that can assume secondary and tertiary structures, and collisions between opposing transcription and replication machineries. Cancer cells face additional replication stress, including oncogenic stress that results from the dysregulation of fork progression and origin firing, and from DNA damage induced by radiotherapy and most cancer chemotherapeutic agents. Cells respond to such stress by activating a complex network of sensor, signaling and effector pathways that protect genome integrity. These responses include slowing or stopping active replication forks, protecting stalled replication forks from collapse, preventing late origin replication firing, stimulating DNA repair pathways that promote the repair and restart of stalled or collapsed replication forks, and activating dormant origins to rescue adjacent stressed forks. Currently, most cancer patients are treated with genotoxic chemotherapeutics and/or ionizing radiation, and cancer cells can gain resistance to the resulting replication stress by activating pro-survival replication stress pathways. Thus, there has been substantial effort to develop small molecule inhibitors of key replication stress proteins to enhance tumor cell killing by these agents. Replication stress targets include ATR, the master kinase that regulates both normal replication and replication stress responses; the downstream signaling kinase Chk1; nucleases that process stressed replication forks (MUS81, EEPD1, Metnase); the homologous recombination catalyst RAD51; and other factors including ATM, DNA-PKcs, and PARP1. This review provides an overview of replication stress response pathways and discusses recent pre-clinical studies and clinical trials aimed at improving cancer therapy by targeting replication stress response factors.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
77
|
A function for ataxia telangiectasia and Rad3-related (ATR) kinase in cytokinetic abscission. iScience 2022; 25:104536. [PMID: 35754741 PMCID: PMC9213759 DOI: 10.1016/j.isci.2022.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/23/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Abscission, the final stage of cytokinesis, occurs when the cytoplasmic canal connecting two emerging daughter cells is severed either side of a large proteinaceous structure, the midbody. Here, we expand the functions of ATR to include a cell-cycle-specific role in abscission, which is required for genome stability. All previously characterized roles for ATR depend upon its recruitment to replication protein A (RPA)-coated single-stranded DNA (ssDNA). However, we establish that in each cell cycle ATR, as well as ATRIP, localize to the midbody specifically during late cytokinesis and independently of RPA or detectable ssDNA. Rather, midbody localization and ATR-dependent regulation of abscission requires the known abscission regulator-charged multivesicular body protein 4C (CHMP4C). Intriguingly, this regulation is also dependent upon the CDC7 kinase and the known ATR activator ETAA1. We propose that in addition to its known RPA-ssDNA-dependent functions, ATR has further functions in preventing premature abscission. ATR localises non-canonically to the midbody during late cytokinesis Absence of ATR function results in faster abscission and increased binucleates CDC7 kinase and the ESCRT protein, CHMP4C are required for ATR midbody localisation ATR functions upstream of known abscission regulators, CHMP4B and ANCHR
Collapse
|
78
|
Hsieh RCE, Krishnan S, Wu RC, Boda AR, Liu A, Winkler M, Hsu WH, Lin SH, Hung MC, Chan LC, Bhanu KR, Srinivasamani A, De Azevedo RA, Chou YC, DePinho RA, Gubin M, Vilar E, Chen CH, Slay R, Jayaprakash P, Hegde SM, Hartley G, Lea ST, Prasad R, Morrow B, Couillault CA, Steiner M, Wang CC, Venkatesulu BP, Taniguchi C, Kim YSB, Chen J, Rudqvist NP, Curran MA. ATR-mediated CD47 and PD-L1 up-regulation restricts radiotherapy-induced immune priming and abscopal responses in colorectal cancer. Sci Immunol 2022; 7:eabl9330. [PMID: 35687697 DOI: 10.1126/sciimmunol.abl9330] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Radiotherapy (RT) of colorectal cancer (CRC) can prime adaptive immunity against tumor-associated antigen (TAA)-expressing CRC cells systemically. However, abscopal tumor remissions are extremely rare, and the postirradiation immune escape mechanisms in CRC remain elusive. Here, we found that irradiated CRC cells used ATR-mediated DNA repair signaling pathway to up-regulate both CD47 and PD-L1, which through engagement of SIRPα and PD-1, respectively, prevented phagocytosis by antigen-presenting cells and thereby limited TAA cross-presentation and innate immune activation. This postirradiation CD47 and PD-L1 up-regulation was observed across various human solid tumor cells. Concordantly, rectal cancer patients with poor responses to neoadjuvant RT exhibited significantly elevated postirradiation CD47 levels. The combination of RT, anti-SIRPα, and anti-PD-1 reversed adaptive immune resistance and drove efficient TAA cross-presentation, resulting in robust TAA-specific CD8 T cell priming, functional activation of T effectors, and increased T cell clonality and clonal diversity. We observed significantly higher complete response rates to RT/anti-SIRPα/anti-PD-1 in both irradiated and abscopal tumors and prolonged survival in three distinct murine CRC models, including a cecal orthotopic model. The efficacy of triple combination therapy was STING dependent as knockout animals lost most benefit of adding anti-SIRPα and anti-PD-1 to RT. Despite activation across the myeloid stroma, the enhanced dendritic cell function accounts for most improvements in CD8 T cell priming. These data suggest ATR-mediated CD47 and PD-L1 up-regulation as a key mechanism restraining radiation-induced immune priming. RT combined with SIRPα and PD-1 blockade promotes robust antitumor immune priming, leading to systemic tumor regressions.
