51
|
Scarlata GGM, Colaci C, Scarcella M, Dallio M, Federico A, Boccuto L, Abenavoli L. The Role of Cytokines in the Pathogenesis and Treatment of Alcoholic Liver Disease. Diseases 2024; 12:69. [PMID: 38667527 PMCID: PMC11048950 DOI: 10.3390/diseases12040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of chronic liver disease. This term covers a broad spectrum of liver lesions, from simple steatosis to alcoholic hepatitis and cirrhosis. The pathogenesis of ALD is multifactorial and not fully elucidated due to complex mechanisms related to direct ethanol toxicity with subsequent hepatic and systemic inflammation. The accumulation of pro-inflammatory cytokines and the reduction of anti-inflammatory cytokines promote the development and progression of ALD. To date, there are no targeted therapies to counter the progression of chronic alcohol-related liver disease and prevent acute liver failure. Corticosteroids reduce mortality by acting on the hepatic-systemic inflammation. On the other hand, several studies analyzed the effect of inhibiting pro-inflammatory cytokines and stimulating anti-inflammatory cytokines as potential therapeutic targets in ALD. This narrative review aims to clarify the role of the main cytokines involved in the pathogenesis and treatment of ALD.
Collapse
Affiliation(s)
| | - Carmen Colaci
- Department of Health Sciences, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy; (G.G.M.S.); (C.C.)
| | - Marialaura Scarcella
- Anesthesia, Intensive Care and Nutritional Science, Azienda Ospedaliera “Santa Maria”, Via Tristano di Joannuccio, 05100 Terni, Italy;
| | - Marcello Dallio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.D.); (A.F.)
| | - Alessandro Federico
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.D.); (A.F.)
| | - Luigi Boccuto
- Healthcare Genetics and Genomics Doctoral Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy; (G.G.M.S.); (C.C.)
| |
Collapse
|
52
|
Wu HX, Long CR, Zhang ZH, Chen YL, Wang YY, Xiang SJ, Zhou BJ. Tryptophan metabolism and liver fibrosis. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:192-198. [DOI: 10.11569/wcjd.v32.i3.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2024]
|
53
|
Gao Y, Kennelly JP, Xiao X, Whang E, Ferrari A, Bedard AH, Mack JJ, Nguyen AH, Weston T, Uchiyama LF, Lee MS, Young SG, Bensinger SJ, Tontonoz P. T cell cholesterol transport is a metabolic checkpoint that links intestinal immune responses to dietary lipid absorption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584164. [PMID: 38559079 PMCID: PMC10979874 DOI: 10.1101/2024.03.08.584164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intrinsic pathways that control membrane organization in immune cells and the impact of such pathways on cellular function are not well defined. Here we report that the non-vesicular cholesterol transporter Aster-A links plasma membrane (PM) cholesterol availability in T cells to immune signaling and systemic metabolism. Aster-A is recruited to the PM during T-cell receptor (TCR) activation, where it facilitates the removal of newly generated "accessible" membrane cholesterol. Loss of Aster-A leads to excess PM cholesterol accumulation, resulting in enhanced TCR nano-clustering and signaling, and Th17 cytokine production. Finally, we show that the mucosal Th17 response is restrained by PM cholesterol remodeling. Ablation of Aster-A in T cells leads to enhanced IL-22 production, reduced intestinal fatty acid absorption, and resistance to diet-induced obesity. These findings delineate a multi-tiered regulatory scheme linking immune cell lipid flux to nutrient absorption and systemic physiology.
Collapse
|
54
|
Amormino C, Russo E, Tedeschi V, Fiorillo MT, Paiardini A, Spallotta F, Rosanò L, Tuosto L, Kunkl M. Targeting staphylococcal enterotoxin B binding to CD28 as a new strategy for dampening superantigen-mediated intestinal epithelial barrier dysfunctions. Front Immunol 2024; 15:1365074. [PMID: 38510259 PMCID: PMC10951378 DOI: 10.3389/fimmu.2024.1365074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Staphylococcus aureus is a gram-positive bacterium that may cause intestinal inflammation by secreting enterotoxins, which commonly cause food-poisoning and gastrointestinal injuries. Staphylococcal enterotoxin B (SEB) acts as a superantigen (SAg) by binding in a bivalent manner the T-cell receptor (TCR) and the costimulatory receptor CD28, thus stimulating T cells to produce large amounts of inflammatory cytokines, which may affect intestinal epithelial barrier integrity and functions. However, the role of T cell-mediated SEB inflammatory activity remains unknown. Here we show that inflammatory cytokines produced by T cells following SEB stimulation induce dysfunctions in Caco-2 intestinal epithelial cells by promoting actin cytoskeleton remodelling and epithelial cell-cell junction down-regulation. We also found that SEB-activated inflammatory T cells promote the up-regulation of epithelial-mesenchymal transition transcription factors (EMT-TFs) in a nuclear factor-κB (NF-κB)- and STAT3-dependent manner. Finally, by using a structure-based design approach, we identified a SEB mimetic peptide (pSEB116-132) that, by blocking the binding of SEB to CD28, dampens inflammatory-mediated dysregulation of intestinal epithelial barrier.
Collapse
Affiliation(s)
- Carola Amormino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Emanuela Russo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Laura Rosanò
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Martina Kunkl
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
55
|
Jacobs BM, Vickaryous N, Giovannoni G, Proitsi P, Waters S, Dobson R. Plasma proteomic profiles of UK Biobank participants with multiple sclerosis. Ann Clin Transl Neurol 2024; 11:698-709. [PMID: 38282238 DOI: 10.1002/acn3.51990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
OBJECTIVE We aimed to describe plasma protein biomarkers of multiple sclerosis risk and to explore protein biomarkers of disease severity using radiological outcome measures. METHODS Multiple sclerosis cases and controls were identified in UK Biobank, a longitudinal cohort study of ~500,000 British adults. Plasma proteins were assayed in ~50,000 UK Biobank participants using the Olink proximity extension assay. We performed case-control association testing to examine the association between 2911 proteins and multiple sclerosis, using linear models adjusted for confounding covariates. Associations with radiological lesion burden and brain volume were determined in a subset of the cohort with available magnetic resonance imaging, using normalized T2-hyperintensity volume or whole brain volume as the outcome measure. RESULTS In total, 407 prevalent multiple sclerosis cases and 39,979 healthy controls were included. We discovered 72 proteins associated with multiple sclerosis at a Bonferroni-adjusted p value of 0.05, including established markers such as neurofilament light chain and glial fibrillary acidic protein. We observed a decrease in plasma Granzyme A, a marker of T cell and NK cell degranulation, which was specific to multiple sclerosis. Higher levels of plasma proteins involved in coagulation were associated with lower T2 lesion burden and preserved brain volume. INTERPRETATION We report the largest plasma proteomic screen of multiple sclerosis, replicating important known associations and suggesting novel markers, such as the reduction in granzyme A. While these findings require external validation, they demonstrate the power of biobank-scale datasets for discovering new biomarkers for multiple sclerosis.
Collapse
Affiliation(s)
- Benjamin M Jacobs
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Department of Neurology, Royal London Hospital, London, UK
| | - Nicola Vickaryous
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Department of Neurology, Royal London Hospital, London, UK
| | - Petroula Proitsi
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Sheena Waters
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Ruth Dobson
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Department of Neurology, Royal London Hospital, London, UK
| |
Collapse
|
56
|
Pillar A, Ali MK. IL-22 Binding Protein/IL-22 Axis in Regulating Acute Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:335-337. [PMID: 38199431 DOI: 10.1016/j.ajpath.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Affiliation(s)
- Amber Pillar
- School of Biomedical Sciences and Pharmacy, University of Newcastle and The Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Md Khadem Ali
- Pre-Professional Health Academic Program, California State University East Bay, Hayward, California.
| |
Collapse
|
57
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
58
|
Zeng Q, Liu X, Tang Y, Li Z, Yang Y, Hu N, Liu Q, Zhou Z. Evolutionarily conserved IL-22 participates in gut mucosal barrier through its receptors IL-22BP, IL-10R2 and IL-22RA1 during bacterial infection in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105110. [PMID: 38081403 DOI: 10.1016/j.dci.2023.105110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
IL-22 is a critical cytokine of epithelial mucosal barrier. In humans, IL-22 signals through a heteroduplex receptor consisting of IL-22R and IL-10Rβ. In fish, IL-22 and its receptors homologues have been cloned in a number of species, however, no studies have been reported how the receptors are involved in IL-22 transduction. For this purpose, in this study we identified IL-22 and its soluble receptor IL-22BP and transmembrane receptors IL-22RA1 and IL-10R2 in Carassius cuvieri × Carassius auratus red var. (named WR-IL-22, WR-IL-22BP, WR-IL10R2 and WR-IL22RA1, respectively). WR-IL-22, WR-IL-22BP, WR-IL10R2 and WR-IL22RA1 were relatively conserved in the evolutionary process, sharing the same conserved domains as their higher vertebrate homologues. When the fish were infected with the Aeromonas hydrophila, the expression of WR-IL-22, WR-IL-22BP, WR-IL10R2 and WR-IL22RA1 were significantly induced in the gut. The co-IP assay showed that WR-IL-22 not only interacted with WR-IL-22BP, but also with WR-IL10R2 and WR-IL22RA1. When introduced in vivo, WR-IL-22 activated the JAK1-STAT3 axis and protected the gut mucosa from A. hydrophila infection. However, overexpression of WR-IL-22BP or knockdown of transmembrane receptors WR-IL10R2 and WR-IL22RA1 significantly inhibited the activation of WR-IL-22-mediated JAK1-STAT3 axis and promoted bacterial colonization in the gut. These results provided new insights into the role of IL-22 and its receptors in the gut mucosa barrier and immune response in teleost.
