51
|
McLean MR, Lu LL, Kent SJ, Chung AW. An Inflammatory Story: Antibodies in Tuberculosis Comorbidities. Front Immunol 2019; 10:2846. [PMID: 31921122 PMCID: PMC6913197 DOI: 10.3389/fimmu.2019.02846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) resides in a quarter of the world's population and is the causative agent for tuberculosis (TB), the most common infectious reason of death in humans today. Although cellular immunity has been firmly established in the control of Mtb, there is growing evidence that antibodies may also modulate the infection. More specifically, certain antibody features are associated with inflammation and are divergent in different states of human infection and disease. Importantly, TB impacts not just the healthy but also those with chronic conditions. While HIV represents the quintessential comorbid condition for TB, recent epidemiological evidence shows that additional chronic conditions such as diabetes and kidney disease are rising. In fact, the prevalence of diabetes as a comorbid TB condition is now higher than that of HIV. These chronic diseases are themselves independently associated with pro-inflammatory immune states that encompass antibody profiles. This review discusses isotypes, subclasses, post-translational modifications and Fc-mediated functions of antibodies in TB infection and in the comorbid chronic conditions of HIV, diabetes, and kidney diseases. We propose that inflammatory antibody profiles, which are a marker of active TB, may be an important biomarker for detection of TB disease progression within comorbid individuals. We highlight the need for future studies to determine which inflammatory antibody profiles are the consequences of comorbidities and which may potentially contribute to TB reactivation.
Collapse
Affiliation(s)
- Milla R McLean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lenette L Lu
- Division of Infectious Disease and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Infectious Diseases Department, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Brisbane, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, SA, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
52
|
Human Immunodeficiency Virus C.1086 Envelope gp140 Protein Boosts following DNA/Modified Vaccinia Virus Ankara Vaccination Fail To Enhance Heterologous Anti-V1V2 Antibody Response and Protection against Clade C Simian-Human Immunodeficiency Virus Challenge. J Virol 2019; 93:JVI.00934-19. [PMID: 31341049 DOI: 10.1128/jvi.00934-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022] Open
Abstract
The RV144 human immunodeficiency virus type 1 (HIV-1) vaccine trial showed a strong association between anti-gp70 V1V2 scaffold (V1V2) and anti-V2 hot spot peptide (V2 HS) antibody responses and reduced risk of HIV infection. Accordingly, a primary goal for HIV vaccines is to enhance the magnitude and breadth of V1V2 and V2 HS antibody responses in addition to neutralizing antibodies. Here, we tested the immunogenicity and efficacy of HIV-1 C.1086 gp140 boosts administered sequentially after priming with CD40L-adjuvanted DNA/simian-human immunodeficiency virus (SHIV) and boosting with modified vaccinia virus Ankara (MVA)-SHIV vaccines in rhesus macaques. The DNA/MVA vaccination induced robust vaccine-specific CD4 and CD8 T cell responses with a polyfunctional profile. Two gp140 booster immunizations induced very high levels (∼2 mg/ml) of gp140 binding antibodies in serum, with strong reactivity directed against the homologous (C.1086) V1V2, V2 HS, V3, and gp41 immunodominant (ID) proteins. However, the vaccine-induced antibody showed 10-fold (peak) and 32-fold (prechallenge) weaker binding to the challenge virus (SHIV1157ipd3N4) V1V2 and failed to bind to the challenge virus V2 HS due to a single amino acid change. Point mutations in the immunogen V2 HS to match the V2 HS in the challenge virus significantly diminished the binding of vaccine-elicited antibodies to membrane-anchored gp160. Both vaccines failed to protect from infection following repeated SHIV1157ipd3N4 intrarectal challenges. However, only the protein-boosted animals showed enhanced viral control. These results demonstrate that C.1086 gp140 protein immunizations administered following DNA/MVA vaccination do not significantly boost heterologous V1V2 and V2 HS responses and fail to enhance protection against heterologous SHIV challenge.IMPORTANCE HIV, the virus that causes AIDS, is responsible for millions of infections and deaths annually. Despite intense research for the past 25 years, there remains no safe and effective vaccine available. The significance of this work is in identifying the pros and cons of adding a protein boost to an already well-established DNA/MVA HIV vaccine that is currently being tested in the clinic. Characterizing the effects of the protein boost can allow researchers going forward to design vaccines that generate responses that will be more effective against HIV. Our results in rhesus macaques show that boosting with a specific HIV envelope protein does not significantly boost antibody responses that were identified as immune correlates of protection in a moderately successful RV144 HIV vaccine trial in humans and highlight the need for the development of improved HIV envelope immunogens.
Collapse
|
53
|
Damm D, Rojas-Sánchez L, Theobald H, Sokolova V, Wyatt RT, Überla K, Epple M, Temchura V. Calcium Phosphate Nanoparticle-Based Vaccines as a Platform for Improvement of HIV-1 Env Antibody Responses by Intrastructural Help. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1389. [PMID: 31569763 PMCID: PMC6835376 DOI: 10.3390/nano9101389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022]
Abstract
Incorporation of immunodominant T-helper epitopes of licensed vaccines into virus-like particles (VLP) allows to harness T-helper cells induced by the licensed vaccines to provide intrastructural help (ISH) for B-cell responses against the surface proteins of the VLPs. To explore whether ISH could also improve antibody responses to calcium phosphate (CaP) nanoparticle vaccines we loaded the nanoparticle core with a universal T-helper epitope of Tetanus toxoid (p30) and functionalized the surface of CaP nanoparticles with stabilized trimers of the HIV-1 envelope (Env) resulting in Env-CaP-p30 nanoparticles. In contrast to soluble Env trimers, Env containing CaP nanoparticles induced activation of naïve Env-specific B-cells in vitro. Mice previously vaccinated against Tetanus raised stronger humoral immune responses against Env after immunization with Env-CaP-p30 than mice not vaccinated against Tetanus. The enhancing effect of ISH on anti-Env antibody levels was not attended with increased Env-specific IFN-γ CD4 T-cell responses that otherwise may potentially influence the susceptibility to HIV-1 infection. Thus, CaP nanoparticles functionalized with stabilized HIV-1 Env trimers and heterologous T-helper epitopes are able to recruit heterologous T-helper cells induced by a licensed vaccine and improve anti-Env antibody responses by intrastructural help.
Collapse
Affiliation(s)
- Dominik Damm
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Leonardo Rojas-Sánchez
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45141 Essen, Germany.
| | - Hannah Theobald
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45141 Essen, Germany.
| | - Richard T Wyatt
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45141 Essen, Germany.
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
54
|
Primary Human B Cells at Different Differentiation and Maturation Stages Exhibit Distinct Susceptibilities to Vaccinia Virus Binding and Infection. J Virol 2019; 93:JVI.00973-19. [PMID: 31292245 DOI: 10.1128/jvi.00973-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023] Open
Abstract
Vaccinia virus (VACV), the prototypical member of the poxvirus family, was used as a live-virus vaccine to eradicate smallpox worldwide and has recently received considerable attention because of its potential as a prominent vector for the development of vaccines against infectious diseases and as an oncolytic virus for cancer therapy. Studies have demonstrated that VACV exhibits an extremely strong bias for binding to and infection of primary human antigen-presenting cells (APCs), including monocytes, macrophages, and dendritic cells. However, very few studies have assessed the interactions of VACV with primary human B cells, a main type of professional APCs. In this study, we evaluated the susceptibility of primary human peripheral B cells at various differentiation and maturation stages to VACV binding, infection, and replication. We found that plasmablasts were resistant to VACV binding, while other B subsets, including transitional, mature naive, memory, and plasma cells, were highly susceptible to VACV binding. VACV binding preference was likely associated with differential expression of chemokine receptors, particularly CXCR5. Infection studies showed that plasmablast, plasma, transitional, and mature naive B cells were resistant to VACV infection, while memory B cells were preferentially infected. VACV infection in ex vivo B cells was abortive, which occurred at the stage of late viral gene expression. In contrast, activated B cells were permissive to productive VACV infection. Thus, primary human B cells at different differentiation stages exhibit distinct susceptibilities to VACV binding and infection, and the infections are abortive and productive in ex vivo and activated B cells, respectively.IMPORTANCE Our results provide critical information to the field of poxvirus binding and infection tropism. We demonstrate that VACV preferentially infects memory B cells that play an important role in a rapid and vigorous antibody-mediated immune response upon reinfection by a pathogen. Additionally, this work highlights the potential of B cells as natural cellular models to identify VACV receptors or dissect the molecular mechanisms underlying key steps of the VACV life cycle, such as binding, penetration, entry, and replication in primary human cells. The understanding of VACV biology in human primary cells is essential for the development of a safe and effective live-virus vector for oncolytic virus therapy and vaccines against smallpox, other pathogens, and cancer.
Collapse
|
55
|
Butler AL, Fallon JK, Alter G. A Sample-Sparing Multiplexed ADCP Assay. Front Immunol 2019; 10:1851. [PMID: 31456799 PMCID: PMC6700248 DOI: 10.3389/fimmu.2019.01851] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
Antibodies serve as the primary correlate of protection following most clinically approved vaccines and are thought to confer protection in part through their ability to block (neutralize) infection. Increasingly, studies have shown that beyond their blocking activities, the ability of antibodies to leverage the innate immune response may serve a vital role in protection from infection. Specifically, antibodies can drive phagocytosis, complement activation, and cellular cytotoxicity by interacting with Fc-receptors found on all innate immune cells. Measuring the capacity of antibodies to induce these functions has become critical for the identification of correlates of protection in large-scale vaccine trials. Therefore, there is a growing need to develop robust, high throughput assays able to interrogate the functional capacity of innate immune recruiting antibodies. However, in many instances, only small sample volumes are available. Nevertheless, profiling antibody functions across many pathogen-associated antigens or across global intra-pathogen variants is in high demand, making sample sparing approaches to perform this antibody evaluation critical. Here we describe the development of an approach to interrogate the functional activity of antibodies in serum against up to 5 antigen targets simultaneously. A single bead-based cellular assay was adapted to accommodate 5 different fluorescently colored beads, allowing for the concurrent investigation of antibody responses directed against multiple antigens in a single well. The multiplexed assay was as sensitive, specific, and accurate as the single antigen assay and robustly able to assess functional differences mediated by antibodies across different samples. These findings show multiplexing allows for accurate and more efficient analysis of antibody-mediated effector profiles.
Collapse
Affiliation(s)
| | | | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| |
Collapse
|
56
|
Tohidi F, Sadat SM, Bolhassani A, Yaghobi R, Larijani MS. Induction of a Robust Humoral Response using HIV-1 VLPMPER-V3 as a Novel Candidate Vaccine in BALB/c Mice. Curr HIV Res 2019; 17:33-41. [DOI: 10.2174/1570162x17666190306124218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/10/2023]
Abstract
Background:
Several approaches have not been successful to suppress HIV (Human immunodeficiency
virus) infection among infected individuals or to prevent it yet. In order to expand
strong HIV specific humoral and cellular responses, Virus-like particles (VLPs) as potential vaccines
show significant increase in neutralizing antibodies secretion, T-cell count and also secretion
of cytokines.
Objective:
This study aimed at immunological evaluation of VLPs harboring high copy of MPERV3
in BALB/c mice.
Methods:
Female BALB/c mice were immunized with homologous and heterologous primeboosting
regimens of HIV-1 VLPMPER-V3. Their immune responses were evaluated for humoral responses
(Total IgG and IgG isotyping) and cellular responses (IFN-γ, IL-5 secretion, in vitro CTL
assay and T cell proliferation) and compared in immunized mice.
Results:
The data showed robust induction of humoral response in mice groups which received different
regimens of VLP. Furthermore, analysis of cytokine profile indicated that the highest IL-5 secretion
was related to VLP+M50 group and confirmed the dominance of Th2 immunity in this
group.
