51
|
Li Z, Zu X, Du Z, Hu Z. Research on magnetic bead motion characteristics based on magnetic beads preset technology. Sci Rep 2021; 11:19995. [PMID: 34620919 PMCID: PMC8497522 DOI: 10.1038/s41598-021-99331-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/23/2021] [Indexed: 02/04/2023] Open
Abstract
In order to improve the detection efficiency and accuracy of microfluidic chip, a magnetic beads preset technology were designed by using double permanent magnets as external magnetic field and the motion characteristics of preset magnetic beads were studied. The control principle of magnetic beads preset technology was introduced in detail, and the control structure was designed. The coupled field characteristics for magnetic beads in microchannels were analyzed, and the motion models of magnetic beads were established based on the magnetic beads preset technology, including capture motion and mixing motion. The relationship between the magnetic field force and the flow velocity for capturing magnetic bead, and the mixing time under the influence of flow field and magnetic field were derived. The magnetic beads preset technology effect was verified by experiments and numerical simulations were developed to analyze the influence of aspect ratio of permanent magnet on magnetic field. The study showed that the accuracy and efficiency of the magnetic bead control in the microchannel could be better realized by the magnetic beads preset technology. The derivation of the magnetic bead motion model can understand the motion characteristics of the magnetic bead more clearly, facilitate accurate control of the magnetic bead, and improve the success rate of the microfluidic detection.
Collapse
Affiliation(s)
- Zhao Li
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Xiangyang Zu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhe Du
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhigang Hu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
52
|
Glutathione Encapsulation in Core-Shell Drug Nanocarriers (Polymersomes and Niosomes) Prevents Advanced Glycation End-products Toxicities. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
53
|
Saw PE, Xu X, Kim S, Jon S. Biomedical Applications of a Novel Class of High-Affinity Peptides. Acc Chem Res 2021; 54:3576-3592. [PMID: 34406761 DOI: 10.1021/acs.accounts.1c00239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most therapeutic peptides available on the market today are naturally occurring hormones or protein fragments that were serendipitously discovered to possess therapeutic effects. However, the limited repertoire of available natural resources presents difficulties for the development of new peptide drug candidates. Traditional peptides possess several shortcomings that must be addressed for biomedical applications, including relatively low affinity or specificity toward biological targets compared to antibody- and protein scaffold-based affinity molecules, poor in vivo stability owing to rapid enzymatic degradation, and rapid clearance from circulation owing to their small size. Going forward, it will be increasingly important for scientists to develop novel classes of high-affinity and -specificity peptides against desired targets that mitigate these limitations while remaining compatible with pharmaceutical manufacturing processes. Recently, several highly constrained, artificial cyclic peptides have emerged as platforms capable of generating high-affinity peptide binders against various disease-associated protein targets by combining with phage or mRNA display method, some of which have entered clinical trials. In contrast, although linear peptides are relatively easy to synthesize cost-effectively and modify site-specifically at either N- or C-termini compared to cyclic peptides, there have been few linear peptide-based platforms that can provide high-affinity and -specificity peptide binders.In this Account, we describe the creation and development of a novel class of high-affinity peptides, termed "aptide"-from the Latin word "aptus" meaning "to fit" and "peptide"-and summarize their biomedical applications. In the first part, we consider the design and creation of aptides, with a focus on their unique structural features and binding mode, and address screening and identification of target protein-specific aptides. We also discuss advantages of the aptide platform over ordinary linear peptides lacking preorganized structures in terms of the affinity and specificity of identified peptide binders against target molecules. In the second part, we describe the potential biomedical applications of various target-specific aptides, ranging from imaging and therapy to theranostics, according to the types of aptides and diseases. We show that certain aptides can not only bind to a target protein but also inhibit its biological function, thereby showing potential as therapeutics per se. Further, aptides specific for cancer-associated protein antigens can be used as escort molecules or targeting ligands for delivery of chemotherapeutics, cytokine proteins, and nanomedicines, such as liposomes and magnetic particles, to tumors, thereby substantially improving therapeutic effects. Finally, we present a strategy capable of overcoming the critical issue of short blood circulation time associated with most peptides by constructing a hybrid system between an aptide and a hapten cotinine-specific antibody.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
- Biomedical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
- Biomedical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
| | - Sunghyun Kim
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology (KICET), Cheongju-si 28160, Republic of Korea
| | - Sangyong Jon
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, South Korea
| |
Collapse
|
54
|
Motta S, Siani P, Levy A, Di Valentin C. Exploring the drug loading mechanism of photoactive inorganic nanocarriers through molecular dynamics simulations. NANOSCALE 2021; 13:13000-13013. [PMID: 34477783 PMCID: PMC8341096 DOI: 10.1039/d1nr01972d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/01/2021] [Indexed: 05/21/2023]
Abstract
Inorganic nanoparticles are gaining increasing attention as drug carriers because they respond to external physical stimuli, allowing therapy to be combined with diagnosis. Their drawback is low drug loading capacity, which can be improved by proper and efficacious functionalization. In this computational study, we take TiO2 spherical nanoparticles as prototype photoresponsive inorganic nanoparticles and we fully decorate them with two different types of bifunctional ligands: TETTs and DOPACs, which present different surface anchoring groups (silanol or catechol) but the same drug tethering COOH group, although in different concentrations (3 vs. 1), thus causing different steric hindrances. Then, we put these two types of nanocarriers in bulk water and in the presence of several DOX molecules and let the systems evolve through molecular dynamics (MD) simulations, clearly observing drug loading on the nanocarriers. This comparative MD study allows the investigation of the loading mechanism, performance of a conformational analysis and establishment of the guiding interactions through an energy decomposition analysis. We learn that DOX mostly interacts with the functionalized NPs through electrostatics, as a consequence of the protonated amino group, although several H-bonds are also established both with the ligands and with the oxide surface. Different ligands induce a different electrostatic potential around the NP; therefore, those which lead to the formation of more negative hotspots (here TETTs) are found to favour DOX binding. The leading role of electrostatics can provide a rational explanation for a pH-dependent drug release mechanism that is often invoked for DOX when reaching diseased cells because under anomalous acidic conditions both the NP surface and the carboxylate groups of the ligands are expected to get protonated, which of course would weaken, if not totally quench, the interaction of the nanocarrier with protonated DOX.
Collapse
Affiliation(s)
- Stefano Motta
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università di Milano BicoccaPiazza della Scienza 120126 MilanoItaly
| | - Paulo Siani
- Dipartimento di Scienza dei Materiali, Università di Milano Bicoccavia R. Cozzi 552015 MilanoItaly
| | - Andrea Levy
- Dipartimento di Scienza dei Materiali, Università di Milano Bicoccavia R. Cozzi 552015 MilanoItaly
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano Bicoccavia R. Cozzi 552015 MilanoItaly
| |
Collapse
|
55
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
56
|
Ying K, Bai B, Gao X, Xu Y, Wang H, Xie B. Orally Administrable Therapeutic Nanoparticles for the Treatment of Colorectal Cancer. Front Bioeng Biotechnol 2021; 9:670124. [PMID: 34307319 PMCID: PMC8293278 DOI: 10.3389/fbioe.2021.670124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and lethal human malignancies worldwide; however, the therapeutic outcomes in the clinic still are unsatisfactory due to the lack of effective and safe therapeutic regimens. Orally administrable and CRC-targetable drug delivery is an attractive approach for CRC therapy as it improves the efficacy by local drug delivery and reduces systemic toxicity. Currently, chemotherapy remains the mainstay modality for CRC therapy; however, most of chemo drugs have low water solubility and are unstable in the gastrointestinal tract (GIT), poor intestinal permeability, and are susceptible to P-glycoprotein (P-gp) efflux, resulting in limited therapeutic outcomes. Orally administrable nanoformulations hold the great potential for improving the bioavailability of poorly permeable and poorly soluble therapeutics, but there are still limitations associated with these regimes. This review focuses on the barriers for oral drug delivery and various oral therapeutic nanoparticles for the management of CRC.
Collapse
Affiliation(s)
- Kangkang Ying
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Hangxiang Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Binbin Xie
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
57
|
Singh R, Bhateria R. Core-shell nanostructures: a simplest two-component system with enhanced properties and multiple applications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2459-2482. [PMID: 33161517 DOI: 10.1007/s10653-020-00766-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
With the pace of time, synthesis of nanomaterials has paved paths to blend two or more materials having different properties into hybrid nanoparticles. Therefore, it has become possible to combine two different functionalities in a single nanoparticle and their properties can be enhanced or modified by coupling of two different components. Core-shell technology has now represented a new trend in analytical sciences. Core-shell nanostructures are in demand due to their specific design and geometry. They have internal core of one component (metal or biomolecules) surrounded by a shell of another component. Core-shell nanoparticles have great importance due to their high thermal stability, high solubility and lower toxicity. In this review, recent progress in development of new and sophisticated core-shell nanostructures has been explored. The first section covers introduction throwing light on basics of core-shell nanoparticles. Following section classifies core-shell nanostructures into single core/shell, multicore/single shell, single core/multishell and multicore/multishell nanostructures. Next main section gives a brief description on types of core-shell nanomaterials followed by processes for the synthesis of core-shell nanostructures. Ultimately, the final section focuses on the application areas such as drug delivery, bioimaging, solar cell applications etc.
