51
|
Takehisa J, Kraus MH, Ayouba A, Bailes E, Van Heuverswyn F, Decker JM, Li Y, Rudicell RS, Learn GH, Neel C, Ngole EM, Shaw GM, Peeters M, Sharp PM, Hahn BH. Origin and biology of simian immunodeficiency virus in wild-living western gorillas. J Virol 2009; 83:1635-48. [PMID: 19073717 PMCID: PMC2643789 DOI: 10.1128/jvi.02311-08] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/02/2008] [Indexed: 01/17/2023] Open
Abstract
Western lowland gorillas (Gorilla gorilla gorilla) are infected with a simian immunodeficiency virus (SIVgor) that is closely related to chimpanzee and human immunodeficiency viruses (SIVcpz and HIV-1, respectively) in west central Africa. Although existing data suggest a chimpanzee origin for SIVgor, a paucity of available sequences has precluded definitive conclusions. Here, we report the molecular characterization of one partial (BQ664) and three full-length (CP684, CP2135, and CP2139) SIVgor genomes amplified from fecal RNAs of wild-living gorillas at two field sites in Cameroon. Phylogenetic analyses showed that all SIVgor strains clustered together, forming a monophyletic lineage throughout their genomes. Interestingly, the closest relatives of SIVgor were not SIVcpzPtt strains from west central African chimpanzees (Pan troglodytes troglodytes) but human viruses belonging to HIV-1 group O. In trees derived from most genomic regions, SIVgor and HIV-1 group O formed a sister clade to the SIVcpzPtt lineage. However, in a tree derived from 5' pol sequences ( approximately 900 bp), SIVgor and HIV-1 group O fell within the SIVcpzPtt radiation. The latter was due to two SIVcpzPtt strains that contained mosaic pol sequences, pointing to the existence of a divergent SIVcpzPtt lineage that gave rise to SIVgor and HIV-1 group O. Gorillas appear to have acquired this lineage at least 100 to 200 years ago. To examine the biological properties of SIVgor, we synthesized a full-length provirus from fecal consensus sequences. Transfection of the resulting clone (CP2139.287) into 293T cells yielded infectious virus that replicated efficiently in both human and chimpanzee CD4(+) T cells and used CCR5 as the coreceptor for viral entry. Together, these results provide strong evidence that P. t. troglodytes apes were the source of SIVgor. These same apes may also have spawned the group O epidemic; however, the possibility that gorillas served as an intermediary host cannot be excluded.
Collapse
Affiliation(s)
- Jun Takehisa
- Department of Medicine, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Human immunodeficiency virus type 2 (HIV-2)/HIV-1 envelope chimeras detect high titers of broadly reactive HIV-1 V3-specific antibodies in human plasma. J Virol 2008; 83:1240-59. [PMID: 19019969 DOI: 10.1128/jvi.01743-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Deciphering antibody specificities that constrain human immunodeficiency virus type 1 (HIV-1) envelope (Env) diversity, limit virus replication, and contribute to neutralization breadth and potency is an important goal of current HIV/AIDS vaccine research. Transplantation of discrete HIV-1 neutralizing epitopes into HIV-2 scaffolds may provide a sensitive, biologically functional context by which to quantify specific antibody reactivities even in complex sera. Here, we describe a novel HIV-2 proviral scaffold (pHIV-2(KR.X7)) into which we substituted the complete variable region 3 (V3) of the env gene of HIV-1(YU2) or HIV-1(Ccon) to yield the chimeric proviruses pHIV-2(KR.X7) YU2 V3 and pHIV-2(KR.X7) Ccon V3. These HIV-2/HIV-1 chimeras were replication competent and sensitive to selective pharmacological inhibitors of virus entry. V3 chimeric viruses were resistant to neutralization by HIV-1 monoclonal antibodies directed against the CD4 binding site, coreceptor binding site, and gp41 membrane proximal external region but exhibited striking sensitivity to HIV-1 V3-specific monoclonal antibodies, 447-52D and F425 B4e8 (50% inhibitory concentration of [IC(50)] <0.005 microg/ml for each). Plasma specimens from 11 HIV-1 clade B- and 10 HIV-1 clade C-infected subjects showed no neutralizing activity against HIV-2 but exhibited high-titer V3-specific neutralization against both HIV-2/HIV-1 V3 chimeras with IC(50) measurements ranging from 1:50 to greater than 1:40,000. Neutralization titers of B clade plasmas were as much as 1,000-fold lower when tested against the primary HIV-1(YU2) virus than with the HIV-2(KR.X7) YU2 V3 chimera, demonstrating highly effective shielding of V3 epitopes in the native Env trimer. This finding was replicated using a second primary HIV-1 strain (HIV-1(BORI)) and the corresponding HIV-2(KR.X7) BORI V3 chimera. We conclude that V3 is highly immunogenic in vivo, eliciting antibodies with substantial breadth of reactivity and neutralizing potential. These antibodies constrain HIV-1 Env to a structure(s) in which V3 epitopes are concealed prior to CD4 engagement but do not otherwise contribute to neutralization breadth and potency against most primary virus strains. Triggering of the viral spike to reveal V3 epitopes may be required if V3 immunogens are to be components of an effective HIV-1 vaccine.
Collapse
|
53
|
Cranage M, Sharpe S, Herrera C, Cope A, Dennis M, Berry N, Ham C, Heeney J, Rezk N, Kashuba A, Anton P, McGowan I, Shattock R. Prevention of SIV rectal transmission and priming of T cell responses in macaques after local pre-exposure application of tenofovir gel. PLoS Med 2008; 5:e157; discussion e157. [PMID: 18684007 PMCID: PMC2494562 DOI: 10.1371/journal.pmed.0050157] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 06/09/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The rectum is particularly vulnerable to HIV transmission having only a single protective layer of columnar epithelium overlying tissue rich in activated lymphoid cells; thus, unprotected anal intercourse in both women and men carries a higher risk of infection than other sexual routes. In the absence of effective prophylactic vaccines, increasing attention is being given to the use of microbicides and preventative antiretroviral (ARV) drugs. To prevent mucosal transmission of HIV, a microbicide/ARV should ideally act locally at and near the virus portal of entry. As part of an integrated rectal microbicide development programme, we have evaluated rectal application of the nucleotide reverse transcriptase (RT) inhibitor tenofovir (PMPA, 9-[(R)-2-(phosphonomethoxy) propyl] adenine monohydrate), a drug licensed for therapeutic use, for protective efficacy against rectal challenge with simian immunodeficiency virus (SIV) in a well-established and standardised macaque model. METHODS AND FINDINGS A total of 20 purpose-bred Indian rhesus macaques were used to evaluate the protective efficacy of topical tenofovir. Nine animals received 1% tenofovir gel per rectum up to 2 h prior to virus challenge, four macaques received placebo gel, and four macaques remained untreated. In addition, three macaques were given tenofovir gel 2 h after virus challenge. Following intrarectal instillation of 20 median rectal infectious doses (MID50) of a noncloned, virulent stock of SIVmac251/32H, all animals were analysed for virus infection, by virus isolation from peripheral blood mononuclear cells (PBMC), quantitative proviral DNA load in PBMC, plasma viral RNA (vRNA) load by sensitive quantitative competitive (qc) RT-PCR, and presence of SIV-specific serum antibodies by ELISA. We report here a significant protective effect (p = 0.003; Fisher exact probability test) wherein eight of nine macaques given tenofovir per rectum up to 2 h prior to virus challenge were protected from infection (n = 6) or had modified virus outcomes (n = 2), while all untreated macaques and three of four macaques given placebo gel were infected, as were two of three animals receiving tenofovir gel after challenge. Moreover, analysis of lymphoid tissues post mortem failed to reveal sequestration of SIV in the protected animals. We found a strong positive association between the concentration of tenofovir in the plasma 15 min after rectal application of gel and the degree of protection in the six animals challenged with virus at this time point. Moreover, colorectal explants from non-SIV challenged tenofovir-treated macaques were resistant to infection ex vivo, whereas no inhibition was seen in explants from the small intestine. Tissue-specific inhibition of infection was associated with the intracellular detection of tenofovir. Intriguingly, in the absence of seroconversion, Gag-specific gamma interferon (IFN-gamma)-secreting T cells were detected in the blood of four of seven protected animals tested, with frequencies ranging from 144 spot forming cells (SFC)/10(6) PBMC to 261 spot forming cells (SFC)/10(6) PBMC. CONCLUSIONS These results indicate that colorectal pretreatment with ARV drugs, such as tenofovir, has potential as a clinically relevant strategy for the prevention of HIV transmission. We conclude that plasma tenofovir concentration measured 15 min after rectal administration may serve as a surrogate indicator of protective efficacy. This may prove to be useful in the design of clinical studies. Furthermore, in vitro intestinal explants served as a model for drug distribution in vivo and susceptibility to virus infection. The finding of T cell priming following exposure to virus in the absence of overt infection is provocative. Further studies would reveal if a combined modality microbicide and vaccination strategy is feasible by determining the full extent of local immune responses induced and their protective potential.
Collapse
Affiliation(s)
- Martin Cranage
- Centre for Infection, Division of Cellular & Molecular Medicine, St George's University of London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
García M, Yu XF, Griffin DE, Moss WJ. Measles virus inhibits human immunodeficiency virus type 1 reverse transcription and replication by blocking cell-cycle progression of CD4+ T lymphocytes. J Gen Virol 2008; 89:984-993. [PMID: 18343840 DOI: 10.1099/vir.0.83601-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute measles virus (MV) infection results in a decrease in plasma human immunodeficiency virus type 1 (HIV-1) RNA levels in co-infected children. An in vitro peripheral blood mononuclear cell (PBMC) culture system was used to assess the mechanisms by which MV blocks HIV-1 replication. MV inhibited proliferation of CD4(+) T lymphocytes, the target cell for HIV-1 replication. In the presence of MV, cells did not progress to G(1b) and S phases, steps critical for the completion of HIV-1 reverse transcription and productive replication. This block in cell-cycle progression was characterized by an increased proportion of CD4(+) and HIV-1-infected cells retained in the parental generation in PBMCs co-cultured with MV and HIV-1, and decreased levels of cyclins and RNA synthesis. Early HIV-1 replication was also inhibited in the presence of MV, as measured by reduced expression of a luciferase reporter gene and lower levels of both early (LTR) and late (LTR-gag) DNA intermediates of HIV-1 reverse transcription in the presence of CCR5-tropic HIV-1. The effects of MV on lymphoproliferation and p24 antigen production were reproduced by n-butyrate and hydroxyurea, drugs that block the cell cycle in G(1a) and G(1)/S, respectively. It was concluded that MV inhibits HIV-1 productive replication in part by blocking the proliferation of CD4(+) T lymphocytes.
Collapse
Affiliation(s)
- Mayra García
- Cellular and Molecular Medicine, School of Medicine; Johns Hopkins University, Baltimore, MD 21205, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xiao-Fang Yu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - William J Moss
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
55
|
Pillai SK, Wong JK, Barbour JD. Turning up the volume on mutational pressure: is more of a good thing always better? (A case study of HIV-1 Vif and APOBEC3). Retrovirology 2008; 5:26. [PMID: 18339206 PMCID: PMC2323022 DOI: 10.1186/1742-4690-5-26] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 03/13/2008] [Indexed: 11/10/2022] Open
Abstract
APOBEC3G and APOBEC3F are human cytidine deaminases that serve as innate antiviral defense mechanisms primarily by introducing C-to-U changes in the minus strand DNA of retroviruses during replication (resulting in G-to-A mutations in the genomic sense strand sequence). The HIV-1 Vif protein counteracts this defense by promoting the proteolytic degradation of APOBEC3G and APOBEC3F in the host cell. In the absence of Vif expression, APOBEC3 is incorporated into HIV-1 virions and the viral genome undergoes extensive G-to-A mutation, or "hypermutation", typically rendering it non-viable within a single replicative cycle. Consequently, Vif is emerging as an attractive target for pharmacological intervention and therapeutic vaccination. Although a highly effective Vif inhibitor may result in mutational meltdown of the viral quasispecies, a partially effective Vif inhibitor may accelerate the evolution of drug resistance and immune escape due to the codon structure and recombinogenic nature of HIV-1. This hypothesis rests on two principal assumptions which are supported by experimental evidence: a) there is a dose response between intracellular APOBEC concentration and degree of viral hypermutation, and, b) HIV-1 can tolerate an elevated mutation rate, and a true error or extinction threshold is as yet undetermined. Rigorous testing of this hypothesis will have timely and critical implications for the therapeutic management of HIV/AIDS, and delve into the complexities underlying the induction of lethal mutagenesis in a viral pathogen.