Conclusion:
This study showed that VLP MPER-V3 as a potential vaccine candidate has the potency as
an effective prophylactic vaccine and this finding guarantees further investigations to achieve a
promising HIV-1 vaccine candidate.
Collapse
Affiliation(s)
- Fatemeh Tohidi
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mona Sadat Larijani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
57
|
Affiliation(s)
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
| |
Collapse
|
58
|
Shacklett BL, Blanco J, Hightow-Weidman L, Mgodi N, Alcamí J, Buchbinder S, Chirenje M, Dabee S, Diallo M, Dumchev K, Herrera C, Levy ME, Martin Gayo E, Makoah NA, Mitchell KM, Mugwanya K, Reddy K, Rodríguez ML, Rodriguez-Garcia M, Shover CL, Shrivastava T, Tomaras G, Van Diepen M, Walia M, Warren M, Manrique A, Thyagarajan B, Torri T. HIV Research for Prevention 2018: From Research to Impact Conference Summary and Highlights. AIDS Res Hum Retroviruses 2019; 35:598-607. [PMID: 31007035 PMCID: PMC6602109 DOI: 10.1089/aid.2019.0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The HIV Research for Prevention (HIVR4P) conference is dedicated to advancing HIV prevention research, responding to a growing consensus that effective and durable prevention will require a combination of approaches as well as unprecedented collaboration among scientists, practitioners, and community workers from different fields and geographic areas. The conference theme in 2018, "From Research to Impact," acknowledged an increasing focus on translation of promising research findings into practical, accessible, and affordable HIV prevention options for those who need them worldwide. HIVR4P 2018 was held in Madrid, Spain, on 21-25 October, with >1,400 participants from 52 countries around the globe, representing all aspects of HIV prevention research and implementation. The program included 137 oral and 610 poster presentations. This article presents a brief summary of highlights from the conference. More detailed information, complete abstracts as well as webcasts and daily Rapporteur summaries may be found on the conference website.
Collapse
Affiliation(s)
- Barbara L. Shacklett
- Medical Microbiology and Immunology, University of California, Davis, Davis, California
| | - Julià Blanco
- IrsiCaixa, IGTP, Barcelona, Spain
- Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-UCC, Barcelona, Spain
| | - Lisa Hightow-Weidman
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Nyaradzo Mgodi
- University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - José Alcamí
- AIDS Immunopathology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Susan Buchbinder
- San Francisco Department of Public Health, San Francisco, California
| | - Mike Chirenje
- University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Smritee Dabee
- Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Mamadou Diallo
- Department of Social and Preventive Medicine, University Laval, Quebec, Canada
| | | | - Carolina Herrera
- Faculty of Medicine, Department of Medicine, Imperial College London, London, United Kingdom
| | - Matthew E. Levy
- Department of Epidemiology and Biostatistics, The George Washington University, Washington, District of Columbia
| | - Enrique Martin Gayo
- Immunology Department, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nigel Aminake Makoah
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Kate M. Mitchell
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
- HPTN Modelling Centre, Imperial College London, London, United Kingdom
| | - Kenneth Mugwanya
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Krishnaveni Reddy
- Wits Reproductive Health and HIV Institute, University of the Witwatersrand, School of Clinical Medicine, Johannesburg, South Africa
| | | | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Chelsea L. Shover
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California
| | - Tripti Shrivastava
- Department of Infection and Immunology, Translational Health Science and Technology Institute, Faridabad, India
| | - Georgia Tomaras
- Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| | - Michiel Van Diepen
- Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
59
|
Dacoba T, Omange RW, Li H, Crecente-Campo J, Luo M, Alonso MJ. Polysaccharide Nanoparticles Can Efficiently Modulate the Immune Response against an HIV Peptide Antigen. ACS NANO 2019; 13:4947-4959. [PMID: 30964270 PMCID: PMC6607401 DOI: 10.1021/acsnano.8b07662] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/08/2019] [Indexed: 05/30/2023]
Abstract
The development of an effective HIV vaccine continues to be a major health challenge since, so far, only the RV144 trial has demonstrated a modest clinical efficacy. Recently, the targeting of the 12 highly conserved protease cleavage sites (PCS1-12) has been presented as a strategy seeking to hamper the maturation and infectivity of HIV. To pursue this line of research, and because peptide antigens have low immunogenicity, we have included these peptides in engineered nanoparticles, aiming at overcoming this limitation. More specifically, we investigated whether the covalent attachment of a PCS peptide (PCS5) to polysaccharide-based nanoparticles, and their coadministration with polyinosinic:polycytidylic acid (poly(I:C)), improved the generated immune response. To this end, PCS5 was first conjugated to two different polysaccharides (chitosan and hyaluronic acid) through either a stable or a cleavable bond and then associated with an oppositely charged polymer (dextran sulfate and chitosan) and poly(I:C) to form the nanoparticles. Nanoparticles associating PCS5 by ionic interactions were used in this study as the control formulation. In vivo, all nanosystems elicited high anti-PCS5 antibodies. Nanoparticles containing PCS5 conjugated and poly(I:C) seemed to induce the strongest activation of antigen-presenting cells. Interestingly, T cell activation presented different kinetics depending on the prototype. These findings show that both the nanoparticle composition and the conjugation of the HIV peptide antigen may play an important role in the generation of humoral and cellular responses.
Collapse
Affiliation(s)
- Tamara
G. Dacoba
- Center
for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus
Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, School of
Pharmacy, Campus Vida, Universidade de Santiago
de Compostela, Santiago de Compostela 15782, Spain
| | - Robert W. Omange
- Department
of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Hongzhao Li
- Department
of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - José Crecente-Campo
- Center
for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus
Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, School of
Pharmacy, Campus Vida, Universidade de Santiago
de Compostela, Santiago de Compostela 15782, Spain
| | - Ma Luo
- Department
of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- National
Microbiology Laboratory, Public Health Agency
of Canada, Winnipeg, MB R3E 3L5, Canada
| | - Maria Jose Alonso
- Center
for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus
Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, School of
Pharmacy, Campus Vida, Universidade de Santiago
de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW The design of an HIV vaccine remains an elusive but top priority. Data from the non-human primate model and the first moderately protective HIV vaccine trial (RV144) point to a role for qualitative changes in humoral immune functions in protection from infection. Here, we review the current understanding of the antibody response throughout HIV infection, the known correlates of protection, and current strategies to manipulate antibodies to put an end to the epidemic. RECENT FINDINGS Recent studies point to innate immune-recruiting antibody function in preventing infection as well as controlling viremia following infection. These data have begun to inform next-generation design of HIV vaccines and antibody therapies by uncovering new viral targets and antibody architectures to improve potency and breadth. Emerging data illustrate a role for innate immune recruiting-antibodies in conferring protection against HIV infection as well as promoting viral control and clearance, offering an unprecedented opportunity to modulate and improve antibody function to fight HIV more effectively.
Collapse
Affiliation(s)
- Audrey L. Butler
- The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139 USA
| | - Stephanie Fischinger
- The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139 USA
| | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139 USA
| |
Collapse
|
61
|
Clade C HIV-1 Envelope Vaccination Regimens Differ in Their Ability To Elicit Antibodies with Moderate Neutralization Breadth against Genetically Diverse Tier 2 HIV-1 Envelope Variants. J Virol 2019; 93:JVI.01846-18. [PMID: 30651354 DOI: 10.1128/jvi.01846-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/03/2019] [Indexed: 01/09/2023] Open
Abstract
The goals of preclinical HIV vaccine studies in nonhuman primates are to develop and test different approaches for their ability to generate protective immunity. Here, we compared the impact of 7 different vaccine modalities, all expressing the HIV-1 1086.C clade C envelope (Env), on (i) the magnitude and durability of antigen-specific serum antibody responses and (ii) autologous and heterologous neutralizing antibody capacity. These vaccination regimens included immunization with different combinations of DNA, modified vaccinia virus Ankara (MVA), soluble gp140 protein, and different adjuvants. Serum samples collected from 130 immunized monkeys at two key time points were analyzed using the TZM-bl cell assay: at 2 weeks after the final immunization (week 40/41) and on the day of challenge (week 58). Key initial findings were that inclusion of a gp140 protein boost had a significant impact on the magnitude and durability of Env-specific IgG antibodies, and addition of 3M-052 adjuvant was associated with better neutralizing activity against the SHIV1157ipd3N4 challenge virus and a heterologous HIV-1 CRF01 Env, CNE8. We measured neutralization against a panel of 12 tier 2 Envs using a newly described computational tool to quantify serum neutralization potency by factoring in the predetermined neutralization tier of each reference Env. This analysis revealed modest neutralization breadth, with DNA/MVA immunization followed by gp140 protein boosts in 3M-052 adjuvant producing the best scores. This study highlights that protein-containing regimens provide a solid foundation for the further development of novel adjuvants and inclusion of trimeric Env immunogens that could eventually elicit a higher level of neutralizing antibody breadth.IMPORTANCE Despite much progress, we still do not have a clear understanding of how to elicit a protective neutralizing antibody response against HIV-1 through vaccination. There have been great strides in the development of envelope immunogens that mimic the virus particle, but less is known about how different vaccination modalities and adjuvants contribute to shaping the antibody response. We compared seven different vaccines that were administered to rhesus macaques and that delivered the same envelope protein through various modalities and with different adjuvants. The results demonstrate that some vaccine components are better than others at eliciting neutralizing antibodies with breadth.
Collapse
|
62
|
Heger E, Schuetz A, Vasan S. HIV Vaccine Efficacy Trials: RV144 and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1075:3-30. [PMID: 30030787 DOI: 10.1007/978-981-13-0484-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Despite progress in antiretroviral therapy, pre-exposure prophylaxis, microbicides, and other preventive strategies, a vaccine to prevent HIV-1 infection remains desperately needed. Development of an effective vaccine is challenged by several immunologic features of HIV-1 evidenced by the failure of five of the six HIV-1 candidate vaccine efficacy trials to date. This chapter reviews these efficacy trials with a focus on the Phase 3 RV144 trial in Thailand, the only HIV-1 vaccine efficacy trial to show a moderate protective effect of 31% with respect to placebo administration. Although modest, this protection has allowed for the study of potential immunologic correlates of protection to improve development of future HIV-1 pox-protein and other vaccine strategies. Trials in Thailand and South Africa have built upon the RV144 framework to provide additional immunologic insights which enable current and future efficacy testing of related vaccine candidates.
Collapse
Affiliation(s)
- Elizabeth Heger
- US Army Medical Materiel Development Activity, Fort Detrick, MD, USA
| | - Alexandra Schuetz
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Sandhya Vasan
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- Henry M. Jackson Foundation, Bethesda, MD, USA.
| |
Collapse
|
63
|
Abuharfeil NM, Yaseen MM, Alsheyab FM. Harnessing Antibody-Dependent Cellular Cytotoxicity To Control HIV-1 Infection. ACS Infect Dis 2019; 5:158-176. [PMID: 30525453 DOI: 10.1021/acsinfecdis.8b00167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Passive administration of broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibodies (bNAbs) has been recently suggested as a promising alternative therapeutic approach for HIV-1 infection. Although the success behind the studies that used this approach has been attributed to the potency and neutralization breadth of anti-HIV-1 antibodies, several lines of evidence support the idea that specific antibody-dependent effector functions, particularly antibody-dependent cellular cytotoxicity (ADCC), play a critical role in controlling HIV-1 infection. In this review, we showed that there is a direct association between the activation of ADCC and better clinical outcomes. This, in turn, suggests that ADCC could be harnessed to control HIV-1 infection. To this end, we addressed the passive administration of bNAbs capable of selectively activating ADCC responses to HIV-1 patients. Finally, we summarized the potential barriers that may impede the optimal activation of ADCC during HIV-1 infection and provided strategic solutions to overcome these barriers.