Collapse
Affiliation(s)
- Rodney Cheng-En Hsieh
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Akash R Boda
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Arthur Liu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michelle Winkler
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wen-Hao Hsu
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Hsesheng Lin
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krithikaa Rajkumar Bhanu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anupallavi Srinivasamani
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Yung-Chih Chou
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Ronald A DePinho
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Gubin
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Parker Institute for Cancer Immunotherapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Hsien Chen
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Ravaen Slay
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Priyamvada Jayaprakash
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shweta Mahendra Hegde
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Genevieve Hartley
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Spencer T Lea
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rishika Prasad
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Brittany Morrow
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Madeline Steiner
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chun-Chieh Wang
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Bhanu Prasad Venkatesulu
- Department of Radiation Oncology, Loyola University Stritch School of Medicine, Chicago, IL, USA
| | - Cullen Taniguchi
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yon Son Betty Kim
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junjie Chen
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nils-Petter Rudqvist
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael A Curran
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
79
|
Gralewska P, Gajek A, Rybaczek D, Marczak A, Rogalska A. The Influence of PARP, ATR, CHK1 Inhibitors on Premature Mitotic Entry and Genomic Instability in High-Grade Serous BRCAMUT and BRCAWT Ovarian Cancer Cells. Cells 2022; 11:cells11121889. [PMID: 35741017 PMCID: PMC9221516 DOI: 10.3390/cells11121889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Olaparib is a poly (ADP-ribose) polymerase inhibitor (PARPi) that inhibits PARP1/2, leading to replication-induced DNA damage that requires homologous recombination repair. Olaparib is often insufficient to treat BRCA-mutated (BRCAMUT) and BRCA wild-type (BRCAWT) high-grade serous ovarian carcinomas (HGSOCs). We examined the short-term (up to 48 h) efficacy of PARPi treatment on a DNA damage response pathway mediated by ATR and CHK1 kinases in BRCAMUT (PEO-1) and BRCAWT (SKOV-3 and OV-90) cells. The combination of ATRi/CHK1i with PARPi was not more cytotoxic than ATR and CHK1 monotherapy. The combination of olaparib with inhibitors of the ATR/CHK1 pathway generated chromosomal abnormalities, independent on BRCAMUT status of cells and formed of micronuclei (MN). However, the beneficial effect of the PARPi:ATRi combination on MN was seen only in the PEO1 BRCAMUT line. Monotherapy with ATR/CHK1 inhibitors reduced BrdU incorporation due to a slower rate of DNA synthesis, which resulted from elevated levels of replication stress, while simultaneous blockade of PARP and ATR caused beneficial effects only in OV-90 cells. Inhibition of ATR/CHK1 increased the formation of double-strand breaks as measured by increased γH2AX expression at collapsed replication forks, resulting in increased levels of apoptosis. Our findings indicate that ATR and CHK1 inhibitors provoke premature mitotic entry, leading to genomic instability and ultimately cell death.
Collapse
Affiliation(s)
- Patrycja Gralewska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| | - Dorota Rybaczek
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
- Correspondence: ; Tel.: +48-42-635-44-77
| |
Collapse
|
80
|
Berger ND, Brownlee PM, Chen MJ, Morrison H, Osz K, Ploquin NP, Chan JA, Goodarzi AA. High replication stress and limited Rad51-mediated DNA repair capacity, but not oxidative stress, underlie oligodendrocyte precursor cell radiosensitivity. NAR Cancer 2022; 4:zcac012. [PMID: 35425901 PMCID: PMC9004414 DOI: 10.1093/narcan/zcac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cranial irradiation is part of the standard of care for treating pediatric brain tumors. However, ionizing radiation can trigger serious long-term neurologic sequelae, including oligodendrocyte and brain white matter loss enabling neurocognitive decline in children surviving brain cancer. Oxidative stress-mediated oligodendrocyte precursor cell (OPC) radiosensitivity has been proposed as a possible explanation for this. Here, however, we demonstrate that antioxidants fail to improve OPC viability after irradiation, despite suppressing oxidative stress, suggesting an alternative etiology for OPC radiosensitivity. Using systematic approaches, we find that OPCs have higher irradiation-induced and endogenous γH2AX foci compared to neural stem cells, neurons, astrocytes and mature oligodendrocytes, and these correlate with replication-associated DNA double strand breakage. Furthermore, OPCs are reliant upon ATR kinase and Mre11 nuclease-dependent processes for viability, are more sensitive to drugs increasing replication fork collapse, and display synthetic lethality with PARP inhibitors after irradiation. This suggests an insufficiency for homology-mediated DNA repair in OPCs-a model that is supported by evidence of normal RPA but reduced RAD51 filament formation at resected lesions in irradiated OPCs. We therefore propose a DNA repair-centric mechanism of OPC radiosensitivity, involving chronically-elevated replication stress combined with 'bottlenecks' in RAD51-dependent DNA repair that together reduce radiation resilience.
Collapse
Affiliation(s)
- N Daniel Berger
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Peter M Brownlee
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Myra J Chen
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hali Morrison
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Katalin Osz
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicolas P Ploquin
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A Chan
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aaron A Goodarzi
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
81
|
Yao Y, Li X, Xu B, Luo L, Guo Q, Wang X, Sun L, Zhang Z, Li P. Cholecystectomy promotes colon carcinogenesis by activating the Wnt signaling pathway by increasing the deoxycholic acid level. Cell Commun Signal 2022; 20:71. [PMID: 35614513 PMCID: PMC9131663 DOI: 10.1186/s12964-022-00890-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/28/2022] [Indexed: 01/01/2023] Open
Abstract
Purpose Cholecystectomy (XGB) is widely recognized as a risk factor for colon cancer (CC). Continuous exposure of the colonic epithelium to deoxycholic acid (DCA) post-XGB may exert cytotoxic effects and be involved in the progression of CC. However, the functions of the XGB-induced DCA increase and the underlying mechanism remain unclear. Methods Colitis-associated CC (CAC) mouse models constructed by AOM-DSS inducement were used to confirm the effect of XGB on the CC progression. Hematoxylin & eosin staining was performed to assess the tumor morphology of CAC mouse models tissues. Various cell biological assays including EdU, live-cell imaging, wound-healing assays, and flow cytometry for cell cycle and apoptosis were used to evaluate the effect of DCA on CC progression. The correlation among XGB, DCA, and CC and their underlying mechanisms were detected with immunohistochemistry, mass spectrometry, transcriptome sequencing, qRT-PCR, and western blotting. Results Here we proved that XGB increased the plasma DCA level and promoted colon carcinogenesis in a colitis-associated CC mouse model. Additionally, we revealed that DCA promoted the proliferation and migration of CC cells. Further RNA sequencing showed that 120 mRNAs were upregulated, and 118 downregulated in DCA-treated CC cells versus control cells. The upregulated mRNAs were positively correlated with Wnt signaling and cell cycle-associated pathways. Moreover, DCA treatment could reduced the expression of the farnesoid X receptor (FXR) and subsequently increased the levels of β-Catenin and c-Myc in vitro and in vivo. Moreover, the FXR agonist GW4064 decreased the proliferation of CC cells by repressing the expression of β-catenin. Conclusion We concluded that XGB-induced DCA exposure could promote the progression of CC by inhibiting FXR expression and enhancing the Wnt-β-catenin pathway. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00890-8.