Collapse
Affiliation(s)
- Rimmy Singh
- Department of Environmental Sciences, MDU, Rohtak, India
| | | |
Collapse
|
58
|
Lee J, Lee K, Lim CT. Surface Plasmon Resonance Assay for Identification of Small Molecules Capable of Inhibiting Aβ Aggregation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27845-27855. [PMID: 34110774 DOI: 10.1021/acsami.1c04833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Toxic aggregates of amyloid-beta (Aβ) have importance in the pathology of Alzheimer's disease, and inhibition of aggregate formation is considered to be a promising strategy for drug development. Here, we report a simple and rapid surface plasmon resonance (SPR) assay method that can identify potential Aβ aggregation inhibitors. Our assay is based on the SPR shifting of the Aβ-gold nanoparticle (Aβ-GNP) aggregates by size under the influence of an Aβ aggregation inhibitor. This user-friendly assay features a short assay time with a low reagent consumption that can be easily adapted as a high-throughput screen. We demonstrated that an effective Aβ aggregation inhibitor induces the blue-shifted SPR peaks of the Aβ-GNP aggregates by hindering the formation of long fibrillar aggregates. Moreover, the blue shifting was correlated to the efficacy and concentrations of an Aβ aggregation inhibitor. Overall, our findings suggest that our simple SPR assay can be a powerful tool to screen small molecules targeting Aβ aggregation.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Kwan Lee
- Department of Advanced Materials Engineering, College of Engineering, Kyungsung University, Busan 48434, Republic of Korea
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
59
|
Yan H, Dong J, Huang X, Du X. Protein-Gated Upconversion Nanoparticle-Embedded Mesoporous Silica Nanovehicles via Diselenide Linkages for Drug Release Tracking in Real Time and Tumor Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29070-29082. [PMID: 34101411 DOI: 10.1021/acsami.1c04447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two novel stimuli-responsive drug delivery systems (DDSs) were successfully created from bovine serum albumin- or myoglobin-gated upconversion nanoparticle-embedded mesoporous silica nanovehicles (UCNP@mSiO2) via diselenide (Se-Se)-containing linkages. More importantly, multiple roles of each scaffold of the nanovehicles were achieved. The controlled release of the encapsulated drug doxorubicin (DOX) within the mesopores was activated by triple stimuli (acidic pH, glutathione, or H2O2) of tumor microenvironments, owing to the conformation/surface charge changes in proteins or the reductive/oxidative cleavages of the Se-Se bonds. Upon release of DOX, the Förster resonance energy transfer between the UCNP cores and encapsulated DOX was eliminated, resulting in an increase in ratiometric upconversion luminescence for DOX release tracking in real time. The two protein-gated DDSs showed some differences in the drug release performances, relevant to structures and properties of the protein nanogates. The introduction of the Se-Se linkages not only increased the versatility of reductive/oxidative cleavages but also showed less cytotoxicity to all cell lines. The DOX-loaded protein-gated nanovehicles showed the inhibitory effect on tumor growth in tumor-bearing mice and negligible damage/toxicity to the normal tissues. The constructed nanovehicles in a spatiotemporally controlled manner have fascinating prospects in targeted drug delivery for cancer chemotherapy.
Collapse
Affiliation(s)
- Hua Yan
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, Zhejiang Province 318000, People's Republic of China
| | - Jiangtao Dong
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xuan Huang
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
60
|
Oh HJ, Kim J, Kim H, Choi N, Chung S. Microfluidic Reconstitution of Tumor Microenvironment for Nanomedical Applications. Adv Healthc Mater 2021; 10:e2002122. [PMID: 33576178 DOI: 10.1002/adhm.202002122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Nanoparticles have an extensive range of diagnostic and therapeutic applications in cancer treatment. However, their current clinical translation is slow, mainly due to the failure to develop preclinical evaluation techniques that can draw similar conclusions to clinical outcomes by adequately mimicking nanoparticle behavior in complicated tumor microenvironments (TMEs). Microfluidic methods offer significant advantages over conventional in vitro methods to resolve these challenges by recapitulating physiological cues of the TME such as the extracellular matrix, shear stress, interstitial flow, soluble factors, oxygen, and nutrient gradients. The methods are capable of de-coupling microenvironmental features, spatiotemporal controlling of experimental sequences, and high throughput readouts in situ. This progress report highlights the recent achievements of microfluidic models to reconstitute the physiological microenvironment, especially for nanomedical tools for cancer treatment.
Collapse
Affiliation(s)
- Hyun Jeong Oh
- School of Mechanical Engineering Korea University Seoul 02841 Republic of Korea
| | - Jaehoon Kim
- School of Mechanical Engineering Korea University Seoul 02841 Republic of Korea
| | - Hyunho Kim
- School of Mechanical Engineering Korea University Seoul 02841 Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology KIST School Korea University of Science and Technology (UST) Seoul 34113 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering Korea University Seoul 02841 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
61
|
Bao G. Magnetic Forces Enable Control of Biological Processes In Vivo. JOURNAL OF APPLIED MECHANICS 2021; 88:030801. [PMID: 34168385 PMCID: PMC8208485 DOI: 10.1115/1.4049331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 05/23/2023]
Abstract
Similar to mechanical forces that can induce profound biological effects, magnetic fields can have a broad range of implications to biological systems, from magnetoreception that allows an organism to detect a magnetic field to perceive direction, altitude, or location, to the use of heating induced by magnetic field for altering neuron activity. This review focuses on the application of magnetic forces generated by magnetic iron oxide nanoparticles (MIONs), which can also provide imaging contrast and mechanical/thermal energy in response to an external magnetic field, a special feature that distinguishes MIONs from other nanomaterials. The magnetic properties of MIONs offer unique opportunities for enabling control of biological processes under different magnetic fields. Here, we describe the approaches of utilizing the forces generated by MIONs under an applied magnetic field to control biological processes and functions, including the targeting of drug molecules to a specific tissue, increasing the vessel permeability for improving drug delivery, and activating a particular viral vector for spatial control of genome editing in vivo. The opportunities of using nanomagnets for a broad range of biomedical applications are briefly discussed.
Collapse
Affiliation(s)
- Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030
| |
Collapse
|
62
|
|
63
|
Moremi MJ, Alexander OT, Vatsha B, Makgopa K, Manicum ALE. The crystal structure of fac-tricarbonyl(4,4-dimethyl-2,2-dipyridyl-κ 2
N,N′)- (pyrazole-κ N)rhenium(I) nitrate, C 18H 16O 3N 4Re. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2020-0458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
C18H16O3N4Re, monoclinic, P21/c (no. 14), a = 9.8409(6) Å, b = 14.0933(9) Å, c = 13.9153(9) Å, β = 90.558(2)°, V = 1929.8(2) Å3, Z = 4, R
gt(F) = 0.0266, wR
ref(F
2) = 0.0584, T = 100(2) K.
Collapse
Affiliation(s)
- Mamolatelo J. Moremi
- Department of Chemistry , Tshwane University of Technology , Pretoria 0001 , South Africa
| | - Orbett T. Alexander
- Department of Chemistry , University of the Free State , Bloemfontein 9301 , South Africa
| | - Banele Vatsha
- Department of Chemistry , University of Johannesburg , Auckland Park 2006 , South Africa
| | - Katlego Makgopa
- Department of Chemistry , Tshwane University of Technology , Pretoria 0001 , South Africa
| | - Amanda-Lee E. Manicum
- Department of Chemistry , Tshwane University of Technology , Pretoria 0001 , South Africa
| |
Collapse
|
64
|
Yang D. Application of Nanotechnology in the COVID-19 Pandemic. Int J Nanomedicine 2021; 16:623-649. [PMID: 33531805 PMCID: PMC7847377 DOI: 10.2147/ijn.s296383] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2 infection, has been prevalent worldwide for almost a year. In early 2000, there was an outbreak of SARS-CoV, and in early 2010, a similar dissemination of infection by MERS-CoV occurred. However, no clear explanation for the spread of SARS-CoV-2 and a massive increase in the number of infections has yet been proposed. The best solution to overcome this pandemic is the development of suitable and effective vaccines and therapeutics. Fortunately, for SARS-CoV-2, the genome sequence and protein structure have been published in a short period, making research and development for prevention and treatment relatively easy. In addition, intranasal drug delivery has proven to be an effective method of administration for treating viral lung diseases. In recent years, nanotechnology-based drug delivery systems have been applied to intranasal drug delivery to overcome various limitations that occur during mucosal administration, and advances have been made to the stage where effective drug delivery is possible. This review describes the accumulated knowledge of the previous SARS-CoV and MERS-CoV infections and aims to help understand the newly emerged SARS-CoV-2 infection. Furthermore, it elucidates the achievements in developing COVID-19 vaccines and therapeutics to date through existing approaches. Finally, the applicable nanotechnology approach is described in detail, and vaccines and therapeutic drugs developed based on nanomedicine, which are currently undergoing clinical trials, have presented the potential to become innovative alternatives for overcoming COVID-19.
