51
|
Shamekhi S, Abdolalizadeh J, Ostadrahimi A, Mohammadi SA, Barzegari A, Lotfi H, Bonabi E, Zarghami N. Apoptotic Effect of Saccharomyces cerevisiae on Human Colon Cancer SW480 Cells by Regulation of Akt/NF-ĸB Signaling Pathway. Probiotics Antimicrob Proteins 2021; 12:311-319. [PMID: 30788662 DOI: 10.1007/s12602-019-09528-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug resistance is one of the major problems, which causes recurrence of cancers. Therefore, complementary treatments are needed to improve the impacts of chemotherapy agents. The effect of probiotics as cancer-preventing agents through involvement in the activation of apoptotic pathways has been established. The present study sought to investigate how the heat-killed form of Saccharomyces cerevisiae (as a probiotic) could affect the Akt/NF-kB-induced apoptosis in colon cancer cells, the SW480 cell line. The cytotoxic effects of heat-killed yeast (HKY) and 5-fluorouracil (5-FU, as a positive control drug) were assayed using the MTT method. Morphological changes followed by apoptosis were examined using DAPI staining. The transcription and translation level of apoptosis genes were explored with qRT-PCR and western blotting. The data were analyzed using GraphPad Prism V6.0 Software. The results showed that HKY could induce apoptosis in colon cancer cell line through downregulation of p-Akt1, Rel A, Bcl-XL, pro-caspase 3, and pro-caspase 9 expressions, and upregulation of BAX, cleaved caspase-3, and cleaved caspase-9. Besides, Akt protein expression was not affected. It is noticeable that HKY had a better modulating effect on BAX expression compared with 5-FU. It was able to modulate Akt/NF-kB signaling pathway followed by the apoptotic cascade.
Collapse
Affiliation(s)
- Sara Shamekhi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Abolghasem Mohammadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esat Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Nosratollah Zarghami
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
52
|
Lim CS, Weinstein BN, Roy SW, Brown CM. Analysis of fungal genomes reveals commonalities of intron gain or loss and functions in intron-poor species. Mol Biol Evol 2021; 38:4166-4186. [PMID: 33772558 PMCID: PMC8476143 DOI: 10.1093/molbev/msab094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron–exon structures, and raising the question as to why these few introns are retained. Here, we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per 1 kb of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome-associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and noncoding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Brooke N Weinstein
- Quantitative & Systems Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Scott W Roy
- Quantitative & Systems Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
53
|
Wu X, Xia Y, He F, Zhu C, Ren W. Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities. MICROBIOME 2021; 9:60. [PMID: 33715629 PMCID: PMC7958491 DOI: 10.1186/s40168-021-01024-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
Bacteria, viruses, protozoa, and fungi establish a complex ecosystem in the gut. Like other microbiota, gut mycobiota plays an indispensable role in modulating intestinal physiology. Notably, the most striking characteristics of intestinal fungi are their extraintestinal functions. Here, we provide a comprehensive review of the importance of gut fungi in the regulation of intestinal, pulmonary, hepatic, renal, pancreatic, and brain functions, and we present possible opportunities for the application of gut mycobiota to alleviate/treat human diseases. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Yaoyao Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Fang He
- College of Animal Science and Technology, Southwest University, Chongqing, 400716 China
| | - Congrui Zhu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
54
|
Understanding Human Microbiota Offers Novel and Promising Therapeutic Options against Candida Infections. Pathogens 2021; 10:pathogens10020183. [PMID: 33572162 PMCID: PMC7915436 DOI: 10.3390/pathogens10020183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Human fungal pathogens particularly of Candida species are one of the major causes of hospital acquired infections in immunocompromised patients. The limited arsenal of antifungal drugs to treat Candida infections with concomitant evolution of multidrug resistant strains further complicates the management of these infections. Therefore, deployment of novel strategies to surmount the Candida infections requires immediate attention. The human body is a dynamic ecosystem having microbiota usually involving symbionts that benefit from the host, but in turn may act as commensal organisms or affect positively (mutualism) or negatively (pathogenic) the physiology and nourishment of the host. The composition of human microbiota has garnered a lot of recent attention, and despite the common occurrence of Candida spp. within the microbiota, there is still an incomplete picture of relationships between Candida spp. and other microorganism, as well as how such associations are governed. These relationships could be important to have a more holistic understanding of the human microbiota and its connection to Candida infections. Understanding the mechanisms behind commensalism and pathogenesis is vital for the development of efficient therapeutic strategies for these Candida infections. The concept of host-microbiota crosstalk plays critical roles in human health and microbiota dysbiosis and is responsible for various pathologies. Through this review, we attempted to analyze the types of human microbiota and provide an update on the current understanding in the context of health and Candida infections. The information in this article will help as a resource for development of targeted microbial therapies such as pre-/pro-biotics and microbiota transplant that has gained advantage in recent times over antibiotics and established as novel therapeutic strategy.