Collapse
Affiliation(s)
- Satish K Pillai
- Department of Medicine, University of California, San Francisco, CA 94121, USA.
| | | | | |
Collapse
|
56
|
Enhancing exposure of HIV-1 neutralization epitopes through mutations in gp41. PLoS Med 2008; 5:e9. [PMID: 18177204 PMCID: PMC2174964 DOI: 10.1371/journal.pmed.0050009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 11/20/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The generation of broadly neutralizing antibodies is a priority in the design of vaccines against HIV-1. Unfortunately, most antibodies to HIV-1 are narrow in their specificity, and a basic understanding of how to develop antibodies with broad neutralizing activity is needed. Designing methods to target antibodies to conserved HIV-1 epitopes may allow for the generation of broadly neutralizing antibodies and aid the global fight against AIDS by providing new approaches to block HIV-1 infection. Using a naturally occurring HIV-1 Envelope (Env) variant as a template, we sought to identify features of Env that would enhance exposure of conserved HIV-1 epitopes. METHODS AND FINDINGS Within a cohort study of high-risk women in Mombasa, Kenya, we previously identified a subtype A HIV-1 Env variant in one participant that was unusually sensitive to neutralization. Using site-directed mutagenesis, the unusual neutralization sensitivity of this variant was mapped to two amino acid mutations within conserved sites in the transmembrane subunit (gp41) of the HIV-1 Env protein. These two mutations, when introduced into a neutralization-resistant variant from the same participant, resulted in 3- to >360-fold enhanced neutralization by monoclonal antibodies specific for conserved regions of both gp41 and the Env surface subunit, gp120, >780-fold enhanced neutralization by soluble CD4, and >35-fold enhanced neutralization by the antibodies found within a pool of plasmas from unrelated individuals. Enhanced neutralization sensitivity was not explained by differences in Env infectivity, Env concentration, Env shedding, or apparent differences in fusion kinetics. Furthermore, introduction of these mutations into unrelated viral Env sequences, including those from both another subtype A variant and a subtype B variant, resulted in enhanced neutralization susceptibility to gp41- and gp120-specific antibodies, and to plasma antibodies. This enhanced neutralization sensitivity exceeded 1,000-fold in several cases. CONCLUSIONS Two amino acid mutations within gp41 were identified that expose multiple discontinuous neutralization epitopes on diverse HIV-1 Env proteins. These exposed epitopes were shielded on the unmodified viral Env proteins, and several of the exposed epitopes encompass desired target regions for protective antibodies. Env proteins containing these modifications could act as a scaffold for presentation of such conserved domains, and may aid in developing methods to target antibodies to such regions.
Collapse
|
57
|
Antoni S, Walz N, Landersz M, Humbert M, Seidl C, Dittmar MT, Dietrich U. Genetic and biological characterization of recombinant HIV type 1 with Env derived from long-term nonprogressor (LTNP) viruses. AIDS Res Hum Retroviruses 2007; 23:1377-86. [PMID: 18184081 DOI: 10.1089/aid.2007.0113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Multiple factors are known to contribute to nonprogressive disease in long-term nonprogressors (LTNP). We previously selected LTNPs, in which broadly neutralizing antibodies against HIV-1 very likely contribute to disease prevention. Here, we characterize those LTNPs further. We analyzed sequences of the viral genes env, nef, vpr, tat, and rev as well as the cellular ccr5, HLA-B*5701, and HLA-B*27 genes derived from eight LTNPs, as mutations in these genes have been associated with the LTNP status in some studies. Furthermore, we compared the replication rates of recombinant reporter viruses carrying envelope proteins from LTNPs to control viruses from patients with similar CD4 count and viral load. Concerning the cellular factors, none of the eight LTNPs showed the 32-base pair deletion in the ccr5 gene, and HLA-B*5701 and HLA-B*27 alleles were detected in only one LTNP, respectively. The reading frames for the regulatory genes nef, vpr, tat, and rev were all open. Although Env sequences from LTNPs differed from those of control patients with respect to the length of variable domains and the number of N-glycosylation sites, these differences were not statistically significant and did not lead to differences in infectivity of recombinant reporter viruses.
Collapse
Affiliation(s)
- Sascha Antoni
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Nicole Walz
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Margot Landersz
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Michael Humbert
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Christian Seidl
- Department of Transplantation Immunology and Immunogenetics, Red Cross Blood Donor Service, Frankfurt, Germany
| | - Matthias T. Dittmar
- Centre for Infectious Disease, Institute of Cell and Molecular Sciences Barts and The London, Queen Mary's School of Medicine and Dentistry, London, UK
| | - Ursula Dietrich
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| |
Collapse
|
58
|
Priceputu E, Hanna Z, Hu C, Simard MC, Vincent P, Wildum S, Schindler M, Kirchhoff F, Jolicoeur P. Primary human immunodeficiency virus type 1 nef alleles show major differences in pathogenicity in transgenic mice. J Virol 2007; 81:4677-93. [PMID: 17314161 PMCID: PMC1900134 DOI: 10.1128/jvi.02691-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that the human immunodeficiency virus type 1 NL4-3 Nef is necessary and sufficient to induce a severe AIDS-like disease in transgenic (Tg) mice when the protein is expressed under the regulatory sequences of the human CD4 gene. We have now assayed additional Nef alleles (SF2, JR-CSF, YU10x, and NL4-3 [T71R] Nef alleles), including some from long-term nonprogressors (AD-93, 032an, and 039nm alleles) in the same Tg system and compared their pathogenicities. All these Nef alleles downregulated cell surface CD4 in human cells in vitro and also, with the exception of Nef(YU10x), in Tg CD4(+) T cells. Depletion of double-positive and single-positive thymocytes occurred with all alleles but was less pronounced in Nef(YU10x) Tg mice. A loss of peripheral CD4(+) T cells was observed with all alleles but was minimal in Nef(YU10x) Tg mice. In Nef(032an) and Nef(SF2) Tg mice, T-cell loss was severe despite lower levels of Tg expression, suggesting a higher virulence of these alleles. All Nef alleles except the Nef(YU10x) and Nef(NL4-3(T71R)) alleles induced an enhanced activated memory (CD25(+) CD69(+) CD44(high) CD45RB(low) CD62L(low)) and apoptotic phenotype. Also, all could interact with and/or activate PAK2 except the Nef(JR-CSF) allele. Organ (lung and kidney) diseases were present in Nef(NL4-3(T71R)), Nef(032an), Nef(039nm), and Nef(SF2) Tg mice, despite very low levels of Tg expression for the last strain. However, no organ disease or minimal organ disease developed in Nef(YU10x) and Nef(AD-93) Tg mice and Nef(JR-CSF) Tg mice, respectively, despite high levels of Tg expression. Our data show that important differences in the pathogenicities of various Nef alleles can be scored in Tg mice. Interestingly, our results also revealed that some phenotypes can segregate independently, such as CD4(+) T-cell depletion and activation, as well as severe depletion of thymic CD4(+) T cells and peripheral CD4(+) T cells. Therefore, expression of Nef alleles in Tg mice under the CD4C regulatory elements represents a novel assay for measuring their pathogenicity. Because of the very high similarity of this murine AIDS-like disease to human AIDS, this assay may have a predictive value regarding the behavior of Nef in infected humans.
Collapse
Affiliation(s)
- Elena Priceputu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Churchill MJ, Figueiredo A, Cowley D, Gray L, Purcell DF, Sullivan JS, McPhee DA, Wesselingh SL, Brew BJ, Gorry PR. Transcriptional activity of blood-and cerebrospinal fluid-derived nef/long-terminal repeat sequences isolated from a slow progressor infected with nef-deleted human immunodeficiency virus type 1 (HIV-1) who developed HIV-associated dementia. J Neurovirol 2006; 12:219-28. [PMID: 16877303 DOI: 10.1080/13550280600827369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The authors studied the transcriptional activity of blood-and cerebrospinal fluid (CSF)-derived nef/long-terminal repeat (LTR) sequences isolated from a slow progressor infected with nef-deleted human immunodeficiency virus type 1 (HIV-1) who developed HIV-associated dementia (HIVD). The transcriptional activity of CSF-derived nef/LTR clones isolated during HIVD was up to 4.5-fold higher than blood-derived clones isolated before and during HIVD when tested under basal, phorbol 12-myristate 13-acetate-(PMA-), and Tat-activated conditions, and was associated with the presence of duplicated nuclear factor (NF)-kappaB and specificity factor-1 (Sp-1) binding sites coupled with a truncated nef sequence, increased replication capacity, and high CSF viral load. Thus, nef and LTR mutations that augment transcription may contribute to neuropathogenesis of nef-deleted HIV-1.
Collapse
Affiliation(s)
- Melissa J Churchill
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Agopian K, Wei BL, Garcia JV, Gabuzda D. CD4 and MHC-I downregulation are conserved in primary HIV-1 Nef alleles from brain and lymphoid tissues, but Pak2 activation is highly variable. Virology 2006; 358:119-35. [PMID: 16979207 PMCID: PMC1995023 DOI: 10.1016/j.virol.2006.07.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/06/2006] [Accepted: 07/27/2006] [Indexed: 01/06/2023]
Abstract
HIV-1 compartmentalization in the CNS has been demonstrated for gag, pol, and env genes. However, little is known about tissue compartmentalization of nef genes and their functional characteristics in brain. We have cloned 97 nef genes and characterized 10 Nef proteins from autopsy brain and lymphoid tissues from 2 patients with AIDS and HIV-1-associated dementia. Distinct compartmentalization of brain versus lymphoid nef genes was demonstrated within each patient. CD4 and MHC-I downregulation were conserved in all tissue-derived Nefs. However, MHC-I downregulation by brain-derived Nefs was weaker than downregulation by lymphoid-derived Nefs. The motifs KEEE- or EKEE- at the PACS-1 binding site represented brain-specific signature patterns in these 2 patients and contributed to the reduced MHC-I downregulation activity of brain-derived Nefs from these patients. Pak2 association was highly variable in Nefs from both patients. Three of 10 tissue-derived Nefs coimmunoprecipitated activated Pak2, with strong association demonstrated for only 2 Nefs. The ability of Nef to associate with activated Pak2 did not correlate with brain or lymphoid tissue origin. Nef genes from viruses isolated from brain by coculture with PBMC were not closely related to sequences amplified directly from brain tissue, suggesting that viral selection or adaptation occurred during coculture. This study of tissue-derived HIV-1 Nefs demonstrates that CD4 and MHC-I downregulation are highly conserved Nef functions, while Pak2 association is variable in late stage AIDS patients.
Collapse
Affiliation(s)
- Kristin Agopian
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Bangdong L. Wei
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - J. Victor Garcia
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- *Corresponding Author. Mailing Address: Dana-Farber Cancer Institute, JFB 816 44 Binney St. Boston, MA 02115 Phone: (617) 632-2154 Fax: (617) 632 3113 E-mail:
| |
Collapse
|
61
|
Yang X, Lipchina I, Cocklin S, Chaiken I, Sodroski J. Antibody binding is a dominant determinant of the efficiency of human immunodeficiency virus type 1 neutralization. J Virol 2006; 80:11404-8. [PMID: 16956933 PMCID: PMC1642171 DOI: 10.1128/jvi.01102-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary and laboratory-adapted variants of human immunodeficiency virus type 1 (HIV-1) exhibit a wide range of sensitivities to neutralization by antibodies directed against the viral envelope glycoproteins. An antibody directed against an artificial FLAG epitope inserted into the envelope glycoproteins of three HIV-1 isolates with vastly different neutralization sensitivities inhibited all three viruses equivalently. Thus, naturally occurring HIV-1 isolates that are neutralization resistant are not necessarily more impervious to the inhibitory consequences of bound antibody. Moreover, the binding affinity of the anti-FLAG antibody correlated with neutralizing potency, underscoring the dominant impact on neutralization of antibody binding to the envelope glycoproteins.