Collapse
Affiliation(s)
- Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
65
|
Zheng X, Wang J, Rao J. The Chemistry in Surface Functionalization of Nanoparticles for Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
66
|
Haque S, Norbert CC, Patra CR. Nanomedicine: future therapy for brain cancers. NANO DRUG DELIVERY STRATEGIES FOR THE TREATMENT OF CANCERS 2021:37-74. [DOI: 10.1016/b978-0-12-819793-6.00003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
67
|
Rodrigues RO, Sousa PC, Gaspar J, Bañobre-López M, Lima R, Minas G. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003517. [PMID: 33236819 DOI: 10.1002/smll.202003517] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Despite the progress achieved in nanomedicine during the last decade, the translation of new nanotechnology-based therapeutic systems into clinical applications has been slow, especially due to the lack of robust preclinical tissue culture platforms able to mimic the in vivo conditions found in the human body and to predict the performance and biotoxicity of the developed nanomaterials. Organ-on-a-chip (OoC) platforms are novel microfluidic tools that mimic complex human organ functions at the microscale level. These integrated microfluidic networks, with 3D tissue engineered models, have been shown high potential to reduce the discrepancies between the results derived from preclinical and clinical trials. However, there are many challenges that still need to be addressed, such as the integration of biosensor modules for long-time monitoring of different physicochemical and biochemical parameters. In this review, recent advances on OoC platforms, particularly on the preclinical validation of nanomaterials designed for cancer, as well as the current challenges and possible future directions for an end-use perspective are discussed.
Collapse
Affiliation(s)
- Raquel O Rodrigues
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Patrícia C Sousa
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - João Gaspar
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Manuel Bañobre-López
- Advanced (magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Rui Lima
- Transport Phenomena Research Center (CEFT), Faculdade de Engenharia da Universidade do Porto (FEUP), R. Dr. Roberto Frias, Porto, 4200-465, Portugal
- Mechanical Engineering and Resource Sustainability Center (MEtRICs), Mechanical Engineering Department, University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
| |
Collapse
|
68
|
Effect of DNA Origami Nanostructures on hIAPP Aggregation. NANOMATERIALS 2020; 10:nano10112200. [PMID: 33158138 PMCID: PMC7694230 DOI: 10.3390/nano10112200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
The aggregation of human islet amyloid polypeptide (hIAPP) plays a major role in the pathogenesis of type 2 diabetes mellitus (T2DM), and numerous strategies for controlling hIAPP aggregation have been investigated so far. In particular, several organic and inorganic nanoparticles (NPs) have shown the potential to influence the aggregation of hIAPP and other amyloidogenic proteins and peptides. In addition to conventional NPs, DNA nanostructures are receiving more and more attention from the biomedical field. Therefore, in this work, we investigated the effects of two different DNA origami nanostructures on hIAPP aggregation. To this end, we employed in situ turbidity measurements and ex situ atomic force microscopy (AFM). The turbidity measurements revealed a retarding effect of the DNA nanostructures on hIAPP aggregation, while the AFM results showed the co-aggregation of hIAPP with the DNA origami nanostructures into hybrid peptide–DNA aggregates. We assume that this was caused by strong electrostatic interactions between the negatively charged DNA origami nanostructures and the positively charged peptide. Most intriguingly, the influence of the DNA origami nanostructures on hIAPP aggregation differed from that of genomic double-stranded DNA (dsDNA) and appeared to depend on DNA origami superstructure. DNA origami nanostructures may thus represent a novel route for modulating amyloid aggregation in vivo.
Collapse
|
69
|
Sjöstrand S, Evertsson M, Jansson T. Magnetomotive Ultrasound Imaging Systems: Basic Principles and First Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2636-2650. [PMID: 32753288 DOI: 10.1016/j.ultrasmedbio.2020.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/29/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
This review discusses magnetomotive ultrasound, which is an emerging technique that uses superparamagnetic iron oxide nanoparticles as a contrast agent. The key advantage of using nanoparticle-based contrast agents is their ability to reach extravascular targets, whereas commercial contrast agents for ultrasound comprise microbubbles confined to the blood stream. This also extends possibilities for molecular imaging, where the contrast agent is labeled with specific targeting molecules (e.g., antibodies) so that pathologic tissue may be visualized directly. The principle of action is that an external time-varying magnetic field acts to displace the nanoparticles lodged in tissue and thereby their immediate surrounding. This movement is then detected with ultrasound using frequency- or time-domain analysis of echo data. As a contrast agent already approved for magnetic resonance imaging (MRI) by the US Food and Drug Administration, there is a shorter path to clinical translation, although safety studies of magnetomotion are necessary, especially if particle design is altered to affect biodistribution or signal strength. The external modulated magnetic field may be generated by electromagnets, permanent magnets, or a combination of the two. The induced nanoparticle motion may also reveal mechanical material properties of tissue, healthy or diseased, one of several interesting potential future aspects of the technique.
Collapse
Affiliation(s)
- Sandra Sjöstrand
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Maria Evertsson
- Department of Clinical Sciences Lund/Biomedical Engineering, Lund University, Lund, Sweden
| | - Tomas Jansson
- Department of Clinical Sciences Lund/Biomedical Engineering, Lund University, Lund, Sweden; Clinical Engineering Skåne, Digitalisering IT/MT, Region Skåne, Lund, Sweden.
| |
Collapse
|
70
|
Godeshala S, Miryala B, Dutta S, Christensen MD, Nandi P, Chiu PL, Rege K. A library of aminoglycoside-derived lipopolymer nanoparticles for delivery of small molecules and nucleic acids. J Mater Chem B 2020; 8:8558-8572. [PMID: 32830211 DOI: 10.1039/d0tb00924e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Simultaneous delivery of small molecules and nucleic acids using a single vehicle can lead to novel combination treatments and multifunctional carriers for a variety of diseases. In this study, we report a novel library of aminoglycoside-derived lipopolymers nanoparticles (LPNs) for the simultaneous delivery of different molecular cargoes including nucleic acids and small-molecules. The LPN library was screened for transgene expression efficacy following delivery of plasmid DNA, and lead LPNs that showed high transgene expression efficacies were characterized using hydrodynamic size, zeta potential, 1H NMR and FT-IR spectroscopy, and transmission electron microscopy. LPNs demonstrated significantly higher efficacies for transgene expression than 25 kDa polyethyleneamine (PEI) and lipofectamine, including in presence of serum. Self-assembly of these cationic lipopolymers into nanoparticles also facilitated the delivery of small molecule drugs (e.g. doxorubicin) to cancer cells. LPNs were also employed for the simultaneous delivery of the small-molecule histone deacetylase (HDAC) inhibitor AR-42 together with plasmid DNA to cancer cells as a combination treatment approach for enhancing transgene expression. Taken together, our results indicate that aminoglycoside-derived LPNs are attractive vehicles for simultaneous delivery of imaging agents or chemotherapeutic drugs together with nucleic acids for different applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Sudhakar Godeshala
- Chemical Engineering, Arizona State University, 501 E. Tyler Mall, ECG 303, Tempe, AZ 85287-6106, USA.
| | - Bhavani Miryala
- Chemical Engineering, Arizona State University, 501 E. Tyler Mall, ECG 303, Tempe, AZ 85287-6106, USA.
| | - Subhadeep Dutta
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Matthew D Christensen
- Chemical Engineering, Arizona State University, 501 E. Tyler Mall, ECG 303, Tempe, AZ 85287-6106, USA.
| | - Purbasha Nandi
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Po-Lin Chiu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, 501 E. Tyler Mall, ECG 303, Tempe, AZ 85287-6106, USA.
| |
Collapse
|
71
|
Molocea CE, Tsokanos FF, Herzig S. Exploiting common aspects of obesity and cancer cachexia for future therapeutic strategies. Curr Opin Pharmacol 2020; 53:101-116. [PMID: 32871469 DOI: 10.1016/j.coph.2020.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
Obesity and cancer cachexia are diseases at opposite ends of the BMI. However, despite the apparent dichotomy, these pathologies share some common underlying mechanisms that lead to profound metabolic perturbations. Insulin resistance, adipose tissue lipolysis, skeletal muscle atrophy and systemic inflammation are key players in both diseases. Several strategies for pharmacological treatments have been employed in obesity and cancer cachexia but demonstrated only limited effects. Therefore, there is still a need to develop novel, more effective strategies. In this review we summarize existing therapies and discuss potential novel strategies that could arise by bridging common aspects between obesity and cachexia. We discuss the potential role of macrophage manipulation and the modulation of inflammation by targeting Nuclear Receptors (NRs) as potential novel therapeutic strategies.
Collapse
Affiliation(s)
- Claudia-Eveline Molocea
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Foivos-Filippos Tsokanos
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany; Chair Molecular Metabolic Control, Technical University, Munich, Germany.
| |
Collapse
|
72
|
Gold nanoparticles against respiratory diseases: oncogenic and viral pathogens review. Ther Deliv 2020; 11:521-534. [PMID: 32757745 DOI: 10.4155/tde-2020-0071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nanoscale size-dependent properties give nanomaterials unique specifications that are robust in many applications of human medicine. Gold nanoparticles (AuNPs) have recently gained attention because of their unique optical, physical and electrical properties. AuNPs increase the efficacy of biomedical applications in diagnostic treatments for infectious diseases, by targeting or labeling target cells/bioactive compounds. However, it is imperative to develop the regimens for more accurate diagnostic tools, preventive care and effective therapy. Our critical and comprehensive review presents emerging avenues of molecular diagnostics as well as therapeutics translated into clinical approaches. This manuscript critically reviews the rampant future of AuNPs in the diagnosis and treatment of the most important diseases, such as cancer and viruses of respiratory system.
