51
|
Munusamy K, Loke MF, Vadivelu J, Tay ST. LC-MS analysis reveals biological and metabolic processes essential for Candida albicans biofilm growth. Microb Pathog 2020; 152:104614. [PMID: 33202254 DOI: 10.1016/j.micpath.2020.104614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
Candidiasis is the most common fungal infection associated with high morbidity and mortality among immunocompromised patients. The ability to form biofilm is essential for Candida albicans pathogenesis and drug resistance. In this study, the planktonic cell and biofilm proteomes of C. albicans SC5314 strain analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) were compared. In total, 280 and 449 proteins are annotated from the planktonic cell and biofilm proteomes, respectively. The biofilm proteome demonstrated significantly higher proportion of proteins associated with the endomembrane system, mitochondrion and cytoplasm than planktonic proteome. Among proteins detected, 143 and 207 biological processes are annotated, of which, 38 and 102 are specific to the planktonic cell and biofilm proteomes, respectively, while 105 are common biological processes. The specific biological processes of C. albicans planktonic cell proteome are associated with cell polarity, energy metabolism and nucleotide (purine) metabolism, oxido-reduction coenzyme metabolic process, monosaccharide and amino acid (methionine) biosynthesis, regulation of anatomical structure morphogenesis and cell cycling, and single organism reproduction. Meanwhile, regulation of cellular macromolecule biosynthesis and metabolism, transcription and gene expression are major biological processes specifically associated with C. albicans biofilm proteome. Biosynthesis of leucine, isoleucine, and thiocysteine are highlighted as planktonic-related pathways, whereas folate metabolism, fatty acid metabolism and biosynthesis of amino acids (lysine, serine and glycine) are highlighted as biofilm-related pathways. In summary, LC-MS-based proteomic analysis reveals different adaptative strategies of C. albicans via specific biological and metabolic processes for planktonic cell and biofilm lifestyles. The mass spectrometry data are available via ProteomeXchange with identifiers PXD007830 (for biofilm proteome) and PXD007831 (for planktonic cell proteome).
Collapse
Affiliation(s)
- Komathy Munusamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
52
|
Shi Y, Liu M, Ding W, Liu J. Novel Insights into Phosphorus Deprivation Boosted Lipid Synthesis in the Marine Alga Nannochloropsis oceanica without Compromising Biomass Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11488-11502. [PMID: 32955875 DOI: 10.1021/acs.jafc.0c04899] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nannochloropsis oceanica represents a preferred oleaginous alga for producing lipids. Here we found that phosphorus deprivation (PD) caused a severe decrease in protein and a considerable increase in lipids including triacylglycerol (TAG), yet it had little effect on the carbohydrate level and biomass production of N. oceanica. The combinatorial analysis by integrating physiological, biochemical, and transcriptomic data unraveled the molecular mechanisms underlying PD-induced lipid accumulation. Albeit attenuating the Calvin-Benson cycle, PD stimulated the C4-like pathway to maintain CO2 fixation for biomass production. PD attenuated nitrogen utilization and enhanced protein catabolism thus leading to protein decrease, from which the carbon was likely salvaged into the stimulated tricarboxylic acid cycle for supplying lipid synthesis with carbon precursors. The impairment of TAG catabolism by downregulating certain lipases rather than the stimulation of TAG assembly pathways contributed to PD-boosted TAG increase. These findings provide novel insights into PD-induced lipogenesis without compromising biomass production by N. oceanica.
Collapse
Affiliation(s)
- Ying Shi
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Meijing Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Wei Ding
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
53
|
Fatty Acid Synthase Beta Dehydratase in the Lipid Biosynthesis Pathway Is Required for Conidiogenesis, Pigmentation and Appressorium Formation in Magnaporthe oryzae S6. Int J Mol Sci 2020; 21:ijms21197224. [PMID: 33007862 PMCID: PMC7582888 DOI: 10.3390/ijms21197224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/15/2023] Open
Abstract
Lipid biosynthesis produces glycerol, which is important in fueling turgor pressure necessary for germination and penetration of plant host by fungi. As the relationship between pathogenicity and the lipid biosynthetic pathway is not fully understood, we have elucidated the role of the fatty acid synthase beta subunit dehydratase (FAS1) gene in lipid biosynthesis. The FAS1 gene was silenced through homologous double crossover in Magnaporthe oryzae strain S6 to study the effect on lipid biosynthesis. The vegetative growth of Δfas1 mutants show the highest drop on oleic acid (between 10 and 50%), while the mycelial dry weight of mutants dropped significantly on all media. Conidiation of FAS1 mutants show a ~10- and ~5-fold reduction on oatmeal and Potato Dextrose Agar (PDA), respectively. Mutants formed mycelium that were mildly pigmented, indicating that the deletion of FAS1 may have affected melanin biosynthesis. Biochemical and gene expression studies concluded that the fatty acid degradation pathway might have been interrupted by FAS1 deletion. FAS1 mutants showed no enzyme activity on glucose or olive oil, suggesting that the mutants may lack functional peroxisomes and be defective in β-oxidation of fatty acids, hence explaining the reduced lipid deposits in the spores.
Collapse
|
54
|
Abstract
Biotin plays an essential role in growth of mycobacteria. Synthesis of the cofactor is essential for Mycobacterium tuberculosis to establish and maintain chronic infections in a murine model of tuberculosis. Although the late steps of mycobacterial biotin synthesis, assembly of the heterocyclic rings, are thought to follow the canonical pathway, the mechanism of synthesis of the pimelic acid moiety that contributes most of the biotin carbon atoms is unknown. We report that the Mycobacterium smegmatis gene annotated as encoding Tam, an O-methyltransferase that monomethylates and detoxifies trans-aconitate, instead encodes a protein having the activity of BioC, an O-methyltransferase that methylates the free carboxyl of malonyl-ACP. The M. smegmatis Tam functionally replaced Escherichia coli BioC both in vivo and in vitro. Moreover, deletion of the M. smegmatis tam gene resulted in biotin auxotrophy, and addition of biotin to M. smegmatis cultures repressed tam gene transcription. Although its pathogenicity precluded in vivo studies, the M. tuberculosis Tam also replaced E. coli BioC both in vivo and in vitro and complemented biotin-independent growth of the M. smegmatis tam deletion mutant strain. Based on these data, we propose that the highly conserved mycobacterial tam genes be renamed bioCM. tuberculosis BioC presents a target for antituberculosis drugs which thus far have been directed at late reactions in the pathway with some success.
Collapse
Affiliation(s)
- Zhe Hu
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
55
|
Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res 2020; 79:101047. [DOI: 10.1016/j.plipres.2020.101047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022]
|
56
|
Faïon L, Djaout K, Frita R, Pintiala C, Cantrelle FX, Moune M, Vandeputte A, Bourbiaux K, Piveteau C, Herledan A, Biela A, Leroux F, Kremer L, Blaise M, Tanina A, Wintjens R, Hanoulle X, Déprez B, Willand N, Baulard AR, Flipo M. Discovery of the first Mycobacterium tuberculosis MabA (FabG1) inhibitors through a fragment-based screening. Eur J Med Chem 2020; 200:112440. [PMID: 32505086 DOI: 10.1016/j.ejmech.2020.112440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis (M.tb), the etiologic agent of tuberculosis, remains the leading cause of death from a single infectious agent worldwide. The emergence of drug-resistant M.tb strains stresses the need for drugs acting on new targets. Mycolic acids are very long chain fatty acids playing an essential role in the architecture and permeability of the mycobacterial cell wall. Their biosynthesis involves two fatty acid synthase (FAS) systems. Among the four enzymes (MabA, HadAB/BC, InhA and KasA/B) of the FAS-II cycle, MabA (FabG1) remains the only one for which specific inhibitors have not been reported yet. The development of a new LC-MS/MS based enzymatic assay allowed the screening of a 1280 fragment-library and led to the discovery of the first small molecules that inhibit MabA activity. A fragment from the anthranilic acid series was optimized into more potent inhibitors and their binding to MabA was confirmed by 19F ligand-observed NMR experiments.
