51
|
Huanggu H, Yang D, Zheng Y. Blood immunological profile of abdominal aortic aneurysm based on autoimmune injury. Autoimmun Rev 2023; 22:103258. [PMID: 36563768 DOI: 10.1016/j.autrev.2022.103258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Abdominal aortic aneurysm (AAA) occupies a large part of aorta aneurysm, and if there's no timely intervention or treatment, the risks of rupture and death would rise sharply. With the depth of research in AAA, more and more evidence showed correlations between AAA and autoimmune injury. Currently, a variety of bioactive peptides and cells have been confirmed to be related with AAA progression. Despite the tremendous progress, more than half researches were sampling from lesion tissues, which would be difficult to obtain. Given that the intrusiveness and convenience, serological test take advantages in initial diagnosis. Here we review blood biomarkers associated with autoimmune injury work in AAA evolution, aiming to make a profile on blood immune substances of AAA and provide a thought for potential clinical practice.
Collapse
Affiliation(s)
- Haotian Huanggu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China; Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
52
|
He L, Jin X, Liu H. Complement Heat Tolerance as a Marker of Protein Fragility and Its Clinical Significance. Rejuvenation Res 2023; 26:68-74. [PMID: 36680748 DOI: 10.1089/rej.2022.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This study aimed to establish a complement tolerance test (CTT) as a marker of protein fragility and discuss its clinical significance. Total complement activity (TCA) of serum was measured using a self-hemolysis colorimetric method. Human O-erythrocytes and rabbit anti-human O-erythrocyte antibodies were used to replace sheep erythrocytes and the corresponding hemolysin for the hemolysis test, respectively. The antigen-antibody specific binding activated the classical pathway of complement, generating a membrane attack complex, and the red blood cells rupture. A CTT was established to measure complement heat tolerance according to the sensitivity of complement proteins to temperature, which was calculated according to differences in TCA at different temperatures. The smaller the CTT the stronger the complement resistance to heat. The method was applied to the detection of diabetic patients and healthy controls. The mean value of CTT (mean) = 0.063 ± 0.003 with a coefficient of variation of 4.8% for the same specimen tested for complementary thermal resistance on 5 consecutive days, which is a good stability of the assay. Application of CTT on samples from patients with different ages revealed significantly higher mean CTT values for elderly patients (≥60-years old) relative to those for younger patients (20-40-years old) (p < 0.05). In addition, the mean CTT values for diabetic patients were significantly higher than those for healthy patients (p < 0.001). We successfully established a method that uses complement thermal resistance as a marker of protein fragility, with the results demonstrating the ability of the CTT identify age- and disease-related variations in patient samples and its potential efficacy for clinical application.
Collapse
Affiliation(s)
- Lijuan He
- College of Medical Laboratory, Dalian Medical University, Dalian, China
| | - Xiaojun Jin
- College of Medical Laboratory, Dalian Medical University, Dalian, China
| | - Hui Liu
- College of Medical Laboratory, Dalian Medical University, Dalian, China
| |
Collapse
|
53
|
Ding X, Qamar A, Liu H. The complement system testing in clinical laboratory. Clin Chim Acta 2023; 541:117238. [PMID: 36746263 DOI: 10.1016/j.cca.2023.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023]
Abstract
With the advancement in research in the field of the complement system, a more comprehensive understanding developed about the complement system's role in the life process of an organism. It is a system of innate immune surveillance. This system plays a pivotal role in host defense against pathogens, inflammation, B and T cell homeostasis. Complement system analysis has a significant advantage in the assessment of the immune system status, diagnosis and prognosis of diseases, and medication guidelines. Currently, complement system testing is neither yet widely used across all clinical laboratoriesnor are the testing protocols yet systematic. Based on the current research, it is suggested that the analysis of complement activator-activated complement activity and total complement activity would be comprehensively assessed to evaluate the complement system's immunological function, and combine of the detection of its components to establish a systematic protocol for the complement system testing in the clinical laboratory. This article reviews the complement system's physiological role, disease relevance and the current testing status in clinical laboratories. Further more, some suggestions have also been provided for the preparation of complement standards i.e., the standardized preparation process for complement standards seems to be a feasible option given the easy inactivation of complement.
Collapse
Affiliation(s)
- Xuewei Ding
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Ayub Qamar
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Hui Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
54
|
Zhao Y, Zhai L, Qin T, Hu L, Wang J, Zhang Z, Sui C, Zhang L, Zhou D, Lv M, Yang W. Time-Course Transcriptome Analysis of the Lungs of Mice Challenged with Aerosols of Methicillin-Resistant Staphylococcus aureus USA300 Clone Reveals Inflammatory Balance. Biomolecules 2023; 13:347. [PMID: 36830716 PMCID: PMC9953551 DOI: 10.3390/biom13020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
USA300, a dominant clone of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA), is circulating globally and can cause necrotizing pneumonia with high morbidity and mortality. To further reveal the host anti-MRSA infection immune response, we established a mouse model of acute primary MRSA pneumonia challenged with aerosols of the USA300 clone. A time-course transcriptome analysis of the lungs collected at 0, 12, 24, 48 and 96 h post-infection (hpi) was conducted using RNA sequencing (RNA-seq) and multiple bioinformatic analysis methods. The change trend of histopathology and five innate immune cell (neutrophils, mononuclear cells, eosinophils, macrophages, DC cells) proportions in the lungs after infection was also examined. We observed a distinct acute pulmonary recovery process. A rapid initiation period of inflammation was present at 12 hpi, during which the IL-17 pathway dominantly mediated inflammation and immune defense. The main stages of host inflammatory response occurred at 24 and 48 hpi, and the regulation of interferon activation and macrophage polarization played an important role in the control of inflammatory balance at this stage. At 96 hpi, cellular proliferation processes associated with host repair were observed, as well as adaptive immunity and complement system responses involving C1q molecules. More importantly, the data provide new insight into and identify potential functional genes involved in the checks and balances occurring between host anti-inflammatory and proinflammatory responses. To the best of our knowledge, this is the first study to investigate transcriptional responses throughout the inflammatory recovery process in the lungs after MRSA infection. Our study uncovers valuable research targets for key regulatory mechanisms underlying the pathogenesis of MRSA lung infections, which may help to develop novel treatment strategies for MRSA pneumonia.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Immunology of Basic Medical College, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lina Zhai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tongtong Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jiazhen Wang
- Department of Immunology of Basic Medical College, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhijun Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Chengyu Sui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lili Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Meng Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
55
|
Wiese AV, Duhn J, Korkmaz RÜ, Quell KM, Osman I, Ender F, Schröder T, Lewkowich I, Hogan S, Huber-Lang M, Gumprecht F, König P, Köhl J, Laumonnier Y. C5aR1 activation in mice controls inflammatory eosinophil recruitment and functions in allergic asthma. Allergy 2023. [PMID: 36757006 DOI: 10.1111/all.15670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Pulmonary eosinophils comprise at least two distinct populations of resident eosinophils (rEOS) and inflammatory eosinophils (iEOS), the latter recruited in response to pulmonary inflammation. Here, we determined the impact of complement activation on rEOS and iEOS trafficking and function in two models of pulmonary inflammation. METHODS BALB/c wild-type and C5ar1-/- mice were exposed to different allergens or IL-33. Eosinophil populations in the airways, lung, or mediastinal lymph nodes (mLN) were characterized by FACS or immunohistochemistry. rEOS and iEOS functions were determined in vivo and in vitro. RESULTS HDM and IL-33 exposure induced a strong accumulation of iEOS but not rEOS in the airways, lungs, and mLNs. rEOS and iEOS expressed C3/C5 and C5aR1, which were significantly higher in iEOS. Initial pulmonary trafficking of iEOS was markedly reduced in C5ar1-/- mice and associated with less IL-5 production from ILC2 cells. Functionally, adoptively transferred pulmonary iEOS from WT but not from C5ar1-/- mice-induced airway hyperresponsiveness (AHR), which was associated with significantly reduced C5ar1-/- iEOS degranulation. Pulmonary iEOS but not rEOS were frequently associated with T cells in lung tissue. After HDM or IL-33 exposure, iEOS but not rEOS were found in mLNs, which were significantly reduced in C5ar1-/- mice. C5ar1-/- iEOS expressed less costimulatory molecules, associated with a decreased potency to drive antigen-specific T cell proliferation and differentiation into memory T cells. CONCLUSIONS We uncovered novel roles for C5aR1 in iEOS trafficking and activation, which affects key aspects of allergic inflammation such as AHR, ILC2, and T cell activation.
Collapse
Affiliation(s)
- Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jannis Duhn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Rabia Ülkü Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ibrahim Osman
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Torsten Schröder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein & University of Lübeck, Lübeck, Germany
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Simon Hogan
- Mary H. Weiser Food Allergy Center, Experimental Pathology, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, Ulm, Germany
| | | | - Peter König
- Institute for Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein & University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
56
|
Gao Y, Xue M, Dai B, Tang Y, Liu J, Zhao C, Meng H, Yan F, Zhu X, Lu Y, Ge Y. Identification of immune associated potential molecular targets in proliferative diabetic retinopathy. BMC Ophthalmol 2023; 23:27. [PMID: 36658547 PMCID: PMC9854219 DOI: 10.1186/s12886-023-02774-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes and causes of blindness in developed countries. Our study was designed to identify immune-related genes involved in the progression of proliferative diabetic retinopathy (PDR). METHODS The "GSE102485" dataset of neovascular membrane samples (NVMs) from type 1 and 2 diabetes mellitus patients was downloaded from the Gene Expression Omnibus database. Functional enrichment analyses, protein-protein interaction network (PPI) construction, and module analysis of immune pathways in NVMs and controls were conducted via Gene Set Enrichment Analysis and Metascape. RESULTS The significantly upregulated hallmark gene sets in DR2 and DR1 groups were involved in five immune pathways. Only CCR4, CXCR6, C3AR1, LPAR1, C5AR1, and P2RY14 were not previously reported in the context of PDR molecular pathophysiology. Except for P2RY14, all of the above were upregulated in retinal samples from experimental diabetes mouse models and human retina microvascular endothelial cells (HRMECs) treated with high glucose (HG) by quantitative Real Time Polymerase Chain Reaction (qRT-PCR). CONCLUSION The genes identified herein provide insight into immune-related differential gene expression during DR progression.
Collapse
Affiliation(s)
- Ying Gao
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Min Xue
- Department of Ophthalmology, Anhui NO.2 Provincial People’s Hospital, Hefei, Anhui China
| | - Bing Dai
- grid.417028.80000 0004 1799 2608Department of Vascular Surgery, Tianjin Hospital, Tianjin, China
| | - Yun Tang
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Jingyu Liu
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Changlin Zhao
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Hu Meng
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Feng Yan
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Xiaomin Zhu
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Yan Lu
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Yirui Ge
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| |
Collapse
|
57
|
Washburn RL, Martinez-Marin D, Korać K, Sniegowski T, Rodriguez AR, Chilton BS, Hibler T, Pruitt K, Bhutia YD, Dufour JM. The Sertoli Cell Complement Signature: A Suspected Mechanism in Xenograft Survival. Int J Mol Sci 2023; 24:ijms24031890. [PMID: 36768217 PMCID: PMC9916409 DOI: 10.3390/ijms24031890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The complement system is an important component of transplant rejection. Sertoli cells, an immune regulatory testicular cell, survive long-term when transplanted across immunological barriers; thus, understanding the mechanisms behind this unique survival would be of great benefit to the transplantation field. This study focused on Sertoli cell inhibition of complement as relevant in xenotransplantation. Neonatal pig Sertoli cells (NPSCs) survived activated human complement in vitro while neonatal pig islet (NPI) aggregates and pig aortic endothelial cell (PAEC) survival were diminished to about 65% and 12%, respectively. PAECs cultured in NPSC-conditioned media and human complement demonstrated a 200% increase in survival suggesting that NPSCs secrete complement-inhibiting substances that confer protection. Bioinformatic and molecular analyses identified 21 complement inhibitors expressed by NPSCs with several significantly increased in NPSCs compared to NPIs or PAECs. Lastly, RNA sequencing revealed that NPSCs express 25 other complement factors including cascade components and receptors. Overall, this study identified the most comprehensive Sertoli cell complement signature to date and indicates that the expression of a variety of complement inhibitors ensures a proper regulation of complement through redundant inhibition points. Understanding the regulation of the complement system should be further investigated for extending xenograft viability.