Collapse
Affiliation(s)
- Xinzhen Yang
- Beth Israel Deaconess Medical Center, 330 Brookline Avenue, R.E. 213A, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
62
|
Krachmarov CP, Honnen WJ, Kayman SC, Gorny MK, Zolla-Pazner S, Pinter A. Factors determining the breadth and potency of neutralization by V3-specific human monoclonal antibodies derived from subjects infected with clade A or clade B strains of human immunodeficiency virus type 1. J Virol 2006; 80:7127-35. [PMID: 16809318 PMCID: PMC1489036 DOI: 10.1128/jvi.02619-05] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neutralizing activities of anti-V3 antibodies for HIV-1 isolates is affected both by sequence variation within V3 and by epitope masking by the V1/V2 domain. To analyze the relative contribution of V3 sequence variation, chimeric Env genes that contained consensus V3 sequences from seven HIV-1 subtypes in the neutralization-sensitive SF162 Env backbone were constructed. Resulting viral pseudotypes were tested for neutralization by 15 anti-V3 MAbs isolated from humans infected with viruses of either subtype B (anti-V3(B) MAbs) or subtype A (anti-V3(A) MAbs). Pseudovirions with the subtype B consensus V3 sequence were potently neutralized (IC(50) < 0.006 microg/ml) by all but one of these MAbs, while pseudovirions with V3 subtypes A, C, F, H, AG, and AE were generally neutralized more effectively by anti-V3(A) MAbs than by anti-V3(B) MAbs. A V1/V2-masked Env version of SF162 Env with the consensus B V3 sequence was also neutralized by these MAbs, although with considerably lower potency, while similarly masked chimeras with V3 sequences of subtype A, C, or AG were weakly neutralized by anti-V3(A) MAbs but not by anti-V3(B) MAbs. Mutations in the V1/V2 domain of YU-2 Env increased the sensitivity of this highly resistant Env to a pool of anti-V3(B) MAbs several thousand-fold. These results demonstrated (i) the exceptional sensitivity of representative V3 domains of multiple subtypes to neutralization in the absence of epitope masking, (ii) the broader neutralizing activity of anti-V3(A) MAbs for viruses containing diverse V3 sequences, and (iii) the generality and dominant effect of V1/V2 masking on restriction of V3-mediated neutralization.
Collapse
Affiliation(s)
- C P Krachmarov
- The Public Health Research Institute, 255 Warren St., Newark, NJ 07103-3535, USA
| | | | | | | | | | | |
Collapse
|
63
|
Siddappa NB, Venkatramanan M, Venkatesh P, Janki MV, Jayasuryan N, Desai A, Ravi V, Ranga U. Transactivation and signaling functions of Tat are not correlated: biological and immunological characterization of HIV-1 subtype-C Tat protein. Retrovirology 2006; 3:53. [PMID: 16916472 PMCID: PMC1564039 DOI: 10.1186/1742-4690-3-53] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 08/18/2006] [Indexed: 12/04/2022] Open
Abstract
Background Of the diverse subtypes of Human Immunodeficiency Virus Type-1 (HIV-1), subtype-C strains cause a large majority of infections worldwide. The reasons for the global dominance of HIV-1 subtype-C infections are not completely understood. Tat, being critical for viral infectivity and pathogenesis, may differentially modulate pathogenic properties of the viral subtypes. Biochemical studies on Tat are hampered by the limitations of the current purification protocols. Tat purified using standard protocols often is competent for transactivation activity but defective for a variety of other biological functions. Keeping this limitation in view, we developed an efficient protein purification strategy for Tat. Results Tat proteins obtained using the novel strategy described here were free of contaminants and retained biological functions as evaluated in a range of assays including the induction of cytokines, upregulation of chemokine coreceptor, transactivation of the viral promoter and rescue of a Tat-defective virus. Given the highly unstable nature of Tat, we evaluated the effect of the storage conditions on the biological function of Tat following purification. Tat stored in a lyophilized form retained complete biological activity regardless of the storage temperature. To understand if variations in the primary structure of Tat could influence the secondary structure of the protein and consequently its biological functions, we determined the CD spectra of subtype-C and -B Tat proteins. We demonstrate that subtype-C Tat may have a relatively higher ordered structure and be less flexible than subtype-B Tat. We show that subtype-C Tat as a protein, but not as a DNA expression vector, was consistently inferior to subtype-B Tat in a variety of biological assays. Furthermore, using ELISA, we evaluated the anti-Tat antibody titers in a large number of primary clinical samples (n = 200) collected from all four southern Indian states. Our analysis of the Indian populations demonstrated that Tat is non-immunodominant and that a large variation exists in the antigen-specific antibody titers. Conclusion Our report not only describes a simple protein purification strategy for Tat but also demonstrates important structural and functional differences between subtype-B and -C Tat proteins. Furthermore, this is the first report of protein purification and characterization of subtype-C Tat.
Collapse
Affiliation(s)
- Nagadenahalli Byrareddy Siddappa
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Mohanram Venkatramanan
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Prasanna Venkatesh
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | - Anita Desai
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vasanthapuram Ravi
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Udaykumar Ranga
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
64
|
Saha K, Yan H, Nelson JAE, Zerhouni-Layachi B. Infection of human and non-human cells by a highly fusogenic primary CD4-independent HIV-1 isolate with a truncated envelope cytoplasmic tail. Virology 2005; 337:30-44. [PMID: 15914218 DOI: 10.1016/j.virol.2005.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 03/11/2005] [Accepted: 04/01/2005] [Indexed: 01/09/2023]
Abstract
Truncation of the envelope cytoplasmic tail has enabled FIV, SIV, and some laboratory HIV-1 strains to acquire broader cellular tropism and enhanced fusogenicity. Here we have characterized a primary CD4-independent HIV-1 isolate (92UG046-T8) with a truncated cytoplasmic tail that was able to infect and induce syncytia in primary lymphocytes from human, chimpanzee, and monkey, as well as CD4-negative cell lines from human and monkey. Increased syncytia were also noticeable with 293 cells expressing the cloned envelope from the 92UG046-T8 isolate suggesting envelope-mediated cellular fusion. Except pooled serum from HIV-1-infected individuals, monoclonal anti-envelope antibodies or antibodies/antagonists against CD4, CXCR4, and CCR5 were not able to prevent infection by the 92UG046-T8 isolate. This is the first report showing a primary HIV-1 variant with truncated cytoplasmic tail which is highly fusogenic and can infect a broad range of cells from human and non-human origins. In vivo evolution of similar HIV-1 mutants may have important implications in AIDS pathogenesis.
Collapse
Affiliation(s)
- Kunal Saha
- Department of Pediatrics and Molecular Virology, Immunology and Medical Genetics, Children's Research Institute and Ohio State University Medical Center, Columbus, 43205, USA.
| | | | | | | |
Collapse
|
65
|
Ren X, Sodroski J, Yang X. An unrelated monoclonal antibody neutralizes human immunodeficiency virus type 1 by binding to an artificial epitope engineered in a functionally neutral region of the viral envelope glycoproteins. J Virol 2005; 79:5616-24. [PMID: 15827176 PMCID: PMC1082744 DOI: 10.1128/jvi.79.9.5616-5624.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutralizing antibodies often recognize regions of viral envelope glycoproteins that play a role in receptor binding or other aspects of virus entry. To address whether this is a necessary feature of a neutralizing antibody, we identified the V4 region of the gp120 envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) as a sequence that is tolerant of drastic change and thus appears to play a negligible role in envelope glycoprotein function. An artificial epitope tag was inserted into the V4 region without a significant effect on virus entry or neutralization by antibodies that recognize HIV-1 envelope glycoprotein sequences. An antibody directed against the artificial epitope tag was able to neutralize the modified, but not the wild-type, HIV-1. Thus, the specific target of a neutralizing antibody need not contribute functionally to the process of virus entry.
Collapse
Affiliation(s)
- Xinping Ren
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street, JFB 824, Boston, MA 02115, USA
| | | | | |
Collapse
|
66
|
Abstract
HIV-1 and other retroviruses exhibit mutation rates that are 1,000,000-fold greater than their host organisms. Error-prone viral replication may place retroviruses and other RNA viruses near the threshold of "error catastrophe" or extinction due to an intolerable load of deleterious mutations. Strategies designed to drive viruses to error catastrophe have been applied to HIV-1 and a number of RNA viruses. Here, we review the concept of extinguishing HIV infection by "lethal mutagenesis" and consider the utility of this new approach in combination with conventional antiretroviral strategies.
Collapse
Affiliation(s)
- Robert A Smith
- Department of Pathology, University of Washington, Seattle, WA 18195, USA.
| | | | | |
Collapse
|
67
|
Yang X, Kurteva S, Lee S, Sodroski J. Stoichiometry of antibody neutralization of human immunodeficiency virus type 1. J Virol 2005; 79:3500-8. [PMID: 15731244 PMCID: PMC1075697 DOI: 10.1128/jvi.79.6.3500-3508.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human immunodeficiency virus envelope glycoproteins function as trimers on the viral surface, where they are targeted by neutralizing antibodies. Different monoclonal antibodies neutralize human immunodeficiency virus type 1 (HIV-1) infectivity by binding to structurally and functionally distinct moieties on the envelope glycoprotein trimer. By measuring antibody neutralization of viruses with mixtures of neutralization-sensitive and neutralization-resistant envelope glycoproteins, we demonstrate that the HIV-1 envelope glycoprotein trimer is inactivated by the binding of a single antibody molecule. Virus neutralization requires essentially all of the functional trimers to be occupied by at least one antibody. This model applies to antibodies differing in neutralizing potency and to virus isolates with various neutralization sensitivities. Understanding these requirements for HIV-1 neutralization by antibodies will assist in establishing goals for an effective AIDS vaccine.
Collapse
Affiliation(s)
- Xinzhen Yang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, JFB-609, 44 Binney St., Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
68
|
Tuaillon E, Gueudin M, Lemée V, Gueit I, Roques P, Corrigan GE, Plantier JC, Simon F, Braun J. Phenotypic Susceptibility to Nonnucleoside Inhibitors of Virion-Associated Reverse Transcriptase From Different HIV Types and Groups. J Acquir Immune Defic Syndr 2004; 37:1543-9. [PMID: 15577405 DOI: 10.1097/00126334-200412150-00001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate a phenotype assay based on plasma reverse transcriptase (RT) to assess HIV susceptibility to nonnucleoside RT inhibitors (NNRTIs). To compare RT-based phenotype with recombinant virus assay (RVA) phenotype- and genotype-based analysis. To assess group O and HIV-2 susceptibility to NNRTIs in correlation with genotype polymorphisms. METHODS RT activity was quantified and its susceptibility to efavirenz, nevirapine, and delavirdine measured as drug concentration resulting in 50% inhibition. RT phenotype was compared with genotype analysis. Eighteen plasma samples from 14 group M- and culture supernatants from 4 group M-, 9 group O-, and 7 HIV-2-infected patients were investigated. RT-based and RVA-based phenotypes were compared for identical plasma from 9 group M-infected patients. RESULTS RT-based and RVA-based phenotypes were in complete agreement. RT-based phenotype- and genotype-predicted susceptibility were concordant for all but 1 group M samples. One plasma showed susceptibility to 3 NNRTIs by phenotypes, despite the presence of 101E and 106I/V residues. The HIV-2 RTs were totally resistant to the NNRTIs tested. Among HIV-1 group O, 6 were totally resistant to NNRTIs independently of the presence of the 181C mutation and 3 were susceptible to some NNRTIs. CONCLUSION Plasma RT-based phenotype could be useful as a simple alternative for monitoring resistance to NNRTIs. This assay is suitable for highly divergent strains. It would be particularly useful for large epidemiologic survey of the natural HIV polymorphism and the potential impact in emergence of drug resistance, particularly to nevirapine, widely used to prevent mother-to-child transmission.
