51
|
Abstract
The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease in the intestine.
Collapse
|
52
|
Goodman WA, Garg RR, Reuter BK, Mattioli B, Rissman EF, Pizarro TT. Loss of estrogen-mediated immunoprotection underlies female gender bias in experimental Crohn's-like ileitis. Mucosal Immunol 2014; 7:1255-65. [PMID: 24621993 PMCID: PMC4139459 DOI: 10.1038/mi.2014.15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 02/01/2014] [Accepted: 02/10/2014] [Indexed: 02/04/2023]
Abstract
The incidence and severity of Crohn's disease (CD) are increased in female patients. Using SAMP1/YitFc (SAMP) mice, a spontaneous model of chronic intestinal inflammation that displays histologic and pathogenic similarities to human CD, we investigated the potential mechanism(s) contributing to sex differences observed in CD. Similar to gender differences observed in CD patients, SAMP female (SAMP-F) mice displayed an earlier onset and more severe ileitis compared with SAMP male (SAMP-M) mice. Furthermore, T-regulatory cells (Tregs) from gut-associated lymphoid tissue (GALT) of SAMP-F mice were reduced in frequency and impaired in their in vitro and in vivo suppressive functions compared with that of SAMP-M mice. Given the interaction between sex hormones and Treg function, we investigated the possible role of estrogen (E2) in SAMP ileitis. SAMP-M mice responded to exogenous E2 administration by expanding Treg frequency and reducing ileal inflammation, whereas SAMP-F mice were resistant. Conventional T cells and Tregs responded differentially to estrogen signaling, leading to distinct immunoprotective effects mediated by distinct estrogen receptor (ER) isoforms. These mechanisms were impaired in T cells from SAMP-F mice. Thus, hormone signaling influences the expansion and function of GALT Tregs in an ER-dependent manner and contributes to gender-based differences in experimental CD.
Collapse
Affiliation(s)
- Wendy A. Goodman
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rekha R. Garg
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brian K. Reuter
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada T6G 2X8
| | - Benedetta Mattioli
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Emilie F. Rissman
- Department of Biochemistry & Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
53
|
Islam MS, Kusakabe M, Horiguchi K, Iino S, Nakamura T, Iwanaga K, Hashimoto H, Matsumoto S, Murata T, Hori M, Ozaki H. PDGF and TGF-β promote tenascin-C expression in subepithelial myofibroblasts and contribute to intestinal mucosal protection in mice. Br J Pharmacol 2014; 171:375-88. [PMID: 24116743 DOI: 10.1111/bph.12452] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/02/2013] [Accepted: 09/29/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Tenascin-C (TnC) is a multi-domain extracellular matrix glycoprotein that is expressed at a high level during embryogenesis but is almost absent during normal postnatal life. This multi-domain complex molecule is reported to associate with both pro-inflammatory and anti-inflammatory signalling cascades. In this study, we examined how TnC modulated intestinal inflammation. EXPERIMENTAL APPROACH TnC pathophysiology was evaluated in cultures of rat intestinal subepithelial myofibroblasts (ISEMF) and intestinal epithelial cells. Wild-type and TnC(-/-) mice were treated with dextran sodium sulfate (DSS) to induce colitis. KEY RESULTS DSS-induced colitis in mice markedly increased TnC in the damaged mucosal areas and up-regulated mRNA for TnC, pro-inflammatory cytokines and growth factors (PDGF-B and TGF-β1). In addition, 2,4,6-trinitrobenzene sulfonic acid-induced colitis and SAMP1/Yit mice, a model of spontaneous Crohn's disease, also exhibited increased mucosal TnC in colon and ilea respectively. PDGF receptor-α (PDGFRα) positive ISEMF were the primary TnC-producing cells in colon tissues. Accordingly, ISEMF collected from the rat colon constitutively expressed both TnC and PDGFRα. PDGF-BB and TGF-β1 up-regulated both TnC mRNA and protein levels in ISEMF. Knock-down of TnC gene increased susceptibility to DSS-induced colitis, compared with TnC(+/+) littermates. TnC(-/-) mice showed marked abrasion of intestinal mucosal barrier and increased inflammatory scores. Moreover, TnC accelerated both trans-well migration and wound healing in epithelial cells. CONCLUSIONS AND IMPLICATIONS The pharmacological profiles of PDGF-BB and TGF-β in colitis tissues and ISEMF suggest that increased TnC production during inflammation contributed to epithelial cell migration, remodelling and protection of intestinal barriers.
Collapse
Affiliation(s)
- M S Islam
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Erben U, Loddenkemper C, Doerfel K, Spieckermann S, Haller D, Heimesaat MM, Zeitz M, Siegmund B, Kühl AA. A guide to histomorphological evaluation of intestinal inflammation in mouse models. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:4557-4576. [PMID: 25197329 PMCID: PMC4152019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/30/2014] [Indexed: 06/03/2023]
Abstract
Histomorphology remains a powerful routine evaluating intestinal inflammation in animal models. Emphasizing the focus of a given animal study, histopathology can overstate differences between established models. We aimed to systematize histopathological evaluation of intestinal inflammation in mouse models facilitating inter-study comparisons. Samples of all parts of the intestinal tract from well-established mouse models of intestinal inflammation were evaluated from hematoxylin/eosin-stained sections and specific observations confirmed by subsequent immunohistochemistry. Three main categories sufficiently reflected the severity of histopathology independent of the localization and the overall extent of an inflammation: (i) quality and dimension of inflammatory cell infiltrates, (ii) epithelial changes and (iii) overall mucosal architecture. Scoring schemata were defined along specified criteria for each of the three categories. The direction of the initial hit proved crucial for the comparability of histological changes. Chemical noxes, infection with intestinal parasites or other models where the barrier was disturbed from outside, the luminal side, showed high levels of similarity and distinct differences to changes in the intestinal balance resulting from inside events like altered cytokine responses or disruption of the immune cell homeostasis. With a high degree of generalisation and maximum scores from 4-8 suitable scoring schemata accounted specific histopathological hallmarks. Truly integrating demands and experiences of gastroenterologists, mouse researchers, microbiologists and pathologists we provide an easy-to-use guideline evaluating histomorphology in mouse models of intestinal inflammation. Standard criteria and definitions facilitate classification and rating of new relevant models, allow comparison in animal studies and transfer of functional findings to comparable histopathologies in human disease.
Collapse
Affiliation(s)
- Ulrike Erben
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin Berlin, Germany ; Research Center ImmunoSciences, Charité-Universitätsmedizin Berlin Berlin, Germany
| | | | | | - Simone Spieckermann
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin Berlin, Germany ; Research Center ImmunoSciences, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Dirk Haller
- Research Centre for Nutrition and Food Sciences, Biofunctionality Unit (ZIEL), Technical University Munich Freising-Weihenstephan, Germany
| | - Markus M Heimesaat
- Institute for Microbiology and Infectious Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Martin Zeitz
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Britta Siegmund
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin Berlin, Germany ; Research Center ImmunoSciences, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin Berlin, Germany ; Research Center ImmunoSciences, Charité-Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
55
|
Animal models of inflammatory bowel disease: a review. Inflammopharmacology 2014; 22:219-33. [PMID: 24906689 DOI: 10.1007/s10787-014-0207-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) represents a group of idiopathic chronic inflammatory intestinal conditions associated with various areas of the GI tract, including two types of inflammatory conditions, i.e., ulcerative colitis (UC) and Crohn's disease (CD). Both UC and CD are chronic inflammatory disorders of the intestine; in UC, inflammation starts in the rectum and generally extends proximally in a continuous manner through the entire colon. Bloody diarrhea, presence of blood and mucus mixed with stool, accompanied by lower abdominal cramping, are the characteristic symptoms of the disease. While in CD, inflammatory condition may affect any part of the GI tract from mouth to anus. It mainly causes abdominal pain, diarrhea, vomiting and weight loss. Although the basic etiology of IBD is unknown, there are several factors that may contribute to the pathogenesis of this disease, such as dysregulation of immune system or commensal bacteria, oxidative stress and inflammatory mediators. In order to understand these different etiological factors, a number of experimental models are available in the scientific research, including chemical-induced, spontaneous, genetically engineered and transgenic models. These models represent a major source of information about biological systems and are clinically relevant to the human IBD. Since there is less collective data available in one single article discussing about all these models, in this review an effort is made to study the outline of pathophysiology and various types of animal models used in the research study of IBD and other disease-related complications.
Collapse
|
56
|
Jones-Hall YL, Grisham MB. Immunopathological characterization of selected mouse models of inflammatory bowel disease: Comparison to human disease. ACTA ACUST UNITED AC 2014; 21:267-88. [PMID: 24935242 DOI: 10.1016/j.pathophys.2014.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic, relapsing conditions of multifactorial etiology. The two primary diseases of IBD are Crohn's disease (CD) and ulcerative colitis (UC). Both entities are hypothesized to occur in genetically susceptible individuals due to microbial alterations and environmental contributions. The exact etiopathogenesis, however, is not known for either disease. A variety of mouse models of CD and UC have been developed to investigate the pathogenesis of these diseases and evaluate treatment modalities. Broadly speaking, the mouse models can be divided into 4 categories: genetically engineered, immune manipulated, spontaneous and erosive/chemically induced. No one mouse model completely recapitulates the immunopathology of CD or UC, however each model possesses particular similarities to human IBD and offers advantageous for specific details of IBD pathogenesis. Here we discuss the more commonly used models in each category and critically evaluate how the immunopathology induced compares to CD or UC, as well as the advantages and disadvantages associated with each model.
Collapse
Affiliation(s)
- Yava L Jones-Hall
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47906, United States.
| | - Matthew B Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| |
Collapse
|
57
|
Montufar-Solis D, Vigneswaran N, Nakra N, Schaefer JS, Klein JR. Hematopoietic not systemic impairment of Roquin expression accounts for intestinal inflammation in Roquin-deficient mice. Sci Rep 2014; 4:4920. [PMID: 24815331 PMCID: PMC4017215 DOI: 10.1038/srep04920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/22/2014] [Indexed: 01/17/2023] Open
Abstract
Roquin, an E3 ligase, is involved in curtailing autoimmune pathology as seen from studies using mice with mutated (Rc3h1san/san) or disrupted (Rc3h1gt/gt) Rc3h1 gene. The extent to which intestinal immunopathology is caused by insufficient Roquin expression in the immune system, or by Roquin impairment in non-hematopoietic cells, has not been determined. Using bone marrow cells from Rc3h1gt/gt mice transferred into irradiated normal mice (Rc3h1gt/gt → NL chimeras), we show that inflammation developed in the small intestine, kidney, lung, liver, and spleen. Proinflammatory cytokine levels were elevated in lamina propria lymphocytes (LPLs). Inflammation in the liver was accompanied by areas of hepatocyte apoptosis. Lung inflammation consisted of an influx of both T cells and B cells. Small intestinal LPLs had increased numbers of CD44hi, CD62Llo, KLRG1+, ICOS+ short-lived effector cells, indicating an influx of activated T cells. Following oral infection with L. monocytogenes, Rc3h1gt/gt → NL chimeras had more liver pathology and greater numbers of bacteria in the Peyer's patches than NL → NL chimeras. These findings demonstrate that small intestinal inflammation in Rc3h1san/san and Rc3h1gt/gt mice is due to a failure of Roquin expression in the immune system and not to insufficient systemic Roquin expression.