Collapse
Affiliation(s)
- Rachel L. Washburn
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79404, USA
| | - Dalia Martinez-Marin
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79404, USA
| | - Ksenija Korać
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Tyler Sniegowski
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Alexis R. Rodriguez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Beverly S. Chilton
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Taylor Hibler
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79404, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79404, USA
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Correspondence:
| |
Collapse
|
58
|
Kolev M, Barbour T, Baver S, Francois C, Deschatelets P. With complements: C3 inhibition in the clinic. Immunol Rev 2023; 313:358-375. [PMID: 36161656 DOI: 10.1111/imr.13138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is a key complement protein, located at the nexus of all complement activation pathways. Extracellular, tissue, cell-derived, and intracellular C3 plays critical roles in the immune response that is dysregulated in many diseases, making it an attractive therapeutic target. However, challenges such as very high concentration in blood, increased acute expression, and the elevated risk of infections have historically posed significant challenges in the development of C3-targeted therapeutics. This is further complicated because C3 activation fragments and their receptors trigger a complex network of downstream effects; therefore, a clear understanding of these is needed to provide context for a better understanding of the mechanism of action (MoA) of C3 inhibitors, such as pegcetacoplan. Because of C3's differential upstream position to C5 in the complement cascade, there are mechanistic differences between pegcetacoplan and eculizumab that determine their efficacy in patients with paroxysmal nocturnal hemoglobinuria. In this review, we compare the MoA of pegcetacoplan and eculizumab in paroxysmal nocturnal hemoglobinuria and discuss the complement-mediated disease that might be amenable to C3 inhibition. We further discuss the current state and outlook for C3-targeted therapeutics and provide our perspective on which diseases might be the next success stories in the C3 therapeutics journey.
Collapse
Affiliation(s)
- Martin Kolev
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Tara Barbour
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Scott Baver
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
59
|
Evans R, Watkins LM, Hawkins K, Santiago G, Demetriou C, Naughton M, Dittmer M, Rees MI, Fitzgerald D, Morgan BP, Neal JW, Howell OW. Complement activation and increased anaphylatoxin receptor expression are associated with cortical grey matter lesions and the compartmentalised inflammatory response of multiple sclerosis. Front Cell Neurosci 2023; 17:1094106. [PMID: 37032838 PMCID: PMC10073739 DOI: 10.3389/fncel.2023.1094106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 04/11/2023] Open
Abstract
Background The extent of cortical pathology is an important determinant of multiple sclerosis (MS) severity. Cortical demyelination and neurodegeneration are related to inflammation of the overlying leptomeninges, a more inflammatory CSF milieu and with parenchymal microglia and astroglia activation. These are all components of the compartmentalised inflammatory response. Compartmentalised inflammation is a feature of progressive MS, which is not targeted by disease modifying therapies. Complement is differentially expressed in the MS CSF and complement, and complement receptors, are associated with demyelination and neurodegeneration. Methods To better understand if complement activation in the leptomeninges is associated with underlying cortical demyelination, inflammation, and microglial activation, we performed a neuropathological study of progressive MS (n = 22, 14 females), neuroinflammatory (n = 8), and non-neurological disease controls (n = 10). We then quantified the relative extent of demyelination, connective tissue inflammation, complement, and complement receptor positive microglia/macrophages. Results Complement was elevated at the leptomeninges, subpial, and within and around vessels of the cortical grey matter. The extent of complement C1q immunoreactivity correlated with connective tissue infiltrates, whilst activation products C4d, Bb, and C3b associated with grey matter demyelination, and C3a receptor 1+ and C5a receptor 1+ microglia/macrophages closely apposed C3b labelled cells. The density of C3a receptor 1+ and C5a receptor 1+ cells was increased at the expanding edge of subpial and leukocortical lesions. C5a receptor 1+ cells expressed TNFα, iNOS and contained puncta immunoreactive for proteolipid protein, neurofilament and synaptophysin, suggesting their involvement in grey matter lesion expansion. Interpretation The presence of products of complement activation at the brain surfaces, their association with the extent of underlying pathology and increased complement anaphylatoxin receptor positive microglia/macrophages at expanding cortical grey matter lesions, could represent a target to modify compartmentalised inflammation and cortical demyelination.
Collapse
Affiliation(s)
- Rhian Evans
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Lewis M. Watkins
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Kristen Hawkins
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Gabriella Santiago
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Constantinos Demetriou
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Michelle Naughton
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Marie Dittmer
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Mark I. Rees
- Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Denise Fitzgerald
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - B. Paul Morgan
- School of Medicine, UK Dementia Research Institute Cardiff and Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - James W. Neal
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Owain W. Howell
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
- *Correspondence: Owain W. Howell,
| |
Collapse
|
60
|
Association between vitamin D supplementation and COVID-19 infection and mortality. Sci Rep 2022; 12:19397. [PMID: 36371591 PMCID: PMC9653496 DOI: 10.1038/s41598-022-24053-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022] Open
Abstract
Vitamin D deficiency has long been associated with reduced immune function that can lead to viral infection. Several studies have shown that Vitamin D deficiency is associated with increases the risk of infection with COVID-19. However, it is unknown if treatment with Vitamin D can reduce the associated risk of COVID-19 infection, which is the focus of this study. In the population of US veterans, we show that Vitamin D2 and D3 fills were associated with reductions in COVID-19 infection of 28% and 20%, respectively [(D3 Hazard Ratio (HR) = 0.80, [95% CI 0.77, 0.83]), D2 HR = 0.72, [95% CI 0.65, 0.79]]. Mortality within 30-days of COVID-19 infection was similarly 33% lower with Vitamin D3 and 25% lower with D2 (D3 HR = 0.67, [95% CI 0.59, 0.75]; D2 HR = 0.75, [95% CI 0.55, 1.04]). We also find that after controlling for vitamin D blood levels, veterans receiving higher dosages of Vitamin D obtained greater benefits from supplementation than veterans receiving lower dosages. Veterans with Vitamin D blood levels between 0 and 19 ng/ml exhibited the largest decrease in COVID-19 infection following supplementation. Black veterans received greater associated COVID-19 risk reductions with supplementation than White veterans. As a safe, widely available, and affordable treatment, Vitamin D may help to reduce the severity of the COVID-19 pandemic.
Collapse
|
61
|
Xiao K, Zhang S, Li C. The complement system and complement-like factors in sea cucumber. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104511. [PMID: 36029917 DOI: 10.1016/j.dci.2022.104511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The complement system is an important part of innate immunity and plays an essential role in immune responses. Complement system consists of a series of proteins, its activation results in opsonization and phagocytosis of pathogens. Although the complement system has been studied extensively in vertebrates, considerably less is known about complement in invertebrates, especially in sea cucumber. Here, we reviewed the complement-like factors including Component 3 (C3), Complement factor B (Bf), Mannan-binding lectin (MBL) and globular Complement component 1q Receptor (gC1qR), which had been found in the complement system of sea cucumber. Furthermore, we compared the features of complement components among marine invertebrates and described the evolution of sea cucumber complement system obviously. This review can offer theoretical basis for disease control of the sea cucumber and will provide new insights into immune system of marine invertebrates. Meantime, the complete framework of sea cucumber complement may benefit the aquaculture industry.
Collapse
Affiliation(s)
- Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Siyuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
62
|
Kemper C, Sack MN. Linking nutrient sensing, mitochondrial function, and PRR immune cell signaling in liver disease. Trends Immunol 2022; 43:886-900. [PMID: 36216719 PMCID: PMC9617785 DOI: 10.1016/j.it.2022.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 01/12/2023]
Abstract
Caloric overconsumption in vertebrates promotes adipose and liver fat accumulation while perturbing the gut microbiome. This triad triggers pattern recognition receptor (PRR)-mediated immune cell signaling and sterile inflammation. Moreover, immune system activation perpetuates metabolic consequences, including the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic hepatic steatohepatitis (NASH). Recent findings show that sensing of nutrient overabundance disrupts the activity and homeostasis of the central cellular energy-generating organelle, the mitochondrion. In parallel, whether caloric excess-initiated PRR signaling and mitochondrial perturbations are coordinated to amplify this inflammatory process in NASH progression remains in question. We hypothesize that altered mitochondrial function, classic PRR signaling, and complement activation in response to nutrient overload together play an integrated role across the immune cell landscape, leading to liver inflammation and NASH progression.
Collapse
Affiliation(s)
- Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
63
|
Zhou Y, Wu Q, Ni G, Hong Y, Xiao S, Liu C, Yu Z. Immune-associated pivotal biomarkers identification and competing endogenous RNA network construction in post-operative atrial fibrillation by comprehensive bioinformatics and machine learning strategies. Front Immunol 2022; 13:974935. [PMID: 36341343 PMCID: PMC9630466 DOI: 10.3389/fimmu.2022.974935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Atrial fibrillation (AF) is the most common arrhythmia. Previous studies mainly focused on identifying potential diagnostic biomarkers and treatment strategies for AF, while few studies concentrated on post-operative AF (POAF), particularly using bioinformatics analysis and machine learning algorithms. Therefore, our study aimed to identify immune-associated genes and provide the competing endogenous RNA (ceRNA) network for POAF. Methods Three GSE datasets were downloaded from the GEO database, and we used a variety of bioinformatics strategies and machine learning algorithms to discover candidate hub genes. These techniques included identifying differentially expressed genes (DEGs) and circRNAs (DECs), building protein-protein interaction networks, selecting common genes, and filtering candidate hub genes via three machine learning algorithms. To assess the diagnostic value, we then created the nomogram and receiver operating curve (ROC). MiRNAs targeting DEGs and DECs were predicted using five tools and the competing endogenous RNA (ceRNA) network was built. Moreover, we performed the immune cell infiltration analysis to better elucidate the regulation of immune cells in POAF. Results We identified 234 DEGs (82 up-regulated and 152 down-regulated) of POAF via Limma, 75 node genes were visualized via PPI network, which were mainly enriched in immune regulation. 15 common genes were selected using three CytoHubba algorithms. Following machine learning selection, the nomogram was created based on the four candidate hub genes. The area under curve (AUC) of the nomogram and individual gene were all over 0.75, showing the ideal diagnostic value. The dysregulation of macrophages may be critical in POAF pathogenesis. A novel circ_0007738 was discovered in POAF and the ceRNA network was eventually built. Conclusion We identified four immune-associated candidate hub genes (C1QA, C1R, MET, and SDC4) for POAF diagnosis through the creation of a nomogram and evaluation of its diagnostic value. The modulation of macrophages and the ceRNA network may represent further therapy methods.
Collapse
Affiliation(s)
- Yufei Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianyun Wu
- Department of Cardiology, The First People’s Hospital of Kunshan Affiliated to Jiangsu University, Suzhou, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yulu Hong
- Department of Computer Science and Technology, Central South University, Changsha, China
| | - Shengjue Xiao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chunjiang Liu
- Department of General Surgery, Shaoxing People’s Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, China
| | - Zongliang Yu
- Department of Cardiology, The First People’s Hospital of Kunshan Affiliated to Jiangsu University, Suzhou, China
- *Correspondence: Zongliang Yu,
| |
Collapse
|
64
|
Dobrovolskaia MA. Lessons learned from immunological characterization of nanomaterials at the Nanotechnology Characterization Laboratory. Front Immunol 2022; 13:984252. [PMID: 36304452 PMCID: PMC9592561 DOI: 10.3389/fimmu.2022.984252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology carriers have become common in pharmaceutical products because of their benefits to drug delivery, including reduced toxicities and improved efficacy of active pharmaceutical ingredients due to targeted delivery, prolonged circulation time, and controlled payload release. While available examples of reduced drug toxicity through formulation using a nanocarrier are encouraging, current data also demonstrate that nanoparticles may change a drug’s biodistribution and alter its toxicity profile. Moreover, individual components of nanoparticles and excipients commonly used in formulations are often not immunologically inert and contribute to the overall immune responses to nanotechnology-formulated products. Said immune responses may be beneficial or adverse depending on the indication, dose, dose regimen, and route of administration. Therefore, comprehensive toxicology studies are of paramount importance even when previously known drugs, components, and excipients are used in nanoformulations. Recent data also suggest that, despite decades of research directed at hiding nanocarriers from the immune recognition, the immune system’s inherent property of clearing particulate materials can be leveraged to improve the therapeutic efficacy of drugs formulated using nanoparticles. Herein, I review current knowledge about nanoparticles’ interaction with the immune system and how these interactions contribute to nanotechnology-formulated drug products’ safety and efficacy through the lens of over a decade of nanoparticle characterization at the Nanotechnology Characterization Laboratory.