Collapse
|
55
|
Mowat AM, Bain CC. Guardians of the epithelium: macrophages protect against toxic fungal derivatives. Mucosal Immunol 2021; 14:542-543. [PMID: 33495494 PMCID: PMC8076022 DOI: 10.1038/s41385-020-00369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/04/2023]
Abstract
A recent paper in Cell proposes a new role for macrophages in the distal colonic mucosa, namely the generation of balloon-like processes (BLPs) that sample luminal contents and protect epithelial cells from the toxic effects of fungal metabolites absorbed during this process. Here Allan Mowat and Calum Bain discuss the implications of these novel findings for intestinal physiology and macrophage biology, highlighting how they extend our understanding of how tissue resident macrophages can adapt precisely to the physiological needs of individual anatomical niches. ![]()
Collapse
Affiliation(s)
- Allan M. Mowat
- grid.8756.c0000 0001 2193 314XCentre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA UK
| | - Calum C. Bain
- grid.511172.10000 0004 0613 128XUniversity of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, EH16 4TJ UK
| |
Collapse
|
56
|
Moreno-Sabater A, Autaa G, Sterlin D, Jerbi A, Villette R, Holm JB, Parizot C, Selim S, Senghor Y, Ghillani-Dalbin P, Bachmeyer C, Hennequin C, Gorochov G, Larsen M. Systemic anti-commensal response to fungi analyzed by flow cytometry is related to gut mycobiome ecology. MICROBIOME 2020; 8:159. [PMID: 33190643 PMCID: PMC7667786 DOI: 10.1186/s40168-020-00924-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/15/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Interest for the study of gut mycobiota in relation with human health and immune homeostasis has increased in the last years. From this perspective, new tools to study the immune/fungal interface are warranted. Systemic humoral immune responses could reflect the dynamic relationships between gut mycobiota and immunity. Using a novel flow cytometry technology (Fungi-Flow) to determine immunoglobulin (Ig) responses to fungi, we studied the relationships between gut mycobiota and systemic humoral anti-commensal immunity. RESULTS The Fungi-Flow method allows a sensitive and specific measurement of systemic IgG responses against 17 commensal and environmental fungi from the two main divisions; Ascomycota and Basidiomycota. IgG responses exhibited a high inter-individual variability. Anti-commensal IgG responses were contrasted with the relative abundance, alpha-diversity, and intra-genus richness of fungal species in gut mycobiota of twenty healthy donors. Categorization of gut mycobiota composition revealed two differentiated fungal ecosystems. Significant difference of anti-Saccharomyces systemic IgG responses were observed in healthy donors stratified according to the fungal ecosystem colonizing their gut. A positive and significant correlation was observed between the variety of IgG responses against fungal commensals and intestinal alpha-diversity. At the level of intra-genus species richness, intense IgG responses were associated with a low intra-genus richness for known pathobionts, but not commensals. CONCLUSIONS Fungi-Flow allows an easy and reliable measure of personalized humoral responses against commensal fungi. Combining sequencing technology with our novel Fungi-Flow immunological method, we propose that there are at least two defined ecosystems in the human gut mycobiome associated with systemic humoral responses. Fungi-Flow opens new opportunities to improve our knowledge about the impact of mycobiota in humoral anti-commensal immunity and homeostasis. Video Abstract.
Collapse
Affiliation(s)
- Alicia Moreno-Sabater
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
- Service de Parasitologie-Mycologie AP-HP, Hôpital Saint-Antoine, 75012 Paris, France
| | - Gaelle Autaa
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
| | - Delphine Sterlin
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
- Service d’immunologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 Inserm, 75015 Paris, France
| | - Amenie Jerbi
- Service d’immunologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Remy Villette
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
| | - Johanna B. Holm
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Christophe Parizot
- Service d’immunologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Sameh Selim
- College of Agricultural Sciences AGHYLE Res, Unit. Institut Polytechnique UniLaSalle, 60026 Beauvais, France
| | - Yaye Senghor
- Service de Parasitologie-Mycologie AP-HP, Hôpital Saint-Antoine, 75012 Paris, France
| | | | | | - Christophe Hennequin
- Service de Parasitologie-Mycologie AP-HP, Hôpital Saint-Antoine, 75012 Paris, France
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Sorbonne Université, Inserm, 75012 Paris, France
| | - Guy Gorochov
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
- Service d’immunologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Martin Larsen
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
| |
Collapse
|
57
|
Fiers WD, Leonardi I, Iliev ID. From Birth and Throughout Life: Fungal Microbiota in Nutrition and Metabolic Health. Annu Rev Nutr 2020; 40:323-343. [PMID: 32680437 PMCID: PMC7529963 DOI: 10.1146/annurev-nutr-013120-043659] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human gastrointestinal tract is home to a vibrant, diverse ecosystem of prokaryotic and eukaryotic microorganisms. The gut fungi (mycobiota) have recently risen to prominence due to their ability to modulate host immunity. Colonization of the gut occurs through a combination of vertical transmission from the maternal mycobiota and environmental and dietary exposure. Data from human and animal studies demonstrate that nutrition strongly affects the mycobiota composition and that changes in the fungal communities can aggravate metabolic diseases. The mechanisms pertaining to the mycobiota's influence on host health, pathology, and resident gastrointestinal communities through intrakingdom, transkingdom, and immune cross talk are beginning to come into focus, setting the stage for a new chapter in microbiota-host interactions. Herein, we examine the inception, maturation, and dietary modulation of gastrointestinal and nutritional fungal communities and inspect their impact on metabolic diseases in humans.
Collapse
Affiliation(s)
- William D Fiers
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA;
| | - Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA;
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA;
- Department of Microbiology and Immunology and Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
58
|
Sodré CS, Rodrigues PMG, Vieira MS, Marques Paes da Silva A, Gonçalves LS, Ribeiro MG, de Carvalho Ferreira D. Oral mycobiome identification in atopic dermatitis, leukemia, and HIV patients - a systematic review. J Oral Microbiol 2020; 12:1807179. [PMID: 32944157 PMCID: PMC7482892 DOI: 10.1080/20002297.2020.1807179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Oral mycobiome profiling is important to understand host-pathogen interactions that occur in various diseases. Invasive fungal infections are particularly relevant for patients who have received chemotherapy and for those who have HIV infection. In addition, changes in fungal microbiota are associated with the worsening of chronic conditions like atopic dermatitis (AD). This work aims, through a systematic review, to analyze the methods used in previous studies to identify oral fungi and their most frequent species in patients with the following conditions: HIV infection, leukemia, and atopic dermatitis. METHODS A literature search was performed on several different databases. Inclusion criteria were: written in English or Portuguese; published between September 2009 and September 2019; analyzed oral fungi of HIV-infected, leukemia, or AD patients. RESULTS 21 studies were included and the most identified species was Candida. The predominant methods of identification were morphological (13/21) and sugar fermentation and assimilation tests (11/21). Polymerase chain reaction (PCR) was the most used molecular method (8/21) followed by sequencing techniques (3/21). CONCLUSIONS Although morphological and biochemical tests are still used, they are associated with high-throughput sequencing techniques, due to their accuracy and time saving for profiling the predominant species in oral mycobiome.