Collapse
|
73
|
Jha R, Singh A, Sharma P, Fuloria NK. Smart carbon nanotubes for drug delivery system: A comprehensive study. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
74
|
Izraylit V, Hommes-Schattmann PJ, Neffe AT, Gould OE, Lendlein A. Polyester urethane functionalizable through maleimide side-chains and cross-linkable by polylactide stereocomplexes. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
75
|
Wang Y, Weng J, Wen X, Hu Y, Ye D. Recent advances in stimuli-responsive in situ self-assembly of small molecule probes for in vivo imaging of enzymatic activity. Biomater Sci 2020; 9:406-421. [PMID: 32627767 DOI: 10.1039/d0bm00895h] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stimuli-responsive in situ self-assembly of small molecule probes into nanostructures has been promising for the construction of molecular probes for in vivo imaging. In the past few years, a number of intelligent molecular imaging probes with fluorescence, magnetic resonance imaging (MRI), positron electron tomography (PET) or photoacoustic imaging (PA) modality have been developed based on the in situ self-assembly strategy. In this minireview, we summarize the recent advances in the development of different modality imaging probes through controlling in situ self-assembly for in vivo imaging of enzymatic activity. This review starts from the brief introduction of two different chemical approaches amenable for in situ self-assembly, including (1) stimuli-mediated proteolysis and (2) stimuli-triggered biocompatible reaction. We then discuss their applications in the design of fluorescence, MRI, PET, PA, and bimodality imaging probes for in vivo imaging of different enzymes, such as caspase-3, furin, gelatinase and phosphatase. Finally, we discuss the current and prospective challenges in the stimuli-responsive in situ self-assembly strategy for in vivo imaging.
Collapse
Affiliation(s)
- Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | | | |
Collapse
|
76
|
González-Fernández S, Lozano-Iturbe V, García B, Andrés LJ, Menéndez MF, Rodríguez D, Vazquez F, Martín C, Quirós LM. Antibacterial effect of silver nanorings. BMC Microbiol 2020; 20:172. [PMID: 32560673 PMCID: PMC7304143 DOI: 10.1186/s12866-020-01854-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Background The emergence and expansion of antibiotic resistance makes it necessary to have alternative anti-infective agents, among which silver nanoparticles (AgNPs) display especially interesting properties. AgNPs carry out their antibacterial action through various molecular mechanisms, and the magnitude of the observed effect is dependent on multiple, not fully understood, aspects, particle shape being one of the most important. In this article, we conduct a study of the antibacterial effect of a recently described type of AgNP: silver nanorings (AgNRs), making comparisons with other alternative types of AgNP synthesized in parallel using the same methodology. Results When they act on planktonic forms, AgNRs produce a smaller effect on the viability of different bacteria than nanoparticles with other structures although their effect on growth is more intense over a longer period. When their action on biofilms is analyzed, AgNRs show a greater concentration-dependent effect. In both cases it was observed that the effect on inhibition depends on the microbial species, but not its Gram positive or negative nature. Growth patterns in silver-resistant Salmonella strains suggest that AgNRs work through different mechanisms to other AgNPs. The antibacterial effect is also produced to some extent by the conditioning of culture media or water by contact with AgNPs but, at least over short periods of time, this is not due to the release of Ag ions. Conclusions AgNRs constitute a new type of AgNP, whose antibacterial properties depend on their shape, and is capable of acting efficiently on both planktonic bacteria and biofilms.
Collapse
Affiliation(s)
- Sara González-Fernández
- Instituto Universitario Fernández-Vega, Instituto de Investigación Sanitaria del Principado de Asturias, and Departamento de Biología Funcional, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Víctor Lozano-Iturbe
- Instituto Universitario Fernández-Vega, Instituto de Investigación Sanitaria del Principado de Asturias, and Departamento de Biología Funcional, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Beatriz García
- Instituto Universitario Fernández-Vega, Instituto de Investigación Sanitaria del Principado de Asturias, and Departamento de Biología Funcional, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Luis J Andrés
- Departamento de Fotónica-ITMA Materials Technology, 33490, Avilés, Spain
| | - Mª Fe Menéndez
- Departamento de Fotónica-ITMA Materials Technology, 33490, Avilés, Spain
| | - David Rodríguez
- Instituto Universitario de Oncología del Principado de Asturias and Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Fernando Vazquez
- Instituto Universitario Fernández-Vega, Instituto de Investigación Sanitaria del Principado de Asturias, and Departamento de Biología Funcional, Universidad de Oviedo, 33006, Oviedo, Spain.,Servicio de Microbiología, Hospital Universitario Central de Asturias, 33011, Oviedo, Spain
| | - Carla Martín
- Instituto Universitario Fernández-Vega, Instituto de Investigación Sanitaria del Principado de Asturias, and Departamento de Biología Funcional, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Luis M Quirós
- Instituto Universitario Fernández-Vega, Instituto de Investigación Sanitaria del Principado de Asturias, and Departamento de Biología Funcional, Universidad de Oviedo, 33006, Oviedo, Spain.
| |
Collapse
|
77
|
Liu D, Zhou Z, Wang X, Deng H, Sun L, Lin H, Kang F, Zhang Y, Wang Z, Yang W, Rao L, Yang K, Yu G, Du J, Shen Z, Chen X. Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T 1 MRI activation for cancer theranostics. Biomaterials 2020; 244:119979. [PMID: 32200104 PMCID: PMC7138217 DOI: 10.1016/j.biomaterials.2020.119979] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 01/04/2023]
Abstract
The effort of incorporating therapeutic drugs with imaging agents has been one of the mainstreams of nanomedicine, which holds great promise in cancer treatment in terms of monitoring therapeutic drug activity and evaluating prognostic index. However, it is still technically challenging to develop nanomedicine endowing a spatiotemporally controllable mechanism of drug release and activatable imaging capability. Here, we developed a yolk-shell type of GSH-responsive nanovesicles (NVs) in which therapeutic drug (Doxorubicin, DOX) and magnetic resonance imaging (MRI) contrast agent (ultrasmall paramagnetic iron oxide nanoparticles, USPIO NPs) formed complexes (denoted as USD) and were encapsulated inside the NVs. The formation of USD complexes is mediated by both the electrostatic adsorption between DOX and poly(acrylic acid) (PAA) polymers and the DOX-iron coordination effect on USPIO NPs. The obtained USD NVs showed a unique yolk-shell structure with restrained drug activity and quenched T1 MRI contrast ability which, on the other hand, can respond to glutathione (GSH) and lead to drug release and T1 contrast activation in a spatiotemporally concurrent manner. Furthermore, the USD NVs exhibited great potential to kill HCT116 cancer cells in vitro and effectively inhibit the tumor growth in vivo. This study may shed light on the design of sophisticated nanotheranostics in precision nanomedicine.
Collapse
Affiliation(s)
- Dahai Liu
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Xinyu Wang
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Hongzhang Deng
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Lin Sun
- Department of Materials Science and Engineering, International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, United States
| | - Haixin Lin
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, United States
| | - Fei Kang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Yong Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Weijing Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Lang Rao
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Kuikun Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Jianshi Du
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| | - Zheyu Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
78
|
Wu K, Liu J, Saha R, Ma B, Su D, Peng C, Sun J, Wang JP. Irregularly Shaped Iron Nitride Nanoparticles as a Potential Candidate for Biomedical Applications: From Synthesis to Characterization. ACS OMEGA 2020; 5:11756-11767. [PMID: 32478267 PMCID: PMC7254815 DOI: 10.1021/acsomega.0c01130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 05/05/2023]
Abstract
Magnetic nanoparticles (MNPs) have been extensively used in drug/gene delivery, hyperthermia therapy, magnetic particle imaging (MPI), magnetic resonance imaging (MRI), magnetic bioassays, and so forth. With proper surface chemical modifications, physicochemically stable and nontoxic MNPs are emerging contrast agents and tracers for in vivo MRI and MPI applications. Herein, we report the high magnetic moment, irregularly shaped γ'-Fe4N nanoparticles for enhanced hyperthermia therapy and T2 contrast agent for MRI application. The static and dynamic magnetic properties of γ'-Fe4N nanoparticles are characterized by a vibrating sample magnetometer (VSM) and a magnetic particle spectroscopy (MPS) system, respectively. Compared to the γ-Fe2O3 nanoparticles, γ'-Fe4N nanoparticles show at least three times higher saturation magnetization, which, as a result, gives rise to the stronger dynamic magnetic responses as proved in the MPS measurement results. In addition, γ'-Fe4N nanoparticles are functionalized with an oleic acid layer by a wet mechanical milling process. The morphologies of as-milled nanoparticles are characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), and nanoparticle tracking analyzer (NTA). We report that with proper surface chemical modification and tuning on morphologies, γ'-Fe4N nanoparticles could be used as tiny heating sources for hyperthermia and contrast agents for MRI applications with minimum dose.