Collapse
|
65
|
Kerick M, Acosta-Herrera M, Simeón-Aznar CP, Callejas JL, Assassi S, Proudman SM, Nikpour M, Hunzelmann N, Moroncini G, de Vries-Bouwstra JK, Orozco G, Barton A, Herrick AL, Terao C, Allanore Y, Fonseca C, Alarcón-Riquelme ME, Radstake TRDJ, Beretta L, Denton CP, Mayes MD, Martin J. Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis. NPJ Genom Med 2022; 7:57. [PMID: 36198672 PMCID: PMC9534873 DOI: 10.1038/s41525-022-00327-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals.
Collapse
Affiliation(s)
- Martin Kerick
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
| | - Marialbert Acosta-Herrera
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain.
| | | | | | - Shervin Assassi
- Department of Rheumatology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Susanna M Proudman
- Rheumatology Unit, Royal Adelaide Hospital and University of Adelaide, Adelaide, SA, Australia
| | - Mandana Nikpour
- The University of Melbourne at St. Vincent's Hospital, Melbourne, VIC, Australia
| | | | - Gianluca Moroncini
- Department of Clinical and Molecular Science, Università Politecnica delle Marche e Ospedali Riuniti, Ancona, Italy
| | | | - Gisela Orozco
- Center for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Center, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Anne Barton
- Center for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Center, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Ariane L Herrick
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Northern care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yannick Allanore
- Department of Rheumatology A, Hospital Cochin, Paris, Île-de-France, France
| | - Carmen Fonseca
- Center for Rheumatology, Royal Free and University College Medical School, London, UK
| | - Marta Eugenia Alarcón-Riquelme
- Center for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Christopher P Denton
- Center for Rheumatology, Royal Free and University College Medical School, London, UK
| | - Maureen D Mayes
- Department of Rheumatology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Javier Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
| |
Collapse
|
66
|
Jimenez-Duran G, Kozole J, Peltier-Heap R, Dickinson ER, Kwiatkowski CR, Zappacosta F, Annan RS, Galwey NW, Nichols EM, Modis LK, Triantafilou M, Triantafilou K, Booty LM. Complement membrane attack complex is an immunometabolic regulator of NLRP3 activation and IL-18 secretion in human macrophages. Front Immunol 2022; 13:918551. [PMID: 36248901 PMCID: PMC9554752 DOI: 10.3389/fimmu.2022.918551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The complement system is an ancient and critical part of innate immunity. Recent studies have highlighted novel roles of complement beyond lysis of invading pathogens with implications in regulating the innate immune response, as well as contributing to metabolic reprogramming of T-cells, synoviocytes as well as cells in the CNS. These findings hint that complement can be an immunometabolic regulator, but whether this is also the case for the terminal step of the complement pathway, the membrane attack complex (MAC) is not clear. In this study we focused on determining whether MAC is an immunometabolic regulator of the innate immune response in human monocyte-derived macrophages. Here, we uncover previously uncharacterized metabolic changes and mitochondrial dysfunction occurring downstream of MAC deposition. These alterations in glycolytic flux and mitochondrial morphology and function mediate NLRP3 inflammasome activation, pro-inflammatory cytokine release and gasdermin D formation. Together, these data elucidate a novel signalling cascade, with metabolic alterations at its center, in MAC-stimulated human macrophages that drives an inflammatory consequence in an immunologically relevant cell type.
Collapse
Affiliation(s)
- Gisela Jimenez-Duran
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- Institute ofInfection and Immunity, Cardiff University, School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Joseph Kozole
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Philadelphia, PA, United States
| | - Rachel Peltier-Heap
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Stevenage, United Kingdom
| | - Eleanor R. Dickinson
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Stevenage, United Kingdom
| | | | - Francesca Zappacosta
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Philadelphia, PA, United States
| | - Roland S. Annan
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Philadelphia, PA, United States
| | - Nicholas W. Galwey
- Research Statistics, Development Biostatistics, GSK, Stevenage, United Kingdom
| | | | | | - Martha Triantafilou
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- Institute ofInfection and Immunity, Cardiff University, School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Kathy Triantafilou
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- Institute ofInfection and Immunity, Cardiff University, School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- *Correspondence: Kathy Triantafilou, TriantafilouK@cardiff. ac. uk; Lee M. Booty,
| | - Lee M. Booty
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- *Correspondence: Kathy Triantafilou, TriantafilouK@cardiff. ac. uk; Lee M. Booty,
| |
Collapse
|
67
|
Song G, Wang S, Barkestani MN, Mullan C, Fan M, Jiang B, Jiang Q, Li X, Jane-wit D. Membrane attack complexes, endothelial cell activation, and direct allorecognition. Front Immunol 2022; 13:1020889. [PMID: 36211400 PMCID: PMC9539657 DOI: 10.3389/fimmu.2022.1020889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Endothelial cells (ECs) form a critical immune interface regulating both the activation and trafficking of alloreactive T cells. In the setting of solid organ transplantation, donor-derived ECs represent sites where alloreactive T cells encounter major and minor tissue-derived alloantigens. During this initial encounter, ECs may formatively modulate effector responses of these T cells through expression of inflammatory mediators. Direct allorecognition is a process whereby recipient T cells recognize alloantigen in the context of donor EC-derived HLA molecules. Direct alloresponses are strongly modulated by human ECs and are galvanized by EC-derived inflammatory mediators. Complement are immune proteins that mark damaged or foreign surfaces for immune cell activation. Following labeling by natural IgM during ischemia reperfusion injury (IRI) or IgG during antibody-mediated rejection (ABMR), the complement cascade is terminally activated in the vicinity of donor-derived ECs to locally generate the solid-phase inflammatory mediator, the membrane attack complex (MAC). Via upregulation of leukocyte adhesion molecules, costimulatory molecules, and cytokine trans-presentation, MAC strengthen EC:T cell direct alloresponses and qualitatively shape the alloimmune T cell response. These processes together promote T cell-mediated inflammation during solid organ transplant rejection. In this review we describe molecular pathways downstream of IgM- and IgG-mediated MAC assembly on ECs in the setting of IRI and ABMR of tissue allografts, respectively. We describe work demonstrating that MAC deposition on ECs generates 'signaling endosomes' that sequester and post-translationally enhance the stability of inflammatory signaling molecules to promote EC activation, a process potentiating EC-mediated direct allorecognition. Additionally, with consideration to first-in-human xenotransplantation procedures, we describe clinical therapeutics based on inhibition of the complement pathway. The complement cascade critically mediates EC activation and improved understanding of relevant effector pathways will uncover druggable targets to obviate dysregulated alloimmune T cell infiltration into tissue allografts.
Collapse
Affiliation(s)
- Guiyu Song
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shaoxun Wang
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Mahsa Nouri Barkestani
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Clancy Mullan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Matthew Fan
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Quan Jiang
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Xue Li
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Dan Jane-wit
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Department of Cardiology, West Haven VA Medical Center, West Haven, CT, United States
| |
Collapse
|
68
|
Petr V, Csuka D, Hruba P, Szilágyi Á, Kollar M, Slavcev A, Prohászka Z, Viklicky O. MCPggaac haplotype is associated with poor graft survival in kidney transplant recipients with de novo thrombotic microangiopathy. Front Immunol 2022; 13:985766. [PMID: 36189289 PMCID: PMC9519137 DOI: 10.3389/fimmu.2022.985766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
De novo thrombotic microangiopathy (TMA) is associated with poor kidney graft survival, and as we previously described, it is a recipient driven process with suspected genetic background. Direct Sanger sequencing was performed in 90 KTR with de novo TMA and 90 corresponding donors on selected regions in CFH, CD46, C3, and CFB genes that involve variations with a functional effect or confer a risk for aHUS. Additionally, 37 recipients of paired kidneys who did not develop TMA were analyzed for the MCPggaac haplotype. Three-years death-censored graft survival was assessed using Kaplan-Meier and Cox regression models. The distribution of haplotypes in all groups was in the Hardy-Weinberg equilibrium and there was no clustering of haplotypes in any group. In the TMA group, we found that MCPggaac haplotype carriers were at a significantly higher risk of graft loss compared to individuals with the wild-type genotype. Worse 3-year death-censored graft survival was associated with longer cold ischemia time (HR 1.20, 95% CI 1.06, 1.36) and recipients’ MCPggaac haplotype (HR 3.83, 95% CI 1.42, 10.4) in the multivariable Cox regression model. There was no association between donor haplotypes and kidney graft survival. Similarly, there was no effect of the MCPggaac haplotype on 3-year graft survival in recipients of paired kidneys without de novo TMA. Kidney transplant recipients carrying the MCPggaac haplotype with de novo TMA are at an increased risk of premature graft loss. These patients might benefit from therapeutic strategies based on complement inhibition.
Collapse
Affiliation(s)
- Vojtech Petr
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Dorottya Csuka
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Ágnes Szilágyi
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Marek Kollar
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Antonij Slavcev
- Department of Immunogenetics, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zoltán Prohászka
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Ondrej Viklicky
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czechia
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
- *Correspondence: Ondrej Viklicky,
| |
Collapse
|
69
|
Senent Y, Tavira B, Pio R, Ajona D. The complement system as a regulator of tumor-promoting activities mediated by myeloid-derived suppressor cells. Cancer Lett 2022; 549:215900. [PMID: 36087681 DOI: 10.1016/j.canlet.2022.215900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Tumor progression relies on the interaction between tumor cells and their surrounding tumor microenvironment (TME), which also influences therapeutic responses. The complement system, an essential part of innate immunity, has been traditionally considered an effector arm against tumors. However, established tumors co-opt complement-mediated immune responses in the TME to support chronic inflammation, activate cancer-related signaling pathways and hamper antitumor immune responses. In this context, myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid progenitors with immunosuppressive functions, are recognized as major mediators of tumor-associated complement activities. This review focuses on the impact of complement activation within the TME, with a special emphasis on MDSC functions and the involvement of the C5a/C5aR1 axis. We also discuss the translation of these findings into therapeutic advances based on complement inhibition.
Collapse
Affiliation(s)
- Yaiza Senent
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Beatriz Tavira
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Medicine, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Ruben Pio
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Daniel Ajona
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
70
|
Schanzenbacher J, Köhl J, Karsten CM. Anaphylatoxins spark the flame in early autoimmunity. Front Immunol 2022; 13:958392. [PMID: 35958588 PMCID: PMC9358992 DOI: 10.3389/fimmu.2022.958392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system (CS) is an ancient and highly conserved part of the innate immune system with important functions in immune defense. The multiple fragments bind to specific receptors on innate and adaptive immune cells, the activation of which translates the initial humoral innate immune response (IR) into cellular innate and adaptive immunity. Dysregulation of the CS has been associated with the development of several autoimmune disorders such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), ANCA-associated vasculitis, and autoimmune bullous dermatoses (AIBDs), where complement drives the inflammatory response in the effector phase. The role of the CS in autoimmunity is complex. On the one hand, complement deficiencies were identified as risk factors to develop autoimmune disorders. On the other hand, activation of complement can drive autoimmune responses. The anaphylatoxins C3a and C5a are potent mediators and regulators of inflammation during the effector phase of autoimmunity through engagement of specific anaphylatoxin receptors, i.e., C3aR, C5aR1, and C5aR2 either on or in immune cells. In addition to their role in innate IRs, anaphylatoxins regulate humoral and cellular adaptive IRs including B-cell and T-cell activation, differentiation, and survival. They regulate B- and T-lymphocyte responses either directly or indirectly through the activation of anaphylatoxin receptors via dendritic cells that modulate lymphocyte function. Here, we will briefly review our current understanding of the complex roles of anaphylatoxins in the regulation of immunologic tolerance and the early events driving autoimmunity and the implications of such regulation for therapeutic approaches that target the CS.