Collapse
Affiliation(s)
- Dina Montufar-Solis
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| | - Nadarajah Vigneswaran
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| | - Niyati Nakra
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| | - Jeremy S Schaefer
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| | - John R Klein
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| |
Collapse
|
58
|
Lu L, Chan RLY, Luo XM, Wu WKK, Shin VY, Cho CH. Animal models of gastrointestinal inflammation and cancer. Life Sci 2014; 108:1-6. [PMID: 24825611 DOI: 10.1016/j.lfs.2014.04.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/20/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023]
Abstract
Inflammation and cancer are the two major disorders in the gastrointestinal tract. They are causally related in their pathogenesis. It is important to study animal models' causal relationship and, in particular, to discover new therapeutic agents for such diseases. There are several criteria for these models in order to make them useful in better understanding the etiology and treatment of the said diseases in humans. In this regard, animal models should be similar as possible to human diseases and also be easy to produce and reproducible and also economic to allow a continuous replication in different laboratories. In this review, we summarize the various animal models for inflammatory and cancerous disorders in the upper and lower gastrointestinal tract. Experimental approaches are as simple as by giving a single oral dose of alcohol or other noxious agents or by injections of multiple dosages of ulcer inducing agents or by parenteral administration or in drinking water of carcinogens or by modifying the genetic makeups of animals to produce relatively long-term pathological changes in particular organs. With these methods they could induce consistent inflammatory responses or tumorigenesis in the gastrointestinal mucosa. These animal models are widely used in laboratories in understanding the pathogenesis as well as the mechanisms of action for therapeutic agents in the treatment of gastrointestinal inflammation and cancer.
Collapse
Affiliation(s)
- L Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ruby L Y Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - X M Luo
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Vivian Y Shin
- Department of Surgery, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - C H Cho
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
59
|
Oka A, Ishihara S, Mishima Y, Tada Y, Kusunoki R, Fukuba N, Yuki T, Kawashima K, Matsumoto S, Kinoshita Y. Role of regulatory B cells in chronic intestinal inflammation: association with pathogenesis of Crohn's disease. Inflamm Bowel Dis 2014; 20:315-328. [PMID: 24390063 DOI: 10.1097/01.mib.0000437983.14544.d5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The role of regulatory B cells (Bregs) producing interleukin (IL)-10 in the pathogenesis of inflammatory bowel diseases remains unknown. We investigated IL-10 production in B cells from patients with inflammatory bowel diseases and immunoregulatory functions of Bregs in experimental colitis mouse models. CpG DNA-induced IL-10 production in peripheral blood B cells isolated from patients with inflammatory bowel diseases and control subjects was examined. CD19 and CD1d were used for evaluating possible cell surface markers of Bregs. Colitis models of severe combined immunodeficiency mice were established by adoptive transfer of whole CD4 T cells or regulatory T cell (Treg)-depleted T cells (CD4CD25) isolated from SAMP1/Yit mice and the function of Bregs in intestinal inflammation was elucidated by evaluating the effects of cotransfer of whole or Breg-depleted B cells. CpG DNA-induced IL-10 production was significantly decreased in B cells from patients with Crohn's disease (CD), as compared with those from healthy controls, whereas Bregs were found to be enriched in a population of CD19 and CD1d B cells isolated from both human and mouse samples. The severity of intestinal inflammation was significantly increased in the Breg-depleted mice, with similar results also found in adoptive transfer colitis model mice even after Treg depletion. Our findings show that Bregs, characterized by the cell surface markers CD19 and CD1d, significantly reduced experimental colitis regardless of the presence or absence of Tregs. These results suggest that a deficiency or decrease of Bregs function exacerbates intestinal inflammation, which may be associated with the pathogenesis of CD.
Collapse
Affiliation(s)
- Akihiko Oka
- *Department of Internal Medicine II, Shimane University School of Medicine, Shimane, Japan; †Division of Gastrointestinal Endoscopy, Shimane University Hospital, Shimane, Japan; and ‡Yakult Central Institute for Microbiological Research, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
UMESAKI Y. Use of gnotobiotic mice to identify and characterize key microbes responsible for the development of the intestinal immune system. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2014; 90:313-32. [PMID: 25391317 PMCID: PMC4324924 DOI: 10.2183/pjab.90.313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Symbiosis between intestinal microbiota and the host animal plays an important role in the homeostasis of host physiology. Since the first production of germ-free rodents in 1945, it has become increasingly clear that the intestinal immune system and the biochemical characteristics of epithelial cells differ greatly between conventional and germ-free rodents. However, questions remain about the types of microbes involved and the precise mechanism by which these microbes affect the host physiology. Here, we review experiments designed to answer these questions with the use of gnotobiotic mice. We have determined suitable biochemical and immunological markers for monitoring microbial effects in these mice. Using these markers, we have found clear differences in epithelial cell glycolipid biosynthesis and intraepithelial lymphocyte dynamics between germ-free and conventional mice. Furthermore, we have identified a key microbe that activates the mucosal immune system in the small intestine. This indigenous bacteria, called segmented filamentous bacteria, is a key symbiont in the host-microbiota interplay, including Th17 cell-inducing activity.
Collapse
Affiliation(s)
- Yoshinori UMESAKI
- Yakult Central Institute, Kunitachi-shi, Tokyo 186-8650, Japan
- Correspondence should be addressed: Y. Umesaki, Yakult Central Institute, Izumi 5-11, Kunitachi-shi, Tokyo 186-8650, Japan (e-mail: )
| |
Collapse
|
61
|
Valatas V, Vakas M, Kolios G. The value of experimental models of colitis in predicting efficacy of biological therapies for inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol 2013; 305:G763-85. [PMID: 23989010 DOI: 10.1152/ajpgi.00004.2013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During the last decade, biological therapies have an increasing share in the modern therapeutics of various diseases including inflammatory bowel diseases (IBD). Animal models of IBD have often been used to identify the targets of biological therapies, to test their relevance to disease pathogenesis, to assess their therapeutic efficacy in vivo, and to check for drug toxicity. In the field of inflammatory diseases the majority of biologics under development have failed to reach the clinic. This review examines the ability of preclinical data from animal models of IBD to predict success or failure of biologics in human IBD. Specifically, it describes the murine models of IBD, the mechanism of disease induction, the phenotype of the disease, its relevance to human IBD, and the specific immunological features of disease pathogenesis in each model and mainly compares the results of the phase II and III trials of biologics in IBD with preclinical data obtained from studies in animal models. Finally, it examines the possible reasons for low success in translation from bench to bedside and offers some suggestions to improve translation rates.
Collapse
Affiliation(s)
- Vassilis Valatas
- Dept. of Gastroenterology, Univ. Hospital of Heraklion, PO Box 1352, Voutes, Heraklion, GR-71100, Crete, Greece.
| | | | | |
Collapse
|
62
|
Hokari R, Matsunaga H, Miura S. Effect of dietary fat on intestinal inflammatory diseases. J Gastroenterol Hepatol 2013; 28 Suppl 4:33-6. [PMID: 24251701 DOI: 10.1111/jgh.12252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2013] [Indexed: 01/14/2023]
Abstract
Dietary fat has multiple roles on human health, and some dietary fat is used to treat organic diseases because of its anti-inflammatory effect. It is commonly accepted that omega-3 polyunsaturated fatty acid (PUFA) is beneficial on ischemic heart disease or rheumatic arthritis. On the contrary, effect of omega-3-PUFA on Crohn's disease remained controversial. That effect of omega-3 PUFA differs according to the location of inflamed intestine was hypothesized. To elucidate this hypothesis, to investigate the role of dietary fat on disease activity in different kind of murine models of intestinal inflammatory diseases was planned. The effect of omega-3 PUFA on small intestinal Crohn's disease model and large intestinal Crohn's disease model of mice. Chronic colitis model C57BL/6 mice received two cycles of dextran sodium sulfate solution treatment to induce chronic colitis. Feeding of omega-3 fat-rich diets exacerbated colitis with decrease in adiponectin expression. Chronic small intestinal inflammation model: SAMP1/Yit mice showed remarkable inflammation of the terminal ileum spontaneously. Feeding of omega-3 fat-rich diets for 16 weeks significantly ameliorated the inflammation of the terminal ileum. Enhanced infiltration of leukocytes and expression of mucosal addressin cell adhesion molecule-1 in intestinal mucosa was significantly decreased by omega-3 fat-rich diets treatment. Omega-3 PUFA has dual role, pro-/anti-inflammatory, on intestinal inflammatory diseases. The role of omega-3 fat and the potential for immunonutrition in inflammatory conditions of the gastrointestinal tract will be discussed.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | |
Collapse
|
63
|
Abstract
Animal models of human disease are a critical tool in both basic research and drug development. The results of preclinical efficacy studies often inform progression of therapeutic candidates through the drug development pipeline; however, the extent to which results in inflammatory bowel disease (IBD) models predict human drug response is an ongoing concern. This review discusses how murine models are currently being used in IBD research. We focus on the considerations and caveats for commonly used models in preclinical efficacy studies and discuss the value of models that utilize specific pathogenic pathways of interest rather than model all aspects of human disease.
Collapse
Affiliation(s)
- Jason DeVoss
- Department of Immunology, Genentech, Inc., San Francisco, California, USA
| | - Lauri Diehl
- Department of Pathology, Genentech, Inc., San Francisco, California, USA
| |
Collapse
|
64
|
Lampinen M, Waddell A, Ahrens R, Carlson M, Hogan SP. CD14+CD33+ myeloid cell-CCL11-eosinophil signature in ulcerative colitis. J Leukoc Biol 2013; 94:1061-70. [PMID: 23904440 DOI: 10.1189/jlb.1212640] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study tested the hypothesis that eotaxins (CCL11, CCL24, and CCL26) and IL-5 contribute to eosinophil recruitment to the intestine in UC and that intestinal macrophages are important producers of CCL11 in this disease. Peripheral blood and rectal biopsy samples were obtained from patients with active (n=18) and quiescent UC (n=9), and control patients (n=7). Eosinophil and macrophage levels and activation were analyzed by flow cytometry. Rectal mRNA levels of CCL11, CCL24, CCL26, and IL-5 were determined by qRT-PCR. The cellular source of CCL11 was visualized by immunofluorescence analyses. Eosinophil numbers were elevated in the blood and rectum of active and quiescent UC patients compared with controls. Levels of activated eosinophils (CD66b(high)) correlated with disease severity. Rectal CCL11, CCL24, and CCL26 mRNA levels were increased in active UC, whereas only CCL11 was elevated in quiescent UC. Levels of CCL11, but not CCL24 and CCL26, positively correlated with eosinophil numbers. Numbers of CD14(+)CD33(+) cells correlated with CCL11 and eosinophil levels. Immunofluorescence analyses revealed the presence of CD14(+)CCL11(+) mononuclear cells in colonic biopsies in UC. These results support the hypothesis that CCL11 contributes to eosinophil recruitment in UC and that intestinal myeloid cells are a source of CCL11. Interestingly, rectal levels of CCL24, CCL26, and IL-5 only increase during active UC, coinciding with further elevation of eosinophil numbers and with the activation of rectal eosinophils. In conclusion, there is a link among CD14(+)CD33(+) myeloid cells, CCL11, and eosinophils in adult UC.