Collapse
Affiliation(s)
- Nizar Mohammad Abuharfeil
- Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mahmoud Mohammad Yaseen
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110. Jordan
| | - Fawzi M. Alsheyab
- Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
64
|
Replication-Competent NYVAC-KC Yields Improved Immunogenicity to HIV-1 Antigens in Rhesus Macaques Compared to Nonreplicating NYVAC. J Virol 2019; 93:JVI.01513-18. [PMID: 30429340 DOI: 10.1128/jvi.01513-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/31/2018] [Indexed: 01/31/2023] Open
Abstract
As part of the continuing effort to develop an effective HIV vaccine, we generated a poxviral vaccine vector (previously described) designed to improve on the results of the RV144 phase III clinical trial. The construct, NYVAC-KC, is a replication-competent, attenuated recombinant of the vaccinia virus strain NYVAC. NYVAC is a vector that has been used in many previous clinical studies but is replication deficient. Here, we report a side-by-side comparison of replication-restricted NYVAC and replication-competent NYVAC-KC in a nonhuman primate study, which utilized a prime-boost regimen similar to that of RV144. NYVAC-C and NYVAC-C-KC express the HIV-1 antigens gp140, and Gag/Gag-Pol-Nef-derived virus-like particles (VLPs) from clade C and were used as the prime, with recombinant virus plus envelope protein used as the boost. In nearly every T and B cell immune assay against HIV-1, including neutralization and antibody binding, NYVAC-C-KC induced a greater immune response than NYVAC-C, indicating that replication competence in a poxvirus may improve upon the modestly successful regimen used in the RV144 clinical trial.IMPORTANCE Though the RV144 phase III clinical trial showed promise that an effective vaccine against HIV-1 is possible, a successful vaccine will require improvement over the vaccine candidate (ALVAC) used in the RV144 study. With that goal in mind, we have tested in nonhuman primates an attenuated but replication-competent vector, NYVAC-KC, in direct comparison to its parental vector, NYVAC, which is replication restricted in human cells, similar to the ALVAC vector used in RV144. We have utilized a prime-boost regimen for administration of the vaccine candidate that is similar to the one used in the RV144 study. The results of this study indicate that a replication-competent poxvirus vector may improve upon the effectiveness of the RV144 clinical trial vaccine candidate.
Collapse
|
65
|
van Diepen MT, Chapman R, Moore PL, Margolin E, Hermanus T, Morris L, Ximba P, Rybicki EP, Williamson AL. The adjuvant AlhydroGel elicits higher antibody titres than AddaVax when combined with HIV-1 subtype C gp140 from CAP256. PLoS One 2018; 13:e0208310. [PMID: 30557314 PMCID: PMC6296668 DOI: 10.1371/journal.pone.0208310] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 11/15/2018] [Indexed: 11/24/2022] Open
Abstract
With the HIV-1 epidemic in southern Africa still rising, a prophylactic vaccine against the region’s most prolific subtype (subtype C) would be a significant step forward. In this paper we report on the effect of 2 different adjuvants, AddaVax and AlhydroGel, formulated with HIV-1 subtype C gp140, on the development of binding and neutralising antibody titres in rabbits. AddaVax is a squalene-based oil-in-water nano-emulsion (similar to MF59) which can enhance both cellular and humoral immune responses, whilst AlhydroGel (aluminium hydroxide gel) mainly drives a Th2 response. The gp140 gene tested was derived from the superinfecting virus (SU) from participant CAP256 in the CAPRISA 002 Acute infection cohort. The furin cleavage site of the Env protein was replaced with a flexible linker and an I559P mutation introduced. Lectin affinity purified soluble Env protein was mainly trimeric as judged by molecular weight using BN-PAGE and contained intact broadly neutralising epitopes for the V3-glycan supersite (monoclonal antibodies PGT128 and PGT135), the CD4 binding site (VRC01) and the V2-glycan (PG9) but not for the trimer-specific monoclonal antibodies PG16, PGT145 and CAP256-VRC26_08. When this soluble Env protein was tested in rabbits, AlhydroGel significantly enhanced soluble Env and V1V2 binding antibodies when compared to AddaVax. Finally, AlhydroGel resulted in significantly higher neutralization titres for a subtype C Tier 1A virus (MW965.26) and increased neutralization breadth to Tier 1A and 1B viruses. However, no autologous Tier 2 neutralisation was observed. These data suggest that adjuvant selection is critical for developing a successful vaccine and AlhydroGel should be further investigated. Additional purification of trimeric native-like CAP256 Env and/or priming with DNA or MVA might enhance the induction of neutralizing antibodies and possible Tier 2 HIV-1 neutralisation.
Collapse
Affiliation(s)
- Michiel T. van Diepen
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, South Africa
| | - Rosamund Chapman
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, South Africa
| | - Penny L. Moore
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, South Africa
| | - Emmanuel Margolin
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology; University of Cape Town, South Africa
| | - Tandile Hermanus
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, South Africa
| | - Phindile Ximba
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, South Africa
| | - Edward P. Rybicki
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology; University of Cape Town, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, South Africa
- * E-mail:
| |
Collapse
|
66
|
Gary EN, Kutzler MA. Defensive Driving: Directing HIV-1 Vaccine-Induced Humoral Immunity to the Mucosa with Chemokine Adjuvants. J Immunol Res 2018; 2018:3734207. [PMID: 30648120 PMCID: PMC6311813 DOI: 10.1155/2018/3734207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
A myriad of pathogens gain access to the host via the mucosal route; thus, vaccinations that protect against mucosal pathogens are critical. Pathogens such as HIV, HSV, and influenza enter the host at mucosal sites such as the intestinal, urogenital, and respiratory tracts. All currently licensed vaccines mediate protection by inducing the production of antibodies which can limit pathogen replication at the site of infection. Unfortunately, parenteral vaccination rarely induces the production of an antigen-specific antibody at mucosal surfaces and thus relies on transudation of systemically generated antibody to mucosal surfaces to mediate protection. Mucosa-associated lymphoid tissues (MALTs) consist of a complex network of immune organs and tissues that orchestrate the interaction between the host, commensal microbes, and pathogens at these surfaces. This complexity necessitates strict control of the entry and exit of lymphocytes in the MALT. This control is mediated by chemoattractant chemokines or cytokines which recruit immune cells expressing the cognate receptors and adhesion molecules. Exploiting mucosal chemokine trafficking pathways to mobilize specific subsets of lymphocytes to mucosal tissues in the context of vaccination has improved immunogenicity and efficacy in preclinical models. This review describes the novel use of MALT chemokines as vaccine adjuvants. Specific attention will be placed upon the use of such adjuvants to enhance HIV-specific mucosal humoral immunity in the context of prophylactic vaccination.
Collapse
Affiliation(s)
- Ebony N. Gary
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michele A. Kutzler
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- The Division of Infectious Diseases and HIV Medicine, The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
67
|
Chang D, Sanders‐Buell E, Bose M, O'Sullivan AM, Pham P, Kroon E, Colby DJ, Sirijatuphat R, Billings E, Pinyakorn S, Chomchey N, Rutvisuttinunt W, Kijak G, de Souza M, Excler J, Phanuphak P, Phanuphak N, O'Connell RJ, Kim JH, Robb ML, Michael NL, Ananworanich J, Tovanabutra S. Molecular epidemiology of a primarily MSM acute HIV-1 cohort in Bangkok, Thailand and connections within networks of transmission in Asia. J Int AIDS Soc 2018; 21:e25204. [PMID: 30601598 PMCID: PMC6282942 DOI: 10.1002/jia2.25204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Thailand plays a substantial role in global HIV-1 transmission of CRF01_AE. Worldwide, men who have sex with men (MSM) are at elevated risk for HIV-1 infection. Hence, understanding HIV-1 diversity in a primarily Thai MSM cohort with acute infection, and its connections to the broader HIV-1 transmission network in Asia is crucial for research and development of HIV-1 vaccines, treatment and cure. METHODS Subtypes and diversity of infecting viruses from individuals sampled from 2009 to 2015 within the RV254/SEARCH 010 cohort were assessed by multiregion hybridization assay (MHAbce), multiregion subtype-specific PCR assay (MSSPbce) and full-length single-genome sequencing (SGS). Phylogenetic analysis was performed by maximum likelihood. Pairwise genetic distances of envelope gp160 sequences obtained from the cohort and from Asia (Los Alamos National Laboratory HIV Database) were calculated to identify potential transmission networks. RESULTS MHAbce/MSSPbce results identified 81.6% CRF01_AE infecting strains in RV254. CRF01_AE/B recombinants and subtype B were found at 7.3% and 2.8% respectively. Western subtype B strains outnumbered Thai B' strains. Phylogenetic analysis revealed one C, one CRF01_AE/CRF02_AG recombinant and one CRF01_AE/B/C recombinant. Asian network analysis identified one hundred and twenty-three clusters, including five clusters of RV254 participants. None of the RV254 sequences clustered with non-RV254 sequences. The largest international cluster involved 15 CRF01_AE strains from China and Vietnam. The remaining clusters were mostly intracountry connections, of which 31.7% included Thai nodes and 43.1% included Chinese nodes. CONCLUSION While the majority of strains in Thailand are CRF01_AE and subtype B, emergence of unique recombinant forms (URFs) are found in a moderate fraction of new HIV-1 infections. Approaches to vaccine design and immunotherapeutics will need to monitor and consider the expanding proportion of recombinants and the increasing genetic diversity in the region. Identified HIV-1 transmission networks indicate ongoing spread of HIV-1 among MSM. As HIV-1 epidemics continue to expand in other Asian countries, transmission network analyses can inform strategies for prevention, intervention, treatment and cure.
Collapse
Affiliation(s)
- David Chang
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
| | - Eric Sanders‐Buell
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
| | - Meera Bose
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
| | - Anne Marie O'Sullivan
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
| | - Phuc Pham
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
| | | | | | - Rujipas Sirijatuphat
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- Department of MedicineFaculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Erik Billings
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
| | - Suteeraporn Pinyakorn
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
| | | | - Wiriya Rutvisuttinunt
- Department of RetrovirologyArmed Forces Research Institute of Medical SciencesBangkokThailand
- Viral Diseases BranchWalter Reed Army Institute of ResearchSilver SpringMDUSA
| | - Gustavo Kijak
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
- Present address:
GSK VaccinesRockvilleMDUSA
| | - Mark de Souza
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
- SEARCHBangkokThailand
| | - Jean‐Louis Excler
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
| | | | | | - Robert J O'Connell
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- Department of RetrovirologyArmed Forces Research Institute of Medical SciencesBangkokThailand
| | - Jerome H Kim
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- International Vaccine InstituteSeoulSouth Korea
| | - Merlin L Robb
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
| | - Nelson L Michael
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
| | - Jintanat Ananworanich
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
- SEARCHBangkokThailand
- Department of Global HealthAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Sodsai Tovanabutra
- United States Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMDUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMDUSA
| | | |
Collapse
|
68
|
Zapata JC, Medina-Moreno S, Guzmán-Cardozo C, Salvato MS. Improving the Breadth of the Host's Immune Response to Lassa Virus. Pathogens 2018; 7:E84. [PMID: 30373278 PMCID: PMC6313495 DOI: 10.3390/pathogens7040084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
In 2017, the global Coalition for Epidemic Preparedness (CEPI) declared Lassa virus disease to be one of the world's foremost biothreats. In January 2018, World Health Organization experts met to address the Lassa biothreat. It was commonly recognized that the diversity of Lassa virus (LASV) isolated from West African patient samples was far greater than that of the Ebola isolates from the West African epidemic of 2013⁻2016. Thus, vaccines produced against Lassa virus disease face the added challenge that they must be broadly-protective against a wide variety of LASV. In this review, we discuss what is known about the immune response to Lassa infection. We also discuss the approaches used to make broadly-protective influenza vaccines and how they could be applied to developing broad vaccine coverage against LASV disease. Recent advances in AIDS research are also potentially applicable to the design of broadly-protective medical countermeasures against LASV disease.
