51
|
Mondal S, Nandy A, Dande G, Prabhu K, Valmiki RR, Koner D, Banerjee S. Mass Spectrometric Imaging of Anionic Phospholipids Desorbed from Human Hippocampal Sections: Discrimination between Temporal and Nontemporal Lobe Epilepsies. ACS Chem Neurosci 2024; 15:983-993. [PMID: 38355427 DOI: 10.1021/acschemneuro.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common neurological disorders, often accompanied by hippocampal sclerosis. The molecular processes underlying this epileptogenesis are poorly understood. To examine the lipid profile, 39 fresh frozen sections of the human hippocampus obtained from epilepsy surgery for TLE (n = 14) and non-TLE (control group; n = 25) patients were subjected to desorption electrospray ionization mass spectrometry imaging in the negative ion mode. In contrast to our earlier report that showed striking downregulation of positively charged phospholipids (e.g., phosphatidylcholine and phosphatidylethanolamine, etc.) in the TLE hippocampus, this study finds complementary upregulation of negatively charged phospholipids, notably, phosphatidylserine and phosphatidylglycerol. This result may point to an active metabolic pool in the TLE hippocampus that produces these anionic phospholipids at the expense of the cationic phospholipids. This metabolic shift could be due to the dysregulation of the Kennedy and CDP-DG pathways responsible for biosynthesizing these lipids. Thus, this study further opens up opportunities to investigate the molecular hallmarks and potential therapeutic targets for TLE.
Collapse
Affiliation(s)
- Supratim Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Abhijit Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Geetha Dande
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Krishna Prabhu
- Department of Neurological Sciences, Christian Medical College, Vellore 632004, India
| | | | - Debasish Koner
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
52
|
Li X, Bhattacharya D, Yuan Y, Wei C, Zhong F, Ding F, D'Agati VD, Lee K, Friedman SL, He JC. Chronic kidney disease in a murine model of non-alcoholic steatohepatitis (NASH). Kidney Int 2024; 105:540-561. [PMID: 38159678 PMCID: PMC10922588 DOI: 10.1016/j.kint.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Clinical studies suggest that non-alcoholic steatohepatitis (NASH) is an independent risk factor for chronic kidney disease (CKD), but causality and mechanisms linking these two major diseases are lacking. To assess whether NASH can induce CKD, we have characterized kidney function, histological features, transcriptomic and lipidomic profiles in a well-validated murine NASH model. Mice with NASH progressively developed significant podocyte foot process effacement, proteinuria, glomerulosclerosis, tubular epithelial cell injury, lipid accumulation, and interstitial fibrosis. The progression of kidney fibrosis paralleled the severity of the histologic NASH-activity score. Significantly, we confirmed the causal link between NASH and CKD by orthotopic liver transplantation, which attenuated proteinuria, kidney dysfunction, and fibrosis compared with control sham operated mice. Transcriptomic analysis of mouse kidney cortices revealed differentially expressed genes that were highly enriched in mitochondrial dysfunction, lipid metabolic process, and insulin signaling pathways in NASH-induced CKD. Lipidomic analysis of kidney cortices further revealed that phospholipids and sphingolipids were the most significantly changed lipid species. Notably, we found similar kidney histological changes in human NASH and CKD. Thus, our results confirm a causative role of NASH in the development of CKD, reveal potential pathophysiologic mechanisms of NASH-induced kidney injury, and established a valuable model to study the pathogenesis of NASH-associated CKD. This is an important feature of fatty liver disease that has been largely overlooked but has clinical and prognostic importance.
Collapse
Affiliation(s)
- Xuezhu Li
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yue Yuan
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Chengguo Wei
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fang Zhong
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Feng Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Vivette D D'Agati
- Department of Pathology, Columbia University Medical Center, New York, New York, USA
| | - Kyung Lee
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - John Cijiang He
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J Peters VA Medical Center at Bronx, New York, New York, USA.
| |
Collapse
|
53
|
Chen J, Curcio CA, Crosson JN. Shotgun lipidomics of human subretinal fluids under rod-dominant retina reveals cone-dominated lipids. Exp Eye Res 2024; 240:109807. [PMID: 38278468 DOI: 10.1016/j.exer.2024.109807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Subretinal fluid (SRF) accumulates between photoreceptor outer segments and retinal pigment epithelium during rhegmatogenous retinal detachment. Biomolecular components such as lipids originate from cells surrounding the SRF. Knowledge of the composition of these molecules in SRF potentially provides mechanistic insight into the physiologic transfer of lipids between retinal tissue compartments. Using mass spectrometry and tandem mass spectrometry analysis on an electrospray ionization quadrupole-time-of-flight mass spectrometer, we identified a total of 115 lipid molecular species of 11 subclasses and 9 classes in two samples from two patients with rhegmatogenous retinal detachment. These included 47 glycerophosphocholines, 6 glycerophosphoethanolamines, 1 glycerophosphoinositol, 18 sphingomyelins, 9 cholesteryl esters, free cholesterol, 3 ceramides, 22 triacylglycerols and 8 free fatty acids. Glycerophosphocholines were of the highest intensity. By minimizing the formation of different adduct forms or clustering ions of different adducts, we determined the relative intensity of lipid molecular species within the same subclasses. The profiles were compared with those of retinal cells available in the published literature. The glycerophosphocholine profile of SRF was similar to that of cone outer segments, suggesting that outer segment degradation products are constitutively released into the interphotoreceptor matrix, appearing in SRF during detachment. This hypothesis was supported by the retinal distributions of corresponding lipid synthases' mRNA expression obtained from an online resource based on publicly available single-cell sequencing data. In contrast, based on lipid profiles and relevant gene expression in this study, the sources of free cholesterol and cholesteryl esters in SRF appeared more ambiguous, possibly reflecting that outer retina takes up plasma lipoproteins. Further studies to identify and quantify lipids in SRF will help better understand etiology of diseases relevant to outer retina.
Collapse
Affiliation(s)
- Jianzhong Chen
- Center for Biotechnology & Genomic Medicine, Medical College of Georgia, Augusta University, GA, United States; Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, GA, United States; Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Jason N Crosson
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
54
|
Qiu B, Zandkarimi F, Bezjian CT, Reznik E, Soni RK, Gu W, Jiang X, Stockwell BR. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell 2024; 187:1177-1190.e18. [PMID: 38366593 PMCID: PMC10940216 DOI: 10.1016/j.cell.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.
Collapse
Affiliation(s)
- Baiyu Qiu
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Fereshteh Zandkarimi
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Mass Spectrometry Core Facility, Columbia University, New York, NY 10027, USA
| | - Carla T Bezjian
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Eduard Reznik
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
55
|
Zhang Y, Ding Y, Weng M, Cui K, Yang M, Mai K, Ai Q. Molecular cloning, tissue expression pattern, responses to different fatty acids and potential functions of lysophosphatidylcholine acyltransferase 1 (LPCAT1) in large yellow croaker (Larimichthys crocea). Gene 2024; 896:148056. [PMID: 38042217 DOI: 10.1016/j.gene.2023.148056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
In farmed fish, diets rich in palm oil have been observed to promote abnormal lipid build-up in the liver, subsequently leading to physiological harm and disease onset. Emerging research suggests that integrating phospholipids into the feed could serve as a potent countermeasure against hepatic impairments induced by vegetable oil consumption. Phosphatidylcholine is the most abundant type among phospholipids. In the metabolic processes of mammal, lysophosphatidylcholine acyltransferase 1 (LPCAT1), crucial for phosphatidylcholine remodeling, demonstrates a marked affinity towards palmitic acid (PA). Nonetheless, aspects concerning the cloning, tissue-specific distribution, and affinity of the LPCAT1 gene to diverse oil sources have yet to be elucidated in the large yellow croaker (Larimichthys crocea). Within the scope of this study, we successfully isolated and cloned the cDNA of the LPCAT1 gene from the large yellow croaker. Subsequent analysis revealed distinct gene expression patterns of LPCAT1 across ten different tissues of the species. The fully sequenced coding DNA sequence (CDS) of LPCAT1 spans 1503 bp and encodes a sequence of 500 amino acids. Comparative sequence alignment indicates that LPCAT1 shares a 69.75 % amino acid similarity with its counterparts in other species. Although LPCAT1 manifests across various tissues of the large yellow croaker, its predominance is markedly evident in the liver and gills. Furthermore, post exposure of the large yellow croaker's hepatocytes to varied fatty acids, PA has a strong response to LPCAT1. Upon the addition of appropriate lysolecithin to palm oil feed, the mRNA expression of LPCAT1 in the liver cells of the large yellow croaker showed significant variations compared to other subtypes. Concurrently, the mRNA expression of pro-inflammatory genes il-1β, il-6, il-8, tnf-α and ifn-γ in the liver tissue of the large yellow croaker decreased. Interestingly, they exhibit the same trend of change. In conclusion, we have cloned the LPCAT1 gene on fish successfully and find the augmented gene response of LPCAT1 in hepatocytes under PA treatment first. The results of this study suggest that LPCAT1 may be associated with liver inflammation in fish and offer new insights into mitigating liver diseases in fish caused by palm oil feed.