Collapse
Affiliation(s)
- Qiongyao Zeng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Liu
- Department of Nutrition, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yiyang Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhengwei Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ye Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Niewen Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511466, China.
| |
Collapse
|
59
|
Yang M, Zhang CY. Interleukins in liver disease treatment. World J Hepatol 2024; 16:140-145. [PMID: 38495285 PMCID: PMC10941743 DOI: 10.4254/wjh.v16.i2.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024] Open
Abstract
Cytokines play pleiotropic roles in human health and disease by regulating both innate and adaptive immune responses. Interleukins (ILs), a large group of cytokines, can be divided into seven families, including IL-1, IL-2, IL-6, IL-8, IL-10, IL-12, and IL-17 families. Here, we review the functions of ILs in the pathogenesis and resolution of liver diseases, such as liver inflammation (e.g., IL-35), alcohol-related liver disease (e.g., IL-11), non-alcoholic steatohepatitis (e.g., IL-22), liver fibrosis (e.g., Il-17a), and liver cancer (e.g., IL-8). Overall, IL-1 family members are implicated in liver inflammation induced by different etiologies, such as alcohol consumption, high-fat diet, and hepatitis viruses. IL-2 family members mainly regulate T lymphocyte and NK cell proliferation and activation, and the differentiation of T cells. IL-6 family cytokines play important roles in acute phase response in liver infection, liver regeneration, and metabolic regulation, as well as lymphocyte activation. IL-8, also known as CXCL8, is activated in chronic liver diseases, which is associated with the accumulation of neutrophils and macrophages. IL-10 family members contribute key roles to liver immune tolerance and immunosuppression in liver disease. IL-12 family cytokines influence T-cell differentiation and play an essential role in autoimmune liver disease. IL-17 subfamilies contribute to infection defense, liver inflammation, and Th17 cell differentiation. ILs interact with different type I and type II cytokine receptors to regulate intracellular signaling pathways that mediate their functions. However, most clinical studies are only performed to evaluate IL-mediated therapies on alcohol and hepatitis virus infection-induced hepatitis. More pre-clinical and clinical studies are required to evaluate IL-mediated monotherapy and synergistic therapies.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States.
| | - Chun-Ye Zhang
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
60
|
Sattar AA, Qaiser A, Kausar H, Aqil S, Mudassar R, Manzoor S, Ashraf J. The potential of IFN-λ, IL-32γ, IL-6, and IL-22 as safeguards against human viruses: a systematic review and a meta-analysis. Front Immunol 2024; 15:1303115. [PMID: 38420119 PMCID: PMC10899505 DOI: 10.3389/fimmu.2024.1303115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Many studies have investigated the antiviral activity of cytokines, including interleukin-6 (IL-6), interleukin-22 (IL-22), interleukin-32 gamma (IL-32γ), and interferon-lambda (IFN-λ) in diverse populations. This study aims to evaluate the role of these cytokines in inhibition of various human and animal viruses when administered exogenously. A comprehensive meta-analysis and systematic review were conducted on all the relevant studies from three databases. Standard mean differences (SMDs) of overall viral inhibition were used to generate the difference in the antiviral efficacy of these cytokines between control and experimental groups. A total of 4,618 abstracts for IL-6, 3,517 abstracts for IL-22, 2,160 abstracts for IL-32γ, and 1,026 abstracts for IFN-λ were identified, and 7, 4, 8, and 35 studies were included, respectively, for each cytokine. IFN-λ (SMD = 0.9540; 95% CI: 0.69-0.22) and IL-32γ (SMD = 0.459; 95% CI: 0.02-0.90) showed the highest influence followed by IL-6 (SMD = 0.456; CI: -0.04-0.95) and IL-22 (SMD = 0.244; 95% CI: -0.33-0.81). None of the cytokines represented heterogeneity (tau² > 0), but only IFN-λ indicated the funnel plot asymmetry (p = 0.0097). Results also indicated that IFN-λ and IL-32γ are more potent antivirals than IL-6 and IL-22. The collective findings of this study emphasize that exogenously administered pro-inflammatory cytokines, specifically IFN-λ and IL-32, exhibit a significant antiviral activity, thereby underscoring them as potent antiviral agents. Nonetheless, additional research is required to ascertain their clinical utility and potential for integration into combinatorial therapeutic regimens against viral infections.
Collapse
Affiliation(s)
- Areej A Sattar
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Ariba Qaiser
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Hina Kausar
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Sarah Aqil
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Rida Mudassar
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Sobia Manzoor
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Javed Ashraf
- Department of Community Dentistry, Islamabad Medical and Dental College (IMDC), Islamabad, Pakistan
- Institute of Dentistry, University of Eastern Finland (UEF), Kuopio, Finland
| |
Collapse
|
61
|
Segbefia SP, Asandem DA, Amoah LE, Kusi KA. Cytokine gene polymorphisms implicated in the pathogenesis of Plasmodium falciparum infection outcome. Front Immunol 2024; 15:1285411. [PMID: 38404582 PMCID: PMC10884311 DOI: 10.3389/fimmu.2024.1285411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Cytokines play a critical role in the immune mechanisms involved in fighting infections including malaria. Polymorphisms in cytokine genes may affect immune responses during an infection with Plasmodium parasites and immunization outcomes during routine administration of malaria vaccines. These polymorphisms can increase or reduce susceptibility to this deadly infection, and this may affect the physiologically needed balance between anti-inflammatory and pro-inflammatory cytokines. The purpose of this review is to present an overview of the effect of selected cytokine gene polymorphisms on immune responses against malaria.
Collapse
Affiliation(s)
- Selorm Philip Segbefia
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Molecular Medicine, School of Medicine and Dentistry, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Diana Asema Asandem
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
62
|
Chan CW, Chen HW, Wang YW, Lin CI, Chuang YH. IL-21, not IL-17A, exacerbates murine primary biliary cholangitis. Clin Exp Immunol 2024; 215:137-147. [PMID: 37708215 PMCID: PMC10847827 DOI: 10.1093/cei/uxad107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease caused by intrahepatic bile duct injuries, resulting in fibrosis, cirrhosis, and eventually liver failure. T helper (Th) 17 cells are proposed to involve in the pathogenesis of PBC. However, how and which Th17 cell-derived cytokines affect PBC remains unclear. In this study, we investigated the effects of Th17 effector cytokines, including interleukin (IL)-17A, IL-17F, and IL-21 in PBC using a xenobiotic-induced mouse model of autoimmune cholangitis (inducible chemical xenobiotic models of PBC) treated with cytokine-expressing adeno-associated virus. Our results showed that administration of IL-17A, the well-known main cytokine produced by Th17 cells, did not augment liver inflammation or fibrosis. In contrast, we noted IL-17A-treated mice had lower hepatic Th1 cell numbers and higher hepatic CD11b+Ly6G+ polymorphonuclear myeloid-derived suppressor cell numbers. IL-17F did not alter liver inflammation or fibrosis. However, the administration of IL-21 exacerbated liver inflammatory responses and portal cell infiltration. IL-21 markedly increased the numbers of activated CD8+ T cells and liver tissue-resident memory CD8+ T cells. Moreover, IL-21 aggravates liver fibrosis in mice with autoimmune cholangitis. These results emphasized that not IL-17A but IL-21 in Th17 cell-derived cytokines affected the pathogenesis of PBC. IL-21 enhanced liver inflammation and progression to fibrosis by enhancing the numbers and effector activities of CD8+ T cells. Delineation of the effects of different Th17 effector cytokines in PBC offers clues for developing new therapeutic approaches.
Collapse
Affiliation(s)
- Chun-Wen Chan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Wen Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Wang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-I Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hui Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
63
|
Klotskova H, Kidess E, Nadal AL, Brugman S. The role of interleukin-22 in mammalian intestinal homeostasis: Friend and foe. Immun Inflamm Dis 2024; 12:e1144. [PMID: 38363052 PMCID: PMC10870696 DOI: 10.1002/iid3.1144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/17/2024] Open
Abstract
Interleukin-22 (IL-22) is an important cytokine in the intestinal environment. IL-22 is mainly produced by immune cells and targeted at nonimmune cells such as epithelial and stromal cells in a broad array of tissues such as -but not restricted to- the liver and adipose tissue. IL-22 therefore connects immune functions with metabolic functions of the host, and since it is induced by the microbiota, connects host functioning to the outside environment. IL-22 induces epithelial cell proliferation aiding in rapid epithelium regeneration and wound healing. Additionally, IL-22 activates antiapoptotic genes and DNA damage response pathways, enhancing epithelial cell survival. Recently, it has also been shown that IL-22 induces Paneth cell differentiation in humans. However, IL-22 can also contribute to intestinal epithelium damage and reduces microbial diversity in the intestine directly or indirectly by inducing excessive antimicrobial peptide production by epithelial cells. Moreover, IL-22 enhances angiogenesis and may therefore support tumorigenesis in the intestine. In conclusion, it appears that whether IL-22 has a beneficial or harmful effect in the mammalian intestine largely depends on its regulation. This review aims to provide a comprehensive overview of the current literature and emphasizes that IL-22 signaling outcome depends on the timing and duration of IL-22 production, the presence of it regulators such as IL-22BP, and the specific location of the cytokine production in the gastrointestinal tract.
Collapse
Affiliation(s)
- Hedi‐Britt Klotskova
- Host Microbe Interactomics, Animal Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Evelien Kidess
- Host Microbe Interactomics, Animal Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Adria L. Nadal
- Host Microbe Interactomics, Animal Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Sylvia Brugman
- Host Microbe Interactomics, Animal Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
64
|
Kadin ME. Mycosis Fungoides Tumors Get a Bad Wrap. J Invest Dermatol 2024; 144:199-200. [PMID: 37565939 DOI: 10.1016/j.jid.2023.06.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 08/12/2023]
Affiliation(s)
- Marshall E Kadin
- Department of Pathology and Laboratory Medicine, Brown Alpert School of Medicine, Rhode Island Hospital, Providence RI, USA.
| |
Collapse
|
65
|
Talvard-Balland N, Lambert M, Chevalier MF, Minet N, Salou M, Tourret M, Bohineust A, Milo I, Parietti V, Yvorra T, Socié G, Lantz O, Caillat-Zucman S. Human MAIT cells inhibit alloreactive T cell responses and protect against acute graft-versus-host disease. JCI Insight 2024; 9:e166310. [PMID: 38300704 PMCID: PMC11143928 DOI: 10.1172/jci.insight.166310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Adoptive transfer of immunoregulatory cells can prevent or ameliorate graft-versus-host disease (GVHD), which remains the main cause of nonrelapse mortality after allogeneic hematopoietic stem cell transplantation. Mucosal-associated invariant T (MAIT) cells were recently associated with tissue repair capacities and with lower rates of GVHD in humans. Here, we analyzed the immunosuppressive effect of MAIT cells in an in vitro model of alloreactivity and explored their adoptive transfer in a preclinical xenogeneic GVHD model. We found that MAIT cells, whether freshly purified or short-term expanded, dose-dependently inhibited proliferation and activation of alloreactive T cells. In immunodeficient mice injected with human PBMCs, MAIT cells greatly delayed GVHD onset and decreased severity when transferred early after PBMC injection but could also control ongoing GVHD when transferred at delayed time points. This effect was associated with decreased proliferation and effector function of human T cells infiltrating tissues of diseased mice and was correlated with lower circulating IFN-γ and TNF-α levels and increased IL-10 levels. MAIT cells acted partly in a contact-dependent manner, which likely required direct interaction of their T cell receptor with MHC class I-related molecule (MR1) induced on host-reactive T cells. These results support the setup of clinical trials using MAIT cells as universal therapeutic tools to control severe GVHD or mucosal inflammatory disorders.