Collapse
Affiliation(s)
- Camila Stofella Sodré
- Faculty of Medicine, Department of Clinical Medicine, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Paulo Matheus Guerra Rodrigues
- Laboratory of Oral and Systemic Infections, Faculty of Dentistry, Estácio de Sá University- UNESA, Rio de Janeiro, Brazil
| | | | | | - Lucio Souza Gonçalves
- Laboratory of Oral and Systemic Infections, Faculty of Dentistry, Estácio de Sá University- UNESA, Rio de Janeiro, Brazil
| | - Marcia Gonçalves Ribeiro
- Medical Genetics Service, Martagão Gesteira Pediatric Institute (IPPMG- UFRJ), Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Dennis de Carvalho Ferreira
- Laboratory of Oral and Systemic Infections, Faculty of Dentistry, Estácio de Sá University- UNESA, Rio de Janeiro, Brazil
| |
Collapse
|
59
|
Rhimi W, Theelen B, Boekhout T, Otranto D, Cafarchia C. Malassezia spp. Yeasts of Emerging Concern in Fungemia. Front Cell Infect Microbiol 2020; 10:370. [PMID: 32850475 PMCID: PMC7399178 DOI: 10.3389/fcimb.2020.00370] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022] Open
Abstract
Malassezia spp. are lipid-dependent yeasts, inhabiting the skin and mucosa of humans and animals. They are involved in a variety of skin disorders in humans and animals and may cause bloodstream infections in severely immunocompromised patients. Despite a tremendous increase in scientific knowledge of these yeasts during the last two decades, the epidemiology of Malassezia spp. related to fungemia remains largely underestimated most likely due to the difficulty in the isolation of these yeasts species due to their lipid-dependence. This review summarizes and discusses the most recent literature on Malassezia spp. infection and fungemia, its occurrence, pathogenicity mechanisms, diagnostic methods, in vitro susceptibility testing and therapeutic approaches.
Collapse
Affiliation(s)
- Wafa Rhimi
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy
| | - Bart Theelen
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Teun Boekhout
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,The Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, Netherlands.,Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy.,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy
| |
Collapse
|
60
|
Aaron L, Torsten M. Candida albicans in celiac disease: A wolf in sheep's clothing. Autoimmun Rev 2020; 19:102621. [PMID: 32693029 DOI: 10.1016/j.autrev.2020.102621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
Candida albicans is a commensal fungus with a potential pathogenicity and celiac disease is an autoimmune condition. Both share multiple pathophysiological junctions, including serological markers against cell-wall proteins of Candida, anti-gliadin antibodies are positive in both entities, gluten and a candidal virulence factor share sequence similarity and the autoantigen of celiac disease, the tissue transglutaminase, is pivotal in Candida albicans commensalism and hostile behavior and its covalently cross linked products are stable and resistant to breakdown in the two entities. Those autoimmune/infectious cross roads are the basis for the hypothesis that Candida albicans is an additional environmental factor for celiac disease autoimmunogenesis.
Collapse
|
61
|
Zhang D, Wang Y, Shen S, Hou Y, Chen Y, Wang T. The mycobiota of the human body: a spark can start a prairie fire. Gut Microbes 2020; 11:655-679. [PMID: 32150513 PMCID: PMC7524315 DOI: 10.1080/19490976.2020.1731287] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mycobiota are inseparable from human health, shaking up the unique position held by bacteria among microorganisms. What is surprising is that this seemingly small species can trigger huge changes in the human body. Dysbiosis and invasion of mycobiota are confirmed to cause disease in different parts of the body. Meanwhile, our body also produces corresponding immune changes upon mycobiota infection. Several recent studies have made a connection between intestinal mycobiota and the human immune system. In this review, we focus on questions related to mycobiota, starting with an introduction of select species, then we summarize the typical diseases caused by mycobiota in different parts of the human body. Moreover, we constructed a framework for the human anti-fungal immune system based on genetics and immunology. Finally, the progression of fungal detection methods is also reviewed.
Collapse
Affiliation(s)
- Di Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yugen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China,CONTACT Tingting Wang The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing210093, China
| |
Collapse
|
62
|
Spatz M, Richard ML. Overview of the Potential Role of Malassezia in Gut Health and Disease. Front Cell Infect Microbiol 2020; 10:201. [PMID: 32528901 PMCID: PMC7265801 DOI: 10.3389/fcimb.2020.00201] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
Malassezia is the most prevalent fungus identified in the human skin microbiota; originally described at the end of the nineteenth century, this genus is composed of at least 14 species. The role of Malassezia on the skin remains controversial because this genus has been associated with both healthy skin and pathologies (dermatitis, eczema, etc.). However, with the recent development of next-generation sequencing methods, allowing the description of the fungal diversity of various microbiota, Malassezia has also been identified as a resident fungus of diverse niches such as the gut or breast milk. A potential role for Malassezia in gut inflammation and cancer has also been suggested by recent studies. The aim of this review is to describe the findings on Malassezia in these unusual niches, to investigate what is known of the adaptation of Malassezia to the gut environment and to speculate on the role of this yeast in the host physiology specifically related to the gastrointestinal tract.
Collapse
Affiliation(s)
- Madeleine Spatz
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Mathias L Richard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
63
|
Tang Y, Zhang H, Xu H, Zeng W, Qiu Y, Tan C, Tang S, Zhang J. Dendritic Cells Promote Treg Expansion but Not Th17 Generation in Response to Talaromyces marneffei Yeast Cells. Infect Drug Resist 2020; 13:805-813. [PMID: 32210595 PMCID: PMC7075240 DOI: 10.2147/idr.s239906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/25/2020] [Indexed: 12/29/2022] Open
Abstract
Background Dendritic cells (DCs) with both proinflammatory and tolerogenic properties have been implicated in modulation of CD4+ T cell responses in many fungal diseases. However, the role of DC in the context of Talaromyces marneffei (T. marneffei) infection has not been determined. In this study, we aimed to study the effect of the yeast form of T. marneffei yeasts on DCs, as well as the role of DCs in modulating T helper 17 (Th17) and regulatory T (Treg) cell responses to the pathogen. Methods Mouse bone marrow-derived DCs were stimulated with T. marneffei yeasts for 24 h. Frequencies of CD80 and CD86 expression on DCs and the levels of IL-6, IL-10 and TGF-β in the culture supernatant of yeast-stimulated DCs were detected by flow cytometry and ELISA, respectively. In co-culture experiments, CD4+ T lymphocytes of mice were isolated from the spleen using magnetic beads and co-cultured with T. marneffei yeasts, with or without DCs for 24 h. The proportions of Th17 and Treg cells in co-culture were detected by flow cytometry. The mRNA levels of RORγt and Foxp3 were detected by RT-PCR. Levels of IL-10 and TGF-β in the co-culture supernatant were detected by ELISA. Results The expressions of CD80 and CD86 on DCs were increased, as well as IL-6, IL-10 and TGF-β levels in the culture supernatant of T. marneffei-stimulated DCs were higher than those in DCs cultured without T. marneffei. In co-culture experiments, in the presence of DCs, T. marneffei promoted Treg expansion and Foxp3 up-regulation but limited Th17 and downregulated RORγt. Levels of IL-10 and TGF-β were higher in the co-culture containing DCs than without DCs. Conclusion Our findings demonstrated that the interaction between DCs and T. marneffei could promote Treg expansion but not Th17 generation. These findings provide a mechanism by which DCs may promote immune tolerance in T. marneffei infection.