Collapse
Affiliation(s)
- Jovan Schanzenbacher
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Childrens Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christian M. Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- *Correspondence: Christian M. Karsten,
| |
Collapse
|
71
|
Dobó J, Kocsis A, Dani R, Gál P. Proprotein Convertases and the Complement System. Front Immunol 2022; 13:958121. [PMID: 35874789 PMCID: PMC9296861 DOI: 10.3389/fimmu.2022.958121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022] Open
Abstract
Proteins destined for secretion - after removal of the signal sequence - often undergo further proteolytic processing by proprotein convertases (PCs). Prohormones are typically processed in the regulated secretory pathway, while most plasma proteins travel though the constitutive pathway. The complement system is a major proteolytic cascade in the blood, serving as a first line of defense against microbes and also contributing to the immune homeostasis. Several complement components, namely C3, C4, C5 and factor I (FI), are multi-chain proteins that are apparently processed by PCs intracellularly. Cleavage occurs at consecutive basic residues and probably also involves the action of carboxypeptidases. The most likely candidate for the intracellular processing of complement proteins is furin, however, because of the overlapping specificities of basic amino acid residue-specific proprotein convertases, other PCs might be involved. To our surprise, we have recently discovered that processing of another complement protein, mannan-binding lectin-associated serine protease-3 (MASP-3) occurs in the blood by PCSK6 (PACE4). A similar mechanism had been described for the membrane protease corin, which is also activated extracellularly by PCSK6. In this review we intend to point out that the proper functioning of the complement system intimately depends on the action of proprotein convertases. In addition to the non-enzymatic components (C3, C4, C5), two constitutively active complement proteases are directly activated by PCs either intracellularly (FI), or extracellularly (MASP-3), moreover indirectly, through the constitutive activation of pro-factor D by MASP-3, the activity of the alternative pathway also depends on a PC present in the blood.
Collapse
Affiliation(s)
| | | | | | - Péter Gál
- *Correspondence: József Dobó, ; Péter Gál,
| |
Collapse
|
72
|
Kolev M, Das M, Gerber M, Baver S, Deschatelets P, Markiewski MM. Inside-Out of Complement in Cancer. Front Immunol 2022; 13:931273. [PMID: 35860237 PMCID: PMC9291441 DOI: 10.3389/fimmu.2022.931273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The role of complement in cancer has received increasing attention over the last decade. Recent studies provide compelling evidence that complement accelerates cancer progression. Despite the pivotal role of complement in fighting microbes, complement seems to suppress antitumor immunity via regulation of host cell in the tumor microenvironment. Although most studies link complement in cancer to complement activation in the extracellular space, the discovery of intracellular activation of complement, raises the question: what is the relevance of this process for malignancy? Intracellular activation is pivotal for the survival of immune cells. Therefore, complement can be important for tumor cell survival and growth regardless of the role in immunosuppression. On the other hand, because intracellular complement (the complosome) is indispensable for activation of T cells, these functions will be essential for priming antitumor T cell responses. Here, we review functions of complement in cancer with the consideration of extra and intracellular pathways of complement activation and spatial distribution of complement proteins in tumors and periphery and provide our take on potential significance of complement as biomarker and target for cancer therapy.
Collapse
Affiliation(s)
- Martin Kolev
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| | - Madhumita Das
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Monica Gerber
- Legal Department, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Scott Baver
- Medical Affairs, Apellis Pharmaceuticals, Waltham, MA, United States
| | | | - Maciej M. Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| |
Collapse
|
73
|
Szilágyi Á, Csuka D, Geier CB, Prohászka Z. Complement Genetics for the Practicing Allergist Immunologist: Focus on Complement Deficiencies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1703-1711. [PMID: 35272074 DOI: 10.1016/j.jaip.2022.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Complement deficiencies have been considered to be rare for many decades, but this assumption is changing year by year. Recognition of these conditions significantly increases thanks to the availability of different testing approaches and due to clinical awareness. Furthermore, sequencing technologies (including Sanger sequencing, targeted gene panels, and whole exome/genome sequencing) may facilitate the identification of the underlying disease-causing genetic background. On the other hand, functional characterization of the identified possibly pathogenic variations and performing family studies, as illustrated by some of our cases, remain similarly important to establish a precise clinical diagnosis facilitating the most appropriate management. Here, we present 4 illustrative cases with complement deficiencies of diverse etiologies and also provide an educative, step-by-step description on how to identify the underlying cause of complement deficiency based on the results of complement laboratory testing.
Collapse
Affiliation(s)
- Ágnes Szilágyi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Christoph B Geier
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary; Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary.
| |
Collapse
|
74
|
Caputo MB, Elias J, Cesar G, Alvarez MG, Laucella SA, Albareda MC. Role of the Complement System in the Modulation of T-Cell Responses in Chronic Chagas Disease. Front Cell Infect Microbiol 2022; 12:910854. [PMID: 35846776 PMCID: PMC9282465 DOI: 10.3389/fcimb.2022.910854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 01/19/2023] Open
Abstract
Chagas disease, caused by the intracellular pathogen Trypanosoma cruzi, is the parasitic disease with the greatest impact in Latin America and the most common cause of infectious myocarditis in the world. The immune system plays a central role in the control of T. cruzi infection but at the same time needs to be controlled to prevent the development of pathology in the host. It has been shown that persistent infection with T. cruzi induces exhaustion of parasite-specific T cell responses in subjects with chronic Chagas disease. The continuous inflammatory reaction due to parasite persistence in the heart also leads to necrosis and fibrosis. The complement system is a key element of the innate immune system, but recent findings have also shown that the interaction between its components and immune cell receptors might modulate several functions of the adaptive immune system. Moreover, the findings that most of immune cells can produce complement proteins and express their receptors have led to the notion that the complement system also has non canonical functions in the T cell. During human infection by T. cruzi, complement activation might play a dual role in the acute and chronic phases of Chagas disease; it is initially crucial in controlling parasitemia and might later contributes to the development of symptomatic forms of Chagas disease due to its role in T-cell regulation. Herein, we will discuss the putative role of effector complement molecules on T-cell immune exhaustion during chronic human T. cruzi infection.
Collapse
Affiliation(s)
- María Belén Caputo
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - Josefina Elias
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - Gonzalo Cesar
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - María Gabriela Alvarez
- Chagas Section, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - Susana Adriana Laucella
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
- Chagas Section, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - María Cecilia Albareda
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| |
Collapse
|
75
|
Cheng J, Clayton JS, Acemel RD, Zheng Y, Taylor RL, Keleş S, Franke M, Boackle SA, Harley JB, Quail E, Gómez-Skarmeta JL, Ulgiati D. Regulatory Architecture of the RCA Gene Cluster Captures an Intragenic TAD Boundary, CTCF-Mediated Chromatin Looping and a Long-Range Intergenic Enhancer. Front Immunol 2022; 13:901747. [PMID: 35769482 PMCID: PMC9235356 DOI: 10.3389/fimmu.2022.901747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 12/03/2022] Open
Abstract
The Regulators of Complement Activation (RCA) gene cluster comprises several tandemly arranged genes with shared functions within the immune system. RCA members, such as complement receptor 2 (CR2), are well-established susceptibility genes in complex autoimmune diseases. Altered expression of RCA genes has been demonstrated at both the functional and genetic level, but the mechanisms underlying their regulation are not fully characterised. We aimed to investigate the structural organisation of the RCA gene cluster to identify key regulatory elements that influence the expression of CR2 and other genes in this immunomodulatory region. Using 4C, we captured extensive CTCF-mediated chromatin looping across the RCA gene cluster in B cells and showed these were organised into two topologically associated domains (TADs). Interestingly, an inter-TAD boundary was located within the CR1 gene at a well-characterised segmental duplication. Additionally, we mapped numerous gene-gene and gene-enhancer interactions across the region, revealing extensive co-regulation. Importantly, we identified an intergenic enhancer and functionally demonstrated this element upregulates two RCA members (CR2 and CD55) in B cells. We have uncovered novel, long-range mechanisms whereby autoimmune disease susceptibility may be influenced by genetic variants, thus highlighting the important contribution of chromatin topology to gene regulation and complex genetic disease.
Collapse
Affiliation(s)
- Jessica Cheng
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Joshua S. Clayton
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Rafael D. Acemel
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Ye Zheng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States,Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
| | - Rhonda L. Taylor
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Martin Franke
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Susan A. Boackle
- Department of Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,US Department of Veterans Affairs Medical Centre, US Department of Veterans Affairs, Cincinnati, OH, United States
| | - Elizabeth Quail
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia,School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia,*Correspondence: Daniela Ulgiati,
| |
Collapse
|
76
|
Liu Y, Xu L, Hao C, Wu J, Jia X, Ding X, Lin C, Zhu H, Zhang Y. Identification and Validation of Novel Immune-Related Alternative Splicing Signatures as a Prognostic Model for Colon Cancer. Front Oncol 2022; 12:866289. [PMID: 35692800 PMCID: PMC9178000 DOI: 10.3389/fonc.2022.866289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundIndividual immune-related alternative splicing (AS) events have been found to be significant in immune regulation and cancer prognosis. However, a comprehensive analysis of AS events in cancer cells based on immune-related genes (IRGs) has not been performed, and its clinical value is unknown.MethodsColon cancer cases with AS data were obtained from TCGA, and then, we identified overall survival-related AS events (OS-ASEs) based on IRGs by univariate analyses. Using Lasso regression, multivariate Cox regression, Kaplan–Meier analysis and nomograms, we constructed an AS risk model based on the calculated risk score. Furthermore, associations of the risk score with clinical and immune features were confirmed through the Wilcoxon rank sum test, association analysis, etc. Finally, by qRT–PCR, cell coculture and CCK-8 analyses, we validated the significance of OS-ASEs in colon cancer cell lines and clinical samples.ResultsA total of 3,119 immune-related AS events and 183 OS-ASEs were identified, and 9 OS-ASEs were ultimately used to construct a comprehensive risk model for colon cancer patients. Low-risk patients had better OS and DFS rates than high risk patients. Furthermore, a high risk score corresponded to high numbers of multiple tumour-infiltrating immune cells and high expression of HLA-D region genes and immune checkpoint genes. Notably, we identified for the first time that anti-PD-L1 or anti-CTLA-4 antibodies may decrease the OS of specific colon cancer patients in the low-risk group. Additionally, the in vitro experiment validated that CD46-9652-ES and PSMC5-43011-ES are positively correlated with the infiltration of immune cells and promote the growth of colon cancer cells. CD46-9652-ES can contribute to T cell-mediated tumour cell killing. PSMC5-43011-ES was observed to induce M2 polarization of macrophages.ConclusionsThis study identified and validated immune-related prognostic AS signatures that can be used as a novel AS prognostic model and provide a novel understanding of the relationship between the immune microenvironment and clinical outcomes.