Collapse
Affiliation(s)
- Nana Talvard-Balland
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Marion Lambert
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Mathieu F. Chevalier
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Norbert Minet
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Marion Salou
- Institut Curie, Université PSL, INSERM U932, Immunity and Cancer, Paris, France
| | - Marie Tourret
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Armelle Bohineust
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Idan Milo
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Véronique Parietti
- Université Paris Cité, INSERM, CNRS, UMS Saint-Louis (US53/UAR2030), Paris, France
| | - Thomas Yvorra
- Institut Curie, Université PSL, CNRS UMR3666, INSERM U1143, Paris, France
| | - Gérard Socié
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
- Hematology Transplantation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Olivier Lantz
- Institut Curie, Université PSL, INSERM U932, Immunity and Cancer, Paris, France
- Clinical Immunology Laboratory, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - Sophie Caillat-Zucman
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
- Immunology Laboratory, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Paris, France
| |
Collapse
|
66
|
Weiss V, Gobec M, Jakopin Ž. Halogenation of common phenolic household and personal care product ingredients enhances their AhR-modulating capacity. CHEMOSPHERE 2024; 350:141116. [PMID: 38182088 DOI: 10.1016/j.chemosphere.2024.141116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
The Aryl Hydrocarbon Receptor (AhR), a ligand-activated transcription factor, orchestrates responses to numerous structurally diverse endogenous and exogenous ligands. In addition to binding various xenobiotics, AhR also recognizes endocrine disruptors, particularly those featuring chlorinated or brominated aromatic structures. There is limited data available on the impact of common household and personal care product ingredients let alone their halogenated transformation products. Herein we bridge this knowledge gap by preparing a library of chlorinated and brominated parabens, bisphenols, UV filters, and nonylphenols. An evaluation of total of 125 compounds for agonistic and antagonistic activity on AhR unveiled a low micromolar agonist, Cl2BPAF with an EC50 of 13 μM. Moreover, our study identified several AhR antagonists, with BrBzP emerging as the most potent with an IC50 of 8.9 μM. To further investigate the functional implications of these compounds, we subjected the most potent agonist and antagonist to a functional assay involving cytokine secretion from peripheral blood mononuclear cells and compared their activity with the commercially available AhR agonist and antagonist. Cl2BPAF exhibited an overall immunosuppressive effect by reducing the secretion of proinflammatory cytokines, including IL-6, IFN-γ, and TNF-α, while BrBzP displayed opposite effects, leading to an increase of those cytokines. Notably, the immunomodulatory effects of Cl2BPAF surpassed those of ITE, a bona fide AhR agonist, while the impact of BrBzP exceeded that of CH223191, a bona fide AhR antagonist. In summary, our study underscores the potential influence of halogenated transformation products on the AhR pathway and, consequently, their role in shaping the immune responses.
Collapse
Affiliation(s)
- Veronika Weiss
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
67
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA. Bridging autoimmunity and epigenetics: The influence of lncRNA MALAT1. Pathol Res Pract 2024; 254:155041. [PMID: 38199135 DOI: 10.1016/j.prp.2023.155041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Autoimmune disorders represent a heterogeneous spectrum of conditions defined by an immune system's atypical reactivity against endogenous constituents. In the complex anatomy of autoimmune pathogenesis, lncRNAs have appeared as pivotal arbiters orchestrating the mechanisms of ailment initiation, immune cascades, and transcriptional modulation. One such lncRNA, MALAT1, has garnered attention for its potential association with the aetiology of several autoimmune diseases. MALAT1 has been shown to influence a wide spectrum of cellular processes, which include cell multiplication and specialization, as well as apoptosis and inflammation. In autoimmune diseases, MALAT1 exhibits both disease-specific and shared patterns of dysregulation, often correlating with disease severity. The molecular mechanisms underlying MALAT1's impact on autoimmune disorders include epigenetic modifications, alternative splicing, and modulation of gene expression networks. Additionally, MALAT1's intricate interactions with microRNAs, other lncRNAs, and protein-coding genes further underscore its role in immune regulation and autoimmune disease progression. Understanding the contribution of MALAT1 in autoimmune pathogenesis across different diseases could offer valuable insights into shared pathways, thereby clearing a path for the creation of innovative and enhanced therapeutic approaches to address these complex disorders. This review aims to elucidate the complex role of MALAT1 in autoimmune disorders, encompassing rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease (Crohn's disease and ulcerative colitis), type 1 diabetes, systemic lupus erythematosus, and psoriasis. Furthermore, it discusses the potential of MALAT1 as a diagnostic biomarker, therapeutic target, and prognostic indicator.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
68
|
Yan JY, Lin TH, Jong YT, Hsueh JW, Wu SH, Lo HJ, Chen YC, Pan CH. Microbiota signatures associated with invasive Candida albicans infection in the gastrointestinal tract of immunodeficient mice. Front Cell Infect Microbiol 2024; 13:1278600. [PMID: 38298919 PMCID: PMC10828038 DOI: 10.3389/fcimb.2023.1278600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Candida albicans is a commensal microorganism in the human gut but occasionally causes invasive C. albicans infection (ICA), especially in immunocompromised individuals. Early initiation of antifungal therapy is associated with reduced mortality of ICA, but rapid diagnosis remains a challenge. The ICA-associated changes in the gut microbiota can be used as diagnostic and therapeutic targets but have been poorly investigated. In this study, we utilized an immunodeficient Rag2γc (Rag2-/-il2γc-/-) mouse model to investigate the gut microbiota alterations caused by C. albicans throughout its cycle, from its introduction into the gastrointestinal tract to invasion, in the absence of antibiotics. We observed a significant increase in the abundance of Firmicutes, particularly Lachnospiraceae and Ruminococcaceae, as well as a significant decrease in the abundance of Candidatus Arthromitus in mice exposed to either the wild-type SC5314 strain or the filamentation-defective mutant (cph1/cph1 efg1/efg1) HLC54 strain of C. albicans. However, only the SC5314-infected mice developed ICA. A linear discriminate analysis of the temporal changes in the gut bacterial composition revealed Bacteroides vulgatus as a discriminative biomarker associated with SC5314-infected mice with ICA. Additionally, a positive correlation between the B. vulgatus abundance and fungal load was found, and the negative correlation between the Candidatus Arthromitus abundance and fungal load after exposure to C. albicans suggested that C. albicans might affect the differentiation of intestinal Th17 cells. Our findings reveal the influence of pathogenic C. albicans on the gut microbiota and identify the abundance of B. vulgatus as a microbiota signature associated with ICA in an immunodeficient mouse model.
Collapse
Affiliation(s)
- Jia-Ying Yan
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Tsung-Han Lin
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Tang Jong
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jun-Wei Hsueh
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Sze-Hsien Wu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Yee-Chun Chen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Department of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Hsiung Pan
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
69
|
Kozlova DI, Rybakov AV, Yureva KA, Khizha VV, Sorokina LS, Kostik MM, Guslev AB. Specific Features of Juvenile Idiopathic Arthritis Patients' Cytokine Profile. Biomedicines 2024; 12:135. [PMID: 38255240 PMCID: PMC10813807 DOI: 10.3390/biomedicines12010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Juvenile idiopathic arthritis (JIA) is a systemic autoimmune disease that affects the joints, leading to disability. Cytokines and signaling molecules expressed by the immune system cells play a key role in JIA pathogenesis. Understanding how their content changes during pathology development can open up new opportunities for its diagnosis and treatment. The blood plasma of 30 patients with JIA (14 males and 16 females with a mean age of 12.2 ± 4.1) and 20 relatively healthy individuals (10 males and 10 females with a mean age of 10.20 ± 5.85) was analyzed to determine the levels of cytokines using the MILLIPLEX® kit. An increase in interleukins (IL)-1α, 1β, 2, 4, 5, 6, 7, 8, 9, 10, 13, 15, 17F, 22, and 27 and a decrease in IL-3 levels have been shown in patients with JIA. Levels of cytokines, which are important for B-cell activation and proliferation, are increased, while levels of T-cell activating factors remained similar to the control group. Based on our results, it can be assumed that the use of combination therapy aimed at inhibiting both nonspecific interleukins and cytokines that activate B-cells will be more effective for the treatment of JIA.
Collapse
Affiliation(s)
- Daria I. Kozlova
- Saint-Petersburg Clinical Hospital of the Russian Academy of Sciences, Saint-Petersburg 194017, Russia;
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (IEPhB RAS), Saint-Petersburg 194223, Russia; (A.V.R.); (V.V.K.)
| | - Arseny V. Rybakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (IEPhB RAS), Saint-Petersburg 194223, Russia; (A.V.R.); (V.V.K.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Saint-Petersburg 195251, Russia
| | - Karina A. Yureva
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (IEPhB RAS), Saint-Petersburg 194223, Russia; (A.V.R.); (V.V.K.)
- Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Vitaly V. Khizha
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (IEPhB RAS), Saint-Petersburg 194223, Russia; (A.V.R.); (V.V.K.)
| | - Lybov S. Sorokina
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg 194100, Russia; (L.S.S.); (M.M.K.)
| | - Mikhail M. Kostik
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg 194100, Russia; (L.S.S.); (M.M.K.)
| | - Alexandr B. Guslev
- Saint-Petersburg Clinical Hospital of the Russian Academy of Sciences, Saint-Petersburg 194017, Russia;
- Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| |
Collapse
|
70
|
Sheet S, Jang SS, Kim JH, Park W, Kim D. A transcriptomic analysis of skeletal muscle tissues reveals promising candidate genes and pathways accountable for different daily weight gain in Hanwoo cattle. Sci Rep 2024; 14:315. [PMID: 38172605 PMCID: PMC10764957 DOI: 10.1038/s41598-023-51037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Cattle traits like average daily weight gain (ADG) greatly impact profitability. Selecting based on ADG considering genetic variability can lead to economic and genetic advancements in cattle breeding. This study aimed to unravel genetic influences on ADG variation in Hanwoo cattle at the skeletal muscle transcriptomic level. RNA sequencing was conducted on longissimus dorsi (LD), semimembranosus (SB), and psoas major (PM) muscles of 14 steers assigned to same feed, grouped by low (≤ 0.71 kg) and high (≥ 0.77 kg) ADG. At P ≤ 0.05 and log2fold > 1.5, the distinct pattern of gene expression was identified with 184, 172, and 210 differentially expressed genes in LD, SB, and PM muscles, respectively. Tissue-specific responses to ADG variation were evident, with myogenesis and differentiation associated JAK-STAT signaling pathway and prolactin signaling pathways enriched in LD and SB muscles, while adipogenesis-related PPAR signaling pathways were enriched in PM muscle. Key hub genes (AXIN2, CDKN1A, MYC, PTGS2, FZD5, SPP1) were upregulated and functionally significant in muscle growth and differentiation. Notably, DPP6, CDKN1A, and FZD5 emerged as possible candidate genes linked to ADG variation. These findings enhance our understanding of genetic factors behind ADG variation in Hanwoo cattle, illuminating skeletal muscle mechanisms influencing ADG.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Sun Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, RDA, Pyeongchang, 25342, Republic of Korea
| | - Jae Hwan Kim
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| |
Collapse
|
71
|
Yang T, Liu J, Liu F, Lei J, Chen S, Ma Z, Ke P, Yang Q, Wen J, He Y, Duan J, Zeng X. Integrative analysis of disulfidptosis and immune microenvironment in hepatocellular carcinoma: a putative model and immunotherapeutic strategies. Front Immunol 2024; 14:1294677. [PMID: 38235128 PMCID: PMC10791859 DOI: 10.3389/fimmu.2023.1294677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a malignant tumor with a high rate of recurrence and m metastasis that does not respond well to current therapies and has a very poor prognosis. Disulfidptosis is a novel mode of cell death that has been analyzed as a novel therapeutic target for HCC cells. Methods This study integrated bulk ribonucleic acid (RNA) sequencing datasets, spatial transcriptomics (ST), and single-cell RNA sequencing to explore the landscape of disulfidptosis and the immune microenvironment of HCC cells. Results We developed a novel model to predict the prognosis of patients with HCC based on disulfidptosis. The model has good stability, applicability, and prognostic and immune response prediction abilities. N-myc downregulated gene1 (NDRG1) may contribute to poor prognosis by affecting macrophage differentiation, thus allowing HCC cells to evade the immune system. Conclusion Our study explores the disulfidptosis of HCC cells through multi-omics and establishes a new putative model that explores possible targets for HCC treatment.