Collapse
Affiliation(s)
- Yiliang Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, PR China.
| | - Yi Ding
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, PR China
| | - Miao Weng
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, PR China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, PR China
| | - Mengli Yang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266003 Qingdao, Shandong, PR China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266003 Qingdao, Shandong, PR China.
| |
Collapse
|
56
|
Chen Y, Chen K, Zhu H, Qin H, Liu J, Cao X. Methyltransferase Setd2 prevents T cell-mediated autoimmune diseases via phospholipid remodeling. Proc Natl Acad Sci U S A 2024; 121:e2314561121. [PMID: 38359295 PMCID: PMC10895270 DOI: 10.1073/pnas.2314561121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/16/2023] [Indexed: 02/17/2024] Open
Abstract
Coordinated metabolic reprogramming and epigenetic remodeling are critical for modulating T cell function and differentiation. However, how the epigenetic modification controls Th17/Treg cell balance via metabolic reprogramming remains obscure. Here, we find that Setd2, a histone H3K36 trimethyltransferase, suppresses Th17 development but promotes iTreg cell polarization via phospholipid remodeling. Mechanistically, Setd2 up-regulates transcriptional expression of lysophosphatidylcholine acyltransferase 4 (Lpcat4) via directly catalyzing H3K36me3 of Lpcat4 gene promoter in T cells. Lpcat4-mediated phosphatidylcholine PC(16:0,18:2) generation in turn limits endoplasmic reticulum stress and oxidative stress. These changes decrease HIF-1α transcriptional activity and thus suppress Th17 but enhance Treg development. Consistent with this regulatory paradigm, T cell deficiency of Setd2 aggravates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis due to imbalanced Th17/Treg cell differentiation. Overall, our data reveal that Setd2 acts as an epigenetic brake for T cell-mediated autoimmunity through phospholipid remodeling, suggesting potential targets for treating neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yali Chen
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100005, China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai200433, China
| | - Kun Chen
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100005, China
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai200120, China
| | - Ha Zhu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai200433, China
| | - Hua Qin
- Institute of Immunology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Juan Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai200433, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100005, China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai200433, China
- Institute of Immunology, College of Life Sciences, Nankai University, Tianjin300071, China
| |
Collapse
|
57
|
Fan C, Xu J, Tong H, Fang Y, Chen Y, Lin Y, Chen R, Chen F, Wu G. Gut-brain communication mediates the impact of dietary lipids on cognitive capacity. Food Funct 2024; 15:1803-1824. [PMID: 38314832 DOI: 10.1039/d3fo05288e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cognitive impairment, as a prevalent symptom of nervous system disorders, poses one of the most challenging aspects in the management of brain diseases. Lipids present in the cell membranes of all neurons within the brain and dietary lipids can regulate the cognition and memory function. In recent years, the advancements in gut microbiome research have enabled the exploration of dietary lipids targeting the gut-brain axis as a strategy for regulating cognition. This present review provides an in-depth overview of how lipids modulate cognition via the gut-brain axis depending on metabolic, immune, neural and endocrine pathways. It also comprehensively analyzes the effects of diverse lipids on the gut microbiota and intestinal barrier function, thereby affecting the central nervous system and cognitive capacity. Moreover, comparative analysis of the positive and negative effects is presented between beneficial and detrimental lipids. The former encompass monounsaturated fatty acids, short-chain fatty acids, omega-3 polyunsaturated fatty acids, phospholipids, phytosterols, fungal sterols and bioactive lipid-soluble vitamins, as well as lipid-derived gut metabolites, whereas the latter (detrimental lipids) include medium- or long-chain fatty acids, excessive proportions of n-6 polyunsaturated fatty acids, industrial trans fatty acids, and zoosterols. To sum up, the focus of this review is on how gut-brain communication mediates the impact of dietary lipids on cognitive capacity, providing a novel theoretical foundation for promoting brain cognitive health and scientific lipid consumption patterns.
Collapse
Affiliation(s)
- Chenhan Fan
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jingxuan Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Haoxiang Tong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yucheng Fang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yiming Chen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yangzhuo Lin
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Rui Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fuhao Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Guoqing Wu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
58
|
Wang S, He T, Wang H. Non-targeted metabolomics study for discovery of hepatocellular carcinoma serum diagnostic biomarker. J Pharm Biomed Anal 2024; 239:115869. [PMID: 38064771 DOI: 10.1016/j.jpba.2023.115869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant cancers worldwide. Due to the asymptomatic features of HCC at early stages, patients are often diagnosed at advanced stages and missed effective treatment. Thus, there is an urgent need to identify sensitive and specific biomarkers for HCC early diagnosis. In the present study, an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) approach was used to profile serum metabolites from HCC patients, liver cirrhosis (LC) patients, and normal controls (NC). Univariate and multivariate statistical analyses were performed to obtain the metabolomic differences of the three groups and select significantly changed metabolites that can be used as diagnostic biomarkers. In total, 757 differential metabolites were quantified among the three groups, and pathway enrichment analysis of these metabolites indicated that glycerophospholipid metabolism, pentose and glucuronate interconversions, phenylalanine, tyrosine and tryptophan biosynthesis, and linoleic acid metabolism were the most altered pathways involved in HCC development. Receiver operating characteristic (ROC) curve analysis was performed to select and evaluate the diagnostic biomarker performance. Seven metabolites were identified as potential biomarkers that can differentiate HCC from LC and NC, and LC from NC with the good diagnostic performance of area under the curve (AUC) from 0.890 to 0.990. In summary, our findings provide highly effective biomarker candidates to differentiate HCC from LC and NC, LC, and NC, which shed insight into HCC pathological mechanisms and will be helpful in better understanding and managing HCC.
Collapse
Affiliation(s)
- Shufeng Wang
- Keystonobel Biotechnologies and Pharmaceuticals (Beijing) Co., Ltd, Beijing 100176, PR China
| | - Tingting He
- Department of Hepatology Medicine of Traditional Chinese Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, PR China
| | - Hongxia Wang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, PR China; School of Material Science and Chemical Engineering Ningbo University, Ningbo 315211, PR China; Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo 315206, PR China.
| |
Collapse
|
59
|
Rossato LAM, Morsali M, Ruffini E, Bertuzzi P, Serra S, D'Arrigo P, Sipponen M. Phospholipase D Immobilization on Lignin Nanoparticles for Enzymatic Transformation of Phospholipids. CHEMSUSCHEM 2024; 17:e202300803. [PMID: 37801034 DOI: 10.1002/cssc.202300803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/08/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Lignin nanoparticles (LNPs) are promising components for various materials, given their controllable particle size and spherical shape. However, their origin from supramolecular aggregation has limited the applicability of LNPs as recoverable templates for immobilization of enzymes. In this study, we show that stabilized LNPs are highly promising for the immobilization of phospholipase D (PLD), the enzyme involved in the biocatalytic production of high-value polar head modified phospholipids of commercial interest, phosphatidylglycerol, phosphatidylserine and phosphatidylethanolamine. Starting from hydroxymethylated lignin, LNPs were prepared and successively hydrothermally treated to obtain c-HLNPs with high resistance to organic solvents and a wide range of pH values, covering the conditions for enzymatic reactions and enzyme recovery. The immobilization of PLD on c-HLNPs (PLD-c-HLNPs) was achieved through direct adsorption. We then successfully exploited this new enzymatic preparation in the preparation of pure polar head modified phospholipids with high yields (60-90 %). Furthermore, the high stability of PLD-c-HLNPs allows recycling for a number of reactions with appreciable maintenance of its catalytic activity. Thus, PLD-c-HLNPs can be regarded as a new, chemically stable, recyclable and user-friendly biocatalyst, based on a biobased inexpensive scaffold, to be employed in sustainable chemical processes for synthesis of value-added phospholipids.
Collapse
Affiliation(s)
- Letizia Anna Maria Rossato
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, piazza L. da Vinci 32, Milano, 20133, Milan, Italy
| | - Mohammad Morsali
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691, Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University, SE-, 10691, Stockholm, Sweden
| | - Eleonora Ruffini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, piazza L. da Vinci 32, Milano, 20133, Milan, Italy
| | - Pietro Bertuzzi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, piazza L. da Vinci 32, Milano, 20133, Milan, Italy
| | - Stefano Serra
- Instituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche (SCITEC-CNR), via Luigi Mancinelli 7, Milano, 20131, Italy
| | - Paola D'Arrigo
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, piazza L. da Vinci 32, Milano, 20133, Milan, Italy
- Instituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche (SCITEC-CNR), via Luigi Mancinelli 7, Milano, 20131, Italy
| | - Mika Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691, Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University, SE-, 10691, Stockholm, Sweden
| |
Collapse
|
60
|
Zhang X, Fan A, Shu Z, Ma W, Zhang X. Surface-enhanced Raman database of 24 metabolites: Stable measurement of spectra, extraction and analysis of the main features. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123587. [PMID: 37918093 DOI: 10.1016/j.saa.2023.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been used in Raman-based metabolomics to provide abundant molecular fingerprint information in situ with extremely high sensitivity, without damaging the sample. However, poor reproducibility, caused by the randomness of the adsorption sites, and the short-range effect of SERS have hindered the development of SERS in metabolomics, resulting in very few SERS reference databases for small-molecule metabolites. In this work, our previously proposed large laser spot-swift mapping SERS method was adopted for the measurement of 24 commercially available metabolite standards, to provide reproducible and reliable references for Raman-based metabolomics study. Among these 24 metabolites, 22 contained no Raman data in PubChem. Other than the SERS spectra data, we extracted and explained the molecular vibration information of these metabolites, and combined with the density functional theory (DFT) calculations, we provided a new possibility for the fast Raman recognition of small-molecule metabolites. Accordingly, a large laser spot-swift mapping SERS database of metabolites in human serum was initially established, which contained not only the original spectral data but also other detailed feature information regarding the Raman peaks. With continuous accumulation, this database could play a promising role in Raman-based metabolomics and other Raman-related research.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Aoran Fan
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Zixin Shu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Weigang Ma
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Xing Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
61
|
Rund KM, Carpanedo L, Lauterbach R, Wermund T, West AL, Wende LM, Calder PC, Schebb NH. LC-ESI-HRMS - lipidomics of phospholipids : Characterization of extraction, chromatography and detection parameters. Anal Bioanal Chem 2024; 416:925-944. [PMID: 38214704 PMCID: PMC10800306 DOI: 10.1007/s00216-023-05080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Lipids are a diverse class of molecules involved in many biological functions including cell signaling or cell membrane assembly. Owing to this relevance, LC-MS/MS-based lipidomics emerged as a major field in modern analytical chemistry. Here, we thoroughly characterized the influence of MS and LC settings - of a Q Exactive HF operated in Full MS/data-dependent MS2 TOP N acquisition mode - in order to optimize the semi-quantification of polar lipids. Optimization of MS-source settings improved the signal intensity by factor 3 compared to default settings. Polar lipids were separated on an ACQUITY Premier CSH C18 reversed-phase column (100 × 2.1 mm, 1.7 µm, 130 Å) during an elution window of 28 min, leading to a sufficient number of both data points across the chromatographic peaks, as well as MS2 spectra. Analysis was carried out in positive and negative ionization mode enabling the detection of a broader spectrum of lipids and to support the structural characterization of lipids. Optimal sample preparation of biological samples was achieved by liquid-liquid extraction using MeOH/MTBE resulting in an excellent extraction recovery > 85% with an intra-day and inter-day variability < 15%. The optimized method was applied on the investigation of changes in the phospholipid pattern in plasma from human subjects supplemented with n3-PUFA (20:5 and 22:6). The strongest increase was observed for lipids bearing 20:5, while 22:4 bearing lipids were lowered. Specifically, LPC 20:5_0:0 and PC 16:0_20:5 were found to be strongest elevated, while PE 18:0_22:4 and PC 18:2_18:2 were decreased by n3-PUFA supplementation. These results were confirmed by targeted LC-MS/MS using commercially available phospholipids as standards.