Collapse
Affiliation(s)
- Edouard Tuaillon
- Laboratoire de Virologie, Centre Hospitalier Charles Nicolle, Rouen, France
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Gaddis NC, Sheehy AM, Ahmad KM, Swanson CM, Bishop KN, Beer BE, Marx PA, Gao F, Bibollet-Ruche F, Hahn BH, Malim MH. Further investigation of simian immunodeficiency virus Vif function in human cells. J Virol 2004; 78:12041-6. [PMID: 15479843 PMCID: PMC523299 DOI: 10.1128/jvi.78.21.12041-12046.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primate lentivirus Vif proteins function by suppressing the antiviral activity of the cell-encoded apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like (APOBEC) proteins APOBEC3G and APOBEC3F. It has been hypothesized that species-specific susceptibilities of APOBEC proteins to Vif proteins may help govern the transmission of primate lentiviruses to new host species. Consistent with this view and with previous results, we report that the Vif proteins of several diverse simian immunodeficiency viruses (SIVs) that are not known to infect humans are not effective inhibitors of human APOBEC3G or APOBEC3F when assessed in transient-transfection experiments. Unexpectedly, this lack of SIV Vif function did not prevent the replication of two vif-deficient SIVs (SIVtan and SIVmnd1; isolated from tantalus monkeys and mandrills, respectively) in a human T-cell line, HUT78, that expresses both APOBEC 3G and APOBEC3F, a finding which demonstrates that some SIVs are partially resistant to the antiretroviral effects of these enzymes irrespective of Vif function. Additional virus replication studies also revealed that the Vif protein of SIVtan is, in fact, active in human T cells, as it substantially enhanced the replication of its cognate virus and human immunodeficiency virus type 1. In sum, we now consider it improbable that species-specific restrictions to SIV Vif function can explain the lack of human infection with certain SIVs. Instead, our data reveal that the species-specific modulation of Vif function is more complex than previously envisioned and that additional (as-yet-unidentified) viral or host factors may be involved in regulating this dynamic interaction between host and pathogen.
Collapse
Affiliation(s)
- Nathan C Gaddis
- Department of Microbiology, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Swiggard WJ, O'Doherty U, McGain D, Jeyakumar D, Malim MH. Long HIV type 1 reverse transcripts can accumulate stably within resting CD4+ T cells while short ones are degraded. AIDS Res Hum Retroviruses 2004; 20:285-95. [PMID: 15117452 DOI: 10.1089/088922204322996527] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We utilized quantitative methods to compare the efficiency of reverse transcription and stability of viral DNA within resting and activated T cells. Highly purified resting CD4(+) T cells and activated T cells from healthy donors were spinoculated with HIV-1(YU-2), then cultured in conditions that maintain both the viability and the quiescence of the resting cells. Spreading infection was suppressed, then kinetic PCR was used to relate the rates of synthesis of short (strong-stop, RU5) and long (gag or U3-gag second strand transfer) viral DNA to the mean number of virions initially bound to each type of cell. As shown previously, activated cells support an initial burst of high-level reverse transcription, which is then followed by a approximately 10-fold decay in cDNA levels over 4.5 days. In resting T cells, although the synthesis of late reverse transcripts was initially approximately 1000-fold less efficient than in activated T cells, the number of these cDNAs per bound input virion rose 10-fold as culture was extended to 4.5 days. The number of late reverse transcripts remained constant for 3 days after the addition of efavirinez, reflecting enhanced stability. In contrast, the short strong-step reverse transcripts were mostly degraded. Thus, late HIV-1 reverse transcripts can accumulate stably in resting T cells in the absence of detectable T cell activation. Defining the underlying basis for the stabilization of late reverse transcripts, and their associated nucleoprotein complexes, may be pertinent to the accumulation of reservoirs of latent HIV-1 in patients, and could provide a target for future therapies.
Collapse
Affiliation(s)
- William J Swiggard
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
71
|
Havlir DV, Strain MC, Clerici M, Ignacio C, Trabattoni D, Ferrante P, Wong JK. Productive infection maintains a dynamic steady state of residual viremia in human immunodeficiency virus type 1-infected persons treated with suppressive antiretroviral therapy for five years. J Virol 2003; 77:11212-9. [PMID: 14512569 PMCID: PMC224988 DOI: 10.1128/jvi.77.20.11212-11219.2003] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To provide insight into the dynamics and source of residual viremia in human immunodeficiency virus (HIV) patients successfully treated with antiretroviral therapy, 14 intensely monitored patients treated with indinavir and efavirenz sustaining HIV RNA at <50 copies/ml for >5 years were studied. Abacavir was added to the regimen of eight patients at year 5. After the first 9 months of therapy, HIV RNA levels had reached a plateau ("residual viremia") that persisted for over 5 years. Levels of residual viremia differed among patients and ranged from 3.2 to 23 HIV RNA copies/ml. Baseline HIV DNA was the only significant pretreatment predictor of residual viremia in regression models including baseline HIV RNA, CD4 count, and patient age. In the four of five patients with detectable viremia who added abacavir to their regimen after 5 years, HIV RNA levels declined rapidly. The estimated half-life of infected cells was 6.7 days. Decrease in activated memory cells and a reduction in gamma interferon production to HIV Gag and p24 antigen in ELISpot assays were observed, consistent with a decrease in HIV replication. Thus, in patients treated with efavirenz plus indinavir, levels of residual viremia were established by 9 months, were predicted by baseline proviral DNA, and remained constant for 5 years. Even after years of highly suppressive therapy, HIV RNA levels declined rapidly after the addition of abacavir, suggesting that productive infection contributes to residual ongoing viremia and can be inhibited with therapy intensification.
Collapse
Affiliation(s)
- Diane V Havlir
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94110, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
Yang X, Mahony E, Holm GH, Kassa A, Sodroski J. Role of the gp120 inner domain beta-sandwich in the interaction between the human immunodeficiency virus envelope glycoprotein subunits. Virology 2003; 313:117-25. [PMID: 12951026 DOI: 10.1016/s0042-6822(03)00273-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The inner domain of the human immunodeficiency virus (HIV-1) gp120 glycoprotein has been proposed to mediate the noncovalent interaction with the gp41 transmembrane envelope glycoprotein. We used mutagenesis to investigate the functional importance of a conserved beta-sandwich located within the gp120 inner domain. Changes in aliphatic residues lining a hydrophobic groove on the surface of the beta-sandwich decreased the association of the gp120 and gp41 glycoproteins. Other changes in the base of the hydrophobic groove resulted in envelope glycoproteins that were structurally intact and able to bind receptors, but were inefficient in mediating either syncytium formation or virus entry. These results support a model in which the beta-sandwich in the gp120 inner domain contributes to gp120-gp41 contacts, thereby maintaining the integrity of the envelope glycoprotein complex and allowing adjustments in the gp120-gp41 interaction required for membrane fusion.
Collapse
Affiliation(s)
- Xinzhen Yang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
73
|
Kitrinos KM, Hoffman NG, Nelson JAE, Swanstrom R. Turnover of env variable region 1 and 2 genotypes in subjects with late-stage human immunodeficiency virus type 1 infection. J Virol 2003; 77:6811-22. [PMID: 12768001 PMCID: PMC156159 DOI: 10.1128/jvi.77.12.6811-6822.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The env gene of human immunodeficiency virus type 1 (HIV-1) includes some of the most genetically diverse regions of the viral genome, which are called variable regions 1 through 5 (V1 through V5). We have developed a heteroduplex tracking assay to detect changes in variable regions 1 and 2 of env (V1/V2-HTA). Using sequences from two molecular clones as probes, we have studied the nature of longitudinal virus population changes in a cohort of HIV-1-infected subjects. Viral sequences present in 21 subjects with late-stage HIV-1 infection were initially screened for stability of the virus population by V1/V2-HTA. The virus populations at entry comprised an average of five coexisting V1/V2 genotypic variants (as identified by HTA). Eight of the 21 subjects were examined in detail because of the dynamic behavior of their env variants over an approximately 9-month period. In each of these cases we detected a single discrete transition of V1/V2 genotypes based on monthly sampling. The major V1/V2 genotypes (those present at >10% abundance) from the eight subjects were cloned and sequenced to define the nature of V1/V2 variability associated with a discrete transition. Based on a comparison of V1/V2 genotypic variants present at entry with the newly emerged variants we categorized the newly emerged variants into two groups: variants without length differences and variants with length differences. Variants without length differences had fewer nucleotide substitutions, with the changes biased to either V1 or V2, suggestive of recent evolutionary events. Variants with length differences included ones with larger numbers of changes that were distributed, suggestive of recall of older genotypes. Most length differences were located in domains where the codon motif AVT (V = A, G, C) had become enriched and fixed. Finally, recombination events were detected in two subjects, one of which resulted in the reassortment of V1 and V2 regions. We suggest that turnover in V1/V2 populations was largely driven by selection on either V1 or V2 and that escape was accomplished either through changes focused in the region under selection or by the appearance of a highly divergent variant.
Collapse
Affiliation(s)
- Kathryn M Kitrinos
- UNC Center for AIDS Research and Curriculum of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 27599-7295, USA
| | | | | | | |
Collapse
|
74
|
Abstract
BACKGROUND HIV-1 provides an attractive option as the basis for gene transfer vectors due to its ability to stably transduce non-cycling cell populations. In order to fully utilise the promise of HIV-1 as a vector it is important that the effects of viral cis sequence elements on vector function are carefully delineated. METHODS In this study we have systematically evaluated the effect of various cis elements from the HIV-1 YU-2 genome that have been implicated as either affecting vector performance, or HIV-1 replication, on the efficiency of vector production (titre and infectivity). As a measure of the relative safety of vectors their propensity to inadvertently transfer the gagpol gene to transduced cells was assessed. RESULTS Sequences that were found to increase vector titre were from the 5' end of the gag gene, from the 5' and 3' ends of the env gene, from immediately upstream of the polypurine tract, and the central polypurine tract. The substitution of the HIV-1 RRE with heterologous RNA transport elements, or the deletion of the RRE, resulted in greatly reduced vector titres. RNA analysis suggested that the role of the Rev/RRE system extends beyond simply acting as an RNA nuclear export signal. The relative safety of different vector designs was compared and an optimal construct selected. CONCLUSIONS Based on our results we have constructed a vector that is both more efficient, and has better safety characteristics, than the widely used pHR' HIV-1 vector construct.
Collapse
Affiliation(s)
- D S Anson
- Department of Chemical Pathology, Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia, Australia, 5006
- Department of Paediatrics, University of Adelaide, South Australia, Australia, 5005
| | - M Fuller
- Department of Chemical Pathology, Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia, Australia, 5006
| |
Collapse
|
75
|
Chelli M, Alizon M. Rescue of HIV-1 receptor function through cooperation between different forms of the CCR5 chemokine receptor. J Biol Chem 2002; 277:39388-96. [PMID: 12154092 DOI: 10.1074/jbc.m205394200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interaction of the human immunodeficiency virus (HIV-1) envelope glycoproteins with the CCR5 chemokine receptor, a G-protein-coupled receptor, triggers a membrane fusion process and virus entry. Cooperation for HIV-1 receptor activity was observed when two forms of CCR5 were coexpressed, either the wild-type (WT) receptor and a defective mutant with deletion of the amino-terminal (NT) extracellular domain or the latter deltaNT mutant and a human-mouse CCR5 chimera bearing the NT domain from human CCR5. Cooperation was most efficient when the two forms of CCR5 were in a 1:1 ratio. It was not observed between the CCR5 deltaNT mutant and a chimeric receptor (5444) in which the NT domain of CCR5 was in the context of another G-protein-coupled receptor, the HIV-1 receptor CXCR4. These results suggested that physical association between two forms of CCR5 was required for their cooperation. Coimmunoprecipitation experiments in transfected cell lysates indeed showed that the deltaNT CCR5 mutant formed oligomeric complexes with the WT CCR5 or the HMMM chimera but not with the CXCR4-derived chimera 5444. These observations suggest that the formation of CCR5 oligomers is a constitutive process independent from activation by chemokine ligands. The interaction of HIV-1 with independent subunits of CCR5 oligomers could favor the local recruitment of fusiogenic proteins and the formation of a fusion pore.