Collapse
Affiliation(s)
- Ti Yang
- Department of Hepatobiliary-pancreatic&hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Junhao Liu
- Department of Hepatobiliary-pancreatic&hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Fang Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiashun Lei
- Department of Hepatobiliary-pancreatic&hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Siliang Chen
- Department of Interventional Radiology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zengxin Ma
- Department of Hepatobiliary-pancreatic&hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Peifeng Ke
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiaolan Yang
- Department of Hepatobiliary-pancreatic&hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Jianfan Wen
- Department of Hepatobiliary-pancreatic&hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Yifeng He
- Department of General Management, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Juan Duan
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiancheng Zeng
- Department of Hepatobiliary-pancreatic&hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
72
|
Jiang Z, Li W, Yu S, Wang X, Jiang H, Bai C, Li M, Chu F, Jiang J, Ma X. IL-22 relieves hepatic ischemia-reperfusion injury by inhibiting mitochondrial apoptosis based on the activation of STAT3. Int J Biochem Cell Biol 2024; 166:106503. [PMID: 38036287 DOI: 10.1016/j.biocel.2023.106503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Interleukin-22 (IL-22) has been proven to exhibit a protective role in hepatic ischemia-reperfusion injury (HIRI). This study aimed to explore the change of IL-22 and IL-22 receptor 1 (IL-22R1) axis in HIRI and its role in mitochondrial apoptosis associated with STAT3 activation. MATERIALS AND METHODS I/R mice were examined for the expression of IL-22, IL-22R1 and IL-22BP. The roles of IL-22 in hepatic histopathology and oxidative stress injuries (ALT, MDA and SOD) were determined. Oxidative stress damages of AML-12 cells were induced by H2O2, and were indicated by apoptosis, Ca2+ concentration, and mitochondrial function. The effects of IL-22 on p-STAT3Try705 were analyzed. RESULTS We found that the expression of IL-22, IL-22R1, and IL-22BP was elevated 24 h after I/R induction, while decreased 48 h after I/R induction. Furthermore, we also discovered that IL-22 rescued the morphological damages and dysfunction of hepatocytes induced by H2O2, which were antagonized by IL-22BP, an endogenous antagonist of IL-22. Additionally, increased levels of Ca2+ concentration, MDA, ROS, apoptosis and mitochondrial dysfunction were noticed in H2O2-treated hepatocytes. However, IL-22 ameliorated the effects of I/R or H2O2. The protective effects of IL-22 were reversed by AG490, a specific antagonist of STAT3. CONCLUSIONS In conclusion, our results indicated that IL-22 inhibited I/R-induced oxidative stress injury, Ca2+ overload, and mitochondrial apoptosis via STAT3 activation.
Collapse
Affiliation(s)
- Zhengchen Jiang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China; Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Wanzhen Li
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Shuna Yu
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongxin Jiang
- Morphology Lab, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Chen Bai
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Ming Li
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Fangfang Chu
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Jiying Jiang
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China.
| | - Xiaomin Ma
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China.
| |
Collapse
|
73
|
Anders HJ, Andrassy J, Lichtnekert J. Regulators of necroinflammation in acute kidney injury. Kidney Int 2024; 105:22-25. [PMID: 38182296 DOI: 10.1016/j.kint.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/07/2024]
Abstract
Interleukin (IL)-22 is unique among the ILs as it elicits direct effects on kidney epithelia and regulates cell survival in a context-dependent manner. Studies published in Kidney International and other journals demonstrate opposing roles of IL-22 (e.g., in models of acute kidney injury). In the early necroinflammation phase of acute kidney injury, IL-22 promotes tubular cell death, whereas it enhances the proliferation and regeneration of epithelial barrier function in the healing phase of injured tubules.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Renal Division, Department of Medicine IV, University Hospital of the Ludwig Maximilian University, Munich, Germany.
| | - Joachim Andrassy
- Division of General, Visceral, Vascular and Transplant Surgery, Hospital of Ludwig Maximilians University, Munich, Germany
| | - Julia Lichtnekert
- Renal Division, Department of Medicine IV, University Hospital of the Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
74
|
Deng H, Li H, Liu Z, Shen N, Dong N, Deng C, Liu F. Pro-osteogenic role of interleukin-22 in calcific aortic valve disease. Atherosclerosis 2024; 388:117424. [PMID: 38104486 DOI: 10.1016/j.atherosclerosis.2023.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND AND AIMS Although calcific aortic valve disease (CAVD) is a common valvular disease among elderly populations and its incidence has markedly increased in recent decades, the pathogenesis of CAVD remains unclear. In this study, we explored the potential role of interleukin (IL)-22 and the underlying molecular mechanism in CAVD. METHODS AND RESULTS Our results showed that IL-22 was upregulated in calcific aortic valves from CAVD patients, and its main sources were CD3+ T cells and CD68+ macrophages. Human aortic valve interstitial cells (VICs) expressed the IL-22-specific receptor IL-22R1, and IL-22R1 expression also was elevated in calcified valves. Treatment of cultured human VICs with recombinant human IL-22 resulted in markedly increased expression of osteogenic proteins Runt-related transcription factor 2 (RUNX2) and alkaline phosphatase (ALP), as well as increased matrix calcium deposition. Moreover, siRNA silencing of IL-22R1 blocked the pro-osteogenic effect of IL-22 in VICs. In IL-22-treated VICs, we also observed increased phosphorylation of JAK3 and STAT3 and nuclear translocation of STAT3. Pretreatment with a specific JAK3 inhibitor, WHIP-154, or siRNA knockout of STAT3 effectively mitigated the IL-22-induced osteoblastic trans-differentiation of human VICs. CONCLUSIONS Together, these data indicate that IL-22 promotes osteogenic differentiation of VICs by activating JAK3/STAT3 signaling. Based on our results demonstrating a pro-osteogenic role of IL-22 in human aortic valves, pharmacological inhibition of IL-22 signaling may represent a potential strategy for alleviating CAVD.
Collapse
Affiliation(s)
- Huifang Deng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Huadong Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Department of Cardiovascular Surgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Na Shen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Cheng Deng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Fayuan Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
75
|
Marzoog BA. Cytokines and Regulating Epithelial Cell Division. Curr Drug Targets 2024; 25:190-200. [PMID: 38213162 DOI: 10.2174/0113894501279979240101051345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Physiologically, cytokines play an extremely important role in maintaining cellular and subcellular homeostasis, as they interact almost with every cell in the organism. Therefore, cytokines play a significantly critical role in the field of pathogenic pharmacological therapy of different types of pathologies. Cytokine is a large family containing many subfamilies and can be evaluated into groups according to their action on epithelial cell proliferation; stimulatory include transforming growth factor-α (TGF-α), Interlukine-22 (IL-22), IL-13, IL-6, IL-1RA and IL-17 and inhibitory include IL-1α, interferon type I (IFN type I), and TGF-β. The balance between stimulatory and inhibitory cytokines is essential for maintaining normal epithelial cell turnover and tissue homeostasis. Dysregulation of cytokine production can contribute to various pathological conditions, including inflammatory disorders, tissue damage, and cancer. Several cytokines have shown the ability to affect programmed cell death (apoptosis) and the capability to suppress non-purpose cell proliferation. Clinically, understanding the role of cytokines' role in epithelial tissue is crucial for evaluating a novel therapeutic target that can be of use as a new tactic in the management of carcinomas and tissue healing capacity. The review provides a comprehensive and up-to-date synthesis of current knowledge regarding the multifaceted effects of cytokines on epithelial cell proliferation, with a particular emphasis on the intestinal epithelium. Also, the paper will highlight the diverse signaling pathways activated by cytokines and their downstream consequences on epithelial cell division. It will also explore the potential therapeutic implications of targeting cytokine- epithelial cell interactions in the context of various diseases.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
76
|
Wu C, Jiang ML, Pang T, Zhang CJ. T Cell Subsets and Immune Homeostasis. Methods Mol Biol 2024; 2782:39-63. [PMID: 38622391 DOI: 10.1007/978-1-0716-3754-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
T cells are a heterogeneous group of cells that can be classified into different subtypes according to different classification methods. The body's immune system has a highly complex and effective regulatory network that allows for the relative stability of immune system function. Maintaining proper T cell homeostasis is essential for promoting protective immunity and limiting autoimmunity and tumor formation. Among the T cell family members, more and more T cell subsets have gradually been characterized. In this chapter, we summarize the functions of some key T cell subsets and their impact on immune homeostasis.
Collapse
Affiliation(s)
- Chuyu Wu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Mei-Ling Jiang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Cun-Jin Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
77
|
Huang J, Liu B, Liu Y, You W, Zhao P, Liu Y, Wang K, Lai X, Xu B, Cao J. Progranulin protects against Clostridioides difficile infection by enhancing IL-22 production. Gut Microbes 2024; 16:2409220. [PMID: 39349385 PMCID: PMC11444516 DOI: 10.1080/19490976.2024.2409220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Enhanced mortality, relapse rates, and increased prevalence of Clostridioides difficile infection (CDI) emphasize the need for better therapies and management approaches. Modulating host immune response to ameliorate CDI-associated immunopathology may provide new advantages to currently inadequate antibiotic therapies. Here, we identified progranulin (PGRN) as an important immune target upregulated in response to CDI. PGRN-deficient mice displayed dramatically higher mortality and aggravated epithelial barrier disruption compared with wild type (WT) mice after CDI despite equivalent levels of bacterial burden or toxin in the large intestine. Mechanistically, PGRN protection was mediated by IL-22 production from CD4+ T helper cells, as demonstrated by a decrease in colonic IL-22-producing CD4+ T helper cells in the intestine of PGRN-deficient mice upon CDI and a boost of IL-22-producing CD4+ T helper cells activated by PGRN ex vivo. Clinical evidence suggests that CDI patients had significantly higher serum levels of PGRN compared with healthy controls, which was significantly and positively correlated with IL-22. Our findings thus indicate a critical role for PGRN-promoted CD4+ T cell IL-22 production in shaping gut immunity and reestablishing the intestinal barrier during CDI. As an alternative to pathogen-targeted therapy, this study may provide a new host-directed therapeutic strategy to attenuate severe, refractory CDI.