Collapse
Affiliation(s)
- Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Laura Carpanedo
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Robin Lauterbach
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Tim Wermund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Annette L West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca M Wende
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
62
|
Park JH, Song Z, Yun TG, Kim HS, Shin MH, Kang MJ, Park MS, Pyun JC. Electrochemical analysis of total phospholipids in human serum for severe sepsis diagnosis. Talanta 2024; 268:125374. [PMID: 37925823 DOI: 10.1016/j.talanta.2023.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Electrochemical analysis of total phospholipids was performed for the diagnosis of sepsis. The influence of electrode materials on the analysis of the chromogenic substrate was analyzed using Au, graphite, and pyrolyzed carbon electrodes. The total phospholipid analysis based on electrochemical analysis with pyrolyzed carbon was used for diagnosis of sepsis using sera from healthy volunteers, systemic inflammatory response syndrome (SIRS), and severe sepsis patients. The analysis results using the optical measurement and the electrochemical analysis were compared for the serum samples from sepsis patients and healthy controls. Additionally, the interference of human serum on the optical measurement and electrochemical analysis was estimated by signal-to-noise (S/N) calculation. The assay results of the levels of other biomarkers for sepsis (C-reactive protein and procalcitonin) and the total phospholipid levels obtained using the optical measurement and electrochemical analysis methods were statistically similar. Finally, the mortality of patients, indicated by the results of the total phospholipid assay performed using the electrochemical analysis of the patient samples collected daily (1, 3, and 7 day(s) after admission to hospital), was compared with the patient mortality assessed via conventional severity indexes, such as the SOFA and APACHE Ⅱ scores. The 28-day survival rate was estimated by Kaplan-Meier survival analysis based on the total phospholipid level of patient samples that were obtained after 1, 3, and 7 day(s) from hospital admission.
Collapse
Affiliation(s)
- Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Tae Gyeong Yun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hye Soo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Mi Hwa Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
63
|
Jiang X, Peng Q, Peng M, Oyang L, Wang H, Liu Q, Xu X, Wu N, Tan S, Yang W, Han Y, Lin J, Xia L, Tang Y, Luo X, Dai J, Zhou Y, Liao Q. Cellular metabolism: A key player in cancer ferroptosis. Cancer Commun (Lond) 2024; 44:185-204. [PMID: 38217522 PMCID: PMC10876208 DOI: 10.1002/cac2.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Cellular metabolism is the fundamental process by which cells maintain growth and self-renewal. It produces energy, furnishes raw materials, and intermediates for biomolecule synthesis, and modulates enzyme activity to sustain normal cellular functions. Cellular metabolism is the foundation of cellular life processes and plays a regulatory role in various biological functions, including programmed cell death. Ferroptosis is a recently discovered form of iron-dependent programmed cell death. The inhibition of ferroptosis plays a crucial role in tumorigenesis and tumor progression. However, the role of cellular metabolism, particularly glucose and amino acid metabolism, in cancer ferroptosis is not well understood. Here, we reviewed glucose, lipid, amino acid, iron and selenium metabolism involvement in cancer cell ferroptosis to elucidate the impact of different metabolic pathways on this process. Additionally, we provided a detailed overview of agents used to induce cancer ferroptosis. We explained that the metabolism of tumor cells plays a crucial role in maintaining intracellular redox homeostasis and that disrupting the normal metabolic processes in these cells renders them more susceptible to iron-induced cell death, resulting in enhanced tumor cell killing. The combination of ferroptosis inducers and cellular metabolism inhibitors may be a novel approach to future cancer therapy and an important strategy to advance the development of treatments.
Collapse
Affiliation(s)
- Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Honghan Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Qiang Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Wenjuan Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Jie Dai
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| |
Collapse
|
64
|
Shimizu K, Ono M, Mikamoto T, Urayama Y, Yoshida S, Hase T, Michinaga S, Nakanishi H, Iwasaki M, Terada T, Sakurai F, Mizuguchi H, Shindou H, Tomita K, Nishinaka T. Overexpression of lysophospholipid acyltransferase, LPLAT10/LPCAT4/LPEAT2, in the mouse liver increases glucose-stimulated insulin secretion. FASEB J 2024; 38:e23425. [PMID: 38226852 DOI: 10.1096/fj.202301594rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Postprandial hyperglycemia is an early indicator of impaired glucose tolerance that leads to type 2 diabetes mellitus (T2DM). Alterations in the fatty acid composition of phospholipids have been implicated in diseases such as T2DM and nonalcoholic fatty liver disease. Lysophospholipid acyltransferase 10 (LPLAT10, also called LPCAT4 and LPEAT2) plays a role in remodeling fatty acyl chains of phospholipids; however, its relationship with metabolic diseases has not been fully elucidated. LPLAT10 expression is low in the liver, the main organ that regulates metabolism, under normal conditions. Here, we investigated whether overexpression of LPLAT10 in the liver leads to improved glucose metabolism. For overexpression, we generated an LPLAT10-expressing adenovirus (Ad) vector (Ad-LPLAT10) using an improved Ad vector. Postprandial hyperglycemia was suppressed by the induction of glucose-stimulated insulin secretion in Ad-LPLAT10-treated mice compared with that in control Ad vector-treated mice. Hepatic and serum levels of phosphatidylcholine 40:7, containing C18:1 and C22:6, were increased in Ad-LPLAT10-treated mice. Serum from Ad-LPLAT10-treated mice showed increased glucose-stimulated insulin secretion in mouse insulinoma MIN6 cells. These results indicate that changes in hepatic phosphatidylcholine species due to liver-specific LPLAT10 overexpression affect the pancreas and increase glucose-stimulated insulin secretion. Our findings highlight LPLAT10 as a potential novel therapeutic target for T2DM.
Collapse
Affiliation(s)
- Kahori Shimizu
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Moe Ono
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takenari Mikamoto
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Yuya Urayama
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Sena Yoshida
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomomi Hase
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | | | - Miho Iwasaki
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomoyuki Terada
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Tomita
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| |
Collapse
|
65
|
Jiao R, Jiang W, Xu K, Luo Q, Wang L, Zhao C. Lipid metabolism analysis in esophageal cancer and associated drug discovery. J Pharm Anal 2024; 14:1-15. [PMID: 38352954 PMCID: PMC10859535 DOI: 10.1016/j.jpha.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 02/16/2024] Open
Abstract
Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis. It is still being explored in depth due to its complex molecular mechanisms of occurrence and development. Lipids play a crucial role in cells by participating in energy supply, biofilm formation, and signal transduction processes, and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors. More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning, progress, and treatment resistance. The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism. Therefore, we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer, and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer, as well as its significance in exploring potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ruidi Jiao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Wei Jiang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
| | - Kunpeng Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
| | - Qian Luo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Chao Zhao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
66
|
Gusdon AM, Savarraj JPJ, Redell JB, Paz A, Hinds S, Burkett A, Torres G, Ren X, Badjatia N, Hergenroeder GW, Moore AN, Choi HA, Dash PK. Lysophospholipids Are Associated With Outcomes in Hospitalized Patients With Mild Traumatic Brain Injury. J Neurotrauma 2024; 41:59-72. [PMID: 37551969 PMCID: PMC11071087 DOI: 10.1089/neu.2023.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for 70-90% of all TBI cases. Lipid metabolites have important roles in plasma membrane biogenesis, function, and cell signaling. As TBI can compromise plasma membrane integrity and alter brain cell function, we sought to identify circulating phospholipid alterations after mTBI, and determine if these changes were associated with clinical outcomes. Patients with mTBI (Glasgow Coma Score [GCS] ≥13 and loss of consciousness <30 min) were recruited. A total of 84 mTBI subjects were enrolled after admission to a level I trauma center, with the majority having evidence of traumatic intracranial hemorrhage on brain computed tomography (CT). Plasma samples were collected within 24 h of injury with 32 mTBI subjects returning at 3 months after injury for a second plasma sample to be collected. Thirty-five healthy volunteers were enrolled as controls and had a one-time blood draw. Lipid metabolomics was performed on plasma samples from each subject. Fold change of selected lipid metabolites was determined. Multivariable regression models were created to test associations between lipid metabolites and discharge and 6-month Glasgow Outcomes Scale-Extended (GOSE) outcomes (dichotomized between "good" [GOSE ≥7] and "bad" [GOSE ≤6] functional outcomes). Plasma levels of 31 lipid metabolites were significantly associated with discharge GOSE using univariate models; three of these metabolites were significantly increased, while 14 were significantly decreased in subjects with good outcomes compared with subjects with poor outcomes. In multivariable logistic regression models, higher circulating levels of the lysophospholipids (LPL) 1-linoleoyl-glycerophosphocholine (GPC) (18:2), 1-linoleoyl-GPE (18:2), and 1-linolenoyl-GPC (18:3) were associated with both good discharge GOSE (odds ratio [OR] 12.2 [95% CI 3.35, 58.3], p = 5.23 × 10-4; OR 9.43 [95% CI 2.87, 39.6], p = 7.26 × 10-4; and OR 5.26 [95% CI 1.99, 16.7], p = 2.04 × 10-3, respectively) and 6-month (OR 4.67 [95% CI 1.49, 17.7], p = 0.013; OR 2.93 [95% CI 1.11, 8.87], p = 0.039; and OR 2.57 [95% CI 1.08, 7.11], p = 0.046, respectively). Compared with healthy volunteers, circulating levels of these three LPLs were decreased early after injury and had normalized by 3 months after injury. Logistic regression models to predict functional outcomes were created by adding each of the described three LPLs to a baseline model that included age and sex. Including 1-linoleoyl-GPC (18:2) (8.20% improvement, p = 0.009), 1-linoleoyl-GPE (18:2) (8.85% improvement, p = 0.021), or 1-linolenoyl-GPC (18:3) (7.68% improvement, p = 0.012), significantly improved the area under the curve (AUC) for predicting discharge outcomes compared with the baseline model. Models including 1-linoleoyl-GPC (18:2) significantly improved AUC for predicting 6-month outcomes (9.35% improvement, p = 0.034). Models including principal components derived from 25 LPLs significantly improved AUC for prediction of 6-month outcomes (16.0% improvement, p = 0.020). Our results demonstrate that higher plasma levels of LPLs (1-linoleoyl-GPC, 1-linoleoyl-GPE, and 1-linolenoyl-GPC) after mTBI are associated with better functional outcomes at discharge and 6 months after injury. This class of phospholipids may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Aaron M. Gusdon