Collapse
Affiliation(s)
- Maria Lampinen
- 2.Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, ML7028, Cincinnati, OH, 45229; E-mail, ; and Gastroenterology Research Group, Department of Medical Sciences, University Hospital, Uppsala 751 85 Sweden; E-mail,
| | | | | | | | | |
Collapse
|
65
|
Okada Y, Tsuzuki Y, Narimatsu K, Sato H, Ueda T, Hozumi H, Sato S, Hokari R, Kurihara C, Komoto S, Watanabe C, Tomita K, Kawaguchi A, Nagao S, Miura S. 1,4-Dihydroxy-2-naphthoic acid fromPropionibacterium freudenreichiireduces inflammation in interleukin-10-deficient mice with colitis by suppressing macrophage-derived proinflammatory cytokines. J Leukoc Biol 2013; 94:473-80. [DOI: 10.1189/jlb.0212104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
66
|
Schaefer JS, Montufar-Solis D, Nakra N, Vigneswaran N, Klein JR. Small intestine inflammation in Roquin-mutant and Roquin-deficient mice. PLoS One 2013; 8:e56436. [PMID: 23451046 PMCID: PMC3581552 DOI: 10.1371/journal.pone.0056436] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/10/2013] [Indexed: 01/05/2023] Open
Abstract
Roquin, an E3 ubiquitin ligase that localizes to cytosolic RNA granules, is involved in regulating mRNA stability and translation. Mice that have a M199R mutation in the Roquin protein (referred to as sanroque or Roquinsan/san mice) develop autoimmune pathologies, although the extent to which these occur in the intestinal mucosa has not been determined. Here, we demonstrate that Roquinsan/san mice reproducibly develop intestinal inflammation in the small intestine but not the colon. Similarly, mice generated in our laboratory in which the Roquin gene was disrupted by insertion of a gene trap cassette (Roquingt/gt mice) had small intestinal inflammation that mimicked that of Roquinsan/san mice. MLN cells in Roquinsan/san mice consisted of activated proliferating T cells, and had increased numbers of CD44hi CD62Llo KLRG1+ short-lived effector cells. Proportionally more small intestinal intraepithelial lymphocytes in Roquinsan/san mice expressed the ICOS T cell activation marker. Of particular interest, small intestinal lamina propria lymphocytes in Roquinsan/san mice consisted of a high proportion of Gr-1+ T cells that included IL-17A+ cells and CD8+ IFN-γ+ cells. Extensive cytokine dysregulation resulting in both over-expression and under-expression of chemotactic cytokines occurred in the ileum of Roquinsan/san mice, the region most prone to the development of inflammation. These findings demonstrate that chronic inflammation ensues in the intestine following Roquin alteration either as a consequence of protein mutation or gene disruption, and they have implications for understanding how small intestinal inflammation is perpetuated in Crohn's disease (CD). Due to the paucity of animal models of CD-like pathophysiology in the small intestine, and because the primary gene/protein defects of the Roquin animal systems used here are well-defined, it will be possible to further elucidate the underlying genetic and molecular mechanisms that drive the disease process.
Collapse
Affiliation(s)
- Jeremy S. Schaefer
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, Texas, United States of America
| | - Dina Montufar-Solis
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, Texas, United States of America
| | - Niyati Nakra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, Texas, United States of America
| | - Nadarajah Vigneswaran
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, Texas, United States of America
| | - John R. Klein
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
67
|
Engelman RW, Kerr WG. Assessing inflammatory disease at mucosal surfaces in murine genetic models. Methods Mol Biol 2013; 900:433-41. [PMID: 22933082 DOI: 10.1007/978-1-60761-720-4_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory diseases of the mucosal surfaces are rising worldwide and particularly in the Western world that is witnessing unprecedented increases in the number and incidence of both asthma and inflammatory bowel disease. The laboratory mouse allows the application of the full panoply of modern genetic, immunological and biochemical tools to increase our understanding of how inflammation arises and how it might be controlled at mucosal surfaces. Here we provide a detailed description of how to systematically assess inflammatory disease in the lung and intestines of the laboratory mouse. We provide histopathology examples from SHIP mutant mice that are the only known genetic mutant to suffer from pulmonary consolidation, asthma, and Crohn's disease. The intent of this chapter is to facilitate increased surveillance of mucosal inflammation in studies where the laboratory mouse is utilized so that we can better understand the cell types, genes, and microorganisms that contribute to mucosal inflammatory disease and thereby develop more effective therapies and preventive strategies.
Collapse
Affiliation(s)
- R W Engelman
- Department of Pathology, Lee Moffitt Comprehensive Cancer Center and Research Institute, University of South Florida, Tampa, FL, USA
| | | |
Collapse
|
68
|
|
69
|
Rieder F, Kessler S, Sans M, Fiocchi C. Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am J Physiol Gastrointest Liver Physiol 2012; 303:G786-801. [PMID: 22878121 PMCID: PMC4073977 DOI: 10.1152/ajpgi.00059.2012] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrosis is a serious condition complicating chronic inflammatory processes affecting the intestinal tract. Advances in this field that rely on human studies have been slow and seriously restricted by practical and logistic reasons. As a consequence, well-characterized animal models of intestinal fibrosis have emerged as logical and essential systems to better define and understand the pathophysiology of fibrosis. In point of fact, animal models allow the execution of mechanistic studies as well as the implementation of clinical trials with novel, pathophysiology-based therapeutic approaches. This review provides an overview of the currently available animal models of intestinal fibrosis, taking into consideration the methods of induction, key characteristics of each model, and underlying mechanisms. Currently available models will be classified into seven categories: spontaneous, gene-targeted, chemical-, immune-, bacteria-, and radiation-induced as well as postoperative fibrosis. Each model will be discussed in regard to its potential to create research opportunities to gain insights into the mechanisms of intestinal fibrosis and stricture formation and assist in the development of effective and specific antifibrotic therapies.
Collapse
Affiliation(s)
- Florian Rieder
- 1Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; ,2Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Sean Kessler
- 1Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio;
| | - Miquel Sans
- 3Service of Gastroenterology, Centro Medico Teknon, Barcelona, Spain
| | - Claudio Fiocchi
- 1Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; ,2Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio; and
| |
Collapse
|
70
|
Abstract
Inflammatory bowel diseases (Crohn's disease, ulcerative colitis, undetermined colitis) are a group of chronic autoimmune inflammatory diseases distinguished by recurrent inflammation of various parts of the gastrointestinal (GI) system and presenting a significant public health problem. Despite large basic and clinical research, the aetiology of these diseases and the pathogenesis of inflammation itself remain elusive. Previous studies have confirmed a causal relationship between mediators of inflammatory response and molecules involved in the regulation of their biological activity, especially proteases. The aim of this review is to summarise earlier findings on different aspects of inflammatory bowel diseases, paying particular attention to the involvement of dipeptidyl peptidase IV (CD26 molecule, DPP IV/CD26) in the etiopathogenesis of inflammatory processes in the GI tract. Animal studies of colitis have significantly contributed to the understanding and treatment of these diseases, investigations of ulcerative colitis (DSS-colitis) and Crohn's disease (TNBS-colitis) on the murine model in particular.
Collapse
|
71
|
Collins CB, Aherne CM, McNamee EN, Lebsack MDP, Eltzschig H, Jedlicka P, Rivera-Nieves J. Flt3 ligand expands CD103⁺ dendritic cells and FoxP3⁺ T regulatory cells, and attenuates Crohn's-like murine ileitis. Gut 2012; 61:1154-62. [PMID: 22068168 PMCID: PMC3684390 DOI: 10.1136/gutjnl-2011-300820] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED BACKGROUND; Imprinting an effector or regulatory phenotype on naïve T cells requires education at induction sites by dendritic cells (DC). Objectives To analyse the effect of inflammation on the frequency of mononuclear phagocytes (MP) and the effect of altering their frequency by administration of Flt3-L in chronic ileitis. METHODS Using a tumour necrosis factor (TNF) driven model of ileitis (ie, TNFΔARE) that recapitulates many features of Crohn's disease (CD), dynamic changes in the frequency and functional state of MP within the inflamed ileum were assessed by flow cytometry, immunofluorescence and real-time reverse-transcription PCR and by generating CX(3)CR1 GFP-reporter TNFΔARE mice. The effect of Flt3-L supplementation on the severity of ileitis, and the frequency of CD103(+) DC and of FoxP3(+) regulatory T cells was also studied in TNFΔARE mice. RESULTS CD11c(Hi)/MHCII(+) MP accumulated in inflamed ilea, predominantly mediated by expansion of the CX(3)CR1(+) MP subpopulation. This coincided with a decreased pro-regulatory CD103(+) DC. The phenotype of these MP was that of activated cells, as they expressed increased CD80 and CD86 on their surface. Flt3-ligand administration resulted in a preferential expansion of CD103(+) DC that attenuated the severity of ileitis in 20-week-old TNFΔARE mice, mediated by increased CD4(+)/CD25(+)/FoxP3(+) regulatory T cells. CONCLUSIONS Results support a role for Flt3-L as a potential therapeutic agent in Crohn's-like ileitis.