Collapse
Affiliation(s)
- Léo Faïon
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Kamel Djaout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Rosangela Frita
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Catalin Pintiala
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Francois-Xavier Cantrelle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France; CNRS, ERL9002 - Integrative Structural Biology, F-59000, Lille, France
| | - Martin Moune
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Alexandre Vandeputte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Kevin Bourbiaux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Catherine Piveteau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Alexandre Biela
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293, Montpellier, France; INSERM, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France
| | - Mickael Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293, Montpellier, France
| | - Abdalkarim Tanina
- Unité Microbiologie, Chimie Bioorganique et Macromoléculaire (CP206/04), Département RD3, Faculté de Pharmacie, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - René Wintjens
- Unité Microbiologie, Chimie Bioorganique et Macromoléculaire (CP206/04), Département RD3, Faculté de Pharmacie, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Xavier Hanoulle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France; CNRS, ERL9002 - Integrative Structural Biology, F-59000, Lille, France
| | - Benoit Déprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Alain R Baulard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France.
| |
Collapse
|
57
|
Systematic genome analysis of a novel arachidonic acid-producing strain uncovered unique metabolic traits in the production of acetyl-CoA-derived products in Mortierellale fungi. Gene 2020; 741:144559. [PMID: 32169630 DOI: 10.1016/j.gene.2020.144559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/08/2020] [Indexed: 11/27/2022]
Abstract
The fungi in order Mortierellales are attractive producers for long-chain polyunsaturated fatty acids (PUFAs). Here, the genome sequencing and assembly of a novel strain of Mortierella sp. BCC40632 were done, yielding 65 contigs spanning of 49,964,116 total bases with predicted 12,149 protein-coding genes. We focused on the acetyl-CoA in relevant to its derived metabolic pathways for biosynthesis of macromolecules with biological functions, including PUFAs, eicosanoids and carotenoids. By comparative genome analysis between Mortierellales and Mucorales, the signature genetic characteristics of the arachidonic acid-producing strains, including Δ5-desaturase and GLELO-like elongase, were also identified in the strain BCC40632. Remarkably, this fungal strain contained only n-6 pathway of PUFA biosynthesis due to the absence of Δ15-desaturase or ω3-desaturase gene in contrast to other Mortierella species. Four putative enzyme sequences in the eicosanoid biosynthetic pathways were identified in the strain BCC40632 and others Mortierellale fungi, but were not detected in the Mucorales. Another unique metabolic trait of the Mortierellales was the inability in carotenoid synthesis as a result of the lack of phytoene synthase and phytoene desaturase genes. The findings provide a perspective in strain optimization for production of tailored-made products with industrial applications.
Collapse
|
58
|
Abstract
Pyrazinamide (PZA) is a cornerstone antimicrobial drug used exclusively for the treatment of tuberculosis (TB). Due to its ability to shorten drug therapy by 3 months and reduce disease relapse rates, PZA is considered an irreplaceable component of standard first-line short-course therapy for drug-susceptible TB and second-line treatment regimens for multidrug-resistant TB. Despite over 60 years of research on PZA and its crucial role in current and future TB treatment regimens, the mode of action of this unique drug remains unclear. Defining the mode of action for PZA will open new avenues for rational design of novel therapeutic approaches for the treatment of TB. In this review, we discuss the four prevailing models for PZA action, recent developments in modulation of PZA susceptibility and resistance, and outlooks for future research and drug development.
Collapse
|
59
|
Discovery of a Regulatory Subunit of the Yeast Fatty Acid Synthase. Cell 2020; 180:1130-1143.e20. [DOI: 10.1016/j.cell.2020.02.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/23/2019] [Accepted: 02/12/2020] [Indexed: 11/23/2022]
|
60
|
Montoya-Ciriaco N, Gómez-Acata S, Muñoz-Arenas LC, Dendooven L, Estrada-Torres A, Díaz de la Vega-Pérez AH, Navarro-Noya YE. Dietary effects on gut microbiota of the mesquite lizard Sceloporus grammicus (Wiegmann, 1828) across different altitudes. MICROBIOME 2020; 8:6. [PMID: 31980039 PMCID: PMC6982387 DOI: 10.1186/s40168-020-0783-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/01/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND High-altitude ecosystems are extreme environments that generate specific physiological, morphological, and behavioral adaptations in ectotherms. The shifts in gut microbiota of the ectothermic hosts as an adaptation to environmental changes are still largely unknown. We investigated the food ingested and the bacterial, fungal, and protistan communities in feces of the lizard Sceloporus grammicus inhabiting an altitudinal range using metabarcoding approaches. RESULTS The bacterial phyla Bacteroidetes and Firmicutes, and the genera Bacteroides and Parabacteroides dominated the core fecal bacteriome, while Zygomycota and Ascomycota, and the species Basidiobolus ranarum and Basidiobolus magnus dominated the core fecal mycobiome. The diet of S. grammicus included 29 invertebrate families belonging to Arachnida, Chilopoda, and Insecta. The diversity and abundance of its diet decreased sharply at high altitudes, while the abundance of plant material and Agaricomycetes was significantly higher at the highest site. The composition of the fecal microbiota of S. grammicus was different at the three altitudes, but not between females and males. Dietary restriction in S. grammicus at 4150 m might explain the high fecal abundance of Akkermansia and Oscillopira, bacteria characteristic of long fasting periods, while low temperature favored B. magnus. A high proportion of bacterial functions were digestive in S. grammicus at 2600 and 3100, while metabolism of aminoacids, vitamins, and key intermediates of metabolic pathways were higher at 4150 m. Different assemblages of fungal species in the lizard reflect differences in the environments at different elevations. Pathogens were more prevalent at high elevations than at the low ones. CONCLUSIONS Limiting food resources at high elevations might oblige S. grammicus to exploit other food resources and its intestinal microbiota have degradative and detoxifying capacities. Sceloporus grammicus might have acquired B. ranarum from the insects infected by the fungus, but its commensal relationship might be established by the quitinolytic capacities of B. ranarum. The mycobiome participate mainly in digestive and degradative functions while the bacteriome in digestive and metabolic functions.
Collapse
Affiliation(s)
- Nina Montoya-Ciriaco
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | | | - Ligia Catalina Muñoz-Arenas
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Luc Dendooven
- Laboratory of Soil Ecology, Cinvestav, Mexico City, Mexico
| | - Arturo Estrada-Torres
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | | | | |
Collapse
|
61
|
Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nat Catal 2020. [DOI: 10.1038/s41929-019-0409-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
62
|
D’Ambrosio HK, Derbyshire ER. Investigating the Role of Class I Adenylate-Forming Enzymes in Natural Product Biosynthesis. ACS Chem Biol 2020; 15:17-27. [PMID: 31815417 DOI: 10.1021/acschembio.9b00865] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenylate-forming enzymes represent one of the most important enzyme classes in biology, responsible for the activation of carboxylate substrates for biosynthetic modifications. The byproduct of the adenylate-forming enzyme acetyl-CoA synthetase, acetyl-CoA, is incorporated into virtually every primary and secondary metabolic pathway. Modification of acetyl-CoA by an array of other adenylate-forming enzymes produces complex classes of natural products including nonribosomal peptides, polyketides, phenylpropanoids, lipopeptides, and terpenes. Adenylation domains possess a variety of unique structural and functional features that provide for such diversification in their resulting metabolites. As the number of organisms with sequenced genomes increases, more adenylate-forming enzymes are being identified, each with roles in metabolite production that have yet to be characterized. In this Review, we explore the broad role of class I adenylate-forming enzymes in the context of natural product biosynthesis and how they contribute to primary and secondary metabolism by focusing on important work conducted in the field. We highlight features of subclasses from this family that facilitate the production of structurally diverse metabolites, including those from noncanonical adenylation domains, and additionally discuss when biological roles for these compounds are known.
Collapse
Affiliation(s)
- Hannah K. D’Ambrosio
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Emily R. Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, North Carolina 27710, United States
| |
Collapse
|
63
|
Genome-wide screening and in silico gene knockout to predict potential candidates for drug designing against Candida albicans. INFECTION GENETICS AND EVOLUTION 2020; 80:104196. [PMID: 31954918 DOI: 10.1016/j.meegid.2020.104196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
C. albicans infections are increasingly becoming a threat to public health with emergence of drug resistant strains. It emphasizes the need to look for alternate drug targets through genome-wide screening. In the present study, whole proteome of C. albicans SC5314 was analyzed in single click target mining workflow of TiDv2. A protein-protein interaction network (PPI) for the resulting putative targets was generated based on String database. Ninety four proteins with higher connectivity (degree ≥ 10) in the network are noted as hub genes. Among them, 24 are observed to be known targets while 70 are novel ones. Further, chokepoint analysis revealed FAS2, FOL1 and ERG5 as chokepoint enzymes in their respective pathways. Subsequently, the chokepoints were selected as prior interest for in silico gene knockout via MATLAB and COBRA Toolbox. In silico gene knockout pointed that FAS2 inhibition reduced the growth rate of pathogen from 0.2879 mmol.gDW-1.h-1 to zero. Furthermore, enzyme inhibition assay of FAS2 with cerulenin strengthen the computational outcome with MIC 1.25 μg/mL. Hence, the study establishes FAS2 as a promising target to design therapeutics against C. albicans.
Collapse
|
64
|
A Simple and Direct Assay for Monitoring Fatty Acid Synthase Activity and Product-Specificity by High-Resolution Mass Spectrometry. Biomolecules 2020; 10:biom10010118. [PMID: 31936797 PMCID: PMC7023185 DOI: 10.3390/biom10010118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 01/13/2023] Open
Abstract
De novo fatty acid synthesis is a pivotal enzymatic process in all eukaryotic organisms. It is involved in the conversion of glucose and other nutrients to fatty acyl (FA) chains, that cells use as building blocks for membranes, energy storage, and signaling molecules. Central to this multistep enzymatic process is the cytosolic type I fatty acid synthase complex (FASN) which in mammals produces, according to biochemical textbooks, primarily non-esterified palmitic acid (NEFA 16:0). The activity of FASN is commonly measured using a spectrophotometry-based assay that monitors the consumption of the reactant NADPH. This assay is indirect, can be biased by interfering processes that use NADPH, and cannot report the NEFA chain-length produced by FASN. To circumvent these analytical caveats, we developed a simple mass spectrometry-based assay that affords monitoring of FASN activity and its product-specificity. In this assay (i) purified FASN is incubated with 13C-labeled malonyl-CoA, acetyl-CoA, and NADPH, (ii) at defined time points the reaction mixture is spiked with an internal NEFA standard and extracted, and (iii) the extract is analyzed directly, without vacuum evaporation and chemical derivatization, by direct-infusion high-resolution mass spectrometry in negative ion mode. This assay supports essentially noise-free detection and absolute quantification of de novo synthetized 13C-labled NEFAs. We demonstrate the efficacy of our assay by determining the specific activity of purified cow FASN and show that in addition to the canonical NEFA 16:0 this enzyme also produces NEFA 12:0, 14:0, 18:0, and 20:0. We note that our assay is generic and can be carried out using commonly available high-resolution mass spectrometers with a resolving power as low as 95,000. We deem that our simple assay could be used as high-throughput screening technology for developing potent FASN inhibitors and for enzyme engineering aimed at modulating the activity and the product-landscape of fatty acid synthases.