Collapse
Affiliation(s)
- Yuxia Yao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China.,Department of Gastroenterology, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, People's Republic of China
| | - Xiangji Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China.,Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, People's Republic of China.,Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Beijing, 102206, People's Republic of China
| | - Baohong Xu
- Department of Gastroenterology, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, People's Republic of China
| | - Li Luo
- Department of Pathology, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, People's Republic of China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Xingyu Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Lan Sun
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, People's Republic of China.
| | - Zheng Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China.
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China.
| |
Collapse
|
82
|
Meijering AEC, Sarlós K, Nielsen CF, Witt H, Harju J, Kerklingh E, Haasnoot GH, Bizard AH, Heller I, Broedersz CP, Liu Y, Peterman EJG, Hickson ID, Wuite GJL. Nonlinear mechanics of human mitotic chromosomes. Nature 2022; 605:545-550. [PMID: 35508652 PMCID: PMC9117150 DOI: 10.1038/s41586-022-04666-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/21/2022] [Indexed: 12/26/2022]
Abstract
In preparation for mitotic cell division, the nuclear DNA of human cells is compacted into individualized, X-shaped chromosomes1. This metamorphosis is driven mainly by the combined action of condensins and topoisomerase IIα (TOP2A)2,3, and has been observed using microscopy for over a century. Nevertheless, very little is known about the structural organization of a mitotic chromosome. Here we introduce a workflow to interrogate the organization of human chromosomes based on optical trapping and manipulation. This allows high-resolution force measurements and fluorescence visualization of native metaphase chromosomes to be conducted under tightly controlled experimental conditions. We have used this method to extensively characterize chromosome mechanics and structure. Notably, we find that under increasing mechanical load, chromosomes exhibit nonlinear stiffening behaviour, distinct from that predicted by classical polymer models4. To explain this anomalous stiffening, we introduce a hierarchical worm-like chain model that describes the chromosome as a heterogeneous assembly of nonlinear worm-like chains. Moreover, through inducible degradation of TOP2A5 specifically in mitosis, we provide evidence that TOP2A has a role in the preservation of chromosome compaction. The methods described here open the door to a wide array of investigations into the structure and dynamics of both normal and disease-associated chromosomes.
Collapse
Affiliation(s)
- Anna E C Meijering
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kata Sarlós
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian F Nielsen
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hannes Witt
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Janni Harju
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emma Kerklingh
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Guus H Haasnoot
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anna H Bizard
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Iddo Heller
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chase P Broedersz
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Ying Liu
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
83
|
Salvi JS, Kang J, Kim S, Colville AJ, de Morrée A, Billeskov TB, Larsen MC, Kanugovi A, van Velthoven CTJ, Cimprich KA, Rando TA. ATR activity controls stem cell quiescence via the cyclin F-SCF complex. Proc Natl Acad Sci U S A 2022; 119:e2115638119. [PMID: 35476521 PMCID: PMC9170012 DOI: 10.1073/pnas.2115638119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
A key property of adult stem cells is their ability to persist in a quiescent state for prolonged periods of time. The quiescent state is thought to contribute to stem cell resilience by limiting accumulation of DNA replication–associated mutations. Moreover, cellular stress response factors are thought to play a role in maintaining quiescence and stem cell integrity. We utilized muscle stem cells (MuSCs) as a model of quiescent stem cells and find that the replication stress response protein, ATR (Ataxia Telangiectasia and Rad3-Related), is abundant and active in quiescent but not activated MuSCs. Concurrently, MuSCs display punctate RPA (replication protein A) and R-loop foci, both key triggers for ATR activation. To discern the role of ATR in MuSCs, we generated MuSC-specific ATR conditional knockout (ATRcKO) mice. Surprisingly, ATR ablation results in increased MuSC quiescence exit. Phosphoproteomic analysis of ATRcKO MuSCs reveals enrichment of phosphorylated cyclin F, a key component of the Skp1–Cul1–F-box protein (SCF) ubiquitin ligase complex and regulator of key cell-cycle transition factors, such as the E2F family of transcription factors. Knocking down cyclin F or inhibiting the SCF complex results in E2F1 accumulation and in MuSCs exiting quiescence, similar to ATR-deficient MuSCs. The loss of ATR could be counteracted by inhibiting casein kinase 2 (CK2), the kinase responsible for phosphorylating cyclin F. We propose a model in which MuSCs express cell-cycle progression factors but ATR, in coordination with the cyclin F–SCF complex, represses premature stem cell quiescence exit via ubiquitin–proteasome degradation of these factors.