Collapse
Affiliation(s)
- Colm B. Collins
- Mucosal Inflammation Program, Department of Internal Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Carol M. Aherne
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Eóin N. McNamee
- Mucosal Inflammation Program, Department of Internal Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Matthew D. P. Lebsack
- Mucosal Inflammation Program, Department of Internal Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Holger Eltzschig
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Paul Jedlicka
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California at San Diego, San Diego, California USA 92093
| |
Collapse
|
72
|
Corridoni D, Pastorelli L, Mattioli B, Locovei S, Ishikawa D, Arseneau KO, Chieppa M, Cominelli F, Pizarro TT. Probiotic bacteria regulate intestinal epithelial permeability in experimental ileitis by a TNF-dependent mechanism. PLoS One 2012; 7:e42067. [PMID: 22848704 PMCID: PMC3405026 DOI: 10.1371/journal.pone.0042067] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 07/02/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We previously showed that the probiotic mixture, VSL#3, prevents the onset of ileitis in SAMP/YitFc (SAMP) mice, and this effect was associated with stimulation of epithelial-derived TNF. The aim of this study was to determine the mechanism(s) of VSL#3-mediated protection on epithelial barrier function and to further investigate the "paradoxical" effects of TNF in preventing SAMP ileitis. METHODS Permeability was evaluated in SAMP mice prior to the onset of inflammation and during established disease by measuring transepithelial electrical resistance (TEER) on ex vivo-cultured ilea following exposure to VSL#3 conditioned media (CM), TNF or VSL#3-CM + anti-TNF. Tight junction (TJ) proteins were assessed by qRT-PCR, Western blot, and confocal microscopy, and TNFRI/TNFRII expression measured in freshly isolated intestinal epithelial cells (IEC) from SAMP and control AKR mice. RESULTS Culture with either VSL#3-CM or TNF resulted in decreased ileal paracellular permeability in pre-inflamed SAMP, but not SAMP with established disease, while addition of anti-TNF abrogated these effects. Modulation of the TJ proteins, claudin-2 and occludin, occurred with a significant decrease in claudin-2 and increase in occludin following stimulation with VSL#3-CM or TNF. TNF protein levels increased in supernatants of SAMP ilea incubated with VSL#3-CM compared to vehicle, while IEC-derived TNFR mRNA expression decreased in young, and was elevated in inflamed, SAMP versus AKR mice. CONCLUSIONS Our data demonstrate that the previously established efficacy of VSL#3 in preventing SAMP ileitis is due to direct innate and homeostatic effects of TNF on the gut epithelium, modulation of the TJ proteins, claudin-2 and occludin, and overall improvement of intestinal permeability.
Collapse
Affiliation(s)
- Daniele Corridoni
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Luca Pastorelli
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Benedetta Mattioli
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Silviu Locovei
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Dai Ishikawa
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Kristen O. Arseneau
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Marcello Chieppa
- Lab of Experimental Immunopathology, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “De Bellis”, Castellana Grotte, Bari, Italy
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
73
|
Maxwell JR, Viney JL. Overview of mouse models of inflammatory bowel disease and their use in drug discovery. ACTA ACUST UNITED AC 2012; Chapter 5:Unit5.57. [PMID: 22294403 DOI: 10.1002/0471141755.ph0557s47] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inflammatory bowel disease (IBD), a condition that affects millions of individuals, encompasses two distinct conditions: Crohn's disease (CD) and ulcerative colitis (UC). CD is an inflammatory condition affecting any part of the digestive tract between the mouth and anus, but, most commonly, the ileum and colon. It is distinguished by the presence of granulomas in the mucosal tissue and patchy areas of transmural inflammation. UC is restricted to the colon and is manifest as continuous inflammation starting from the rectum and extending back towards the cecum. Inflammation in UC is primarily restricted to mucosal layers. Research is ongoing to understand the causality of these two diseases, and advances in understanding of their pathology have resulted from the variety of mouse models of IBD that have emerged since the early 1990s. Described in this unit are contemporary mouse models of these conditions and examples of their use in drug discovery.
Collapse
|
74
|
Bleich A, Hansen AK. Time to include the gut microbiota in the hygienic standardisation of laboratory rodents. Comp Immunol Microbiol Infect Dis 2012; 35:81-92. [PMID: 22257867 DOI: 10.1016/j.cimid.2011.12.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 11/17/2011] [Accepted: 12/19/2011] [Indexed: 02/06/2023]
Abstract
The gut microbiota (GM) composition and its impact on animal experiments has become currently dramatically relevant in our days: (1) recent progress in metagenomic technologies, (2) the availability of large scale quantitative analyses to characterize even subtle phenotypes, (3) the limited diversity of laboratory rodent GM due to strict barriers at laboratory animal vendors, and (4) the availability of up to 300.000 different transgenic mouse strains from different sources displaying a huge variety in their GM composition. In this review the GM is described as a variable in animal experiments which need to be reduced for scientific as well as ethical reasons, and strategies how to implement this in routine diagnostic procedures are proposed. We conclude that we have both enough information available to state that the GM has an essential impact on animal models, as well as the methods available to start dealing with these impacts.
Collapse
Affiliation(s)
- André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany, Hannover, Germany.
| | | |
Collapse
|
75
|
Ernst PB, Erickson LD, Loo WM, Scott KG, Wiznerowicz EB, Brown CC, Torres-Velez FJ, Alam MS, Black SG, McDuffie M, Feldman SH, Wallace JL, McKnight GW, Padol IT, Hunt RH, Tung KS. Spontaneous autoimmune gastritis and hypochlorhydria are manifest in the ileitis-prone SAMP1/YitFcs mice. Am J Physiol Gastrointest Liver Physiol 2012; 302:G105-15. [PMID: 21921286 PMCID: PMC3345967 DOI: 10.1152/ajpgi.00194.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
SAMP1/YitFcs mice serve as a model of Crohn's disease, and we have used them to assess gastritis. Gastritis was compared in SAMP1/YitFcs, AKR, and C57BL/6 mice by histology, immunohistochemistry, and flow cytometry. Gastric acid secretion was measured in ligated stomachs, while anti-parietal cell antibodies were assayed by immunofluorescence and enzyme-linked immunosorbent spot assay. SAMP1/YitFcs mice display a corpus-dominant, chronic gastritis with multifocal aggregates of mononuclear cells consisting of T and B lymphocytes. Relatively few aggregates were observed elsewhere in the stomach. The infiltrates in the oxyntic mucosa were associated with the loss of parietal cell mass. AKR mice, the founder strain of the SAMP1/YitFcs, also have gastritis, although they do not develop ileitis. Genetic studies using SAMP1/YitFcs-C57BL/6 congenic mice showed that the genetic regions regulating ileitis had comparable effects on gastritis. The majority of the cells in the aggregates expressed the T cell marker CD3 or the B cell marker B220. Adoptive transfer of SAMP1/YitFcs CD4(+) T helper cells, with or without B cells, into immunodeficient recipients induced a pangastritis and duodenitis. SAMP1/YitFcs and AKR mice manifest hypochlorhydria and anti-parietal cell antibodies. These data suggest that common genetic factors controlling gastroenteric disease in SAMP1/YitFcs mice regulate distinct pathogenic mechanisms causing inflammation in separate sites within the digestive tract.
Collapse
Affiliation(s)
| | | | | | - K. G. Scott
- 6Department of Biology, University of Manitoba, Winnipeg, Manitoba;
| | | | - C. C. Brown
- 7Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia;
| | - F. J. Torres-Velez
- 8Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Bethesda; and
| | - M. S. Alam
- 9Immunobiology Branch, Center for Food Safety and Nutrition, US Food and Drug Administration, Laurel, Maryland
| | | | | | - S. H. Feldman
- 5Center for Comparative Medicine, University of Virginia, Charlottesville, Virginia;
| | - J. L. Wallace
- 10Department of Medicine and The Farncombe Institute, McMaster University, Hamilton, Ontario, Canada;
| | - G. W. McKnight
- 10Department of Medicine and The Farncombe Institute, McMaster University, Hamilton, Ontario, Canada;
| | - I. T. Padol
- 10Department of Medicine and The Farncombe Institute, McMaster University, Hamilton, Ontario, Canada;
| | - R. H. Hunt
- 10Department of Medicine and The Farncombe Institute, McMaster University, Hamilton, Ontario, Canada;
| | | |
Collapse
|
76
|
T cell transfer model of colitis: a great tool to assess the contribution of T cells in chronic intestinal inflammation. Methods Mol Biol 2012; 844:261-75. [PMID: 22262449 DOI: 10.1007/978-1-61779-527-5_19] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBD) consist of Crohn's disease (CD) and ulcerative colitis (UC) affecting about 0.1% of the western population. These two chronic gut diseases affect youth at their prime of life causing diarrhoea, intestinal bleeding, and severe gut discomfort. Mouse models of colitis have been major tools in understanding the pathogenesis of IBD. A number of mouse models are available to assess the contribution of T cells in the pathogenesis of CD and UC. Among these, the T cell transfer model of colitis is the most widely used model to dissect the initiation, induction, and regulation of immunopathology in chronic colitis mediated by T cells. The methodology below describes the classification of various animal models and explains the T cell transfer model in detail, including flow cytometry-based isolation of naïve T cells that are used in the transfer, immunological concepts, detailed immune-pathological assessment, shortcomings of the model, and the latest improvements to this colitis model. A special focus is paid to the utilisation of the T cell transfer model in delineating the immunopathology in a primary epithelial defect model of colitis, namely Winnie.
Collapse
|
77
|
Mizoguchi A. Animal models of inflammatory bowel disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:263-320. [PMID: 22137435 DOI: 10.1016/b978-0-12-394596-9.00009-3] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is medicated by genetic, immune, and environmental factors. At least 66 different kinds of animal models have been established to study IBD, which are classified primarily into chemically induced, cell-transfer, congenial mutant, and genetically engineered models. These IBD models have provided significant contributions to not only dissect the mechanism but also develop novel therapeutic strategies for IBD. In addition, recent advances on genetically engineered techniques such as cell-specific and inducible knockout as well as knockin mouse systems have brought novel concepts on IBD pathogenesis to the fore. Further, mouse models, which lack some IBD susceptibility genes, have suggested more complicated mechanism of IBD than previously predicted. This chapter summarizes the distinct feature of each murine IBD model and discusses the previous and current lessons from the IBD models.