Collapse
|
65
|
Holič R, Pokorná L, Griač P. Metabolism of phospholipids in the yeast
Schizosaccharomyces pombe. Yeast 2019; 37:73-92. [DOI: 10.1002/yea.3451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Roman Holič
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Peter Griač
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| |
Collapse
|
66
|
Qiu S, Liu S, Zaoti ZF, Wang X, Cai G. Modulation of fatty acid synthase by ATR checkpoint kinase Rad3. J Mol Cell Biol 2019; 11:1098-1100. [PMID: 31509190 PMCID: PMC6934155 DOI: 10.1093/jmcb/mjz096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 12/04/2022] Open
Affiliation(s)
- Shuwan Qiu
- First Affiliated Hospital of USTC, School of Life Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Sheng Liu
- First Affiliated Hospital of USTC, School of Life Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Zannati Ferdous Zaoti
- First Affiliated Hospital of USTC, School of Life Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xuejuan Wang
- First Affiliated Hospital of USTC, School of Life Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Gang Cai
- First Affiliated Hospital of USTC, School of Life Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei 230026, China
| |
Collapse
|
67
|
Lyu Y, Peng R, Liu H, Kuai H, Mo L, Han D, Li J, Tan W. Protocells programmed through artificial reaction networks. Chem Sci 2019; 11:631-642. [PMID: 34123035 PMCID: PMC8145531 DOI: 10.1039/c9sc05043d] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As the smallest unit of life, cells attract interest due to their structural complexity and functional reliability. Protocells assembled by inanimate components are created as an artificial entity to mimic the structure and some essential properties of a natural cell, and artificial reaction networks are used to program the functions of protocells. Although the bottom-up construction of a protocell that can be considered truly ‘alive’ is still an ambitious goal, these man-made constructs with a certain degree of ‘liveness’ can offer effective tools to understand fundamental processes of cellular life, and have paved the new way for bionic applications. In this review, we highlight both the milestones and recent progress of protocells programmed by artificial reaction networks, including genetic circuits, enzyme-assisted non-genetic circuits, prebiotic mimicking reaction networks, and DNA dynamic circuits. Challenges and opportunities have also been discussed. In this review, the milestones and recent progress of protocells programmed by various types of artificial reaction networks are highlighted.![]()
Collapse
Affiliation(s)
- Yifan Lyu
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 China
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 China
| | - Hailan Kuai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 China
| | - Liuting Mo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 China
| | - Da Han
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Juan Li
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| |
Collapse
|
68
|
Cecchin M, Marcolungo L, Rossato M, Girolomoni L, Cosentino E, Cuine S, Li‐Beisson Y, Delledonne M, Ballottari M. Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1289-1305. [PMID: 31437318 PMCID: PMC6972661 DOI: 10.1111/tpj.14508] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 05/05/2023]
Abstract
Chlorella vulgaris is a fast-growing fresh-water microalga cultivated on the industrial scale for applications ranging from food to biofuel production. To advance our understanding of its biology and to establish genetics tools for biotechnological manipulation, we sequenced the nuclear and organelle genomes of Chlorella vulgaris 211/11P by combining next generation sequencing and optical mapping of isolated DNA molecules. This hybrid approach allowed us to assemble the nuclear genome in 14 pseudo-molecules with an N50 of 2.8 Mb and 98.9% of scaffolded genome. The integration of RNA-seq data obtained at two different irradiances of growth (high light, HL versus low light, LL) enabled us to identify 10 724 nuclear genes, coding for 11 082 transcripts. Moreover, 121 and 48 genes, respectively, were found in the chloroplast and mitochondrial genome. Functional annotation and expression analysis of nuclear, chloroplast and mitochondrial genome sequences revealed particular features of Chlorella vulgaris. Evidence of horizontal gene transfers from chloroplast to mitochondrial genome was observed. Furthermore, comparative transcriptomic analyses of LL versus HL provided insights into the molecular basis for metabolic rearrangement under HL versus LL conditions leading to enhanced de novo fatty acid biosynthesis and triacylglycerol accumulation. The occurrence of a cytosolic fatty acid biosynthetic pathway could be predicted and its upregulation upon HL exposure was observed, consistent with the increased lipid amount under HL conditions. These data provide a rich genetic resource for future genome editing studies, and potential targets for biotechnological manipulation of Chlorella vulgaris or other microalgae species to improve biomass and lipid productivity.
Collapse
Affiliation(s)
- Michela Cecchin
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie 1537134Verona, Italy
| | - Luca Marcolungo
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie 1537134Verona, Italy
| | - Marzia Rossato
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie 1537134Verona, Italy
| | - Laura Girolomoni
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie 1537134Verona, Italy
| | - Emanuela Cosentino
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie 1537134Verona, Italy
| | - Stephan Cuine
- Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR7265Aix‐Marseille UniversityCEACNRSCEA CadaracheSaint‐Paul‐lez DuranceF‐13108France
| | - Yonghua Li‐Beisson
- Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR7265Aix‐Marseille UniversityCEACNRSCEA CadaracheSaint‐Paul‐lez DuranceF‐13108France
| | - Massimo Delledonne
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie 1537134Verona, Italy
| | - Matteo Ballottari
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie 1537134Verona, Italy
| |
Collapse
|
69
|
Abstract
To survive under unpredictable conditions, all organisms must adapt to stressors by regulating adaptive cellular responses. Arrestin proteins are conserved regulators of adaptive cellular responses in eukaryotes. Studies that have been limited to mammals and model fungi have demonstrated that the disruption of arrestin-regulated pathways is detrimental for viability. The human fungal pathogen Cryptococcus neoformans causes more than 180,000 infection-related deaths annually, especially among immunocompromised patients. In addition to being genetically tractable, C. neoformans has a small arrestin family of four members, lending itself to a comprehensive characterization of its arrestin family. This study serves as a functional analysis of arrestins in a pathogen, particularly in the context of fungal fitness and virulence. We investigate the functions of one arrestin protein, Ali1, and define its novel contributions to cytokinesis. We additionally explore the virulence contributions of the C. neoformans arrestin family and find that they contribute to disease establishment and progression. Arrestins, a structurally specialized and functionally diverse group of proteins, are central regulators of adaptive cellular responses in eukaryotes. Previous studies on fungal arrestins have demonstrated their capacity to modulate diverse cellular processes through their adaptor functions, facilitating the localization and function of other proteins. However, the mechanisms by which arrestin-regulated processes are involved in fungal virulence remain unexplored. We have identified a small family of four arrestins, Ali1, Ali2, Ali3, and Ali4, in the human fungal pathogen Cryptococcus neoformans. Using complementary microscopy, proteomic, and reverse genetics techniques, we have defined a role for Ali1 as a novel contributor to cytokinesis, a fundamental cell cycle-associated process. We observed that Ali1 strongly interacts with proteins involved in lipid synthesis, and that ali1Δ mutant phenotypes are rescued by supplementation with lipid precursors that are used to build cellular membranes. From these data, we hypothesize that Ali1 contributes to cytokinesis by serving as an adaptor protein, facilitating the localization of enzymes that modify the plasma membrane during cell division, specifically the fatty acid synthases Fas1 and Fas2. Finally, we assessed the contributions of the C. neoformans arrestin family to virulence to better understand the mechanisms by which arrestin-regulated adaptive cellular responses influence fungal infection. We observed that the C. neoformans arrestin family contributes to virulence, and that the individual arrestin proteins likely fulfill distinct functions that are important for disease progression.
