51
|
Lyons LC, Chatterjee S, Vanrobaeys Y, Gaine ME, Abel T. Translational changes induced by acute sleep deprivation uncovered by TRAP-Seq. Mol Brain 2020; 13:165. [PMID: 33272296 PMCID: PMC7713217 DOI: 10.1186/s13041-020-00702-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Sleep deprivation is a global health problem adversely affecting health as well as causing decrements in learning and performance. Sleep deprivation induces significant changes in gene transcription in many brain regions, with the hippocampus particularly susceptible to acute sleep deprivation. However, less is known about the impacts of sleep deprivation on post-transcriptional gene regulation. To identify the effects of sleep deprivation on the translatome, we took advantage of the RiboTag mouse line to express HA-labeled Rpl22 in CaMKIIα neurons to selectively isolate and sequence mRNA transcripts associated with ribosomes in excitatory neurons. We found 198 differentially expressed genes in the ribosome-associated mRNA subset after sleep deprivation. In comparison with previously published data on gene expression in the hippocampus after sleep deprivation, we found that the subset of genes affected by sleep deprivation was considerably different in the translatome compared with the transcriptome, with only 49 genes regulated similarly. Interestingly, we found 478 genes differentially regulated by sleep deprivation in the transcriptome that were not significantly regulated in the translatome of excitatory neurons. Conversely, there were 149 genes differentially regulated by sleep deprivation in the translatome but not in the whole transcriptome. Pathway analysis revealed differences in the biological functions of genes exclusively regulated in the transcriptome or translatome, with protein deacetylase activity and small GTPase binding regulated in the transcriptome and unfolded protein binding, kinase inhibitor activity, neurotransmitter receptors and circadian rhythms regulated in the translatome. These results indicate that sleep deprivation induces significant changes affecting the pool of actively translated mRNAs.
Collapse
Affiliation(s)
- Lisa C Lyons
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Marie E Gaine
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics (PSET), College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
52
|
Advani VM, Ivanov P. Stress granule subtypes: an emerging link to neurodegeneration. Cell Mol Life Sci 2020; 77:4827-4845. [PMID: 32500266 PMCID: PMC7668291 DOI: 10.1007/s00018-020-03565-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Stress Granules (SGs) are membraneless cytoplasmic RNA granules, which contain translationally stalled mRNAs, associated translation initiation factors and multiple RNA-binding proteins (RBPs). They are formed in response to various stresses and contribute to reprogramming of cellular metabolism to aid cell survival. Because of their cytoprotective nature, association with translation regulation and cell signaling, SGs are an essential component of the integrated stress response pathway, a complex adaptive program central to stress management. Recent advances in SG biology unambiguously demonstrate that SGs are heterogeneous in their RNA and protein content leading to the idea that various SG subtypes exist. These SG variants are formed in cell type- and stress-specific manners and differ in their composition, dynamics of assembly and disassembly, and contribution to cell viability. As aberrant SG dynamics contribute to the formation of pathological persistent SGs that are implicated in neurodegenerative diseases, the biology of different SG subtypes may be directly implicated in neurodegeneration. Here, we will discuss mechanisms of SG formation, their subtypes, and potential contribution to health and disease.
Collapse
Affiliation(s)
- Vivek M Advani
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Harvard Initiative for RNA Medicine, Boston, MA, USA.
| |
Collapse
|
53
|
Gallagher EE, Menon A, Chmiel AF, Deprey K, Kritzer JA, Garner AL. A cell-penetrant lactam-stapled peptide for targeting eIF4E protein-protein interactions. Eur J Med Chem 2020; 205:112655. [PMID: 32739551 DOI: 10.1016/j.ejmech.2020.112655] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/30/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) has emerged as a promising cancer therapeutic target due to its role in the initiation of cap-dependent translation, a process that is accelerated during tumorigenesis. To regulate the initiation of cap-dependent translation, eIF4E participates in protein-protein interactions (PPI) with binding partners, 4E-BP1 and eIF4G, which act as an inhibitor and stimulator of translation, respectively. As both of these proteins interact with eIF4E by utilizing a short, α-helical stretch of amino acids, our laboratory has been working to develop helical mimetics of these proteins, in particular 4E-BP1, to inhibit eIF4E PPIs. Herein, we describe our continued efforts in this area and report the development and characterization of a cell-penetrant lactam stapled peptide for targeting cellular eIF4E.
Collapse
Affiliation(s)
- Erin E Gallagher
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI, 48109, USA
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI, 48109, USA
| | - Alyah F Chmiel
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI, 48109, USA
| | - Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA, 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA, 02155, USA
| | - Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
54
|
Brown CJ, Verma CS, Lane DP, Lama D. Conformational ordering of intrinsically disordered peptides for targeting translation initiation. Biochim Biophys Acta Gen Subj 2020; 1865:129775. [PMID: 33122085 DOI: 10.1016/j.bbagen.2020.129775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Intrinsically disordered regions (IDRs) in proteins can regulate their activity by facilitating protein-protein interactions (PPIs) as exemplified in the recruitment of the eukaryotic translation initiation factor 4E (eIF4E) protein by the protein eIF4G. Deregulation of this PPI module is central to a broad spectrum of cancer related malignancies and its targeted inhibition through bioactive peptides is a promising strategy for therapeutic intervention. METHODS We employed molecular dynamics simulations coupled with biophysical assays to rationally develop peptide derivatives from the intrinsically disordered eIF4G scaffold by incorporating non-natural amino acids that facilitates disorder-to-order transition. RESULTS The conformational heterogeneity of these peptides and the degree of structural reorganization required to adopt the optimum mode of interaction with eIF4E underscores their differential binding affinities. The presence of a pre-structured local helical element in the ensemble of structures was instrumental in the efficient docking of the peptides on to the protein surface. The formation of Y4: P38 hydrogen-bond interaction between the peptide and eIF4E is a rate limiting event in the efficient recognition of the protein since it occurs through the disordered region of the peptide. CONCLUSIONS These insights were exploited to further design features into the peptide to propagate bound-state conformations in solution which resulted in the generation of a potent eIF4E binder. GENERAL SIGNIFICANCE The study illustrates the molecular basis of eIF4E recognition by a disordered epitope from eIF4G and its modulation to generate peptides that can potentially attenuate translation initiation in oncology.
Collapse
Affiliation(s)
- Christopher J Brown
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, 138648, Singapore.
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, 637551, Singapore
| | - David P Lane
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, 138648, Singapore; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum Quarter 7B-C Solnavägen 9, 17165 Solna, Sweden
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum Quarter 7B-C Solnavägen 9, 17165 Solna, Sweden.
| |
Collapse
|
55
|
Wang M, Wei K, Qian B, Feiler S, Lemekhova A, Büchler MW, Hoffmann K. HSP70-eIF4G Interaction Promotes Protein Synthesis and Cell Proliferation in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12082262. [PMID: 32823513 PMCID: PMC7464799 DOI: 10.3390/cancers12082262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide and features various tumor escape mechanisms from treatment-induced stress. HSP70 plays a critical role in cell protection under stress. eIF4G physiologically regulates the formation of the protein-ribosomal complex and maintains cellular protein synthesis. However, the precise cooperation of both in HCC remains poorly understood. In this study, we demonstrate that HSP70 expression is positively correlated with eIF4G in tumor specimens from 25 HCC patients, in contrast to the adjacent non-tumorous tissues, and that both influence the survival of HCC patients. Mechanistically, this study indicates that HSP70 and eIF4G interact with each other in vitro. We further show that the HSP70–eIF4G interaction contributes to promoting cellular protein synthesis, enhancing cell proliferation, and inhibiting cell apoptosis. Collectively, this study reveals the pivotal role of HSP70–eIF4G interaction as an escape mechanism in HCC. Therefore, modulation of the HSP70–eIF4G interaction might be a potential novel therapeutic target of HCC treatment.
Collapse
|
56
|
Huggins HP, Keiper BD. Regulation of Germ Cell mRNPs by eIF4E:4EIP Complexes: Multiple Mechanisms, One Goal. Front Cell Dev Biol 2020; 8:562. [PMID: 32733883 PMCID: PMC7358283 DOI: 10.3389/fcell.2020.00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Translational regulation of mRNAs is critically important for proper gene expression in germ cells, gametes, and embryos. The ability of the nucleus to control gene expression in these systems may be limited due to spatial or temporal constraints, as well as the breadth of gene products they express to prepare for the rapid animal development that follows. During development germ granules are hubs of post-transcriptional regulation of mRNAs. They assemble and remodel messenger ribonucleoprotein (mRNP) complexes for translational repression or activation. Recently, mRNPs have been appreciated as discrete regulatory units, whose function is dictated by the many positive and negative acting factors within the complex. Repressed mRNPs must be activated for translation on ribosomes to introduce novel proteins into germ cells. The binding of eIF4E to interacting proteins (4EIPs) that sequester it represents a node that controls many aspects of mRNP fate including localization, stability, poly(A) elongation, deadenylation, and translational activation/repression. Furthermore, plants and animals have evolved to express multiple functionally distinct eIF4E and 4EIP variants within germ cells, giving rise to different modes of translational regulation.