Collapse
Affiliation(s)
- Kai Wu
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jinming Liu
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renata Saha
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bin Ma
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Diqing Su
- Department
of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chaoyi Peng
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiajia Sun
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jian-Ping Wang
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
79
|
Ordóñez-Gutiérrez L, Wandosell F. Nanoliposomes as a Therapeutic Tool for Alzheimer's Disease. Front Synaptic Neurosci 2020; 12:20. [PMID: 32523525 PMCID: PMC7261886 DOI: 10.3389/fnsyn.2020.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022] Open
Abstract
The accumulation of extracellular amyloid-beta (Aβ), denoted as senile plaques, and intracellular neurofibrillary tangles (formed by hyperphosphorylated Tau protein) in the brain are two major neuropathological hallmarks of Alzheimer's disease (AD). The current and most accepted hypothesis proposes that the oligomerization of Aβ peptides triggers the polymerization and accumulation of amyloid, which leads to the senile plaques. Several strategies have been reported to target Aβ oligomerization/polymerization. Since it is thought that Aβ levels in the brain and peripheral blood maintain equilibrium, it has been hypothesized that enhancing peripheral clearance (by shifting this equilibrium towards the blood) might reduce Aβ levels in the brain, known as the sink effect. This process has been reported to be effective, showing a reduction in Aβ burden in the brain as a consequence of the peripheral reduction of Aβ levels. Nanoparticles (NPs) may have difficulty crossing the blood-brain barrier (BBB), initially due to their size. It is not clear whether particles in the range of 50-100 nm should be able to cross the BBB without being specifically modified for it. Despite the size limitation of crossing the BBB, several NP derivatives may be proposed as therapeutic tools. The purpose of this review is to summarize some therapeutic approaches based on nanoliposomes using two complementary examples: First, unilamellar nanoliposomes containing Aβ generic ligands, such as sphingolipids, gangliosides or curcumin, or some sphingolipid bound to the binding domain of ApoE; and second, nanoliposomes containing monoclonal antibodies against Aβ. Following similar rationale NPs of poly(lactide-co-glycolide)-poly (ethylene glycol) conjugated with curcumin-derivate (PLGA-PEG-B6/Cur) were reported to improve the spatial learning and memory capability of APP/PS1 mice, compared with native curcumin treatment. Also, some new nanostructures such as exosomes have been proposed as a putative therapeutic and prevention strategies of AD. Although the unquestionable interest of this issue is beyond the scope of this review article. The potential mechanisms and significance of nanoliposome therapies for AD, which are still are in clinical trials, will be discussed.
Collapse
Affiliation(s)
- Lara Ordóñez-Gutiérrez
- Department of Molecular Neurobiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Francisco Wandosell
- Department of Molecular Neurobiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
80
|
Lin TY, Klass SH, Francis MB, Shaqfeh ESG. Extravasation of PEGylated Spherical Nanoparticles through a Circular Pore of Similar Size. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tiras Y. Lin
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sarah H. Klass
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric S. G. Shaqfeh
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
81
|
González-Nieto D, Fernández-Serra R, Pérez-Rigueiro J, Panetsos F, Martinez-Murillo R, Guinea GV. Biomaterials to Neuroprotect the Stroke Brain: A Large Opportunity for Narrow Time Windows. Cells 2020; 9:E1074. [PMID: 32357544 PMCID: PMC7291200 DOI: 10.3390/cells9051074] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke represents one of the most prevalent pathologies in humans and is a leading cause of death and disability. Anti-thrombolytic therapy with tissue plasminogen activator (t-PA) and surgical thrombectomy are the primary treatments to recanalize occluded vessels and normalize the blood flow in ischemic and peri-ischemic regions. A large majority of stroke patients are refractory to treatment or are not eligible due to the narrow time window of therapeutic efficacy. In recent decades, we have significantly increased our knowledge of the molecular and cellular mechanisms that inexorably lead to progressive damage in infarcted and peri-lesional brain areas. As a result, promising neuroprotective targets have been identified and exploited in several stroke models. However, these considerable advances have been unsuccessful in clinical contexts. This lack of clinical translatability and the emerging use of biomaterials in different biomedical disciplines have contributed to developing a new class of biomaterial-based systems for the better control of drug delivery in cerebral disorders. These systems are based on specific polymer formulations structured in nanoparticles and hydrogels that can be administered through different routes and, in general, bring the concentrations of drugs to therapeutic levels for prolonged times. In this review, we first provide the general context of the molecular and cellular mechanisms impaired by cerebral ischemia, highlighting the role of excitotoxicity, inflammation, oxidative stress, and depolarization waves as the main pathways and targets to promote neuroprotection avoiding neuronal dysfunction. In the second part, we discuss the versatile role played by distinct biomaterials and formats to support the sustained administration of particular compounds to neuroprotect the cerebral tissue at risk of damage.
Collapse
Affiliation(s)
- Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Brain Plasticity Group, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
82
|
Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. SMART MATERIALS IN MEDICINE 2020; 1:10-19. [PMID: 34553138 PMCID: PMC8455119 DOI: 10.1016/j.smaim.2020.04.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanoparticle-based drug delivery system (DDS) is considered promising for cancer treatment. Compared with traditional DDS, the nanoparticle-based DDS shows improved efficacy by: 1) increasing half-life of vulnerable drugs and proteins, 2) improving the solubility of hydrophobic drugs, and 3) allowing controlled and targeted release of drugs in diseased site. This review mainly focuses on nanoparticle-based DDS fabricated from chitosan, silica, and poly (lactic-co-glycolic acid). Their fabrication methods and applications in cancer treatment are introduced. The current limitations and future perspectives of the nanoparticle-based DDS are discussed.
Collapse
Affiliation(s)
- Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
83
|
Wang J, He ZW, Jiang JX. Nanomaterials: Applications in the diagnosis and treatment of pancreatic cancer. World J Gastrointest Pharmacol Ther 2020; 11:1-7. [PMID: 32405438 PMCID: PMC7205863 DOI: 10.4292/wjgpt.v11.i1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/15/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the leading causes of cancer-related death in human sowing to missed early and effective diagnosis. The inability to translate research into clinical trials and to target chemotherapy drugs to tumors is a major obstacle in PC treatment. Compared with traditional cancer detection methods, the method combining existing clinical diagnosis and detection systems with nanoscale components using novel nanomaterials shows higher sensitivity and specificity. Nanomaterials can interact with biological systems to efficiently and accurately detect and monitor biological events during diagnosis and treatment. With the advance of experimental and engineering technology, more nanomaterials will begin the transition to clinical trials for their validation. This paper describes a number of nanomaterials used in the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Jie Wang
- Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhi-Wei He
- Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jian-Xin Jiang
- Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
84
|
Okeke EB, Louttit C, Fry C, Najafabadi AH, Han K, Nemzek J, Moon JJ. Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock. Biomaterials 2020; 238:119836. [PMID: 32045782 PMCID: PMC7075277 DOI: 10.1016/j.biomaterials.2020.119836] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022]
Abstract
Neutrophil elastase (NE) is a serine protease stored in the azurophilic granules of neutrophils and released into the extracellular milieu during inflammatory response or formation of neutrophil extracellular traps (NETs). Neutrophils release NETs to entrap pathogens by externalizing their cellular contents in a DNA framework decorated with anti-microbials and proteases, including NE. Importantly, excess NETs in tissues are implicated in numerous pathologies, including sepsis, rheumatoid arthritis, vasculitis, and cancer. However, it remains unknown how to effectively prevent NET formation. Here, we show that NE plays a major role during NET formation and that inhibition of NE is a promising approach for decreasing NET-mediated tissue injury. NE promoted NET formation by human neutrophils. Whereas sivelestat, a small molecule inhibitor of NE, inhibited the formation of NETs in vitro , administration of free sivelestat did not have any efficacy in a murine model of lipopolysaccharide-induced endotoxic shock. To improve the efficacy of sivelestat in vivo, we have developed a nanoparticle system for delivering sivelestat. We demonstrate that nanoparticle-mediated delivery of sivelestat effectively inhibited NET formation, decreased the clinical signs of lung injury, reduced NE and other proinflammatory cytokines in serum, and rescued animals against endotoxic shock. Collectively, our data demonstrates that NE signaling can initiate NET formation and that nanoparticle-mediated inhibition of NE improves drug efficacy for preventing NET formation.
Collapse
Affiliation(s)
- Emeka B Okeke
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Cameron Louttit
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Chris Fry
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Alireza Hassani Najafabadi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jean Nemzek
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
85
|
Bindini E, Chehadi Z, Faustini M, Albouy PA, Grosso D, Cattoni A, Chanéac C, Azzaroni O, Sanchez C, Boissière C. Following in Situ the Degradation of Mesoporous Silica in Biorelevant Conditions: At Last, a Good Comprehension of the Structure Influence. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13598-13612. [PMID: 32077678 DOI: 10.1021/acsami.9b19956] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) have seen a fast development as drug delivery carriers thanks to their tunable porosity and high loading capacity. The employ of MSNs in biomedical applications requires a good understanding of their degradation behavior both to control drug release and to assess possible toxicity issues on human health. In this work, we study mesoporous silica degradation in biologically relevant conditions through in situ ellipsometry on model mesoporous nanoparticle or continuous thin films, in buffer solution and in media containing proteins. In order to shed light on the structure/dissolution relationship, we performed dissolution experiments far from soluble silicate species saturation. Via a complete decorrelation of dissolution and diffusion contributions, we proved unambiguously that surface area of silica vectors is the main parameter influencing dissolution kinetics, while thermal treatment and open mesoporous network architecture have a minor impact. As a logical consequence of our dissolution model, we proved that the dissolution lag-time can be promoted by selective blocking of the mesopores that limits the access to the mesoporous internal surface. This study was broadened by studying the impact of the organosilanes in the silica structure, of the presence of residual structuring agents, and of the chemical composition of the dissolution medium. The presence of albumin at blood concentration was found affecting drastically the dissolution kinetics of the mesoporous structure, acting as a diffusion barrier. Globally, we could identify the main factors affecting mesoporous silica materials degradation and proved that we can tune their structure and composition for adjusting dissolution kinetics in order to achieve efficient drug delivery.