Collapse
Affiliation(s)
- Yunze Liu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Chuanchuan Hao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jin Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xianhong Jia
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xia Ding
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiang Ya Hospital of Central South University, Changsha, China
| | - Hongmei Zhu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Yi Zhang, ; Hongmei Zhu,
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Yi Zhang, ; Hongmei Zhu,
| |
Collapse
|
77
|
Serum Levels of Ficolin-3 and Mannose-Binding Lectin in Patients with Leprosy and Their Family Contacts in a Hyperendemic Region in Northeastern Brazil. Trop Med Infect Dis 2022; 7:tropicalmed7050071. [PMID: 35622698 PMCID: PMC9145322 DOI: 10.3390/tropicalmed7050071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
The present study aimed at analyzing the serum levels of mannose-binding lectin (MBL) and ficolin-3 (FCN3) in leprosy patients and their healthy family contacts in a hyperendemic region in northeastern Brazil. A cross-sectional study was carried out with 90 patients who had been diagnosed with leprosy and 79 healthy family contacts. Serum levels of the MBL and FCN3 proteins were measured using the immunofluorometric assay (ELISA). Clinical information was determined from the patients’ charts. It was observed that the leprosy patients were more likely to be male (OR = 2.17; p = 0.01) and younger than fifteen years of age (OR = 2.01; p = 0.03) when compared to the family contacts. Those under 15 years of age had higher levels of MBL (4455 ng/mL) than those over 15 years of age (2342 ng/mL; p = 0.018). Higher FCN3 levels were identified in patients with indeterminate leprosy (41.9 µg/mL) compared to those with the lepromatous form (34.3 µg/mL; p = 0.033) and in those with no physical disabilities (38.1 µg/mL) compared to those with some disability (p = 0.031). Higher FCN3 levels were also observed in the group of patients without leprosy reactions (37.4 µg/mL) compared to those with type 1 (33.7 µg/mL) and type 2 (36.1 µg/mL) reactions. The MBL levels were higher in children under 15 years of age than they were in adults. It was evidenced that higher FCN3 serum levels were associated with early and transient clinical forms and lower expression in severe forms of leprosy.
Collapse
|
78
|
Sylvester M, Son A, Schwartz DM. The Interactions Between Autoinflammation and Type 2 Immunity: From Mechanistic Studies to Epidemiologic Associations. Front Immunol 2022; 13:818039. [PMID: 35281022 PMCID: PMC8907424 DOI: 10.3389/fimmu.2022.818039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Autoinflammatory diseases are a group of clinical syndromes characterized by constitutive overactivation of innate immune pathways. This results in increased production of or responses to monocyte- and neutrophil-derived cytokines such as interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), and Type 1 interferon (IFN). By contrast, clinical allergy is caused by dysregulated type 2 immunity, which is characterized by expansion of T helper 2 (Th2) cells and eosinophils, as well as overproduction of the associated cytokines IL-4, IL-5, IL-9, and IL-13. Traditionally, type 2 immune cells and autoinflammatory effectors were thought to counter-regulate each other. However, an expanding body of evidence suggests that, in some contexts, autoinflammatory pathways and cytokines may potentiate type 2 immune responses. Conversely, type 2 immune cells and cytokines can regulate autoinflammatory responses in complex and context-dependent manners. Here, we introduce the concepts of autoinflammation and type 2 immunity. We proceed to review the mechanisms by which autoinflammatory and type 2 immune responses can modulate each other. Finally, we discuss the epidemiology of type 2 immunity and clinical allergy in several monogenic and complex autoinflammatory diseases. In the future, these interactions between type 2 immunity and autoinflammation may help to expand the spectrum of autoinflammation and to guide the management of patients with various autoinflammatory and allergic diseases.
Collapse
Affiliation(s)
- McKella Sylvester
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Aran Son
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
79
|
Parker SE, Bellingham MC, Woodruff TM. Complement drives circuit modulation in the adult brain. Prog Neurobiol 2022; 214:102282. [DOI: 10.1016/j.pneurobio.2022.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
80
|
Jiao Y, Jiang S, Wang Y, Yu T, Zou G, Zhuo L, Li W. Activation of complement C1q and C3 in glomeruli might accelerate the progression of diabetic nephropathy: Evidence from transcriptomic data and renal histopathology. J Diabetes Investig 2022; 13:839-849. [PMID: 34932275 PMCID: PMC9077730 DOI: 10.1111/jdi.13739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
AIMS/INTRODUCTION It is not unclear whether the complement system is involved in the pathogenesis of diabetic nephropathy (DN). We explored the role of the complement system in glomeruli from patients with DN using integrated transcriptomic bioinformatics analysis and renal histopathology. MATERIALS AND METHODS Four datasets (GSE30528, GSE104948, GSE96804 and GSE99339) from the Gene Expression Omnibus database were integrated. We used a protein-protein interaction network and the Molecular Complex Detection App to obtain hub genes. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out to identify significant pathways. We also investigated the associations of C1q and C3 deposition on renal histopathology with clinical data, pathological parameters and renal survival in DN patients. RESULTS We identified 47 up- and 48 downregulated genes associated with DN. C3, C1QB and C1QA were found to be complement-related hub genes. The gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses identified complement activation and humoral immune response as the significant oncology terms, with C1QB and C3 positioned at the center of the pathway. Regarding renal histopathology, patients with both C1q and C3 deposition had more severe glomerular classes. Multivariate Cox proportional hazards regression showed that the deposition of glomerular C1q and C3 was an independent risk factor for kidney failure. Patients with high C1q, C3 or C4d expression in glomeruli were more likely to progress to kidney failure, whereas glomerular mannose-binding lectin was rare. CONCLUSIONS Complement activation is involved in the development of DN, and activation of the classical complement pathway in glomeruli might accelerate disease progression.
Collapse
Affiliation(s)
- Yuanyuan Jiao
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
- Graduate School of Peking Union Medical CollegePeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Shimin Jiang
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
| | - Ying Wang
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
- Graduate School of Peking Union Medical CollegePeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Tianyu Yu
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
| | - Guming Zou
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
| | - Li Zhuo
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
| | - Wenge Li
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
- Graduate School of Peking Union Medical CollegePeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
81
|
Gaboriaud C, Lorvellec M, Rossi V, Dumestre-Pérard C, Thielens NM. Complement System and Alarmin HMGB1 Crosstalk: For Better or Worse. Front Immunol 2022; 13:869720. [PMID: 35572583 PMCID: PMC9095977 DOI: 10.3389/fimmu.2022.869720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Our immune system responds to infectious (PAMPs) and tissue damage (DAMPs) signals. The complement system and alarmin High-Mobility Group Box 1 (HMGB1) are two powerful soluble actors of human host defense and immune surveillance. These systems involve molecular cascades and amplification loops for their signaling or activation. Initially activated as alarm raising systems, their function can be finally switched towards inflammation resolution, where they sustain immune maturation and orchestrate repair mechanisms, opening the way back to homeostasis. However, when getting out of control, these defense systems can become deleterious and trigger serious cellular and tissue damage. Therefore, they can be considered as double-edged swords. The close interaction between the complement and HMGB1 pathways is described here, as well as their traditional and non-canonical roles, their functioning at different locations and their independent and collective impact in different systems both in health and disease. Starting from these systems and interplay at the molecular level (when elucidated), we then provide disease examples to better illustrate the signs and consequences of their roles and interaction, highlighting their importance and possible vicious circles in alarm raising and inflammation, both individually or in combination. Although this integrated view may open new therapeutic strategies, future challenges have to be faced because of the remaining unknowns regarding the molecular mechanisms underlying the fragile molecular balance which can drift towards disease or return to homeostasis, as briefly discussed at the end.
Collapse
Affiliation(s)
| | | | | | - Chantal Dumestre-Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Laboratoire d’Immunologie, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France
| | | |
Collapse
|
82
|
Hayashi M, Abe K, Fujita M, Takahashi A, Sekine H, Ohira H. Circulating complement factor H levels are associated with disease severity and relapse in autoimmune hepatitis. JHEP Rep 2022; 4:100497. [PMID: 35677590 PMCID: PMC9167978 DOI: 10.1016/j.jhepr.2022.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
Background & Aims The complement system plays pivotal roles in innate immunity. Mannose-binding lectin-associated serine protease (MASP)-2 plays essential roles in the activation of the lectin complement pathway. Complement factor H acts as a critical negative regulator of the alternative complement pathway. The association of circulating MASP-2 and factor H with the clinical features of patients with autoimmune hepatitis (AIH) is unclear. Methods A total of 63 patients with AIH were recruited for this study. The serum levels of MASP-2, factor H, and C3a were measured, and their associations with the clinical features of AIH were analyzed. Results The circulating C3a levels were higher in patients with AIH than in the controls. The circulating MASP-2 and factor H levels were decreased depending on the severity of AIH. Multivariate logistic analysis showed that low circulating factor H levels were associated with features of severe AIH (odds ratio 0.36; 95% CI 0.15-0.84; p = 0.018). Multivariate Cox proportional hazards model analysis showed that low circulating factor H levels were associated with a high incidence of relapse (hazard ratio: 5.19; 95% CI 1.07–25.2; p = 0.041). Patients with low circulating factor H levels showed higher rates of relapse than the controls (log-rank, p = 0.006). Conclusion Circulating factor H levels were associated with severe disease and with the incidence of relapse, suggesting a role for the complement system in the pathophysiology of AIH. Lay summary Autoimmune hepatitis is an immune-mediated liver disease. Despite effective treatments, patients often relapse, which can lead to clinical deterioration and adverse outcomes. Herein, we studied the importance of the complement system (a form of innate immunity) in patients with autoimmune hepatitis. We found that the levels of a protein called factor H, which regulates the complement system, could be a potential biomarker of disease severity and relapse, and could even have therapeutic potential for patients with AIH. We measured serum MASP-2 and factor H in patients with AIH. Serum MASP-2 and factor H levels were lower in patients with severe AIH. Patients with AIH and low factor H before treatment showed a high rate of relapse.
Collapse
|
83
|
Qian X, Yang Z, Gao L, Liu Y, Yan J. The role of complement in the clinical course of hepatocellular carcinoma. Immun Inflamm Dis 2022; 10:e569. [PMID: 34813686 PMCID: PMC8926509 DOI: 10.1002/iid3.569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 01/10/2023] Open
Abstract
Background The complement system, an innate immune system, may either play an antitumor role, or promote tumorigenesis and cancer progression in different kinds of cancer. The function of complement in hepatocellular carcinoma (HCC) is unclear. Methods The gene expressions of the complement system were based on data obtained from TCGA and GEO. We explored gene expressions, mutation, enrichment analysis, clinicopathology, patients' outcome, and immune infiltration via Gepia2, cBioPortal, Metascape, UALCAN, Kaplan–Meier Plotter, and TIMER 2. Results Five complement genes, including C1R, C6, C7, CFP, and CFHR3, were not only found to be significantly downregulated in HCC samples compared with normal liver samples, but also found to be significantly associated with overall survival, disease‐free survival, and progress‐free survival in HCC patients. In addition, lower mRNA expression of C1R, C6, C7, and CFHR3 were found correlated with advanced cancer stages and higher tumor grades in HCC patients. Also, the expression levels of CFP were correlated with many sets of immune markers of tumor immune cells, such as those of CD8+ T cells, CD4+ T cells, B cells, M2 macrophages, neutrophils, DCs, Th1 cells, Th2 cells, and T cell exhaustion in HCC. Based on that, we developed a prognostic model for HCC patients—Riskscore = (−0.0053)*C6+(−0.0498)*C7+(−0.1045)*CFHR3. Conclusion C1R, C6, C7, CFP, and CFHR3 could be prognostic biomarkers for patients with HCC.
Collapse
Affiliation(s)
- Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Zhoujing Yang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Gao
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yipiao Liu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
84
|
Complement activation in cancer: Effects on tumor-associated myeloid cells and immunosuppression. Semin Immunol 2022; 60:101642. [PMID: 35842274 DOI: 10.1016/j.smim.2022.101642] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 01/15/2023]
Abstract
Cancer-related inflammation plays a central role in the establishment of tumor-promoting mechanisms. Tumor-associated myeloid cells, which engage in complex interactions with cancer cells, as well as stromal and tumor immune infiltrating cells, promote cancer cell proliferation and survival, angiogenesis, and the generation of an immunosuppressive microenvironment. The complement system is one of the inflammatory mechanisms activated in the tumor microenvironment. Beside exerting anti-tumor mechanisms such as complement-dependent cytotoxicity and phagocytosis induced by therapeutic monoclonal antibodies, the complement system may promote immunosuppression and tumor growth and invasiveness, in particular, through the anaphylatoxins which target both leukocytes and cancer cells. In this review, we will discuss complement-mediated mechanisms acting on leukocytes, in particular on cells of the myelomonocytic cell lineage (macrophages, neutrophils, myeloid derived suppressor cells), which promote myeloid cell recruitment and functional skewing, leading to immunosuppression and resistance to tumor-specific immunity. Pre-clinical studies, which have elucidated the role of complement in activating pro-tumor mechanisms in myeloid cells, showing the relevance of these mechanisms in human, and therapeutic approaches based on complement targeting support the hypothesis that complement directly and indirectly interferes with many of the effector pathways associated with the cancer-immunity cycle, suggesting the relevance of complement targeting to improve responses to immunotherapeutic approaches.