Collapse
Affiliation(s)
- Jayesh S. Salvi
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Jengmin Kang
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Soochi Kim
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Alex J. Colville
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Antoine de Morrée
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Tine Borum Billeskov
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Mikkel Christian Larsen
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Abhijnya Kanugovi
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Cindy T. J. van Velthoven
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Karlene A. Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305–5441
| | - Thomas A. Rando
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Neurology Service, VA Palo Alto Health Care System, Palo Alto, CA 94304
| |
Collapse
|
84
|
DNA replication is highly resilient and persistent under the challenge of mild replication stress. Cell Rep 2022; 39:110701. [PMID: 35443178 PMCID: PMC9226383 DOI: 10.1016/j.celrep.2022.110701] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/21/2021] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Mitotic DNA synthesis (MiDAS) has been proposed to restart DNA synthesis during mitosis because of replication fork stalling in late interphase caused by mild replication stress (RS). Contrary to this proposal, we find that cells exposed to mild RS in fact maintain continued DNA replication throughout G2 and during G2-M transition in RAD51- and RAD52-dependent manners. Persistent DNA synthesis is necessary to resolve replication intermediates accumulated in G2 and disengage an ATR-imposed block to mitotic entry. Because of its continual nature, DNA synthesis at very late replication sites can overlap with chromosome condensation, generating the phenomenon of mitotic DNA synthesis. Unexpectedly, we find that the commonly used CDK1 inhibitor RO3306 interferes with replication to preclude detection of G2 DNA synthesis, leading to the impression of a mitosis-driven response. Our study reveals the importance of persistent DNA replication and checkpoint control to lessen the risk for severe genome under-replication under mild RS. DNA synthesis persists during G2-M transition to counteract replication stress (RS) RAD51/RAD52-mediated HR pathways facilitate the continuation of G2-M DNA synthesis Continued G2 DNA synthesis relieves RS-induced G2/M checkpoint for mitotic entry RO3306, but not CDK1 inhibition, non-specifically interferes with DNA synthesis
Collapse
|
85
|
Yang L, Xiong H, Li X, Li Y, Zhou H, Lin X, Chan TF, Li R, Lai KP, Chen X. Network Pharmacology and Comparative Transcriptome Reveals Biotargets and Mechanisms of Curcumol Treating Lung Adenocarcinoma Patients With COVID-19. Front Nutr 2022; 9:870370. [PMID: 35520289 PMCID: PMC9063984 DOI: 10.3389/fnut.2022.870370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/16/2022] [Indexed: 12/31/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to 4,255,892 deaths worldwide. Although COVID-19 vaccines are available, mutant forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have reduced the effectiveness of vaccines. Patients with cancer are more vulnerable to COVID-19 than patients without cancer. Identification of new drugs to treat COVID-19 could reduce mortality rate, and traditional Chinese Medicine(TCM) has shown potential in COVID-19 treatment. In this study, we focused on lung adenocarcinoma (LUAD) patients with COVID-19. We aimed to investigate the use of curcumol, a TCM, to treat LUAD patients with COVID-19, using network pharmacology and systematic bioinformatics analysis. The results showed that LUAD and patients with COVID-19 share a cluster of common deregulated targets. The network pharmacology analysis identified seven core targets (namely, AURKA, CDK1, CCNB1, CCNB2, CCNE1, CCNE2, and TTK) of curcumol in patients with COVID-19 and LUAD. Clinicopathological analysis of these targets demonstrated that the expression of these targets is associated with poor patient survival rates. The bioinformatics analysis further highlighted the involvement of this target cluster in DNA damage response, chromosome stability, and pathogenesis of LUAD. More importantly, these targets influence cell-signaling associated with the Warburg effect, which supports SARS-CoV-2 replication and inflammatory response. Comparative transcriptomic analysis on in vitro LUAD cell further validated the effect of curcumol for treating LUAD through the control of cell cycle and DNA damage response. This study supports the earlier findings that curcumol is a potential treatment for patients with LUAD and COVID-19.
Collapse
Affiliation(s)
- Lu Yang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Hao Xiong
- Guilin Center for Disease Control and Prevention, Guilin, China
| | - Xin Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Yu Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Huanhuan Zhou
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ting Fung Chan
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Rong Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
- *Correspondence: Rong Li
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
- Keng Po Lai
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Xu Chen ;
| |
Collapse
|
86
|
Crozier L, Foy R, Mouery BL, Whitaker RH, Corno A, Spanos C, Ly T, Gowen Cook J, Saurin AT. CDK4/6 inhibitors induce replication stress to cause long-term cell cycle withdrawal. EMBO J 2022; 41:e108599. [PMID: 35037284 PMCID: PMC8922273 DOI: 10.15252/embj.2021108599] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/18/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
CDK4/6 inhibitors arrest the cell cycle in G1-phase. They are approved to treat breast cancer and are also undergoing clinical trials against a range of other tumour types. To facilitate these efforts, it is important to understand why a cytostatic arrest in G1 causes long-lasting effects on tumour growth. Here, we demonstrate that a prolonged G1 arrest following CDK4/6 inhibition downregulates replisome components and impairs origin licencing. Upon release from that arrest, many cells fail to complete DNA replication and exit the cell cycle in a p53-dependent manner. If cells fail to withdraw from the cell cycle following DNA replication problems, they enter mitosis and missegregate chromosomes causing excessive DNA damage, which further limits their proliferative potential. These effects are observed in a range of tumour types, including breast cancer, implying that genotoxic stress is a common outcome of CDK4/6 inhibition. This unanticipated ability of CDK4/6 inhibitors to induce DNA damage now provides a rationale to better predict responsive tumour types and effective combination therapies, as demonstrated by the fact that CDK4/6 inhibition induces sensitivity to chemotherapeutics that also cause replication stress.
Collapse
Affiliation(s)
- Lisa Crozier
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Reece Foy
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Brandon L Mouery
- Curriculum in Genetics and Molecular BiologyUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Robert H Whitaker
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Andrea Corno
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Christos Spanos
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Tony Ly
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
- Present address:
Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Jeanette Gowen Cook
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Adrian T Saurin
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| |
Collapse
|
87
|
Lebrec V, Poteau M, Morretton JP, Gavet O. Chk1 dynamics in G2 phase upon replication stress predict daughter cell outcome. Dev Cell 2022; 57:638-653.e5. [PMID: 35245445 DOI: 10.1016/j.devcel.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 12/27/2022]
Abstract
In human cells, ATR/Chk1 signaling couples S phase exit with the expression of mitotic inducers and prevents premature mitosis upon replication stress (RS). Nonetheless, under-replicated DNA can persist at mitosis, prompting chromosomal instability. To decipher how the DNA replication checkpoint (DRC) allows cells to enter mitosis over time upon RS, we developed a FRET-based Chk1 activity sensor. During unperturbed growth, a basal Chk1 activity level is sustained throughout S phase and relies on replication origin firing. Incremental RS triggers stepwise Chk1 over-activation that delays S-phase, suggesting a rheostat-like role for DRC coupled with the replication machinery. Upon RS, Chk1 is inactivated as DNA replication terminates but surprisingly is reactivated in a subset of G2 cells, which relies on Cdk1/2 and Plk1 and prevents mitotic entry. Cells can override active Chk1 signaling and reach mitosis onset, revealing checkpoint adaptation. Cell division following Chk1 reactivation in G2 results in a p53/p21-dependent G1 arrest, eliminating the daughter cells from proliferation.