Collapse
Affiliation(s)
- Elisa Bindini
- Laboratoire Chimie de la Matière Condensée de Paris, UMR 7574, Sorbonne Université, 4 Place Jussieu 75252 Paris, France
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, 10 Boulevard Thomas Gobert - 91120 Palaiseau, France
| | - Zeinab Chehadi
- Laboratoire Chimie de la Matière Condensée de Paris, UMR 7574, Sorbonne Université, 4 Place Jussieu 75252 Paris, France
| | - Marco Faustini
- Laboratoire Chimie de la Matière Condensée de Paris, UMR 7574, Sorbonne Université, 4 Place Jussieu 75252 Paris, France
| | - Pierre-Antoine Albouy
- Laboratoire de Physique des Solides, UMR 8502, Université Paris Sud, 1 rue Nicolas Appert Bâtiment 510 Orsay, France
| | - David Grosso
- Institut Matériaux Microélectronique Nanoscience de Provence, Case 142 Avenue Escadrille Normandie Niemen 13397 Marseille, France
| | - Andrea Cattoni
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, 10 Boulevard Thomas Gobert - 91120 Palaiseau, France
| | - Corinne Chanéac
- Laboratoire Chimie de la Matière Condensée de Paris, UMR 7574, Sorbonne Université, 4 Place Jussieu 75252 Paris, France
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Diagonal 113 y 64 S/N B1900 La Plata, Argentina
| | - Clément Sanchez
- Laboratoire Chimie de la Matière Condensée de Paris, UMR 7574, Sorbonne Université, 4 Place Jussieu 75252 Paris, France
| | - Cédric Boissière
- Laboratoire Chimie de la Matière Condensée de Paris, UMR 7574, Sorbonne Université, 4 Place Jussieu 75252 Paris, France
| |
Collapse
|
86
|
Samanta AK, Amin M, Estillore AD, Roth N, Worbs L, Horke DA, Küpper J. Controlled beams of shock-frozen, isolated, biological and artificial nanoparticles. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:024304. [PMID: 32341941 PMCID: PMC7166121 DOI: 10.1063/4.0000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/01/2020] [Indexed: 05/05/2023]
Abstract
X-ray free-electron lasers promise diffractive imaging of single molecules and nanoparticles with atomic spatial resolution. This relies on the averaging of millions of diffraction patterns of identical particles, which should ideally be isolated in the gas phase and preserved in their native structure. Here, we demonstrated that polystyrene nanospheres and Cydia pomonella granulovirus can be transferred into the gas phase, isolated, and very quickly shock-frozen, i.e., cooled to 4 K within microseconds in a helium-buffer-gas cell, much faster than state-of-the-art approaches. Nanoparticle beams emerging from the cell were characterized using particle-localization microscopy with light-sheet illumination, which allowed for the full reconstruction of the particle beams, focused to < 100 μ m , as well as for the determination of particle flux and number density. The experimental results were quantitatively reproduced and rationalized through particle-trajectory simulations. We propose an optimized setup with cooling rates for particles of few-nanometers on nanosecond timescales. The produced beams of shock-frozen isolated nanoparticles provide a breakthrough in sample delivery, e.g., for diffractive imaging and microscopy or low-temperature nanoscience.
Collapse
Affiliation(s)
- Amit K. Samanta
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Muhamed Amin
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Armando D. Estillore
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | | | | | | | - Jochen Küpper
- Author to whom correspondence should be addressed:. URL:https://www.controlled-molecule-imaging.org
| |
Collapse
|
87
|
Antal I, Strbak O, Khmara I, Koneracka M, Kubovcikova M, Zavisova V, Kmetova M, Baranovicova E, Dobrota D. MRI Relaxivity Changes of the Magnetic Nanoparticles Induced by Different Amino Acid Coatings. NANOMATERIALS 2020; 10:nano10020394. [PMID: 32102280 PMCID: PMC7075310 DOI: 10.3390/nano10020394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
In this study, we analysed the physico-chemical properties of positively charged magnetic fluids consisting of magnetic nanoparticles (MNPs) functionalised by different amino acids (AAs): glycine (Gly), lysine (Lys) and tryptophan (Trp), and the influence of AA-MNP complexes on the MRI relaxivity. We found that the AA coating affects the size of dispersed particles and isoelectric point, as well as the zeta potential of AA-MNPs differently, depending on the AA selected. Moreover, we showed that a change in hydrodynamic diameter results in a change to the relaxivity of AA-MNP complexes. On the one hand, we observed a decrease in the relaxivity values, r1 and r2, with an increase in hydrodynamic diameter (the relaxivity of r1 and r2 were comparable with commercially available contrast agents); on the other hand, we observed an increase in r2* value with an increase in hydrodynamic size. These findings provide an interesting preliminary look at the impact of AA coating on the relaxivity properties of AA-MNP complexes, with a specific application in molecular contrast imaging originating from magnetic nanoparticles and magnetic resonance techniques.
Collapse
Affiliation(s)
- Iryna Antal
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Oliver Strbak
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
- Correspondence: ; Tel.: +421-43-2633448
| | - Iryna Khmara
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Martina Koneracka
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Martina Kubovcikova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Vlasta Zavisova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Martina Kmetova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (M.K.); (D.D.)
| | - Eva Baranovicova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Dusan Dobrota
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (M.K.); (D.D.)
| |
Collapse
|
88
|
Cheng X, Jiang J, Liang G. Covalently Conjugated Hydrogelators for Imaging and Therapeutic Applications. Bioconjug Chem 2020; 31:448-461. [DOI: 10.1021/acs.bioconjchem.9b00867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaotong Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| | - Jiaoming Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| |
Collapse
|
89
|
S S, Ss A, S SB, Hk V, Pv M. Determination of the bioavailability of zinc oxide nanoparticles using ICP-AES and associated toxicity. Colloids Surf B Biointerfaces 2019; 188:110767. [PMID: 31923775 DOI: 10.1016/j.colsurfb.2019.110767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/24/2019] [Accepted: 12/29/2019] [Indexed: 01/14/2023]
Abstract
Advancement in nanotechnology has brought abundant number of products and materials in multiple fields including biomedicine owing to their unique physico-chemical properties. This further necessitates toxicity assessment of nanoparticles (NPs) before they are employed for product fabrication, medicinal, environmental or industrial purposes. Zinc oxide nanoparticles (ZnONPs) belong to the category of metal oxide NPs and hold quite a lot of possibilities to be applied in aforementioned scenarios. Present study addresses the probable outcomes of bio-nano interaction of ZnONPs with healthy adult Wistar rats. Sphere head shaped ZnONPs were synthesized via wet chemical method. Physico-chemical characterization was performed using number of sophisticated techniques including HR-TEM, Zeta potential analysis, TGA and XRD. Size of the particles was found to be 43 nm and ensured homogenous distribution with high purity. For in vivo studies, as synthesized NPs were administered into rats via intravenous (i.v.) and intraperitoneal (i.p.) routes. Animals were sacrificed on 3rd, 14th and 21st day of exposure. Metabolically relevant tissues like brain, liver, kidneys and spleen were isolated and analyzed for different parameters like gross pathology, haematology, neurotoxicity, target organ toxicity, immunotoxicity etc. Results suggests that ZnONPs did not elicit significant toxic responses in rat except a few anomalies with histology, ion content and antioxidant system within liver; thereby confirming potent hepatotoxicity. Hence the study recommends adopting surface functionalization strategies for reducing toxic response of ZnONPs during various application rationales.