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Jude PJ Savarraj
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - John B. Redell
- Department of Neurobiology and Anatomy, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Atzhiry Paz
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Sarah Hinds
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Angela Burkett
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Glenda Torres
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Xuefang Ren
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Georgene W. Hergenroeder
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Anthony N. Moore
- Department of Neurobiology and Anatomy, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - H. Alex Choi
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Pramod K. Dash
- Department of Neurobiology and Anatomy, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
67
|
Chen L, Ma X, Sun T, Zhu QH, Feng H, Li Y, Liu F, Zhang X, Sun J, Li Y. VdPT1 Encoding a Neutral Trehalase of Verticillium dahliae Is Required for Growth and Virulence of the Pathogen. Int J Mol Sci 2023; 25:294. [PMID: 38203466 PMCID: PMC10778863 DOI: 10.3390/ijms25010294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Verticillum dahliae is a soil-borne phytopathogenic fungus causing destructive Verticillium wilt disease. We previously found a trehalase-encoding gene (VdPT1) in V. dahliae being significantly up-regulated after sensing root exudates from a susceptible cotton variety. In this study, we characterized the function of VdPT1 in the growth and virulence of V. dahliae using its deletion-mutant strains. The VdPT1 deletion mutants (ΔVdPT1) displayed slow colony expansion and mycelial growth, reduced conidial production and germination rate, and decreased mycelial penetration ability and virulence on cotton, but exhibited enhanced stress resistance, suggesting that VdPT1 is involved in the growth, pathogenesis, and stress resistance of V. dahliae. Host-induced silencing of VdPT1 in cotton reduced fungal biomass and enhanced cotton resistance against V. dahliae. Comparative transcriptome analysis between wild-type and mutant identified 1480 up-regulated and 1650 down-regulated genes in the ΔVdPT1 strain. Several down-regulated genes encode plant cell wall-degrading enzymes required for full virulence of V. dahliae to cotton, and down-regulated genes related to carbon metabolism, DNA replication, and amino acid biosynthesis seemed to be responsible for the decreased growth of the ΔVdPT1 strain. In contrast, up-regulation of several genes related to glycerophospholipid metabolism in the ΔVdPT1 strain enhanced the stress resistance of the mutated strain.
Collapse
Affiliation(s)
- Lihua Chen
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Xiaohu Ma
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Tiange Sun
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia;
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Yongtai Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Feng Liu
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Xinyu Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| |
Collapse
|
68
|
Lien EC, Vu N, Westermark AM, Danai LV, Lau AN, Gültekin Y, Kukurugya MA, Bennett BD, Vander Heiden MG. Effects of aging on glucose and lipid metabolism in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.17.572088. [PMID: 38187759 PMCID: PMC10769226 DOI: 10.1101/2023.12.17.572088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Aging is accompanied by multiple molecular changes that contribute to aging-associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part because mitochondria are central to cellular metabolism. Moreover, the co-factor NAD+, which is reported to decline across multiple tissue types during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids. To further characterize how tissue metabolism changes with age, we intravenously infused [U-13C]-glucose into young and old C57BL/6J, WSB/EiJ, and Diversity Outbred mice to trace glucose fate into downstream metabolites within plasma, liver, gastrocnemius muscle, and brain tissues. We found that glucose incorporation into central carbon and amino acid metabolism was robust during healthy aging across these different strains of mice. We also observed that levels of NAD+, NADH, and the NAD+/NADH ratio were unchanged in these tissues with healthy aging. However, aging tissues, particularly brain, exhibited evidence of up-regulated fatty acid and sphingolipid metabolism reactions that regenerate NAD+ from NADH. Because mitochondrial respiration, a major source of NAD+ regeneration, is reported to decline with age, our data supports a model where NAD+-generating lipid metabolism reactions may buffer against changes in NAD+/NADH during healthy aging.
Collapse
Affiliation(s)
- Evan C. Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ngoc Vu
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Anna M. Westermark
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura V. Danai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Allison N. Lau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yetiş Gültekin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
69
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
70
|
Valentine WJ, Shimizu T, Shindou H. Lysophospholipid acyltransferases orchestrate the compositional diversity of phospholipids. Biochimie 2023; 215:24-33. [PMID: 37611890 DOI: 10.1016/j.biochi.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Lysophospholipid acyltransferases (LPLATs), in concert with glycerol-3-phosphate acyltransferases (GPATs) and phospholipase A1/2s, orchestrate the compositional diversity of the fatty chains in membrane phospholipids. Fourteen LPLAT enzymes which come from two distinct families, AGPAT and MBOAT, have been identified, and in this mini-review we provide an overview of their roles in de novo and remodeling pathways of membrane phospholipid biosynthesis. Recently new nomenclature for LPLATs has been introduced (LPLATx, where x is a number 1-14), and we also give an overview of key biological functions that have been discovered for LPLAT1-14, revealed primarily through studies of LPLAT-gene-deficient mice as well as by linkages to various human diseases.
Collapse
Affiliation(s)
- William J Valentine
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan.
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Institute of Microbial Chemistry, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
71
|
Zhao Y, Zhang X, An M, Zhang J, Liu Y. Recent advancements in nanomedicine based lipid metabolism for tumour immunotherapy. J Drug Target 2023; 31:1050-1064. [PMID: 37962291 DOI: 10.1080/1061186x.2023.2283829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Therapy on lipid metabolism is emerging as a groundbreaking cancer treatment, offering the unprecedented opportunity to effectively treat and in several cases. Tumorigenesis is inextricably linked to lipid metabolism. In this regard, the features of lipid metabolism include lipid synthesis, decomposition, metabolism and lipid storage and mobilisation from intracellular lipid droplets. Most importantly, the regulation of lipid metabolism is central to the appropriate immune response of tumour cells, and ultimately to exert the immune efforts to realise the perspective of many anti-tumour effects. Different cancers and immune cells have different dependence on lipid metabolism, playing a pivotal role in differentiation and function of immune cells. However, what lies before the immunotherapy targeting lipid metabolism is side effects of systemic toxicity and defects of individual drugs, which strongly highlights that nanodelivery strategy is a magnet for it to enhance drug efficiency, reduce drug toxicity and improve application deficiencies. This review will first focus on emerging research progress of lipid metabolic reprogramming mechanism, and then explore the complex role of lipid metabolism in the tumour cells including the effect on immune cells and their nano-preparations of monotherapy and multiple therapies used in combination, in a shift away from conventional cancer research.HighlightsThe regulation of lipid metabolism is central to the appropriate immune response of tumour cells, and ultimately to exert the immune efforts to realise the perspective of many anti-tumour effects.Preparations of focusing lipid metabolism have side effects of systemic toxicity and defects of individual drugs. It strongly highlights that nanodelivery strategy is a magnet for it to enhance drug efficiency, reduce drug toxicity and improve application deficiencies.This review will first focus on emerging research progress of lipid metabolic reprogramming mechanism, and then explore the complex role of lipid metabolism in the tumour cells including the effect on immune cells as well as their nano-preparations of monotherapy and multiple therapies used in combination, in a shift away from conventional cancer research.
Collapse
Affiliation(s)
- Yumeng Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
72
|
Zhang D, Jia X, Lin D, Ma J. Melatonin and ferroptosis: Mechanisms and therapeutic implications. Biochem Pharmacol 2023; 218:115909. [PMID: 37931663 DOI: 10.1016/j.bcp.2023.115909] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron-dependent lipid peroxidation leading to oxidative damage to cell membranes. Cell sensitivity to ferroptosis is influenced by factors such as iron overload, lipid metabolism, and the regulation of the antioxidant system. Melatonin, with its demonstrated capacity to chelate iron, modulate iron metabolism proteins, regulate lipid peroxidation, and regulate antioxidant systems, has promise as a potential therapeutic agent in mediating ferroptosis. The availability of approved drugs targeting ferroptosis is limited; therefore, melatonin is a candidate for broad application due to its safety and efficacy in attenuating ferroptosis in noncancerous diseases. Melatonin has been demonstrated to attenuate ferroptosis in cellular and animal models of noncancerous diseases, showcasing effectiveness in organs such as the heart, brain, lung, liver, kidney, and bone. This review outlines the molecular mechanisms of ferroptosis, investigates melatonin's potential effects on ferroptosis, and discusses melatonin's therapeutic potential as a promising intervention against diseases associated with ferroptosis. Through this discourse, we aim to lay a strong foundation for developing melatonin as a therapeutic strategy to modulate ferroptosis in a variety of disease contexts.