Collapse
|
70
|
Kruis AJ, Bohnenkamp AC, Patinios C, van Nuland YM, Levisson M, Mars AE, van den Berg C, Kengen SW, Weusthuis RA. Microbial production of short and medium chain esters: Enzymes, pathways, and applications. Biotechnol Adv 2019; 37:107407. [DOI: 10.1016/j.biotechadv.2019.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/24/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022]
|
71
|
Wang D, Xu Z, Zhang G, Xia L, Dong X, Li Q, Liles MR, Shao J, Shen Q, Zhang R. A genomic island in a plant beneficial rhizobacterium encodes novel antimicrobial fatty acids and a self-protection shield to enhance its competition. Environ Microbiol 2019; 21:3455-3471. [PMID: 31106958 DOI: 10.1111/1462-2920.14683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 11/30/2022]
Abstract
Rhizobacteria devote a relatively large percentage of their genomes to encode bioactive natural products that are important for competition in the rhizosphere. In this study, a plant beneficial rhizobacterium Bacillus velezensis SQR9 was discovered to produce novel antibacterial fatty acids, Bacillunoic acids, which are encoded on a genomic island (GI). This GI contains a hybrid type I fatty acid synthase (FAS)-polyketide synthase (PKS) system and an ABC transporter. The FAS was predicted to synthesize a primer that was transferred to the PKS to synthesize Bacillunoic acids. The synthesized Bacillunoic acids inhibit the growth of diverse bacteria, with the strongest activity against closely related Bacillus strains, the ABC transporter exported the toxic Bacillunoic acids upon their induction for protecting the producing strain. The inhibition of other Bacillus strains by Bacillunoic acids extended the antimicrobial spectrum of SQR9 and enhanced its competition with closely related root-associated bacteria. So, through the obtaining of this GI by horizontal gene transfer, strain SQR9 not only acquired a competitive weapon but also acquired a self-protecting shield, which increased its competition with other rhizobacteria.
Collapse
Affiliation(s)
- Dandan Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China.,Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Guishan Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Liming Xia
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Xiaoyan Dong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China.,Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Qing Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, P.R. China.,Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| |
Collapse
|
72
|
Xie S, Sun S, Lin F, Li M, Pu Y, Cheng Y, Xu B, Liu Z, da Costa Sousa L, Dale BE, Ragauskas AJ, Dai SY, Yuan JS. Mechanism-Guided Design of Highly Efficient Protein Secretion and Lipid Conversion for Biomanufacturing and Biorefining. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801980. [PMID: 31380177 PMCID: PMC6662401 DOI: 10.1002/advs.201801980] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/28/2019] [Indexed: 05/23/2023]
Abstract
Bacterial protein secretion represents a significant challenge in biotechnology, which is essential for the cost-effective production of therapeutics, enzymes, and other functional proteins. Here, it is demonstrated that proteomics-guided engineering of transcription, translation, secretion, and folding of ligninolytic laccase balances the process, minimizes the toxicity, and enables efficient heterologous secretion with a total protein yield of 13.7 g L-1. The secretory laccase complements the biochemical limits on lignin depolymerization well in Rhodococcus opacus PD630. Further proteomics analysis reveals the mechanisms for the oleaginous phenotype of R. opacus PD630, where a distinct multiunit fatty acid synthase I drives the carbon partition to storage lipid. The discovery guides the design of efficient lipid conversion from lignin and carbohydrate. The proteomics-guided integration of laccase-secretion and lipid production modules enables a high titer in converting lignin-enriched biorefinery waste to lipid. The fundamental mechanisms, engineering components, and design principle can empower transformative platforms for biomanufacturing and biorefining.
Collapse
Affiliation(s)
- Shangxian Xie
- Synthetic and Systems Biology Innovation Hub and Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTX77843USA
| | - Su Sun
- Synthetic and Systems Biology Innovation Hub and Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTX77843USA
| | - Furong Lin
- Synthetic and Systems Biology Innovation Hub and Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTX77843USA
| | - Muzi Li
- Synthetic and Systems Biology Innovation Hub and Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTX77843USA
| | - Yunqiao Pu
- Joint Institute for Biological Sciences and Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Yanbing Cheng
- Synthetic and Systems Biology Innovation Hub and Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTX77843USA
| | - Bing Xu
- Synthetic and Systems Biology Innovation Hub and Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTX77843USA
| | - Zhihua Liu
- Synthetic and Systems Biology Innovation Hub and Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTX77843USA
| | - Leonardo da Costa Sousa
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Bruce E. Dale
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Arthur J. Ragauskas
- Joint Institute for Biological Sciences and Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
- Department of Chemical and Biomolecular Engineering & Department of Forestry, Wildlife, and FisheriesUniversity of TennesseeKnoxvilleTN37996USA
| | - Susie Y. Dai
- Synthetic and Systems Biology Innovation Hub and Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTX77843USA
- State Hygienic LaboratoryUniversity of IowaCoralvilleIA52246USA
| | - Joshua S. Yuan
- Synthetic and Systems Biology Innovation Hub and Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
73
|
Xie X, Meesapyodsuk D, Qiu X. Enhancing oil production in Arabidopsis through expression of a ketoacyl-ACP synthase domain of the PUFA synthase from Thraustochytrium. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:172. [PMID: 31297160 PMCID: PMC6599236 DOI: 10.1186/s13068-019-1514-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/21/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Plant seed oil is an important bioresource for human food and animal feed, as well as industrial bioproducts. Therefore, increasing oil content in seeds has been one of the primary targets in the breeding programs of oilseed crops. Thraustochytrium is a marine protist that can produce a high level of very long-chain polyunsaturated fatty acids (VLCPUFAs) using a PUFA synthase, a polyketide synthase-like fatty acid synthase with multiple catalytic domains. Our previous study showed that a KS domain from the synthase could complement an Escherichia coli mutant defective in β-ketoacyl-ACP synthase I (FabB) and increase the total fatty acid production. In this study, this KS domain from the PUFA synthase was further functionally analyzed in Arabidopsis thaliana for the capacity of oil production. RESULTS The plastidial expression of the KS domain could complement the defective phenotypes of a KASI knockout mutant generated by CRISPR/Cas9. Seed-specific expression of the domain in wild-type Arabidopsis significantly increased seed weight and seed oil, and altered the unsaturation level of fatty acids in seeds, as well as promoted seed germination and early seedling growth. CONCLUSIONS The condensation process of fatty acid biosynthesis in plants is a limiting step, and overexpression of the KS domain from a PUFA synthase of microbial origin offers a new strategy to increase oil production in oilseed plants.
Collapse
Affiliation(s)
- Xi Xie
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Dauenpen Meesapyodsuk
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
74
|
Fernandes BS, Dias O, Costa G, Kaupert Neto AA, Resende TFC, Oliveira JVC, Riaño-Pachón DM, Zaiat M, Pradella JGC, Rocha I. Genome-wide sequencing and metabolic annotation of Pythium irregulare CBS 494.86: understanding Eicosapentaenoic acid production. BMC Biotechnol 2019; 19:41. [PMID: 31253157 PMCID: PMC6598237 DOI: 10.1186/s12896-019-0529-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pythium irregulare is an oleaginous Oomycete able to accumulate large amounts of lipids, including Eicosapentaenoic acid (EPA). EPA is an important and expensive dietary supplement with a promising and very competitive market, which is dependent on fish-oil extraction. This has prompted several research groups to study biotechnological routes to obtain specific fatty acids rather than a mixture of various lipids. Moreover, microorganisms can use low cost carbon sources for lipid production, thus reducing production costs. Previous studies have highlighted the production of EPA by P. irregulare, exploiting diverse low cost carbon sources that are produced in large amounts, such as vinasse, glycerol, and food wastewater. However, there is still a lack of knowledge about its biosynthetic pathways, because no functional annotation of any Pythium sp. exists yet. The goal of this work was to identify key genes and pathways related to EPA biosynthesis, in P. irregulare CBS 494.86, by sequencing and performing an unprecedented annotation of its genome, considering the possibility of using wastewater as a carbon source. RESULTS Genome sequencing provided 17,727 candidate genes, with 3809 of them associated with enzyme code and 945 with membrane transporter proteins. The functional annotation was compared with curated information of oleaginous organisms, understanding amino acids and fatty acids production, and consumption of carbon and nitrogen sources, present in the wastewater. The main features include the presence of genes related to the consumption of several sugars and candidate genes of unsaturated fatty acids production. CONCLUSIONS The whole metabolic genome presented, which is an unprecedented reconstruction of P. irregulare CBS 494.86, shows its potential to produce value-added products, in special EPA, for food and pharmaceutical industries, moreover it infers metabolic capabilities of the microorganism by incorporating information obtained from literature and genomic data, supplying information of great importance to future work.
Collapse
Affiliation(s)
- Bruna S Fernandes
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, PE, Brazil.
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.
| | - Oscar Dias
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | - Gisela Costa
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | - Antonio A Kaupert Neto
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Tiago F C Resende
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | - Juliana V C Oliveira
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Diego M Riaño-Pachón
- Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Marcelo Zaiat
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo, São Carlos, SP, Brazil.
| | | | - Isabel Rocha
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.
| |
Collapse
|
75
|
Heil CS, Wehrheim SS, Paithankar KS, Grininger M. Fatty Acid Biosynthesis: Chain‐Length Regulation and Control. Chembiochem 2019; 20:2298-2321. [DOI: 10.1002/cbic.201800809] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Christina S. Heil
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - S. Sophia Wehrheim
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Karthik S. Paithankar
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| |
Collapse
|
76
|
Exterkate M, Driessen AJM. Synthetic Minimal Cell: Self-Reproduction of the Boundary Layer. ACS OMEGA 2019; 4:5293-5303. [PMID: 30949617 PMCID: PMC6443216 DOI: 10.1021/acsomega.8b02955] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/01/2019] [Indexed: 05/09/2023]
Abstract
A critical aspect in the bottom-up construction of a synthetic minimal cell is to develop an entity that is capable of self-reproduction. A key role in this process is the expansion and division of the boundary layer that surrounds the compartment, a process in which content loss has to be avoided and the barrier function maintained. Here, we describe the latest developments regarding self-reproduction of a boundary layer with a focus on the growth and division of phospholipid-based membranes in the context of a synthetic minimal cell.