Collapse
Affiliation(s)
- Vivianne Lebrec
- UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
| | - Marion Poteau
- UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
| | - Jean-Philippe Morretton
- UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
| | - Olivier Gavet
- Sorbonne Universités, UPMC Paris VI, UFR927, 75005 Paris, France; UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France.
| |
Collapse
|
88
|
Abstract
DNA repair and DNA damage signaling pathways are critical for the maintenance of genomic stability. Defects of DNA repair and damage signaling contribute to tumorigenesis, but also render cancer cells vulnerable to DNA damage and reliant on remaining repair and signaling activities. Here, we review the major classes of DNA repair and damage signaling defects in cancer, the genomic instability that they give rise to, and therapeutic strategies to exploit the resulting vulnerabilities. Furthermore, we discuss the impacts of DNA repair defects on both targeted therapy and immunotherapy, and highlight emerging principles for targeting DNA repair defects in cancer therapy.
Collapse
Affiliation(s)
- Jessica L Hopkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
89
|
Roulston A, Zimmermann M, Papp R, Skeldon A, Pellerin C, Dumas-Bérube É, Dumais V, Dorich S, Fader LD, Fournier S, Li L, Leclaire ME, Yin SY, Chefson A, Alam H, Yang W, Fugère-Desjardins C, Vignini-Hammond S, Skorey K, Mulani A, Rimkunas V, Veloso A, Hamel M, Stocco R, Mamane Y, Li Z, Young JT, Zinda M, Black WC. RP-3500: A Novel, Potent, and Selective ATR Inhibitor that is Effective in Preclinical Models as a Monotherapy and in Combination with PARP Inhibitors. Mol Cancer Ther 2022; 21:245-256. [PMID: 34911817 PMCID: PMC9398170 DOI: 10.1158/1535-7163.mct-21-0615] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 01/07/2023]
Abstract
Ataxia telangiectasia and Rad3-related (ATR) kinase protects genome integrity during DNA replication. RP-3500 is a novel, orally bioavailable clinical-stage ATR kinase inhibitor (NCT04497116). RP-3500 is highly potent with IC50 values of 1.0 and 0.33 nmol/L in biochemical and cell-based assays, respectively. RP-3500 is highly selective for ATR with 30-fold selectivity over mammalian target of rapamycin (mTOR) and more than 2,000-fold selectivity over ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), and phosphatidylinositol 3-kinase alpha (PI3Kα) kinases. In vivo, RP-3500 treatment results in potent single-agent efficacy and/or tumor regression in multiple xenograft models at minimum effective doses (MED) of 5 to 7 mg/kg once daily. Pharmacodynamic assessments validate target engagement, with dose-proportional tumor inhibition of phosphorylated checkpoint kinase 1 (pCHK1) (IC80 = 18.6 nmol/L) and induction of phosphorylated H2A.X variant histone (γH2AX), phosphorylated DNA-PK catalytic subunit (pDNA-PKcs), and phosphorylated KRAB-associated protein 1 (pKAP1). RP-3500 exposure at MED indicates that circulating free plasma levels above the in vivo tumor IC80 for 10 to 12 hours are sufficient for efficacy on a continuous schedule. However, short-duration intermittent (weekly 3 days on/4 days off) dosing schedules as monotherapy or given concomitantly with reduced doses of olaparib or niraparib, maximize tumor growth inhibition while minimizing the impact on red blood cell depletion, emphasizing the reversible nature of erythroid toxicity with RP-3500 and demonstrating superior efficacy compared with sequential treatment. These results provide a strong preclinical rationale to support ongoing clinical investigation of the novel ATR inhibitor, RP-3500, on an intermittent schedule as a monotherapy and in combination with PARP inhibitors as a potential means of maximizing clinical benefit.