Collapse
Affiliation(s)
- Sudhakaran S
- Biomedical Technology Wing, SreeChitraTirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, 695 012, Kerala, India
| | - Athira Ss
- Biomedical Technology Wing, SreeChitraTirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, 695 012, Kerala, India
| | - Suresh Babu S
- Biomedical Technology Wing, SreeChitraTirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, 695 012, Kerala, India
| | - Varma Hk
- Biomedical Technology Wing, SreeChitraTirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, 695 012, Kerala, India
| | - Mohanan Pv
- Biomedical Technology Wing, SreeChitraTirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, 695 012, Kerala, India.
| |
Collapse
|
90
|
Antidiabetic Activity of Gold Nanoparticles Synthesized Using Wedelolactone in RIN-5F Cell Line. Antioxidants (Basel) 2019; 9:antiox9010008. [PMID: 31877697 PMCID: PMC7023137 DOI: 10.3390/antiox9010008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
We synthesized the gold nanoparticles (AuNPs) using wedelolactone (WDL) and characterized them using UV-visible spectroscopy, fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopic (SEM), transmission electron microscopic (TEM), energy dispersive X-ray diffraction, and atomic force microscopic (AFM) studies. The electronic spectrum exhibited an absorption peak at 535 nm. The FT-IR results proved that WDL was stabilized on the surface of AuNPs by acting as a capping or reducing agent. The crystalline structure was affirmed by XRD pattern and the spherical shape of WDL-AuNPs was evidenced by SEM, TEM, and AFM. The synthesized WDL-AuNPS were evaluated for anti-diabetic activity in pancreatic RIN-5F cell lines. In vitro results showed that WDL-AuNPs did not only improve the insulin secretion affected by di-(2-ethylhexyl) phthalate (DEHP), but also the cell viability in RIN5F cells. WDL-AuNPs treatment modulates the pro-apoptotic proteins and anti-apoptotic proteins expression to prevent the cells undergoing apoptosis in DEHP-exposed RIN-5F cells. The exposure of DEHP causes an increase in ROS production and lipid peroxidation levels. The free radical scavenging and antioxidant properties of WDL-AuNPs increase the deleterious effect caused by DEHP. On the other side, WDL-AuNPs increase mRNA expressions of insulin-signaling proteins in RIN-5F cells. This study concludes that WDL-AuNPs can be successfully used to regulate the expression of Bcl-2 family proteins, reduce lipid peroxidation, and to improve the secretion of antioxidants and insulin through the GLUT2 pathway in RIN-5F cell lines.
Collapse
|
91
|
Metal-shell nanocapsules for the delivery of cancer drugs. J Colloid Interface Sci 2019; 567:171-180. [PMID: 32045739 DOI: 10.1016/j.jcis.2019.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 11/24/2022]
Abstract
Cytotoxic drugs tend to have substantial side effects on healthy tissues leading to systemic toxicity, limited tolerated doses and reduced drug efficacy. A prominent research area focuses on encapsulating cytotoxic drugs for targeted delivery to cancer tissues. However, existing carriers suffer from low drug loading levels and high drug leaching both when circulating systemically and when accumulating in non-target organs. These challenges mean that only few encapsulation technologies for delivery of cytotoxic drugs have been adopted for clinical use. Recently, we have demonstrated efficient manufacture of impermeable metal-shell/liquid core microcapsules that permit localised delivery by triggering release with ultrasound. This method has the potential to improve on existing methods for localised drug delivery because it:We demonstrate here the further miniaturization of both the emulsion droplet template and the thickness of the surrounding metal shell to the nanoscale in an attempt to take advantage of the EPR effect and the excretion of nanoparticles by the hepatobiliary system.
Collapse
|
92
|
Kulpa A, Ryl J, Skowierzak G, Koterwa A, Schroeder G, Ossowski T, Niedziałkowski P. Comparison of Cadmium Cd
2+
and Lead Pb
2+
Binding by Fe
2
O
3
@SiO
2
‐EDTA Nanoparticles – Binding Stability and Kinetic Studies. ELECTROANAL 2019. [DOI: 10.1002/elan.201900616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Amanda Kulpa
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of Gdansk Wita Stwosza 63 80-308 Gdansk Gdansk Poland
| | - Jacek Ryl
- Department of Electrochemistry, Corrosion and Materials Engineering, Faculty of ChemistryGdansk University of Technology Narutowicza 11/12 80-233 Gdansk Poland
| | - Grzegorz Skowierzak
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of Gdansk Wita Stwosza 63 80-308 Gdansk Gdansk Poland
| | - Adrian Koterwa
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of Gdansk Wita Stwosza 63 80-308 Gdansk Gdansk Poland
| | - Grzegorz Schroeder
- Faculty of ChemistryAdam Mickiewicz University in Poznan, University of Poznan 8 61-614 Poznan Poland
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of Gdansk Wita Stwosza 63 80-308 Gdansk Gdansk Poland
| | - Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of Gdansk Wita Stwosza 63 80-308 Gdansk Gdansk Poland
| |
Collapse
|
93
|
Pan A, Jakaria MG, Meenach SA, Bothun GD. Radiofrequency and Near-Infrared Responsive Core–Shell Nanostructures Using Layersome Templates for Cancer Treatment. ACS APPLIED BIO MATERIALS 2019; 3:273-281. [DOI: 10.1021/acsabm.9b00797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
94
|
Hu X, Mandika C, He L, You Y, Chang Y, Wang J, Chen T, Zhu X. Construction of Urokinase-Type Plasminogen Activator Receptor-Targeted Heterostructures for Efficient Photothermal Chemotherapy against Cervical Cancer To Achieve Simultaneous Anticancer and Antiangiogenesis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39688-39705. [PMID: 31588724 DOI: 10.1021/acsami.9b15751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rational design and construction of theranostic nanomedicines based on clinical characteristics of cervical cancer is an important strategy to achieve precise cancer therapy. Herein, we fabricate a cervical cancer-targeting gold nanorod-mesoporous silica heterostructure for codelivery of synergistic cisplatin and antiangiogenic drug Avastin (cisplatin-AuNRs@SiO2-Avastin@PEI/AE105) to achieve synergistic chemophotothermal therapy. Based on database analysis and clinical sample staining, conjugation of the AE105-targeting peptide obviously improves the intracellular uptake of the nanosystem and enhances the cancer-killing ability and selectivity between cervical cancer and normal cells. It could also be used to specifically monitor the urokinase-type plasminogen activator receptor (uPAR) expression level in clinical cervical specimens, which would be an early indicator of prognosis in cancer treatment. Under 808 nm laser irradiation, the nanosystem demonstrates smart NIR-light-triggered drug release and prominent photodynamic activity via induction of reactive oxygen species overproduction-mediated cell apoptosis. The nanosystem also simultaneously suppresses HeLa tumor growth and angiogenesis in vivo, with no evident histological damage observed in the major organs. In short, this study not only provides a clinical data-based rational design strategy of smart nanomedicine for precise treatment and rapid clinical diagnosis of cervical cancer but also contributes to the development of the clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Chetry Mandika
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Lizhen He
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yuanyuan You
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yanzhou Chang
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Jing Wang
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Tianfeng Chen
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| |
Collapse
|
95
|
Modified Spraying Technique and Response Surface Methodology for the Preparation and Optimization of Propolis Liposomes of Enhanced Anti-Proliferative Activity against Human Melanoma Cell Line A375. Pharmaceutics 2019; 11:pharmaceutics11110558. [PMID: 31661945 PMCID: PMC6921042 DOI: 10.3390/pharmaceutics11110558] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 11/30/2022] Open
Abstract
Propolis is a honeybee product that contains a mixture of natural substances with a broad spectrum of biological activities. However, the clinical application of propolis is limited due to the presence of a myriad of constituents with different physicochemical properties, low bioavailability and lack of appropriate formulations. In this study, a modified injection technique (spraying technique) has been developed for the encapsulation of the Egyptian propolis within liposomal formulation. The effects of three variables (lipid molar concentration, drug loading and cholesterol percentage) on the particle size and poly dispersity index (PDI) were studied using response surface methodology and the Box–Behnken design. Response surface diagrams were used to develop an optimized liposomal formulation of the Egyptian propolis. A comparative study between the optimized liposomal formulation prepared either by the typical ethanol injection method (TEIM) or the spraying method in terms of particle size, PDI and the in-vitro anti-proliferative effect against human melanoma cell line A375 was carried out. The spraying method resulted in the formation of smaller propolis-loaded liposomes compared to TEIM (particle sizes of 90 ± 6.2 nm, and 170 ± 14.7 nm, respectively). Furthermore, the IC50 values against A375 cells were found to be 3.04 ± 0.14, 4.5 ± 0.09, and 18.06 ± 0.75 for spray-prepared propolis liposomes (PP-Lip), TEIM PP-Lip, and propolis extract (PE), respectively. The encapsulation of PE into liposomes is expected to improve its cellular uptake by endocytosis. Moreover, smaller and more uniform liposomes obtained by spraying can be expected to achieve higher cellular uptake, as the ratio of liposomes or liposomal aggregates that fall above the capacity of cell membrane to “wrap” them will be minimized.
Collapse
|
96
|
Sun S, Cheng D, Kong S, Li X, Li T, Yu Q, Wang L. A rapid and sensitive method for quantification of ibrutinib in rat plasma by UPLC-ESI-MS/MS: validation and application to pharmacokinetic studies of a novel ibrutinib nanocrystalline. Biomed Chromatogr 2019; 34:e4703. [PMID: 31629393 DOI: 10.1002/bmc.4703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/23/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
Ibrutinib has an excellent effect in the treatment of mantle cell lymphoma so it has attracted much attention. A novel ibrutinib nanocrystalline was exploited in our study to improve the bioavailability. A fast and reliable UPLC-MS/MS method was established for the accurate quantification of ibrutinib in rat plasma. The chromatographic separation was achieved by an Agilent zorbax SB-C18 rapid solution HD column (2.1 × 50 mm, 1.8 μm). The mobile phase consisted of deionized water (containing 10 mm ammonium acetate and 0.1% formic acid) and pure acetonitrile. Isocratic elution (water-acetonitrile 10:90, v/v) was adopted and the flow rate was 0.4 mL/min. Column temperature was set to 40°C. Vilazodone was used as the internal standard in this analytical method. Multiple reaction monitoring mode with positive electrospray ionization was selected to detect ibrutinib and vilazodone. Acetonitrile was used to precipitate protein to extract plasma samples. There was no endogenous interference for both ibrutinib and vilazodone and the linear range of this method was 1-2000 ng/mL. The recoveries were 98.4, 97.4 and 102.7% at low, medium and high concentrations. Accordingly, the matrix effect was 96.6, 111.1 and 99.6%. The pharmacokinetic difference between ibrutinib crude and a novel ibrutinib nanocrystalline in rats was investigated by this validated method successfully. The peak concentration and area under the concentration-time curve showed significant differences in gender and the bioavailability was improved after oral administration of ibrutinib nanocrystalline.