Collapse
Affiliation(s)
- Marten Exterkate
- Department of Molecular Microbiology,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
77
|
Jones AD, Boundy-Mills KL, Barla GF, Kumar S, Ubanwa B, Balan V. Microbial Lipid Alternatives to Plant Lipids. Methods Mol Biol 2019; 1995:1-32. [PMID: 31148119 DOI: 10.1007/978-1-4939-9484-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipids are in high demand in food production, nutritional supplements, detergents, lubricants, and biofuels. Different oil seeds produced from plants are conventionally extracted to yield lipids. With increasing population and reduced availability of cultivable land, conventional methods of producing lipids alone will not satisfy increasing demand. Lipids produced using different microbial sources are considered as sustainable alternative to plant derived lipids. Various microorganisms belonging to the genera of algae, bacteria, yeast, fungi, or marine-derived microorganisms such as thraustochytrids possess the ability to accumulate lipids in their cells. A variety of microbial production technologies are being used to cultivate these organisms under specific conditions using agricultural residues as carbon source to be cost competitive with plant derived lipids. Microbial oils, also known as single cell oils, have many advantages when compared with plant derived lipids, such as shorter life cycle, less labor required, season and climate independence, no use of arable land and ease of scale-up. In this chapter we compare the lipids derived from plants and different microorganisms. We also highlight various analytical techniques that are being used to characterize the lipids produced in oleaginous organisms and their applications in various processes.
Collapse
Affiliation(s)
- A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Kyria L Boundy-Mills
- Phaff Yeast Culture Collection, Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - G Florin Barla
- Faculty of Food Engineering, University of Suceava, Suceava, Romania
- Tyton Biosciences, Danville, VA, USA
| | - Sandeep Kumar
- Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA, USA
| | - Bryan Ubanwa
- Department of Engineering Technology, Biotechnology Program, College of Technology, University of Houston, Houston, TX, USA
| | - Venkatesh Balan
- Department of Engineering Technology, Biotechnology Program, College of Technology, University of Houston, Houston, TX, USA.
| |
Collapse
|
78
|
Rittner A, Paithankar KS, Drexler DJ, Himmler A, Grininger M. Probing the modularity of megasynthases by rational engineering of a fatty acid synthase Type I. Protein Sci 2018; 28:414-428. [PMID: 30394635 DOI: 10.1002/pro.3550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022]
Abstract
Modularity is a fundamental property of megasynthases such as polyketide synthases (PKSs). In this study, we exploit the close resemblance between PKSs and animal fatty acid synthase (FAS) to re-engineer animal FAS to probe the modularity of the FAS/PKS family. Guided by sequence and structural information, we truncate and dissect animal FAS into its components, and reassemble them to generate new PKS-like modules as well as bimodular constructs. The novel re-engineered modules resemble all four common types of PKSs and demonstrate that this approach can be a powerful tool to deliver products with higher catalytic efficiency. Our data exemplify the inherent plasticity and robustness of the overall FAS/PKS fold, and open new avenues to explore FAS-based biosynthetic pathways for custom compound design.
Collapse
Affiliation(s)
- Alexander Rittner
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Karthik S Paithankar
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - David Jan Drexler
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Aaron Himmler
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| |
Collapse
|
79
|
Babele PK, Thakre PK, Kumawat R, Tomar RS. Zinc oxide nanoparticles induce toxicity by affecting cell wall integrity pathway, mitochondrial function and lipid homeostasis in Saccharomyces cerevisiae. CHEMOSPHERE 2018; 213:65-75. [PMID: 30212720 DOI: 10.1016/j.chemosphere.2018.09.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/29/2018] [Accepted: 09/04/2018] [Indexed: 05/27/2023]
Abstract
Growing numbers of nanotoxicity research demonstrating that mechanical damage and oxidative stress are potential modes of nanoparticles (NPs) induced toxicity. However, the underlying mechanisms by which NPs interact with the eukaryotic cell and affect their physiological and metabolic functions are not fully known. We investigated the toxic effects of zinc oxide nanoparticles (ZnO-NPs) on budding yeast, Saccharomyces cerevisiae and elucidated the underlying mechanism. We observed cell wall damage and accumulation of reactive oxygen species (ROS) leading to cell death upon ZnO-NPs exposure. We detected a significant change in the cellular distribution of lipid biosynthetic enzymes (Fas1 and Fas2). Furthermore, exposure of ZnO-NPs altered the architecture of endoplasmic reticulum (ER) and mitochondria as well as ER-mitochondria encounter structure (ERMES) complex causing cellular toxicity due to lipid disequilibrium and proteostasis. We also observed significant changes in heat shock and unfolded protein responses, monitored by Hsp104-GFP localization and cytosolic Hac1 splicing respectively. Moreover, we observed activation of MAP kinases of CWI (Mpk1) and HOG (Hog1) pathways upon exposure to ZnO-NPs. Transcript level analyses showed induction of chitin synthesis and redox homeostasis genes. Finally, we observed induction in lipid droplets (LDs) formation, distorted vacuolar morphology and induction of autophagy as monitored by localization of Atg8p. However, we did not observe any significant change in epigenetic marks, examined by western blotting. Altogether, we provide evidence that exposure of ZnO-NPs results in cell death by affecting cell wall integrity and ER homeostasis as well as accumulation of ROS and saturated free fatty acids.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Pilendra Kumar Thakre
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Ramesh Kumawat
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India.
| |
Collapse
|
80
|
Rossini E, Gajewski J, Klaus M, Hummer G, Grininger M. Analysis and engineering of substrate shuttling by the acyl carrier protein (ACP) in fatty acid synthases (FASs). Chem Commun (Camb) 2018; 54:11606-11609. [PMID: 30264077 DOI: 10.1039/c8cc06838k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Perturbations of domain-domain interactions impact the function of type I fatty acid synthases. We identify interface point mutations that modulate fatty acid chain lengths, and explain their effect in changes of domain-domain binding energetics. Engineering of similar interfaces in related megasynthases may be exploited for custom synthesis of natural products.
Collapse
Affiliation(s)
- Emanuele Rossini
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
81
|
Abstract
Covering: up to mid of 2018 Type I fatty acid synthases (FASs) are giant multienzymes catalyzing all steps of the biosynthesis of fatty acids from acetyl- and malonyl-CoA by iterative precursor extension. Two strikingly different architectures of FAS evolved in yeast (as well as in other fungi and some bacteria) and metazoans. Yeast-type FAS (yFAS) assembles into a barrel-shaped structure of more than 2 MDa molecular weight. Catalytic domains of yFAS are embedded in an extensive scaffolding matrix and arranged around two enclosed reaction chambers. Metazoan FAS (mFAS) is a 540 kDa X-shaped dimer, with lateral reaction clefts, minimal scaffolding and pronounced conformational variability. All naturally occurring yFAS are strictly specialized for the production of saturated fatty acids. The yFAS architecture is not used for the biosynthesis of any other secondary metabolite. On the contrary, mFAS is related at the domain organization level to major classes of polyketide synthases (PKSs). PKSs produce a variety of complex and potent secondary metabolites; they either act iteratively (iPKS), or are linked via directed substrate transfer into modular assembly lines (modPKSs). Here, we review the architectures of yFAS, mFAS, and iPKSs. We rationalize the evolution of the yFAS assembly, and provide examples for re-engineering of yFAS. Recent studies have provided novel insights into the organization of iPKS. A hybrid crystallographic model of a mycocerosic acid synthase-like Pks5 yielded a comprehensive visualization of the organization and dynamics of fully-reducing iPKS. Deconstruction experiments, structural and functional studies of specialized enzymatic domains, such as the product template (PT) and the starter-unit acyltransferase (SAT) domain have revealed functional principles of non-reducing iterative PKS (NR-PKSs). Most recently, a six-domain loading region of an NR-PKS has been visualized at high-resolution together with cryo-EM studies of a trapped loading intermediate. Altogether, these data reveal the related, yet divergent architectures of mFAS, iPKS and also modPKSs. The new insights highlight extensive dynamics, and conformational coupling as key features of mFAS and iPKS and are an important step towards collection of a comprehensive series of snapshots of PKS action.