Collapse
|
85
|
Qi R, Qin W. Role of Complement System in Kidney Transplantation: Stepping From Animal Models to Clinical Application. Front Immunol 2022; 13:811696. [PMID: 35281019 PMCID: PMC8913494 DOI: 10.3389/fimmu.2022.811696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Kidney transplantation is a life-saving strategy for patients with end-stage renal diseases. Despite the advances in surgical techniques and immunosuppressive agents, the long-term graft survival remains a challenge. Growing evidence has shown that the complement system, part of the innate immune response, is involved in kidney transplantation. Novel insights highlighted the role of the locally produced and intracellular complement components in the development of inflammation and the alloreactive response in the kidney allograft. In the current review, we provide the updated understanding of the complement system in kidney transplantation. We will discuss the involvement of the different complement components in kidney ischemia-reperfusion injury, delayed graft function, allograft rejection, and chronic allograft injury. We will also introduce the existing and upcoming attempts to improve allograft outcomes in animal models and in the clinical setting by targeting the complement system.
Collapse
Affiliation(s)
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
86
|
Kerdidani D, Aerakis E, Verrou KM, Angelidis I, Douka K, Maniou MA, Stamoulis P, Goudevenou K, Prados A, Tzaferis C, Ntafis V, Vamvakaris I, Kaniaris E, Vachlas K, Sepsas E, Koutsopoulos A, Potaris K, Tsoumakidou M. Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts. J Exp Med 2022; 219:212965. [PMID: 35029648 PMCID: PMC8764966 DOI: 10.1084/jem.20210815] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
A key unknown of the functional space in tumor immunity is whether CD4 T cells depend on intratumoral MHCII cancer antigen recognition. MHCII-expressing, antigen-presenting cancer-associated fibroblasts (apCAFs) have been found in breast and pancreatic tumors and are considered to be immunosuppressive. This analysis shows that antigen-presenting fibroblasts are frequent in human lung non-small cell carcinomas, where they seem to actively promote rather than suppress MHCII immunity. Lung apCAFs directly activated the TCRs of effector CD4 T cells and at the same time produced C1q, which acted on T cell C1qbp to rescue them from apoptosis. Fibroblast-specific MHCII or C1q deletion impaired CD4 T cell immunity and accelerated tumor growth, while inducing C1qbp in adoptively transferred CD4 T cells expanded their numbers and reduced tumors. Collectively, we have characterized in the lungs a subset of antigen-presenting fibroblasts with tumor-suppressive properties and propose that cancer immunotherapies might be strongly dependent on in situ MHCII antigen presentation.
Collapse
Affiliation(s)
- Dimitra Kerdidani
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Emmanouil Aerakis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Kleio-Maria Verrou
- Greek Research Infrastructure for Personalized Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilias Angelidis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Katerina Douka
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Maria-Anna Maniou
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Petros Stamoulis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Katerina Goudevenou
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Alejandro Prados
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Christos Tzaferis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece.,Greek Research Infrastructure for Personalized Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasileios Ntafis
- Animal House Facility, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | | | - Evangelos Kaniaris
- Department of Respiratory Medicine, Sotiria Chest Hospital, Athens, Greece
| | | | - Evangelos Sepsas
- Department of Thoracic Surgery, Sotiria Chest Hospital, Athens, Greece
| | | | | | - Maria Tsoumakidou
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece.,Greek Research Infrastructure for Personalized Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
87
|
Georg P, Astaburuaga-García R, Bonaguro L, Brumhard S, Michalick L, Lippert LJ, Kostevc T, Gäbel C, Schneider M, Streitz M, Demichev V, Gemünd I, Barone M, Tober-Lau P, Helbig ET, Hillus D, Petrov L, Stein J, Dey HP, Paclik D, Iwert C, Mülleder M, Aulakh SK, Djudjaj S, Bülow RD, Mei HE, Schulz AR, Thiel A, Hippenstiel S, Saliba AE, Eils R, Lehmann I, Mall MA, Stricker S, Röhmel J, Corman VM, Beule D, Wyler E, Landthaler M, Obermayer B, von Stillfried S, Boor P, Demir M, Wesselmann H, Suttorp N, Uhrig A, Müller-Redetzky H, Nattermann J, Kuebler WM, Meisel C, Ralser M, Schultze JL, Aschenbrenner AC, Thibeault C, Kurth F, Sander LE, Blüthgen N, Sawitzki B. Complement activation induces excessive T cell cytotoxicity in severe COVID-19. Cell 2022; 185:493-512.e25. [PMID: 35032429 PMCID: PMC8712270 DOI: 10.1016/j.cell.2021.12.040] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022]
Abstract
Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.
Collapse
Affiliation(s)
- Philipp Georg
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rosario Astaburuaga-García
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany; IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; Systems Medicine, Deutsches Zentrum für Neurodegenerativen Erkrankungen (DZNE), Bonn, Germany
| | - Sophia Brumhard
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Michalick
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lena J Lippert
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tomislav Kostevc
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Gäbel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Schneider
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mathias Streitz
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vadim Demichev
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Ioanna Gemünd
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Matthias Barone
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elisa T Helbig
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Hillus
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lev Petrov
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Stein
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hannah-Philine Dey
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Paclik
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christina Iwert
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility, High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Sonja Djudjaj
- Institute of Pathology, University Clinic Aachen, RWTH Aachen, Aachen, Germany
| | - Roman D Bülow
- Institute of Pathology, University Clinic Aachen, RWTH Aachen, Aachen, Germany
| | - Henrik E Mei
- Mass Cytometry Laboratory, DRFZ Berlin, A Leibniz Institute, Berlin, Germany
| | - Axel R Schulz
- Mass Cytometry Laboratory, DRFZ Berlin, A Leibniz Institute, Berlin, Germany
| | - Andreas Thiel
- Si-M/"Der Simulierte Mensch" a Science Framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Berlin, Germany
| | - Irina Lehmann
- Center for Digital Health, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner, Berlin, Germany; Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Stricker
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emanuel Wyler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Markus Landthaler
- IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Peter Boor
- Institute of Pathology, University Clinic Aachen, RWTH Aachen, Aachen, Germany; Department of Nephrology, University Clinic Aachen, RWTH Aachen, Aachen, Germany; Electron Microscopy Facility, University Clinic Aachen, RWTH Aachen, Aachen, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hans Wesselmann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Gießen, Germany
| | - Alexander Uhrig
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Holger Müller-Redetzky
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Meisel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Immunology, Labor Berlin, Charité Vivantes, Berlin, Germany
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; Systems Medicine, Deutsches Zentrum für Neurodegenerativen Erkrankungen (DZNE), Bonn, Germany; PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany
| | - Anna C Aschenbrenner
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; Systems Medicine, Deutsches Zentrum für Neurodegenerativen Erkrankungen (DZNE), Bonn, Germany; PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany; Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte Thibeault
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany; IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
88
|
Kwon JW, Im JH, Lee KY, Yoo BC, Lee JH, Kim KH, Kim JH, Shin SH, Yoo H, Gwak HS. Different Metabolomic and Proteomic Profiles of Cerebrospinal Fluid in Ventricular and Lumbar Compartments in Relation to Leptomeningeal Metastases. Metabolites 2022; 12:80. [PMID: 35050202 PMCID: PMC8778711 DOI: 10.3390/metabo12010080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 12/25/2022] Open
Abstract
The different molecular profiles of cerebrospinal fluid (CSF) between ventricular and lumbar compartments remain elusive, especially in the context of leptomeningeal metastasis (LM), which affects CSF flow. We evaluated CSF metabolomic and proteomic profiles based on the compartments and the diagnosis of spinal LM, proved by MRI from 20 paired ventricular and lumbar CSF samples of LM patients, including 12 spinal LM (+) samples. In metabolome analysis, 9512 low-mass ions (LMIs) were identified-7 LMIs were abundant in all lumbar versus paired ventricular CSF samples, and 3 LMIs were significantly abundant in all ventricular CSF. In comparisons between spinal LM (+) CSF and LM (-) CSF, 105 LMIs were discriminative for spinal LM (+) CSF. In proteome analysis, a total of 1536 proteins were measured. A total of 18 proteins, including complement C3, were more highly expressed in all lumbar CSF, compared with paired ventricular CSF, while 82 proteins, including coagulation factor V, were higher in the ventricular CSF. Of 37 discriminative proteins, including uteroglobin and complement component C8 gamma chain, 4 were higher in all spinal LM (+) CSF versus spinal LM (-) CSF. We further evaluated metabolic pathways associated with these discriminative proteins using the Gene Ontology database. We found that 16/17 spinal LM (+) pathways, including complement activation, were associated with lumbar discriminative proteins, whereas only 2 pathways were associated with ventricular-discriminative proteins. In conclusion, we determined that metabolite and protein profiles differed between paired lumbar and ventricular CSF samples. The protein profiles of spinal LM (+) CSF showed more similarity with the lumbar CSF than the ventricular CSF. Thus, we suggest that CSF LMIs and proteins could reflect LM disease activity and that LM-associated differences in CSF are more likely to be present in the lumbar compartment.
Collapse
Affiliation(s)
- Ji-Woong Kwon
- Neuro-Oncology Clinic, National Cancer Center, Goyang 10408, Korea; (J.-W.K.); (S.H.S.); (H.Y.)
| | - Ji Hye Im
- Department of Cancer Control, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea; (J.H.I.); (K.-Y.L.)
| | - Kyue-Yim Lee
- Department of Cancer Control, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea; (J.H.I.); (K.-Y.L.)
| | - Byong Chul Yoo
- Cancer Diagnostics Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea; (B.C.Y.); (J.H.L.); (K.-H.K.)
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea;
| | - Jun Hwa Lee
- Cancer Diagnostics Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea; (B.C.Y.); (J.H.L.); (K.-H.K.)
| | - Kyung-Hee Kim
- Cancer Diagnostics Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea; (B.C.Y.); (J.H.L.); (K.-H.K.)
- Proteomics Core Facility, Research Core Center, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea;
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Sang Hoon Shin
- Neuro-Oncology Clinic, National Cancer Center, Goyang 10408, Korea; (J.-W.K.); (S.H.S.); (H.Y.)
| | - Heon Yoo
- Neuro-Oncology Clinic, National Cancer Center, Goyang 10408, Korea; (J.-W.K.); (S.H.S.); (H.Y.)
| | - Ho-Shin Gwak
- Neuro-Oncology Clinic, National Cancer Center, Goyang 10408, Korea; (J.-W.K.); (S.H.S.); (H.Y.)
- Department of Cancer Control, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea; (J.H.I.); (K.-Y.L.)
| |
Collapse
|
89
|
Yan Y, Liu XY, Lu A, Wang XY, Jiang LX, Wang JC. Non-viral vectors for RNA delivery. J Control Release 2022; 342:241-279. [PMID: 35016918 PMCID: PMC8743282 DOI: 10.1016/j.jconrel.2022.01.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
RNA-based therapy is a promising and potential strategy for disease treatment by introducing exogenous nucleic acids such as messenger RNA (mRNA), small interfering RNA (siRNA), microRNA (miRNA) or antisense oligonucleotides (ASO) to modulate gene expression in specific cells. It is exciting that mRNA encoding the spike protein of COVID-19 (coronavirus disease 2019) delivered by lipid nanoparticles (LNPs) exhibits the efficient protection of lungs infection against the virus. In this review, we introduce the biological barriers to RNA delivery in vivo and discuss recent advances in non-viral delivery systems, such as lipid-based nanoparticles, polymeric nanoparticles, N-acetylgalactosamine (GalNAc)-siRNA conjugate, and biomimetic nanovectors, which can protect RNAs against degradation by ribonucleases, accumulate in specific tissue, facilitate cell internalization, and allow for the controlled release of the encapsulated therapeutics.