Collapse
Affiliation(s)
- Juan Carlos Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Sandra Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Camila Guzmán-Cardozo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Maria S Salvato
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
69
|
Carrillo J, Clotet B, Blanco J. Antibodies and Antibody Derivatives: New Partners in HIV Eradication Strategies. Front Immunol 2018; 9:2429. [PMID: 30405624 PMCID: PMC6205993 DOI: 10.3389/fimmu.2018.02429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022] Open
Abstract
Promptly after primoinfection, HIV generates a pool of infected cells carrying transcriptionally silent integrated proviral DNA, the HIV-1 reservoir. These cells are not cleared by combined antiretroviral therapy (cART), and persist lifelong in treated HIV-infected individuals. Defining clinical strategies to eradicate the HIV reservoir and cure HIV-infected individuals is a major research field that requires a deep understanding of the mechanisms of seeding, maintenance and destruction of latently infected cells. Although CTL responses have been classically associated with the control of HIV replication, and hence with the size of HIV reservoir, broadly neutralizing antibodies (bNAbs) have emerged as new players in HIV cure strategies. Several reasons support this potential role: (i) over the last years a number of bNAbs with high potency and ability to cope with the extreme variability of HIV have been identified; (ii) antibodies not only block HIV replication but mediate effector functions that may contribute to the removal of infected cells and to boost immune responses against HIV; (iii) a series of new technologies have allowed for the in vitro design of improved antibodies with increased antiviral and effector functions. Recent studies in non-human primate models and in HIV-infected individuals have shown that treatment with recombinant bNAbs isolated from HIV-infected individuals is safe and may have a beneficial effect both on the seeding of the HIV reservoir and on the inhibition of HIV replication. These promising data and the development of antibody technology have paved the way for treating HIV infection with engineered monoclonal antibodies with high potency of neutralization, wide coverage of HIV diversity, extended plasma half-life in vivo and improved effector functions. The exciting effects of these newly designed antibodies in vivo, either alone or in combination with other cure strategies (latency reversing agents or therapeutic vaccines), open a new hope in HIV eradication.
Collapse
Affiliation(s)
- Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol, Badalona, Spain.,Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CEES), Faculty of Medicine, Universitat de Vic - Universitat Central de Catalunya, Vic, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol, Badalona, Spain.,Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CEES), Faculty of Medicine, Universitat de Vic - Universitat Central de Catalunya, Vic, Spain
| |
Collapse
|
70
|
Reed SG, Carter D, Casper C, Duthie MS, Fox CB. Correlates of GLA family adjuvants' activities. Semin Immunol 2018; 39:22-29. [PMID: 30366662 PMCID: PMC6289613 DOI: 10.1016/j.smim.2018.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
Abstract
Lipopolysaccharide (LPS) is a well-defined agonist of Toll-like receptor (TLR) 4 that activates innate immune responses and influences the development of the adaptive response during infection with Gram-negative bacteria. Many years ago, Dr. Edgar Ribi separated the adjuvant activity of LPS from its toxic effects, an effort that led to the development of monophosphoryl lipid A (MPL). MPL, derived from Salmonella minnesota R595, has progressed through clinical development and is now used in various product-enabling formulations to support the generation of antigen-specific responses in several commercial and preclinical vaccines. We have generated several synthetic lipid A molecules, foremost glucopyranosyl lipid adjuvant (GLA) and second-generation lipid adjuvant (SLA), and have advanced these to clinical trial for various indications. In this review we summarize the potential and current positioning of TLR4-based adjuvant formulations in approved and emerging vaccines.
Collapse
Affiliation(s)
- Steven G Reed
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Darrick Carter
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Corey Casper
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Malcolm S Duthie
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Christopher B Fox
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| |
Collapse
|
71
|
|
72
|
Manoharan VK, Khattar SK, LaBranche CC, Montefiori DC, Samal SK. Modified Newcastle Disease virus as an improved vaccine vector against Simian Immunodeficiency virus. Sci Rep 2018; 8:8952. [PMID: 29895833 PMCID: PMC5997738 DOI: 10.1038/s41598-018-27433-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/23/2018] [Indexed: 11/26/2022] Open
Abstract
SIV infection in macaques is a relevant animal model for HIV pathogenesis and vaccine study in humans. To design a safe and effective vaccine against HIV, we evaluated the suitability of naturally-occurring avirulent Newcastle disease virus (NDV) strains and several modified versions of NDV as vectors for the expression and immunogenicity of SIV envelope protein gp160. All the NDV vectors expressed gp160 protein in infected cells. The gp160 expressed by these vectors formed oligomers and was incorporated into the NDV envelope. All the NDV vectors expressing gp160 were attenuated in chickens. Intranasal immunization of guinea pigs with modified NDV vectors such as rNDV-APMV-2CS/gp160 and rNDV-APMV-8CS/gp160 (NDV strain LaSota containing the cleavage site sequences of F protein of avian paramyxovirus (APMV) serotype 2 and 8, respectively), and rNDV-BC-F-HN/gp160 (NDV strain BC containing LaSota F cleavage site and LaSota F and HN genes) elicited improved SIV-specific humoral and mucosal immune responses compared to other NDV vectors. These modified vectors were also efficient in inducing neutralizing antibody responses to tier 1 A SIVmac251.6 and tier 1B SIVmac251/M766 strains. This study suggests that our novel modified NDV vectors are safe and immunogenic and can be used as vaccine vector to control HIV.
Collapse
Affiliation(s)
- Vinoth K Manoharan
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Sunil K Khattar
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Celia C LaBranche
- Division of Surgical Sciences, Duke University, Durham, North Carolina, USA
| | - David C Montefiori
- Division of Surgical Sciences, Duke University, Durham, North Carolina, USA
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
73
|
Bowder D, Thompson J, Durst K, Hollingsead H, Hu D, Wei W, Xiang SH. Characterization of twin-cysteine motif in the V2-loop region of gp120 in primate lentiviruses. Virology 2018; 519:180-189. [DOI: 10.1016/j.virol.2018.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
74
|
Kadelka C, Liechti T, Ebner H, Schanz M, Rusert P, Friedrich N, Stiegeler E, Braun DL, Huber M, Scherrer AU, Weber J, Uhr T, Kuster H, Misselwitz B, Cavassini M, Bernasconi E, Hoffmann M, Calmy A, Battegay M, Rauch A, Yerly S, Aubert V, Klimkait T, Böni J, Kouyos RD, Günthard HF, Trkola A. Distinct, IgG1-driven antibody response landscapes demarcate individuals with broadly HIV-1 neutralizing activity. J Exp Med 2018; 215:1589-1608. [PMID: 29794117 PMCID: PMC5987927 DOI: 10.1084/jem.20180246] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Accepted: 05/01/2018] [Indexed: 12/30/2022] Open
Abstract
Kadelka et al. show that parameters linked with HIV-1 broadly neutralizing antibody (bnAb) development shape HIV-1–binding antibody responses in an antigen and IgG subclass dependent manner. Identified HIV-1 antibody signature landscapes reveal a shift toward IgG1-driven responses in bnAb developers. Understanding pathways that promote HIV-1 broadly neutralizing antibody (bnAb) induction is crucial to advance bnAb-based vaccines. We recently demarcated host, viral, and disease parameters associated with bnAb development in a large HIV-1 cohort screen. By establishing comprehensive antibody signatures based on IgG1, IgG2, and IgG3 activity to 13 HIV-1 antigens in 4,281 individuals in the same cohort, we now show that the same four parameters that are significantly linked with neutralization breadth, namely viral load, infection length, viral diversity, and ethnicity, also strongly influence HIV-1–binding antibody responses. However, the effects proved selective, shaping binding antibody responses in an antigen and IgG subclass–dependent manner. IgG response landscapes in bnAb inducers indicated a differentially regulated, IgG1-driven HIV-1 antigen response, and IgG1 binding of the BG505 SOSIP trimer proved the best predictor of HIV-1 neutralization breadth in plasma. Our findings emphasize the need to unravel immune modulators that underlie the differentially regulated IgG response in bnAb inducers to guide vaccine development.
Collapse
Affiliation(s)
- Claus Kadelka
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Liechti
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Hanna Ebner
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Merle Schanz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nikolas Friedrich
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Emanuel Stiegeler
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra U Scherrer
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Therese Uhr
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Herbert Kuster
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Benjamin Misselwitz
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Cavassini
- University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital of Lugano, Lugano, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases, University Hospital of Basel, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, University Hospital of Bern, Bern, Switzerland
| | - Sabine Yerly
- Laboratory of Virology, Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Vincent Aubert
- Division of Immunology and Allergy, University Hospital Lausanne, Lausanne, Switzerland
| | - Thomas Klimkait
- Department of Biomedicine-Petersplatz, University of Basel, Basel, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland .,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland .,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
75
|
Carnathan DG, Mackel JJ, Sweat SL, Enemuo CA, Gebru EH, Dhadvai P, Gangadhara S, Hicks S, Vanderford TH, Amara RR, Esparza J, Lu W, Andrieu JM, Silvestri G. Intragastric Administration of Lactobacillus plantarum and 2,2'-Dithiodipyridine-Inactivated Simian Immunodeficiency Virus (SIV) Does Not Protect Indian Rhesus Macaques from Intrarectal SIV Challenge or Reduce Virus Replication after Transmission. J Virol 2018; 92:e02030-17. [PMID: 29491157 PMCID: PMC5923080 DOI: 10.1128/jvi.02030-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/15/2018] [Indexed: 01/12/2023] Open
Abstract
A major obstacle to development of an effective AIDS vaccine is that along with the intended beneficial responses, the immunization regimen may activate CD4+ T cells that can facilitate acquisition of human immunodeficiency virus (HIV) by serving as target cells for the virus. Lu et al. (W. Lu et al., Cell Rep 2:1736-1746, 2012, https://doi.org/10.1016/j.celrep.2012.11.016) reported that intragastric administration of chemically inactivated simian immunodeficiency virus SIVmac239 and Lactobacillus plantarum (iSIV-L. plantarum) protected 15/16 Chinese-origin rhesus macaques (RMs) from high-dose intrarectal SIVmac239 challenge at 3 months postimmunization. They attributed the observed protection to induction of immune tolerance, mediated by "MHC-Ib/E-restricted CD8+ regulatory T cells that suppressed SIV-harboring CD4+ T cell activation and ex vivo SIV replication in 15/16 animals without inducing SIV-specific antibodies or cytotoxic T." J.-M. Andrieu et al. (Front Immunol 5:297, 2014, https://doi.org/10.3389/fimmu.2014.00297) subsequently reported protection from infection in 23/24 RMs immunized intragastrically or intravaginally with iSIV and Mycobacterium bovis BCG, L. plantarum, or Lactobacillus rhamnosus, which they ascribed to the same tolerogenic mechanism. Using vaccine materials obtained from our coauthors, we conducted an immunization and challenge experiment with 54 Indian RMs and included control groups receiving iSIV only or L. plantarum only as well as unvaccinated animals. Intrarectal challenge with SIVmac239 resulted in rapid infection in all groups of vaccinated RMs as well as unvaccinated controls. iSIV-L. plantarum-vaccinated animals that became SIV infected showed viral loads similar to those observed in animals receiving iSIV only or L. plantarum only or in unvaccinated controls. The protection from SIV transmission conferred by intragastric iSIV-L. plantarum administration reported previously for Chinese-origin RMs was not observed when the same experiment was conducted in a larger cohort of Indian-origin animals.IMPORTANCE Despite an increased understanding of immune responses against HIV, a safe and effective AIDS vaccine is not yet available. One obstacle is that immunization may activate CD4+ T cells that may act as target cells for acquisition of HIV. An alternative strategy may involve induction of a tolerance-inducing response that limits the availability of activated CD4+ T cells, thus limiting the ability of virus to establish infection. In this regard, exciting results were obtained for Chinese-origin rhesus macaques by using a "tolerogenic" vaccine, consisting of intragastric administration of Lactobacillus plantarum and 2,2'-dithiodipyridine-inactivated SIV, which showed highly significant protection from virus transmission. In the present study, we administered iSIV-L. plantarum to Indian-origin rhesus macaques and failed to observe any protective effect on virus acquisition in this experimental setting. This work is important because it contributes to the overall assessment of the clinical potential of a new candidate AIDS vaccine platform based on iSIV-L. plantarum.