Collapse
Affiliation(s)
- Dominik A Herbst
- Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
82
|
de Carvalho CCCR, Caramujo MJ. The Various Roles of Fatty Acids. Molecules 2018; 23:molecules23102583. [PMID: 30304860 PMCID: PMC6222795 DOI: 10.3390/molecules23102583] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/01/2018] [Accepted: 10/06/2018] [Indexed: 12/31/2022] Open
Abstract
Lipids comprise a large group of chemically heterogeneous compounds. The majority have fatty acids (FA) as part of their structure, making these compounds suitable tools to examine processes raging from cellular to macroscopic levels of organization. Among the multiple roles of FA, they have structural functions as constituents of phospholipids which are the "building blocks" of cell membranes; as part of neutral lipids FA serve as storage materials in cells; and FA derivatives are involved in cell signalling. Studies on FA and their metabolism are important in numerous research fields, including biology, bacteriology, ecology, human nutrition and health. Specific FA and their ratios in cellular membranes may be used as biomarkers to enable the identification of organisms, to study adaptation of bacterial cells to toxic compounds and environmental conditions and to disclose food web connections. In this review, we discuss the various roles of FA in prokaryotes and eukaryotes and highlight the application of FA analysis to elucidate ecological mechanisms. We briefly describe FA synthesis; analyse the role of FA as modulators of cell membrane properties and FA ability to store and supply energy to cells; and inspect the role of polyunsaturated FA (PUFA) and the suitability of using FA as biomarkers of organisms.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Maria José Caramujo
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2-5º Piso, 1749-016 Lisboa, Portugal.
| |
Collapse
|
83
|
Baron S, Peleg Y, Grunwald J, Morgenstern D, Elad N, Peretz M, Albeck S, Levin Y, Welch JT, DeWeerd KA, Schwarz A, Burstein Y, Diskin R, Shakked Z, Zimhony O. Expression of a recombinant, 4'-Phosphopantetheinylated, active M. tuberculosis fatty acid synthase I in E. coli. PLoS One 2018; 13:e0204457. [PMID: 30248156 PMCID: PMC6152951 DOI: 10.1371/journal.pone.0204457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/07/2018] [Indexed: 11/18/2022] Open
Abstract
Background Fatty acid synthase 1 (FAS I) from Mycobacterium tuberculosis (Mtb) is an essential protein and a promising drug target. FAS I is a multi-functional, multi-domain protein that is organized as a large (1.9 MDa) homohexameric complex. Acyl intermediates produced during fatty acid elongation are attached covalently to an acyl carrier protein (ACP) domain. This domain is activated by the transfer of a 4'-Phosphopantetheine (4'-PP, also termed P-pant) group from CoA to ACP catalyzed by a 4'-PP transferase, termed acyl carrier protein synthase (AcpS). Methods In order to obtain an activated FAS I in E. coli, we transformed E. coli with tagged Mtb fas1 and acpS genes encoded by a separate plasmid. We induced the expression of Mtb FAS I following induction of AcpS expression. FAS I was purified by Strep-Tactin affinity chromatography. Results Activation of Mtb FAS I was confirmed by the identification of a bound P-pant group on serine at position 1808 by mass spectrometry. The purified FAS I displayed biochemical activity shown by spectrophotometric analysis of NADPH oxidation and by CoA production, using the Ellman reaction. The purified Mtb FAS I forms a hexameric complex shown by negative staining and cryo-EM. Conclusion Purified hexameric and active Mtb FAS I is required for binding and drug inhibition studies and for structure-function analysis of this enzyme. This relatively simple and short procedure for Mtb FAS I production should facilitate studies of this enzyme.
Collapse
Affiliation(s)
- Szilvia Baron
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Peleg
- Structural Proteomics Unit (SPU), Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Grunwald
- Structural Proteomics Unit (SPU), Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- De Botton Institute for Protein Profiling, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Peretz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Albeck
- Structural Proteomics Unit (SPU), Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- De Botton Institute for Protein Profiling, Weizmann Institute of Science, Rehovot, Israel
| | - John T. Welch
- Department of Chemistry, College of Arts and Sciences University at Albany, New York, United States of America
| | - Kim A. DeWeerd
- Molecular Core Facility College of Arts and Sciences University at Albany, New York, United States of America
| | - Alon Schwarz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yigal Burstein
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zippora Shakked
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Zimhony
- Kaplan Medical Center, Rehovot, affiliated to the School of Medicine, Hebrew University and Hadassah, Jerusalem, Israel
- * E-mail: ,
| |
Collapse
|
84
|
Structure of Type-I Mycobacterium tuberculosis fatty acid synthase at 3.3 Å resolution. Nat Commun 2018; 9:3886. [PMID: 30250274 PMCID: PMC6155276 DOI: 10.1038/s41467-018-06440-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis (TB) is a devastating and rapidly spreading disease caused by Mycobacterium tuberculosis (Mtb). Therapy requires prolonged treatment with a combination of multiple agents and interruptions in the treatment regimen result in emergence and spread of multi-drug resistant (MDR) Mtb strains. MDR Mtb poses a significant global health problem, calling for urgent development of novel drugs to combat TB. Here, we report the 3.3 Å resolution structure of the ~2 MDa type-I fatty acid synthase (FAS-I) from Mtb, determined by single particle cryo-EM. Mtb FAS-I is an essential enzymatic complex that contributes to the virulence of Mtb, and thus a prime target for anti-TB drugs. The structural information for Mtb FAS-I we have obtained enables computer-based drug discovery approaches, and the resolution achieved by cryo-EM is sufficient for elucidating inhibition mechanisms by putative small molecular weight inhibitors. The type-I fatty acid synthase (FAS-I) complex is essential for Mycobacterium tuberculosis (Mtb) and mediates the production of C26 fatty acids that are precursors for the synthesis of mycolic acids. Here the authors present the 3.3 Å resolution cryo-EM structure of Mtb FAS-I, which is of interest for tuberculosis drug development.
Collapse
|
85
|
Arai M, Hayashi Y, Kudo H. Cyanobacterial Enzymes for Bioalkane Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:119-154. [PMID: 30091094 DOI: 10.1007/978-981-13-0854-3_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanobacterial biosynthesis of alkanes is an attractive way of producing substitutes for petroleum-based fuels. Key enzymes for bioalkane production in cyanobacteria are acyl-ACP reductase (AAR) and aldehyde-deformylating oxygenase (ADO). AAR catalyzes the reduction of the fatty acyl-ACP/CoA substrates to fatty aldehydes, which are then converted into alkanes/alkenes by ADO. These enzymes have been widely used for biofuel production by metabolic engineering of cyanobacteria and other organisms. However, both proteins, particularly ADO, have low enzymatic activities, and their catalytic activities are desired to be improved for use in biofuel production. Recently, progress has been made in the basic sciences and in the application of AAR and ADO in alkane production. This chapter provides an overview of recent advances in the study of the structure and function of AAR and ADO, protein engineering of these enzymes for improving activity and modifying substrate specificities, and examples of metabolic engineering of cyanobacteria and other organisms using AAR and ADO for biofuel production.
Collapse
Affiliation(s)
- Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yuuki Hayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisashi Kudo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
86
|
Zhao L, Huang Y, Lu L, Yang W, Huang T, Lin Z, Lin C, Kwan H, Wong HLX, Chen Y, Sun S, Xie X, Fang X, Yang H, Wang J, Zhu L, Bian Z. Saturated long-chain fatty acid-producing bacteria contribute to enhanced colonic motility in rats. MICROBIOME 2018; 6:107. [PMID: 29903041 PMCID: PMC6003035 DOI: 10.1186/s40168-018-0492-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/01/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The gut microbiota is closely associated with gastrointestinal (GI) motility disorder, but the mechanism(s) by which bacteria interact with and affect host GI motility remains unclear. In this study, through using metabolomic and metagenomic analyses, an animal model of neonatal maternal separation (NMS) characterized by accelerated colonic motility and gut dysbiosis was used to investigate the mechanism underlying microbiota-driven motility dysfunction. RESULTS An excess of intracolonic saturated long-chain fatty acids (SLCFAs) was associated with enhanced bowel motility in NMS rats. Heptadecanoic acid (C17:0) and stearic acid (C18:0), as the most abundant odd- and even-numbered carbon SLCFAs in the colon lumen, can promote rat colonic muscle contraction and increase stool frequency. Increase of SLCFAs was positively correlated with elevated abundances of Prevotella, Lactobacillus, and Alistipes. Functional annotation found that the level of bacterial LCFA biosynthesis was highly enriched in NMS group. Essential synthetic genes Fabs were largely identified from the genera Prevotella, Lactobacillus, and Alistipes. Pseudo germ-free (GF) rats receiving fecal microbiota from NMS donors exhibited increased defecation frequency and upregulated bacterial production of intracolonic SLCFAs. Modulation of gut dysbiosis by neomycin effectively attenuated GI motility and reduced bacterial SLCFA generation in the colon lumen of NMS rats. CONCLUSIONS These findings reveal a previously unknown relationship between gut bacteria, intracolonic SLCFAs, and host GI motility, suggesting the importance of SLCFA-producing bacteria in GI motility disorders. Further exploration of this relationship could lead to a precise medication targeting the gut microbiota for treating GI motility disorders.