Collapse
Affiliation(s)
- Maurice Chelli
- Department of Cell Biology, Institut Cochin, INSERM U-567, CNRS Unité Mixté de Recherche 8404, Université Paris V-René Descartes, 75014 Paris, France
| | | |
Collapse
|
76
|
Abstract
Vectors derived from human immunodeficiency virus type 1 (HIV-1) appear an attractive option for many gene therapy applications. This is due to their ability to transduce noncycling cell populations and to integrate their genome into the host cell chromosome, resulting in the stable genetic modification of the transduced cell. These properties have permitted the direct in vivo transduction of several tissues, including the central nervous system, retina, and liver. However, the pathogenic nature of HIV-1 has raised considerable concerns about the safety of such vector systems. To help address these concerns, we have expressed each of the primary transcriptional units encoding trans functions relevant for vector production in individual plasmid constructs. The gag-pol gene sequence was codon-optimized for expression in mammalian cells resulting in high level Rev/Rev-response element (RRE)-independent expression. Codon optimization of gag-pol also reduces sequence homology with vectors containing gag gene sequences, which results in reduced transfer of biologically active gag-pol sequences to transduced cells. Furthermore, the vif reading frame overlapping the 3' end of the pol coding sequence is destroyed by codon optimization. We have also shown that the Gag and Gag-Pol polyproteins can be efficiently expressed from separate transcriptional units. This has enabled the removal of a cis-acting viral element, the gag-pol translational frameshift sequence, from the vector/packaging system and prevents detectable transfer of biologically active sequences equivalent to the gag-pol gene to transduced cells.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Blotting, Western
- Cell Division
- Codon/genetics
- DNA, Recombinant/genetics
- Fusion Proteins, gag-pol/genetics
- Gene Expression Regulation, Viral/genetics
- Gene Products, rev/genetics
- Gene Products, tat/genetics
- Genetic Therapy/methods
- Genetic Vectors/adverse effects
- Genetic Vectors/genetics
- HIV-1/genetics
- HIV-1/physiology
- Helper Viruses/genetics
- Mice
- Plasmids/adverse effects
- Plasmids/genetics
- Transcription, Genetic/genetics
- Transduction, Genetic/methods
- Viral Regulatory and Accessory Proteins/biosynthesis
- Viral Regulatory and Accessory Proteins/genetics
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- M Fuller
- Department of Chemical Pathology, Women's and Children's Hospital, North Adelaide South Australia, 5006
| | | |
Collapse
|
77
|
Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ, Bell JE, Bannert N, Crawford K, Wang H, Schols D, De Clercq E, Kunstman K, Wolinsky SM, Gabuzda D. Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 2001; 75:10073-89. [PMID: 11581376 PMCID: PMC114582 DOI: 10.1128/jvi.75.21.10073-10089.2001] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2001] [Accepted: 07/18/2001] [Indexed: 01/16/2023] Open
Abstract
The viral determinants that underlie human immunodeficiency virus type 1 (HIV-1) neurotropism are unknown, due in part to limited studies on viruses isolated from brain. Previous studies suggest that brain-derived viruses are macrophage tropic (M-tropic) and principally use CCR5 for virus entry. To better understand HIV-1 neurotropism, we isolated primary viruses from autopsy brain, cerebral spinal fluid, blood, spleen, and lymph node samples from AIDS patients with dementia and HIV-1 encephalitis. Isolates were characterized to determine coreceptor usage and replication capacity in peripheral blood mononuclear cells (PBMC), monocyte-derived macrophages (MDM), and microglia. Env V1/V2 and V3 heteroduplex tracking assay and sequence analyses were performed to characterize distinct variants in viral quasispecies. Viruses isolated from brain, which consisted of variants that were distinct from those in lymphoid tissues, used CCR5 (R5), CXCR4 (X4), or both coreceptors (R5X4). Minor usage of CCR2b, CCR3, CCR8, and Apj was also observed. Primary brain and lymphoid isolates that replicated to high levels in MDM showed a similar capacity to replicate in microglia. Six of 11 R5 isolates that replicated efficiently in PBMC could not replicate in MDM or microglia due to a block in virus entry. CD4 overexpression in microglia transduced with retroviral vectors had no effect on the restricted replication of these virus strains. Furthermore, infection of transfected cells expressing different amounts of CD4 or CCR5 with M-tropic and non-M-tropic R5 isolates revealed a similar dependence on CD4 and CCR5 levels for entry, suggesting that the entry block was not due to low levels of either receptor. Studies using TAK-779 and AMD3100 showed that two highly M-tropic isolates entered microglia primarily via CXCR4. These results suggest that HIV-1 tropism for macrophages and microglia is restricted at the entry level by a mechanism independent of coreceptor specificity. These findings provide evidence that M-tropism rather than CCR5 usage predicts HIV-1 neurotropism.
Collapse
Affiliation(s)
- P R Gorry
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Holterman L, Dubbes R, Mullins J, Learn G, Niphuis H, Koornstra W, Koopman G, Kuhn EM, Wade-Evans A, Rosenwirth B, Haaijman J, Heeney J. Characteristics of a pathogenic molecular clone of an end-stage serum-derived variant of simian immunodeficiency virus (SIV(F359)). J Virol 2001; 75:9328-38. [PMID: 11533196 PMCID: PMC114501 DOI: 10.1128/jvi.75.19.9328-9338.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2001] [Accepted: 06/08/2001] [Indexed: 11/20/2022] Open
Abstract
End-stage simian immunodeficiency virus (SIV) isolates are suggested to be the most fit of the evolved virulent variants that precipitate the progression to AIDS. To determine if there were common characteristics of end-stage variants which emerge from accelerated cases of AIDS, a molecular clone was derived directly from serum following in vivo selection of a highly virulent SIV isolate obtained by serial end-stage passage in rhesus monkeys (Macaca mulatta). This dominant variant caused a marked cytopathic effect and replicated to very high levels in activated but not resting peripheral blood lymphocytes. Furthermore, although this clone infected but did not replicate to detectable levels in rhesus monocyte-derived macrophages, these cells were able to transmit infection to autologous T cells upon contact. Interestingly, although at low doses this end-stage variant did not use any of the known coreceptors except CCR5, it was able to infect and replicate in human peripheral blood mononuclear cells homozygous for the Delta 32 deletion of CCR5, suggesting the use of a novel coreceptor. It represents the first pathogenic molecular clone of SIV derived from viral RNA in serum and provides evidence that not only the genetic but also the biological characteristics acquired by highly fit late-stage disease variants may be distinct in different hosts.
Collapse
Affiliation(s)
- L Holterman
- Department of Virology, Biomedical Primate Research Centre, 2280 GH Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Hyun TS, Subramanian C, Cotter MA, Thomas RA, Robertson ES. Latency-associated nuclear antigen encoded by Kaposi's sarcoma-associated herpesvirus interacts with Tat and activates the long terminal repeat of human immunodeficiency virus type 1 in human cells. J Virol 2001; 75:8761-71. [PMID: 11507221 PMCID: PMC115121 DOI: 10.1128/jvi.75.18.8761-8771.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The latency-associated nuclear antigen (LANA) is constitutively expressed in cells infected with the Kaposi's sarcoma (KS) herpesvirus (KSHV), also referred to as human herpesvirus 8. KSHV is tightly associated with body cavity-based lymphomas (BCBLs) in immunocompromised patients infected with human immunodeficiency virus (HIV). LANA, encoded by open reading frame 73 of KSHV, is one of a small subset of proteins expressed during latent infection and was shown to be important in tethering the viral episome to host chromosomes. Additionally, it has been shown that LANA can function as a regulator of transcription. However, its role in the progression of disease is still being elucidated. Since KS is one of the most common AIDS-associated cancers in the United States and BCBLs appear predominantly in AIDS patients, we examined whether LANA is able to regulate the HIV type 1 (HIV-1) long terminal repeat (LTR). Using luciferase-based transient transfection assays, we found that LANA was able to transactivate the HIV-1 LTR in the human B-cell line BJAB, human monocytic cell line U937, and the human embryonic kidney fibroblast cell line 293T. Moreover, we observed that the virus-encoded HIV transactivator protein Tat cooperated with LANA in activation of the LTR in a dose-response fashion with increasing amounts of LANA. Surprisingly, LANA alone was sufficient to transactivate the HIV-1 LTR in BJAB cells. In similar assays using a HIV-1 LTR construct with the core enhancer elements deleted; the activity of LANA was diminished but not abolished, indicating a mechanism which involves the cooperation of the core enhancer elements and downstream elements which include Tat. Furthermore, transient transfection of an infectious clone of HIV with LANA demonstrated effects similar to those seen in the reporter assays based on Western blot analysis of HIV Gag polypeptide p24. Interestingly, we also demonstrated that the carboxy terminus of LANA associates with Tat in cells and in vitro. These experiments suggest a role for LANA in activating the HIV-1 LTR through association with cellular molecules targeting the core enhancer elements and Tat and may have important consequences in increasing the levels of HIV in infected individuals and, hence, the disease state.
Collapse
Affiliation(s)
- T S Hyun
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan 48109-0934, USA
| | | | | | | | | |
Collapse
|
80
|
Yonezawa A, Hori T, Takaori-Kondo A, Morita R, Uchiyama T. Replacement of the V3 region of gp120 with SDF-1 preserves the infectivity of T-cell line-tropic human immunodeficiency virus type 1. J Virol 2001; 75:4258-67. [PMID: 11287575 PMCID: PMC114171 DOI: 10.1128/jvi.75.9.4258-4267.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interaction between the human immunodeficiency virus type 1 (HIV-1) envelope and the relevant chemokine receptors is crucial for subsequent membrane fusion and viral entry. Although the V3 region of gp120 is known to determine the cell tropism as well as the coreceptor usage, the significance of the binding of the V3 region to the chemokine receptor has not been fully understood. To address this issue, we adopted the pseudotyped virus infection assay in which the V3 region of the T-cell line-tropic (T-tropic) NL4-3 envelope was replaced with a portion of stromal cell-derived factor 1 (SDF-1), the ligand of CXCR4. The V3 region of the NL4-3 envelope expression vector was replaced with three different stretches of SDF-1 cDNA. Expression of each chimeric envelope protein was confirmed by immunoprecipitation and Western blotting. Luciferase reporter viruses were prepared by cotransfection of the pNL4-3.Luc.E(-)R(-) vector and each chimeric envelope expression vector, and the infection assay was then carried out. We showed that pseudotyped viruses with one of the chimeric envelopes, NL4-3/SDF1-51, could infect U87.CD4.CXCR4 but not U87.CD4 or U87.CXCR4 cells and that this infection was inhibited by the ligand of CXCR4, SDF-1beta, by anti-human SDF-1 antibody, or by an anti-CD4 antibody, Leu3a, in a dose-dependent manner. Furthermore, chimeric NL4-3/SDF1-51 gp120 significantly inhibited binding of labeled SDF-1 to CXCR4. It was suggested that replacement of the V3 region of the NL4-3 envelope with SDF-1 preserved the CD4-dependent infectivity of T-tropic HIV-1. These results indicate that binding between the V3 region and the relevant coreceptor is important for viral entry, whether its amino acid sequence is indigenous to the virus or not.
Collapse
Affiliation(s)
- A Yonezawa
- Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
81
|
Bouhlal H, Galon J, Kazatchkine MD, Fridman WH, Sautès-Fridman C, Haeffner Cavaillon N. Soluble CD16 inhibits CR3 (CD11b/CD18)-mediated infection of monocytes/macrophages by opsonized primary R5 HIV-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3377-83. [PMID: 11207294 DOI: 10.4049/jimmunol.166.5.3377] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We demonstrate that soluble CD16 (sCD16; soluble Fc gamma RIII), a natural ligand of CR3, inhibits the infection of monocytes by primary R5 HIV-1 strain opsonized with serum of seronegative individuals. Inhibition of monocyte infection by sCD16 was similar to that observed with anti-CR3 mAbs, indicating that opsonized HIV may use a CR3-dependent pathway for entry in monocytic cells. Cultured human monocytes express both CR3 (CD11b/CD18) and CCR5 receptors. RANTES, the natural ligand of CCR5, inhibited infection of monocytes with unopsonized HIV particles and partially that of monocytes infected with HIV particles opsonized with complement-derived fragments. Although HIV-infected monocytes from homozygous CCR5 Delta 32/Delta 32 (CCR5(-/-)) individuals produce low levels of p24, cells infected with opsonized particles produced higher levels of p24 than cells infected with unopsonized particles. Our results thus suggest that CR3 may represent an alternative coreceptor to CCR5 of opsonized primary R5 virus entry into monocytes/macrophages. We also observed that the concentration of sCD16 is greatly decreased in sera of HIV-infected patients with low lymphocyte CD4(+) counts. Taken together, our findings suggest that sCD16, present in plasma, may play an important role in controlling HIV-1 spread.