Collapse
Affiliation(s)
- Diane G Carnathan
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Joseph J Mackel
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Shelby L Sweat
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Chiamaka A Enemuo
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Etse H Gebru
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Pallavi Dhadvai
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sailaja Gangadhara
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sakeenah Hicks
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Thomas H Vanderford
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Rama R Amara
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - José Esparza
- Institute for Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Wei Lu
- Institut de Recherche sur les Vaccins et l'Immunothérapie des Cancers et du SIDA, Université de Paris Descartes, Paris, France
| | - Jean-Marie Andrieu
- Institut de Recherche sur les Vaccins et l'Immunothérapie des Cancers et du SIDA, Université de Paris Descartes, Paris, France
| | - Guido Silvestri
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
76
|
Fourcade L, Poudrier J, Roger M. Natural Immunity to HIV: A Template for Vaccine Strategies. Viruses 2018; 10:v10040215. [PMID: 29690575 PMCID: PMC5923509 DOI: 10.3390/v10040215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/13/2022] Open
Abstract
Africa accounts for the majority of global human immunodeficiency virus (HIV) infections, most of which affect women through heterosexual intercourse. Currently, there is no cure for HIV and the development of vaccines and microbicides remains the best solution to eradicate the pandemic. We and others have identified HIV highly-exposed seronegative (HESN) individuals among African female commercial sex workers (CSWs). Analyses of genital samples from HESNs have demonstrated potent innate and anti-inflammatory conditions, HIV-specific CD4+ and CD8+ T-cells as well as immunoglobulins (Igs), and increased regulatory cell populations, all of which support a delicate balance between strength and control against HIV intrusion. Moreover, we have recently shown that frequencies of innate marginal zone (MZ) B-cells are decreased in the blood of HESNs when compared to HIV-uninfected non-CSW women, suggesting their recruitment to peripheral sites. This coincides with the fact that levels of B lymphocyte stimulator (BLyS/BAFF), known to shape the MZ pool and whose overexpression leads to MZ deregulation in HIV-infected progressors, are significantly lower in the blood of HESNs when compared to both HIV-infected CSWs and HIV-uninfected non-CSW women. Interestingly, MZ B-cells can bind HIV gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions in HESNs. HESN individuals provide an exceptional opportunity to identify important clues for the development of protective devices, and efforts should aim at soliciting immune responses observed in the context of their natural immunity to HIV.
Collapse
Affiliation(s)
- Lyvia Fourcade
- Laboratoire d'Immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Johanne Poudrier
- Laboratoire d'Immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Michel Roger
- Laboratoire d'Immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
77
|
Trovato M, D'Apice L, Prisco A, De Berardinis P. HIV Vaccination: A Roadmap among Advancements and Concerns. Int J Mol Sci 2018; 19:E1241. [PMID: 29671786 PMCID: PMC5979448 DOI: 10.3390/ijms19041241] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
Since the identification of the Human Immunodeficiency Virus type 1 (HIV-1) as the etiologic agent of AIDS (Acquired Immunodeficiency Syndrome), many efforts have been made to stop the AIDS pandemic. A major success of medical research has been the development of the highly active antiretroviral therapy and its availability to an increasing number of people worldwide, with a considerable effect on survival. However, a safe and effective vaccine able to prevent and eradicate the HIV pandemic is still lacking. Clinical trials and preclinical proof-of-concept studies in nonhuman primate (NHP) models have provided insights into potential correlates of protection against the HIV-1 infection, which include broadly neutralizing antibodies (bnAbs), non-neutralizing antibodies targeting the variable loops 1 and 2 (V1V2) regions of the HIV-1 envelope (Env), polyfunctional antibody, and Env-specific T-cell responses. In this review, we provide a brief overview of different HIV-1 vaccine approaches and discuss the current understanding of the cellular and humoral correlates of HIV-1 immunity.
Collapse
Affiliation(s)
- Maria Trovato
- INSERM u1016, Institut Cochin, 27 Rue du Faubourg Saint Jacques, 75014 Paris, France.
- Institute of Protein Biochemistry, C.N.R., Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Luciana D'Apice
- Institute of Protein Biochemistry, C.N.R., Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Antonella Prisco
- Institute of Genetics and Biophysics A. Buzzati-Traverso, C.N.R., Via Pietro Castellino 111, 80131 Naples, Italy.
| | | |
Collapse
|
78
|
The development of HIV vaccines targeting gp41 membrane-proximal external region (MPER): challenges and prospects. Protein Cell 2018; 9:596-615. [PMID: 29667004 PMCID: PMC6019655 DOI: 10.1007/s13238-018-0534-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/05/2018] [Indexed: 10/31/2022] Open
Abstract
A human immunodeficiency virus type-1 (HIV-1) vaccine which is able to effectively prevent infection would be the most powerful method of extinguishing pandemic of the acquired immunodeficiency syndrome (AIDS). Yet, achieving such vaccine remains great challenges. The membrane-proximal external region (MPER) is a highly conserved region of the envelope glycoprotein (Env) gp41 subunit near the viral envelope surface, and it plays a key role in membrane fusion. It is also the target of some reported broadly neutralizing antibodies (bNAbs). Thus, MPER is deemed to be one of the most attractive vaccine targets. However, no one can induce these bNAbs by immunization with immunogens containing the MPER sequence(s). The few attempts at developing a vaccine have only resulted in the induction of neutralizing antibodies with quite low potency and limited breadth. Thus far, vaccine failure can be attributed to various characteristics of MPER, such as those involving structure and immunology; therefore, we will focus on these and review the recent progress in the field from the following perspectives: (1) MPER structure and its role in membrane fusion, (2) the epitopes and neutralization mechanisms of MPER-specific bNAbs, as well as the limitations in eliciting neutralizing antibodies, and (3) different strategies for MPER vaccine design and current harvests.
Collapse
|
79
|
Patel S, Chorvinsky E, Albihani S, Cruz CR, Jones RB, Shpall EJ, Margolis DM, Ambinder RF, Bollard CM. HIV-Specific T Cells Generated from Naive T Cells Suppress HIV In Vitro and Recognize Wide Epitope Breadths. Mol Ther 2018; 26:1435-1446. [PMID: 29724686 DOI: 10.1016/j.ymthe.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022] Open
Abstract
The Berlin Patient represents the first and only functional HIV cure achieved by hematopoietic stem cell transplant (HSCT). In subsequent efforts to replicate this result, HIV rebounded post-HSCT after withdrawal of antiretroviral therapy. Providing HIV-specific immunity through adoptive T cell therapy may prevent HIV rebound post-HSCT by eliminating newly infected cells before they can seed systemic infection. Adoptive T cell therapy has demonstrated success in boosting Epstein-Barr virus and cytomegalovirus-specific immunity post-HSCT, controlling viral reactivation. However, T cell immunotherapies to boost HIV-specific immunity have been limited by single-epitope specificity and minimal persistence or efficacy in vivo. To improve this strategy, we sought to generate allogeneic HIV-specific T cells from human leukocyte antigen (HLA)-A02+ HIV-negative adult or cord blood donors. We focused on HLA-A02+ donors due to well-characterized epitope restrictions observed in HIV+ populations. We show that multi-antigen HIV-specific T cells can be generated from naive T cells of both cord blood and adults using a reproducible good manufacturing practice (GMP)-grade protocol. This product lysed antigen-pulsed targets and suppressed active HIV in vitro. Interestingly, these cells displayed broad epitope recognition despite lacking recognition of the common HLA-A02-restricted HIV epitope Gag SL9. This first demonstration of functional multi-antigen HIV-specific T cells has implications for improving treatment of HIV through allogeneic HSCT.
Collapse
Affiliation(s)
- Shabnum Patel
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA; Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| | - Elizabeth Chorvinsky
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Shuroug Albihani
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Conrad Russell Cruz
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA; Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| | - R Brad Jones
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20037, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David M Margolis
- University of North Carolina HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard F Ambinder
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA; Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
80
|
Malecki M, Saetre B. HIV Universal Vaccine. MOLECULAR AND CELLULAR THERAPIES 2018; 6:5. [PMID: 30815266 PMCID: PMC6388684 DOI: 10.26781/2052-8426-2018-05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND For many deadly viruses, there are no preventive and / or therapeutic vaccines approved by health authorities World-wide (e.g., HIV, Ebola, Dengue, and many others). Although, for some viruses, prophylactic vaccines are very effective (e.g., HBV, and many others).In this realm, we design, manufacture, test, and streamline into the clinics novel viral universal vaccines (VUV). VUV have such unique features, that medical vaccination or natural infection induced immunity against some viruses (e.g., HBV) upon the VUV's administration to the infected with other, different viruses patients, is redirected against these other, newly infecting viruses (e.g., HIV). SPECIFIC AIM The specific aim of this work was biomolecular engineering of the HIV universal vaccine comprising the two main functional domains: CD4 or anti-gp120 - as the HIV tagging domain and HBsAg - as the immune response eliciting domain, so that upon its administration the HBV medical immunization or natural infection induced immunity would be redirected, accelerated, and amplified to fight the HIV infection. HEALTHY DONORS AND PATIENTS Per the Institutional Review Board approval and in compliance with the Declaration of Helsinki, all healthy donors and patients were presented with the Patients' Bill of Rights and provided Patient Informed Consent. All the procedures were pursued by the licensed medical doctors. METHODS & RESULTS We have biomolecularly engineered HIV universal vaccine (HIVUV) comprising human CD4 or anti-gp120 and HBsAg of HBV. By immunoblotting and magnetic activated molecular sorting, we have demonstrated high specificity of this vaccine in binding HIV. By flow cytometry and nuclear magnetic resonance, we have demonstrated high efficacy of these vaccines to engage HBV immunized patients' immune system against HIV. Administration of HIVUV to blood or lymph of the HIV+ patients resulted in rapid reduction of the HIV viremia down to undetectable. It also resulted in protection of populations of CD4+ cells against HIV caused decline. CONCLUSIONS We have demonstrated the proof of concept for high efficacy of VUV, specifically HIVUV, in annihilating HIV. Nevertheless, the same compositions, processes, and methods, for persons skilled in biotechnology, pharmacogenomics, and molecular medicine, are adaptable for other deadly viral infections, which we vigorously pursue.
Collapse
Affiliation(s)
- Marek Malecki
- Phoenix Biomolecular Engineering Foundation (PBMEF), San Francisco, CA,
USA
| | - Bianka Saetre
- Phoenix Biomolecular Engineering Foundation (PBMEF), San Francisco, CA,
USA
| |
Collapse
|
81
|
Gao Y, McKay PF, Mann JFS. Advances in HIV-1 Vaccine Development. Viruses 2018; 10:E167. [PMID: 29614779 PMCID: PMC5923461 DOI: 10.3390/v10040167] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 02/07/2023] Open
Abstract
An efficacious HIV-1 vaccine is regarded as the best way to halt the ongoing HIV-1 epidemic. However, despite significant efforts to develop a safe and effective vaccine, the modestly protective RV144 trial remains the only efficacy trial to provide some level of protection against HIV-1 acquisition. This review will outline the history of HIV vaccine development, novel technologies being applied to HIV vaccinology and immunogen design, as well as the studies that are ongoing to advance our understanding of vaccine-induced immune correlates of protection.
Collapse
Affiliation(s)
- Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| | - Paul F McKay
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London, W2 1PG, UK.