Collapse
Affiliation(s)
- Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiao-Yu Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - An Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiang-Yu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lin-Xia Jiang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China..
| |
Collapse
|
90
|
Chauss D, Freiwald T, McGregor R, Yan B, Wang L, Nova-Lamperti E, Kumar D, Zhang Z, Teague H, West EE, Vannella KM, Ramos-Benitez MJ, Bibby J, Kelly A, Malik A, Freeman AF, Schwartz DM, Portilla D, Chertow DS, John S, Lavender P, Kemper C, Lombardi G, Mehta NN, Cooper N, Lionakis MS, Laurence A, Kazemian M, Afzali B. Autocrine vitamin D signaling switches off pro-inflammatory programs of T H1 cells. Nat Immunol 2022; 23:62-74. [PMID: 34764490 PMCID: PMC7612139 DOI: 10.1038/s41590-021-01080-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
The molecular mechanisms governing orderly shutdown and retraction of CD4+ type 1 helper T (TH1) cell responses remain poorly understood. Here we show that complement triggers contraction of TH1 responses by inducing intrinsic expression of the vitamin D (VitD) receptor and the VitD-activating enzyme CYP27B1, permitting T cells to both activate and respond to VitD. VitD then initiated the transition from pro-inflammatory interferon-γ+ TH1 cells to suppressive interleukin-10+ cells. This process was primed by dynamic changes in the epigenetic landscape of CD4+ T cells, generating super-enhancers and recruiting several transcription factors, notably c-JUN, STAT3 and BACH2, which together with VitD receptor shaped the transcriptional response to VitD. Accordingly, VitD did not induce interleukin-10 expression in cells with dysfunctional BACH2 or STAT3. Bronchoalveolar lavage fluid CD4+ T cells of patients with COVID-19 were TH1-skewed and showed de-repression of genes downregulated by VitD, from either lack of substrate (VitD deficiency) and/or abnormal regulation of this system.
Collapse
Affiliation(s)
- Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
- Medic Clinic III, Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Reuben McGregor
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Luopin Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Estefania Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepcion, Concepcion, Chile
| | - Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Zonghao Zhang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Heather Teague
- Laboratory of Inflammation & Cardiometabolic Diseases, Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Erin E West
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Kevin M Vannella
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Marcos J Ramos-Benitez
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Jack Bibby
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Audrey Kelly
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Amna Malik
- Department of Medicine, Imperial College London, London, UK
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Didier Portilla
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Daniel S Chertow
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Susan John
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Paul Lavender
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nehal N Mehta
- Laboratory of Inflammation & Cardiometabolic Diseases, Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Nichola Cooper
- Department of Medicine, Imperial College London, London, UK
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Arian Laurence
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
- Department of Computer Science, Purdue University, West Lafayette, IN, USA.
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
91
|
Coelho PS, Gouveia C, Pinto MV, Neves C, Cordeiro AI, Neves JF. Recurrent pyogenic infections caused by a novel Gln1420* mutation in the C3 gene. Front Pediatr 2022; 10:1017195. [PMID: 36299691 PMCID: PMC9589888 DOI: 10.3389/fped.2022.1017195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
C3 is a crucial protein of the complement system. Congenital C3 deficiency is extremely rare and manifests through recurrent, severe infections and should always be considered as a differential diagnosis of recurrent pyogenic infections. We report a case of a patient with a novel C3 gene mutation, responsible for complete C3 deficiency with impaired complement system activation and recurrent infections.
Collapse
Affiliation(s)
- Pedro Simão Coelho
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
| | - Catarina Gouveia
- Infectious Disease Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal.,Comprehensive Health Research Centre (CHRC), NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
| | - Conceição Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
| | - Ana Isabel Cordeiro
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal.,Comprehensive Health Research Centre (CHRC), NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal.,Chronic Diseases Research Center (CEDOC), NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| |
Collapse
|
92
|
Jiang H, Chen Q, Zheng S, Guo C, Luo J, Wang H, Zheng X, Weng Z. Association of Complement C3 with Clinical Deterioration Among Hospitalized Patients with COVID-19. Int J Gen Med 2022; 15:849-857. [PMID: 35115811 PMCID: PMC8801723 DOI: 10.2147/ijgm.s348519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
Background The role of the complement system in coronavirus disease 2019 (COVID-19) remains controversial. This study aimed to evaluate the relationship between serum complement C3 levels, clinical worsening, and risk of death in hospitalized patients with COVID-19. Methods Data were collected from 216 adults with COVID-19 admitted to a designated clinical center in Wuhan Union Hospital (China) between February 13, 2020, and February 29, 2020. Their complement C3 levels were measured within 24 h of admission. The primary outcome was a clinical worsening of 2 points on a 6-point ordinal scale. The secondary outcome was all-causes of death. Inverse probability of treatment weighting (IPTW) analysis was conducted to adjust for the baseline confounders. Results The median value of C3 was 0.89 (interquartile range, 0.78–1.01) g/L. Clinical worsening occurred in 12.3% (7/57) and 2.5% (4/159) of patients with baseline C3 levels < and ≥0.79 g/L, respectively (hazard ratio [HR], 5.22; 95% confidence interval [CI], 1.53–17.86). After IPTW adjustment, the risk for clinical worsening was 4-fold greater (weighted HR, 4.61; 95% CI, 1.16–18.4) in patients with C3 levels less than 0.79 g/L comparatively. The sensitivity analyses revealed the robustness of the results. No significant associations between C3 levels and death were observed on unadjusted (HR, 2.92; 95% CI, 0.73–11.69) and IPTW analyses (weighted HR, 3.78; 95% CI, 0.84–17.04). Conclusion Low complement C3 levels are associated with a higher risk for clinical worsening among inpatients with COVID-19. The serum C3 levels may contribute to the identification of patient populations that could benefit from therapeutic complement inhibition.
Collapse
Affiliation(s)
- Hongbo Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Qiaosen Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shaoping Zheng
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chunxia Guo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jinzhuo Luo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hua Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhihong Weng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Correspondence: Zhihong Weng, Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, People’s Republic of China, Email
| |
Collapse
|
93
|
Importance of T, NK, CAR T and CAR NK Cell Metabolic Fitness for Effective Anti-Cancer Therapy: A Continuous Learning Process Allowing the Optimization of T, NK and CAR-Based Anti-Cancer Therapies. Cancers (Basel) 2021; 14:cancers14010183. [PMID: 35008348 PMCID: PMC8782435 DOI: 10.3390/cancers14010183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer treatments are evolving at a very rapid pace. Some of the most novel anti-cancer medicines under development rely on the modification of immune cells in order to transform them into potent tumor-killing cells. However, the tumor microenvironment (TME) is competing for nutrients with these harnessed immune cells and therefore paralyzes their metabolic effective and active anti-cancer activities. Here we describe strategies to overcome these hurdles imposed on immune cell activity, which lead to therapeutic approaches to enhance metabolic fitness of the patient’s immune system with the objective to improve their anti-cancer capacity. Abstract Chimeric antigen receptor (CAR) T and CAR NK cell therapies opened new avenues for cancer treatment. Although original successes of CAR T and CAR NK cells for the treatment of hematological malignancies were extraordinary, several obstacles have since been revealed, in particular their use for the treatment of solid cancers. The tumor microenvironment (TME) is competing for nutrients with T and NK cells and their CAR-expressing counterparts, paralyzing their metabolic effective and active states. Consequently, this can lead to alterations in their anti-tumoral capacity and persistence in vivo. High glucose uptake and the depletion of key amino acids by the TME can deprive T and NK cells of energy and building blocks, which turns them into a state of anergy, where they are unable to exert cytotoxic activity against cancer cells. This is especially true in the context of an immune-suppressive TME. In order to re-invigorate the T, NK, CAR T and CAR NK cell-mediated antitumor response, the field is now attempting to understand how metabolic pathways might change T and NK responses and functions, as well as those from their CAR-expressing partners. This revealed ways to metabolically rewire these cells by using metabolic enhancers or optimizing pre-infusion in vitro cultures of these cells. Importantly, next-generation CAR T and CAR NK products might include in the future the necessary metabolic requirements by improving their design, manufacturing process and other parameters. This will allow the overcoming of current limitations due to their interaction with the suppressive TME. In a clinical setting, this might improve their anti-cancer effector activity in synergy with immunotherapies. In this review, we discuss how the tumor cells and TME interfere with T and NK cell metabolic requirements. This may potentially lead to therapeutic approaches that enhance the metabolic fitness of CAR T and CAR NK cells, with the objective to improve their anti-cancer capacity.