Collapse
Affiliation(s)
- Anne Roulston
- Repare Therapeutics Inc., Saint-Laurent, Quebec, Canada.,Corresponding Author: Anne Roulston, Repare Therapeutics Inc., 7171 Frederick Banting, Saint-Laurent, QC H4S 1Z9, Canada. Phone: 514-286-4789; Fax: 888-595-2535; E-mail:
| | | | - Robert Papp
- Repare Therapeutics Inc., Saint-Laurent, Quebec, Canada
| | | | | | | | | | | | - Lee D. Fader
- Ventus Therapeutics Inc. Saint-Laurent, Quebec, Canada
| | - Sara Fournier
- Repare Therapeutics Inc., Saint-Laurent, Quebec, Canada
| | - Li Li
- Repare Therapeutics Inc., Saint-Laurent, Quebec, Canada
| | | | - Shou Yun Yin
- Repare Therapeutics Inc., Saint-Laurent, Quebec, Canada
| | | | - Hunain Alam
- Repare Therapeutics Inc., Saint-Laurent, Quebec, Canada
| | - William Yang
- Repare Therapeutics Inc., Saint-Laurent, Quebec, Canada
| | | | | | | | - Amina Mulani
- NuChem Sciences Inc. Saint-Laurent, Quebec, Canada
| | | | - Artur Veloso
- Repare Therapeutics Inc., Saint-Laurent, Quebec, Canada
| | - Martine Hamel
- Repare Therapeutics Inc., Saint-Laurent, Quebec, Canada
| | - Rino Stocco
- Repare Therapeutics Inc., Saint-Laurent, Quebec, Canada
| | - Yael Mamane
- Repare Therapeutics Inc., Saint-Laurent, Quebec, Canada
| | - Zuomei Li
- NuChem Sciences Inc. Saint-Laurent, Quebec, Canada
| | | | - Michael Zinda
- Repare Therapeutics Inc., Saint-Laurent, Quebec, Canada
| | | |
Collapse
|
90
|
Abt ER, Le TM, Dann AM, Capri JR, Poddar S, Lok V, Li L, Liang K, Creech AL, Rashid K, Kim W, Wu N, Cui J, Cho A, Lee HR, Rosser EW, Link JM, Czernin J, Wu TT, Damoiseaux R, Dawson DW, Donahue TR, Radu CG. Reprogramming of nucleotide metabolism by interferon confers dependence on the replication stress response pathway in pancreatic cancer cells. Cell Rep 2022; 38:110236. [PMID: 35021095 PMCID: PMC8893345 DOI: 10.1016/j.celrep.2021.110236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/22/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023] Open
Abstract
We determine that type I interferon (IFN) response biomarkers are enriched in a subset of pancreatic ductal adenocarcinoma (PDAC) tumors; however, actionable vulnerabilities associated with IFN signaling have not been systematically defined. Integration of a phosphoproteomic analysis and a chemical genomics synergy screen reveals that IFN activates the replication stress response kinase ataxia telangiectasia and Rad3-related protein (ATR) in PDAC cells and sensitizes them to ATR inhibitors. IFN triggers cell-cycle arrest in S-phase, which is accompanied by nucleotide pool insufficiency and nucleoside efflux. In combination with IFN, ATR inhibitors induce lethal DNA damage and downregulate nucleotide biosynthesis. ATR inhibition limits the growth of PDAC tumors in which IFN signaling is driven by stimulator of interferon genes (STING). These results identify a cross talk between IFN, DNA replication stress response networks, and nucleotide metabolism while providing the rationale for targeted therapeutic interventions that leverage IFN signaling in tumors.
Collapse
Affiliation(s)
- Evan R Abt
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Thuc M Le
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Amanda M Dann
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph R Capri
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Soumya Poddar
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Vincent Lok
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Luyi Li
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Keke Liang
- Department of General Surgery/Pancreatic and Thyroid Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Amanda L Creech
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Khalid Rashid
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Woosuk Kim
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Nanping Wu
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Jing Cui
- Department of Pancreatic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Arthur Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hailey Rose Lee
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Ethan W Rosser
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason M Link
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy R Donahue
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
91
|
Wootton J, Soutoglou E. Chromatin and Nuclear Dynamics in the Maintenance of Replication Fork Integrity. Front Genet 2022; 12:773426. [PMID: 34970302 PMCID: PMC8712883 DOI: 10.3389/fgene.2021.773426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Replication of the eukaryotic genome is a highly regulated process and stringent control is required to maintain genome integrity. In this review, we will discuss the many aspects of the chromatin and nuclear environment that play key roles in the regulation of both unperturbed and stressed replication. Firstly, the higher order organisation of the genome into A and B compartments, topologically associated domains (TADs) and sub-nuclear compartments has major implications in the control of replication timing. In addition, the local chromatin environment defined by non-canonical histone variants, histone post-translational modifications (PTMs) and enrichment of factors such as heterochromatin protein 1 (HP1) plays multiple roles in normal S phase progression and during the repair of replicative damage. Lastly, we will cover how the spatial organisation of stalled replication forks facilitates the resolution of replication stress.
Collapse
Affiliation(s)
- Jack Wootton
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Evi Soutoglou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
92
|
Mallucci L, Wells V. Intrinsic S phase checkpoint enforced by an antiproliferative oncosuppressor cytokine. Cancer Gene Ther 2022; 29:897-900. [PMID: 34737438 PMCID: PMC9293749 DOI: 10.1038/s41417-021-00397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022]
Abstract
The cell cycle is strictly programmed with control mechanisms that dictate order in cell cycle progression to ensure faithful DNA replication, whose deviance may lead to cancer. Checkpoint control at the G1/S, S/G2 and G2/M portals have been defined but no statutory time-programmed control for securing orderly transition through S phase has so far been identified. Here we report that in normal cells DNA synthesis is controlled by a checkpoint sited within the early part of S phase, enforced by the βGBP cytokine an antiproliferative molecule otherwise known for its oncosuppressor properties that normal cells constitutively produce for self-regulation. Suppression of active Ras and active MAPK, block of cyclin A gene expression and suppression of CDK2-cyclin A activity are events which while specific to the control of a cell cycle phase in normal cells are part of the apoptotic network in cancer cells.
Collapse
Affiliation(s)
- Livio Mallucci
- grid.13097.3c0000 0001 2322 6764Faculty of Life Sciences and Medicine, King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Campus, London, SE1 1UL UK
| | | |
Collapse
|
93
|
Abstract
The cell cycle is the series of events that take place in a cell that drives it to divide and produce two new daughter cells. Through more than 100 years of efforts by scientists, we now have a much clearer picture of cell cycle progression and its regulation. The typical cell cycle in eukaryotes is composed of the G1, S, G2, and M phases. The M phase is further divided into prophase, prometaphase, metaphase, anaphase, telophase, and cytokinesis. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that controls the activity of various Cdk-cyclin complexes. Most cellular events, including DNA duplication, gene transcription, protein translation, and post-translational modification of proteins, occur in a cell-cycle-dependent manner. To understand these cellular events and their underlying molecular mechanisms, it is desirable to have a population of cells that are traversing the cell cycle synchronously. This can be achieved through a process called cell synchronization. Many methods have been developed to synchronize cells to the various phases of the cell cycle. These methods could be classified into two groups: synchronization methods using chemical inhibitors and synchronization methods without using chemical inhibitors. All these methods have their own merits and shortcomings.