Collapse
Affiliation(s)
- Yanping Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Haiguang Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wen Zeng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Ye Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Caimei Tan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shudan Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jianquan Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
64
|
Hoenigl M. Fungal Translocation: A Driving Force Behind the Occurrence of Non-AIDS Events? Clin Infect Dis 2020; 70:242-244. [PMID: 30861074 PMCID: PMC6938977 DOI: 10.1093/cid/ciz215] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego
- Section of Infectious Diseases and Tropical Medicine and Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Austria
| |
Collapse
|
65
|
Tiew PY, Mac Aogain M, Ali NABM, Thng KX, Goh K, Lau KJX, Chotirmall SH. The Mycobiome in Health and Disease: Emerging Concepts, Methodologies and Challenges. Mycopathologia 2020; 185:207-231. [PMID: 31894501 PMCID: PMC7223441 DOI: 10.1007/s11046-019-00413-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Fungal disease is an increasingly recognised global clinical challenge associated with high mortality. Early diagnosis of fungal infection remains problematic due to the poor sensitivity and specificity of current diagnostic modalities. Advances in sequencing technologies hold promise in addressing these shortcomings and for improved fungal detection and identification. To translate such emerging approaches into mainstream clinical care will require refinement of current sequencing and analytical platforms, ensuring standardisation and consistency through robust clinical benchmarking and its validation across a range of patient populations. In this state-of-the-art review, we discuss current diagnostic and therapeutic challenges associated with fungal disease and provide key examples where the application of sequencing technologies has potential diagnostic application in assessing the human ‘mycobiome’. We assess how ready access to fungal sequencing may be exploited in broadening our insight into host–fungal interaction, providing scope for clinical diagnostics and the translation of emerging mycobiome research into clinical practice.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Micheál Mac Aogain
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | | | - Kai Xian Thng
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Karlyn Goh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kenny J X Lau
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
66
|
Fung TC. The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiol Dis 2019; 136:104714. [PMID: 31846737 DOI: 10.1016/j.nbd.2019.104714] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/05/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
Intestinal inflammatory disorders are associated with neurophysiological and behavioral symptoms. Conversely, many disorders of the central nervous system (CNS) are accompanied by intestinal complications. These observations suggest that intestinal and nervous system physiologies are functionally linked. Indeed, a growing body of literature has revealed multiple pathways mediating bidirectional communication between the intestine and the CNS, collectively referred to as the gut-brain axis. In particular, microbes naturally colonizing the mammalian gastrointestinal (GI) tract, termed the gut microbiota, not only correlate with but also play a causative role in regulating CNS function, development and host behavior. Despite these findings, our understanding of the cellular and molecular mechanisms that mediate gut-brain communication remains in its infancy. However, members of the gut microbiota have been established as potent modulators of intestinal, systemic and CNS-resident immune cell function, suggesting that gut-brain interactions may involve the host immune system. Multiple CNS disorders with gut microbiota associations, including neuroinflammatory, neuropsychiatric and neurodegenerative disorders, also have significant inflammatory manifestations. In this review, I discuss recent advances exploring the role of microbiota-immune interactions as a critical regulator of the gut-brain axis in the context of CNS and related disorders.
Collapse
Affiliation(s)
- Thomas C Fung
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Dr. East, Los Angeles, CA 90095, United States.
| |
Collapse
|
67
|
Affiliation(s)
- Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
68
|
Crosson T, Roversi K, Balood M, Othman R, Ahmadi M, Wang JC, Seadi Pereira PJ, Tabatabaei M, Couture R, Eichwald T, Latini A, Prediger RD, Rangachari M, Seehus CR, Foster SL, Talbot S. Profiling of how nociceptor neurons detect danger - new and old foes. J Intern Med 2019; 286:268-289. [PMID: 31282104 DOI: 10.1111/joim.12957] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The host evolves redundant mechanisms to preserve physiological processing and homeostasis. These functions range from sensing internal and external threats, creating a memory of the insult and generating reflexes, which aim to resolve inflammation. Impairment in such functioning leads to chronic inflammatory diseases. By interacting through a common language of ligands and receptors, the immune and sensory nervous systems work in concert to accomplish such protective functions. Whilst this bidirectional communication helps to protect from danger, it can contribute to disease pathophysiology. Thus, the somatosensory nervous system is anatomically positioned within primary and secondary lymphoid tissues and mucosa to modulate immunity directly. Upstream of this interplay, neurons detect danger, which prompts the release of neuropeptides initiating (i) defensive reflexes (ranging from withdrawal response to coughing) and (ii) chemotaxis, adhesion and local infiltration of immune cells. The resulting outcome of such neuro-immune interplay is still ill-defined, but consensual findings start to emerge and support neuropeptides not only as blockers of TH 1-mediated immunity but also as drivers of TH 2 immune responses. However, the modalities detected by nociceptors revealed broader than mechanical pressure and temperature sensing and include signals as various as cytokines and pathogens to immunoglobulins and even microRNAs. Along these lines, we aggregated various dorsal root ganglion sensory neuron expression profiling datasets supporting such wide-ranging sensing capabilities to help identifying new danger detection modalities of these cells. Thus, revealing unexpected aspects of nociceptor neuron biology might prompt the identification of novel drivers of immunity, means to resolve inflammation and strategies to safeguard homeostasis.