Collapse
Affiliation(s)
- H Bouhlal
- Institut National de la Santé et de la Recherche Médicale Unité 430, Hôpital Broussais, Paris, France
| | | | | | | | | | | |
Collapse
|
82
|
Fischer M, Wong JK, Russenberger D, Joos B, Opravil M, Hirschel B, Trkola A, Kuster H, Weber R, Günthard HF. Residual Cell-Associated Unspliced HIV-1 Rna in Peripheral Blood of Patients on Potent Antiretroviral Therapy Represents Intracellular Transcripts. Antivir Ther 2001. [DOI: 10.1177/135965350200700203] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Unspliced HIV-RNA (HIV-UsRNA) associated with peripheral blood mononuclear cells (PBMCs) persists in patients on potent antiretroviral therapy even in the absence of detectable plasma HIV-RNA. To further characterize such residual HIV-RNA, cell-associated virion-encapsidated HIV and intracellular unspliced HIV-RNA were differentiated and monitored using a novel highly sensitive method. In addition, expression of HIV-mRNA encoding tat and rev was assessed. PBMCs of patients with unsuppressed plasma viraemia harboured an extracellular fraction of HIV-UsRNA, which correlated highly with intracellular HIV-RNA levels. Thus, extracellular PBMC-associated HIV-RNA may, to a significant extent, reflect nascent virions attached to productively infected cells. Upon treatment with potent antiretroviral therapy resulting in plasma viraemia <50 copies/ml, expression of cell-associated viral particles was hardly discernible in PBMCs but transcription of unspliced HIV-RNA persisted. Given the virtual absence of rev-mRNA, translation of residual HIV-UsRNA was probably precluded by retention of these transcripts in the nucleus. As shown by limiting dilution analysis, HIV-1 infected cells with such a repressed viral transcription pattern were observed at high frequencies in PBMC from untreated patients.
Collapse
Affiliation(s)
| | - Marek Fischer
- Division of Infectious Diseases, Department of Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Joseph K Wong
- San Diego Veterans Affairs Healthcare System, University of California San Diego, Calif., USA
| | - Doris Russenberger
- Division of Infectious Diseases, Department of Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Beda Joos
- Division of Infectious Diseases, Department of Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Milos Opravil
- Division of Infectious Diseases, Department of Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Bernhard Hirschel
- Division of Infectious Diseases, University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Alexandra Trkola
- Division of Infectious Diseases, Department of Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Herbert Kuster
- Division of Infectious Diseases, Department of Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Rainer Weber
- Division of Infectious Diseases, Department of Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases, Department of Medicine, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
83
|
Salminen MO, Ehrenberg PK, Mascola JR, Dayhoff DE, Merling R, Blake B, Louder M, Hegerich S, Polonis VR, Birx DL, Robb ML, McCutchan FE, Michael NL. Construction and biological characterization of infectious molecular clones of HIV-1 subtypes B and E (CRF01_AE) generated by the polymerase chain reaction. Virology 2000; 278:103-10. [PMID: 11112486 DOI: 10.1006/viro.2000.0640] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously described the use of extended polymerase chain reaction (PCR) to amplify contiguous 9.2-kilobase (kb) single-long terminal repeat (LTR) proviral sequences from HIV-1 genetic subtypes A through G. We now extend these findings by describing a novel vector system to recover infectious molecular clones from long PCR amplicons. Directional ligation of 9.2-kb proviral amplicons into a recovery vector reconstitutes missing LTR sequences, providing candidate molecular clones for infectivity screening. We show that a previously characterized infectious molecular clone of HIV-1 retains its biological properties upon recovery with this strategy. Three additional infectious molecular clones generated, from primary isolates of subtype B (HIV-1(WR27)) and circulating recombinant form 01_AE (subtype E) (HIV-1(CM235)) by subtype-specific LTR reconstitution, displayed biological properties reflecting their cognate parental isolates. This represents the first report of infectious molecular clones from circulating recombinant form 01_AE (subtype E).
Collapse
Affiliation(s)
- M O Salminen
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Hassaïne G, Agostini I, Candotti D, Bessou G, Caballero M, Agut H, Autran B, Barthalay Y, Vigne R. Characterization of human immunodeficiency virus type 1 vif gene in long-term asymptomatic individuals. Virology 2000; 276:169-80. [PMID: 11022005 DOI: 10.1006/viro.2000.0543] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have determined the sequence of the human immunodeficiency virus type 1 (HIV-1) vif genes from a cohort of 42 long-term nonprogressors (LTNP) and compared these sequences to those of 8 late progressors. The coding potential of the vif open reading frame directly derived by nested PCR from uncultured peripheral blood mononuclear cell DNA was conserved in all 50 individuals. The nucleotide distances between vif sequences were not significantly different between LTNP and late progressors, indicating similar selections of viruses within both types of long-term HIV-1-infected subjects. However, a statistically significant correlation between an amino acid signature at position 132 of Vif and the viral load was found within LTNP. Namely, amino acid Ser was associated with low viral load and amino acid Arg with high viral load. This signature was also observed when LTNP with low viral load were compared to progressors. The Ser132 signature was introduced in place of Arg132 present in the HIV-1 YU-2 Vif prototype into chimeric viruses to assess the impact of Vif signature on the virus. While the replication properties in the SupT1 cell line were unmodified, the mutagenized virus revealed a fivefold decreased replication in activated PBMC, suggesting a possible role of this Vif signature for viral production in vivo.
Collapse
Affiliation(s)
- G Hassaïne
- INSERM Unit U372, Université de la Méditerranée, Marseille Cedex 9, 13276, France
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Nelson JA, Baribaud F, Edwards T, Swanstrom R. Patterns of changes in human immunodeficiency virus type 1 V3 sequence populations late in infection. J Virol 2000; 74:8494-501. [PMID: 10954550 PMCID: PMC116361 DOI: 10.1128/jvi.74.18.8494-8501.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used a V3-specific heteroduplex tracking assay (V3-HTA) with probes from two different human immunodeficiency virus type 1 (HIV-1) subtypes to examine the extent and pace of HIV-1 evolution late in infection. Twenty-four subjects with advanced HIV-1 infection (CD4(+) T-cell count, <100/microl) and stable viral loads were studied using blood plasma samples collected over a study period of approximately 9 months, during which time most of the subjects were treated with reverse transcriptase inhibitors. The V3-HTA patterns from the first and last time points were evaluated initially to determine the amounts of change in V3 sequence populations, which were primarily changes in abundance in preexisting sequence populations. Three of the 24 subjects had major changes (greater than 50% total change in the relative abundance of the sequence populations), 11 subjects had intermediate changes (10 to 50% total change), and 10 subjects had minimal changes (less than 10% total change). The average total amount of change was between two- and threefold greater in subjects with X4-like variants, although there was no correlation between average viral load and the presence of X4-like variants. V3-HTA patterns in monthly samples from 11 of the subjects were also compared. In two subjects, the amount of change exceeded 40% in a 1-month period. Overall, the pace of change in V3 populations varied between subjects and was not constant within a subject over time. Sequence analysis of the V3 variants showed that R5-like variants (not containing any X4-associated substitutions) continued to be maintained in three subjects in the presence of X4-like variants, indicating that X4 variants do not always outgrow R5 variants. The coreceptor usage of the V3 sequences from two subjects was determined using a cell fusion assay. One subject had an X4 variant that was maintained at a low level for at least 9 months, during which time the predominant variants were R5X4 (dualtropic), while in the second subject the reverse situation was observed. One of the dualtropic variants had a novel sequence motif in V3, suggesting another evolutionary pathway to altered tropism. These studies begin to probe the complexities and pace of V3 evolution in vivo, revealing dynamic patterns of change among multiple V3 sequence variants in a subset of subjects.
Collapse
Affiliation(s)
- J A Nelson
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
86
|
Coull JJ, Romerio F, Sun JM, Volker JL, Galvin KM, Davie JR, Shi Y, Hansen U, Margolis DM. The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1. J Virol 2000; 74:6790-9. [PMID: 10888618 PMCID: PMC112196 DOI: 10.1128/jvi.74.15.6790-6799.2000] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Enigmatic mechanisms restore the resting state in activated lymphocytes following human immunodeficiency virus type 1 (HIV-1) infection, rarely allowing persistent nonproductive infection. We detail a mechanism whereby cellular factors could establish virological latency. The transcription factors YY1 and LSF cooperate in repression of transcription from the HIV-1 long terminal repeat (LTR). LSF recruits YY1 to the LTR via the zinc fingers of YY1. The first two zinc fingers were observed to be sufficient for this interaction in vitro. A mutant of LSF incapable of binding DNA blocked repression. Like other transcriptional repressors, YY1 can function via recruitment of histone deacetylase (HDAC). We find that HDAC1 copurifies with the LTR-binding YY1-LSF repressor complex, the domain of YY1 that interacts with HDAC1 is required to repress the HIV-1 promoter, expression of HDAC1 augments repression of the LTR by YY1, and the deacetylase inhibitor trichostatin A blocks repression mediated by YY1. This novel link between HDAC recruitment and inhibition of HIV-1 expression by YY1 and LSF, in the natural context of a viral promoter integrated into chromosomal DNA, is the first demonstration of a molecular mechanism of repression of HIV-1. YY1 and LSF may establish transcriptional and virological latency of HIV, a state that has recently been recognized in vivo and has significant implications for the long-term treatment of AIDS.
Collapse
Affiliation(s)
- J J Coull
- Division of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9113, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Shahabuddin M, Khan AS. Inhibition of human immunodeficiency virus type 1 by packageable, multigenic antisense RNA. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2000; 10:141-51. [PMID: 10905551 DOI: 10.1089/oli.1.2000.10.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Viral-based vectors can provide an efficient delivery mechanism for stable expression of antisense RNA. To enhance and propagate the antiviral effect of antisense RNA, two novel human immunodeficiency virus type 1 (HIV-1)-based vector DNAs, designated as pMAG7 and pMAG19, were constructed which contained HIV-1 cis-acting packaging elements and produced multigenic HIV-1 antisense RNA that could target the entire pol, env, vif, vpu, vpr, rev, and tat and portions of gag and nef. The two DNAs were identical except that pMAG19 had additional gag coding sequences. Cotransfection of pMAG DNA and infectious, cloned HIV-1 DNA in 293 cells inhibited virus production (81%-98% reduction in reverse transcriptase activity) of various T cell-tropic and macrophage-tropic clade B isolates, such as NL4-3, YU-2, and JR-CSF. In addition, virion-associated pMAG antisense RNA was detected in residual virus particles produced by pNL4-3 in the presence of pMAG7 DNA, and the antisense sequences were stably transferred by infection of 174 x CEM cells. The results suggest that pMAG DNA may confer broad protection against HIV-1 by reducing initial virus burden due to antisense RNA and subsequent virus spread by propagation of antisense sequences along with wild-type virus.