Collapse
Affiliation(s)
- Zhixiang Wang
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
94
|
Regulation of Cell Cycle Progression by Growth Factor-Induced Cell Signaling. Cells 2021; 10:cells10123327. [PMID: 34943835 PMCID: PMC8699227 DOI: 10.3390/cells10123327] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
The cell cycle is the series of events that take place in a cell, which drives it to divide and produce two new daughter cells. The typical cell cycle in eukaryotes is composed of the following phases: G1, S, G2, and M phase. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that control the activity of various Cdk–cyclin complexes. While the mechanism underlying the role of growth factor signaling in G1 phase of cell cycle progression has been largely revealed due to early extensive research, little is known regarding the function and mechanism of growth factor signaling in regulating other phases of the cell cycle, including S, G2, and M phase. In this review, we briefly discuss the process of cell cycle progression through various phases, and we focus on the role of signaling pathways activated by growth factors and their receptor (mostly receptor tyrosine kinases) in regulating cell cycle progression through various phases.
Collapse
|
95
|
Zhao J, Lu P, Wan C, Huang Y, Cui M, Yang X, Hu Y, Zheng Y, Dong J, Wang M, Zhang S, Liu Z, Bian S, Wang X, Wang R, Ren S, Wang D, Yao Z, Chang G, Tang F, Zhao XY. Cell-fate transition and determination analysis of mouse male germ cells throughout development. Nat Commun 2021; 12:6839. [PMID: 34824237 PMCID: PMC8617176 DOI: 10.1038/s41467-021-27172-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
Mammalian male germ cell development is a stepwise cell-fate transition process; however, the full-term developmental profile of male germ cells remains undefined. Here, by interrogating the high-precision transcriptome atlas of 11,598 cells covering 28 critical time-points, we demonstrate that cell-fate transition from mitotic to post-mitotic primordial germ cells is accompanied by transcriptome-scale reconfiguration and a transitional cell state. Notch signaling pathway is essential for initiating mitotic arrest and the maintenance of male germ cells' identities. Ablation of HELQ induces developmental arrest and abnormal transcriptome reprogramming of male germ cells, indicating the importance of cell cycle regulation for proper cell-fate transition. Finally, systematic human-mouse comparison reveals potential regulators whose deficiency contributed to human male infertility via mitotic arrest regulation. Collectively, our study provides an accurate and comprehensive transcriptome atlas of the male germline cycle and allows for an in-depth understanding of the cell-fate transition and determination underlying male germ cell development.
Collapse
Affiliation(s)
- Jiexiang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Ping Lu
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, 100871, Beijing, P. R. China
- Biomedical Pioneering Innovation Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, 100871, Beijing, P. R. China
| | - Cong Wan
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Yaping Huang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Manman Cui
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Yuqiong Hu
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, 100871, Beijing, P. R. China
- Biomedical Pioneering Innovation Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, 100871, Beijing, P. R. China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Ji Dong
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, 100871, Beijing, P. R. China
- Biomedical Pioneering Innovation Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, 100871, Beijing, P. R. China
| | - Mei Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Shu Zhang
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, 100871, Beijing, P. R. China
- Biomedical Pioneering Innovation Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, 100871, Beijing, P. R. China
| | - Zhaoting Liu
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Shuhui Bian
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, 100871, Beijing, P. R. China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
| | - Xiaoman Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Rui Wang
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, 100871, Beijing, P. R. China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Dazhuang Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Zhaokai Yao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, 518060, Shenzhen, Guangdong, P. R. China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, 100871, Beijing, P. R. China.
- Biomedical Pioneering Innovation Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, 100871, Beijing, P. R. China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China.
| | - Xiao-Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China.
- Guangdong Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), 510700, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
96
|
Szydzik J, Lind DE, Arefin B, Kurhe Y, Umapathy G, Siaw JT, Claeys A, Gabre JL, Van den Eynden J, Hallberg B, Palmer RH. ATR inhibition enables complete tumour regression in ALK-driven NB mouse models. Nat Commun 2021; 12:6813. [PMID: 34819497 PMCID: PMC8613282 DOI: 10.1038/s41467-021-27057-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 11/03/2021] [Indexed: 01/23/2023] Open
Abstract
High-risk neuroblastoma (NB) often involves MYCN amplification as well as mutations in ALK. Currently, high-risk NB presents significant clinical challenges, and additional therapeutic options are needed. Oncogenes like MYCN and ALK result in increased replication stress in cancer cells, offering therapeutically exploitable options. We have pursued phosphoproteomic analyses highlighting ATR activity in ALK-driven NB cells, identifying the BAY1895344 ATR inhibitor as a potent inhibitor of NB cell growth and proliferation. Using RNA-Seq, proteomics and phosphoproteomics we characterize NB cell and tumour responses to ATR inhibition, identifying key components of the DNA damage response as ATR targets in NB cells. ATR inhibition also produces robust responses in mouse models. Remarkably, a 2-week combined ATR/ALK inhibition protocol leads to complete tumor regression in two independent genetically modified mouse NB models. These results suggest that NB patients, particularly in high-risk groups with oncogene-induced replication stress, may benefit from ATR inhibition as therapeutic intervention. Effective therapeutic options are still needed in neuroblastoma treatment. Here, the authors, through a comprehensive proteomics analysis, identify ATR as a potential therapeutic target of neuroblastoma and demonstrate the efficacy of the ATR inhibitor BAY1895344 in combination with the ALK tyrosine kinase inhibitor lorlatinib.
Collapse
Affiliation(s)
- Joanna Szydzik
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Joachim Tetteh Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Arne Claeys
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium
| | - Jonatan L Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.,Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
97
|
Matos-Rodrigues GE, Martins RAP. An Eye in the Replication Stress Response: Lessons From Tissue-Specific Studies in vivo. Front Cell Dev Biol 2021; 9:731308. [PMID: 34805142 PMCID: PMC8599991 DOI: 10.3389/fcell.2021.731308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022] Open
Abstract
Several inherited human syndromes that severely affect organogenesis and other developmental processes are caused by mutations in replication stress response (RSR) genes. Although the molecular machinery of RSR is conserved, disease-causing mutations in RSR-genes may have distinct tissue-specific outcomes, indicating that progenitor cells may differ in their responses to RSR inactivation. Therefore, understanding how different cell types respond to replication stress is crucial to uncover the mechanisms of RSR-related human syndromes. Here, we review the ocular manifestations in RSR-related human syndromes and summarize recent findings investigating the mechanisms of RSR during eye development in vivo. We highlight a remarkable heterogeneity of progenitor cells responses to RSR inactivation and discuss its implications for RSR-related human syndromes.