Collapse
Affiliation(s)
- T Crosson
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - K Roversi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Balood
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - R Othman
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - M Ahmadi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - J-C Wang
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - M Tabatabaei
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - R Couture
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - T Eichwald
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - A Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - R D Prediger
- Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Rangachari
- Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - C R Seehus
- FM Kirby Neurobiology Center, Children's Hospital, Boston, MA, USA
| | - S L Foster
- Depression Clinical Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - S Talbot
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
69
|
Li TH, Liu L, Hou YY, Shen SN, Wang TT. C-type lectin receptor-mediated immune recognition and response of the microbiota in the gut. Gastroenterol Rep (Oxf) 2019; 7:312-321. [PMID: 31687150 PMCID: PMC6821170 DOI: 10.1093/gastro/goz028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
C-type lectin receptors (CLRs) are powerful pattern-recognition receptors that discern ‘self’ and ‘non-self’ in our body and protect us from invasive pathogens by mediating immune recognition and response. The gastrointestinal tract is very important for the maintenance of homeostasis; it is the largest shelter for the billions of microorganisms in the body and CLRs play a crucial regulatory role in this system. This study focuses on several CLRs, including Dectin-1, Dectin-2, Dectin-3 and Mincle. We summarize the roles of CLRs in maintaining gastrointestinal immune-system homeostasis, especially their functions in mediating immune recognition and responses in the gut, discuss their relationships to some diseases, highlight the significance of CLR-mediated sensing of microbial and non-microbial compounds in the gut immune system and identify new therapeutic targets.
Collapse
Affiliation(s)
- Tian-Hang Li
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Ling Liu
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Ya-Yi Hou
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Su-Nan Shen
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Ting-Ting Wang
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
70
|
The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2019; 16:331-345. [PMID: 30824884 DOI: 10.1038/s41575-019-0121-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The gut microbiota is a dense and diverse ecosystem that is involved in many physiological functions as well as in disease pathogenesis. It is dominated by bacteria, which have been extensively studied in the past 15 years; however, other microorganisms, such as fungi, phages, archaea and protists, are also present in the gut microbiota. Exploration of the fungal component, namely, the mycobiota, is at an early stage, and several specific technical challenges are associated with mycobiota analysis. The number of fungi in the lower gastrointestinal tract is far lower than that of bacteria, but fungal cells are much larger and much more complex than bacterial cells. In addition, a role of the mycobiota in disease, notably in IBD, is indicated by both descriptive data in humans and mechanistic data in mice. Interactions between bacteria and fungi within the gut, their functional roles and their interplay with the host and its immune system are fascinating areas that researchers are just beginning to investigate. In this Review, we discuss the newest data on the gut mycobiota and explore both the technical aspects of its study and its role in health and gastrointestinal diseases.
Collapse
|
71
|
Liberti A, Cannon JP, Litman GW, Dishaw LJ. A Soluble Immune Effector Binds Both Fungi and Bacteria via Separate Functional Domains. Front Immunol 2019; 10:369. [PMID: 30894858 PMCID: PMC6414549 DOI: 10.3389/fimmu.2019.00369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
The gut microbiome of animals consists of diverse microorganisms that include both prokaryotes and eukaryotes. Complex interactions occur among these inhabitants, as well as with the immune system of the host, and profoundly influence the overall health of both the host and its microbial symbionts. Despite the enormous importance for the host to regulate its gut microbiome, the extent to which animals generate immune-related molecules with the capacity to directly influence polymicrobial interactions remains unclear. The urochordate, Ciona robusta, is a model organism that has been adapted to experimental studies of host/microbiome interactions. Ciona variable-region containing chitin-binding proteins (VCBPs) are innate immune effectors, composed of immunoglobulin (Ig) variable regions and a chitin-binding domain (CBD) and are expressed in high abundance in the gut. It was previously shown that VCBP-C binds bacteria and influences both phagocytosis by granular amoebocytes and biofilm formation via its Ig domains. We show here that the CBD of VCBP-C independently recognizes chitin molecules present in the cell walls, sporangia (spore-forming bodies), and spores of a diverse set of filamentous fungi isolated from the gut of Ciona. To our knowledge, this is the first description of a secreted Ig-containing immune molecule with the capacity to directly promote transkingdom interactions through simultaneous binding by independent structural domains and could have broad implications in modulating the establishment, succession, and homeostasis of gut microbiomes.