Collapse
Affiliation(s)
- Hayden P Huggins
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
57
|
Tupperwar N, Meleppattu S, Shrivastava R, Baron N, Gilad A, Wagner G, Léger-Abraham M, Shapira M. A newly identified Leishmania IF4E-interacting protein, Leish4E-IP2, modulates the activity of cap-binding protein paralogs. Nucleic Acids Res 2020; 48:4405-4417. [PMID: 32232353 PMCID: PMC7192595 DOI: 10.1093/nar/gkaa173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 01/06/2023] Open
Abstract
Translation of most cellular mRNAs in eukaryotes proceeds through a cap-dependent pathway, whereby the cap-binding complex, eIF4F, anchors the preinitiation complex at the 5′ end of mRNAs and regulates translation initiation. The requirement of Leishmania to survive in changing environments can explain why they encode multiple eIF4E (LeishIF4Es) and eIF4G (LeishIF4Gs) paralogs, as each could be assigned a discrete role during their life cycle. Here we show that the expression and activity of different LeishIF4Es change during the growth of cultured promastigotes, urging a search for regulatory proteins. We describe a novel LeishIF4E-interacting protein, Leish4E-IP2, which contains a conserved Y(X)4LΦ IF4E-binding-motif. Despite its capacity to bind several LeishIF4Es, Leish4E-IP2 was not detected in m7GTP-eluted cap-binding complexes, suggesting that it could inhibit the cap-binding activity of LeishIF4Es. Using a functional assay, we show that a recombinant form of Leish4E-IP2 inhibits the cap-binding activity of LeishIF4E-1 and LeishIF4E-3. Furthermore, we show that transgenic parasites expressing a tagged version of Leish4E-IP2 also display reduced cap-binding activities of tested LeishIF4Es, and decreased global translation. Given its ability to bind more than a single LeishIF4E, we suggest that Leish4E-IP2 could serve as a broad-range repressor of Leishmania protein synthesis.
Collapse
Affiliation(s)
- Nitin Tupperwar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Shimi Meleppattu
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02138, USA
| | - Rohit Shrivastava
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Nofar Baron
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ayelet Gilad
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02138, USA
| | - Mélissa Léger-Abraham
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
58
|
Exploring Protein Intrinsic Disorder with MobiDB. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2141:127-143. [PMID: 32696355 DOI: 10.1007/978-1-0716-0524-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nowadays, it is well established that many proteins or regions under physiological conditions lack a fixed three-dimensional structure and are intrinsically disordered. MobiDB is the main repository of protein disorder and mobility annotations, combining different data sources to provide an exhaustive overview of intrinsic disorder. MobiDB includes curated annotations from other databases, indirect disorder evidence from structural data, and disorder predictions from protein sequences. It provides an easy-to-use web server to visualize and explore disorder information. This chapter describes the data available in MobiDB, emphasizing how to use and access the intrinsic disorder data. MobiDB is available at URL http://mobidb.bio.unipd.it .
Collapse
|
59
|
TOP mRNPs: Molecular Mechanisms and Principles of Regulation. Biomolecules 2020; 10:biom10070969. [PMID: 32605040 PMCID: PMC7407576 DOI: 10.3390/biom10070969] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
The cellular response to changes in the surrounding environment and to stress requires the coregulation of gene networks aiming to conserve energy and resources. This is often achieved by downregulating protein synthesis. The 5’ Terminal OligoPyrimidine (5’ TOP) motif-containing mRNAs, which encode proteins that are essential for protein synthesis, are the primary targets of translational control under stress. The TOP motif is a cis-regulatory RNA element that begins directly after the m7G cap structure and contains the hallmark invariant 5’-cytidine followed by an uninterrupted tract of 4–15 pyrimidines. Regulation of translation via the TOP motif coordinates global protein synthesis with simultaneous co-expression of the protein components required for ribosome biogenesis. In this review, we discuss architecture of TOP mRNA-containing ribonucleoprotein complexes, the principles of their assembly, and the modes of regulation of TOP mRNA translation.
Collapse
|
60
|
Prabhu SA, Moussa O, Miller WH, del Rincón SV. The MNK1/2-eIF4E Axis as a Potential Therapeutic Target in Melanoma. Int J Mol Sci 2020; 21:E4055. [PMID: 32517051 PMCID: PMC7312468 DOI: 10.3390/ijms21114055] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
: Melanoma is a type of skin cancer that originates in the pigment-producing cells of the body known as melanocytes. Most genetic aberrations in melanoma result in hyperactivation of the mitogen activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways. We and others have shown that a specific protein synthesis pathway known as the MNK1/2-eIF4E axis is often dysregulated in cancer. The MNK1/2-eIF4E axis is a point of convergence for these signaling pathways that are commonly constitutively activated in melanoma. In this review we consider the functional implications of aberrant mRNA translation in melanoma and other malignancies. Moreover, we discuss the consequences of inhibiting the MNK1/2-eIF4E axis on the tumor and tumor-associated cells, and we provide important avenues for the utilization of this treatment modality in combination with other targeted and immune-based therapies. The past decade has seen the increased development of selective inhibitors to block the action of the MNK1/2-eIF4E pathway, which are predicted to be an effective therapy regardless of the melanoma subtype (e.g., cutaneous, acral, and mucosal).
Collapse
Affiliation(s)
- Sathyen A. Prabhu
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | - Omar Moussa
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | - Wilson H. Miller
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Department of Oncology, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
- McGill Centre for Translational Research in Cancer (MCTRC), McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Rossy Cancer Network, McGill University, 1980 Sherbrooke Ouest, #1101, Montreal, QC H3H 1E8, Canada
| | - Sonia V. del Rincón
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Department of Oncology, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
- McGill Centre for Translational Research in Cancer (MCTRC), McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
61
|
Räsch F, Weber R, Izaurralde E, Igreja C. 4E-T-bound mRNAs are stored in a silenced and deadenylated form. Genes Dev 2020; 34:847-860. [PMID: 32354837 PMCID: PMC7263148 DOI: 10.1101/gad.336073.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
Abstract
Human 4E-T is an eIF4E-binding protein (4E-BP) present in processing (P)-bodies that represses translation and regulates decay of mRNAs destabilized by AU-rich elements and microRNAs (miRNAs). However, the underlying regulatory mechanisms are still unclear. Here, we show that upon mRNA binding 4E-T represses translation and promotes deadenylation via the recruitment of the CCR4-NOT deadenylase complex. The interaction with CCR4-NOT is mediated by previously uncharacterized sites in the middle region of 4E-T. Importantly, mRNA decapping and decay are inhibited by 4E-T and the deadenylated target is stored in a repressed form. Inhibition of mRNA decapping requires the interaction of 4E-T with the cap-binding proteins eIF4E/4EHP. We further show that regulation of decapping by 4E-T participates in mRNA repression by the miRNA effector protein TNRC6B and that 4E-T overexpression interferes with tristetraprolin (TTP)- and NOT1-mediated mRNA decay. Thus, we postulate that 4E-T modulates 5'-to-3' decay by swapping the fate of a deadenylated mRNA from complete degradation to storage. Our results provide insight into the mechanism of mRNA storage that controls localized translation and mRNA stability in P-bodies.
Collapse
Affiliation(s)
- Felix Räsch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| |
Collapse
|
62
|
Fang JC, Liu HY, Tsai YC, Chou WL, Chang CC, Lu CA. A CCR4 Association Factor 1, OsCAF1B, Participates in the αAmy3 mRNA Poly(A) Tail Shortening and Plays a Role in Germination and Seedling Growth. PLANT & CELL PHYSIOLOGY 2020; 61:554-564. [PMID: 31782784 DOI: 10.1093/pcp/pcz221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Poly(A) tail (PAT) shortening, also termed deadenylation, is the rate-limiting step of mRNA degradation in eukaryotic cells. The carbon catabolite repressor 4-associated factor 1s (CAF1s) were shown to be one of the major enzymes for catalyzing mRNA deadenylation in yeast and mammalian cells. However, the functions of CAF1 proteins in plants are poorly understood. Herein, a sugar-upregulated CAF1 gene, OsCAF1B, is investigated in rice. Using gain-of-function and dominant-negative mutation analysis, we show that overexpression of OsCAF1B resulted in an accelerated α-amylase gene (αAmy3) mRNA degradation phenomenon, while ectopic expression of a form of OsCAF1B that had lost its deadenylase activity resulted in a delayed αAmy3 mRNA degradation phenomenon in transgenic rice cells. The change in αAmy3 mRNA degradation in transgenic rice is associated with the altered lengths of the αAmy3 mRNA PAT, indicating that OsCAF1B acts as a negative regulator of αAmy3 mRNA stability in rice. Additionally, we found that overexpression of OsCAF1B retards seed germination and seedling growth. These findings indicate that OsCAF1B participates in sugar-induced αAmy3 mRNA degradation and deadenylation and acts a negative factor for germination and seedling development.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Hsin-Yi Liu
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Yin-Chuan Tsai
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Wei-Lun Chou
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Chun-Chen Chang
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| |
Collapse
|
63
|
Mitchell DC, Menon A, Garner AL. Cyclin-dependent kinase 4 inhibits the translational repressor 4E-BP1 to promote cap-dependent translation during mitosis-G1 transition. FEBS Lett 2019; 594:1307-1318. [PMID: 31853978 DOI: 10.1002/1873-3468.13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/18/2023]
Abstract
Phosphorylation of translational repressor eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) controls the initiation of cap-dependent translation, a type of protein synthesis that is frequently upregulated in human diseases such as cancer. Because of its critical cellular function, it is not surprising that multiple kinases can post-translationally modify 4E-BP1 to drive aberrant cap-dependent translation. We recently reported a site-selective chemoproteomic method for uncovering kinase-substrate interactions, and using this approach, we discovered the cyclin-dependent kinase (CDK)4 as a new 4E-BP1 kinase. Herein, we describe our extension of this work and reveal the role of CDK4 in modulating 4E-BP1 activity in the transition from mitosis to G1, thereby demonstrating a novel role for this kinase in cell cycle regulation.