Collapse
Affiliation(s)
- Ling Zhao
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | | | - Lin Lu
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Wei Yang
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Tao Huang
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zesi Lin
- Preparatory Office of Shenzhen-Melbourne Institute of Life Sciences and Bioengineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengyuan Lin
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, China
| | - Hiuyee Kwan
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hoi Leong Xavier Wong
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yang Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Silong Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Xiaodong Fang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | | | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Department of Pediatrics, The State University of New York at Buffalo, 3435 Main Street, 422BRB, Buffalo, NY, 14214, USA.
| | - Zhaoxiang Bian
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
87
|
Sarria S, Bartholow TG, Verga A, Burkart MD, Peralta-Yahya P. Matching Protein Interfaces for Improved Medium-Chain Fatty Acid Production. ACS Synth Biol 2018; 7:1179-1187. [PMID: 29722970 DOI: 10.1021/acssynbio.7b00334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Medium-chain fatty acids (MCFAs) are key intermediates in the synthesis of medium-chain chemicals including α-olefins and dicarboxylic acids. In bacteria, microbial production of MCFAs is limited by the activity and product profile of fatty acyl-ACP thioesterases. Here, we engineer a heterologous bacterial medium-chain fatty acyl-ACP thioesterase for improved MCFA production in Escherichia coli. Electrostatically matching the interface between the heterologous medium-chain Acinetobacter baylyi fatty acyl-ACP thioesterase (AbTE) and the endogenous E. coli fatty acid ACP ( E. coli AcpP) by replacing small nonpolar amino acids on the AbTE surface for positively charged ones increased secreted MCFA titers more than 3-fold. Nuclear magnetic resonance titration of E. coli 15N-octanoyl-AcpP with a single AbTE point mutant and the best double mutant showed a progressive and significant increase in the number of interactions when compared to AbTE wildtype. The best AbTE mutant produced 131 mg/L of MCFAs, with MCFAs being 80% of all secreted fatty acid chain lengths after 72 h. To enable the future screening of larger numbers of AbTE variants to further improve MCFA titers, we show that a previously developed G-protein coupled receptor (GPCR)-based MCFA sensor differentially detects MCFAs secreted by E. coli expressing different AbTE variants. This work demonstrates that engineering the interface of heterologous enzymes to better couple with endogenous host proteins is a useful strategy to increase the titers of microbially produced chemicals. Further, this work shows that GPCR-based sensors are producer microbe agnostic and can detect chemicals directly in the producer microbe supernatant, setting the stage for the sensor-guided engineering of MCFA producing microbes.
Collapse
Affiliation(s)
- Stephen Sarria
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas G. Bartholow
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Adam Verga
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Pamela Peralta-Yahya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
88
|
Abstract
In recent years, the gut microbiota has been considered as a full-fledged actor of the gut-brain axis, making it possible to take a new step in understanding the pathophysiology of both neurological and psychiatric diseases. However, most of the studies have been devoted to gut bacterial microbiota, forgetting the non-negligible fungal flora. In this review, we expose how the role of the fungal component in the microbiota-gut-brain axis is legitimate, through its interactions with both the host, especially with the immune system, and the gut bacteria. We also discuss published data that already attest to a role of the mycobiome in the microbiota-gut-brain axis, and the impact of fungi on clinical and therapeutic research.
Collapse
|
89
|
Lv P, Chen Y, Zhao Z, Shi T, Wu X, Xue J, Li QX, Hua R. Design, Synthesis, and Antifungal Activities of 3-Acyl Thiotetronic Acid Derivatives: New Fatty Acid Synthase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1023-1032. [PMID: 29290106 DOI: 10.1021/acs.jafc.7b05491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Emerging fungal phytodiseases are increasingly becoming a food security threat. Twenty-six new 3-acylthiotetronic acid derivatives were designed, synthesized, characterized, and evaluated for activities against Valsa mali, Curvularia lunata, Fusarium graminearum, and Fusarium oxysporum f. sp. lycopersici. Among the 26 compounds, 6f was the most effective against V. mali, C. lunata, F. graminearum, and F. oxysporum f. sp. lycopersici with median effective concentrations (EC50) of 4.1, 3.1, 3.6, and 4.1 μg/mL, respectively, while the corresponding EC50 were 0.14, 6.7, 22.4, and 4.3 μg/mL of the fungicide azoxystrobin; 4.2, 41.7, 0.42, and 0.12 μg/mL of the fungicide carbendazim; and >50, 0.19, 0.43, and BS > 50 μg/mL of the fungicide fluopyram. The inhibitory potency against V. mali fatty acid synthase agreed well with the in vitro antifungal activity. The molecular docking suggested that the 3-acylthiotetronic acid derivatives targeted the C171Q KasA complex. The findings help understanding the mode of action and design and synthesis of novel potent fungicides.
Collapse
Affiliation(s)
- Pei Lv
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University , 130 Changjiangxi Road, Hefei, Anhui 230036, China
| | - Yiliang Chen
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University , 130 Changjiangxi Road, Hefei, Anhui 230036, China
| | - Zheng Zhao
- High Magnetic Field Laboratory, Chinese Academy of Sciences , 350 Shushanhu Road, Hefei, Anhui 230031, China
| | - Taozhong Shi
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University , 130 Changjiangxi Road, Hefei, Anhui 230036, China
| | - Xiangwei Wu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University , 130 Changjiangxi Road, Hefei, Anhui 230036, China
| | - Jiaying Xue
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University , 130 Changjiangxi Road, Hefei, Anhui 230036, China
| | - Qing X Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University , 130 Changjiangxi Road, Hefei, Anhui 230036, China
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , 1955 East-West Road, Honolulu, Hawaii 96822, United States
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University , 130 Changjiangxi Road, Hefei, Anhui 230036, China
| |
Collapse
|
90
|
Viegas MF, Neves RPP, Ramos MJ, Fernandes PA. Modeling of Human Fatty Acid Synthase and in Silico Docking of Acyl Carrier Protein Domain and Its Partner Catalytic Domains. J Phys Chem B 2018; 122:77-85. [DOI: 10.1021/acs.jpcb.7b09645] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matilde F. Viegas
- REQUIMTE,
Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, Rua do Campo
Alegre, 4169-007 Porto, Portugal
| | - Rui P. P. Neves
- REQUIMTE,
Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, Rua do Campo
Alegre, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE,
Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, Rua do Campo
Alegre, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE,
Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, Rua do Campo
Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
91
|
Santos-Merino M, Garcillán-Barcia MP, de la Cruz F. Engineering the fatty acid synthesis pathway in Synechococcus elongatus PCC 7942 improves omega-3 fatty acid production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:239. [PMID: 30202434 PMCID: PMC6123915 DOI: 10.1186/s13068-018-1243-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/27/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND The microbial production of fatty acids has received great attention in the last few years as feedstock for the production of renewable energy. The main advantage of using cyanobacteria over other organisms is their ability to capture energy from sunlight and to transform CO2 into products of interest by photosynthesis, such as fatty acids. Fatty acid synthesis is a ubiquitous and well-characterized pathway in most bacteria. However, the activity of the enzymes involved in this pathway in cyanobacteria remains poorly explored. RESULTS To characterize the function of some enzymes involved in the saturated fatty acid synthesis in cyanobacteria, we genetically engineered Synechococcus elongatus PCC 7942 by overexpressing or deleting genes encoding enzymes of the fatty acid synthase system and tested the lipid profile of the mutants. These modifications were in turn used to improve alpha-linolenic acid production in this cyanobacterium. The mutant resulting from fabF overexpression and fadD deletion, combined with the overexpression of desA and desB desaturase genes from Synechococcus sp. PCC 7002, produced the highest levels of this omega-3 fatty acid. CONCLUSIONS The fatty acid composition of S. elongatus PCC 7942 can be significantly modified by genetically engineering the expression of genes coding for the enzymes involved in the first reactions of fatty acid synthesis pathway. Variations in fatty acid composition of S. elongatus PCC 7942 mutants did not follow the pattern observed in Escherichia coli derivatives. Some of these modifications can be used to improve omega-3 fatty acid production. This work provides new insights into the saturated fatty acid synthesis pathway and new strategies that might be used to manipulate the fatty acid content of cyanobacteria.
Collapse
Affiliation(s)
- María Santos-Merino
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria—Consejo Superior de Investigaciones Científicas), Santander, Cantabria Spain
| | - M. Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria—Consejo Superior de Investigaciones Científicas), Santander, Cantabria Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria—Consejo Superior de Investigaciones Científicas), Santander, Cantabria Spain
| |
Collapse
|
92
|
Cabruja M, Mondino S, Tsai YT, Lara J, Gramajo H, Gago G. A conditional mutant of the fatty acid synthase unveils unexpected cross talks in mycobacterial lipid metabolism. Open Biol 2017; 7:rsob.160277. [PMID: 28228470 PMCID: PMC5356441 DOI: 10.1098/rsob.160277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/25/2017] [Indexed: 01/02/2023] Open
Abstract
Unlike most bacteria, mycobacteria rely on the multi-domain enzyme eukaryote-like fatty acid synthase I (FAS I) to make fatty acids de novo. These metabolites are precursors of the biosynthesis of most of the lipids present both in the complex mycobacteria cell wall and in the storage lipids inside the cell. In order to study the role of the type I FAS system in Mycobacterium lipid metabolism in vivo, we constructed a conditional mutant in the fas-acpS operon of Mycobacterium smegmatis and analysed in detail the impact of reduced de novo fatty acid biosynthesis on the global architecture of the cell envelope. As expected, the mutant exhibited growth defect in the non-permissive condition that correlated well with the lower expression of fas-acpS and the concomitant reduction of FAS I, confirming that FAS I is essential for survival. The reduction observed in FAS I provoked an accumulation of its substrates, acetyl-CoA and malonyl-CoA, and a strong reduction of C12 to C18 acyl-CoAs, but not of long-chain acyl-CoAs (C19 to C24). The most intriguing result was the ability of the mutant to keep synthesizing mycolic acids when fatty acid biosynthesis was impaired. A detailed comparative lipidomic analysis showed that although reduced FAS I levels had a strong impact on fatty acid and phospholipid biosynthesis, mycolic acids were still being synthesized in the mutant, although with a different relative species distribution. However, when triacylglycerol degradation was inhibited, mycolic acid biosynthesis was significantly reduced, suggesting that storage lipids could be an intracellular reservoir of fatty acids for the biosynthesis of complex lipids in mycobacteria. Understanding the interaction between FAS I and the metabolic pathways that rely on FAS I products is a key step to better understand how lipid homeostasis is regulated in this microorganism and how this regulation could play a role during infection in pathogenic mycobacteria.