Collapse
Affiliation(s)
- Assunta Liberti
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - John P. Cannon
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Gary W. Litman
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Molecular Genetics, Children's Research Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Larry J. Dishaw
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
72
|
Limon JJ, Tang J, Li D, Wolf AJ, Michelsen KS, Funari V, Gargus M, Nguyen C, Sharma P, Maymi VI, Iliev ID, Skalski JH, Brown J, Landers C, Borneman J, Braun J, Targan SR, McGovern DPB, Underhill DM. Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models. Cell Host Microbe 2019; 25:377-388.e6. [PMID: 30850233 DOI: 10.1016/j.chom.2019.01.007] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/19/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by alterations in the intestinal microbiota and altered immune responses to gut microbiota. Evidence is accumulating that IBD is influenced by not only commensal bacteria but also commensal fungi. We characterized fungi directly associated with the intestinal mucosa in healthy people and Crohn's disease patients and identified fungi specifically abundant in patients. One of these, the common skin resident fungus Malassezia restricta, is also linked to the presence of an IBD-associated polymorphism in the gene for CARD9, a signaling adaptor important for anti-fungal defense. M. restricta elicits innate inflammatory responses largely through CARD9 and is recognized by Crohn's disease patient anti-fungal antibodies. This yeast elicits strong inflammatory cytokine production from innate cells harboring the IBD-linked polymorphism in CARD9 and exacerbates colitis via CARD9 in mouse models of disease. Collectively, these results suggest that targeting specific commensal fungi may be a therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Jose J Limon
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dalin Li
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrea J Wolf
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kathrin S Michelsen
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vince Funari
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew Gargus
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher Nguyen
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Purnima Sharma
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Viviana I Maymi
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Iliyan D Iliev
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joseph H Skalski
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jordan Brown
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Carol Landers
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - James Borneman
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephan R Targan
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dermot P B McGovern
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David M Underhill
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
73
|
Forbes JD, Bernstein CN, Tremlett H, Van Domselaar G, Knox NC. A Fungal World: Could the Gut Mycobiome Be Involved in Neurological Disease? Front Microbiol 2019; 9:3249. [PMID: 30687254 PMCID: PMC6333682 DOI: 10.3389/fmicb.2018.03249] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023] Open
Abstract
The human microbiome has received decades of attention from scientific and medical research communities. The human gastrointestinal tract is host to immense populations of microorganisms including bacteria, viruses, archaea, and fungi (the gut microbiota). High-throughput sequencing and computational advancements provide unprecedented ability to investigate the structure and function of microbial communities associated with the human body in health and disease. Most research to date has largely focused on elucidating the bacterial component of the human gut microbiota. Study of the gut "mycobiota," which refers to the diverse array of fungal species, is a relatively new and rapidly progressing field. Though omnipresent, the number and abundance of fungi occupying the human gut is orders of magnitude smaller than that of bacteria. Recent insights however, have suggested that the gut mycobiota may be intricately linked to health and disease. Evaluation of the gut mycobiota has shown that not only are the fungal communities altered in disease, but they also play a role in maintaining intestinal homeostasis and influencing systemic immunity. In addition, it is now widely accepted that host-fungi and bacteria-fungi associations are critical to host health. While research of the gut mycobiota in health and disease is on the rise, little research has been performed in the context of neuroimmune and neurodegenerative conditions. Gut microbiota dysbiosis (specifically bacteria and archaea) have been reported in neurological diseases such as multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's, among others. Given the widely accepted bacteria-fungi associations and paucity of mycobiota-specific studies in neurological disease, this review discusses the potential role fungi may play in multiple sclerosis and other neurological diseases. Herein, we provide an overview of recent advances in gut mycobiome research and discuss the plausible role of both intestinal and non-intestinal fungi in the context of neuroimmune and neurodegenerative conditions.
Collapse
Affiliation(s)
- Jessica D. Forbes
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Charles N. Bernstein
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Helen Tremlett
- Centre for Brain Health and Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Natalie C. Knox
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
74
|
Mahnic A, Rupnik M. Different host factors are associated with patterns in bacterial and fungal gut microbiota in Slovenian healthy cohort. PLoS One 2018; 13:e0209209. [PMID: 30571698 PMCID: PMC6301613 DOI: 10.1371/journal.pone.0209209] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/30/2018] [Indexed: 01/26/2023] Open
Abstract
Gut microbiota in a healthy population is shaped by various geographic, demographic and lifestyle factors. Although the majority of research remains focused on the bacterial community, recent efforts to include the remaining microbial members like viruses, archaea and especially fungi revealed various functions they perform in the gut. Using the amplicon sequencing approach we analysed bacterial and fungal gut communities in a Slovenian cohort of 186 healthy volunteers. In the bacterial microbiome we detected 253 different genera. A core microbiome analysis revealed high consistency with previous studies, most prominently showing that genera Faecalibacterium, Bacteroides and Roseburia regularly comprise the core community. We detected a total of 195 fungal genera, but the majority of these showed low prevalence and are likely transient foodborne contaminations. The fungal community showed a low diversity per sample and a large interindividual variability. The most abundant fungi were Saccharomyces cerevisiae and Candida albicans. These, along with representatives from genera Penicillium and Debaryomyces, cover 82% of obtained reads. We report three significant questionnaire-based host covariates associated with microbiota composition. Bacterial community was associated with age and gender. More specifically, bacterial diversity was increased with age and was higher in the female population compared to male. The analysis of fungal community showed that more time dedicated to physical activity resulted in a higher fungal diversity and lower abundance of S. cerevisiae. This is likely dependent on different diets, which were reported by participants according to the respective rates of physical activity.
Collapse
Affiliation(s)
- Aleksander Mahnic
- Department for Microbiological Research, National Laboratory for Health, Environment and Food, Maribor, Slovenia
| | - Maja Rupnik
- Department for Microbiological Research, National Laboratory for Health, Environment and Food, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- * E-mail:
| |
Collapse
|
75
|
Abstract
PURPOSE OF REVIEW The intestinal microbiota plays a central role in inflammatory diseases of the gut. Although most investigations regarding how the mucosal immune system interacts with the microbiota have focused on bacteria, recent studies are elucidating the additional role of commensal fungi in health and disease in the gut. RECENT FINDINGS New technical approaches are defining the makeup of the fungal communities in the intestines of humans and mice. The reported composition of these communities is influenced by the approaches used to define the fungi. Changes in the intestinal mycobiota are associated with gut inflammation in patients with inflammatory bowel disease and in mouse models of colitis. Recent studies are beginning to elucidate the mechanisms by which the mucosal immune system interacts with and is influenced by intestinal fungi. SUMMARY Studies clearly demonstrate the presence of intestinal fungi and document the ability of the mucosal immune system to recognize and respond to fungi. Future studies will further investigate whether intestinal fungi directly influence intestinal disease and what cellular, molecular, and genetic mechanisms contribute.
Collapse
|
76
|
Putting It All Together to Understand the Role of Malassezia spp. in Dandruff Etiology. Mycopathologia 2018; 183:893-903. [PMID: 29946996 DOI: 10.1007/s11046-018-0283-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
Abstract
Dandruff is a common scalp condition causing both a discomfort and an undesired social image. Various studies dating from early 1900s have investigated the condition, but understanding of underlying mechanisms and etiology of the condition is still in its infancy. Formation of dandruff is a common but complex event which has been associated with numerous causal factors. Physiological conditions such as pH, water content, or sebum secretion are some of the host-related factors. An imbalance between these factors can disturb the physiological equilibrium of the scalp that can lead to dandruff formation. However, severity of the condition is strongly related to the lipophilic yeast of the skin microbiota, Malassezia spp. On the other hand, there are recent publications highlighting the role of other scalp microbiota members on dandruff formation. This review investigates the processes leading to the formation of dandruff to provide an etiological description of the condition, with a focus on Malassezia spp.