Collapse
Affiliation(s)
- Dylan C Mitchell
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Amanda L Garner
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
64
|
Harvey RF, Pöyry TAA, Stoneley M, Willis AE. Signaling from mTOR to eIF2α mediates cell migration in response to the chemotherapeutic doxorubicin. Sci Signal 2019; 12:12/612/eaaw6763. [PMID: 31848319 DOI: 10.1126/scisignal.aaw6763] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After exposure to cytotoxic chemotherapeutics, tumor cells alter their translatome to promote cell survival programs through the regulation of eukaryotic initiation factor 4F (eIF4F) and ternary complex. Compounds that block mTOR signaling and eIF4F complex formation, such as rapamycin and its analogs, have been used in combination therapies to enhance cell killing, although their success has been limited. This is likely because the cross-talk between signaling pathways that coordinate eIF4F regulation with ternary complex formation after treatment with genotoxic therapeutics has not been fully explored. Here, we described a regulatory pathway downstream of p53 in which inhibition of mTOR after DNA damage promoted cross-talk signaling and led to eIF2α phosphorylation. We showed that eIF2α phosphorylation did not inhibit protein synthesis but was instead required for cell migration and that pharmacologically blocking this pathway with either ISRIB or trazodone limited cell migration. These results support the notion that therapeutic targeting of eIF2α signaling could restrict tumor cell metastasis and invasion and could be beneficial to subsets of patients with cancer.
Collapse
Affiliation(s)
- Robert F Harvey
- Medical Research Council Toxicology Unit, University of Cambridge, Lancaster Rd., Leicester LE1 9HN, UK
| | - Tuija A A Pöyry
- Medical Research Council Toxicology Unit, University of Cambridge, Lancaster Rd., Leicester LE1 9HN, UK
| | - Mark Stoneley
- Medical Research Council Toxicology Unit, University of Cambridge, Lancaster Rd., Leicester LE1 9HN, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, University of Cambridge, Lancaster Rd., Leicester LE1 9HN, UK.
| |
Collapse
|
65
|
Kang W, Jiang F, Wu YD, Wales DJ. Multifunnel Energy Landscapes for Phosphorylated Translation Repressor 4E-BP2 and Its Mutants. J Chem Theory Comput 2019; 16:800-810. [PMID: 31774674 PMCID: PMC7462351 DOI: 10.1021/acs.jctc.9b01042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Upon phosphorylation of specific sites, eukaryotic translation initiation factor 4E (eIF4E) binding protein 2 (4E-BP2) undergoes a fundamental structural transformation from a disordered state to a four-stranded β-sheet, leading to decreased binding affinity for its partner. This change reflects the significant effects of phosphate groups on the underlying energy landscapes of proteins. In this study, we combine high-temperature molecular dynamics simulations and discrete path sampling to construct energy landscapes for a doubly phosphorylated 4E-BP218-62 and two mutants (a single site mutant D33K and a double mutant Y54A/L59A). The potential and free energy landscapes for these three systems are multifunneled with the folded state and several alternative states lying close in energy, suggesting perhaps a multifunneled and multifunctional protein. Hydrogen bonds between phosphate groups and other residues not only stabilize these low-lying conformations to different extents but also play an important role in interstate transitions. From the energy landscape perspective, our results explain some interesting experimental observations, including the low stability of doubly phosphorylated 4E-BP2 and its moderate binding to eIF4E and the inability of phosphorylated Y54A/L59A to fold.
Collapse
Affiliation(s)
- Wei Kang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| |
Collapse
|
66
|
An T, Liu Y, Gourguechon S, Wang CC, Li Z. CDK Phosphorylation of Translation Initiation Factors Couples Protein Translation with Cell-Cycle Transition. Cell Rep 2019; 25:3204-3214.e5. [PMID: 30540951 PMCID: PMC6350937 DOI: 10.1016/j.celrep.2018.11.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/18/2018] [Accepted: 11/15/2018] [Indexed: 01/17/2023] Open
Abstract
Protein translation in eukaryotes is cell-cycle dependent, with translation rates more robust in G1 phase of the cell cycle than in mitosis. However, whether the fundamental cell-cycle control machinery directly activates protein translation during the G1/S cell-cycle transition remains unknown. Using the early divergent eukaryote Trypanosoma brucei as a model organism, we report that the G1 cyclin-dependent kinase CRK1 phosphorylates two translation initiation factors, eIF4E4 and PABP1, to promote the G1/S cell-cycle transition and global protein translation. Phosphorylation of eIF4E4 by CRK1 enhances binding to the m7G cap structure and interaction with eIF4E4 and eIF4G3, and phosphorylation of PABP1 by CRK1 promotes association with the poly(A) sequence, self-interaction, and interaction with eIF4E4. These findings demonstrate that cyclin-dependent kinase-mediated regulation of translation initiation factors couples global protein translation with the G1/S cell-cycle transition. Protein translation is cell-cycle dependent, with more robust translation rates in the G1 phase of the cell cycle than in mitosis. An et al. show that the G1 cyclin-dependent kinase CRK1 phosphorylates translation initiation factors eIF4E4 and PABP1 to couple protein translation initiation with the G1/S cell-cycle transition.
Collapse
Affiliation(s)
- Tai An
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yi Liu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Stéphane Gourguechon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ching C Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
67
|
Kumar A, Narayanan V, Sekhar A. Characterizing Post-Translational Modifications and Their Effects on Protein Conformation Using NMR Spectroscopy. Biochemistry 2019; 59:57-73. [PMID: 31682116 DOI: 10.1021/acs.biochem.9b00827] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diversity of the cellular proteome substantially exceeds the number of genes coded by the DNA of an organism because one or more residues in a majority of eukaryotic proteins are post-translationally modified (PTM) by the covalent conjugation of specific chemical groups. We now know that PTMs alter protein conformation and function in ways that are not entirely understood at the molecular level. NMR spectroscopy has been particularly successful as an analytical tool in elucidating the themes underlying the structural role of PTMs. In this Perspective, we focus on the NMR-based characterization of three abundant PTMs: phosphorylation, acetylation, and glycosylation. We detail NMR methods that have found success in detecting these modifications at a site-specific level. We also highlight NMR studies that have mapped the conformational changes ensuing from these PTMs as well as evaluated their relation to function. The NMR toolbox is expanding rapidly with experiments available to probe not only the average structure of biomolecules but also how this structure changes with time on time scales ranging from picoseconds to seconds. The atomic resolution insights into the biomolecular structure, dynamics, and mechanism accessible from NMR spectroscopy ensure that NMR will continue to be at the forefront of research in the structural biology of PTMs.
Collapse
Affiliation(s)
- Ajith Kumar
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| | - Vaishali Narayanan
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| | - Ashok Sekhar
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| |
Collapse
|
68
|
Kim HJ. Cell Fate Control by Translation: mRNA Translation Initiation as a Therapeutic Target for Cancer Development and Stem Cell Fate Control. Biomolecules 2019; 9:biom9110665. [PMID: 31671902 PMCID: PMC6921038 DOI: 10.3390/biom9110665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Translation of mRNA is an important process that controls cell behavior and gene regulation because proteins are the functional molecules that determine cell types and function. Cancer develops as a result of genetic mutations, which lead to the production of abnormal proteins and the dysregulation of translation, which in turn, leads to aberrant protein synthesis. In addition, the machinery that is involved in protein synthesis plays critical roles in stem cell fate determination. In the current review, recent advances in the understanding of translational control, especially translational initiation in cancer development and stem cell fate control, are described. Therapeutic targets of mRNA translation such as eIF4E, 4EBP, and eIF2, for cancer treatment or stem cell fate regulation are reviewed. Upstream signaling pathways that regulate and affect translation initiation were introduced. It is important to regulate the expression of protein for normal cell behavior and development. mRNA translation initiation is a key step to regulate protein synthesis, therefore, identifying and targeting molecules that are critical for protein synthesis is necessary and beneficial to develop cancer therapeutics and stem cells fate regulation.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
| |
Collapse
|
69
|
Mechanisms underlying synergy between DNA topoisomerase I-targeted drugs and mTOR kinase inhibitors in NF1-associated malignant peripheral nerve sheath tumors. Oncogene 2019; 38:6585-6598. [PMID: 31444410 DOI: 10.1038/s41388-019-0965-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are soft-tissue sarcomas that frequently arise in patients with neurofibromatosis type 1 (NF1). Most of these tumors are unresectable at diagnosis and minimally responsive to conventional treatment, lending urgency to the identification of new pathway dependencies and drugs with potent antitumor activities. We therefore examined a series of candidate agents for their ability to induce apoptosis in MPNST cells arising in nf1/tp53-deficient zebrafish. In this study, we found that DNA topoisomerase I-targeted drugs and mTOR kinase inhibitors were the most effective single agents in eliminating MPNST cells without prohibitive toxicity. In addition, three members of these classes of drugs, either AZD2014 or INK128 in combination with irinotecan, acted synergistically to induce apoptosis both in vitro and in vivo. In mechanistic studies, irinotecan not only induces apoptosis by eliciting a DNA damage response, but also acts synergistically with AZD2014 to potentiate the hypophosphorylation of 4E-BP1, a downstream target of mTORC1. Profound hypophosphorylation of 4E-BP1 induced by this drug combination causes an arrest of protein synthesis, which potently induces tumor cell apoptosis. Our findings provide a compelling rationale for further in vivo evaluation of the combination of DNA topoisomerase I-targeted drugs and mTOR kinase inhibitors against these aggressive nerve sheath tumors.