Collapse
Affiliation(s)
- Matías Cabruja
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sonia Mondino
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Yi Ting Tsai
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Julia Lara
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
93
|
Toyoda K, Inui M. Extracytoplasmic function sigma factor σDconfers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures inCorynebacterium glutamicum. Mol Microbiol 2017; 107:312-329. [DOI: 10.1111/mmi.13883] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Koichi Toyoda
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawa; Kyoto 619-0292 Japan
| | - Masayuki Inui
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawa; Kyoto 619-0292 Japan
- Graduate School of Biological Sciences; Nara Institute of Science and Technology, 8916-5; Takayama, Ikoma, Nara 630-0101 Japan
| |
Collapse
|
94
|
Yamada R, Yamauchi A, Kashihara T, Ogino H. Evaluation of lipid production from xylose and glucose/xylose mixed sugar in various oleaginous yeasts and improvement of lipid production by UV mutagenesis. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
95
|
Colpa DI, Lončar N, Schmidt M, Fraaije MW. Creating Oxidase-Peroxidase Fusion Enzymes as a Toolbox for Cascade Reactions. Chembiochem 2017; 18:2226-2230. [PMID: 28885767 PMCID: PMC5708271 DOI: 10.1002/cbic.201700478] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/31/2022]
Abstract
A set of bifunctional oxidase-peroxidases has been prepared by fusing four distinct oxidases to a peroxidase. Although such fusion enzymes have not been observed in nature, they could be expressed and purified in good yields. Characterization revealed that the artificial enzymes retained the capability to bind the two required cofactors and were catalytically active as oxidase and peroxidase. Peroxidase fusions of alditol oxidase and chitooligosaccharide oxidase could be used for the selective detection of xylitol and cellobiose with a detection limit in the low-micromolar range. The peroxidase fusions of eugenol oxidase and 5-hydroxymethylfurfural oxidase could be used for dioxygen-driven, one-pot, two-step cascade reactions to convert vanillyl alcohol into divanillin and eugenol into lignin oligomers. The designed oxidase-peroxidase fusions represent attractive biocatalysts that allow efficient biocatalytic cascade oxidations that only require molecular oxygen as an oxidant.
Collapse
Affiliation(s)
- Dana I. Colpa
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Nikola Lončar
- Groningen Enzyme and Cofactor Collection (GECCO)University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Mareike Schmidt
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
96
|
Trindade de Carvalho B, Holt S, Souffriau B, Lopes Brandão R, Foulquié-Moreno MR, Thevelein JM. Identification of Novel Alleles Conferring Superior Production of Rose Flavor Phenylethyl Acetate Using Polygenic Analysis in Yeast. mBio 2017; 8:e01173-17. [PMID: 29114020 PMCID: PMC5676035 DOI: 10.1128/mbio.01173-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/29/2017] [Indexed: 11/20/2022] Open
Abstract
Flavor compound metabolism is one of the last areas in metabolism where multiple genes encoding biosynthetic enzymes are still unknown. A major challenge is the involvement of side activities of enzymes having their main function in other areas of metabolism. We have applied pooled-segregant whole-genome sequence analysis to identify novel Saccharomyces cerevisiae genes affecting production of phenylethyl acetate (2-PEAc). This is a desirable flavor compound of major importance in alcoholic beverages imparting rose- and honey-like aromas, with production of high 2-PEAc levels considered a superior trait. Four quantitative trait loci (QTLs) responsible for high 2-PEAc production were identified, with two loci each showing linkage to the genomes of the BTC.1D and ER18 parents. The first two loci were investigated further. The causative genes were identified by reciprocal allele swapping into both parents using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9. The superior allele of the first major causative gene, FAS2, was dominant and contained two unique single nucleotide polymorphisms (SNPs) responsible for high 2-PEAc production that were not present in other sequenced yeast strains. FAS2 encodes the alpha subunit of the fatty acid synthetase complex. Surprisingly, the second causative gene was a mutant allele of TOR1, a gene involved in nitrogen regulation. Exchange of both superior alleles in the ER18 parent strain increased 2-PEAc production 70%, nearly to the same level as in the best superior segregant. Our results show that polygenic analysis combined with CRISPR/Cas9-mediated allele exchange is a powerful tool for identification of genes encoding missing metabolic enzymes and for development of industrial yeast strains generating novel flavor profiles in alcoholic beverages.IMPORTANCE Multiple reactions in flavor metabolism appear to be catalyzed by side activities of other enzymes that have been difficult to identify. We have applied genetic mapping of quantitative trait loci in the yeast Saccharomyces cerevisiae to identify mutant alleles of genes determining the production of phenylethyl acetate, an important flavor compound imparting rose- and honey-like aromas to alcoholic beverages. We identified a unique, dominant allele of FAS2 that supports high production of phenylethyl acetate. FAS2 encodes a subunit of the fatty acid synthetase complex and apparently exerts an important side activity on one or more alternative substrates in flavor compound synthesis. The second mutant allele contained a nonsense mutation in TOR1, a gene involved in nitrogen regulation of growth. Together the two alleles strongly increased the level of phenylethyl acetate. Our work highlights the potential of genetic mapping of quantitative phenotypic traits to identify novel enzymes and regulatory components in yeast metabolism, including regular metabolic enzymes with unknown side activities responsible for biosynthesis of specific flavor compounds. The superior alleles identified can be used to develop industrial yeast strains generating novel flavor profiles in alcoholic beverages.
Collapse
Affiliation(s)
- Bruna Trindade de Carvalho
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Sylvester Holt
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Ben Souffriau
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Rogelio Lopes Brandão
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, ICEB II, Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, CEP 35, Ouro Preto, Brazil
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
97
|
In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum. Appl Environ Microbiol 2017; 83:AEM.01322-17. [PMID: 28754705 DOI: 10.1128/aem.01322-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/21/2017] [Indexed: 02/02/2023] Open
Abstract
For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicumIMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis, which use an individual nonaggregating type II fatty acid synthase (FAS-II) system. In this study, we reported genetic evidence demonstrating that the FAS-I system is the source of the biotin precursor in vivo in the engineered biotin-prototrophic C. glutamicum strain. This study also uncovered the important physiological role of FasB in lipoic acid biosynthesis. Here, we present an FAS-I enzyme that functions in supplying the lipoic acid precursor, although its biosynthesis has been believed to exclusively depend on FAS-II in organisms. The findings obtained here provide new insights into the metabolic engineering of this industrially important microorganism to produce these compounds effectively.
Collapse
|
98
|
De novo transcriptomic and metabolomic analysis of docosahexaenoic acid (DHA)-producing Crypthecodinium cohnii during fed-batch fermentation. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
99
|
Rich MK, Nouri E, Courty PE, Reinhardt D. Diet of Arbuscular Mycorrhizal Fungi: Bread and Butter? TRENDS IN PLANT SCIENCE 2017. [PMID: 28622919 DOI: 10.1016/j.tplants.2017.05.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Most plants entertain mutualistic interactions known as arbuscular mycorrhiza (AM) with soil fungi (Glomeromycota) which provide them with mineral nutrients in exchange for reduced carbon from the plant. Mycorrhizal roots represent strong carbon sinks in which hexoses are transferred from the plant host to the fungus. However, most of the carbon in AM fungi is stored in the form of lipids. The absence of the type I fatty acid synthase (FAS-I) complex from the AM fungal model species Rhizophagus irregularis suggests that lipids may also have a role in nutrition of the fungal partner. This hypothesis is supported by the concerted induction of host genes involved in lipid metabolism. We explore the possible roles of lipids in the light of recent literature on AM symbiosis.
Collapse
Affiliation(s)
- Mélanie K Rich
- Department of Biology, University of Fribourg, Route Albert-Gockel 3, 1700 Fribourg, Switzerland
| | - Eva Nouri
- Department of Biology, University of Fribourg, Route Albert-Gockel 3, 1700 Fribourg, Switzerland
| | - Pierre-Emmanuel Courty
- Department of Biology, University of Fribourg, Route Albert-Gockel 3, 1700 Fribourg, Switzerland; Present address: Agroécologie, AgroSupDijon, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Route Albert-Gockel 3, 1700 Fribourg, Switzerland.
| |
Collapse
|
100
|
Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis. World J Microbiol Biotechnol 2017; 33:99. [DOI: 10.1007/s11274-017-2269-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
|