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
82
|
Transcriptomic signatures of NK cells suggest impaired responsiveness in HIV-1 infection and increased activity post-vaccination. Nat Commun 2018; 9:1212. [PMID: 29572470 PMCID: PMC5865158 DOI: 10.1038/s41467-018-03618-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells limit viral replication by direct recognition of infected cells, antibody-dependent cellular cytotoxicity (ADCC), and releasing cytokines. Although growing evidence supports NK cell antiviral immunity in HIV-1 infection, further knowledge of their response is necessary. Here we show that NK cells responding to models of direct cell recognition, ADCC, and cytokine activation have unique transcriptional fingerprints. Compared with healthy volunteers, individuals with chronic HIV-1 infection have higher expression of genes commonly associated with activation, and lower expression of genes associated with direct cell recognition and cytokine stimulation in their NK cells. By contrast, NK cell transcriptional profiles of individuals receiving a modified vaccinia Ankara (MVA) vectored HIV-1 vaccine show upregulation of genes associated with direct cell recognition. These findings demonstrate that targeted transcriptional profiling provides a sensitive assessment of NK cell activity, which helps understand how NK cells respond to viral infections and vaccination. Natural killer (NK) cells are important for eliminating cells under stress or infected by virus, and may have a function in anti-HIV immunity. Here the authors show that different NK-activating stimuli induce distinct transcriptional fingerprints in human NK cells that are analogous to changes caused by HIV vaccination or chronic infection.
Collapse
|
83
|
Fundamental challenges to the development of a preventive HIV vaccine. Curr Opin Virol 2018; 29:26-32. [PMID: 29549802 DOI: 10.1016/j.coviro.2018.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022]
Abstract
There is consensus that only a preventive vaccine can contain the HIV/AIDS pandemic. After 30 years still there is no preventive HIV vaccine. This article examines fundamental challenges to the development of a preventive HIV vaccine. They include the initially erroneous but powerful perception of the natural history of HIV disease, as an acute rather than a chronic illness even in the absence of therapy, the lack of appreciation of the quasispecies biology of HIV and the abandonment of principles of immunology theory caused by the allure of technological prowess. In addition two other important aspects are discussed: vaccines directed against transmitted/founder viruses (T/F) and the reconsideration of HIV inactivation as a viable means to obtain a preventive HIV vaccine using novel safe methods of inactivation not available during the early years of the pandemic.
Collapse
|
84
|
Vaccination route can significantly alter the innate lymphoid cell subsets: a feedback between IL-13 and IFN-γ. NPJ Vaccines 2018; 3:10. [PMID: 29560282 PMCID: PMC5847557 DOI: 10.1038/s41541-018-0048-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022] Open
Abstract
This study demonstrates that the fate of a vaccine is influenced by the cytokines produced by the innate lymphoid cells (ILC) recruited to the vaccination site, and it is vaccine route and adjuvant dependent. Intranasal virus vaccination induced ST2/IL-33R+ ILC2 in lung, while intramuscular vaccination induced exclusively IL-25R+ ILC2 in muscle. Interestingly, a larger proportion of IL-13+ ILC2s were detected in muscle following i.m. viral vector vaccination compared to lung post i.n. delivery. These observations revealed that ILC2 were the main source of IL-13 at the vaccination site (24 h post vaccination) responsible for inducing T cells of varying avidities. Moreover, recombinant fowlpox viral vector-based vaccines expressing adjuvants that transiently block IL-13 signalling at the vaccination site using different mechanisms (IL-4R antagonist or IL-13Rα2 adjuvants), revealed that the level of IL-13 present in the milieu also significantly influenced IFN-γ, IL-22 or IL-17A expression by ILC1/ILC3. Specifically, an early IL-13 and IFN-γ co-dependency at the ILC level may also be associated with shaping the downstream antibody responses, supporting the notion that differentially regulating IL-13 signalling via STAT6 or IL-13Rα2 pathways can modify ILC function and the resulting adaptive T- and B-cell immune outcomes reported previously. Moreover, unlike chronic inflammatory or experimentally induced conditions, viral vector vaccination induced uniquely different ILC profiles (i.e., expression of CD127 only on ILC2 not ILC1/ILC3; expression of IFN-γ in both NKP46+ and NKp46- ILCs). Collectively, our data highlight that tailoring a vaccine vector/adjuvant to modulate the ILC cytokine profile according to the target pathogen, may help design more efficacious vaccines in the future.
Collapse
|
85
|
Nguyen QN, Martinez DR, Himes JE, Whitney Edwards R, Han Q, Kumar A, Mangan R, Nicely NI, Xie G, Vandergrift N, Shen X, Pollara J, Permar SR. Predominant envelope variable loop 2-specific and gp120-specific antibody-dependent cellular cytotoxicity antibody responses in acutely SIV-infected African green monkeys. Retrovirology 2018. [PMID: 29523166 PMCID: PMC5845189 DOI: 10.1186/s12977-018-0406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The initial envelope (Env)-specific antibody response in acutely HIV-1-infected individuals and simian immunodeficiency virus (SIV)-infected rhesus monkeys (RMs) is dominated by non-neutralizing antibodies targeting Env gp41. In contrast, natural primate SIV hosts, such as African green monkeys (AGMs), develop a predominant Env gp120-specific antibody response to SIV infection. However, the fine-epitope specificity and function of SIV Env-specific plasma IgG, and their potential role on autologous virus co-evolution in SIV-infected AGMs and RMs remain unclear. Results Unlike the dominant linear gp41-specific IgG responses in RMs, SIV-infected AGMs demonstrated a unique linear variable loop 2 (V2)-specific plasma IgG response that arose concurrently with high gp120-directed antibody-dependent cellular cytotoxicity (ADCC) activity, and SIVsab-infected cell binding responses during acute infection. Moreover, SIV variants isolated from SIV-infected AGMs exhibited high amino acid mutation frequencies within the Env V1V2 loop compared to those of RMs. Notably, the linear V2-specific IgG epitope in AGMs overlaps with an analogous region of the HIV V2 loop containing the K169 mutation epitope identified in breakthrough viruses from RV144 vaccinees. Conclusion Vaccine-elicited Env V2-specific IgG responses have been proposed as an immune correlate of reduced risk in HIV-1/SIV acquisition in humans and RMs. Yet the pathways to elicit these potentially-protective V2-specific IgG responses remain unclear. In this study, we demonstrate that SIV-infected AGMs, which are the natural hosts of SIV, exhibited high plasma linear V2-specific IgG binding responses that arose concurrently with SIV Env gp120-directed ADCC-mediating, and SIV-infected cell plasma IgG binding responses during acute SIV infection, which were not present in acutely SIV-infected RMs. The linear V2-specific antibody response in AGMs targets an overlapping epitope of the proposed site of vaccine-induced immune pressure defined in the moderately protective RV144 HIV-1 vaccine trial. Identifying host factors that control the early elicitation of Env V2-specific IgG and ADCC antibody responses in these natural SIV hosts could inform vaccination strategies aimed at rapidly inducing potentially-protective HIV-1 Env-specific responses in humans. Electronic supplementary material The online version of this article (10.1186/s12977-018-0406-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quang N Nguyen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - David R Martinez
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Jonathon E Himes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - R Whitney Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Qifeng Han
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Riley Mangan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nathan I Nicely
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Guanhua Xie
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nathan Vandergrift
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA. .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA. .,Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA. .,Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
86
|
Abstract
Currently used vaccines have had major effects on eliminating common infections, largely by duplicating the immune responses induced by natural infections. Now vaccinology faces more complex problems, such as waning antibody, immunosenescence, evasion of immunity by the pathogen, deviation of immunity by the microbiome, induction of inhibitory responses, and complexity of the antigens required for protection. Fortunately, vaccine development is now incorporating knowledge from immunology, structural biology, systems biology and synthetic chemistry to meet these challenges. In addition, international organisations are developing new funding and licensing pathways for vaccines aimed at pathogens with epidemic potential that emerge from tropical areas.
Collapse
Affiliation(s)
| | - Marta V Pinto
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Manish Sadarangani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Vaccine Evaluation Center, BC Children's Hospital Research Institute, University of British Columbia, Vancouver BC, Canada.
| | - Stanley A Plotkin
- Department of Pediatrics, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
87
|
Hurwitz JL, Bonsignori M. Multi-Envelope HIV-1 Vaccine Development: Two Targeted Immune Pathways, One Desired Protective Outcome. Viral Immunol 2018; 31:124-132. [PMID: 29315059 DOI: 10.1089/vim.2017.0144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In 2016, there were more than 30 million individuals living with HIV-1, ∼1.8 million new HIV-1 infections, and ∼1 million HIV-1-related deaths according to UNAIDS ( unaids.org ). Hence, a preventive HIV-1 vaccine remains a global priority. The variant envelopes of HIV-1 present a significant obstacle to vaccine development and the vaccine field has realized that immunization with a single HIV-1 envelope protein will not be sufficient to generate broadly neutralizing antibodies. Here we describe two nonmutually exclusive, targeted pathways with which a multi-envelope HIV-1 vaccine may generate protective immune responses against variant HIV-1. Pathways include (i) the induction of a polyclonal immune response, comprising a plethora of antibodies with subset-reactive and cross-reactive specificities, together able to neutralize diverse HIV-1 (termed Poly-nAb in this report) and (ii) the induction of one or a few monoclonal antibodies, each with a broadly neutralizing specificity (bnAb). With each pathway in mind, we describe challenges and strategies that may ultimately support HIV-1 vaccine success.
Collapse
Affiliation(s)
- Julia L Hurwitz
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee.,2 Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Mattia Bonsignori
- 3 Duke Human Vaccine Institute , Duke University School of Medicine, Duke University Medical Center, Durham, North Carolina.,4 Department of Medicine, Duke University School of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
88
|
HIV-1 Env DNA prime plus gp120 and gp70-V1V2 boosts induce high level of V1V2-specific IgG and ADCC responses and low level of Env-specific IgA response: implication for improving RV144 vaccine regimen. Emerg Microbes Infect 2017; 6:e102. [PMID: 29184156 PMCID: PMC5717091 DOI: 10.1038/emi.2017.90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/08/2017] [Accepted: 10/10/2017] [Indexed: 11/08/2022]
|
89
|
Climent N, García I, Marradi M, Chiodo F, Miralles L, Maleno MJ, Gatell JM, García F, Penadés S, Plana M. Loading dendritic cells with gold nanoparticles (GNPs) bearing HIV-peptides and mannosides enhance HIV-specific T cell responses. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:339-351. [PMID: 29157976 DOI: 10.1016/j.nano.2017.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Accepted: 11/03/2017] [Indexed: 01/10/2023]
Abstract
Gold nanoparticles (GNPs) decorated with glycans ameliorate dendritic cells (DC) uptake, antigen-presentation and T-cells cross-talk, which are important aspects in vaccine design. GNPs allow for high antigen loading, DC targeting, lack of toxicity and are straightforward prepared and easy to handle. The present study aimed to assess the capacity of DC to process and present HIV-1-peptides loaded onto GNPs bearing high-mannoside-type oligosaccharides (P1@HM) to autologous T-cells from HIV-1 patients. The results showed that P1@HM increased HIV-specific CD4+ and CD8+ T-cell proliferation and induced highly functional cytokine secretion compared with HIV-peptides alone. P1@HM elicits a highly efficient secretion of pro-TH1 cytokines and chemokines, a moderate production of pro-TH2 and significant higher secretion of pro-inflammatory cytokines such as TNF-α and IL-1β. Thus, co-delivery of HIV-1 antigens and HM by GNPs is an excellent vaccine delivery system inducing HIV-specific cellular immune responses in HIV+ patients, being a promising approach to improve anti-HIV-1 vaccines.