Collapse
|
70
|
Waltero C, de Abreu LA, Alonso T, Nunes-da-Fonseca R, da Silva Vaz I, Logullo C. TOR as a Regulatory Target in Rhipicephalus microplus Embryogenesis. Front Physiol 2019; 10:965. [PMID: 31417424 PMCID: PMC6684781 DOI: 10.3389/fphys.2019.00965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Embryogenesis is a metabolically intensive process carried out under tightly controlled conditions. The insulin signaling pathway regulates glucose homeostasis and is essential for reproduction in metazoan model species. Three key targets are part of this signaling pathway: protein kinase B (PKB, or AKT), glycogen synthase kinase 3 (GSK-3), and target of rapamycin (TOR). While the role of AKT and GSK-3 has been investigated during tick embryonic development, the role of TOR remains unknown. In this study, TOR and two other downstream effectors, namely S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), were investigated in in vitro studies using the tick embryonic cell line BME26. First, we show that exogenous insulin can stimulate TOR transcription. Second, TOR chemical inhibition led to a decrease in BME26 cell viability, loss of membrane integrity, and downregulation of S6K and 4E-BP1 transcription. Conversely, treating BME26 cells with chemical inhibitors of AKT or GSK-3 did not affect S6K and 4E-BP1 transcription, showing that TOR is specifically required to activate its downstream targets. To address the role of TOR in tick reproduction, in vivo studies were performed. Analysis of relative transcription during different stages of tick embryonic development showed different levels of transcription for TOR, and a maternal deposition of S6K and 4E-BP1 transcripts. Injection of TOR double-stranded RNA (dsRNA) into partially fed females led to a slight delay in oviposition, an atypical egg external morphology, decreased vitellin content in eggs, and decreased larval hatching. Taken together, our data show that the TOR signaling pathway is important for tick reproduction, that TOR acts as a regulatory target in Rhipicephalus microplus embryogenesis and represents a promising target for the development of compounds for tick control.
Collapse
Affiliation(s)
- Camila Waltero
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Leonardo Araujo de Abreu
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Thayná Alonso
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Centro de Biotecnologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
71
|
Meleppattu S, Arthanari H, Zinoviev A, Boeszoermenyi A, Wagner G, Shapira M, Léger-Abraham M. Structural basis for LeishIF4E-1 modulation by an interacting protein in the human parasite Leishmania major. Nucleic Acids Res 2019; 46:3791-3801. [PMID: 29562352 PMCID: PMC5909430 DOI: 10.1093/nar/gky194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/06/2018] [Indexed: 01/06/2023] Open
Abstract
Leishmania parasites are unicellular pathogens that are transmitted to humans through the bite of infected sandflies. Most of the regulation of their gene expression occurs post-transcriptionally, and the different patterns of gene expression required throughout the parasites’ life cycle are regulated at the level of translation. Here, we report the X-ray crystal structure of the Leishmania cap-binding isoform 1, LeishIF4E-1, bound to a protein fragment of previously unknown function, Leish4E-IP1, that binds tightly to LeishIF4E-1. The molecular structure, coupled to NMR spectroscopy experiments and in vitro cap-binding assays, reveal that Leish4E-IP1 allosterically destabilizes the binding of LeishIF4E-1 to the 5′ mRNA cap. We propose mechanisms through which Leish4E-IP1-mediated LeishIF4E-1 inhibition could regulate translation initiation in the human parasite.
Collapse
Affiliation(s)
- Shimi Meleppattu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Alexandra Zinoviev
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Andras Boeszoermenyi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Mélissa Léger-Abraham
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
72
|
Grüner S, Weber R, Peter D, Chung MY, Igreja C, Valkov E, Izaurralde E. Structural motifs in eIF4G and 4E-BPs modulate their binding to eIF4E to regulate translation initiation in yeast. Nucleic Acids Res 2019; 46:6893-6908. [PMID: 30053226 PMCID: PMC6061780 DOI: 10.1093/nar/gky542] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/02/2018] [Indexed: 12/13/2022] Open
Abstract
The interaction of the eukaryotic initiation factor 4G (eIF4G) with the cap-binding protein eIF4E initiates cap-dependent translation and is regulated by the 4E-binding proteins (4E-BPs), which compete with eIF4G to repress translation. Metazoan eIF4G and 4E-BPs interact with eIF4E via canonical and non-canonical motifs that bind to the dorsal and lateral surface of eIF4E in a bipartite recognition mode. However, previous studies pointed to mechanistic differences in how fungi and metazoans regulate protein synthesis. We present crystal structures of the yeast eIF4E bound to two yeast 4E-BPs, p20 and Eap1p, as well as crystal structures of a fungal eIF4E–eIF4G complex. We demonstrate that the core principles of molecular recognition of eIF4E are in fact highly conserved among translational activators and repressors in eukaryotes. Finally, we reveal that highly specialized structural motifs do exist and serve to modulate the affinity of protein-protein interactions that regulate cap-dependent translation initiation in fungi.
Collapse
Affiliation(s)
- Stefan Grüner
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Daniel Peter
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Min-Yi Chung
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| |
Collapse
|
73
|
Cordeiro Rodrigues RJ, de Jesus Domingues AM, Hellmann S, Dietz S, de Albuquerque BFM, Renz C, Ulrich HD, Sarkies P, Butter F, Ketting RF. PETISCO is a novel protein complex required for 21U RNA biogenesis and embryonic viability. Genes Dev 2019; 33:857-870. [PMID: 31147388 PMCID: PMC6601512 DOI: 10.1101/gad.322446.118] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/26/2019] [Indexed: 01/05/2023]
Abstract
Piwi proteins are important for germ cell development in most animals. These proteins are guided to specific targets by small guide RNAs, referred to as piRNAs or 21U RNAs in Caenorhabditis elegans In this organism, even though genetic screens have uncovered 21U RNA biogenesis factors, little is known about how these factors interact or what they do. Based on the previously identified 21U biogenesis factor PID-1 (piRNA-induced silencing-defective 1), we here define a novel protein complex, PETISCO (PID-3, ERH-2, TOFU-6, and IFE-3 small RNA complex), that is required for 21U RNA biogenesis. PETISCO contains both potential 5' cap and 5' phosphate RNA-binding domains and interacts with capped 21U precursor RNA. We resolved the architecture of PETISCO and revealed a second function for PETISCO in embryonic development. This essential function of PETISCO is mediated not by PID-1 but by the novel protein TOST-1 (twenty-one U pathway antagonist). In contrast, TOST-1 is not essential for 21U RNA biogenesis. Both PID-1 and TOST-1 interact directly with ERH-2 using a conserved sequence motif. Finally, our data suggest a role for TOST-1:PETISCO in SL1 homeostasis in the early embryo. Our work describes a key complex for 21U RNA processing in C. elegans and strengthens the view that 21U RNA biogenesis is built on an snRNA-related pathway.
Collapse
Affiliation(s)
- Ricardo J Cordeiro Rodrigues
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics, and Genome Stability, 55128 Mainz, Germany
| | | | - Svenja Hellmann
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Sabrina Dietz
- International PhD Programme on Gene Regulation, Epigenetics, and Genome Stability, 55128 Mainz, Germany
- Quantitative Proteomics Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Bruno F M de Albuquerque
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, 4099-003 Porto, Portugal
| | - Christian Renz
- Maintenance of Genome Stability Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Helle D Ulrich
- Maintenance of Genome Stability Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Peter Sarkies
- Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Falk Butter
- Quantitative Proteomics Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
| |
Collapse
|
74
|
Proud CG. Phosphorylation and Signal Transduction Pathways in Translational Control. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033050. [PMID: 29959191 DOI: 10.1101/cshperspect.a033050] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein synthesis, including the translation of specific messenger RNAs (mRNAs), is regulated by extracellular stimuli such as hormones and by the levels of certain nutrients within cells. This control involves several well-understood signaling pathways and protein kinases, which regulate the phosphorylation of proteins that control the translational machinery. These pathways include the mechanistic target of rapamycin complex 1 (mTORC1), its downstream effectors, and the mitogen-activated protein (MAP) kinase (extracellular ligand-regulated kinase [ERK]) signaling pathway. This review describes the regulatory mechanisms that control translation initiation and elongation factors, in particular the effects of phosphorylation on their interactions or activities. It also discusses current knowledge concerning the impact of these control systems on the translation of specific mRNAs or subsets of mRNAs, both in physiological processes and in diseases such as cancer.
Collapse
Affiliation(s)
- Christopher G Proud
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, North Terrace, Adelaide SA5000, Australia; and School of Biological Sciences, University of Adelaide, Adelaide SA5000, Australia
| |
Collapse
|
75
|
Terrao M, Marucha KK, Mugo E, Droll D, Minia I, Egler F, Braun J, Clayton C. The suppressive cap-binding complex factor 4EIP is required for normal differentiation. Nucleic Acids Res 2019; 46:8993-9010. [PMID: 30124912 PMCID: PMC6158607 DOI: 10.1093/nar/gky733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022] Open
Abstract
Trypanosoma brucei live in mammals as bloodstream forms and in the Tsetse midgut as procyclic forms. Differentiation from one form to the other proceeds via a growth-arrested stumpy form with low messenger RNA (mRNA) content and translation. The parasites have six eIF4Es and five eIF4Gs. EIF4E1 pairs with the mRNA-binding protein 4EIP but not with any EIF4G. EIF4E1 and 4EIP each inhibit expression when tethered to a reporter mRNA, but while tethered EIF4E1 suppresses only when 4EIP is present, suppression by tethered 4EIP does not require the interaction with EIF4E1. In growing bloodstream forms, 4EIP is preferentially associated with unstable mRNAs. Bloodstream- or procyclic-form trypanosomes lacking 4EIP have only a marginal growth disadvantage. Bloodstream forms without 4EIP are, however, defective in translation suppression during stumpy-form differentiation and cannot subsequently convert to growing procyclic forms. Intriguingly, the differentiation defect can be complemented by a truncated 4EIP that does not interact with EIF4E1. In contrast, bloodstream forms lacking EIF4E1 have a growth defect, stumpy formation seems normal, but they appear unable to grow as procyclic forms. We suggest that 4EIP and EIF4E1 fine-tune mRNA levels in growing cells, and that 4EIP contributes to translation suppression during differentiation to the stumpy form.