Collapse
Affiliation(s)
- Jun Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bichen Liu
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yi Liu
- Department of Surgery, School of Medicine, Stanford University, Stanford, USA
| | - Wenxian You
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kehan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofei Lai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
78
|
Zhou H, Xu JL, Huang SX, He Y, He XW, Lu S, Yao B. Hepatic vagotomy blunts liver regeneration after hepatectomy by downregulating the expression of interleukin-22. World J Gastrointest Surg 2023; 15:2866-2878. [PMID: 38222006 PMCID: PMC10784834 DOI: 10.4240/wjgs.v15.i12.2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Rapid regeneration of the residual liver is one of the key determinants of successful partial hepatectomy (PHx). At present, there is a lack of recognized safe, effective, and stable drugs to promote liver regeneration. It has been reported that vagus nerve signaling is beneficial to liver regeneration, but the potential mechanism at play here is not fully understood. AIM To explore the effect and mechanism of hepatic vagus nerve in liver regeneration after PHx. METHODS A PHx plus hepatic vagotomy (Hv) mouse model was established. The effect of Hv on liver regeneration after PHx was determined by comparing the liver regeneration levels of the PHx-Hv group and the PHx-sham group mice. In order to further investigate the role of interleukin (IL)-22 in liver regeneration inhibition mediated by Hv, the levels of IL-22 in the PHx-Hv group and the PHx-sham group was measured. The degree of liver injury in the PHx-Hv group and the PHx-sham group mice was detected to determine the role of the hepatic vagus nerve in liver injury after PHx. RESULTS Compared to control-group mice, Hv mice showed severe liver injury and weakened liver regeneration after PHx. Further research found that Hv downregulates the production of IL-22 induced by PHx and blocks activation of the signal transducer and activator of transcription 3 (STAT3) pathway then reduces the expression of various mitogenic and anti-apoptotic proteins after PHx. Exogenous IL-22 reverses the inhibition of liver regeneration induced by Hv and alleviates liver injury, while treatment with IL-22 binding protein (an inhibitor of IL-22 signaling) reduce the concentration of IL-22 induced by PHx, inhibits the activation of the STAT3 signaling pathway in the liver after PHx, thereby hindering liver regeneration and aggravating liver injury in PHx-sham mice. CONCLUSION Hv attenuates liver regeneration after hepatectomy, and the mechanism may be related to the fact that Hv downregulates the production of IL-22, then blocks activation of the STAT3 pathway.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Pharmacy, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Ju-Ling Xu
- Department of Medicine, Medical School of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - San-Xiong Huang
- Department of Hepatobiliary Surgery, The First People’s Hospital of Huzhou, Huzhou 313000, Zhejiang Province, China
| | - Ying He
- Zhejiang Provincial Key Laboratory of Media Biology and Pathogenic Control, Central Laboratory, First Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Xiao-Wei He
- Department of Pharmacy, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Sheng Lu
- Department of Pharmacy, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Bin Yao
- Department of Pharmacy, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
79
|
Smiriglia A, Lorito N, Serra M, Perra A, Morandi A, Kowalik MA. Sex difference in liver diseases: How preclinical models help to dissect the sex-related mechanisms sustaining NAFLD and hepatocellular carcinoma. iScience 2023; 26:108363. [PMID: 38034347 PMCID: PMC10682354 DOI: 10.1016/j.isci.2023.108363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Only a few preclinical findings are confirmed in the clinic, posing a critical issue for clinical development. Therefore, identifying the best preclinical models can help to dissect molecular and mechanistic insights into liver disease pathogenesis while being clinically relevant. In this context, the sex relevance of most preclinical models has been only partially considered. This is particularly significant in NAFLD and HCC, which have a higher prevalence in men when compared to pre-menopause women but not to those in post-menopausal status, suggesting a role for sex hormones in the pathogenesis of the diseases. This review gathers the sex-relevant findings and the available preclinical models focusing on both in vitro and in vivo studies and discusses the potential implications and perspectives of introducing the sex effect in the selection of the best preclinical model. This is a critical aspect that would help to tailor personalized therapies based on sex.
Collapse
Affiliation(s)
- Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marina Serra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
80
|
Vebr M, Pomahačová R, Sýkora J, Schwarz J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Pathogenesis. Biomedicines 2023; 11:3229. [PMID: 38137450 PMCID: PMC10740682 DOI: 10.3390/biomedicines11123229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a lifelong inflammatory immune mediated disorder, encompassing Crohn's disease (CD) and ulcerative colitis (UC); however, the cause and specific pathogenesis of IBD is yet incompletely understood. Multiple cytokines produced by different immune cell types results in complex functional networks that constitute a highly regulated messaging network of signaling pathways. Applying biological mechanisms underlying IBD at the single omic level, technologies and genetic engineering enable the quantification of the pattern of released cytokines and new insights into the cytokine landscape of IBD. We focus on the existing literature dealing with the biology of pro- or anti-inflammatory cytokines and interactions that facilitate cell-based modulation of the immune system for IBD inflammation. We summarize the main roles of substantial cytokines in IBD related to homeostatic tissue functions and the remodeling of cytokine networks in IBD, which may be specifically valuable for successful cytokine-targeted therapies via marketed products. Cytokines and their receptors are validated targets for multiple therapeutic areas, we review the current strategies for therapeutic intervention and developing cytokine-targeted therapies. New biologics have shown efficacy in the last few decades for the management of IBD; unfortunately, many patients are nonresponsive or develop therapy resistance over time, creating a need for novel therapeutics. Thus, the treatment options for IBD beyond the immune-modifying anti-TNF agents or combination therapies are expanding rapidly. Further studies are needed to fully understand the immune response, networks of cytokines, and the direct pathogenetic relevance regarding individually tailored, safe and efficient targeted-biotherapeutics.
Collapse
Affiliation(s)
- Marek Vebr
- Departments of Pediatrics, Faculty Hospital, Faculty of Medicine in Pilsen, Charles University of Prague, 323 00 Pilsen, Czech Republic; (R.P.); (J.S.); (J.S.)
| | | | | | | |
Collapse
|
81
|
Kobaek-Larsen M, Deding U, Al-Najami I, Clausen BH, Christensen LP. Carrot Juice Intake Affects the Cytokine and Chemokine Response in Human Blood after Ex Vivo Lipopolysaccharide-Induced Inflammation. Nutrients 2023; 15:5002. [PMID: 38068860 PMCID: PMC10707883 DOI: 10.3390/nu15235002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
In vitro and animal studies have shown that carrot juice containing bioactive natural products, such as falcarinol (FaOH) and falcarindiol (FaDOH), can affect inflammation. The present study was designed to test whether oral intake of carrot juice containing the bioactive acetylenic oxylipins FaOH and FaDOH affects mediators of acute inflammation or the innate immune response in human blood. Carrot juice (500 mL) was administered orally to healthy volunteers, and blood samples were drawn before and 1 h after juice intake. Next, the blood samples were split in two, and one sample was stimulated ex vivo with lipopolysaccharide (LPS) and incubated at 37 °C for 24 h. The concentrations of 44 inflammatory cytokines and chemokines were examined using multiplex electrochemiluminescence analysis. In blood samples not stimulated with LPS, a significant increase in IL-15 was measured 1 h after carrot juice intake. Cytokines like IFN-ɣ, IL-12/IL-23(p40), IL-23, IL-17A, IL-17B, IL-17D, and IL-22 were significantly increased in LPS-stimulated blood samples after carrot juice intake. The upregulation of the immunostimulating cytokines belonging to the IL-23/IL-17 Th17 axis suggests that carrot juice intake could benefit diseases where inflammation plays a role, like in the early stages of diabetes or cancers.
Collapse
Affiliation(s)
- Morten Kobaek-Larsen
- Department of Surgery, Odense University Hospital, DK-5000 Odense C, Denmark; (M.K.-L.); (U.D.); (I.A.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ulrik Deding
- Department of Surgery, Odense University Hospital, DK-5000 Odense C, Denmark; (M.K.-L.); (U.D.); (I.A.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Issam Al-Najami
- Department of Surgery, Odense University Hospital, DK-5000 Odense C, Denmark; (M.K.-L.); (U.D.); (I.A.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark;
| | - Lars Porskjær Christensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
82
|
Xu Y, Zhao Z, Geng Z, Zhou H, Yang C, Wang Y, Kuerban B, Xiao Y, Luo G. Enhancement of recombinant human interleukin-22 production by fusing with human serum albumin and supplementing N-acetylcysteine in Pichia Pastoris. Protein Expr Purif 2023; 212:106360. [PMID: 37652392 DOI: 10.1016/j.pep.2023.106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Interleukin-22 (IL-22) plays an important role in the treatment of organ failure, which can induce anti-apoptotic and proliferative signaling pathways; Nevertheless, the practical utilization of IL-22 is hindered by the restricted efficacy of its production. Pichia pastoris presents a viable platform for both industrial and pharmaceutical applications. In this study, we successfully generated a fusion protein consisting of truncated human serum albumin and human IL-22 (HSA-hIL-22) using P. pastoris, and examined the impact of antioxidants on HSA-hIL-22 production. We have achieved the production of HSA-hIL-22 in the culture medium at a yield of approximately 2.25 mg/ml. Moreover, 0-40 mM ascorbic acid supplementation did not significantly affect HSA-hIL-22 production or the growth rate of the recombinant strain. However, 80 mM ascorbic acid treatment had a detrimental effect on the expression of HSA-hIL-22. In addition, 5-10 mM N-acetyl-l-cysteine (NAC) resulted in an increase of HSA-hIL-22 production, accompanied by a reduction in the growth rate of the recombinant strain. Conversely, 20-80 mM NAC supplementation inhibited the growth of the recombinant strains and reduced intact HSA-hIL-22 production. However, neither NAC nor ascorbic acid exhibited any effect on superoxide dismutase (SOD) and malondialdehyde (MDA) levels, except that NAC increased GSH content. Furthermore, our findings indicate that recombinant HSA-hIL-22, which demonstrated the ability to stimulate the proliferation of HepG2 cells, possesses bioactivity. In addition, NAC did not affect HSA-hIL-22 bioactivity. In conclusion, our study demonstrates that NAC supplementation can enhance the secretion of functional HSA-hIL-22 proteins produced in P. pastoris without compromising their activity.
Collapse
Affiliation(s)
- Yingqing Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Ziming Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Zijian Geng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Hongwei Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Chengxi Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Yixing Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Buayisham Kuerban
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Yimeng Xiao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Gang Luo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| |
Collapse
|
83
|
Liu L, Li X, Chen Y, Li YZ, Liu Z, Duan Y, Chen Y. Interleukin-22 promotes proliferation and reverses LPS-induced apoptosis and steroidogenesis attenuation in human ovarian granulosa cells: implications for polycystic ovary syndrome pathogenesis. J Matern Fetal Neonatal Med 2023; 36:2253347. [PMID: 37661176 DOI: 10.1080/14767058.2023.2253347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE Interleukin 22 (IL-22) plays a role in inflammatory diseases. However, whether IL-22 affects the function of ovarian granulosa cells (GCs) and its relationship with Polycystic Ovary Syndrome (PCOS)remains unclear. METHODS We investigated the level of IL-22 in human follicular fluid using ELISA. The expression and localization of the IL-22 receptor 1 (IL-22R1) in GCs were investigated by RT-PCR and immunofluorescence staining, respectively. The proliferation of KGN cells (human GCs line) was assessed by CCK-8 assay and EdU assay after treatment with recombinant human IL-22 (rhIL-22) and lipopolysaccharide (LPS). Apoptosis was assessed using flow cytometry. Apoptotic proteins and steroidogenic genes were detected by western blotting. RESULTS ELISA's results showed that compared with the control group, PCOS patients showed lower expression of IL-22 in follicular fluid. Immunofluorescence showed that IL-22R1 is expressed and localized in human granulosa cell membranes. IL-22 promoted cell proliferation and reversed LPS-induced inhibition of cell proliferation. IL-22 alone did not affect apoptotic or steroidogenic protein expression, however, it reversed LPS-induced apoptosis via downregulation of Bcl-2, upregulation of Bax and cleaved caspase-3, and restoration of LPS-downregulated StAR, CYP11A1, and CYP19A1 expression. Western blotting confirmed that IL-22 activated the JAK2/STAT3 signaling. CONCLUSION IL-22 promotes cell proliferation, inhibits apoptosis, and regulates KGN cell steroidogenesis confronted with LPS, and decreased IL-22 may be involved in the development of PCOS.