Collapse
Affiliation(s)
- Atsushi Mizoguchi
- Department of Pathology, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
78
|
Pizarro TT, Pastorelli L, Bamias G, Garg RR, Reuter BK, Mercado JR, Chieppa M, Arseneau KO, Ley K, Cominelli F. SAMP1/YitFc mouse strain: a spontaneous model of Crohn's disease-like ileitis. Inflamm Bowel Dis 2011; 17:2566-84. [PMID: 21557393 PMCID: PMC3154989 DOI: 10.1002/ibd.21638] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 01/03/2011] [Indexed: 12/18/2022]
Abstract
The SAMP1/YitFc mouse strain represents a model of Crohn's disease (CD)-like ileitis that is ideal for investigating the pathogenesis of chronic intestinal inflammation. Different from the vast majority of animal models of colitis, the ileal-specific phenotype characteristic of SAMP1/YitFc mice occurs spontaneously, without genetic, chemical, or immunological manipulation. In addition, SAMP1/YitFc mice possess remarkable similarities to the human condition with regard to disease location, histologic features, incidence of extraintestinal manifestations, and response to conventional therapies. SAMP1/YitFc mice also display a well-defined time course of a predisease state and phases of acute and chronic ileitis. As such, the SAMP1/YitFc model is particularly suitable for elucidating pathways that precede the clinical phenotype that may lead to preventive, and therefore more efficacious, intervention with the natural course of disease, or alternatively, for the development of therapeutic strategies directed against chronic, established ileitis. In this review we summarize important contributions made by our group and others that uncover potential mechanisms in the pathogenesis of CD using this unique murine model of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Reuter BK, Pastorelli L, Brogi M, Garg RR, McBride JA, Rowlett RM, Arrieta MC, Wang XM, Keller EJ, Feldman SH, Mize JR, Cominelli F, Meddings JB, Pizarro TT. Spontaneous, immune-mediated gastric inflammation in SAMP1/YitFc mice, a model of Crohn's-like gastritis. Gastroenterology 2011; 141:1709-19. [PMID: 21704001 PMCID: PMC3197754 DOI: 10.1053/j.gastro.2011.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/27/2011] [Accepted: 06/07/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Crohn's disease (CD) can develop in any region of the gastrointestinal tract, including the stomach. The etiology and pathogenesis of Crohn's gastritis are poorly understood, treatment approaches are limited, and there are not many suitable animal models for study. We characterized the features and mechanisms of chronic gastritis in SAMP1/YitFc (SAMP) mice, a spontaneous model of CD-like ileitis, along with possible therapeutic approaches. METHODS Stomachs from specific pathogen-free and germ-free SAMP and AKR mice (controls) were evaluated histologically; the presence of Helicobacter spp was tested in fecal pellets by polymerase chain reaction analysis. In vivo gastric permeability was quantified by fractional excretion of sucrose, and epithelial tight junction protein expression was measured by quantitative reverse-transcription polymerase chain reaction analysis. The effects of a proton pump inhibitor (PPI) or corticosteroids were measured, and the ability of pathogenic immune cells to mediate gastritis was assessed in adoptive transfer experiments. RESULTS SAMP mice developed Helicobacter-negative gastritis, characterized by aggregates of mononuclear cells, diffuse accumulation of neutrophils, and disruption of epithelial architecture; SAMP mice also had increased gastric permeability compared with controls, without alterations in expression of tight junction proteins. The gastritis and associated permeability defect observed in SAMP mice were independent of bacterial colonization and reduced by administration of corticosteroids but not a PPI. CD4(+) T cells isolated from draining mesenteric lymph nodes of SAMP mice were sufficient to induce gastritis in recipient SCID mice. CONCLUSIONS In SAMP mice, gastritis develops spontaneously and has many features of CD-like ileitis. These mice are a useful model to study Helicobacter-negative, immune-mediated Crohn's gastritis.
Collapse
Affiliation(s)
- Brian K. Reuter
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, Canada T6G 2X8
| | - Luca Pastorelli
- Department of Pathology, Case Western Reserve University Medical School, Cleveland, OH, USA 44106
- Department of Medical and Surgical Sciences, University of Milan, Milan, MI, Italy, 20122 and IRCCS Policlinico San Donato, San Donato Milanese, MI, Italy, 20097
| | - Marco Brogi
- Department of Pathology, Case Western Reserve University Medical School, Cleveland, OH, USA 44106
| | - Rekha R. Garg
- Department of Pathology, Case Western Reserve University Medical School, Cleveland, OH, USA 44106
| | - James A. McBride
- Division of Gastroenterology & Hepatology, University of Virginia Health System, Charlottesville, VA 22908
| | - Robert M. Rowlett
- Division of Gastroenterology & Hepatology, University of Virginia Health System, Charlottesville, VA 22908
| | - Marie C. Arrieta
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, Canada T6G 2X8
| | - Xiao-Ming Wang
- Department of Pathology, Case Western Reserve University Medical School, Cleveland, OH, USA 44106
| | - Erik J. Keller
- Division of Gastroenterology & Hepatology, University of Virginia Health System, Charlottesville, VA 22908
| | - Sanford H. Feldman
- Center for Comparative Medicine, University of Virginia Health System, Charlottesville, VA 22908
| | - James R. Mize
- Old Dominion Pathology Associates, Annandale, VA 22003
| | - Fabio Cominelli
- Department of Medicine/GI & Liver Disease, Case Western Reserve University Medical School, Cleveland, OH, USA 44106
| | - Jonathan B. Meddings
- Gastrointestinal Research Group, Department of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University Medical School, Cleveland, OH, USA 44106
| |
Collapse
|
80
|
Kolodziej LE, Lodolce JP, Chang JE, Schneider JR, Grimm WA, Bartulis SJ, Zhu X, Messer JS, Murphy SF, Reddy N, Turner JR, Boone DL. TNFAIP3 maintains intestinal barrier function and supports epithelial cell tight junctions. PLoS One 2011; 6:e26352. [PMID: 22031828 PMCID: PMC3198775 DOI: 10.1371/journal.pone.0026352] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/25/2011] [Indexed: 02/07/2023] Open
Abstract
Tight junctions between intestinal epithelial cells mediate the permeability of the intestinal barrier, and loss of intestinal barrier function mediated by TNF signaling is associated with the inflammatory pathophysiology observed in Crohn's disease and celiac disease. Thus, factors that modulate intestinal epithelial cell response to TNF may be critical for the maintenance of barrier function. TNF alpha-induced protein 3 (TNFAIP3) is a cytosolic protein that acts in a negative feedback loop to regulate cell signaling induced by Toll-like receptor ligands and TNF, suggesting that TNFAIP3 may play a role in regulating the intestinal barrier. To investigate the specific role of TNFAIP3 in intestinal barrier function we assessed barrier permeability in TNFAIP3−/− mice and LPS-treated villin-TNFAIP3 transgenic mice. TNFAIP3−/− mice had greater intestinal permeability compared to wild-type littermates, while villin-TNFAIP3 transgenic mice were protected from increases in permeability seen within LPS-treated wild-type littermates, indicating that barrier permeability is controlled by TNFAIP3. In cultured human intestinal epithelial cell lines, TNFAIP3 expression regulated both TNF-induced and myosin light chain kinase-regulated tight junction dynamics but did not affect myosin light chain kinase activity. Immunohistochemistry of mouse intestine revealed that TNFAIP3 expression inhibits LPS-induced loss of the tight junction protein occludin from the apical border of the intestinal epithelium. We also found that TNFAIP3 deubiquitinates polyubiquitinated occludin. These in vivo and in vitro studies support the role of TNFAIP3 in promoting intestinal epithelial barrier integrity and demonstrate its novel ability to maintain intestinal homeostasis through tight junction protein regulation.
Collapse
Affiliation(s)
- Lauren E. Kolodziej
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - James P. Lodolce
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Jonathan E. Chang
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Jeffrey R. Schneider
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Wesley A. Grimm
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Sarah J. Bartulis
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Xiaorong Zhu
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Jeannette S. Messer
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Stephen F. Murphy
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Nishith Reddy
- Illinois Math and Science Academy, Aurora, Illinois, United States of America
| | - Jerrold R. Turner
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - David L. Boone
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
81
|
Abstract
Inflammatory bowel disease is a chronic inflammatory disease of the gut which manifests as ulcerative colitis or Crohn's disease. One of the most studied animal models of spontaneous Crohn's disease is the senescence-accelerated mouse (SAMP1/Yit strain) model. In SAMP1/Yit mice, although many immunological responses are perturbed, some evidence suggests that the primary defect lies in the epithelial cell barrier. In the process of studying epithelial permeability, we observed that the stomach in SAMP1/Yit mice also had increased permeability. Upon further examination, these mice were shown to have marked, chronic gastritis with focal to diffuse aggregates of mononuclear cells of mixed lineages. These aggregates were located predominantly in the oxyntic mucosa, with occasional lesions in the forestomach but with relatively fewer cellular infiltrates in the antral mucosa. Real-time RT PCR showed an increase in several helper T cell (Th cell)-derived pro-inflammatory cytokines in the gastric mucosa of SAMP1/Yit mice. However, many of the cells in the aggregates of SAMP1/Yit mice were B cells. SAMP1/Yit B cells exacerbate ileitis when co-transferred into immunodeficient recipients. The gastritis also reflects a contribution by B cells. As SAMP1/Yit mice were derived from AKR mice, we examined AKR mice and determined that they too have an increased occurrence of gastritis, although they do not develop ileitis. B cells contributed to the gastric inflammation in these mice also. Thus, SAMP1/Yit mice display gastritis as well as ileitis, and B cells appear to play a role in the pathogenesis of inflammation at both sites. This review will discuss some of the mechanisms that may account for these different manifestations of gastrointestinal disease.
Collapse
|
82
|
Lin J, Hackam DJ. Worms, flies and four-legged friends: the applicability of biological models to the understanding of intestinal inflammatory diseases. Dis Model Mech 2011; 4:447-56. [PMID: 21669933 PMCID: PMC3124049 DOI: 10.1242/dmm.007252] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diseases of intestinal inflammation, including Crohn's disease, ulcerative colitis and necrotizing enterocolitis, cause substantial acute and chronic disability in a large proportion of the population. Crohn's disease and ulcerative colitis, which are collectively referred to as inflammatory bowel disease (IBD), lead to recurrent episodes of intestinal dysfunction and systemic illness, whereas necrotizing enterocolitis is characterized by the development of dramatic and all too often fatal intestinal necrosis in infants. To determine the molecular underpinnings of these disorders, investigators have explored a variety of animal models that vary widely in their complexity. These experimental systems include the invertebrate nematode Caenorhabditis elegans, the more complex invertebrate Drosophila melanogaster, and vertebrate systems including mice, rats and other mammals. This review explores the experimental models that are used to mimic and evaluate the pathogenic mechanisms leading to these diseases of intestinal inflammation. We then highlight, as an example, how the use of different experimental models that focus on the role of Toll-like receptor 4 (TLR4) signaling in the gut has revealed important distinctions between the pathogenesis of IBD and necrotizing enterocolitis. Specifically, TLR4-mediated signaling plays a protective role in the development of Crohn's disease and ulcerative colitis, whereas this signaling pathway plays a causative role in the development of necrotizing enterocolitis in the newborn small intestine by adversely affecting intestinal injury and repair mechanisms.
Collapse
Affiliation(s)
- Joyce Lin
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
83
|
Koboziev I, Karlsson F, Zhang S, Grisham MB. Pharmacological intervention studies using mouse models of the inflammatory bowel diseases: translating preclinical data into new drug therapies. Inflamm Bowel Dis 2011; 17:1229-45. [PMID: 21312318 PMCID: PMC3075372 DOI: 10.1002/ibd.21557] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 10/04/2010] [Indexed: 12/14/2022]
Abstract
Most therapeutic agents used in clinical practice today were originally developed and tested in animal models so that drug toxicity and safety, dose-responses, and efficacy could be determined. Retrospective analyses of preclinical intervention studies using animal models of different diseases demonstrate that only a small percentage of the interventions reporting promising effects translate to clinical efficacy. The failure to translate therapeutic efficacy from bench to bedside may be due, in part, to shortcomings in the design of the clinical studies; however, it is becoming clear that much of the problem resides within the preclinical studies. One potential strategy for improving our ability to identify new therapeutics that may have a reasonable chance of success in clinical trials is to identify the most immunologically-relevant mouse models of IBD and pharmacologic strategies that most closely mimic the clinical situation. This review presents a critical evaluation of the different mouse models and pharmacological approaches that may be used in intervention studies as well as discuss emerging issues related to study design and data interpretation of preclinical studies.