Collapse
Affiliation(s)
- Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaotong Jia
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
73
|
Tan Z, Deme P, Boyapati K, Claes BSR, Duivenvoorden AAM, Heeren RMA, Tressler CM, Haughey NJ, Glunde K. Key regulator PNPLA8 drives phospholipid reprogramming induced proliferation and migration in triple-negative breast cancer. Breast Cancer Res 2023; 25:148. [PMID: 38017485 PMCID: PMC10683240 DOI: 10.1186/s13058-023-01742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and leads to the poorest patient outcomes despite surgery and chemotherapy treatment. Exploring new molecular mechanisms of TNBC that could lead to the development of novel molecular targets are critically important for improving therapeutic options for treating TNBC. METHODS We sought to identify novel therapeutic targets in TNBC by combining genomic and functional studies with lipidomic analysis, which included mechanistic studies to elucidate the pathways that tie lipid profile to critical cancer cell properties. Our studies were performed in a large panel of human breast cancer cell lines and patient samples. RESULTS Comprehensive lipid profiling revealed that phospholipid metabolism is reprogrammed in TNBC cells. We discovered that patatin-like phospholipase domain-containing lipase 8 (PNPLA8) is overexpressed in TNBC cell lines and tissues from breast cancer patients. Silencing of PNPLA8 disrupted phospholipid metabolic reprogramming in TNBC, particularly affecting the levels of phosphatidylglycerol (PG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and glycerophosphocholine (GPC). We showed that PNPLA8 is essential in regulating cell viability, migration and antioxidation in TNBC cells and promoted arachidonic acid and eicosanoid production, which in turn activated PI3K/Akt/Gsk3β and MAPK signaling. CONCLUSIONS Our study highlights PNPLA8 as key regulator of phospholipid metabolic reprogramming and malignant phenotypes in TNBC, which could be further developed as a novel molecular treatment target.
Collapse
Affiliation(s)
- Zheqiong Tan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pragney Deme
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keerti Boyapati
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Britt S R Claes
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Annet A M Duivenvoorden
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Caitlin M Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman James Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
74
|
Tamura R, Sabu Y, Mizuno T, Mizuno S, Nakano S, Suzuki M, Abukawa D, Kaji S, Azuma Y, Inui A, Okamoto T, Shimizu S, Fukuda A, Sakamoto S, Kasahara M, Takahashi S, Kusuhara H, Zen Y, Ando T, Hayashi H. Intestinal Atp8b1 dysfunction causes hepatic choline deficiency and steatohepatitis. Nat Commun 2023; 14:6763. [PMID: 37990006 PMCID: PMC10663612 DOI: 10.1038/s41467-023-42424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023] Open
Abstract
Choline is an essential nutrient, and its deficiency causes steatohepatitis. Dietary phosphatidylcholine (PC) is digested into lysoPC (LPC), glycerophosphocholine, and choline in the intestinal lumen and is the primary source of systemic choline. However, the major PC metabolites absorbed in the intestinal tract remain unidentified. ATP8B1 is a P4-ATPase phospholipid flippase expressed in the apical membrane of the epithelium. Here, we use intestinal epithelial cell (IEC)-specific Atp8b1-knockout (Atp8b1IEC-KO) mice. These mice progress to steatohepatitis by 4 weeks. Metabolomic analysis and cell-based assays show that loss of Atp8b1 in IEC causes LPC malabsorption and thereby hepatic choline deficiency. Feeding choline-supplemented diets to lactating mice achieves complete recovery from steatohepatitis in Atp8b1IEC-KO mice. Analysis of samples from pediatric patients with ATP8B1 deficiency suggests its translational potential. This study indicates that Atp8b1 regulates hepatic choline levels through intestinal LPC absorption, encouraging the evaluation of choline supplementation therapy for steatohepatitis caused by ATP8B1 dysfunction.
Collapse
Affiliation(s)
- Ryutaro Tamura
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Sabu
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Nakano
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daiki Abukawa
- Department of Gastroenterology and Hepatology, Miyagi Children's Hospital, Miyagi, Japan
| | - Shunsaku Kaji
- Department of Pediatrics, Tsuyama-Chuo Hospital, Okayama, Japan
| | - Yoshihiro Azuma
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama City Eastern Hospital, Kanagawa, Japan
| | - Tatsuya Okamoto
- Department of Pediatric Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital & King's College London, London, UK
| | - Tomohiro Ando
- Axcelead Drug Discovery Partners, Inc., Fujisawa, Kanagawa, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
75
|
Yin Y, Cao L, Zhang M, Li Y, Sun C, Ma Q, Liu Z, Li C, Yu Z, Guan X. Integrative proteomic and metabonomic profiling elucidates amino acid and lipid metabolism disorder in CA-MRSA-infected breast abscesses. Front Cell Infect Microbiol 2023; 13:1240743. [PMID: 38029258 PMCID: PMC10679464 DOI: 10.3389/fcimb.2023.1240743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Bacterial culture and drug sensitivity testing have been the gold standard for confirming community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infection in breast abscess with a long history. However, these tests may delay treatment and increase the risk of nosocomial infections. To handle and improve this critical situation, this study aimed to explore biomarkers that could facilitate the rapid diagnosis of CA-MRSA infection. Methods This study for the first time applied label-free quantitative proteomics and non-targeted metabonomics to identify potential differentially expressed proteins (DEPs) and differentially expressed metabolites (DEMs) in breast abscess infected with CA-MRSA compared to methicillin-susceptible S. aureus (MSSA). The two omics data were integrated and analyzed using bioinformatics, and the results were validated using Parallel Reaction Monitoring (PRM). Receiver operating characteristic (ROC) curves were generated to evaluate the predictive efficiency of the identified biomarkers for diagnosing CA-MRSA infection. Results After using the above-mentioned strategies, 109 DEPs were identified, out of which 86 were upregulated and 23 were downregulated. Additionally, a total of 61 and 26 DEMs were initially screened in the positive and negative ion modes, respectively. A conjoint analysis indicated that the amino acid metabolism, glycosphingolipid biosynthesis, and glycerophospholipid metabolism pathways were co-enriched by the upstream DEPs and downstream DEMs, which may be involved in structuring the related network of CA-MRSA infection. Furthermore, three significant DEMs, namely, indole-3-acetic acid, L-(-)-methionine, and D-sedoheptulose 7-phosphate, displayed good discriminative abilities in early identification of CA-MRSA infection in ROC analysis. Conclusion As there is limited high-quality evidence and multiple omics research in this field, the explored candidate biomarkers and pathways may provide new insights into the early diagnosis and drug resistance mechanisms of CA-MRSA infection in Chinese women.
Collapse
Affiliation(s)
- Yongshuo Yin
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Breast Surgery, Shandong University Cancer Center, Jinan, Shandong, China
| | - Lina Cao
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Meng Zhang
- Department of Urology Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yingjie Li
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chunhua Sun
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qinghua Ma
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhaoyun Liu
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chao Li
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhiyong Yu
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Breast Surgery, Shandong University Cancer Center, Jinan, Shandong, China
| | - Xiao Guan
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
76
|
Ding K, Liu C, Li L, Yang M, Jiang N, Luo S, Sun L. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism. Chin Med J (Engl) 2023; 136:2521-2537. [PMID: 37442770 PMCID: PMC10617883 DOI: 10.1097/cm9.0000000000002533] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Long-chain acyl-coenzyme A (CoA) synthase 4 (ACSL4) is an enzyme that esterifies CoA into specific polyunsaturated fatty acids, such as arachidonic acid and adrenic acid. Based on accumulated evidence, the ACSL4-catalyzed biosynthesis of arachidonoyl-CoA contributes to the execution of ferroptosis by triggering phospholipid peroxidation. Ferroptosis is a type of programmed cell death caused by iron-dependent peroxidation of lipids; ACSL4 and glutathione peroxidase 4 positively and negatively regulate ferroptosis, respectively. In addition, ACSL4 is an essential regulator of fatty acid (FA) metabolism. ACSL4 remodels the phospholipid composition of cell membranes, regulates steroidogenesis, and balances eicosanoid biosynthesis. In addition, ACSL4-mediated metabolic reprogramming and antitumor immunity have attracted much attention in cancer biology. Because it facilitates the cross-talk between ferroptosis and FA metabolism, ACSL4 is also a research hotspot in metabolic diseases and ischemia/reperfusion injuries. In this review, we focus on the structure, biological function, and unique role of ASCL4 in various human diseases. Finally, we propose that ACSL4 might be a potential therapeutic target.
Collapse
Affiliation(s)
- Kaiyue Ding
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| |
Collapse
|
77
|
Xu J, Jin Y, Song C, Chen G, Li Q, Yuan H, Wei S, Yang M, Li S, Jin S. Comparative analysis of the synergetic effects of Diwuyanggan prescription on high fat diet-induced non-alcoholic fatty liver disease using untargeted metabolomics. Heliyon 2023; 9:e22151. [PMID: 38045182 PMCID: PMC10692813 DOI: 10.1016/j.heliyon.2023.e22151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders worldwide and had no approved pharmacological treatments. Diwuyanggan prescription (DWYG) is a traditional Chinese medicine preparation composed of 5 kinds of herbs, which has been used for treating chronic liver diseases in clinic. Whereas, the synergistic mechanism of this prescription for anti-NAFLD remains unclear. In this study, we aimed to demonstrate the synergetic effect of DWYG by using the disassembled prescriptions and untargeted metabolomics research strategies. The therapeutic effects of the whole prescription of DWYG and the individual herb were divided into six groups according to the strategy of disassembled prescriptions, including DWYG, Artemisia capillaris Thunb. (AC), Curcuma longa L. (CL), Schisandra chinensis Baill. (SC), Rehmannia glutinosa Libosch. (RG) and Glycyrrhiza uralensis Fisch. (GU) groups. The high fat diets-induced NAFLD mice model was constructed to evaluate the efficacy effects of DWYG. An untargeted metabolomics based on the UPLC-QTOF-MS/MS approach was carried out to make clear the synergetic effect on the regulation of metabolites dissecting the united mechanisms. Experimental results on animals revealed that the anti-NAFLD effect of DWYG prescription was better than the individual herb group in reducing liver lipid deposition and restoring the abnormality of lipidemia. In addition, further metabolomics analysis indicated that 23 differential metabolites associated with the progression of NAFLD were identified and 19 of them could be improved by DWYG. Compared with five single herbs, DWYG showed the most extensive regulatory effects on metabolites and their related pathways, which were related to lipid and amino acid metabolisms. Besides, each individual herb in DWYG was found to show different degrees of regulatory effects on NAFLD and metabolic pathways. SC and CL possessed the highest relationship in the regulation of NAFLD. Altogether, these results provided an insight into the synergetic mechanisms of DWYG from the metabolic perspective, and also supported a scientific basis for the rationality of clinical use of this prescription.