Collapse
Affiliation(s)
- Monica Terrao
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Kevin K Marucha
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Elisha Mugo
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Dorothea Droll
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Igor Minia
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Franziska Egler
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Johanna Braun
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Christine Clayton
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| |
Collapse
|
76
|
Bruns AN, Li S, Mohannath G, Bisaro DM. Phosphorylation of Arabidopsis eIF4E and eIFiso4E by SnRK1 inhibits translation. FEBS J 2019; 286:3778-3796. [PMID: 31120171 DOI: 10.1111/febs.14935] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/28/2019] [Accepted: 05/21/2019] [Indexed: 01/01/2023]
Abstract
Regulation of protein synthesis is critical for maintaining cellular homeostasis. In mammalian systems, translational regulatory networks have been elucidated in considerable detail. In plants, however, regulation occurs through different mechanisms that remain largely elusive. In this study, we present evidence that the Arabidopsis thaliana energy sensing kinase SnRK1, a homologue of mammalian AMP-activated kinase and yeast sucrose non-fermenting 1 (SNF1), inhibits translation by phosphorylating the cap binding proteins eIF4E and eIFiso4E. We establish that eIF4E and eIFiso4E contain two deeply conserved SnRK1 consensus target sites and that both interact with SnRK1 in vivo. We then demonstrate that SnRK1 phosphorylation inhibits the ability of Arabidopsis eIF4E and eIFiso4E to complement a yeast strain lacking endogenous eIF4E, and that inhibition correlates with repression of polysome formation. Finally, we show that SnRK1 over-expression in Nicotiana benthamiana plants reduces polysome formation, and that this effect can be counteracted by transient expression of eIF4E or mutant eIF4E containing non-phosphorylatable SnRK1 target residues, but not by a phosphomimic eIF4E. Together, these studies elucidate a novel and direct pathway for translational control in plant cells. In light of previous findings that SnRK1 conditions an innate antiviral defense and is inhibited by geminivirus pathogenicity factors, we speculate that phosphorylation of cap binding proteins may be a component of the resistance mechanism.
Collapse
Affiliation(s)
- Aaron N Bruns
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.,Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Sizhun Li
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Gireesha Mohannath
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - David M Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.,Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
77
|
Gallagher EE, Song JM, Menon A, Mishra LD, Chmiel AF, Garner AL. Consideration of Binding Kinetics in the Design of Stapled Peptide Mimics of the Disordered Proteins Eukaryotic Translation Initiation Factor 4E-Binding Protein 1 and Eukaryotic Translation Initiation Factor 4G. J Med Chem 2019; 62:4967-4978. [PMID: 31033289 PMCID: PMC6679956 DOI: 10.1021/acs.jmedchem.9b00068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein disorder plays a crucial role in signal transduction and is key for many cellular processes including transcription, translation, and cell cycle. Within the intrinsically disordered protein interactome, the α-helix is commonly used for binding, which is induced via a disorder-to-order transition. Because the targeting of protein-protein interactions (PPIs) remains an important challenge in medicinal chemistry, efforts have been made to mimic this secondary structure for rational inhibitor design through the use of stapled peptides. Cap-dependent mRNA translation is regulated by two disordered proteins, 4E-BP1 and eIF4G, that inhibit or stimulate the activity of the m7G cap-binding translation initiation factor, eIF4E, respectively. Both use an α-helical motif for eIF4E binding, warranting the investigation of stapled peptide mimics for manipulating eIF4E PPIs. Herein, we describe our efforts toward this goal, resulting in the synthesis of a cell-active stapled peptide for further development in manipulating aberrant cap-dependent translation in human diseases.
Collapse
Affiliation(s)
- Erin E Gallagher
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - James M Song
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , United States
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Lauren D Mishra
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Alyah F Chmiel
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
78
|
Rutkovsky AC, Yeh ES, Guest ST, Findlay VJ, Muise-Helmericks RC, Armeson K, Ethier SP. Eukaryotic initiation factor 4E-binding protein as an oncogene in breast cancer. BMC Cancer 2019; 19:491. [PMID: 31122207 PMCID: PMC6533768 DOI: 10.1186/s12885-019-5667-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/01/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Eukaryotic Initiation Factor 4E-Binding Protein (EIF4EBP1, 4EBP1) is overexpressed in many human cancers including breast cancer, yet the role of 4EBP1 in breast cancer remains understudied. Despite the known role of 4EBP1 as a negative regulator of cap-dependent protein translation, 4EBP1 is predicted to be an essential driving oncogene in many cancer cell lines in vitro, and can act as a driver of cancer cell proliferation. EIF4EBP1 is located within the 8p11-p12 genomic locus, which is frequently amplified in breast cancer and is known to predict poor prognosis and resistance to endocrine therapy. METHODS Here we evaluated the effect of 4EBP1 targeting using shRNA knock-down of expression of 4EBP1, as well as response to the mTORC targeted drug everolimus in cell lines representing different breast cancer subtypes, including breast cancer cells with the 8p11-p12 amplicon, to better define a context and mechanism for oncogenic 4EBP1. RESULTS Using a genome-scale shRNA screen on the SUM panel of breast cancer cell lines, we found 4EBP1 to be a strong hit in the 8p11 amplified SUM-44 cells, which have amplification and overexpression of 4EBP1. We then found that knock-down of 4EBP1 resulted in dramatic reductions in cell proliferation in 8p11 amplified breast cancer cells as well as in other luminal breast cancer cell lines, but had little or no effect on the proliferation of immortalized but non-tumorigenic human mammary epithelial cells. Kaplan-Meier analysis of EIF4EBP1 expression in breast cancer patients demonstrated that overexpression of this gene was associated with reduced relapse free patient survival across all breast tumor subtypes. CONCLUSIONS These results are consistent with an oncogenic role of 4EBP1 in luminal breast cancer and suggests a role for this protein in cell proliferation distinct from its more well-known role as a regulator of cap-dependent translation.
Collapse
Affiliation(s)
- Alexandria C. Rutkovsky
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Elizabeth S. Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, MSC 509, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Stephen T. Guest
- Department of Computational Medicine and Bioinformatics, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109 USA
| | - Victoria J. Findlay
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
| | - Robin C. Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, BSB 601, MSC 508, Charleston, SC 29425 USA
| | - Kent Armeson
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street Suite 303 MSC 835, Charleston, USA
| | - Stephen P. Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| |
Collapse
|
79
|
Volpon L, Osborne MJ, Borden KL. Biochemical and Structural Insights into the Eukaryotic Translation Initiation Factor eIF4E. Curr Protein Pept Sci 2019; 20:525-535. [DOI: 10.2174/1389203720666190110142438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 01/04/2019] [Indexed: 12/18/2022]
Abstract
A major question in cell and cancer biology is concerned with understanding the flow of
information from gene to protein. Indeed, many studies indicate that the proteome can be decoupled
from the transcriptome. A major source of this decoupling is post-transcriptional regulation. The eukaryotic
translation initiation factor eIF4E serves as an excellent example of a protein that can modulate
the proteome at the post-transcriptional level. eIF4E is elevated in many cancers thus highlighting
the relevance of this mode of control to biology. In this review, we provide a brief overview of various
functions of eIF4E in RNA metabolism e.g. in nuclear-cytoplasmic RNA export, translation,
RNA stability and/or sequestration. We focus on the modalities of eIF4E regulation at the biochemical
and particularly structural level. In this instance, we describe not only the importance for the m7Gcap
eIF4E interaction but also of recently discovered non-traditional RNA-eIF4E interactions as well
as cap-independent activities of eIF4E. Further, we describe several distinct structural modalities used
by the cell and some viruses to regulate or co-opt eIF4E, substantially extending the types of proteins
that can regulate eIF4E from the traditional eIF4E-binding proteins (e.g. 4E-BP1 and eIF4G). Finally,
we provide an overview of the results of targeting eIF4E activity in the clinic.
Collapse
Affiliation(s)
- Laurent Volpon
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Universite de Montreal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, Quebec, Canada
| | - Michael J. Osborne
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Universite de Montreal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, Quebec, Canada
| | - Katherine L.B. Borden
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Universite de Montreal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, Quebec, Canada
| |
Collapse
|
80
|
Advani VM, Ivanov P. Translational Control under Stress: Reshaping the Translatome. Bioessays 2019; 41:e1900009. [PMID: 31026340 PMCID: PMC6541386 DOI: 10.1002/bies.201900009] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/06/2019] [Indexed: 01/01/2023]
Abstract
Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of messenger RNA (mRNA) translation involves well-understood stress-activated kinases that target components of translation initiation machinery, resulting in the robust inhibition of general translation and promotion of the translation of stress-responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies focus on the key roles of transfer RNA (tRNA) in stress-induced translational reprogramming. These include stress-specific regulation of tRNA pools, codon-biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress, resulting in adaptation and cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress.