Collapse
Affiliation(s)
- Gabriel E Matos-Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo A P Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
98
|
Zwinderman MRH, Lobo TJ, van der Wouden PE, Spierings DCJ, van Vugt MATM, Lansdorp PM, Guryev V, Dekker FJ. Deposition Bias of Chromatin Proteins Inverts under DNA Replication Stress Conditions. ACS Chem Biol 2021; 16:2193-2201. [PMID: 34592816 PMCID: PMC8609521 DOI: 10.1021/acschembio.1c00321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Following DNA replication,
equal amounts of chromatin proteins
are distributed over sister chromatids by re-deposition of parental
chromatin proteins and deposition of newly synthesized chromatin proteins.
Molecular mechanisms balancing the allocation of new and old chromatin
proteins remain largely unknown. Here, we studied the genome-wide
distribution of new chromatin proteins relative to parental DNA template
strands and replication initiation zones using the double-click-seq.
Under control conditions, new chromatin proteins were preferentially
found on DNA replicated by the lagging strand machinery. Strikingly,
replication stress induced by hydroxyurea or curaxin treatment and
inhibition of ataxia telangiectasia and Rad3-related protein (ATR)
or p53 inactivation inverted the observed chromatin protein deposition
bias to the strand replicated by the leading strand polymerase in
line with previously reported effects on replication protein A occupancy.
We propose that asymmetric deposition of newly synthesized chromatin
proteins onto sister chromatids reflects differences in the processivity
of leading and lagging strand synthesis.
Collapse
Affiliation(s)
- Martijn R. H. Zwinderman
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Thamar Jessurun Lobo
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Petra E. van der Wouden
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Diana C. J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Peter M. Lansdorp
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, V5Z 1L3 British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4 British Columbia, Canada
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Frank J. Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
99
|
Zhu Y, Wang Y, Tao B, Han J, Chen H, Zhu Q, Huang L, He Y, Hong J, Li Y, Chen J, Huang J, Lo LJ, Peng J. Nucleolar GTPase Bms1 displaces Ttf1 from RFB-sites to balance progression of rDNA transcription and replication. J Mol Cell Biol 2021; 13:902-917. [PMID: 34791311 PMCID: PMC8800533 DOI: 10.1093/jmcb/mjab074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022] Open
Abstract
18S, 5.8S, and 28S ribosomal RNAs (rRNAs) are cotranscribed as a pre-ribosomal RNA (pre-rRNA) from the rDNA by RNA polymerase I whose activity is vigorous during the S-phase, leading to a conflict with rDNA replication. This conflict is resolved partly by replication-fork-barrier (RFB)-sites sequences located downstream of the rDNA and RFB-binding proteins such as Ttf1. However, how Ttf1 is displaced from RFB-sites to allow replication fork progression remains elusive. Here, we reported that loss-of-function of Bms1l, a nucleolar GTPase, upregulates rDNA transcription, causes replication-fork stall, and arrests cell cycle at the S-to-G2 transition; however, the G1-to-S transition is constitutively active characterized by persisting DNA synthesis. Concomitantly, ubf, tif-IA, and taf1b marking rDNA transcription, Chk2, Rad51, and p53 marking DNA-damage response, and Rpa2, PCNA, Fen1, and Ttf1 marking replication fork stall are all highly elevated in bms1l mutants. We found that Bms1 interacts with Ttf1 in addition to Rc1l. Finally, we identified RFB-sites for zebrafish Ttf1 through chromatin immunoprecipitation sequencing and showed that Bms1 disassociates the Ttf1‒RFB complex with its GTPase activity. We propose that Bms1 functions to balance rDNA transcription and replication at the S-phase through interaction with Rcl1 and Ttf1, respectively. TTF1 and Bms1 together might impose an S-phase checkpoint at the rDNA loci.
Collapse
Affiliation(s)
- Yanqing Zhu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yong Wang
- Taizhou Hospital, Zhejiang University, Taizhou, 317000 China
| | - Boxiang Tao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Jinhua Han
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
| | - Hong Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Qinfang Zhu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Ling Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yinan He
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Jian Hong
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yunqin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
100
|
Combination of the 6-thioguanine and disulfiram/Cu synergistically inhibits proliferation of triple-negative breast cancer cells by enhancing DNA damage and disrupting DNA damage checkpoint. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119169. [PMID: 34763028 DOI: 10.1016/j.bbamcr.2021.119169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Because of the lack of specific molecular targeted therapies, triple-negative breast cancer (TNBC) has high tumour recurrence and metastasis rates. It is urgent to develop novel chemotherapeutic strategies to improve patient survival. DNA damaging agents have been shown to sensitize cancer to genotoxic chemotherapies. We first found that 6-thioguanine (6-TG) can activate the NF-кB signalling pathway. Our results showed that NF-кB signalling was reduced when cells were treated with 6-TG/disulfiram (DSF)/Cu. DSF/Cu enhanced the 6-TG-mediated inhibition of proliferation. 6-TG/DSF/Cu inhibited cell cycle progression, causing cell cycle arrest in the S phase and G2/M phase. Moreover, the combined effect of 6-TG and DSF/Cu induced apoptosis, and either agent alone was able to induce apoptosis. The accumulation of γH2A indicated that DSF/Cu increased the DNA damage induced by 6-TG. Combined treatment with 6-TG and DSF/Cu synergistically reduced the levels of both phosphorylated and total ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR), suggesting that DSF/Cu promoted 6-TG-induced DNA damage by suppressing ATR protein kinases, therefore enhancing cell apoptosis. In conclusion, we demonstrate that the combination of 6-TG and DSF/Cu exerted a significant synergistic antitumour effect on human TNBC in vitro and in vivo by enhancing DNA damage and disrupting DNA damage checkpoints. We propose that this combination therapy could be a novel strategy for the treatment of TNBC.
Collapse
|