Collapse
Affiliation(s)
- Jinlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Yuehui Jin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chengwu Song
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guangya Chen
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Qiaoyu Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hao Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Sha Wei
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Min Yang
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuna Jin
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
78
|
Zhang Y, Yao W, Zhang W, Wen Y, Hua Y, Ji P, Wei Y. Yujin powder improves large intestine dampness-heat syndrome by regulating gut microbiota and serum metabolism. Biomed Chromatogr 2023; 37:e5719. [PMID: 37605605 DOI: 10.1002/bmc.5719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023]
Abstract
Large intestine dampness-heat syndrome (LIDHS) is a common syndrome type in animal diarrheal diseases. Yujin powder (YJP) is one of the classic prescriptions for treating damp-heat diarrhea. The aim of this study was to investigate the regulatory effects of YJP on gut microbiota and serum metabolism in LIDHS rats using 16S rRNA sequencing and nontargeted metabolomics. The LIDHS rat model was induced through a high-sugar and high-fat diet, exposure to a high-temperature and high-humidity environment, and infection with Escherichia coli. The results demonstrated that the administration of YJP resulted in a decrease in the abundance of Desulfovibrio, Parabacteroides, Bacteroides, Allobaculum, Escherichia, Butyricimonas, Parasutterella, and Blautia and an increase in Ruminococcus, Akkermansia, Roseburia, and Lachnoclostridium. A total of 25 potential biomarkers were identified in three groups of rats. These metabolites were primarily involved in glycerophospholipid metabolism, taurine and hypotaurine metabolism, glycerol ester metabolism, arachidonic acid metabolism, primary bile acid synthesis, and tryptophan metabolism. Our study demonstrated that YJP has the potential to alleviate LIDHS by modulating gut microbial and serum metabolic homeostasis. These results establish a foundation and offer valuable guidance for the utilization of YJP in the treatment of LIDHS.
Collapse
Affiliation(s)
- Yahui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yanqiao Wen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
79
|
Tian Y, Lu W, Shi R, McGuffee R, Lee R, Ford DA, Wang B. Targeting phospholipid remodeling pathway improves insulin resistance in diabetic mouse models. FASEB J 2023; 37:e23251. [PMID: 37823674 PMCID: PMC10575708 DOI: 10.1096/fj.202301122rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Previous studies have revealed that membrane phospholipid composition controlled by lysophosphatidylcholine acyltransferase 3 (LPCAT3) is involved in the development of insulin resistance in type 2 diabetes. In this study, we aimed to investigate the therapeutic potential of targeting Lpcat3 in the treatment of insulin resistance in diabetic mouse models. Lpcat3 expression was suppressed in the whole body by antisense oligonucleotides (ASO) injection or in the liver by adeno-associated virus (AAV)-encoded Cre in high-fat diet (HFD)-induced and genetic ob/ob type 2 diabetic mouse models. Glucose tolerance test (GTT), insulin tolerance test (ITT), fasting blood glucose, and insulin levels were used to assess insulin sensitivity. Lipid levels in the liver and serum were measured. The expression of genes involved in de novo lipogenesis was analyzed by real-time RT-PCR. Metabolic rates were measured by indirect calorimetry using the Comprehensive Lab Animal Monitoring System (CLAMS). Our data demonstrate that acute knockout of hepatic Lpcat3 by AAV-Cre improves both hyperglycemia and hypertriglyceridemia in HFD-fed mice. Similarly, whole-body ablation of Lpcat3 by ASO administration improves obesity and insulin resistance in both HFD-fed and ob/ob mice. These findings demonstrate that targeting LPCAT3 could be a novel therapy for insulin resistance.
Collapse
Affiliation(s)
- Ye Tian
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wei Lu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Reagan McGuffee
- Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO, USA, 63104
| | | | - David A. Ford
- Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO, USA, 63104
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
80
|
Wang X, Wu L, Tao J, Ye H, Wang J, Gao R, Liu W. A lipidomic approach to bisphenol F-induced non-alcoholic fatty liver disease-like changes: altered lipid components in a murine model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112644-112659. [PMID: 37837594 DOI: 10.1007/s11356-023-30306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Bisphenol A (BPA), a typical environmental endocrine disruptor, is an "obesogen" that can induce lipid accumulation in the liver. Highly similar in structure to BPA, bisphenol F (BPF) is becoming the dominant BPA substitute on the market, which attracts more and more attention due to its potential adverse effects. Recently, BPF exposure is found to cause non-alcoholic fatty liver disease (NAFLD)-like changes; however, the underlying toxic effects remain poorly understood. Therefore, in the current study, we focused on BPF-mediated lipid homeostasis, especially the alterations of lipid components and metabolism. In human serum, the BPF levels in healthy controls and NAFLD patients were assessed by ELISA, and BPF-induced disturbance of lipid metabolism was evaluated in mouse model via non-targeted lipomic methods with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. It suggested that BPF exposure was positively correlated with NAFLD severity and triglyceride level in patients. Based on the relationships, lipid metabolites were assessed in mouse livers between control and BPF-treated group, and it revealed that twenty-six lipid metabolites (including phospholipids, sphingolipids, and glycerides) were significantly changed in mouse livers. Phosphatidylcholine, phosphatidylethanolamine, and diglyceryl ester levels were lower than those in the control mice; hexose ceramide content in sphingolipids markedly increased in BPF-treated mouse livers. Noteworthily, the glycerophospholipid metabolic pathway was found to be the most pronounced in BPF-induced disturbance of lipid metabolism. Therefore, the current study, for the first time, is deciphering the BPF-induced lipid metabolic disturbance, which may provide novel intervention strategies for BPF-induced NAFLD-like changes.
Collapse
Affiliation(s)
- Xinjing Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Linlin Wu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Jingxian Tao
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Heyong Ye
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Jun Wang
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rong Gao
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wenwei Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
81
|
Lei P, Lü J, Yao T, Zhang P, Chai X, Wang Y, Jiang M. Verbascoside exerts an anti-atherosclerotic effect by regulating liver glycerophospholipid metabolism. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
82
|
Zhan Y, Wang H, Wu Z, Zeng Z. Study on the Common Molecular Mechanism of Metabolic Acidosis and Myocardial Damage Complicated by Neonatal Pneumonia. Metabolites 2023; 13:1118. [PMID: 37999214 PMCID: PMC10673214 DOI: 10.3390/metabo13111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023] Open
Abstract
Pneumonia is a common clinical disease in the neonatal period and poses a serious risk to infant health. Therefore, the understanding of molecular mechanisms is of great importance for the development of methods for the rapid and accurate identification, classification and staging, and even disease diagnosis and therapy of pneumonia. In this study, a nontargeted metabonomic method was developed and applied for the analysis of serum samples collected from 20 cases in the pneumonia control group (PN) and 20 and 10 cases of pneumonia patients with metabolic acidosis (MA) and myocardial damage (MD), respectively, with the help of ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). The results showed that compared with the pneumonia group, 23 and 21 differential metabolites were identified in pneumonia with two complications. They showed high sensitivity and specificity, with the area under the curve (ROC) of the receiver operating characteristic curve (ROC) larger than 0.7 for each differential molecule. There were 14 metabolites and three metabolic pathways of sphingolipid metabolism, porphyrin and chlorophyll metabolism, and glycerophospholipid metabolism existing in both groups of PN and MA, and PN and MD, all involving significant changes in pathways closely related to amino acid metabolism disorders, abnormal cell apoptosis, and inflammatory responses. These findings of molecular mechanisms should help a lot to fully understand and even treat the complications of pneumonia in infants.
Collapse
Affiliation(s)
- Yifei Zhan
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China;
| | - Huaiyan Wang
- Department of Neonatology, Changzhou Medical Center, Changzhou Maternity and Child Health Care Hospital, Nanjing Medical University, Changzhou 213000, China;
| | - Zeying Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Chemical Engineering and Material Sciences, Changzhou Institute of Technology, Changzhou 213032, China
| | - Zhongda Zeng
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China;
| |
Collapse
|
83
|
Brenna JT, Sergeeva MG, Pestov NB, Korneenko TV, Shchepinov MS. Arachidonic acid: reconciling the dichotomy of its oxidative cascade through specific deuteration. Free Radic Res 2023:1-11. [PMID: 37897398 DOI: 10.1080/10715762.2023.2277145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
A new approach to attenuating pathological inflammatory reactions by buffering the eicosanoid pathways with oxidation-resistant hexadeuterated arachidonic acid (D-ARA) is discussed. Enzymatic processing of ARA, released by phospholipase A2, by lipoxygenases, cyclooxygenases, and cytochromes yields a wide range of bioactive eicosanoids, including pro-inflammation, pro-angiogenesis and pro-thrombosis species that, when produced in excess, are an underlying cause of pathology. Conversely, some products of ARA oxidation possess pro-resolving properties. Non-enzymatic free radical oxidation of ARA generates another large group of products such as isoprostanes and their metabolites, associated with inflammation, ischemia-reperfusion stress, and atherosclerosis. A separate group comprises reactive carbonyl derivatives that irreversibly damage diverse biomolecules. Being resistant to both enzymatic and non-enzymatic oxidation pathways due to large kinetic isotope effects, D-ARA may play a role in mitigating inflammation-related disorders and conditions, including inflammaging.