Collapse
Affiliation(s)
- Vivek M. Advani
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- The Broad Institute of Harvard and M.I.T., Cambridge, Massachusetts, United States of America
| |
Collapse
|
81
|
Lu H, Mazumder M, Jaikaran ASI, Kumar A, Leis EK, Xu X, Altmann M, Cochrane A, Woolley GA. A Yeast System for Discovering Optogenetic Inhibitors of Eukaryotic Translation Initiation. ACS Synth Biol 2019; 8:744-757. [PMID: 30901519 DOI: 10.1021/acssynbio.8b00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development, and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis noninvasively within minutes and with a spatial scale as small as a single synapse. Here, we present a hybrid yeast system where growth depends on the activity of human eukaryotic initiation factor 4E (eIF4E) that is suitable for screening optogenetic designs for the down-regulation of protein synthesis. We used this system to screen a diverse initial panel of 15 constructs designed to couple a light switchable domain (PYP, RsLOV, AsLOV, Dronpa) to 4EBP2 (eukaryotic initiation factor 4E binding protein 2), a native inhibitor of translation initiation. We identified cLIPS1 (circularly permuted LOV inhibitor of protein synthesis 1), a fusion of a segment of 4EBP2 and a circularly permuted version of the LOV2 domain from Avena sativa, as a photoactivated inhibitor of translation. Adapting the screen for higher throughput, we tested small libraries of cLIPS1 variants and found cLIPS2, a construct with an improved degree of optical control. We show that these constructs can both inhibit translation in yeast harboring a human eIF4E in vivo, and bind human eIF4E in vitro in a light-dependent manner. This hybrid yeast system thus provides a convenient way for discovering optogenetic constructs that can regulate human eIF4E-dependent translation initiation in a mechanistically defined manner.
Collapse
Affiliation(s)
- Huixin Lu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mostafizur Mazumder
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Anna S. I. Jaikaran
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Anil Kumar
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Eric K. Leis
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Xiuling Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Michael Altmann
- Institut für Biochemie und Molekulare Medizin, Universität Bern, Bühlstr. 28, CH-3012 Bern, Switzerland
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - G. Andrew Woolley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
82
|
Yusa A, Neriya Y, Hashimoto M, Yoshida T, Fujimoto Y, Hosoe N, Keima T, Tokumaru K, Maejima K, Netsu O, Yamaji Y, Namba S. Functional conservation of EXA1 among diverse plant species for the infection by a family of plant viruses. Sci Rep 2019; 9:5958. [PMID: 30976020 PMCID: PMC6459814 DOI: 10.1038/s41598-019-42400-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Since the propagation of plant viruses depends on various host susceptibility factors, deficiency in them can prevent viral infection in cultivated and model plants. Recently, we identified the susceptibility factor Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana, and revealed that EXA1-mediated resistance was effective against three potexviruses. Although EXA1 homolog genes are found in tomato and rice, little is known about which viruses depend on EXA1 for their infection capability and whether the function of EXA1 homologs in viral infection is conserved across multiple plant species, including crops. To address these questions, we generated knockdown mutants using virus-induced gene silencing in two Solanaceae species, Nicotiana benthamiana and tomato. In N. benthamiana, silencing of an EXA1 homolog significantly compromised the accumulation of potexviruses and a lolavirus, a close relative of potexviruses, whereas transient expression of EXA1 homologs from tomato and rice complemented viral infection. EXA1 dependency for potexviral infection was also conserved in tomato. These results indicate that EXA1 is necessary for effective accumulation of potexviruses and a lolavirus, and that the function of EXA1 in viral infection is conserved among diverse plant species.
Collapse
Affiliation(s)
- Akira Yusa
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Laboratory of Plant Pathology, School of Agriculture, Utsunomiya University, Mine-machi 350, Utsunomiya, Tochigi, 321-8505, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tetsuya Yoshida
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuji Fujimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoi Hosoe
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takuya Keima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kai Tokumaru
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Osamu Netsu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
83
|
A threonyl-tRNA synthetase-mediated translation initiation machinery. Nat Commun 2019; 10:1357. [PMID: 30902983 PMCID: PMC6430810 DOI: 10.1038/s41467-019-09086-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
A fundamental question in biology is how vertebrates evolved and differ from invertebrates, and little is known about differences in the regulation of translation in the two systems. Herein, we identify a threonyl-tRNA synthetase (TRS)-mediated translation initiation machinery that specifically interacts with eIF4E homologous protein, and forms machinery that is structurally analogous to the eIF4F-mediated translation initiation machinery via the recruitment of other translation initiation components. Biochemical and RNA immunoprecipitation analyses coupled to sequencing suggest that this machinery emerged as a gain-of-function event in the vertebrate lineage, and it positively regulates the translation of mRNAs required for vertebrate development. Collectively, our findings demonstrate that TRS evolved to regulate vertebrate translation initiation via its dual role as a scaffold for the assembly of initiation components and as a selector of target mRNAs. This work highlights the functional significance of aminoacyl-tRNA synthetases in the emergence and control of higher order organisms. The initiation of translation is a highly regulated process that contributes to specific gene expression programs. Here the authors find that, in vertebrate, threonyl-tRNA synthetase (TRS) can act as a scaffold for the initiation machinery to stimulate the translation of a specific set of mRNAs.
Collapse
|
84
|
Dierschke SK, Miller WP, Favate JS, Shah P, Imamura Kawasawa Y, Salzberg AC, Kimball SR, Jefferson LS, Dennis MD. O-GlcNAcylation alters the selection of mRNAs for translation and promotes 4E-BP1-dependent mitochondrial dysfunction in the retina. J Biol Chem 2019; 294:5508-5520. [PMID: 30733333 PMCID: PMC6462503 DOI: 10.1074/jbc.ra119.007494] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/31/2019] [Indexed: 02/05/2023] Open
Abstract
Diabetes promotes the posttranslational modification of proteins by O-linked addition of GlcNAc (O-GlcNAcylation) to Ser/Thr residues of proteins and thereby contributes to diabetic complications. In the retina of diabetic mice, the repressor of mRNA translation, eIF4E-binding protein 1 (4E-BP1), is O-GlcNAcylated, and sequestration of the cap-binding protein eukaryotic translation initiation factor (eIF4E) is enhanced. O-GlcNAcylation has also been detected on several eukaryotic translation initiation factors and ribosomal proteins. However, the functional consequence of this modification is unknown. Here, using ribosome profiling, we evaluated the effect of enhanced O-GlcNAcylation on retinal gene expression. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation. The principal effect of TMG on retinal gene expression was observed in ribosome-associated mRNAs (i.e. mRNAs undergoing translation), as less than 1% of mRNAs exhibited changes in abundance. Remarkably, ∼19% of the transcriptome exhibited TMG-induced changes in ribosome occupancy, with 1912 mRNAs having reduced and 1683 mRNAs having increased translational rates. In the retina, the effect of O-GlcNAcase inhibition on translation of specific mitochondrial proteins, including superoxide dismutase 2 (SOD2), depended on 4E-BP1/2. O-GlcNAcylation enhanced cellular respiration and promoted mitochondrial superoxide levels in WT cells, and 4E-BP1/2 deletion prevented O-GlcNAcylation-induced mitochondrial superoxide in cells in culture and in the retina. The retina of diabetic WT mice exhibited increased reactive oxygen species levels, an effect not observed in diabetic 4E-BP1/2-deficient mice. These findings provide evidence for a mechanism whereby diabetes-induced O-GlcNAcylation promotes oxidative stress in the retina by altering the selection of mRNAs for translation.
Collapse
Affiliation(s)
- Sadie K Dierschke
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - William P Miller
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - John S Favate
- the Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Premal Shah
- the Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Yuka Imamura Kawasawa
- the Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, and
| | - Anna C Salzberg
- the Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Scot R Kimball
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Leonard S Jefferson
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Michael D Dennis
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
85
|
Translational Control of Canonical and Non-Canonical Translation Initiation Factors at the Sea Urchin Egg to Embryo Transition. Int J Mol Sci 2019; 20:ijms20030626. [PMID: 30717141 PMCID: PMC6387300 DOI: 10.3390/ijms20030626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Sea urchin early development is a powerful model to study translational regulation under physiological conditions. Fertilization triggers an activation of the translation machinery responsible for the increase of protein synthesis necessary for the completion of the first embryonic cell cycles. The cap-binding protein eIF4E, the helicase eIF4A and the large scaffolding protein eIF4G are assembled upon fertilization to form an initiation complex on mRNAs involved in cap-dependent translation initiation. The presence of these proteins in unfertilized and fertilized eggs has already been demonstrated, however data concerning the translational status of translation factors are still scarce. Using polysome fractionation, we analyzed the impact of fertilization on the recruitment of mRNAs encoding initiation factors. Strikingly, whereas the mRNAs coding eIF4E, eIF4A, and eIF4G were not recruited into polysomes at 1 h post-fertilization, mRNAs for eIF4B and for non-canonical initiation factors such as DAP5, eIF4E2, eIF4E3, or hnRNP Q, are recruited and are differentially sensitive to the activation state of the mechanistic target of rapamycin (mTOR) pathway. We discuss our results suggesting alternative translation initiation in the context of the early development of sea urchins.
Collapse
|
86
|
Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet‐Loedin I, Čermák T, Voytas DF, Choi I, Chadha‐Mohanty P. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1918-1927. [PMID: 29604159 PMCID: PMC6181218 DOI: 10.1111/pbi.12927] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/27/2018] [Accepted: 03/18/2018] [Indexed: 05/03/2023]
Abstract
Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059 V1060 V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties.