Collapse
Affiliation(s)
- Linhong Liu
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Li
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Zhe Li
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhen Liu
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhan Duan
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
84
|
Bessaad M, Habel A, Hadj Ahmed M, Xu W, Stayoussef M, Bouaziz H, Hachiche M, Mezlini A, Larbi A, Yaacoubi-Loueslati B. Assessing serum cytokine profiles in inflammatory breast cancer patients using Luminex® technology. Cytokine 2023; 172:156409. [PMID: 37918053 DOI: 10.1016/j.cyto.2023.156409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Inflammatory breast cancer (IBC), accounts for the majority of deaths associated with breast tumors. Because this form is aggressive from its appearance and has a strong metastatic potential. The majority of patients are not diagnosed until late stages, highlighting the need for the development of novel diagnostic biomarkers. Immune mediators may affect IBC progression and metastasis installation. AIM OF THE STUDY Analysis of serum proteins to identify a panel of prognostic biomarkers for IBC. PATIENTS AND METHODS Serum levels of 65 analytes were determined in IBC and Non-IBC patients with the ProcartaPlex Human Immune Monitoring 65-Plex Panel. RESULTS Fifteen analytes: 5 cytokines (IL-8, IL-16, IL-21, IL-22 and MIF), 7 chemokines (Eotaxin, eotaxin-3, Fractalkine, IP-10, MIP-1α, MIP-1β and SDF-1α), One growth factors (FGF-2) and 2 soluble receptors (TNFRII and Tweak); were significantly differentially expressed between the two groups. ROC curves showed that twelve of them (IL-8, IL-16, IL-21, IL-22, MIF, MIP-1α, MIP-1β, SDF-1α, TNFRII, FGF-2, Eotaxin-3, and Fractalkine) had AUC values greater than 0.70 and thus had potential clinical utility. Moreover, seven cytokines: IL-8, IL-16, MIF, Eotaxin-3, MIP-1α, MIP-1β, and CD-30 are positively associated with patients who developed distant metastasis. Ten analytes: Eotaxin-3, Fractalkine, IL-16, IL-1α, IL-22, IL-8, MIF, MIP-1α, MIP-1β, and TNFRII are positively associated with patients who had Lymph-Nodes invasion. CONCLUSION This study has uncovered a set of 8 analytes (Eotaxin-3, Fractalkine, IL-16, IL-8, IL-22, MIF, MIP-1α, MIP-1β) that can be used as biomarkers of IBC, and can be utilized for early detection of IBC, preventing metastasis and lymph-Nodes invasion.
Collapse
Affiliation(s)
- Maryem Bessaad
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia
| | - Azza Habel
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia
| | - Mariem Hadj Ahmed
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia
| | - Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Mouna Stayoussef
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia
| | - Hanen Bouaziz
- Salah Azaiez Oncology Institute, Avenue 9 April, 1006, Bab Saadoun, Tunis, Tunisia
| | - Monia Hachiche
- Salah Azaiez Oncology Institute, Avenue 9 April, 1006, Bab Saadoun, Tunis, Tunisia
| | - Amel Mezlini
- Salah Azaiez Oncology Institute, Avenue 9 April, 1006, Bab Saadoun, Tunis, Tunisia
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Besma Yaacoubi-Loueslati
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia.
| |
Collapse
|
85
|
Zhang J, Wang W, Liang S, Zhou X, Rekha RS, Gudmundsson GH, Bergman P, Ai Q, Mai K, Wan M. Butyrate induces STAT3/HIF-1α/IL-22 signaling via GPCR and HDAC3 inhibition to activate autophagy in head kidney macrophages from turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109214. [PMID: 37977544 DOI: 10.1016/j.fsi.2023.109214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/28/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
As one of short-chain fatty acids, butyrate is an important metabolite of dietary fiber by the fermentation of gut commensals. Our recent study uncovered that butyrate promoted IL-22 production in fish macrophages to augment the host defense. In the current study, we further explored the underlying signaling pathways in butyrate-induced IL-22 production in fish macrophages. Our results showed that butyrate augmented the IL-22 expression in head kidney macrophages (HKMs) of turbot through binding to G-protein receptor 41 (GPR41) and GPR43. Moreover, histone deacetylase 3 (HDAC3) inhibition apparently up-regulated the butyrate-enhanced IL-22 generation, indicating HDACs were engaged in butyrate-regulated IL-22 secretion. In addition, butyrate triggered the STAT3/HIF-1α signaling to elevate the IL-22 expression in HKMs. Importantly, the evidence in vitro and in vivo was provided that butyrate activated autophagy in fish macrophages via IL-22 signaling, which contributing to the elimination of invading bacteria. In conclusion, we clarified in the current study that butyrate induced STAT3/HIF-1α/IL-22 signaling pathway via GPCR binding and HDAC3 inhibition in fish macrophages to activate autophagy that was involved in pathogen clearance in fish macrophages.
Collapse
Affiliation(s)
- Jinjin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Wentao Wang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Shufei Liang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Xueqi Zhou
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Rokeya Sultana Rekha
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Gudmundur H Gudmundsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China.
| |
Collapse
|
86
|
Wang K, Zhou M, Si H, Ma J. Gut microbiota-mediated IL-22 alleviates metabolic inflammation. Life Sci 2023; 334:122229. [PMID: 37922980 DOI: 10.1016/j.lfs.2023.122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Low-grade chronic inflammation, also known as metabolic inflammation, promotes the development of metabolic diseases. Increasing evidence suggests that changes in gut microbes and metabolites disrupt the integrity of the gut barrier and exert significant effects on the metabolism of various tissues, including the liver and adipose tissue, thereby contributing to metabolic inflammation. We observed that IL-22 is a key signaling molecule that serves as a bridge between intestinal microbes and the host, effectively alleviating metabolic inflammation by modulating the host immunomodulatory network. Here, we focused on elucidating the underlying mechanisms by which the gut microbiota and their metabolites reduce inflammation via IL-22, highlighting the favorable impact of IL-22 on metabolic inflammation. Furthermore, we discuss the potential of IL-22 as a therapeutic target for the management of metabolic inflammation and related diseases.
Collapse
Affiliation(s)
- Kaijun Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China; Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Jie Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
87
|
Baker P, Huang C, Radi R, Moll SB, Jules E, Arbiser JL. Skin Barrier Function: The Interplay of Physical, Chemical, and Immunologic Properties. Cells 2023; 12:2745. [PMID: 38067173 PMCID: PMC10706187 DOI: 10.3390/cells12232745] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
An intact barrier function of the skin is important in maintaining skin health. The regulation of the skin barrier depends on a multitude of molecular and immunological signaling pathways. By examining the regulation of a healthy skin barrier, including maintenance of the acid mantle and appropriate levels of ceramides, dermatologists can better formulate solutions to address issues that are related to a disrupted skin barrier. Conversely, by understanding specific skin barrier disruptions that are associated with specific conditions, such as atopic dermatitis or psoriasis, the development of new compounds could target signaling pathways to provide more effective relief for patients. We aim to review key factors mediating skin barrier regulation and inflammation, including skin acidity, interleukins, nuclear factor kappa B, and sirtuin 3. Furthermore, we will discuss current and emerging treatment options for skin barrier conditions.
Collapse
Affiliation(s)
- Paola Baker
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Christina Huang
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rakan Radi
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Samara B. Moll
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Emmanuela Jules
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Jack L. Arbiser
- Metroderm/United Derm Partners, 875 Johnson Ferry Road, Atlanta, GA 30342, USA
| |
Collapse
|
88
|
Shao Y, Wang D, Zhu Y, Xiao Z, Jin T, Peng L, Shen Y, Tang H. Molecular mechanisms of pruritus in prurigo nodularis. Front Immunol 2023; 14:1301817. [PMID: 38077377 PMCID: PMC10701428 DOI: 10.3389/fimmu.2023.1301817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Pruritus is the most common symptom of dermatological disorders, and prurigo nodularis (PN) is notorious for intractable and severe itching. Conventional treatments often yield disappointing outcomes, significantly affecting patients' quality of life and psychological well-being. The pathogenesis of PN is associated with a self-sustained "itch-scratch" vicious cycle. Recent investigations of PN-related itch have partially revealed the intricate interactions within the cutaneous neuroimmune network; however, the underlying mechanism remains undetermined. Itch mediators play a key role in pruritus amplification in PN and understanding their action mechanism will undoubtedly lead to the development of novel targeted antipruritic agents. In this review, we describe a series of pruritogens and receptors involved in mediating itching in PN, including cytokines, neuropeptides, extracellular matrix proteins, vasculogenic substances, ion channels, and intracellular signaling pathways. Moreover, we provide a prospective outlook on potential therapies based on existing findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
89
|
Shen J, Wang Y, Zheng F, Cao S, Lan Q, Xu K, Pan B. Aryl hydrocarbon receptor regulates IL-22 receptor expression on thymic epithelial cell and accelerates thymus regeneration. NPJ Regen Med 2023; 8:64. [PMID: 37938575 PMCID: PMC10632505 DOI: 10.1038/s41536-023-00339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
Improving regeneration of damaged thymus is important for reconstituting T-cell immunity. Interleukin-22 (IL-22) was proved to improve thymus regeneration through recovering thymic epithelial cells (TECs). The IL-22 receptor IL-22RA1 is crucial for mediating IL-22 functions. Mechanism that regulates IL-22RA1 expression is unknown. Through using TECs-conditional knockout mice, we found aryl hydrocarbon receptor (AHR) is important for thymus regeneration, because Foxn1-cre-mediated AHR knockout (AhrKO) significantly blocks recovery of thymus cells. Giving mice the AHR inhibitor CH-223191 or the AHR agonist FICZ blocks or accelerates thymus regeneration, respectively. AhrKO-mediated blockade of thymus regeneration could not be rescued by giving exogenous IL-22. Mechanistically, AhrKO mice shows decreased IL-22RA1 expression. In the murine TECs cell line mTEC1 cells, targeting AHR shows an impact on IL-22RA1 mRNA levels. Using chromatin immunoprecipitation and luciferase reporter assays, we find AHR co-operates with STAT3, binds the promotor region of IL-22RA1 gene and transcriptionally increases IL-22RA1 expression in mTEC1 cells. Foxn1-cre-mediated IL-22RA1 knockout (Il22ra1KO) blocks thymus regeneration after irradiation. Furthermore, targeting AHR or IL-22RA1 has significant impacts on severity of murine chronic graft-versus-host disease (cGVHD), which is an autoimmune-like complication following allogeneic hematopoietic cell transplantation. Giving FICZ decreases cGVHD, whereas Il22ra1KO exacerbates cGVHD. The impacts on cGVHD are associated with thymus regeneration and T-cell immune reconstitution. In conclusion, we report an unrecognized function of TECs-expressed AHR in thymus regeneration and AHR transcriptionally regulates IL-22RA1 expression, which have implications for improving thymus regeneration and controlling cGVHD.