Collapse
Affiliation(s)
- J Thomas Brenna
- University of TX at Austin, Departments of Pediatrics, of Chemistry, and of Nutrition, Dell Pediatric Research Institute, Austin, TX, USA
| | - Marina G Sergeeva
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay B Pestov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Laboratory of Tick-Borne Encephalitis and other Encephalitides, Moscow, Russia
- Institute of Biomedical Chemistry, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Group of Cross-Linking Enzymes, Moscow, Russia
| | - Tatyana V Korneenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Group of Cross-Linking Enzymes, Moscow, Russia
| | | |
Collapse
|
84
|
Wen Q, Xie X, Chen C, Wen B, Liu Y, Zhou J, Lin X, Jin H, Shi K. Lipid reprogramming induced by the NNMT-ABCA1 axis enhanced membrane fluidity to promote endometrial cancer progression. Aging (Albany NY) 2023; 15:11860-11874. [PMID: 37889548 PMCID: PMC10683614 DOI: 10.18632/aging.205142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Elucidating the mechanism for the high metastasis capacity of Endometrial cancer (EC) is crucial to improve treatment outcomes of EC. We have recently reported that nicotinamide N-methyltransferase (NNMT) is overexpressed in EC, especially in EC, and predicts poor survival of chemotherapy patients. Here, we aimed to determine the function and mechanism of NNMT on metastasis of EC. Additionally, analysis of public datasets indicated that NNMT is involved in cholesterol metabolism. In vitro, NNMT overexpression promoted migration and invasion of EC by reducing cholesterol levels in the cytoplasm and cell membrane. Mechanistically, NNMT activated ABCA1 expression, leading to cholesterol efflux and membrane fluidity enhancement, thereby promoting EC's epithelial-mesenchymal transition (EMT). In vivo, the metastasis capacity of EC was weakened by targeting NNMT. Our findings suggest a new molecular mechanism involving NNMT in metastasis, poor survival of EC mediated by PP2A and affecting cholesterol metabolism.
Collapse
Affiliation(s)
- Qirong Wen
- Department of Gynecology and Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Xie
- Department of Gynecology and Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Caiyuan Chen
- Prenatal Diagnosis Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangzhou Medical University, Guangzhou, China
| | - Bolun Wen
- Department of Gynecology and Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yaqiong Liu
- Department of Gynecology and Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jie Zhou
- Department of Gynecology and Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaobin Lin
- Department of Breast Surgery and General Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Han Jin
- Prenatal Diagnosis Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kun Shi
- Department of Gynecology and Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
85
|
Liu R, Yin C, Zhao P, Guo B, Ke W, Zheng X, Xie D, Wang Y, Wang G, Jia Y, Gao Y, Hu W, Liu GL, Song Z. Nuclear respiratory factor 1 drives hepatocellular carcinoma progression by activating LPCAT1-ERK1/2-CREB axis. Biol Direct 2023; 18:67. [PMID: 37875967 PMCID: PMC10594727 DOI: 10.1186/s13062-023-00428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Nuclear respiratory factor 1 (NRF1) is a transcription factor that participates in several kinds of tumor, but its role in hepatocellular carcinoma (HCC) remains elusive. This study aims to explore the role of NRF1 in HCC progression and investigate the underlying mechanisms. RESULTS NRF1 was overexpressed and hyperactive in HCC tissue and cell lines and high expression of NRF1 indicated unfavorable prognosis of HCC patients. NRF1 promoted proliferation, migration and invasion of HCC cells both in vitro and in vivo. Mechanistically, NRF1 activated ERK1/2-CREB signaling pathway by transactivating lysophosphatidylcholine acyltransferase 1 (LPCAT1), thus promoting cell cycle progression and epithelial mesenchymal transition (EMT) of HCC cells. Meanwhile, LPCAT1 upregulated the expression of NRF1 by activating ERK1/2-CREB signaling pathway, forming a positive feedback loop. CONCLUSIONS NRF1 is overexpressed in HCC and promotes HCC progression by activating LPCAT1-ERK1/2-CREB axis. NRF1 is a promising therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Ran Liu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Peng Zhao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Bing Guo
- Insitute for Genome Sciences, University of Maryland School of Medical, Baltimore, MD, 21201, USA
| | - Wenbo Ke
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Xichuan Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Dawei Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yaofeng Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Gengqiao Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Yinzhao Jia
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Yang Gao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Wenjun Hu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Gang Logan Liu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
86
|
Su H, Guo H, Qiu X, Lin TY, Qin C, Celio G, Yong P, Senders M, Han X, Bernlohr DA, Chen X. Lipocalin 2 regulates mitochondrial phospholipidome remodeling, dynamics, and function in brown adipose tissue in male mice. Nat Commun 2023; 14:6729. [PMID: 37872178 PMCID: PMC10593768 DOI: 10.1038/s41467-023-42473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondrial function is vital for energy metabolism in thermogenic adipocytes. Impaired mitochondrial bioenergetics in brown adipocytes are linked to disrupted thermogenesis and energy balance in obesity and aging. Phospholipid cardiolipin (CL) and phosphatidic acid (PA) jointly regulate mitochondrial membrane architecture and dynamics, with mitochondria-associated endoplasmic reticulum membranes (MAMs) serving as the platform for phospholipid biosynthesis and metabolism. However, little is known about the regulators of MAM phospholipid metabolism and their connection to mitochondrial function. We discover that LCN2 is a PA binding protein recruited to the MAM during inflammation and metabolic stimulation. Lcn2 deficiency disrupts mitochondrial fusion-fission balance and alters the acyl-chain composition of mitochondrial phospholipids in brown adipose tissue (BAT) of male mice. Lcn2 KO male mice exhibit an increase in the levels of CLs containing long-chain polyunsaturated fatty acids (LC-PUFA), a decrease in CLs containing monounsaturated fatty acids, resulting in mitochondrial dysfunction. This dysfunction triggers compensatory activation of peroxisomal function and the biosynthesis of LC-PUFA-containing plasmalogens in BAT. Additionally, Lcn2 deficiency alters PA production, correlating with changes in PA-regulated phospholipid-metabolizing enzymes and the mTOR signaling pathway. In conclusion, LCN2 plays a critical role in the acyl-chain remodeling of phospholipids and mitochondrial bioenergetics by regulating PA production and its function in activating signaling pathways.
Collapse
Affiliation(s)
- Hongming Su
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Hong Guo
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Xiaoxue Qiu
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Te-Yueh Lin
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Gail Celio
- University Imaging Centers, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Peter Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Mark Senders
- University Imaging Centers, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Xiaoli Chen
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA.
| |
Collapse
|
87
|
Du B, Zhang F, Zhou Q, Cheng W, Yu Z, Li L, Yang J, Zhang X, Zhou C, Zhang W. Joint analysis of the metabolomics and transcriptomics uncovers the dysregulated network and develops the diagnostic model of high-risk neuroblastoma. Sci Rep 2023; 13:16991. [PMID: 37813883 PMCID: PMC10562375 DOI: 10.1038/s41598-023-43988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/01/2023] [Indexed: 10/11/2023] Open
Abstract
High-risk neuroblastoma (HR-NB) has a significantly lower survival rate compared to low- and intermediate-risk NB (LIR-NB) due to the lack of risk classification diagnostic models and effective therapeutic targets. The present study aims to characterize the differences between neuroblastomas with different risks through transcriptomic and metabolomic, and establish an early diagnostic model for risk classification of neuroblastoma.Plasma samples from 58 HR-NB and 38 LIR-NB patients were used for metabolomics analysis. Meanwhile, NB tissue samples from 32 HR-NB and 23 LIR-NB patients were used for transcriptomics analysis. In particular, integrative metabolomics and transcriptomic analysis was performed between HR-NB and LIR-NB. A total of 44 metabolites (P < 0.05 and fold change > 1.5) were altered, including 12 that increased and 32 that decreased in HR-NB. A total of 1,408 mRNAs (P < 0.05 and |log2(fold change)|> 1) showed significantly altered in HR-NB, of which 1,116 were upregulated and 292 were downregulated. Joint analysis of both omic data identified 4 aberrant pathways (P < 0.05 and impact ≥ 0.5) consisting of glycerolipid metabolism, retinol metabolism, arginine biosynthesis and linoleic acid metabolism. Importantly, a HR-NB risk classification diagnostic model was developed using plasma circulating-free S100A9, CDK2, and UNC5D, with an area under receiver operating characteristic curve of 0.837 where the sensitivity and specificity in the validation set were both 80.0%. This study presents a novel pioneering study demonstrating the metabolomics and transcriptomics profiles of HR-NB. The glycerolipid metabolism, retinol metabolism, arginine biosynthesis and linoleic acid metabolism were altered in HR-NB. The risk classification diagnostic model based on S100A9, CDK2, and UNC5D can be clinically used for HR-NB risk classification.
Collapse
Affiliation(s)
- Bang Du
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
| | - Fei Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
| | - Qiumei Zhou
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230000, China
| | - Weyland Cheng
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
| | - Zhidan Yu
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
| | - Lifeng Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
| | - Jianwei Yang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
| | - Xianwei Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
| | - Chongchen Zhou
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
| | - Wancun Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
| |
Collapse
|
88
|
Prado LG, Camara NOS, Barbosa AS. Cell lipid biology in infections: an overview. Front Cell Infect Microbiol 2023; 13:1148383. [PMID: 37868347 PMCID: PMC10587689 DOI: 10.3389/fcimb.2023.1148383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Lipids are a big family of molecules with a vast number of functions in the cell membranes, within the cytoplasm, and extracellularly. Lipid droplets (LDs) are the most common storage organelles and are present in almost every tissue type in the body. They also have structural functions serving as building blocks of cellular membranes and may be precursors of other molecules such as hormones, and lipoproteins, and as messengers in signal transduction. Fatty acids (FAs), such as sterol esters and triacylglycerols, are stored in LDs and are used in β-oxidation as fuel for tricarboxylic acid cycle (TCA) and adenosine triphosphate (ATP) generation. FA uptake and entrance in the cytoplasm are mediated by membrane receptors. After a cytoplasmic round of α- and β-oxidation, FAs are guided into the mitochondrial matrix by the L-carnitine shuttle system, where they are fully metabolized, and enter the TCA cycle. Pathogen infections may lead to impaired lipid metabolism, usage of membrane phospholipids, and LD accumulation in the cytoplasm of infected cells. Otherwise, bacterial pathogens may use lipid metabolism as a carbon source, thus altering the reactions and leading to cellular and organelles malfunctioning. This review aims to describe cellular lipid metabolism and alterations that occur upon infections.