Collapse
Affiliation(s)
- Anca Macovei
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
- Present address:
Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Neah R. Sevilla
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Christian Cantos
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
- Present address:
Huck Institute of the Life SciencesPennsylvania State UniversityUniversity ParkPAUSA
| | - Gilda B. Jonson
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Inez Slamet‐Loedin
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Tomáš Čermák
- Department of GeneticsCell Biology & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Daniel F. Voytas
- Department of GeneticsCell Biology & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Il‐Ryong Choi
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Prabhjit Chadha‐Mohanty
- Genetics and Biotechnology DivisionInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| |
Collapse
|
87
|
Patrick RM, Lee JCH, Teetsel JRJ, Yang SH, Choy GS, Browning KS. Discovery and characterization of conserved binding of eIF4E 1 (CBE1), a eukaryotic translation initiation factor 4E-binding plant protein. J Biol Chem 2018; 293:17240-17247. [PMID: 30213859 DOI: 10.1074/jbc.ra118.003945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/08/2018] [Indexed: 12/23/2022] Open
Abstract
In many eukaryotes, translation initiation is regulated by proteins that bind to the mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E). These proteins commonly prevent association of eIF4E with eIF4G or form repressive messenger ribonucleoproteins that exclude the translation machinery. Such gene-regulatory mechanisms in plants, and even the presence of eIF4E-interacting proteins other than eIF4G (and the plant-specific isoform eIFiso4G, which binds eIFiso4E), are unknown. Here, we report the discovery of a plant-specific protein, conserved binding of eIF4E 1 (CBE1). We found that CBE1 has an evolutionarily conserved eIF4E-binding motif in its N-terminal domain and binds eIF4E or eIFiso4E in vitro CBE1 thereby forms cap-binding complexes and is an eIF4E-dependent constituent of these complexes in vivo Of note, plant mutants lacking CBE1 exhibited dysregulation of cell cycle-related transcripts and accumulated higher levels of mRNAs encoding proteins involved in mitosis than did WT plants. Our findings indicate that CBE1 is a plant protein that can form mRNA cap-binding complexes having the potential for regulating gene expression. Because mammalian translation factors are known regulators of cell cycle progression, we propose that CBE1 may represent such first translation factor-associated plant-specific cell cycle regulator.
Collapse
Affiliation(s)
- Ryan M Patrick
- From the Department of Molecular Biosciences and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Jessica C H Lee
- From the Department of Molecular Biosciences and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Jade R J Teetsel
- From the Department of Molecular Biosciences and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Soo-Hyun Yang
- From the Department of Molecular Biosciences and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Grace S Choy
- From the Department of Molecular Biosciences and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Karen S Browning
- From the Department of Molecular Biosciences and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
88
|
Crawford RA, Pavitt GD. Translational regulation in response to stress in Saccharomyces cerevisiae. Yeast 2018; 36:5-21. [PMID: 30019452 PMCID: PMC6492140 DOI: 10.1002/yea.3349] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae must dynamically alter the composition of its proteome in order to respond to diverse stresses. The reprogramming of gene expression during stress typically involves initial global repression of protein synthesis, accompanied by the activation of stress‐responsive mRNAs through both translational and transcriptional responses. The ability of specific mRNAs to counter the global translational repression is therefore crucial to the overall response to stress. Here we summarize the major repressive mechanisms and discuss mechanisms of translational activation in response to different stresses in S. cerevisiae. Taken together, a wide range of studies indicate that multiple elements act in concert to bring about appropriate translational responses. These include regulatory elements within mRNAs, altered mRNA interactions with RNA‐binding proteins and the specialization of ribosomes that each contribute towards regulating protein expression to suit the changing environmental conditions.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| |
Collapse
|
89
|
Fonseca BD, Lahr RM, Damgaard CK, Alain T, Berman AJ. LARP1 on TOP of ribosome production. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1480. [PMID: 29722158 PMCID: PMC6214789 DOI: 10.1002/wrna.1480] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/27/2022]
Abstract
The ribosome is an essential unit of all living organisms that commands protein synthesis, ultimately fuelling cell growth (accumulation of cell mass) and cell proliferation (increase in cell number). The eukaryotic ribosome consists of 4 ribosomal RNAs (rRNAs) and 80 ribosomal proteins (RPs). Despite its fundamental role in every living organism, our present understanding of how higher eukaryotes produce the various ribosome components is incomplete. Uncovering the mechanisms utilized by human cells to generate functional ribosomes will likely have far-reaching implications in human disease. Recent biochemical and structural studies revealed La-related protein 1 (LARP1) as a key new player in RP production. LARP1 is an RNA-binding protein that belongs to the LARP superfamily; it controls the translation and stability of the mRNAs that encode RPs and translation factors, which are characterized by a 5' terminal oligopyrimidine (5'TOP) motif and are thus known as TOP mRNAs. The activity of LARP1 is regulated by the mammalian target of rapamycin complex 1 (mTORC1): a eukaryotic protein kinase complex that integrates nutrient sensing with mRNA translation, particularly that of TOP mRNAs. In this review, we provide an overview of the role of LARP1 in the control of ribosome production in multicellular eukaryotes. This article is categorized under: Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
| | | | | | - Tommy Alain
- Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | |
Collapse
|
90
|
Li F, Wang Q, Xiong X, Wang C, Liu X, Liao Z, Li K, Xie B, Lin Y. Expression of 4E-BP1 and phospho-4E-BP1 correlates with the prognosis of patients with clear cell renal carcinoma. Cancer Manag Res 2018; 10:1553-1563. [PMID: 29942157 PMCID: PMC6007205 DOI: 10.2147/cmar.s158547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Eukaryotic translation initiation factor 4E (eIF4E) is a key regulator of protein synthesis. Changes in eIF4E activity disproportionally affect the translation of a subset of oncogenic mRNAs in some cancers. Materials and methods We have assessed the expression levels of vascular endothelial growth factor C (VEGFC), eIF4E, eIF4E-binding proteins (4E-BPs) and phospho-4E-BP1 in clear cell renal carcinoma (ccRCC; n=101) using immunohistochemistry and analyzed the relevant mRNA levels and survival using online databases. Results The protein levels of VEGFC, an eIF4E-regulated gene, were upregulated in ccRCC tissues compared with adjacent normal renal tissues, indicating an enhanced eIF4E activity in ccRCC. The expression of eIF4E had no significant changes in ccRCC tissues. However, 4E-BP1 and phospho-4E-BP1 were found to be overexpressed in ccRCC tissues (P<0.05), and the high mRNA and protein levels of 4E-BP1 and phospho-4E-BP1 correlated with an unfavorable clinical outcome in ccRCC patients. Meanwhile, the mRNA expression of PIK3CD and PIK3CG were enhanced in ccRCC. Conclusion From these results, we could infer that the increase in eIF4E activity may be caused by the increased phospho-4E-BP1 level, which was probably due to the activation of phosphoinositide 3-kinase (PI3K) pathway.
Collapse
Affiliation(s)
- Feng Li
- Department of Pathology, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.,Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Qingshui Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Xiaoxue Xiong
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Chenyi Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Xiaohua Liu
- Department of Obstetrics, Anxi County Hospital, Anxi, Fujian Province, People's Republic of China
| | - Ziqiang Liao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Ke Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Bifeng Xie
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| |
Collapse
|
91
|
Mazor KM, Dong L, Mao Y, Swanda RV, Qian SB, Stipanuk MH. Effects of single amino acid deficiency on mRNA translation are markedly different for methionine versus leucine. Sci Rep 2018; 8:8076. [PMID: 29795412 PMCID: PMC5967319 DOI: 10.1038/s41598-018-26254-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/04/2018] [Indexed: 11/09/2022] Open
Abstract
Although amino acids are known regulators of translation, the unique contributions of specific amino acids are not well understood. We compared effects of culturing HEK293T cells in medium lacking either leucine, methionine, histidine, or arginine on eIF2 and 4EBP1 phosphorylation and measures of mRNA translation. Methionine starvation caused the most drastic decrease in translation as assessed by polysome formation, ribosome profiling, and a measure of protein synthesis (puromycin-labeled polypeptides) but had no significant effect on eIF2 phosphorylation, 4EBP1 hyperphosphorylation or 4EBP1 binding to eIF4E. Leucine starvation suppressed polysome formation and was the only tested condition that caused a significant decrease in 4EBP1 phosphorylation or increase in 4EBP1 binding to eIF4E, but effects of leucine starvation were not replicated by overexpressing nonphosphorylatable 4EBP1. This suggests the binding of 4EBP1 to eIF4E may not by itself explain the suppression of mRNA translation under conditions of leucine starvation. Ribosome profiling suggested that leucine deprivation may primarily inhibit ribosome loading, whereas methionine deprivation may primarily impair start site recognition. These data underscore our lack of a full understanding of how mRNA translation is regulated and point to a unique regulatory role of methionine status on translation initiation that is not dependent upon eIF2 phosphorylation.
Collapse
Affiliation(s)
- Kevin M Mazor
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Leiming Dong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Robert V Swanda
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
92
|
Battling for Ribosomes: Translational Control at the Forefront of the Antiviral Response. J Mol Biol 2018; 430:1965-1992. [PMID: 29746850 DOI: 10.1016/j.jmb.2018.04.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023]
Abstract
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus-host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.
Collapse
|
93
|
Properties of the ternary complex formed by yeast eIF4E, p20 and mRNA. Sci Rep 2018; 8:6707. [PMID: 29712996 PMCID: PMC5928113 DOI: 10.1038/s41598-018-25273-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/17/2018] [Indexed: 11/25/2022] Open
Abstract
Yeast p20 is a small, acidic protein that binds eIF4E, the cap-binding protein. It has been proposed to affect mRNA translation and degradation, however p20′s function as an eIF4E-binding protein (4E-BP) and its physiological significance has not been clearly established. In this paper we present data demonstrating that p20 is capable of binding directly to mRNA due to electrostatic interaction of a stretch of arginine and histidine residues in the protein with negatively charged phosphates in the mRNA backbone. This interaction contributes to formation of a ternary eIF4E/p20/capped mRNA complex that is more stable than complexes composed of capped mRNA bound to eIF4E in the absence of p20. eIF4E/p20 complex was found to have a more pronounced stimulatory effect on capped mRNA translation than purified eIF4E alone. Addition of peptides containing the eIF4E-binding domains present in p20 (motif YTIDELF), in eIF4G (motif YGPTFLL) or Eap1 (motif YSMNELY) completely inhibited eIF4E-dependent capped mRNA translation (in vitro), but had a greatly reduced inhibitory effect when eIF4E/p20 complex was present. We propose that the eIF4E/p20/mRNA complex serves as a stable depository of mRNAs existing in a dynamic equilibrium with other complexes such as eIF4E/eIF4G (required for translation) and eIF4E/Eap1 (required for mRNA degradation).