Collapse
Affiliation(s)
- Jingyi Shen
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Ying Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Fei Zheng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Shuo Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Qiu Lan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
90
|
Luo Y, Liu C, Luo Y, Zhang X, Li J, Hu C, Yang S. Thiostrepton alleviates experimental colitis by promoting RORγt ubiquitination and modulating dysbiosis. Cell Mol Immunol 2023; 20:1352-1366. [PMID: 37752225 PMCID: PMC10616104 DOI: 10.1038/s41423-023-01085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Thiostrepton (TST) is a natural antibiotic with pleiotropic properties. This study aimed to elucidate the therapeutic effect of TST on experimental colitis and identify its targets. The effect of TST on colon inflammation was evaluated in a dextran sulfate sodium (DSS)-induced colitis model and a T-cell transfer colitis model. The therapeutic targets of TST were investigated by cytokine profiling, immunophenotyping and biochemical approaches. The effect of TST on the gut microbiota and its contribution to colitis were evaluated in mice with DSS-induced colitis that were subjected to gut microbiota depletion and fecal microbiota transplantation (FMT). Alterations in the gut microbiota caused by TST were determined by 16S rDNA and metagenomic sequencing. Here, we showed that TST treatment significantly ameliorated colitis in the DSS-induced and T-cell transfer models. Specifically, TST targeted the retinoic acid-related orphan nuclear receptor RORγt to reduce the production of IL-17A by γδ T cells, type 3 innate lymphoid cells (ILC3s) and Th17 cells in mice with DSS-induced colitis. Similarly, TST selectively prevented the development of Th17 cells in the T-cell transfer colitis model and the differentiation of naïve CD4+ T cells into Th17 cells in vitro. Mechanistically, TST induced the ubiquitination and degradation of RORγt by promoting the binding of Itch to RORγt. Moreover, TST also reversed dysbiosis to control colonic inflammation. Taken together, these results from our study describe the previously unexplored role of TST in alleviating colonic inflammation by reducing IL-17A production and modulating dysbiosis, suggesting that TST is a promising candidate drug for the treatment of IBD.
Collapse
Affiliation(s)
- Ya Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi, 563006, China
| | - Cheng Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yuan Luo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianglian Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jing Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Changjiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
91
|
Jutel M, Agache I, Zemelka-Wiacek M, Akdis M, Chivato T, Del Giacco S, Gajdanowicz P, Gracia IE, Klimek L, Lauerma A, Ollert M, O'Mahony L, Schwarze J, Shamji MH, Skypala I, Palomares O, Pfaar O, Torres MJ, Bernstein JA, Cruz AA, Durham SR, Galli SJ, Gómez RM, Guttman-Yassky E, Haahtela T, Holgate ST, Izuhara K, Kabashima K, Larenas-Linnemann DE, von Mutius E, Nadeau KC, Pawankar R, Platts-Mills TAE, Sicherer SH, Park HS, Vieths S, Wong G, Zhang L, Bilò MB, Akdis CA. Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper. Allergy 2023; 78:2851-2874. [PMID: 37814905 DOI: 10.1111/all.15889] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
The exponential growth of precision diagnostic tools, including omic technologies, molecular diagnostics, sophisticated genetic and epigenetic editing, imaging and nano-technologies and patient access to extensive health care, has resulted in vast amounts of unbiased data enabling in-depth disease characterization. New disease endotypes have been identified for various allergic diseases and triggered the gradual transition from a disease description focused on symptoms to identifying biomarkers and intricate pathogenetic and metabolic pathways. Consequently, the current disease taxonomy has to be revised for better categorization. This European Academy of Allergy and Clinical Immunology Position Paper responds to this challenge and provides a modern nomenclature for allergic diseases, which respects the earlier classifications back to the early 20th century. Hypersensitivity reactions originally described by Gell and Coombs have been extended into nine different types comprising antibody- (I-III), cell-mediated (IVa-c), tissue-driven mechanisms (V-VI) and direct response to chemicals (VII). Types I-III are linked to classical and newly described clinical conditions. Type IVa-c are specified and detailed according to the current understanding of T1, T2 and T3 responses. Types V-VI involve epithelial barrier defects and metabolic-induced immune dysregulation, while direct cellular and inflammatory responses to chemicals are covered in type VII. It is notable that several combinations of mixed types may appear in the clinical setting. The clinical relevance of the current approach for allergy practice will be conferred in another article that will follow this year, aiming at showing the relevance in clinical practice where various endotypes can overlap and evolve over the lifetime.
Collapse
Affiliation(s)
- Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Tomás Chivato
- School of Medicine, University CEU San Pablo, Madrid, Spain
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Allergy and Clinical Immunology, University Hospital "Duilio Casula", Monserrato, Italy
| | - Pawel Gajdanowicz
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Ibon Eguiluz Gracia
- Allergy Unit, UMA-Regional University Hospital of Malaga, IBIMA-BIONAND, Malaga, Spain
| | - Ludger Klimek
- Department of Otolaryngology, Head and Neck Surgery, Universitätsmedizin Mainz, Mainz, Germany
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense Research Center for Anaphylaxis (ORCA), Odense, Denmark
| | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, National University of Ireland, Cork, Ireland
| | - Jürgen Schwarze
- Child Life and Health, Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, London, UK
| | - Isabel Skypala
- Department of Inflammation and Repair, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Part of Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Maria Jose Torres
- Allergy Unit, UMA-Regional University Hospital of Malaga, IBIMA-BIONAND, Malaga, Spain
| | - Jonathan A Bernstein
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alvaro A Cruz
- Fundaçao ProAR, Federal University of Bahia and GARD/WHO Planning Group, Salvador, Bahia, Brazil
| | - Stephen R Durham
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Stephen J Galli
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Emma Guttman-Yassky
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Stephen T Holgate
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Kenji Izuhara
- Department of Biomolecular Sciences, Division of Medical Biochemistry, Saga Medical School, Saga, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Désirée E Larenas-Linnemann
- Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, Mexico City, Mexico
| | - Erica von Mutius
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Centre Munich, Munich, Germany
- German Center for Lung Research (DZL), Giesen, Germany
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Tomas A E Platts-Mills
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott H Sicherer
- Division of Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | | | - Gary Wong
- Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - M Beatrice Bilò
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona and Allergy Unit, Department of Internal Medicine, University Hospital of Marche, Ancona, Italy
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
92
|
Ke Y, Li BZ, Nguyen K, Wang D, Wang S, Young CD, Wang XJ. IL-22RA2 Is a SMAD7 Target Mediating the Alleviation of Dermatitis and Psoriatic Phenotypes in Mice. J Invest Dermatol 2023; 143:2243-2254.e10. [PMID: 37211203 PMCID: PMC11127768 DOI: 10.1016/j.jid.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
Long-term management of inflammatory skin diseases is challenging because of side effects from repeated use of systemic treatments or topical corticosteroids. This study sought to identify the mechanisms and developmental therapeutics for these diseases using genetic models and pharmacological approaches. We found that mice overexpressing SMAD7 in keratinocytes but not mice overexpressing the N-terminal domain of SMAD7 (i.e., N-SMAD7) were resistant to imiquimod-induced T helper 1/17- and T helper 2-type inflammation. We generated a Tat-PYC-SMAD7 (truncated SMAD7 protein encompassing C-terminal SMAD7 and PY motif fused with cell-penetrating Tat peptide). Topically applied Tat-PYC-SMAD7 to inflamed skin entered cells upon contact and attenuated imiquimod-, 2,4-dinitrofluorobenzene-, and tape-stripping-induced inflammation. RNA-sequencing analyses of mouse skin exposed to these insults showed that in addition to inhibiting TGFβ/NF-κB, SMAD7 blunted IL-22/signal transducer and activator of transcription 3 activation and associated pathogenesis, which is due to SMAD7 transcriptionally upregulating IL-22 antagonist IL-22RA2. Mechanistically, SMAD7 facilitated nuclear translocation and DNA binding of C/EBPβ to IL22RA2 promoter for IL22RA2 transactivation. Consistent with the observations in mice mentioned earlier, transcript levels of IL22RA2 were increased in human atopic dermatitis and psoriasis lesions with clinical remission. Our study identified the anti-inflammation functional domain of SMAD7 and suggests the mechanism and feasibility for developing SMAD7-based biologics as a topical therapy for skin inflammatory disorders.
Collapse
Affiliation(s)
- Yao Ke
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | - Ben-Zheng Li
- Department of Physiology and Biophysics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Khoa Nguyen
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Donna Wang
- Allander Biotechnologies, Aurora, Colorado, USA
| | - Suyan Wang
- Allander Biotechnologies, Aurora, Colorado, USA
| | - Christian D Young
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Allander Biotechnologies, Aurora, Colorado, USA.
| | - Xiao-Jing Wang
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California, USA; Allander Biotechnologies, Aurora, Colorado, USA.
| |
Collapse
|
93
|
Yue R, Wei X, Hao L, Dong H, Guo W, Sun X, Zhao J, Zhou Z, Zhong W. Promoting intestinal antimicrobial defense and microbiome symbiosis contributes to IL-22-mediated protection against alcoholic hepatitis in mice. Front Immunol 2023; 14:1289356. [PMID: 37908362 PMCID: PMC10613651 DOI: 10.3389/fimmu.2023.1289356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Background The hepatoprotective effect of interleukin 22 (IL-22) has been reported in several models of liver injuries, including alcohol-associated liver disease (ALD). However, the intestinal role of IL-22 in alcoholic hepatitis remains to be elucidated. Methods Intestinal IL-22 levels were measured in mice fed with alcohol for 8 weeks. IL-22 was then administered to alcohol-fed mice to test its protective effects on alleviating alcoholic hepatitis, focusing on intestinal protection. Acute IL-22 treatment was conducted in mice to further explore the link between IL-22 and the induction of antimicrobial peptide (AMP). Intestinal epithelial cell-specific knockout of signal transducer and activator of transcription 3 (STAT3) mice were generated and used for organoid study to explore its role in IL-22-mediated AMP expression and gut barrier integrity. Results After alcohol feeding for 8 weeks, the intestinal levels of IL-22 were significantly reduced in mice. IL-22 treatment to alcohol-fed mice mitigated liver injury as indicated by normalized serum transaminase levels, improved liver histology, reduced lipid accumulation, and attenuated inflammation. In the intestine, alcohol-reduced Reg3γ and α-defensins levels were reversed by IL-22 treatment. IL-22 also improved gut barrier integrity and decreased endotoxemia in alcohol-fed mice. While alcohol feeding significantly reduced Akkermansia, IL-22 administration dramatically expanded this commensal bacterium in mice. Regardless of alcohol, acute IL-22 treatment induced a fast and robust induction of intestinal AMPs and STAT3 activation. By using in vitro cultured intestinal organoids isolated from WT mice and mice deficient in intestinal epithelial-STAT3, we further demonstrated that STAT3 is required for IL-22-mediated AMP expression. In addition, IL-22 also regulates intestinal epithelium differentiation as indicated by direct regulation of sodium-hydrogen exchanger 3 via STAT3. Conclusion Our study suggests that IL-22 not only targets the liver but also benefits the intestine in many aspects. The intestinal effects of IL-22 include regulating AMP expression, microbiota, and gut barrier function that is pivotal in ameliorating alcohol induced translocation of gut-derived bacterial pathogens and liver inflammation.