Collapse
Affiliation(s)
- M Shahabuddin
- Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA
| | | |
Collapse
|
88
|
Le Borgne S, Février M, Callebaut C, Lee SP, Rivière Y. CD8(+)-Cell antiviral factor activity is not restricted to human immunodeficiency virus (HIV)-specific T cells and can block HIV replication after initiation of reverse transcription. J Virol 2000; 74:4456-64. [PMID: 10775581 PMCID: PMC111966 DOI: 10.1128/jvi.74.10.4456-4464.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD8(+) lymphocytes from human immunodeficiency virus (HIV)-infected patients can suppress in vitro HIV replication in CD4(+) T cells by a noncytolytic mechanism involving secreted CD8(+)-cell antiviral factor(s) (CAF). Using an HIV Nef-specific cytotoxic-T-lymphocyte (CTL) line and autologous CD4(+) T cells infected with a nef-deleted HIV-1 virus, we demonstrated that, after a priming antigenic stimulation, this suppression does not require the presence of the specific antigen during the effector phase. Furthermore, using an Epstein-Barr virus (EBV)-specific CTL line from an HIV-seronegative donor, we demonstrated that the ability to inhibit HIV replication in a noncytolytic manner is not restricted to HIV-specific effector cells; indeed, EBV-specific CTL were as efficient as HIV-specific effectors in suppressing R5 or X4 HIV-1 strain replication in vitro. This HIV-suppressive activity mediated by a soluble factor(s) present in the culture supernatant was detectable for up to 14 days following stimulation of EBV-specific CD8(+) cells with the cognate epitope peptide. Following acute infection of CEM cells with an X4 strain of HIV-1, EBV-specific CTL line supernatant containing HIV-suppressive activity did not block virus entry but was shown to interfere with virus replication after the first template switching of reverse transcription. Our results suggest that the noncytolytic control of HIV replication by EBV-specific CD8(+) T lymphocytes corresponded to a CAF-like activity and thus demonstrate that CAF production may not be restricted to CTL induced during HIV disease. Moreover, CAF acts after reverse transcription at least for X4 isolate replication inhibition.
Collapse
Affiliation(s)
- S Le Borgne
- Département des Rétrovirus, URA CNRS 1930, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
89
|
Maggirwar SB, Tong N, Ramirez S, Gelbard HA, Dewhurst S. HIV-1 Tat-mediated activation of glycogen synthase kinase-3beta contributes to Tat-mediated neurotoxicity. J Neurochem 1999; 73:578-86. [PMID: 10428053 DOI: 10.1046/j.1471-4159.1999.0730578.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat induces neuronal apoptosis. To examine the mechanism(s) that contribute to this process, we studied Tat's effects on glycogen synthase kinase-3beta (GSK-3beta), an enzyme that has been implicated in the regulation of apoptosis. Addition of Tat to rat cerebellar granule neurons resulted in an increase in GSK-3beta activity, which was not associated with a change in protein expression and could be abolished by the addition of an inhibitor of GSK-3beta (lithium). Lithium also enhanced neuronal survival following exposure to Tat. Coprecipitation experiments revealed that Tat can associate with GSK-3beta, but direct addition of Tat to purified GSK-3beta had no effect on enzyme activity, suggesting that Tat's effects might be mediated indirectly. As the activation of platelet activating factor (PAF) receptors is critical for the induction of neuronal death by several candidate HIV-1 neurotoxins, we determined whether PAF can also activate GSK-3beta. Application of PAF to neuronal cultures activated GSK-3beta, and coincubation with lithium ameliorated PAF-induced neuronal apoptosis. These findings are consistent with the existence of one or more pathways that can lead to GSK-3beta activation in neurons, and they suggest that the dysregulation of this enzyme could contribute to HIV-induced neuronal apoptosis.
Collapse
Affiliation(s)
- S B Maggirwar
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York 14642, USA
| | | | | | | | | |
Collapse
|
90
|
Ping LH, Nelson JA, Hoffman IF, Schock J, Lamers SL, Goodman M, Vernazza P, Kazembe P, Maida M, Zimba D, Goodenow MM, Eron JJ, Fiscus SA, Cohen MS, Swanstrom R. Characterization of V3 sequence heterogeneity in subtype C human immunodeficiency virus type 1 isolates from Malawi: underrepresentation of X4 variants. J Virol 1999; 73:6271-81. [PMID: 10400718 PMCID: PMC112705 DOI: 10.1128/jvi.73.8.6271-6281.1999] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have examined the nature of V3 sequence variability among subtype C human immunodeficiency virus type 1 (HIV-1) sequences from plasma-derived viral RNA present in infected men from Malawi. Sequence variability was assessed by direct sequence analysis of the V3 reverse transcription-PCR products, examination of virus populations by a subtype C V3-specific heteroduplex tracking assay (V3-HTA), and selected sequence analysis of molecular clones derived from the PCR products. Sequence variability in V3 among the subtype C viruses was not associated with the presence of basic amino acid substitutions. This observation is in contrast to that for subtype B HIV-1, where sequence variability is associated with such substitutions, and these substitutions are determinants of altered coreceptor usage. Evolutionary variants in subtype C V3 sequences, as defined by the V3-HTA, were not correlated with the CD4 level in the infected person, while such a correlation was found with subtype B V3 sequences. Viruses were isolated from a subset of the subjects; all isolates used CCR5 and not CXCR4 as a coreceptor, and none was able to grow in MT-2 cells, a hallmark of the syncytium-inducing phenotype that is correlated with CXCR4 usage. The overall sequence variability of the subtype C V3 region was no greater than that of the conserved regions of gp120. This limited sequence variability was also a feature of subtype B V3 sequences that do not carry the basic amino acid substitutions associated with altered coreceptor usage. Our results indicate that altered coreceptor usage is rare in subtype C HIV-1 isolates in sub-Saharan Africa and that sequence variability is not a feature of the V3 region of env in the absence of altered coreceptor usage.
Collapse
Affiliation(s)
- L H Ping
- UNC Center For AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Yang C, Pieniazek D, Owen SM, Fridlund C, Nkengasong J, Mastro TD, Rayfield MA, Downing R, Biryawaho B, Tanuri A, Zekeng L, van der Groen G, Gao F, Lal RB. Detection of phylogenetically diverse human immunodeficiency virus type 1 groups M and O from plasma by using highly sensitive and specific generic primers. J Clin Microbiol 1999; 37:2581-6. [PMID: 10405405 PMCID: PMC85288 DOI: 10.1128/jcm.37.8.2581-2586.1999] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high degree of genetic diversity within human immunodeficiency virus type 1 (HIV-1), which includes two major groups, M (major) and O (outlier), and various env subtypes within group M (subtypes A to J), has made designing assays that will detect all known HIV-1 strains difficult. We have developed a generic primer set based on the conserved immunodominant region of transmembrane protein gp41 that can reliably amplify as few as 10 copies/PCR of viral DNA from near-full-length clones representing group M subtypes A to H (subtypes I and J were not available). The assay is highly sensitive in detecting plasma viral RNA from HIV-1 strains of diverse geographic origins representing different subtypes of HIV-1 group M as well as HIV-1 group O. Of the 253 group M plasma specimens (subtypes A, 68 specimens; B, 71; C, 19; D, 27; E, 23; F, 33; and G, 12), 250 (98.8%) were amplified by using the gp41 M/O primer set. More importantly, all 32 (100%) group O plasma samples were also amplified with these primers. In vitro spiking experiments further revealed that the assay could reliably detect as few as 25 copies/ml of viral RNA and gave positive signals in HIV-1-seropositive specimens with plasma copy numbers below the limits of detection by all commercially available viral load assays. In addition, analysis of five seroconversion panels indicated that the assay is highly sensitive for early detection of plasma viremia during the "window period." Thus, the highly sensitive assay will be useful for early detection of HIV-1 in clinical specimens from all known HIV-1 infections, regardless of their genotypes and geographic origins.
Collapse
Affiliation(s)
- C Yang
- HIV and Retrovirology Branch, Division of AIDS, STD, and TB Laboratory Research, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Wimmer J, Fujinaga K, Taube R, Cujec TP, Zhu Y, Peng J, Price DH, Peterlin BM. Interactions between Tat and TAR and human immunodeficiency virus replication are facilitated by human cyclin T1 but not cyclins T2a or T2b. Virology 1999; 255:182-9. [PMID: 10049833 DOI: 10.1006/viro.1998.9589] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcriptional transactivator (Tat) from the human immunodeficiency virus (HIV) does not function efficiently in Chinese hamster ovary (CHO) cells. Only somatic cell hybrids between CHO and human cells and CHO cells containing human chromosome 12 (CHO12) support high levels of Tat transactivation. This restriction was mapped to interactions between Tat and TAR. Recently, human cyclin T1 was found to increase the binding of Tat to TAR and levels of Tat transactivation in rodent cells. By combining individually with CDK9, cyclin T1 or related cyclins T2a and T2b form distinct positive transcription elongation factor b (P-TEFb) complexes. In this report, we found that of these three cyclins, only cyclin T1 is encoded on human chromosome 12 and is responsible for its effects in CHO cells. Moreover, only human cyclin T1, not mouse cyclin T1 or human cyclins T2a or T2b, supported interactions between Tat and TAR in vitro. Finally, after introducing appropriate receptors and human cyclin T1 into CHO cells, they became permissive for infection by and replication of HIV.
Collapse
MESH Headings
- Animals
- CD4 Antigens/genetics
- CD4 Antigens/metabolism
- CHO Cells
- Cell Line, Transformed
- Chromosomes, Human, Pair 12
- Cricetinae
- Cyclin T
- Cyclins/genetics
- Cyclins/metabolism
- Gene Expression Regulation, Viral
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- HIV Long Terminal Repeat
- HIV-1/genetics
- HIV-1/physiology
- HeLa Cells
- Humans
- Jurkat Cells
- Mice
- Proviruses/genetics
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, Chemokine
- Transcriptional Activation
- Virus Replication
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- J Wimmer
- Department of Medicine, University of California at San Francisco, San Francisco, California 94143-0703, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Eggers CC, van Lunzen J, Buhk T, Stellbrink HJ. HIV infection of the central nervous system is characterized by rapid turnover of viral RNA in cerebrospinal fluid. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1999; 20:259-64. [PMID: 10077174 DOI: 10.1097/00042560-199903010-00007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To assess the kinetics of viral replication and decay in cerebrospinal fluid (CSF), we studied the short-term effects of highly active antiretroviral therapy (HAART) on CSF HIV-1 RNA concentrations. In 15 HIV-positive patients, HIV RNA concentrations were measured in paired CSF and plasma/serum samples. Samples were obtained prior to and 5 to 24 days after initiation or change of HAART. The short-term effects of interruption of HAART were tested in 2 patients. Viral load was measured by the Roche Amplicor assay. During HAART, in 12 of 15 patients a significant reduction of CSF HIV RNA concentration was observed, ranging from 0.55 to 2.77 log10 (median, 1.37 log10). This was paralleled by a reduction of blood viremia ranging from 0.12 to 3.0 log10 (median, 1.65 log10). The median half-life, as calculated from the slopes of the two time-point measurements, for CSF and blood viral load was 2.66 and 2.36 days, respectively. In 2 patients, CSF viral load remained essentially unchanged despite substantial reduction of plasma viral load. In 1 patient, after interruption of HAART, a rapid increase of HIV RNA in the CSF and blood was seen. No correlation was found between the CSF:blood albumin ratio as a measure of the functional integrity of the blood-CSF barrier and the ratio of CSF:blood RNA concentration, which suggests that no major passive influx of HIV RNA moves from the blood into the CSF compartment. However, a correlation existed between the CSF cell count and the CSF viral load (r = 0.74; p < .003). We conclude that, in most HIV-infected individuals, the decay of viral load in the CSF is similarly rapid as that seen in plasma. The rapid kinetics of virus found in the CSF suggest that it may be produced by rapidly proliferating cells, such as lymphocytes.
Collapse
Affiliation(s)
- C C Eggers
- Neurologische Klinik, Universitätskrankenhaus Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
94
|
Ohagen A, Ghosh S, He J, Huang K, Chen Y, Yuan M, Osathanondh R, Gartner S, Shi B, Shaw G, Gabuzda D. Apoptosis induced by infection of primary brain cultures with diverse human immunodeficiency virus type 1 isolates: evidence for a role of the envelope. J Virol 1999; 73:897-906. [PMID: 9882290 PMCID: PMC103909 DOI: 10.1128/jvi.73.2.897-906.1999] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Apoptosis of neurons and astrocytes is induced by human immunodeficiency type 1 (HIV-1) infection in vitro and has been demonstrated in brain tissue from patients with AIDS. We analyzed a panel of diverse HIV-1 primary isolates for the ability to replicate and induce neuronal and astrocyte apoptosis in primary human brain cultures. Apoptosis was induced three- to eightfold by infection with the blood-derived HIV-1 isolates 89.6, SG3, and ADA. In contrast, the brain-derived HIV-1 isolates YU2, JRFL, DS-br, RC-br, and KJ-br did not induce significant levels of apoptosis. The ability of HIV-1 isolates to induce apoptosis was independent of their replication capacity. Studies of recombinant chimeras between the SG3 and YU2 viruses showed that replacement of the YU2 Env with the SG3 Env was sufficient to confer the ability to induce apoptosis to the YU2 virus. Replacement of the Env V3 regions alone largely conferred the phenotypes of the parental clones. The SG3 Env used CXCR4 and CCR3 as coreceptors for virus entry, whereas YU2 used CCR5 and CCR3. The V3 regions of SG3 and YU2 conferred the ability to use CXCR4 and CCR5, respectively. In contrast, the 3' region of Env, particularly the C3V4 region, was required in conjunction with the V3 region for efficient use of CCR3. These results provide evidence that Env is a major determinant of neurodegenerative mechanisms associated with HIV-1 infection in vitro and raise the possibility that blood-derived viruses which emerge during the late stages of disease may affect disease progression in the central nervous system.