Collapse
|
94
|
Niyonzima N, Rahman J, Kunz N, West EE, Freiwald T, Desai JV, Merle NS, Gidon A, Sporsheim B, Lionakis MS, Evensen K, Lindberg B, Skagen K, Skjelland M, Singh P, Haug M, Ruseva MM, Kolev M, Bibby J, Marshall O, O’Brien B, Deeks N, Afzali B, Clark RJ, Woodruff TM, Pryor M, Yang ZH, Remaley AT, Mollnes TE, Hewitt SM, Yan B, Kazemian M, Kiss MG, Binder CJ, Halvorsen B, Espevik T, Kemper C. Mitochondrial C5aR1 activity in macrophages controls IL-1β production underlying sterile inflammation. Sci Immunol 2021; 6:eabf2489. [PMID: 34932384 PMCID: PMC8902698 DOI: 10.1126/sciimmunol.abf2489] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While serum-circulating complement destroys invading pathogens, intracellularly active complement, termed the “complosome,” functions as a vital orchestrator of cell-metabolic events underlying T cell effector responses. Whether intracellular complement is also nonredundant for the activity of myeloid immune cells is currently unknown. Here, we show that monocytes and macrophages constitutively express complement component (C) 5 and generate autocrine C5a via formation of an intracellular C5 convertase. Cholesterol crystal sensing by macrophages induced C5aR1 signaling on mitochondrial membranes, which shifted ATP production via reverse electron chain flux toward reactive oxygen species generation and anaerobic glycolysis to favor IL-1β production, both at the transcriptional level and processing of pro–IL-1β. Consequently, atherosclerosis-prone mice lacking macrophage-specific C5ar1 had ameliorated cardiovascular disease on a high-cholesterol diet. Conversely, inflammatory gene signatures and IL-1β produced by cells in unstable atherosclerotic plaques of patients were normalized by a specific cell-permeable C5aR1 antagonist. Deficiency of the macrophage cell-autonomous C5 system also protected mice from crystal nephropathy mediated by folic acid. These data demonstrate the unexpected intracellular formation of a C5 convertase and identify C5aR1 as a direct modulator of mitochondrial function and inflammatory output from myeloid cells. Together, these findings suggest that the complosome is a contributor to the biologic processes underlying sterile inflammation and indicate that targeting this system could be beneficial in macrophage-dependent diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Nathalie Niyonzima
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jubayer Rahman
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Natalia Kunz
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Erin E. West
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Jigar V. Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas S. Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Alexandre Gidon
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjørnar Sporsheim
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central Administration, St. Olavs Hospital, University Hospital in Trondheim, Trondheim, Norway
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristin Evensen
- Department of Neurology, Vestre Viken, Drammen Hospital, Drammen, Norway
| | - Beate Lindberg
- Department of Cardiothoracic Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Karolina Skagen
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Mona Skjelland
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Parul Singh
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Markus Haug
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Marieta M. Ruseva
- BG2, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Martin Kolev
- BG2, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Jack Bibby
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Olivia Marshall
- Discovery DMPK Bioanalysis Unit, GlaxoSmithKline, Stevenage, UK
| | - Brett O’Brien
- Discovery DMPK Bioanalysis Unit, GlaxoSmithKline, Stevenage, UK
| | - Nigel Deeks
- Discovery DMPK Bioanalysis Unit, GlaxoSmithKline, Stevenage, UK
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Richard J. Clark
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Milton Pryor
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Tom E. Mollnes
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- K.G. Jebsen TREC, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Stephen M. Hewitt
- Laboratory of Pathology, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Bingyu Yan
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Máté G. Kiss
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Terje Espevik
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
95
|
Qiao X, Shao MM, Yi FS, Shi HZ. Complement Component C1q as an Emerging Biomarker for the Diagnosis of Tuberculous Pleural Effusion. Front Microbiol 2021; 12:765471. [PMID: 34790186 PMCID: PMC8591783 DOI: 10.3389/fmicb.2021.765471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objective: The accurate differential diagnosis of tuberculous pleural effusion (TPE) from other exudative pleural effusions is often challenging. We aimed to validate the accuracy of complement component C1q in pleural fluid (PF) in diagnosing TPE. Methods: The level of C1q protein in the PF from 49 patients with TPE and 61 patients with non-tuberculous pleural effusion (non-TPE) was quantified by enzyme-linked immunosorbent assay, and the diagnostic performance was assessed by receiver operating characteristic (ROC) curves based on the age and gender of the patients. Results: The statistics showed that C1q could accurately diagnose TPE. Regardless of age and gender, with a cutoff of 6,883.9 ng/mL, the area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of C1q for discriminating TPE were 0.898 (95% confidence interval: 0.825-0.947), 91.8 (80.4-97.7), 80.3 (68.2-89.4), 78.9 (69.2-86.2), and 92.5 (82.6-96.9), respectively. In subgroup analysis, the greatest diagnostic accuracy was achieved in the younger group (≤ 50 years of age) with an AUC of 0.981 (95% confidence interval: 0.899-0.999) at the cutoff of 6,098.0 ng/mL. The sensitivity, specificity, PLR, NLR, PPV, and NPV of C1q were 95.0 (83.1-99.4), 92.3 (64.0-99.8), 97.4 (85.2-99.6), and 85.7 (60.6-95.9), respectively. Conclusion: Complement component C1q protein was validated by this study to be a promising biomarker for diagnosing TPE with high diagnostic accuracy, especially among younger patients.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Respiratory and Critical Care Medicine, Clinical Center for Pleural Diseases, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ming-Ming Shao
- Department of Respiratory and Critical Care Medicine, Clinical Center for Pleural Diseases, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Clinical Center for Pleural Diseases, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Clinical Center for Pleural Diseases, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
96
|
Feng P, Yang G, Zhang W, Zhang L, Wu J, Yang L. Early pregnancy regulates expression of complement components in ovine liver. Anim Sci J 2021; 92:e13660. [PMID: 34786795 DOI: 10.1111/asj.13660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/29/2021] [Accepted: 10/21/2021] [Indexed: 01/01/2023]
Abstract
Complement pathways participate in the regulation of innate immune system, and complement activation is inhibited in normal pregnancy. The liver plays key roles in the modulation of immunity and tolerance, but it is unclear that early pregnancy induces the changes in expression of complement components in the ovine maternal liver. The aim of the present study was to explore the expression of complement components in the liver using quantitative real-time polymerase chain reaction (PCR), Western blot, and immunohistochemistry. Maternal livers were collected on Day 16 of the estrous cycle and Days 13, 16, and 25 of gestation. The results indicated that early pregnancy suppressed the expression of C1q, C1r, C1s, C2, C4a, C5b, and C9 in the maternal liver, but C3 expression was increased. In addition, C3 protein was located in the endothelial cells of the proper hepatic arteries and portal veins and hepatocytes. In summary, the downregulaltion of C1q, C1r, C1s, C2, C4a, C5b, and C9 may be involved in the suppression of complement activation, and upregulation of C3 is related to the modulation of maternal immune tolerance in ovine liver.
Collapse
Affiliation(s)
- Pengfei Feng
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Gengxin Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Weifeng Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Jiaxuan Wu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
97
|
Dahmani M, Cook JH, Zhu JC, Riley SP. Contribution of classical complement activation and IgM to the control of Rickettsia infection. Mol Microbiol 2021; 116:1476-1488. [PMID: 34725868 PMCID: PMC8955150 DOI: 10.1111/mmi.14839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Pathogenic Rickettsia are obligate intracellular bacteria and the etiologic agents of many life‐threatening infectious diseases. Due to the serious nature of these infections, it is imperative to both identify the responsive immune sensory pathways and understand the associated immune mechanisms that restrict Rickettsia proliferation. Previous studies have demonstrated that the mammalian complement system is both activated during Rickettsia infection and contributes to the immune response to infection. To further define this component of the mammalian anti‐Rickettsia immune response, we sought to identify the mechanism(s) of complement activation during Rickettsia infection. We have employed a series of in vitro and in vivo models of infection to investigate the role of the classical complement activation pathway during Rickettsia infection. Depletion or elimination of complement activity demonstrates that both C1q and pre‐existing IgM contribute to complement activation; thus implicating the classical complement system in Rickettsia‐mediated complement activation. Elimination of the classical complement pathway from mice increases susceptibility to R. australis infection with both increased bacterial loads in multiple tissues and decreased immune activation markers. This study highlights the role of the classical complement pathway in immunity against Rickettsia and implicates resident Rickettsia‐responsive IgM in the response to infection.
Collapse
Affiliation(s)
- Mustapha Dahmani
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| | - Jack H Cook
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| | - Jinyi C Zhu
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| | - Sean P Riley
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
98
|
Kalinowski A, Liliental J, Anker LA, Linkovski O, Culbertson C, Hall JN, Pattni R, Sabatti C, Noordsy D, Hallmayer JF, Mellins ED, Ballon JS, O'Hara R, Levinson DF, Urban AE. Increased activation product of complement 4 protein in plasma of individuals with schizophrenia. Transl Psychiatry 2021; 11:486. [PMID: 34552056 PMCID: PMC8458380 DOI: 10.1038/s41398-021-01583-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
Structural variation in the complement 4 gene (C4) confers genetic risk for schizophrenia. The variation includes numbers of the increased C4A copy number, which predicts increased C4A mRNA expression. C4-anaphylatoxin (C4-ana) is a C4 protein fragment released upon C4 protein activation that has the potential to change the blood-brain barrier (BBB). We hypothesized that elevated plasma levels of C4-ana occur in individuals with schizophrenia (iSCZ). Blood was collected from 15 iSCZ with illness duration < 5 years and from 14 healthy controls (HC). Plasma C4-ana was measured by radioimmunoassay. Other complement activation products C3-ana, C5-ana, and terminal complement complex (TCC) were also measured. Digital-droplet PCR was used to determine C4 gene structural variation state. Recombinant C4-ana was added to primary brain endothelial cells (BEC) and permeability was measured in vitro. C4-ana concentration was elevated in plasma from iSCZ compared to HC (mean = 654 ± 16 ng/mL, 557 ± 94 respectively, p = 0.01). The patients also carried more copies of the C4AL gene and demonstrated a positive correlation between plasma C4-ana concentrations and C4A gene copy number. Furthermore, C4-ana increased the permeability of a monolayer of BEC in vitro. Our findings are consistent with a specific role for C4A protein in schizophrenia and raise the possibility that its activation product, C4-ana, increases BBB permeability. Exploratory analyses suggest the novel hypothesis that the relationship between C4-ana levels and C4A gene copy number could also be altered in iSCZ, suggesting an interaction with unknown genetic and/or environmental risk factors.
Collapse
Affiliation(s)
- Agnieszka Kalinowski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Joanna Liliental
- Translational Applications Service Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Translational Research and Applied Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lauren A Anker
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Omer Linkovski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
| | - Collin Culbertson
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jacob N Hall
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- The Neurology Center of Southern California, Temecula, CA, 92592, USA
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chiara Sabatti
- Department of Biomedical Data Science and Statistics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Douglas Noordsy
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joachim F Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jacob S Ballon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Douglas F Levinson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
99
|
Pergolizzi JV, Varrassi G, Magnusson P, Breve F, Raffa RB, Christo PJ, Chopra M, Paladini A, LeQuang JA, Mitchell K, Coluzzi F. Pharmacologic agents directed at the treatment of pain associated with maladaptive neuronal plasticity. Expert Opin Pharmacother 2021; 23:105-116. [PMID: 34461795 DOI: 10.1080/14656566.2021.1970135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The definition of nociplastic pain in 2016 has changed the way maladaptive chronic pain is viewed in that it may emerge without neural lesions or neural disease. Many endogenous and pharmacologic substances are being investigated for their role in treating the pain associated with neuronal plasticity. AREAS COVERED The authors review promising pharmacologic agents for the treatment of pain associated with maladaptive neuronal plasticity. The authors then provide the reader with their expert opinion and provide their perspectives for the future. EXPERT OPINION An imbalance between the amplification of ascending pain signals and the poor activation of descending inhibitory signals may be at the root of many chronic pain syndromes. The inhibitory activity of noradrenaline reuptake may play a role in neuropathic and nociplastic analgesia. A better understanding of the brain's pain matrix, its signaling cascades, and the complex bidirectional communication between the immune system and the nervous system may help meet the urgent and unmet medical need for safe, effective chronic pain treatment, particularly for pain with a neuropathic and/or nociplastic component.
Collapse
Affiliation(s)
| | | | - Peter Magnusson
- Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden.,Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Frank Breve
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, USA
| | - Robert B Raffa
- College of Pharmacy (Adjunct), University of Arizona, Tucson, USA.,Temple University School of Pharmacy (Professor Emeritus), Philadelphia, USA
| | - Paul J Christo
- Associate Professor, the Johns Hopkins School of Medicine, Baltimore, USA
| | | | | | | | | | - Flaminia Coluzzi
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
100
|
Frazer-Abel A, Kirschfink M, Prohászka Z. Expanding Horizons in Complement Analysis and Quality Control. Front Immunol 2021; 12:697313. [PMID: 34434189 PMCID: PMC8381195 DOI: 10.3389/fimmu.2021.697313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023] Open
Abstract
Complement not only plays a key role in host microbial defense but also modulates the adaptive immune response through modification of T- and B-cell reactivity. Moreover, a normally functioning complement system participates in hematopoiesis, reproduction, lipid metabolism, and tissue regeneration. Because of its powerful inflammatory potential, multiple regulatory proteins are needed to prevent potential tissue damage. In clinical practice, dysregulation and overactivation of the complement system are major causes of a variety of inflammatory and autoimmune diseases ranging from nephropathies, age-related macular degeneration (AMD), and systemic lupus erythematosus (SLE) to graft rejection, sepsis, and multi-organ failure. The clinical importance is reflected by the recent development of multiple drugs targeting complement with a broad spectrum of indications. The recognition of the role of complement in diverse diseases and the advent of complement therapeutics has increased the number of laboratories and suppliers entering the field. This has highlighted the need for reliable complement testing. The relatively rapid expansion in complement testing has presented challenges for a previously niche field. This is exemplified by the issue of cross-reactivity of complement-directed antibodies and by the challenges of the poor stability of many of the complement analytes. The complex nature of complement testing and increasing clinical demand has been met in the last decade by efforts to improve the standardization among laboratories. Initiated by the IUIS/ICS Committee for the Standardization and Quality Assessment in Complement Measurements 14 rounds of external quality assessment since 2010 resulted in improvements in the consistency of testing across participating institutions, while extending the global reach of the efforts to more than 200 laboratories in 30 countries. Worldwide trends of assay availability, usage, and analytical performance are summarized based on the past years’ experiences. Progress in complement analysis has been facilitated by the quality assessment and standardization efforts that now allow complement testing to provide a comprehensive insight into deficiencies and the activation state of the system. This in turn enables clinicians to better define disease severity, evolution, and response to therapy.
Collapse
Affiliation(s)
| | | | - Zoltán Prohászka
- Department of Medicine and Hematology, Research Laboratory Semmelweis University, Budapest, Hungary
| |
Collapse
|