Collapse
Affiliation(s)
- Ruichao Yue
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Liuyi Hao
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Haibo Dong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Wei Guo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Xinguo Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Wei Zhong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
94
|
Lee DY, Song WH, Lim YS, Lee C, Rajbongshi L, Hwang SY, Kim BS, Lee D, Song YJ, Kim HG, Yoon S. Fish Collagen Peptides Enhance Thymopoietic Gene Expression, Cell Proliferation, Thymocyte Adherence, and Cytoprotection in Thymic Epithelial Cells via Activation of the Nuclear Factor-κB Pathway, Leading to Thymus Regeneration after Cyclophosphamide-Induced Injury. Mar Drugs 2023; 21:531. [PMID: 37888466 PMCID: PMC10608061 DOI: 10.3390/md21100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Prolonged thymic involution results in decreased thymopoiesis and thymic output, leading to peripheral T-cell deficiency. Since the thymic-dependent pathway is the only means of generating fully mature T cells, the identification of strategies to enhance thymic regeneration is crucial in developing therapeutic interventions to revert immune suppression in immunocompromised patients. The present study clearly shows that fish collagen peptides (FCPs) stimulate activities of thymic epithelial cells (TECs), including cell proliferation, thymocyte adhesion, and the gene expression of thymopoietic factors such as FGF-7, IGF-1, BMP-4, VEGF-A, IL-7, IL-21, RANKL, LTβ, IL-22R, RANK, LTβR, SDF-1, CCL21, CCL25, CXCL5, Dll1, Dll4, Wnt4, CD40, CD80, CD86, ICAM-1, VCAM-1, FoxN1, leptin, cathepsin L, CK5, and CK8 through the NF-κB signal transduction pathway. Furthermore, our study also revealed the cytoprotective effects of FCPs on TECs against cyclophosphamide-induced cellular injury through the NF-κB signaling pathway. Importantly, FCPs exhibited a significant capability to facilitate thymic regeneration in mice after cyclophosphamide-induced damage via the NF-κB pathway. Taken together, this study sheds light on the role of FCPs in TEC function, thymopoiesis, and thymic regeneration, providing greater insight into the development of novel therapeutic strategies for effective thymus repopulation for numerous clinical conditions in which immune reconstitution is required.
Collapse
Affiliation(s)
- Do Young Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Won Hoon Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Urology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Ye Seon Lim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Changyong Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Lata Rajbongshi
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Seon Yeong Hwang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Yong Jung Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Hwi-Gon Kim
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| |
Collapse
|
95
|
Czarnecka-Chrebelska KH, Kordiak J, Brzeziańska-Lasota E, Pastuszak-Lewandoska D. Respiratory Tract Oncobiome in Lung Carcinogenesis: Where Are We Now? Cancers (Basel) 2023; 15:4935. [PMID: 37894302 PMCID: PMC10605430 DOI: 10.3390/cancers15204935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The importance of microbiota in developing and treating diseases, including lung cancer (LC), is becoming increasingly recognized. Studies have shown differences in microorganism populations in the upper and lower respiratory tracts of patients with lung cancer compared to healthy individuals, indicating a link between dysbiosis and lung cancer. However, it is not only important to identify "which bacteria are present" but also to understand "how" they affect lung carcinogenesis. The interactions between the host and lung microbiota are complex, and our knowledge of this relationship is limited. This review presents research findings on the bacterial lung microbiota and discusses the mechanisms by which lung-dwelling microorganisms may directly or indirectly contribute to the development of lung cancer. These mechanisms include influences on the host immune system regulation and the local immune microenvironment, the regulation of oncogenic signaling pathways in epithelial cells (causing cell cycle disorders, mutagenesis, and DNA damage), and lastly, the MAMPs-mediated path involving the effects of bacteriocins, TLRs signaling induction, and TNF release. A better understanding of lung microbiota's role in lung tumor pathology could lead to identifying new diagnostic and therapeutic biomarkers and developing personalized therapeutic management for lung cancer patients.
Collapse
Affiliation(s)
| | - Jacek Kordiak
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, 90-151 Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Pomorska 251, 90-151 Lodz, Poland;
| |
Collapse
|
96
|
Orsini F, Crotti C, Cincinelli G, Di Taranto R, Amati A, Ferrito M, Varenna M, Caporali R. Bone Involvement in Rheumatoid Arthritis and Spondyloartritis: An Updated Review. BIOLOGY 2023; 12:1320. [PMID: 37887030 PMCID: PMC10604370 DOI: 10.3390/biology12101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Several rheumatologic diseases are primarily distinguished by their involvement of bone tissue, which not only serves as a mere target of the condition but often plays a pivotal role in its pathogenesis. This scenario is particularly prominent in chronic inflammatory arthritis such as rheumatoid arthritis (RA) and spondyloarthritis (SpA). Given the immunological and systemic nature of these diseases, in this review, we report an overview of the pathogenic mechanisms underlying specific bone involvement, focusing on the complex interactions that occur between bone tissue's own cells and the molecular and cellular actors of the immune system, a recent and fascinating field of interest defined as osteoimmunology. Specifically, we comprehensively elaborate on the distinct pathogenic mechanisms of bone erosion seen in both rheumatoid arthritis and spondyloarthritis, as well as the characteristic process of aberrant bone formation observed in spondyloarthritis. Lastly, chronic inflammatory arthritis leads to systemic bone involvement, resulting in systemic bone loss and consequent osteoporosis, along with increased skeletal fragility.
Collapse
Affiliation(s)
- Francesco Orsini
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Chiara Crotti
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Gilberto Cincinelli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Raffaele Di Taranto
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Andrea Amati
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Matteo Ferrito
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Massimo Varenna
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Roberto Caporali
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| |
Collapse
|
97
|
Liang B, Xing D. Unveiling the mystery of ILC3s: Their functions and interactions in mucosal immunity. Int Immunopharmacol 2023; 123:110772. [PMID: 37552906 DOI: 10.1016/j.intimp.2023.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Innate lymphoid cells (ILCs) are a recently discovered subset of immune cells that play a crucial role in preserving tissue health and combating infections. Among these, ILC3s are particularly vital in regulating mucosal immunity across multiple organs such as the gut, lungs, and skin. The purpose of this article is to present a comprehensive and detailed overview of current knowledge on ILC3s, with a specific emphasis on their intricate interactions with various components of the intestinal microenvironment. Recent research on the complex, bidirectional communication pathways between ILC3s and intestinal epithelial cells, stromal cells, immune cells, microbiota, their metabolites, and diet are highlighted. Furthermore, this review comprehensively examines the diverse functions of ILC3s, which include lymphoid tissue development, tissue repair, infection, inflammation, and metabolic diseases, as well as the effector molecules that facilitate these functions. Overall, this review provides valuable insights into the biological and functional aspects of ILC3s and underscores their potential for developing innovative therapies for immune-mediated disorders, while also acknowledging the remaining knowledge gaps and challenges that need to be addressed.
Collapse
Affiliation(s)
- Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
98
|
Liu S, Luo L, Zuo F, Huang X, Zhong L, Liu S, Geng Y, Ou Y, Chen D, Cai W, Deng Y. Ammonia nitrogen stress damages the intestinal mucosal barrier of yellow catfish ( Pelteobagrus fulvidraco) and induces intestinal inflammation. Front Physiol 2023; 14:1279051. [PMID: 37791345 PMCID: PMC10542119 DOI: 10.3389/fphys.2023.1279051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Nitrogen from ammonia is one of the most common pollutants toxics to aquatic species in aquatic environment. The intestinal mucosa is one of the key mucosal defenses of aquatic species, and the accumulation of ammonia nitrogen in water environment will cause irreversible damage to intestinal function. In this study, histology, immunohistochemistry, ultrastructural pathology, enzyme activity analysis and qRT-PCR were performed to reveal the toxic effect of ammonia nitrogen stress on the intestine of Pelteobagrus fulvidraco. According to histological findings, ammonia nitrogen stress caused structural damage to the intestine and reduced the number of mucous cells. Enzyme activity analysis revealed that the activity of bactericidal substances (Lysozyme, alkaline phosphatase, and ACP) had decreased. The ultrastructure revealed sparse and shortened microvilli as well as badly degraded tight junctions. Immunohistochemistry for ZO-1 demonstrated an impaired intestinal mucosal barrier. Furthermore, qRT-PCR revealed that tight junction related genes (ZO-1, Occludin, Claudin-1) were downregulated, while the pore-forming protein Claudin-2 was upregulated. Furthermore, as ammonia nitrogen concentration grew, so did the positive signal of Zap-70 (T/NK cell) and the expression of inflammation-related genes (TNF, IL-1β, IL-8, IL-10). In light of the above findings, we conclude that ammonia nitrogen stress damages intestinal mucosal barrier of Pelteobagrus fulvidraco and induces intestinal inflammation.
Collapse
Affiliation(s)
- Senyue Liu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lin Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fengyuan Zuo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liang Zhong
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Lab of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sha Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenlong Cai
- State Key Lab of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
99
|
Gong X, Han Z, Fan H, Wu Y, He Y, Fu Y, Zhu T, Li H. The interplay of inflammation and remodeling in the pathogenesis of chronic rhinosinusitis: current understanding and future directions. Front Immunol 2023; 14:1238673. [PMID: 37771597 PMCID: PMC10523020 DOI: 10.3389/fimmu.2023.1238673] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Chronic rhinosinusitis (CRS), a common clinical condition characterized by persistent mucosal inflammation and tissue remodeling, has a complex pathogenesis that is intricately linked to innate and adaptive immunity. A number of studies have demonstrated that a variety of immune cells and cytokines that play a vital role in mediating inflammation in CRS are also involved in remodeling of the nasal mucosa and the cells as well as different cytokines involved in remodeling in CRS are also able to exert some influence on inflammation, even though the exact relationship between inflammation and remodeling in CRS has not yet been fully elucidated. In this review, the potential role of immune cells and cytokines in regulating inflammation and remodeling of CRS mucosa has been described, starting with the immune cells and cytokines that act together in inflammation and remodeling. The goal is to aid researchers in understanding intimate connection between inflammation and remodeling of CRS and to offer novel ideas for future research.
Collapse
Affiliation(s)
- Xinru Gong
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhoutong Han
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongli Fan
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuqi Wu
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuanqiong He
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yijie Fu
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Tianmin Zhu
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hui Li
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| |
Collapse
|
100
|
Motta F, Tonutti A, Isailovic N, Ceribelli A, Costanzo G, Rodolfi S, Selmi C, De Santis M. Proteomic aptamer analysis reveals serum biomarkers associated with disease mechanisms and phenotypes of systemic sclerosis. Front Immunol 2023; 14:1246777. [PMID: 37753072 PMCID: PMC10518467 DOI: 10.3389/fimmu.2023.1246777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Background Systemic sclerosis (SSc) is an autoimmune connective tissue disease that affects multiple organs, leading to elevated morbidity and mortality with limited treatment options. The early detection of organ involvement is challenging as there is currently no serum marker available to predict the progression of SSc. The aptamer technology proteomic analysis holds the potential to correlate SSc manifestations with serum proteins up to femtomolar concentrations. Methods This is a two-tier study of serum samples from women with SSc (including patients with interstitial lung disease - ILD - at high-resolution CT scan) and age-matched healthy controls (HC) that were first analyzed with aptamer-based proteomic analysis for over 1300 proteins. Proposed associated proteins were validated by ELISA first in an independent cohort of patients with SSc and HC, and selected proteins subject to further validation in two additional cohorts. Results The preliminary aptamer-based proteomic analysis identified 33 proteins with significantly different concentrations in SSc compared to HC sera and 9 associated with SSc-ILD, including proteins involved in extracellular matrix formation and cell-cell adhesion, angiogenesis, leukocyte recruitment, activation, and signaling. Further validations in independent cohorts ultimately confirmed the association of specific proteins with early SSc onset, specific organ involvement, and serum autoantibodies. Conclusions Our multi-tier proteomic analysis identified serum proteins discriminating patients with SSc and HC or associated with different SSc subsets, disease duration, and manifestations, including ILD, skin involvement, esophageal disease, and autoantibodies.
Collapse
Affiliation(s)
- Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Natasa Isailovic
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Angela Ceribelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Giovanni Costanzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Stefano Rodolfi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|