Collapse
Affiliation(s)
- Iurii Koboziev
- Immunology and Inflammation Research Group LSU Health Sciences Center Shreveport, LA 71130
- Department of Molecular and Cellular Physiology LSU Health Sciences Center Shreveport, LA 71130
| | - Fridrik Karlsson
- Immunology and Inflammation Research Group LSU Health Sciences Center Shreveport, LA 71130
- Department of Molecular and Cellular Physiology LSU Health Sciences Center Shreveport, LA 71130
| | - Songlin Zhang
- Immunology and Inflammation Research Group LSU Health Sciences Center Shreveport, LA 71130
- Department of Pathology LSU Health Sciences Center Shreveport, LA 71130
| | - Matthew B. Grisham
- Immunology and Inflammation Research Group LSU Health Sciences Center Shreveport, LA 71130
- Department of Molecular and Cellular Physiology LSU Health Sciences Center Shreveport, LA 71130
| |
Collapse
|
84
|
Chassaing B, Darfeuille-Michaud A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology 2011; 140:1720-28. [PMID: 21530738 DOI: 10.1053/j.gastro.2011.01.054] [Citation(s) in RCA: 353] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/14/2011] [Accepted: 01/20/2011] [Indexed: 02/07/2023]
Abstract
Intestinal inflammation arises from abnormal host-microbe interactions. The perturbations of homeostatic coexistence involve host genetic factors, barrier function, innate and adaptive immunity, as well as qualitative and quantitative changes in the composition of the microbiota. Dysbiosis toward selected micro-organisms and decreased complexity of commensal bacteria have been observed in patients with Crohn's disease and ulcerative colitis, but it is not clear whether the dysbiosis contributes to development of inflammatory bowel disease or is instead a consequence of the disease. Pathogens with virulence factors that allow them to breach the intestinal barrier and induce chronic inflammation might mediate the pathogenesis of these diseases. To identify new therapeutic approaches for inflammatory bowel disease, it is important to identify host susceptibility factors involved in the control of microbial infection, characterize potential pathogens, and eliminate them or block the expression of their virulence factors.
Collapse
Affiliation(s)
- Benoit Chassaing
- Clermont Université, Université d'Auvergne, Jeune Equipe JE 2526, Clermont-Ferrand, France
| | | |
Collapse
|
85
|
Sasaoka T, Ito M, Yamashita J, Nakajima K, Tanaka I, Narita M, Hara Y, Hada K, Takahashi M, Ohno Y, Matsuo T, Kaneshiro Y, Tanaka H, Kaneko K. Treatment with IL-27 attenuates experimental colitis through the suppression of the development of IL-17-producing T helper cells. Am J Physiol Gastrointest Liver Physiol 2011; 300:G568-76. [PMID: 21193526 DOI: 10.1152/ajpgi.00329.2010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease (IBD) represents a group of chronic inflammatory diseases characterized by inflammation and relapsing gastrointestinal disorders. Recent studies have shown that Th17 cells, which are well known as key mediators of chronic inflammation, have a pivotal role in onset and development of IBD in humans and mice, alike. In recent years, it has been reported that IL-27, which is an IL-12-related heterodimeric cytokine consisting of EBI3 and p28 subunits, act directly on naive T cells to suppress the differentiation of Th17 cells. However, effects of exogenous IL-27 on the IBD are not well elucidated. To clarify the suppressive effect of IL-27 treatment on IBD, we applied the flexible linking method to EBI3 and p28 subunits and generated a single-chain human IL-27 (scIL-27). scIL-27 inhibited xenogenic mouse Th17 cell differentiation in vitro, indicating that scIL-27 also acts in mouse immune systems. In a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse acute colitis model, subcutaneous scIL-27 treatment significantly improved the colon length, extent of necrosis, and ulceration and thickened epithelium and several pathological scores in a dose-dependent manner. scIL-27 clearly suppressed several inflammatory cytokines, including IL-17, in inflamed colon, except for anti-inflammatory cytokine IL-10. The mesenteric lymph node cells from scIL-27-treated mice also exhibited a reduced inflammatory response and, furthermore, a lower population of Th17 cells than those of PBS-treated mice. Finally, we showed the therapeutic efficacy of scIL-27 on TNBS-induced colitis even after active colitis was established. These results suggest new possible therapeutic approaches for IBD, including disorders such as Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Tetsumasa Sasaoka
- Pharmaceutical Research Laboratory, Research Division, Nihon Pharmaceutical, Co. Ltd., Sumiyoshichou, Izumisano, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Suzuki K, Sun X, Nagata M, Kawase T, Yamaguchi H, Sukumaran V, Kawauchi Y, Kawachi H, Nishino T, Watanabe K, Yoneyama H, Asakura H. Analysis of intestinal fibrosis in chronic colitis in mice induced by dextran sulfate sodium. Pathol Int 2011; 61:228-38. [PMID: 21418395 DOI: 10.1111/j.1440-1827.2011.02647.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fibrogenic mesenchymal cells including fibroblasts and myofibroblasts play a key role in intestinal fibrosis, however, their precise role is largely unknown. To investigate their role in intestinal fibrosis, we analyzed the lesions of chronic colitis in C57BL/6 (B6) mice induced by dextran sulfate sodium (DSS). B6 mice exposed to single cycle administration of DSS for 5 days developed acute colitis that progressed to severe chronic inflammation with dense infiltrates of mononuclear cells, irregular epithelial structure, thickening of colonic wall, and persistent deposits of collagen. Increased mRNA expressions of proinflammatory cytokines are correlated with extensive cellular infiltration, and the mRNA expressions of collagen 1, transforming growth factor (TGF)-β, and matrix metalloproteinases were also enhanced in the colon. In the colon of chronic DSS colitis, fibroblasts (vimentin(+), α-smooth muscle actin (α-SMA)(-)) were increased in both mucosal and submucosal layers, while myofibroblasts (vimentin(+), α-SMA(+)) were increased in mucosal but not in submucosal layers. Primary mouse subcutaneous fibroblast cultures experiments revealed that exogenously added TGF-β 1 substantially augmented the expressions of both vimentin and α-SMA proteins with increased production of collagen. In conclusion, profibrogenic mesenchymal cells play an important role in the development of intestinal fibrosis in this chronic DSS-induced colitis model.
Collapse
Affiliation(s)
- Kenji Suzuki
- Department of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City, Niigata, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Kole L, Giri B, Manna SK, Pal B, Ghosh S. Biochanin-A, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NFκB nuclear translocation. Eur J Pharmacol 2011; 653:8-15. [DOI: 10.1016/j.ejphar.2010.11.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
|
88
|
Abstract
BACKGROUND Inflammatory bowel disease (IBD) can arise from genetic mutations that compromise intestinal epithelial cell integrity or immune regulation. SHIP has previously been shown to play a pivotal role in limiting the number of immunoregulatory cells and their function. AIM To determine whether SHIP plays a pivotal role in control of immune tolerance in the gut mucosa. METHODS Gastrointestinal pathology was assessed in three separate strains of SHIP-deficient mice and their respective wild-type (WT) littermates. Gastrointestinal pathology was analysed in SHIP-deficient hosts reconstituted with WT haematopoietic cell grafts, and WT hosts reconstituted with SHIP-deficient haematopoietic cell grafts including whole splenocytes, purified T cells or natural killer (NK) cells. Major immune cell populations were also analysed in the small intestine of SHIP-deficient mice and WT controls. RESULTS SHIP-deficient mice developed segmental, transmural pyo-granulomatous ilietis that recapitulated classical features of Crohn's disease enteric pathology. Analysis of haematopoietic chimeras showed that WT bone marrow reconstitution of SHIP⁻/⁻ hosts corrects ileitis. Reconstitution with SHIP⁻/⁻ splenocytes transferred ileitis to WT hosts. Adoptive transfer of purified SHIP⁻/⁻ T cells or NK cells to WT hosts did not transfer ileitis. There was a paucity of both CD4 and CD8 T cells in the small intestines of SHIP-deficient mice; however, neutrophil numbers were significantly increased. CONCLUSIONS SHIP plays a pivotal role in immune function in the intestine; further scrutiny of this pathway in IBD patients is warranted. It is proposed that SHIP-deficient ileitis results from a local deficit in mucosal T cell immunity that promotes a damaging granulocyte-monocyte inflammation of the distal ileum.
Collapse
Affiliation(s)
- William G Kerr
- SUNY Upstate Medical University, 750 E. Adams Street, 2204 Weiskotten Hall, Syracuse, NY 13210, USA.
| | - Mi-Young Park
- Department of Microbiology & Immunology, SUNY Upstate Medical University, New York, USA
| | - Monique Maubert
- Department of Microbiology & Immunology, SUNY Upstate Medical University, New York, USA
| | - Robert W Engelman
- Departments of Pathology & Cell Biology and Pediatrics, H. Lee Moffitt Comprehensive Cancer Center and Research Institute, University of South Florida, Florida, USA
| |
Collapse
|
89
|
Komiyama Y, Andoh A, Fujiwara D, Ohmae H, Araki Y, Fujiyama Y, Mitsuyama K, Kanauchi O. New prebiotics from rice bran ameliorate inflammation in murine colitis models through the modulation of intestinal homeostasis and the mucosal immune system. Scand J Gastroenterol 2011; 46:40-52. [PMID: 20735154 DOI: 10.3109/00365521.2010.513062] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Enzyme-treated rice fiber (ERF) is a recently developed prebiotic product made from rice bran by heat-resistant amylase, protease and hemicellulase treatment. Although the detailed mechanism of inflammatory bowel disease (IBD) is still unclear, the role of the resident luminal bacteria and its interaction on the mucosal barrier seem to be an important factor in the development of IBD and its chronicity. With the objective of manipulating the intestinal microbiota in IBD, this study was carried out to evaluate the effects of ERF on IBD with using experimental colitis models. METHODS Three colitis models were used and they were induced by the oral administration of dextran sodium sulfate in male Sprague-Dawley rats or BALB/c mice and transferring CD4+ CD45RB(high) T cells to female SCID mice, sequentially their CD4+ T cells were retransferred to new SCID mice. The evaluation included the measurement of body weight, spleen weight, colon length, histological examination, serum and mucosal cytokine (tumor necrosis factor-alpha (TNF-α), an interferon-gamma (IFN-γ), interleukin-12 p70 (IL-12p70), IL-1β, IL-6, IL-4) analysis, mucosal serotonin (5HT), and organic acid production and a microbiota analysis of the cecal contents. The characteristics of T cell surface markers including CD4, CD69, CD45RB of spleen and mesenteric lymph nodes (MLN) were also analyzed. In addition, the effects of ERF on the change in the induction of dendritic cells (DCs) were evaluated. RESULTS The preventive effect of ERF on colitis was significantly superior to that of raw material rice bran or control group. An overexpression of inflammatory cytokine production was attenuated by ERF treatment, which was accompanied with a decrease in both the colonic mucosal damage and 5HT production. Furthermore, ERF significantly attenuated the T cell activation (CD4+CD69+) of spleen and MLN, and this characteristic was inherited by the retransferred mice. ERF significantly suppressed the growth of Clostiridium, and increased short-chain fatty acids (acetate, propionate and butyrate) content in colitis. The relatively hydrophilic fraction of ERF (ethanol-methanol soluble fraction) is therefore considered to have a potent ability to attenuate the induction of DCs. CONCLUSION A new prebiotic, ERF, reduced inflammation by modulating the colonic environment and regulating immune cell differentiation. Although a more detailed study is required, this study showed the promising anti-inflammatory effects of an adjunctive prebiotic treatment for IBD.