Collapse
|
77
|
Salazar F, Brown GD. Antifungal Innate Immunity: A Perspective from the Last 10 Years. J Innate Immun 2018; 10:373-397. [PMID: 29768268 DOI: 10.1159/000488539] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/11/2018] [Indexed: 01/02/2023] Open
Abstract
Fungal pathogens can rarely cause diseases in immunocompetent individuals. However, commensal and normally nonpathogenic environmental fungi can cause life-threatening infections in immunocompromised individuals. Over the last few decades, there has been a huge increase in the incidence of invasive opportunistic fungal infections along with a worrying increase in antifungal drug resistance. As a consequence, research focused on understanding the molecular and cellular basis of antifungal immunity has expanded tremendously in the last few years. This review will provide an overview of the most exciting recent advances in innate antifungal immunity, discoveries that are helping to pave the way for the development of new strategies that are desperately needed to combat these devastating diseases.
Collapse
|
78
|
Ward TL, Dominguez-Bello MG, Heisel T, Al-Ghalith G, Knights D, Gale CA. Development of the Human Mycobiome over the First Month of Life and across Body Sites. mSystems 2018; 3:e00140-17. [PMID: 29546248 PMCID: PMC5840654 DOI: 10.1128/msystems.00140-17] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/13/2018] [Indexed: 12/24/2022] Open
Abstract
With the advent of next-generation sequencing and microbial community characterization, we are beginning to understand the key factors that shape early-life microbial colonization and associated health outcomes. Studies characterizing infant microbial colonization have focused mostly on bacteria in the microbiome and have largely neglected fungi (the mycobiome), despite their relevance to mucosal infections in healthy infants. In this pilot study, we characterized the skin, oral, and anal mycobiomes of infants over the first month of life (n = 17) and the anal and vaginal mycobiomes of mothers (n = 16) by internal transcribed spacer 2 (ITS2) amplicon sequencing. We found that infant mycobiomes differed by body site, with the infant mycobiomes at the anal sites being different from those at the skin and oral sites. The relative abundances of body site-specific taxa differed by birth mode, with significantly more Candida albicans fungi present on the skin of vaginally born infants on day 30 and significantly more Candida orthopsilosis fungi present in the oral cavity of caesarean section-born infants throughout the first month of life. We found the mycobiomes within individual infants to be variable over the first month of life, and vaginal birth did not result in infant mycobiomes that were more similar to the mother's vaginal mycobiome. Therefore, although vertical transmission of specific fungal isolates from mother to infant has been reported, it is likely that other sources (environment, other caregivers) also contribute to early-life mycobiome establishment. Thus, future longitudinal studies of mycobiome and bacterial microbiome codevelopment, with dense sampling from birth to beyond the first month of life, are warranted. IMPORTANCE Humans are colonized by diverse fungi (mycobiome), which have received much less study to date than colonizing bacteria. We know very little about the succession of fungal colonization in early life and whether it may relate to long-term health. To better understand fungal colonization and its sources, we studied the skin, oral, and anal mycobiomes of healthy term infants and the vaginal and anal mycobiomes of their mothers. Generally, infants were colonized by few fungal taxa, and fungal alpha diversity did not increase over the first month of life. There was no clear community maturation over the first month of life, regardless of body site. Key body-site-specific taxa, but not overall fungal community structures, were impacted by birth mode. Thus, additional studies to characterize mycobiome acquisition and succession throughout early life are needed to form a foundation for research into the relationship between mycobiome development and human disease.
Collapse
Affiliation(s)
- Tonya L. Ward
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Maria Gloria Dominguez-Bello
- Departments of Biochemistry and Microbiology and Anthropology, Rutgers University, New Brunswick, New Jersey, USA
| | - Tim Heisel
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gabriel Al-Ghalith
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dan Knights
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cheryl A. Gale
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
79
|
Li J, Chen D, Yu B, He J, Zheng P, Mao X, Yu J, Luo J, Tian G, Huang Z, Luo Y. Fungi in Gastrointestinal Tracts of Human and Mice: from Community to Functions. MICROBIAL ECOLOGY 2018; 75:821-829. [PMID: 29110065 DOI: 10.1007/s00248-017-1105-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/30/2017] [Indexed: 05/10/2023]
Abstract
Fungi are often ignored in studies on gut microbes because of their low level of presence (making up only 0.1% of the total microorganisms) in the gastrointestinal tract (GIT) of monogastric animals. Recent studies using novel technologies such as next generation sequencing have expanded our understanding on the importance of intestinal fungi in humans and animals. Here, we provide a comprehensive review on the fungal community, the so-called mycobiome, and their functions from recent studies in humans and mice. In the GIT of humans, fungi belonging to the phyla Ascomycota, Basidiomycota and Chytridiomycota are predominant. The murine intestines harbor a more diverse assemblage of fungi. Diet is one of the major factors influencing colonization of fungi in the GIT. Presence of the genus Candida is positively associated with dietary carbohydrates, but are negatively correlated with dietary amino acids, proteins, and fatty acids. However, the relationship between diet and the fungal community (and functions), as well as the underlying mechanisms remains unclear. Dysbiosis of intestinal fungi can cause invasive infections and inflammatory bowel diseases (IBD). However, it is not clear whether dysbiosis of the mycobiome is a cause, or a result of IBD. Compared to non-inflamed intestinal mucosa, the abundance and diversity of fungi is significantly increased in the inflamed mucosa. The commonly observed commensal fungal species Candida albicans might contribute to occurrence and development of IBD. Limited studies show that Candida albicans might interact with immune cells of the host intestines through the pathways associated with Dectin-1, Toll-like receptor 2 (TLR2), and TLR4. This review is expected to provide new thoughts for future studies on intestinal fungi and for new therapies to fungal infections in the GIT of human and animals.