Collapse
|
94
|
Freire ER, Moura DMN, Bezerra MJR, Xavier CC, Morais-Sobral MC, Vashisht AA, Rezende AM, Wohlschlegel JA, Sturm NR, de Melo Neto OP, Campbell DA. Trypanosoma brucei EIF4E2 cap-binding protein binds a homolog of the histone-mRNA stem-loop-binding protein. Curr Genet 2017; 64:821-839. [DOI: 10.1007/s00294-017-0795-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
|
95
|
Interaction of 2A proteinase of human rhinovirus genetic group A with eIF4E is required for eIF4G cleavage during infection. Virology 2017; 511:123-134. [DOI: 10.1016/j.virol.2017.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 01/04/2023]
|
96
|
Marques-Ramos A, Candeias MM, Menezes J, Lacerda R, Willcocks M, Teixeira A, Locker N, Romão L. Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. RNA (NEW YORK, N.Y.) 2017; 23:1712-1728. [PMID: 28821580 PMCID: PMC5648038 DOI: 10.1261/rna.063040.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that integrates cellular signals from the nutrient and energy status to act, namely, on the protein synthesis machinery. While major advances have emerged regarding the regulators and effects of the mTOR signaling pathway, little is known about the regulation of mTOR gene expression. Here, we show that the human mTOR transcript can be translated in a cap-independent manner, and that its 5' untranslated region (UTR) is a highly folded RNA scaffold capable of binding directly to the 40S ribosomal subunit. We further demonstrate that mTOR is able to bypass the cap requirement for translation both in normal and hypoxic conditions. Moreover, our data reveal that the cap-independent translation of mTOR is necessary for its ability to induce cell-cycle progression into S phase. These results suggest a novel regulatory mechanism for mTOR gene expression that integrates the global protein synthesis changes induced by translational inhibitory conditions.
Collapse
Affiliation(s)
- Ana Marques-Ramos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Marco M Candeias
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Juliane Menezes
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Rafaela Lacerda
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Margaret Willcocks
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Alexandre Teixeira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Nicolas Locker
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
97
|
The Role of Cytoplasmic mRNA Cap-Binding Protein Complexes in Trypanosoma brucei and Other Trypanosomatids. Pathogens 2017; 6:pathogens6040055. [PMID: 29077018 PMCID: PMC5750579 DOI: 10.3390/pathogens6040055] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/21/2017] [Accepted: 10/22/2017] [Indexed: 11/16/2022] Open
Abstract
Trypanosomatid protozoa are unusual eukaryotes that are well known for having unusual ways of controlling their gene expression. The lack of a refined mode of transcriptional control in these organisms is compensated by several post-transcriptional control mechanisms, such as control of mRNA turnover and selection of mRNA for translation, that may modulate protein synthesis in response to several environmental conditions found in different hosts. In other eukaryotes, selection of mRNA for translation is mediated by the complex eIF4F, a heterotrimeric protein complex composed by the subunits eIF4E, eIF4G, and eIF4A, where the eIF4E binds to the 5'-cap structure of mature mRNAs. In this review, we present and discuss the characteristics of six trypanosomatid eIF4E homologs and their associated proteins that form multiple eIF4F complexes. The existence of multiple eIF4F complexes in trypanosomatids evokes exquisite mechanisms for differential mRNA recognition for translation.
Collapse
|
98
|
Sekiyama N, Boeszoermenyi A, Arthanari H, Wagner G, Léger-Abraham M. 1H, 13C, and 15N backbone chemical shift assignments of 4E-BP1 44-87 and 4E-BP1 44-87 bound to eIF4E. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:187-191. [PMID: 28589219 PMCID: PMC5693643 DOI: 10.1007/s12104-017-9744-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
The eukaryotic translational initiation factor 4G (eIF4G) interacts with the cap-binding protein eIF4E through a consensus binding motif, Y(X)4LΦ (where X is any amino acid and Φ is a hydrophobic residue). 4E binding proteins (4E-BPs), which also contain a Y(X)4LΦ motif, regulate the eIF4E/eIF4G interaction. The non- or minimally-phosphorylated form of 4E-BP1 binds eIF4E, preventing eIF4E from interacting with eIF4G, thus inhibiting translation initiation. 4EGI-1, a small molecule inhibitor of the eIF4E/eIF4G interaction that is under investigation as a novel anti-cancer drug, has a dual activity; it disrupts the eIF4E/eIF4G interaction and stabilizes the binding of 4E-BP1 to eIF4E. Here, we report the complete backbone NMR resonance assignment of an unliganded 4E-BP1 fragment (4E-BP144-87). We also report the near complete backbone assignment of the same fragment in complex to eIF4E/m7GTP (excluding the assignment of the last C-terminus residue, D87). The chemical shift data constitute a prerequisite to understanding the mechanism of action of translation initiation inhibitors, including 4EGI-1, that modulate the eIF4E/4E-BP1 interaction.
Collapse
Affiliation(s)
- Naotaka Sekiyama
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biophysics, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Andras Boeszoermenyi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Mélissa Léger-Abraham
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
99
|
Golob-Schwarzl N, Krassnig S, Toeglhofer AM, Park YN, Gogg-Kamerer M, Vierlinger K, Schröder F, Rhee H, Schicho R, Fickert P, Haybaeck J. New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors. Eur J Cancer 2017; 83:56-70. [PMID: 28715695 DOI: 10.1016/j.ejca.2017.06.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/01/2017] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. The initiation of protein translation is an important rate-limiting step in eukaryotes and is crucial in many viral infections. Eukaryotic translation initiation factors (eIFs) are involved in the initiation step of protein translation and are linked to the phosphatidylinositol-3-kinases PI3K/AKT/mTOR pathway. Therefore we aimed to investigate a potential role of eIFs in HCC. We herein report on the immunohistochemical expression of the various eIF subunits in 235 cases of virus-related human HCC. Additionally, we used immunoblot analysis to investigate the expression of virus-related HCC and non-virus-related HCC in comparison to controls. Mammalian target of rapamycin (or mechanistic target of rapamycin as it is known now (mTOR) and activated mTOR were significantly increased in chronic hepatitis C (HCV)-associated HCC, in HCC without a viral background, in alcoholic liver disease and Wilson disease. pPTEN, phosphatase and tensin homologue (PTEN) and pAKT showed a significant increase in HBV- and HCV-associated HCC, chronic hepatitis B, HCC without a viral background, alcoholic steatohepatitis (ASH) and Wilson disease. Phosphorylated (p)-eIF2α, eIF2α, eiF3B, eIF3D, eIF3J, p-eIF4B, eIF4G and eIF6 were upregulated in HCV-associated HCC. eIF2α, p-eIF4B, eIF5 and various eIF3 subunits were significantly increased in chronic hepatitis B (HBV)-associated HCC. HCC without viral background displayed a significant increase for the eIF subunits p-2α, 3C, 3I, 4E and 4G. We noticed engraved differences in the expression pattern between chronic hepatitis B and C, HBV- and HCV-associated HCC and non-virus-related HCC.
Collapse
Affiliation(s)
- Nicole Golob-Schwarzl
- Department of Pathology, Medical University of Graz, Austria; Center for Biomarker Research in Medicine, Graz, Austria
| | | | | | - Young Nyun Park
- Department of Pathology, Yonsei University, College of Medicine, Seoul, South Korea
| | | | | | | | - Hyungjn Rhee
- Department of Pathology, Yonsei University, University College of Medicine, Seoul, South Korea
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Peter Fickert
- Division of Gastroenterology and Hepatology, Medical University of Graz, Austria
| | - Johannes Haybaeck
- Department of Pathology, Medical University of Graz, Austria; Center for Biomarker Research in Medicine, Graz, Austria; Department of Pathology, Otto-von-Guericke-University Magdeburg, Germany.
| |
Collapse
|
100
|
Peter D, Weber R, Sandmeir F, Wohlbold L, Helms S, Bawankar P, Valkov E, Igreja C, Izaurralde E. GIGYF1/2 proteins use auxiliary sequences to selectively bind to 4EHP and repress target mRNA expression. Genes Dev 2017; 31:1147-1161. [PMID: 28698298 PMCID: PMC5538437 DOI: 10.1101/gad.299420.117] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/01/2017] [Indexed: 01/16/2023]
Abstract
The eIF4E homologous protein (4EHP) is thought to repress translation by competing with eIF4E for binding to the 5' cap structure of specific mRNAs to which it is recruited through interactions with various proteins, including the GRB10-interacting GYF (glycine-tyrosine-phenylalanine domain) proteins 1 and 2 (GIGYF1/2). Despite its similarity to eIF4E, 4EHP does not interact with eIF4G and therefore fails to initiate translation. In contrast to eIF4G, GIGYF1/2 bind selectively to 4EHP but not eIF4E. Here, we present crystal structures of the 4EHP-binding regions of GIGYF1 and GIGYF2 in complex with 4EHP, which reveal the molecular basis for the selectivity of the GIGYF1/2 proteins for 4EHP. Complementation assays in a GIGYF1/2-null cell line using structure-based mutants indicate that 4EHP requires interactions with GIGYF1/2 to down-regulate target mRNA expression. Our studies provide structural insights into the assembly of 4EHP-GIGYF1/2 repressor complexes and reveal that rather than merely facilitating 4EHP recruitment to transcripts, GIGYF1/2 proteins are required for repressive activity.
Collapse
Affiliation(s)
- Daniel Peter
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Felix Sandmeir
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Lara Wohlbold
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Sigrun Helms
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Praveen Bawankar
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|