Collapse
Affiliation(s)
- Núria Climent
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Isabel García
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, Donostia-San Sebastián, Spain; CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain
| | - Marco Marradi
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, Donostia-San Sebastián, Spain; CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain
| | - Fabrizio Chiodo
- CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain; Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherland
| | - Laia Miralles
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - María José Maleno
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - José María Gatell
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Service of Infectious Diseases & AIDS Unit, Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Felipe García
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Service of Infectious Diseases & AIDS Unit, Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Soledad Penadés
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, Donostia-San Sebastián, Spain; CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain
| | - Montserrat Plana
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
90
|
C. Guardo A, Gómez CE, Díaz-Brito V, Pich J, Arnaiz JA, Perdiguero B, García-Arriaza J, González N, Sorzano COS, Jiménez L, Jiménez JL, Muñoz-Fernández MÁ, Gatell JM, Alcamí J, Esteban M, López Bernaldo de Quirós JC, García F, Plana M. Safety and vaccine-induced HIV-1 immune responses in healthy volunteers following a late MVA-B boost 4 years after the last immunization. PLoS One 2017; 12:e0186602. [PMID: 29065142 PMCID: PMC5655491 DOI: 10.1371/journal.pone.0186602] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/10/2017] [Indexed: 11/18/2022] Open
Abstract
Background We have previously shown that an HIV vaccine regimen including three doses of HIV-modified vaccinia virus Ankara vector expressing HIV-1 antigens from clade B (MVA-B) was safe and elicited moderate and durable (1 year) T-cell and antibody responses in 75% and 95% of HIV-negative volunteers (n = 24), respectively (RISVAC02 study). Here, we describe the long-term durability of vaccine-induced responses and the safety and immunogenicity of an additional MVA-B boost. Methods 13 volunteers from the RISVAC02 trial were recruited to receive a fourth dose of MVA-B 4 years after the last immunization. End-points were safety, cellular and humoral immune responses to HIV-1 and vector antigens assessed by ELISPOT, intracellular cytokine staining (ICS) and ELISA performed before and 2, 4 and 12 weeks after receiving the boost. Results Volunteers reported 64 adverse events (AEs), although none was a vaccine-related serious AE. After 4 years from the 1st dose of the vaccine, only 2 volunteers maintained low HIV-specific T-cell responses. After the late MVA-B boost, a modest increase in IFN-γ T-cell responses, mainly directed against Env, was detected by ELISPOT in 5/13 (38%) volunteers. ICS confirmed similar results with 45% of volunteers showing that CD4+ T-cell responses were mainly directed against Env, whereas CD8+ T cell-responses were similarly distributed against Env, Gag and GPN. In terms of antibody responses, 23.1% of the vaccinees had detectable Env-specific binding antibodies 4 years after the last MVA-B immunization with a mean titer of 96.5. The late MVA-B boost significantly improved both the response rate (92.3%) and the magnitude of the systemic binding antibodies to gp120 (mean titer of 11460). HIV-1 neutralizing antibodies were also enhanced and detected in 77% of volunteers. Moreover, MVA vector-specific T cell and antibody responses were boosted in 80% and 100% of volunteers respectively. Conclusions One boost of MVA-B four years after receiving 3 doses of the same vaccine was safe, induced moderate increases in HIV-specific T cell responses in 38% of volunteers but significantly boosted the binding and neutralizing antibody responses to HIV-1 and to the MVA vector. Trial registration ClinicalTrials.gov NCT01923610.
Collapse
Affiliation(s)
- Alberto C. Guardo
- Immunopathology and Cellular Immunology, AIDS Research Group, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | | | - Vicens Díaz-Brito
- Infectious Diseases Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Judit Pich
- Infectious Diseases Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Joan Albert Arnaiz
- Infectious Diseases Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | | | | | - Nuria González
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Laura Jiménez
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Jiménez
- Sección Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Spanish HIV HGM Biobank, Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBERBBN), Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Sección Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Spanish HIV HGM Biobank, Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBERBBN), Madrid, Spain
| | - José M Gatell
- Infectious Diseases Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - José Alcamí
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Juan Carlos López Bernaldo de Quirós
- Sección Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Spanish HIV HGM Biobank, Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBERBBN), Madrid, Spain
| | - Felipe García
- Infectious Diseases Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Montserrat Plana
- Immunopathology and Cellular Immunology, AIDS Research Group, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
- * E-mail:
| | | |
Collapse
|
91
|
Impact of Poxvirus Vector Priming, Protein Coadministration, and Vaccine Intervals on HIV gp120 Vaccine-Elicited Antibody Magnitude and Function in Infant Macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00231-17. [PMID: 28814388 DOI: 10.1128/cvi.00231-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022]
Abstract
Despite success in reducing vertical HIV transmission by maternal antiretroviral therapy, several obstacles limit its efficacy during breastfeeding, and breast-milk transmission is now the dominant mode of mother-to-child transmission (MTCT) of HIV in infants. Thus, a pediatric vaccine is needed to eradicate oral HIV infections in newborns and infants. Utilizing the infant rhesus macaque model, we compared 3 different vaccine regimens: (i) HIV envelope (Env) protein only, (ii) poxvirus vector (modified vaccinia virus Ankara [MVA])-HIV Env prime and HIV Env boost, and (iii) coadministration of HIV Env and MVA-HIV Env at all time points. The vaccines were administered with an accelerated, 3-week-interval regimen starting at birth for early induction of highly functional HIV Env-specific antibodies. We also tested whether an extended, 6-week immunization interval using the same vaccine regimen as in the coadministration group would enhance the quality of antibody responses. We found that pediatric HIV vaccines administered at birth are effective in inducing HIV Env-specific plasma IgG. The vaccine regimen consisting of only HIV Env protein induced the highest levels of variable region 1 and 2 (V1V2)-specific antibodies and tier 1 neutralizing antibodies, whereas the extended-interval regimen induced both persistent Env-specific systemic IgG and mucosal IgA responses. Antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies in plasma were elicited by all vaccine regimens. These data suggest that infant immunizations beginning at birth are effective for the induction of functional HIV Env-specific antibodies that could potentially protect against breast milk transmission of HIV and set the stage for immunity prior to sexual debut.
Collapse
|
92
|
McNicholl JM. Combining biomedical preventions for HIV: Vaccines with pre-exposure prophylaxis, microbicides or other HIV preventions. Hum Vaccin Immunother 2017; 12:3202-3211. [PMID: 27679928 PMCID: PMC5215580 DOI: 10.1080/21645515.2016.1231258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biomedical preventions for HIV, such as vaccines, microbicides or pre-exposure prophylaxis (PrEP) with antiretroviral drugs, can each only partially prevent HIV-1 infection in most human trials. Oral PrEP is now FDA approved for HIV-prevention in high risk groups, but partial adherence reduces efficacy. If combined as biomedical preventions (CBP) an HIV vaccine could provide protection when PrEP adherence is low and PrEP could prevent vaccine breakthroughs. Other types of PrEP or microbicides may also be partially protective. When licensed, first generation HIV vaccines are likely to be partially effective. Individuals at risk for HIV may receive an HIV vaccine combined with other biomedical preventions, in series or in parallel, in clinical trials or as part of standard of care, with the goal of maximally increasing HIV prevention. In human studies, it is challenging to determine which preventions are best combined, how they interact and how effective they are. Animal models can determine CBP efficacy, whether additive or synergistic, the efficacy of different products and combinations, dose, timing and mechanisms. CBP studies in macaques have shown that partially or minimally effective candidate HIV vaccines combined with partially effective oral PrEP, vaginal PrEP or microbicide generally provided greater protection than either prevention alone against SIV or SHIV challenges. Since human CBP trials will be complex, animal models can guide their design, sample size, endpoints, correlates and surrogates of protection. This review focuses on animal studies and human models of CBP and discusses implications for HIV prevention.
Collapse
Affiliation(s)
- Janet M McNicholl
- a Division of HIV/AIDS, Laboratory Branch , Centers for Disease Control and Prevention , Atlanta , GA , USA
| |
Collapse
|
93
|
Vargas-Inchaustegui DA, Helmold Hait S, Chung HK, Narola J, Hoang T, Robert-Guroff M. Phenotypic and Functional Characterization of Circulatory, Splenic, and Hepatic NK Cells in Simian Immunodeficiency Virus-Controlling Macaques. THE JOURNAL OF IMMUNOLOGY 2017; 199:3202-3211. [PMID: 28947538 DOI: 10.4049/jimmunol.1700586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/28/2017] [Indexed: 12/24/2022]
Abstract
NK cells are key components of the immune system because of their rapid response potential and their ability to mediate cytotoxic and immunomodulatory functions. Additionally, NK cells have recently been shown to persist for long periods in vivo and to have the capacity to establish immunologic memory. In the current study, we assessed the phenotype and function of circulatory and tissue-resident NK cells in a unique cohort of SIV-controlling rhesus macaques that maintained low to undetectable levels of viremia in the chronic phase of infection. By contrasting NK responses of these macaques with those observed in SIV-noncontrolling and uninfected macaques, we aimed to identify markers and activities of NK subpopulations associated with disease control. We show in this article that most differences among NK cells of the three groups of macaques were observed in tissue-resident cells. Although SIV infection resulted in NK cell dysfunction, double-negative NK cells and those expressing CXCR3, NKG2D, and IL-18Rα were associated with viremia control, as was Ab-dependent cytotoxic function. Our results suggest several novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Sabrina Helmold Hait
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Jigna Narola
- Advanced BioScience Laboratories, Inc., Rockville, MD 20850
| | - Tanya Hoang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
94
|
In vitro inhibition of HIV-1 replication in autologous CD4 + T cells indicates viral containment by multifactorial mechanisms. Virol Sin 2017; 32:485-494. [PMID: 28918477 DOI: 10.1007/s12250-017-3992-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/27/2017] [Indexed: 10/18/2022] Open
Abstract
HIV-1-specific cytotoxic T lymphocytes (CTLs) and neutralizing antibodies (NAbs) are present during chronic infection, but the relative contributions of these effector mechanisms to viral containment remain unclear. Here, using an in vitro model involving autologous CD4+ T cells, primary HIV-1 isolates, HIV-1-specific CTLs, and neutralizing monoclonal antibodies, we show that b12, a potent and broadly neutralizing monoclonal antibody to HIV-1, was able to block viral infection when preincubated with virus prior to infection, but was much less effective than CTLs at limiting virus replication when added to infected cell cultures. However, the same neutralizing antibody was able to contain viruses by antibody-dependent cell-mediated virus inhibition in vitro, which was mediated by natural killer cells (NKs) and dependent on an Fc-Fc receptor interaction. Meanwhile, bulk CTLs from HIV-1 controllers were more effective in suppression of virus replication than those from progressors. These findings indicate that control of HIV-1 replication in activated CD4+ T cells is ineffectively mediated by neutralizing antibodies alone, but that both CTLs and antibody-dependent NK-mediated immune mechanisms contribute to viral containment. Our study systemically compared three major players in controlling HIV-1 infection, CTLs, NAbs, and NKs, in an autologous system and highlighted the multifactorial mechanisms for viral containment and vaccine success.
Collapse
|
95
|
Increased, Durable B-Cell and ADCC Responses Associated with T-Helper Cell Responses to HIV-1 Envelope in Macaques Vaccinated with gp140 Occluded at the CD4 Receptor Binding Site. J Virol 2017; 91:JVI.00811-17. [PMID: 28701402 PMCID: PMC5599767 DOI: 10.1128/jvi.00811-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
Strategies are needed to improve the immunogenicity of HIV-1 envelope (Env) antigens (Ag) for more long-lived, efficacious HIV-1 vaccine-induced B-cell responses. HIV-1 Env gp140 (native or uncleaved molecules) or gp120 monomeric proteins elicit relatively poor B-cell responses which are short-lived. We hypothesized that Env engagement of the CD4 receptor on T-helper cells results in anergic effects on T-cell recruitment and consequently a lack of strong, robust, and durable B-memory responses. To test this hypothesis, we occluded the CD4 binding site (CD4bs) of gp140 by stable cross-linking with a 3-kDa CD4 miniprotein mimetic, serving to block ligation of gp140 on CD4+ T cells while preserving CD4-inducible (CDi) neutralizing epitopes targeted by antibody-dependent cellular cytotoxicity (ADCC) effector responses. Importantly, immunization of rhesus macaques consistently gave superior B-cell (P < 0.001) response kinetics and superior ADCC (P < 0.014) in a group receiving the CD4bs-occluded vaccine compared to those of animals immunized with gp140. Of the cytokines examined, Ag-specific interleukin-4 (IL-4) T-helper enzyme-linked immunosorbent spot (ELISpot) assays of the CD4bs-occluded group increased earlier (P = 0.025) during the inductive phase. Importantly, CD4bs-occluded gp140 antigen induced superior B-cell and ADCC responses, and the elevated B-cell responses proved to be remarkably durable, lasting more than 60 weeks postimmunization. IMPORTANCE Attempts to develop HIV vaccines capable of inducing potent and durable B-cell responses have been unsuccessful until now. Antigen-specific B-cell development and affinity maturation occurs in germinal centers in lymphoid follicles through a critical interaction between B cells and T follicular helper cells. The HIV envelope binds the CD4 receptor on T cells as soluble shed antigen or as antigen-antibody complexes, causing impairment in the activation of these specialized CD4-positive T cells. We proposed that CD4-binding impairment is partly responsible for the relatively poor B-cell responses to HIV envelope-based vaccines. To test this hypothesis, we blocked the CD4 binding site of the envelope antigen and compared it to currently used unblocked envelope protein. We found superior and durable B-cell responses in macaques vaccinated with an occluded CD4 binding site on the HIV envelope antigen, demonstrating a potentially important new direction in future design of new HIV vaccines.