Collapse
Affiliation(s)
- Shuangshuang Sun
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, China
| | - Dongfang Cheng
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, China
| | - Shumeng Kong
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, China
| | - Xiangping Li
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, China
| | - Tongfang Li
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, China
| | - Qinglong Yu
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, China
| | - Lin Wang
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, China
| |
Collapse
|
97
|
Rubio-Camacho M, Alacid Y, Mallavia R, Martínez-Tomé MJ, Mateo CR. Polyfluorene-Based Multicolor Fluorescent Nanoparticles Activated by Temperature for Bioimaging and Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1485. [PMID: 31635330 PMCID: PMC6835524 DOI: 10.3390/nano9101485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
Multifunctional nanoparticles have been attracting growing attention in recent years because of their capability to integrate materials with different features in one entity, which leads them to be considered as the next generation of nanomedicine. In this work, we have taken advantage of the interesting properties of conjugated polyelectrolytes to develop multicolor fluorescent nanoparticles with integrating imaging and therapeutic functionalities. With this end, thermosensitive liposomes were coated with three recently synthesized polyfluorenes: copoly-((9,9-bis(6'-N,N,N-trimethylammonium)hexyl)-2,7-(fluorene)-alt-1,4-(phenylene)) bromide (HTMA-PFP), copoly-((9,9-bis(6'-N,N,N-trimethylammonium)hexyl)-2,7-(fluorene)-alt-4,7-(2- (phenyl)benzo(d) (1,2,3) triazole)) bromide (HTMA-PFBT) and copoly-((9,9-bis(6'-N,N,N- trimethylammonium)hexyl)-2,7-(fluorene)-alt-1,4-(naphtho(2,3c)-1,2,5-thiadiazole)) bromide (HTMA-PFNT), in order to obtain blue, green and red fluorescent drug carriers, respectively. The stability, size and morphology of the nanoparticles, as well as their thermotropic behavior and photophysical properties, have been characterized by Dynamic Light Scattering (DLS), Zeta Potential, transmission electron microscope (TEM) analysis and fluorescence spectroscopy. In addition, the suitability of the nanostructures to carry and release their contents when triggered by hyperthermia has been explored by using carboxyfluorescein as a hydrophilic drug model. Finally, preliminary experiments with mammalian cells demonstrate the capability of the nanoparticles to mark and visualize cells with different colors, evidencing their potential use for imaging and therapeutic applications.
Collapse
Affiliation(s)
- Marta Rubio-Camacho
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| | - Yolanda Alacid
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| | - Ricardo Mallavia
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| | - María José Martínez-Tomé
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| | - C Reyes Mateo
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| |
Collapse
|
98
|
Yu X, Liu X, Ding W, Wang J, Ruan G. Spontaneous and instant formation of highly stable protein-nanoparticle supraparticle co-assemblies driven by hydrophobic interaction. NANOSCALE ADVANCES 2019; 1:4137-4147. [PMID: 36132103 PMCID: PMC9417729 DOI: 10.1039/c9na00328b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/19/2019] [Indexed: 06/15/2023]
Abstract
Recently, supraparticle protein-nanoparticle co-assemblies (or 'supraparticle co-assemblies' for short) have attracted considerable interest due to their fundamental and technological value. However, it remains challenging to form supraparticle co-assemblies with high stability. Here, we show that using hydrophobic interaction, instead of the previously used electrostatic and van der Waals interactions, as the primary driving force can lead to instant formation of exceptionally stable supraparticle co-assemblies with minimal external energy input. Our formation method of supraparticle co-assemblies simply involves mixing globular proteins (e.g., bovine serum albumin) with hydrophobic nanoparticles (e.g., hydrophobic magnetic nanoparticles and hydrophobic quantum dots) without significant energy input (e.g., sonication or stirring). Upon mixing of hydrophobic nanoparticles and proteins, the formation of supraparticle co-assemblies only takes <1 minute. Further incubation of the mixture for several hours results in a gradual increase of the size uniformity of supraparticle co-assemblies. The formed supraparticle co-assemblies have been colloidally stable for 6 months and counting, and can withstand harsh environments such as basic and acidic pH, high temperature, high dilution, and serum. Co-encapsulation of different sizes/types of nanoparticles is found to be feasible and the co-encapsulation number ratio of different nanoparticles is well-controlled by the feeding ratio. Proof-of-concept studies show the potential of the supraparticle co-assemblies for biological imaging, delivery, and modulation. The combination of very rapid formation, minimal energy consumption, highly stable products, and inexpensive raw materials of this hydrophobic interaction-driven process meets many of the main goals of 'ideal' nano-manufacturing. Thus, this process could serve as the foundation of ideal manufacturing of supraparticle co-assemblies.
Collapse
Affiliation(s)
- Xiaoya Yu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University China
| | - Xiao Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University China
| | - Wanchuan Ding
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University China
| | - Jun Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University China
| | - Gang Ruan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University China
| |
Collapse
|
99
|
Huang P, Zhao S, Bachman H, Nama N, Li Z, Chen C, Yang S, Wu M, Zhang SP, Huang TJ. Acoustofluidic Synthesis of Particulate Nanomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900913. [PMID: 31592417 PMCID: PMC6774021 DOI: 10.1002/advs.201900913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/18/2019] [Indexed: 05/18/2023]
Abstract
Synthesis of nanoparticles and particulate nanomaterials with tailored properties is a central step toward many applications ranging from energy conversion and imaging/display to biosensing and nanomedicine. While existing microfluidics-based synthesis methods offer precise control over the synthesis process, most of them rely on passive, partial mixing of reagents, which limits their applicability and potentially, adversely alter the properties of synthesized products. Here, an acoustofluidic (i.e., the fusion of acoustic and microfluidics) synthesis platform is reported to synthesize nanoparticles and nanomaterials in a controllable, reproducible manner through acoustic-streaming-based active mixing of reagents. The acoustofluidic strategy allows for the dynamic control of the reaction conditions simply by adjusting the strength of the acoustic streaming. With this platform, the synthesis of versatile nanoparticles/nanomaterials is demonstrated including the synthesis of polymeric nanoparticles, chitosan nanoparticles, organic-inorganic hybrid nanomaterials, metal-organic framework biocomposites, and lipid-DNA complexes. The acoustofluidic synthesis platform, when incorporated with varying flow rates, compositions, or concentrations of reagents, will lend itself unprecedented flexibility in establishing various reaction conditions and thus enable the synthesis of versatile nanoparticles and nanomaterials with prescribed properties.
Collapse
Affiliation(s)
- Po‐Hsun Huang
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27708USA
| | - Shuaiguo Zhao
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27708USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27708USA
| | - Nitesh Nama
- Department of Engineering Science and MechanicsPennsylvania State UniversityUniversity ParkPA16802USA
| | - Zhishang Li
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27708USA
| | - Chuyi Chen
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27708USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27708USA
| | - Mengxi Wu
- Department of Engineering Science and MechanicsPennsylvania State UniversityUniversity ParkPA16802USA
| | - Steven Peiran Zhang
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27708USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27708USA
| |
Collapse
|
100
|
Riccardi C, Musumeci D, Trifuoggi M, Irace C, Paduano L, Montesarchio D. Anticancer Ruthenium(III) Complexes and Ru(III)-Containing Nanoformulations: An Update on the Mechanism of Action and Biological Activity. Pharmaceuticals (Basel) 2019; 12:E146. [PMID: 31561546 PMCID: PMC6958509 DOI: 10.3390/ph12040146] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
The great advances in the studies on metal complexes for the treatment of different cancer forms, starting from the pioneering works on platinum derivatives, have fostered an increasingly growing interest in their properties and biomedical applications. Among the various metal-containing drugs investigated thus far, ruthenium(III) complexes have emerged for their selective cytotoxic activity in vitro and promising anticancer properties in vivo, also leading to a few candidates in advanced clinical trials. Aiming at addressing the solubility, stability and cellular uptake issues of low molecular weight Ru(III)-based compounds, some research groups have proposed the development of suitable drug delivery systems (e.g., taking advantage of nanoparticles, liposomes, etc.) able to enhance their activity compared to the naked drugs. This review highlights the unique role of Ru(III) complexes in the current panorama of anticancer agents, with particular emphasis on Ru-containing nanoformulations based on the incorporation of the Ru(III) complexes into suitable nanocarriers in order to enhance their bioavailability and pharmacokinetic properties. Preclinical evaluation of these nanoaggregates is discussed with a special focus on the investigation of their mechanism of action at a molecular level, highlighting their pharmacological potential in tumour disease models and value for biomedical applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Carlo Irace
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|