Collapse
Affiliation(s)
- Yutaka Komiyama
- Kirin Holdings Co., Central Labs for Frontier Technology, 1-13-5 Fukuura Kanazawa-ku, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Mishima Y, Ishihara S, Aziz MM, Oka A, Kusunoki R, Otani A, Tada Y, Li YY, Moriyama I, Oshima N, Yuki T, Amano Y, Matsumoto S, Kinoshita Y. Decreased production of interleukin-10 and transforming growth factor-β in Toll-like receptor-activated intestinal B cells in SAMP1/Yit mice. Immunology 2010; 131:473-487. [PMID: 20561083 PMCID: PMC2999799 DOI: 10.1111/j.1365-2567.2010.03318.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 04/15/2010] [Accepted: 05/10/2010] [Indexed: 12/13/2022] Open
Abstract
A unique subset of B cells expressing interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) plays an essential role in preventing inflammation and autoimmunity. We investigated the presence of this cell subset in intestines and its role in the pathogenesis of ileitis using SAMP1/Yit and age-matched control AKR/J mice. Mononuclear cells were isolated from mesenteric lymph nodes (MLNs) and the expressions of B220, CD1d, CD5, Toll-like receptor 4 (TLR4) and TLR9 in isolated cells were analysed. Purified B cells were stimulated with lipopolysaccharide (LPS) or CpG-DNA, then IL-10 and TGF-β(1) expressions were examined by enzyme immunoassay and flow cytometry. Production of IL-1β by TLR-mediated macrophages co-cultured with or without purified MLN B cells from SAMP1/Yit and AKR/J mice was evaluated. In addition, interferon-γ (IFN-γ) production in intestinal T cells co-cultured with MLN B cells were also assessed in SAMP1/Yit and AKR/J strains. The production levels of IL-10 and TGF-β(1) stimulated by LPS and CpG-DNA were significantly lower in B cells separated from MLNs from the SAMP1/Yit strain. B cells expressing IL-10 and TGF-β(1) were mainly located in a population characterized by the cell surface marker CD1d(+) . Interleukin-1β production by TLR-activated macrophages co-cultured with MLN B cells from SAMP1/Yit mice was significantly higher than that of those from AKR/J mice. Interestingly, IFN-γ production by T cells was noted only when they were co-cultured with SAMP1/Yit but not the AKR/J B cells. These results are the first to show that disorders of regulatory B-cell function under innate immune activation may cause disease pathogenesis in a murine model of Crohn's disease.
Collapse
Affiliation(s)
- Yoshiyuki Mishima
- Department of Internal Medicine II, Shimane University School of Medicine, Shimane University Hospital, Shimane, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Gorfu G, Rivera-Nieves J, Hoang S, Abbott DW, Arbenz-Smith K, Azar DW, Pizarro TT, Cominelli F, McDuffie M, Ley K. Beta7 integrin deficiency suppresses B cell homing and attenuates chronic ileitis in SAMP1/YitFc mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:5561-8. [PMID: 20926792 PMCID: PMC3228636 DOI: 10.4049/jimmunol.0903938] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lymphocyte recruitment to intestinal tissues depends on β(7) integrins. In this study, we studied disease severity and lymphocyte recruitment into the small intestine in SAMP1/YitFc mice, which develop chronic ileitis with similarity to human Crohn's disease. To assess the role of β(7) integrins in chronic ileitis, we generated SAMP1/YitFc lacking β(7) integrins (SAMP1/YitFc Itgb7(-/-)) using a congenic strain developed via marker-assisted selection. We analyzed ileal inflammation in SAMP1/YitFc and SAMP1/YitFc Itgb7(-/-) mice by histopathology and the distribution of T and B lymphocytes in the mesenteric lymph nodes (MLNs) by flow cytometry. Short-term (18 h) adoptive transfer experiments were used to study the in vivo homing capacity of T and B lymphocytes. In both young (<20 wk) and old (20-50 wk) SAMP1/YitFc Itgb7(-/-) mice, ileitis was reduced by 30-50% compared with SAMP1/YitFc mice. SAMP1/YitFc Itgb7(-/-) mice showed a dramatic 67% reduction in the size of their MLNs, which was caused by a 85% reduction in lymphocyte numbers and reduced short-term B cell homing. Flow cytometric analysis revealed a highly significant decrease in the percentage of B cells in MLNs of SAMP1/YitFc Itgb7(-/-) mice. Cotransfer of SAMP1/YitFc MLN B cells but not SAMP1/YitFc Itgb7(-/-) MLN B cells along with CD4(+) T cells resulted in exacerbated ileitis severity in SCID mice. Our findings suggest that β(7) integrins play an essential role in spontaneous chronic ileitis in vivo by promoting homing of disease-exacerbating B cells to MLNs and other intestinal tissues.
Collapse
Affiliation(s)
- Gezahegn Gorfu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Jesus Rivera-Nieves
- Mucosal Inflammation Program, Division of Gastroenterology, Department of Internal Medicine, University of Colorado Health Sciences Center, Denver, CO 80206
| | - Sharon Hoang
- Division of Gastroenterology and Liver Disease, Case Western Reserve University, Cleveland, OH 44106
| | - Derek W. Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Keely Arbenz-Smith
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - David W. Azar
- Department of Pathology, University of California, San Diego, CA, 92103
| | - Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Disease, Case Western Reserve University, Cleveland, OH 44106
| | - Marcia McDuffie
- Department of Microbiology and Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
92
|
Watanabe C, Hokari R, Komoto S, Kurihara C, Okada Y, Matsunaga H, Takebayashi K, Kawaguchi A, Nagao S, Tsuzuki Y, Yokoyama H, Hibi T, Miura S. Lemon grass (Cymbopogon citratus) ameliorates murine spontaneous ileitis by decreasing lymphocyte recruitment to the inflamed intestine. Microcirculation 2010; 17:321-32. [PMID: 20618690 DOI: 10.1111/j.1549-8719.2010.00032.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Aberrant leukocyte migration has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Lemon grass is a natural herb that contains citral, which suppresses lymphocyte expression of gut homing molecules by inhibiting retinoic acid formation. We therefore hypothesized that lemon grass intake could ameliorate excess migration of leukocytes to the inflamed intestine in chronic ileitis. METHODS Migration of fluorescence-labeled T cells to microvessels in the ileal mucosa of SAMP1/Yit mice was monitored using intravital microscopy. In some mice, lemon grass solution was administered for two weeks. For evaluation of the effects on chronic ileitis, mice were treated with lemon grass for 26 weeks. RESULTS Surface expression of beta7 and CCR9 on T lymphocytes was stronger in SAMP1/Yit mice than in AKR/J mice. Lemon grass treatment attenuated the surface expression of beta7-integrin and CCR9. The number of adherent lymphocytes to microvessels in chronic inflamed ileum was significantly few when lymphocytes were isolated from lemon grass treated mice. Long-term lemon grass treatment improved ileitis in SAMP1/Yit mice, which was assessed by body weight, histological changes and the infiltration of beta7-positive cells. CONCLUSION Lemon grass ameliorated ileitis through decreasing lymphocyte migration by inhibiting beta7-expression, suggesting its therapeutic usefulness for IBD.
Collapse
Affiliation(s)
- Chikako Watanabe
- Department of Internal Medicine, National Defense Medical College, Tokorozawa City, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Westbrook AM, Szakmary A, Schiestl RH. Mechanisms of intestinal inflammation and development of associated cancers: lessons learned from mouse models. Mutat Res 2010; 705:40-59. [PMID: 20298806 PMCID: PMC2878867 DOI: 10.1016/j.mrrev.2010.03.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/21/2010] [Accepted: 03/08/2010] [Indexed: 12/15/2022]
Abstract
Chronic inflammation is strongly associated with approximately 1/5th of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohn's disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With regards to extraintestinal manifestations such as lymphoma, however, more suitable models are required to further investigate the complex and heterogeneous mechanisms that may be at play.
Collapse
Affiliation(s)
- Aya M. Westbrook
- Molecular Toxicology Interdepartmental Program, UCLA School of Medicine and School of Public Health, University of California at Los Angeles, Los Angeles, CA 90095
- Department of Pathology and Lab Medicine, UCLA School of Medicine and School of Public Health, University of California at Los Angeles, Los Angeles, CA 90095
| | - Akos Szakmary
- Institute for Cancer Research, Medical University of Vienna, Austria
| | - Robert H. Schiestl
- Molecular Toxicology Interdepartmental Program, UCLA School of Medicine and School of Public Health, University of California at Los Angeles, Los Angeles, CA 90095
- Department of Pathology and Lab Medicine, UCLA School of Medicine and School of Public Health, University of California at Los Angeles, Los Angeles, CA 90095
- Institute for Cancer Research, Medical University of Vienna, Austria
| |
Collapse
|
94
|
PPAR-alpha Contributes to the Anti-Inflammatory Activity of Verbascoside in a Model of Inflammatory Bowel Disease in Mice. PPAR Res 2010; 2010:917312. [PMID: 20671911 PMCID: PMC2910492 DOI: 10.1155/2010/917312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/11/2010] [Indexed: 12/14/2022] Open
Abstract
The previous results suggest that peroxisome proliferator-activated receptor-alpha (PPAR)-α, an intracellular transcription factor activated by fatty acids, plays a role in control of inflammation. There is persuasive epidemiological and experimental evidence that dietary polyphenols have anti-inflammatory activity. In this regard, it has been demonstrated that verbascoside (VB) functions as intracellular radical scavenger and reduces the microscopic and macroscopic signs of experimental colitis. With the aim to characterize the role of PPAR-α in VB-mediated anti-inflammatory activity, we tested the efficacy of VB in an experimental model of inflammatory bowel disease induced by dinitrobenzene sulfonic acid, comparing mice lacking PPAR-α (PPAR-αKO) with wild type (WT) mice. Results indicate that VB-mediated anti-inflammatory activity is weakened in PPAR-αKO mice, compared to WT controls, especially in the inhibition of neutrophil infiltration, intestinal permeability and colon injury. These results indicate that PPAR-α can contribute to the anti-inflammatory activity of VB in inflammatory bowel disease.