Collapse
|
96
|
Chea LS, Amara RR. Immunogenicity and efficacy of DNA/MVA HIV vaccines in rhesus macaque models. Expert Rev Vaccines 2017; 16:973-985. [PMID: 28838267 DOI: 10.1080/14760584.2017.1371594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Despite 30 years of research on HIV, a vaccine to prevent infection and limit disease progression remains elusive. The RV144 trial showed moderate, but significant protection in humans and highlighted the contribution of antibody responses directed against HIV envelope as an important immune correlate for protection. Efforts to further build upon the progress include the use of a heterologous prime-boost regimen using DNA as the priming agent and the attenuated vaccinia virus, Modified Vaccinia Ankara (MVA), as a boosting vector for generating protective HIV-specific immunity. Areas covered: In this review, we summarize the immunogenicity of DNA/MVA vaccines in non-human primate models and describe the efficacy seen in SIV infection models. We discuss immunological correlates of protection determined by these studies and potential approaches for improving the protective immunity. Additionally, we describe the current progress of DNA/MVA vaccines in human trials. Expert commentary: Efforts over the past decade have provided the opportunity to better understand the dynamics of vaccine-induced immune responses and immune correlates of protection against HIV. Based on what we have learned, we outline multiple areas where the field will likely focus on in the next five years.
Collapse
Affiliation(s)
- Lynette Siv Chea
- a Emory Vaccine Center, Department of Microbiology and Immunology , Yerkes National Primate Research Center, Emory University , Atlanta , GA , USA
| | - Rama Rao Amara
- a Emory Vaccine Center, Department of Microbiology and Immunology , Yerkes National Primate Research Center, Emory University , Atlanta , GA , USA
| |
Collapse
|
97
|
Abstract
PURPOSE OF REVIEW Models of implementation of known-effective interventions for HIV prevention indicate that an efficacious vaccine to prevent HIV infection would be critical for controlling the HIV pandemic. Key issues in the design of future HIV vaccine trials are: first, how to develop reliable immunological correlates of vaccine efficacy, second, how to down-select candidate vaccine regimens into efficacy trials, and third, how to learn about vaccine efficacy in the context of the evolving HIV prevention landscape. RECENT FINDINGS Whereas in the past phase-I/-II HIV vaccine trials have addressed the first and second points using a small set of immunological assays and readouts, recently they have used a battery of assays with highly multivariate readouts. In addition, systems vaccinology studies of other pathogens measuring PBMC transcriptomics and other immunological features pre- and postfirst vaccination are demonstrating value, for example, providing discoveries that preimmunization and early postimmunization cell population markers can predict the influenza-specific antibody titer that is a correlate of vaccine protection. The HIV prevention landscape continues to evolve, and the design and analysis of vaccine trials is evolving alongside, to accommodate increasingly dynamic and regional standards of HIV prevention. SUMMARY Development of interpretable and robust functional assays, in addition to the associated bioinformatics and statistical analytic tools, is needed to improve the assessment of correlates of protection in efficacy trials and the down-selection of candidate vaccine regimens into efficacy trials. Moreover, high-priority trials should integrate systems vaccinology, including the analysis of prevaccination and early postvaccination markers.
Collapse
|
98
|
Abstract
PURPOSE OF REVIEW Only four HIV-1 vaccine concepts have been tested in six efficacy trials with no product licensed to date. Several scientific and programmatic lessons can be learned from these studies generating new hypotheses and guiding future steps. RECENT FINDINGS RV144 [ALVAC-HIV (canarypox vector) and AIDSVAX B/E (bivalent gp120 HIV-1 subtype B and CRF01_AE)] remains the only efficacy trial that demonstrated a modest vaccine efficacy, which led to the identification of immune correlates of risk. Progress on subtype-specific, ALVAC (canarypox vector) and gp120 vaccine prime-boost approaches has been slow, but we are finally close to the launch of an efficacy study in Africa in 2016. The quest of a globally effective HIV-1 vaccine has led to the development of new approaches. Efficacy studies of combinations of Adenovirus type 26 (Ad26)/Modified Vaccinia Ankara (MVA)/gp140 vaccines with mosaic designs will enter efficacy studies mid-2017 and cytomegalovirus (CMV)-vectored vaccines begin Phase I studies at the same time. Future HIV-1 vaccine efficacy trials face practical challenges as effective nonvaccine prevention programs are projected to decrease HIV-1 incidence. SUMMARY An HIV-1 vaccine is urgently needed. Increased industry involvement, mobilization of resources, expansion of a robust pipeline of new concepts, and robust preclinical challenge studies will be essential to accelerate efficacy testing of next generation HIV-1 vaccine candidates.
Collapse
|
99
|
Rerks-Ngarm S, Pitisuttithum P, Excler JL, Nitayaphan S, Kaewkungwal J, Premsri N, Kunasol P, Karasavvas N, Schuetz A, Ngauy V, Sinangil F, Dawson P, deCamp AC, Phogat S, Garunathan S, Tartaglia J, DiazGranados C, Ratto-Kim S, Pegu P, Eller M, Karnasuta C, Montefiori DC, Sawant S, Vandergrift N, Wills S, Tomaras GD, Robb ML, Michael NL, Kim JH, Vasan S, O'Connell RJ. Randomized, Double-Blind Evaluation of Late Boost Strategies for HIV-Uninfected Vaccine Recipients in the RV144 HIV Vaccine Efficacy Trial. J Infect Dis 2017; 215:1255-1263. [PMID: 28329190 DOI: 10.1093/infdis/jix099] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/16/2017] [Indexed: 11/12/2022] Open
Abstract
Background The RV144 ALVAC-HIV prime, AIDSVAX B/E boost afforded 60% efficacy against human immunodeficiency virus (HIV) acquisition at 1 year, waning to 31.2% after 3.5 years. We hypothesized that additional vaccinations might augment immune correlates of protection. Methods In a randomized placebo-controlled double-blind study of 162 HIV-negative RV144 vaccine recipients, we evaluated 2 additional boosts, given 6-8 years since RV144 vaccination, for safety and immunogenicity, at weeks 0 and 24. Study groups 1-3 received ALVAC-HIV+AIDSVAX B/E, AIDSVAX B/E, and ALVAC-HIV, respectively, or placebo. Results Vaccines were well tolerated. For groups 1 and 2, plasma immunoglobulin (Ig) G, IgA, and neutralizing antibody responses at week 2 were all significantly higher than 2 weeks after the last RV144 vaccination. IgG titers against glycoprotein (gp) 70V1V2 92TH023 increased 14-fold compared with 2 weeks after the last RV144 vaccination (14069 vs 999; P < .001). Groups 1 and 2 did not differ significantly from each other, whereas group 3 was similar to placebo recipients. Responses in groups 1 and 2 declined by week 24 but were boosted by the second vaccination, albeit at lower magnitude than for week 2. Conclusions In RV144 vaccinees, AIDSVAX B/E with or without ALVAC-HIV 6-8 years after initial vaccination generated higher humoral responses than after RV144, but these responses were short-lived, and their magnitude did not increase with subsequent boost. Clinical Trials Registration NCT01435135.
Collapse
Affiliation(s)
| | | | - Jean-Louis Excler
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | | | - Jaranit Kaewkungwal
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bankok
| | - Nakorn Premsri
- Department of Disease Control, Ministry of Public Health, Nonthaburi
| | - Prayura Kunasol
- Department of Disease Control, Ministry of Public Health, Nonthaburi
| | - Nicos Karasavvas
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Alexandra Schuetz
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Viseth Ngauy
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Faruk Sinangil
- Global Solutions for Infectious Diseases, South San Francisco, California
| | | | - Allan C deCamp
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | | | | - Silvia Ratto-Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | - Poonam Pegu
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Michael Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | | | - David C Montefiori
- Duke Human Vaccine Institute, Durham, North Carolina.,Department of Surgery, Duke University, Durham, North Carolina
| | | | | | | | | | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | - Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | - Sandhya Vasan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda.,Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Robert J O'Connell
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | | |
Collapse
|
100
|
Joachim A, Munseri PJ, Nilsson C, Bakari M, Aboud S, Lyamuya EF, Tecleab T, Liakina V, Scarlatti G, Robb ML, Earl PL, Moss B, Wahren B, Mhalu F, Ferrari G, Sandstrom E, Biberfeld G. Three-Year Durability of Immune Responses Induced by HIV-DNA and HIV-Modified Vaccinia Virus Ankara and Effect of a Late HIV-Modified Vaccinia Virus Ankara Boost in Tanzanian Volunteers. AIDS Res Hum Retroviruses 2017; 33:880-888. [PMID: 28027665 DOI: 10.1089/aid.2016.0251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We explored the duration of immune responses and the effect of a late third HIV-modified vaccinia virus Ankara (MVA) boost in HIV-DNA primed and HIV-MVA boosted Tanzanian volunteers. Twenty volunteers who had previously received three HIV-DNA and two HIV-MVA immunizations were given a third HIV-MVA immunization 3 years after the second HIV-MVA boost. At the time of the third HIV-MVA, 90% of the vaccinees had antibodies to HIV-1 subtype C gp140 (median titer 200) and 85% to subtype B gp160 (median titer 100). The majority of vaccinees had detectable antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, 70% against CRF01_AE virus-infected cells (median titer 239) and 84% against CRF01_AE gp120-coated cells (median titer 499). A high proportion (74%) of vaccinees had IFN-γ ELISpot responses, 63% to Gag and 42% to Env, 3 years after the second HIV-MVA boost. After the third HIV-MVA, there was an increase in Env-binding antibodies and ADCC-mediating antibodies relative to the response seen at the time of the third HIV-MVA vaccination, p < .0001 and p < .05, respectively. The frequency of IFN-γ ELISpot responses increased to 95% against Gag or Env and 90% to both Gag and Env, p = .064 and p = .002, respectively. In conclusion, the HIV-DNA prime/HIV-MVA boost regimen elicited potent antibody and cellular immune responses with remarkable durability, and a third HIV-MVA immunization significantly boosted both antibody and cellular immune responses relative to the levels detected at the time of the third HIV-MVA, but not to higher levels than after the second HIV-MVA.
Collapse
Affiliation(s)
- Agricola Joachim
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Patricia J. Munseri
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Charlotta Nilsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Muhammad Bakari
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Eligius F. Lyamuya
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | | | - Valentina Liakina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Merlin L. Robb
- The Military HIV Research Program, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Patricia L. Earl
- National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Maryland
| | - Bernard Moss
- National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Maryland
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fred Mhalu
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Guido Ferrari
- Department of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Eric Sandstrom
- Venhälsan, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Gunnel Biberfeld
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|