Collapse
Affiliation(s)
- A Ohagen
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Siciliano SJ, Kuhmann SE, Weng Y, Madani N, Springer MS, Lineberger JE, Danzeisen R, Miller MD, Kavanaugh MP, DeMartino JA, Kabat D. A critical site in the core of the CCR5 chemokine receptor required for binding and infectivity of human immunodeficiency virus type 1. J Biol Chem 1999; 274:1905-13. [PMID: 9890944 DOI: 10.1074/jbc.274.4.1905] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Like the CCR5 chemokine receptors of humans and rhesus macaques, the very homologous (approximately 98-99% identical) CCR5 of African green monkeys (AGMs) avidly binds beta-chemokines and functions as a coreceptor for simian immunodeficiency viruses. However, AGM CCR5 is a weak coreceptor for tested macrophage-tropic (R5) isolates of human immunodeficiency virus type 1 (HIV-1). Correspondingly, gp120 envelope glycoproteins derived from R5 isolates of HIV-1 bind poorly to AGM CCR5. We focused on a unique extracellular amino acid substitution at the juncture of transmembrane helix 4 (TM4) and extracellular loop 2 (ECL2) (Arg for Gly at amino acid 163 (G163R)) as the likely source of the weak R5 gp120 binding and HIV-1 coreceptor properties of AGM CCR5. Accordingly, a G163R mutant of human CCR5 was severely attenuated in its ability to bind R5 gp120s and to mediate infection by R5 HIV-1 isolates. Conversely, the R163G mutant of AGM CCR5 was substantially strengthened as a coreceptor for HIV-1 and had improved R5 gp120 binding affinity relative to the wild-type AGM CCR5. These substitutions at amino acid position 163 had no effect on chemokine binding or signal transduction, suggesting the absence of structural alterations. The 2D7 monoclonal antibody has been reported to bind to ECL2 and to block HIV-1 binding and infection. Whereas 2D7 antibody binding to CCR5 was unaffected by the G163R mutation, it was prevented by a conservative ECL2 substitution (K171R), shared between rhesus and AGM CCR5s. Thus, it appears that the 2D7 antibody binds to an epitope that includes Lys-171 and may block HIV-1 infection mediated by CCR5 by occluding an HIV-1-binding site in the vicinity of Gly-163. In summary, our results identify a site for gp120 interaction that is critical for R5 isolates of HIV-1 in the central core of human CCR5, and we propose that this site collaborates with a previously identified region in the CCR5 amino terminus to enable gp120 binding and HIV-1 infections.
Collapse
Affiliation(s)
- S J Siciliano
- Merck Research Laboratories, Immunology and Rheumatology, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Pasloske BL, Walkerpeach CR, Obermoeller RD, Winkler M, DuBois DB. Armored RNA technology for production of ribonuclease-resistant viral RNA controls and standards. J Clin Microbiol 1998; 36:3590-4. [PMID: 9817878 PMCID: PMC105245 DOI: 10.1128/jcm.36.12.3590-3594.1998] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/1998] [Accepted: 09/18/1998] [Indexed: 11/20/2022] Open
Abstract
The widespread use of sensitive assays for the detection of viral and cellular RNA sequences has created a need for stable, well-characterized controls and standards. We describe the development of a versatile, novel system for creating RNase-resistant RNA. "Armored RNA" is a complex of MS2 bacteriophage coat protein and RNA produced in Escherichia coli by the induction of an expression plasmid that encodes the coat protein and an RNA standard sequence. The RNA sequences are completely protected from RNase digestion within the bacteriophage-like complexes. As a prototype, a 172-base consensus sequence from a portion of the human immunodeficiency virus type 1 (HIV-1) gag gene was synthesized and cloned into the packaging vector used to produce the bacteriophage-like particles. After production and purification, the resulting HIV-1 Armored RNA particles were shown to be resistant to degradation in human plasma and produced reproducible results in the Amplicor HIV-1 Monitor assay for 180 days when stored at -20 degreesC or for 60 days at 4 degreesC. Additionally, Armored RNA preparations are homogeneous and noninfectious.
Collapse
|
97
|
Sullivan N, Sun Y, Binley J, Lee J, Barbas CF, Parren PW, Burton DR, Sodroski J. Determinants of human immunodeficiency virus type 1 envelope glycoprotein activation by soluble CD4 and monoclonal antibodies. J Virol 1998; 72:6332-8. [PMID: 9658072 PMCID: PMC109776 DOI: 10.1128/jvi.72.8.6332-6338.1998] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Infection by some human immunodeficiency virus type 1 (HIV-1) isolates is enhanced by the binding of subneutralizing concentrations of soluble receptor, soluble CD4 (sCD4), or monoclonal antibodies directed against the viral envelope glycoproteins. In this work, we studied the abilities of different antibodies to mediate activation of the envelope glycoproteins of a primary HIV-1 isolate, YU2, and identified the regions of gp120 envelope glycoprotein contributing to activation. Binding of antibodies to a variety of epitopes on gp120, including the CD4 binding site, the third variable (V3) loop, and CD4-induced epitopes, enhanced the entry of viruses containing YU2 envelope glycoproteins. Fab fragments of antibodies directed against either the CD4 binding site or V3 loop also activated YU2 virus infection. The activation phenotype was conferred on the envelope glycoproteins of a laboratory-adapted HIV-1 isolate (HXBc2) by replacing the gp120 V3 loop or V1/V2 and V3 loops with those of the YU2 virus. Infection by the YU2 virus in the presence of activating antibodies remained inhibitable by macrophage inhibitory protein 1beta, indicating dependence on the CCR5 coreceptor on the target cells. Thus, antibody enhancement of YU2 entry involves neither Fc receptor binding nor envelope glycoprotein cross-linking, is determined by the same variable loops that dictate enhancement by sCD4, and probably proceeds by a process fundamentally similar to the receptor-activated virus entry pathway.
Collapse
Affiliation(s)
- N Sullivan
- Division of Human Retrovirology, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Fouchier RA, Meyer BE, Simon JH, Fischer U, Albright AV, González-Scarano F, Malim MH. Interaction of the human immunodeficiency virus type 1 Vpr protein with the nuclear pore complex. J Virol 1998; 72:6004-13. [PMID: 9621063 PMCID: PMC110405 DOI: 10.1128/jvi.72.7.6004-6013.1998] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Vpr protein of human immunodeficiency virus type 1 (HIV-1) performs a number of functions that are associated with the nucleus. Vpr enhances the nuclear import of postentry viral nucleoprotein complexes, arrests proliferating cells in the G2 phase of the cell cycle, and acts as a modest transcriptional activator. For this paper, we have investigated the nuclear import of Vpr. Although Vpr does not encode a sequence that is recognizable as a nuclear localization signal (NLS), Vpr functions as a transferable NLS both in somatic cells and in Xenopus laevis oocytes. In certain contexts, Vpr also mediates substantial accumulation at the nuclear envelope and, in particular, at nuclear pore complexes (NPCs). Consistent with this, Vpr is shown to interact specifically with nucleoporin phenylalanine-glycine (FG)-repeat regions. These findings not only demonstrate that Vpr harbors a bona fide NLS but also raise the possibility that one (or more) of Vpr's functions may take place at the NPC.
Collapse
Affiliation(s)
- R A Fouchier
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Michael NL, Nelson JA, KewalRamani VN, Chang G, O'Brien SJ, Mascola JR, Volsky B, Louder M, White GC, Littman DR, Swanstrom R, O'Brien TR. Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 delta32. J Virol 1998; 72:6040-7. [PMID: 9621067 PMCID: PMC110409 DOI: 10.1128/jvi.72.7.6040-6047.1998] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/1997] [Accepted: 03/24/1998] [Indexed: 02/07/2023] Open
Abstract
Individuals who are homozygous for the 32-bp deletion in the gene coding for the chemokine receptor and major human immunodeficiency virus type 1 (HIV-1) coreceptor CCR5 (CCR5 -/-) lack functional cell surface CCR5 molecules and are relatively resistant to HIV-1 infection. HIV-1 infection in CCR5 -/- individuals, although rare, has been increasingly documented. We now report that the viral quasispecies from one such individual throughout disease is homogenous, T cell line tropic, and phenotypically syncytium inducing (SI); exclusively uses CXCR4; and replicates well in CCR5 -/- primary T cells. The recently discovered coreceptors BOB and Bonzo are not used. Although early and persistent SI variants have been described in longitudinal studies, this is the first demonstration of exclusive and persistent CXCR4 usage. With the caveat that the earliest viruses available from this subject were from approximately 4 years following primary infection, these data suggest that HIV-1 infection can be mediated and persistently maintained by viruses which exclusively utilize CXCR4. The lack of evolution toward the available minor coreceptors in this subject underscores the dominant biological roles of the major coreceptors CCR5 and CXCR4. This and two similar subjects (R. Biti, R. Ffrench, J. Young, B. Bennetts, G. Stewart, and T. Liang, Nat. Med. 3:252-253, 1997; I. Theodoreu, L. Meyer, M. Magierowska, C. Katlama, and C. Rouzioux, Lancet 349:1219-1220, 1997) showed relatively rapid CD4+ T-cell declines despite average or low initial viral RNA load. Since viruses which use CXCR4 exclusively cannot infect macrophages, these data have implications for the relative infection of the T-cell compartment versus the macrophage compartment in vivo and for the development of CCR5-based therapeutics.
Collapse
Affiliation(s)
- N L Michael
- Division of Retrovirology, Walter Reed Army Institute of Research, National Cancer Institute, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Ross TM, Cullen BR. The ability of HIV type 1 to use CCR-3 as a coreceptor is controlled by envelope V1/V2 sequences acting in conjunction with a CCR-5 tropic V3 loop. Proc Natl Acad Sci U S A 1998; 95:7682-6. [PMID: 9636210 PMCID: PMC22722 DOI: 10.1073/pnas.95.13.7682] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1998] [Accepted: 04/13/1998] [Indexed: 02/07/2023] Open
Abstract
Although infection by primary HIV type 1 (HIV-1) isolates normally requires the functional interaction of the viral envelope protein with both CD4 and the CCR-5 coreceptor, a subset of such isolates also are able to use the distinct CCR-3 receptor. By analyzing the ability of a series of wild-type and chimeric HIV-1 envelope proteins to mediate CCR-3-dependent infection, we have determined that CCR-3 tropism maps to the V1 and V2 variable region of envelope. Although substitution of the V1/V2 region of a CCR-3 tropic envelope into the context of a CCR-5 tropic envelope is both necessary and sufficient to confer CCR-3 tropism, this same substitution has no phenotypic effect when inserted into a CXCR-4 tropic HIV-1 envelope context. However, this latter chimera acquires both CCR-3 and CCR-5 tropism when a CCR-5 tropic V3 loop sequence also is introduced. These data demonstrate that the V1/2 region of envelope can, like the V3 loop region, encode a particular coreceptor requirement and suggest that a functional envelope:CCR-3 interaction may depend on the cooperative interaction of CCR-3 with both the V1/V2 and the V3 region of envelope.
Collapse
Affiliation(s)
- T M Ross
- Department of Genetics, Duke University Medical Center, Box 3025, Durham, NC 27710, USA
| | | |
Collapse
|