Collapse
|
95
|
Singh UP, Singh NP, Singh B, Mishra MK, Nagarkatti M, Nagarkatti PS, Singh SR. Stem cells as potential therapeutic targets for inflammatory bowel disease. Front Biosci (Schol Ed) 2010; 2:993-1008. [PMID: 20515838 PMCID: PMC2900153 DOI: 10.2741/s115] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence and prevalence of Crohn's disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD), are rising. According to some estimates >1 million new cases of IBD arise in the United States annually. The conventional therapies available for IBD range from anti-inflammatory drugs to immunosuppressive agents, but these therapies generally fail to achieve satisfactory results due to their side effects. Interest in a new therapeutic option, that is, biological therapy, has gained much momentum recently due to its focus on different stages of the inflammatory process. Stem cell (SC) research has become a new direction for IBD therapy due to our recent understanding of cell populations involved in the pathogenic process. To this end, hematopoietic and mesenchymal stem cells are receiving more attention from IBD investigators. The intestinal environment, with its crypts and niches, supports incoming embryonic and hematopoietic stem cells and allows them to engraft and differentiate. The above findings suggest that, in the future, SC-based therapy will be a promising alternative to conventional therapy for IBD. In this review, we discuss SCs as potential therapeutic targets for future treatment of IBD.
Collapse
Affiliation(s)
- Udai P. Singh
- Pathology and Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Narendra P. Singh
- Pathology and Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Balwan Singh
- Primate Research Center, Emory University, Atlanta GA 30329
| | - Manoj K. Mishra
- Department of Math and Science, Alabama State University, Montgomery, AL 36101
| | - Mitzi Nagarkatti
- Pathology and Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Prakash S. Nagarkatti
- Pathology and Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Shree Ram Singh
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702
| |
Collapse
|
96
|
Epithelial-specific blockade of MyD88-dependent pathway causes spontaneous small intestinal inflammation. Clin Immunol 2010; 136:245-56. [PMID: 20452828 DOI: 10.1016/j.clim.2010.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 03/12/2010] [Accepted: 04/01/2010] [Indexed: 12/19/2022]
Abstract
Accumulating evidence suggests a role for Toll-like receptor (TLR) signaling at the intestinal epithelial cells (IECs) level for intestinal protection against exogenous injury or pathogenic infection. We hypothesized that MyD88 dependent TLR signaling at intestinal epithelium is critical for mucosal immune homeostasis. In the current study, a transgenic mouse model was generated in which a dominant-negative mutant of MyD88 (dnMyD88) was driven by an intestinal epithelial-specific murine villin promoter. Aged transgenic mice spontaneously developed chronic small intestinal inflammation, as revealed by increased CD4+ and CD8+ lymphocytes, neutrophil and macrophage infiltration, increased production of cytokines as TNF-alpha, IFN-gamma, IL-1beta, and IL-17, crypt abscesses, lymphedema, and Goblet cell depletion. The chronic inflammation was not due to increased epithelial apoptosis or permeability, but to a decreased Paneth cell-derived alpha-defensins (cryptdins) and RegIII-gamma and increased commensal bacteria translocation. Thus, epithelial MyD88-dependent pathway plays an essential role in limiting mucosal microflora penetration and preventing mucosal immunoregulation disturbance in vivo.
Collapse
|
97
|
McNamee EN, Wermers JD, Masterson JC, Collins CB, Lebsack MD, Fillon S, Robinson ZD, Grenawalt J, Lee JJ, Jedlicka P, Furuta GT, Rivera-Nieves J. Novel model of TH2-polarized chronic ileitis: the SAMP1 mouse. Inflamm Bowel Dis 2010; 16:743-52. [PMID: 19856411 PMCID: PMC3786705 DOI: 10.1002/ibd.21148] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND SAMP1/Yit mice develop spontaneous, segmental, transmural ileitis recapitulating many features of Crohn's disease (CD). The ileitic phenotype may have arisen during crosses of SAMP1 mice selected for the presence of skin lesions. We hereby describe that the original SAMP1 strain similarly develops ileitis. Our aim was to characterize the histopathological and immunological features of this model and assess its responsiveness to standard inflammatory bowel disease (IBD) therapy. METHODS The time course of histopathological features of ileitis was assessed. Immune compartments were characterized by flow cytometry. Ileal cytokine profiles and transcription factors were determined by real-time reverse-transcription polymerase chain reaction (RT-PCR). Finally, response to corticosteroid therapy and its effect on immune compartments and cellularity was evaluated. RESULTS Histological features and time course of disease were conserved, compared to those reported in SAMP1/Yit strains, with similar expansion of CD19+, CD4+, and CD8+ effector (CD44(high) CD62L(low)), and central memory lymphocytes (CD44(high)CD62L(high)). However, different from SAMP1/YitFc mice, analysis of ileal cytokine profiles revealed initial T(H)1 polarization followed by T(H)2-polarized profile accompanied by prominent eosinophilia during late disease. Lastly, corticosteroids attenuated ileitis, resulting in decreased lymphocyte subsets and cellularity of compartments. CONCLUSIONS Here we report that the ileitic phenotype of SAMP1-related strains was already present in the original SAMP1 strain. By contrast, the cytokine profile within the terminal ilea of SAMP1 is distinct from the mixed T(H)1/T(H)2 profile of SAMP1/YitFc mice during late disease, as it shows predominant T(H)2 polarization. Dissemination of these strains may advance our understanding of CD pathogenesis, which in 60% of patients involves the terminal ileum.
Collapse
Affiliation(s)
- Eoin N. McNamee
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver
| | - Joshua D. Wermers
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver
| | - Joanne C. Masterson
- Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, The Children’s Hospital, School of Medicine, University of Colorado, Denver
| | - Colm B. Collins
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver
| | - Matthew D.P. Lebsack
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver
| | - Sophie Fillon
- Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, The Children’s Hospital, School of Medicine, University of Colorado, Denver
| | - Zachary D. Robinson
- Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, The Children’s Hospital, School of Medicine, University of Colorado, Denver
| | - Joanna Grenawalt
- Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, The Children’s Hospital, School of Medicine, University of Colorado, Denver
| | - James J. Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Paul Jedlicka
- Department of Pathology, University of Colorado, Denver
| | - Glenn T. Furuta
- Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, The Children’s Hospital, School of Medicine, University of Colorado, Denver
| | - Jesús Rivera-Nieves
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver
| |
Collapse
|
98
|
Cadwell K, Stappenbeck TS, Virgin HW. Role of autophagy and autophagy genes in inflammatory bowel disease. Curr Top Microbiol Immunol 2010; 335:141-67. [PMID: 19802564 DOI: 10.1007/978-3-642-00302-8_7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polymorphisms associated with two genes in the autophagy pathway, ATG16L1 and IRGM1, have been implicated in susceptibility to Crohn's disease, an idiopathic inflammatory disease typically involving the gastrointestinal tract. The intestinal mucosa is a site of careful immune regulation where the epithelium and immune cells encounter pathogens as well as a robust and diverse population of indigenous microbes that are predominately bacteria. Since the role of autophagy in immunity is broad and expanding, it is unclear which downstream functions of autophagy and which cell types are the key factors in Crohn's disease susceptibility. This chapter reviews the recent literature on the roles of ATG16L1 and IRGM1 in the autophagy pathway, inflammation, antimicrobial immunity, and the biology of the intestine, and discusses how these genes may contribute to Crohn's disease pathogenesis.
Collapse
Affiliation(s)
- Ken Cadwell
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
99
|
Ishihara S, Aziz MM, Yuki T, Kazumori H, Kinoshita Y. Inflammatory bowel disease: review from the aspect of genetics. J Gastroenterol 2010; 44:1097-108. [PMID: 19802731 DOI: 10.1007/s00535-009-0141-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/09/2009] [Indexed: 02/04/2023]
Abstract
Regardless of how inflammatory bowel disease (IBD) is defined, the term "genetic susceptibility" is always included. Due to substantial progress in the characterization of susceptible genes that interact with environmental influences, a number of review articles offering the latest insights continue to be presented. To date, more than 30 novel IBD susceptible loci have been found, while several promising associations between IBD and gene variants have also been identified and replicated effectively. The present review highlights recent insights regarding linkage analysis and genome-wide association presented in studies of IBD susceptible genes, which provide additional evidence supporting their involvement in disease pathogenesis, based on linking to innate immune systems as a result of interactions with intestinal microbial flora. An improved understanding of IBD genetics will promote the identification of novel therapeutic agents, making it possible to identify environmental factors related to intestinal inflammation.
Collapse
Affiliation(s)
- Shunji Ishihara
- Department of Internal Medicine II, Faculty of Medicine, Shimane University School of Medicine, Izumo, Shimane, Japan.
| | | | | | | | | |
Collapse
|
100
|
Chosa M, Soeta S, Ichihara N, Nishita T, Asari M, Matsumoto S, Amasaki H. Pathomechanism of cellular infiltration in the perivascular region of several organs in SAMP1/Yit mouse. J Vet Med Sci 2010; 71:1553-60. [PMID: 20046021 DOI: 10.1292/jvms.001553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the histological changes of extra-intestinal organs, such as the liver, kidney, lung and pancreas in SAMP1/Yit mice, a human Crohn's disease model, using immunohistochemical techniques. The perivascular cellular infiltration was detected around the small vessels after 30 weeks. These infiltrating cells consisted of many CD4-positive T-lymphocytes, and small numbers of CD8- positive T-lymphocytes and IgG-positive B-lymphocytes. MAdCAM-1 and VCAM-1 were detected in vascular endothelial cells in non-affected regions of 13 and 20 week-old, as well as in the affected regions showing perivascular cellular infiltration after 30 weeks. In addition, integrin alpha4beta7 was detected on these infiltrating cells in the perivascular regions after 30 week-old. LT-beta and IL-12, cytokines of the Th-1-type immune response, were not observed in these affected regions. However, IL-4, one of the cytokines of the Th-2-type immune response, was detected on the perivascular infiltrating cells after 30 week-old. These results revealed that the changes in extra-intestinal organs were mainly caused by infiltration of CD4-positive T-lymphocytes into the perivascular regions in SAMP1/Yit mice. These cellular infiltrations were thought to be initiated by adhesion of CD4-positive T-lymphocytes to the endothelial cells mediated by MAdCAM-1 and integrin beta7. Immunohistochemistry for Th related cytokines indicated that the perivascular cellular infiltration was developed by the Th-2-type immune response in the extra-intestinal organs of SAMP1/Yit mouse.
Collapse
Affiliation(s)
- Mizuki Chosa
- Department of Anatomy 1, School of Veterinary Medicine, Azabu University, Kanagawa Pref 229-8501, Japan
| | | | | | | | | | | | | |
Collapse
|