Collapse
Affiliation(s)
- Jiayan Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
80
|
Abstract
In recent years, the gut microbiota has been considered as a full-fledged actor of the gut-brain axis, making it possible to take a new step in understanding the pathophysiology of both neurological and psychiatric diseases. However, most of the studies have been devoted to gut bacterial microbiota, forgetting the non-negligible fungal flora. In this review, we expose how the role of the fungal component in the microbiota-gut-brain axis is legitimate, through its interactions with both the host, especially with the immune system, and the gut bacteria. We also discuss published data that already attest to a role of the mycobiome in the microbiota-gut-brain axis, and the impact of fungi on clinical and therapeutic research.
Collapse
|
81
|
Wrench C, Belchamber KBR, Bercusson A, Shah A, Barnes PJ, Armstrong-James D, Donnelly LE. Reduced Clearance of Fungal Spores by Chronic Obstructive Pulmonary Disease GM-CSF- and M-CSF-derived Macrophages. Am J Respir Cell Mol Biol 2018; 58:271-273. [PMID: 29388829 DOI: 10.1165/rcmb.2017-0351le] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Catherine Wrench
- 1 Airway Disease, National Heart and Lung Institute Imperial College London London, United Kingdom and
| | - Kylie B R Belchamber
- 1 Airway Disease, National Heart and Lung Institute Imperial College London London, United Kingdom and
| | - Amelia Bercusson
- 2 Fungal Pathogens Laboratory, National Heart and Lung Institute Imperial College London London, United Kingdom
| | - Anand Shah
- 2 Fungal Pathogens Laboratory, National Heart and Lung Institute Imperial College London London, United Kingdom
| | - Peter J Barnes
- 1 Airway Disease, National Heart and Lung Institute Imperial College London London, United Kingdom and
| | - Darius Armstrong-James
- 2 Fungal Pathogens Laboratory, National Heart and Lung Institute Imperial College London London, United Kingdom
| | - Louise E Donnelly
- 1 Airway Disease, National Heart and Lung Institute Imperial College London London, United Kingdom and
| |
Collapse
|
82
|
Paterson MJ, Oh S, Underhill DM. Host-microbe interactions: commensal fungi in the gut. Curr Opin Microbiol 2017; 40:131-137. [PMID: 29175338 PMCID: PMC5733715 DOI: 10.1016/j.mib.2017.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
Abstract
Fungi are ubiquitous microbes that are common in diverse environments including as commensal organisms on the human body. In addition to its obvious role as a digestive organ, the intestines have been further appreciated as important for the development, maintenance, and instruction of the immune system. The gut harbors many types of microorganisms including bacteria, archaea, fungi, and viruses, and many studies over the past couple of decades have documented an important role for intestinal bacteria in immunological function. Recent studies are now suggesting that intestinal fungi (the gut 'mycobiome') may similarly play important roles in host immunity and inflammation. This review will discuss recent studies that will influence our growing understanding of the role(s) of intestinal fungi in health and disease.
Collapse
Affiliation(s)
- Marissa J Paterson
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute and the Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Seeun Oh
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute and the Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David M Underhill
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute and the Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
83
|
FKBP12-Dependent Inhibition of Calcineurin Mediates Immunosuppressive Antifungal Drug Action in Malassezia. mBio 2017; 8:mBio.01752-17. [PMID: 29066552 PMCID: PMC5654937 DOI: 10.1128/mbio.01752-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The genus Malassezia includes yeasts that are commonly found on the skin or hair of animals and humans as commensals and are associated with a number of skin disorders. We have previously developed an Agrobacterium tumefaciens transformation system effective for both targeted gene deletion and insertional mutagenesis in Malassezia furfur and M. sympodialis. In the present study, these molecular resources were applied to characterize the immunophilin FKBP12 as the target of tacrolimus (FK506), ascomycin, and pimecrolimus, which are calcineurin inhibitors that are used as alternatives to corticosteroids in the treatment of inflammatory skin disorders such as those associated with Malassezia species. While M. furfur and M. sympodialis showed in vitro sensitivity to these agents, fkb1Δ mutants displayed full resistance to all three of them, confirming that FKBP12 is the target of these calcineurin inhibitors and is essential for their activity. We found that calcineurin inhibitors act additively with fluconazole through an FKBP12-dependent mechanism. Spontaneous M. sympodialis isolates resistant to calcineurin inhibitors had mutations in the gene encoding FKBP12 in regions predicted to affect the interactions between FKBP12 and FK506 based on structural modeling. Due to the presence of homopolymer nucleotide repeats in the gene encoding FKBP12, an msh2Δ hypermutator of M. sympodialis was engineered and exhibited an increase of more than 20-fold in the rate of emergence of resistance to FK506 compared to that of the wild-type strain, with the majority of the mutations found in these repeats. Malassezia species are the most abundant fungal components of the mammalian and human skin microbiome. Although they belong to the natural skin commensal flora of humans, they are also associated with a variety of clinical skin disorders. The standard treatment for Malassezia-associated inflammatory skin infections is topical corticosteroids, although their use has adverse side effects and is not recommended for long treatment periods. Calcineurin inhibitors have been proposed as a suitable alternative to treat patients affected by skin lesions caused by Malassezia. Although calcineurin inhibitors are well-known as immunosuppressive drugs, they are also characterized by potent antimicrobial activity. In the present study, we investigated the mechanism of action of FK506 (tacrolimus), ascomycin (FK520), and pimecrolimus in M. furfur and M. sympodialis and found that the conserved immunophilin FKBP12 is the target of these drugs with which it forms a complex that directly binds calcineurin and inhibits its signaling activity. We found that FKBP12 is also required for the additive activity of calcineurin inhibitors with fluconazole. Furthermore, the increasing natural occurrence in fungal pathogen populations of mutator strains poses a high risk for the rapid emergence of drug resistance and adaptation to host defense. This led us to generate an engineered hypermutator msh2Δ mutant strain of M. sympodialis and genetically evaluate mutational events resulting in a substantially increased rate of resistance to FK506 compared to that of the wild type. Our study paves the way for the novel clinical use of calcineurin inhibitors with lower immunosuppressive activity that could be used clinically to treat a broad range of fungal infections, including skin disorders caused by Malassezia.
Collapse
|