Collapse
Affiliation(s)
- Luan Gavião Prado
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Camara
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
89
|
Zhang Y, Liu Y, Sun J, Zhang W, Guo Z, Ma Q. Arachidonic acid metabolism in health and disease. MedComm (Beijing) 2023; 4:e363. [PMID: 37746665 PMCID: PMC10511835 DOI: 10.1002/mco2.363] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Arachidonic acid (AA), an n-6 essential fatty acid, is a major component of mammalian cells and can be released by phospholipase A2. Accumulating evidence indicates that AA plays essential biochemical roles, as it is the direct precursor of bioactive lipid metabolites of eicosanoids such as prostaglandins, leukotrienes, and epoxyeicosatrienoic acid obtained from three distinct enzymatic metabolic pathways: the cyclooxygenase pathway, lipoxygenase pathway, and cytochrome P450 pathway. AA metabolism is involved not only in cell differentiation, tissue development, and organ function but also in the progression of diseases, such as hepatic fibrosis, neurodegeneration, obesity, diabetes, and cancers. These eicosanoids are generally considered proinflammatory molecules, as they can trigger oxidative stress and stimulate the immune response. Therefore, interventions in AA metabolic pathways are effective ways to manage inflammatory-related diseases in the clinic. Currently, inhibitors targeting enzymes related to AA metabolic pathways are an important area of drug discovery. Moreover, many advances have also been made in clinical studies of AA metabolic inhibitors in combination with chemotherapy and immunotherapy. Herein, we review the discovery of AA and focus on AA metabolism in relation to health and diseases. Furthermore, inhibitors targeting AA metabolism are summarized, and potential clinical applications are discussed.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Yingxiang Liu
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Jin Sun
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Wei Zhang
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Zheng Guo
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Qiong Ma
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| |
Collapse
|
90
|
Gupta G, Kaur J, Bhattacharya K, Chambers BJ, Gazzi A, Furesi G, Rauner M, Fuoco C, Orecchioni M, Delogu LG, Haag L, Stehr JE, Thomen A, Bordes R, Malmberg P, Seisenbaeva GA, Kessler VG, Persson M, Fadeel B. Exploiting Mass Spectrometry to Unlock the Mechanism of Nanoparticle-Induced Inflammasome Activation. ACS NANO 2023; 17:17451-17467. [PMID: 37643371 PMCID: PMC10510732 DOI: 10.1021/acsnano.3c05600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Nanoparticles (NPs) elicit sterile inflammation, but the underlying signaling pathways are poorly understood. Here, we report that human monocytes are particularly vulnerable to amorphous silica NPs, as evidenced by single-cell-based analysis of peripheral blood mononuclear cells using cytometry by time-of-flight (CyToF), while silane modification of the NPs mitigated their toxicity. Using human THP-1 cells as a model, we observed cellular internalization of silica NPs by nanoscale secondary ion mass spectrometry (nanoSIMS) and this was confirmed by transmission electron microscopy. Lipid droplet accumulation was also noted in the exposed cells. Furthermore, time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed specific changes in plasma membrane lipids, including phosphatidylcholine (PC) in silica NP-exposed cells, and subsequent studies suggested that lysophosphatidylcholine (LPC) acts as a cell autonomous signal for inflammasome activation in the absence of priming with a microbial ligand. Moreover, we found that silica NPs elicited NLRP3 inflammasome activation in monocytes, whereas cell death transpired through a non-apoptotic, lipid peroxidation-dependent mechanism. Together, these data further our understanding of the mechanism of sterile inflammation.
Collapse
Affiliation(s)
- Govind Gupta
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jasreen Kaur
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kunal Bhattacharya
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Arianna Gazzi
- Department
of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Giulia Furesi
- Department
of Medicine III and Center for Healthy Aging, TU Dresden, 01307 Dresden, Germany
| | - Martina Rauner
- Department
of Medicine III and Center for Healthy Aging, TU Dresden, 01307 Dresden, Germany
| | - Claudia Fuoco
- Department
of Biology, University of Rome Tor Vergata, Rome 00173, Italy
| | - Marco Orecchioni
- Division
of Inflammation Biology, La Jolla Institute
for Immunology, La Jolla, California 92037, United States
| | - Lucia Gemma Delogu
- Department
of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Lars Haag
- Department
of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Jan Eric Stehr
- Department
of Physics, Chemistry and Biology, Linköping
University, 581 83 Linköping, Sweden
| | - Aurélien Thomen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Romain Bordes
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Per Malmberg
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Gulaim A. Seisenbaeva
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Vadim G. Kessler
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Michael Persson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Bengt Fadeel
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
91
|
Zhang F, Ding Y, Zhang B, He M, Wang Z, Lu C, Kang Y. Analysis of Methylome, Transcriptome, and Lipid Metabolites to Understand the Molecular Abnormalities in Polycystic Ovary Syndrome. Diabetes Metab Syndr Obes 2023; 16:2745-2763. [PMID: 37720421 PMCID: PMC10503565 DOI: 10.2147/dmso.s421947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose This study aimed to identify differentially methylated genes (DMGs) and differentially expressed genes (DEGs) to investigate new biomarkers for the diagnosis and treatment of polycystic ovary syndrome (PCOS). Methods To explore the potential biomarkers of PCOS diagnosis and treatment, we performed methyl-binding domain sequencing (MBD-seq) and RNA sequencing (RNA-seq) on ovarian granulosa cells (GCs) from PCOS patients and healthy controls. MBD-seq was also performed on the ovarian tissue of constructed prenatally androgenized (PNA) mice. Differential methylation and expression analysis were implemented to identify DMGs and DEGs, respectively. The identified gene was further verified by real-time quantitative PCR (RT-qPCR) and methylation-specific PCR (MSP) in clinical samples. Furthermore, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was carried out on PCOS patients and healthy controls to identify differential lipid metabolites. Results Compared to the control group, 13,526 DMGs related to the promoter region and 2429 DEGs were found. The function analysis of DMGs and DEGs showed that they were mainly enriched in glycerophospholipid, ovarian steroidogenesis, and other lipid metabolic pathways. Moreover, 5753 genes in DMGs related to the promoter region were screened in the constructed PNA mice. Integrating the DMGs data from PCOS patients and PNA mice, we identified the following 8 genes: CDC42EP4, ERMN, EZR, PIK3R1, ARHGEF18, NECTIN2, TSC2, and TACSTD2. RT-qPCR and MSP verification results showed that the methylation and expression of TACSTD2 were consistent with sequencing data. Additionally, 15 differential lipid metabolites were shown in the serum of PCOS patients. The differential lipids were involved in glycerophospholipid and glycerolipid metabolism. Conclusion Using integration of methylome and lipid metabolites profiling we identified 8 potential epigenetic markers and 15 potential lipid metabolite markers for PCOS. Our results suggest that aberrant DNA methylation and lipid metabolite disorders may provide novel insights into the diagnosis and etiology of PCOS.
Collapse
Affiliation(s)
- Fei Zhang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yicen Ding
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Bohan Zhang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Mengju He
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhijiang Wang
- Department of Pharmaceutical Engineering, Zhejiang Pharmaceutical University, Ningbo, People’s Republic of China
| | - Chunbo Lu
- Department of Obstetrics and Gynecology, Qiuai Central Health Center, Ningbo, People’s Republic of China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
92
|
Bedoya-Guzmán FA, Pacheco-Herrero M, Salomon-Cruz ID, Barrera-Sandoval AM, Gutierrez Vargas JA, Villamil-Ortiz JG, Villegas Lanau CA, Arias-Londoño JD, Area-Gomez E, Cardona Gomez GP. BACE1 and SCD1 are associated with neurodegeneration. Front Aging Neurosci 2023; 15:1194203. [PMID: 37744400 PMCID: PMC10516302 DOI: 10.3389/fnagi.2023.1194203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Proteolytic processing of amyloid protein precursor by β-site secretase enzyme (BACE1) is dependent on the cellular lipid composition and is affected by endomembrane trafficking in dementia and Alzheimer's disease (AD). Stearoyl-CoA desaturase 1 (SCD1) is responsible for the synthesis of fatty acid monounsaturation (MUFAs), whose accumulation is strongly associated with cognitive dysfunction. Methods In this study, we analyzed the relationship between BACE1 and SCD1 in vivo and in vitro neurodegenerative models and their association in familial AD (FAD), sporadic AD (SAD), and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) using microscopy, biochemical, and mass SPECT approach. Results Our findings showed that BACE1 and SCD1 immunoreactivities were increased and colocalized in astrocytes of the hippocampus in a rat model of global cerebral ischemia (2-VO). A synergistic effect of double BACE1/SCD1 silencing on the recovery of motor and cognitive functions was obtained. This neuroprotective regulation involved the segregation of phospholipids (PLs) associated with polyunsaturated fatty acids in the hippocampus, cerebrospinal fluid, and serum. The double silencing in the sham and ischemic groups was stronger in the serum, inducing an inverse ratio between total phosphatydilcholine (PC) and lysophosphatidylcholine (LPC), represented mainly by the reduction of PC 38:4 and PC 36:4 and an increase in LPC 16:0 and LPC 18:0. Furthermore, PC 38:4 and PC:36:4 levels augmented in pathological conditions in in vitro AD models. BACE1 and SCD1 increases were confirmed in the hippocampus of FAD, SAD, and CADASIL. Conclusion Therefore, the findings suggest a novel convergence of BACE-1 and SCD1 in neurodegeneration, related to pro-inflammatory phospholipids.
Collapse
Affiliation(s)
- Ferley A. Bedoya-Guzmán
- Faculty of Medicine University of Antioquia, Cellular and Molecular Neurobiology Area and Neurobank, Group of Neuroscience (GNA), Medellín, Colombia
| | - Mar Pacheco-Herrero
- Faculty of Medicine University of Antioquia, Cellular and Molecular Neurobiology Area and Neurobank, Group of Neuroscience (GNA), Medellín, Colombia
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic
| | - Ivan Daniel Salomon-Cruz
- Faculty of Medicine University of Antioquia, Cellular and Molecular Neurobiology Area and Neurobank, Group of Neuroscience (GNA), Medellín, Colombia
| | - Angela Maria Barrera-Sandoval
- Faculty of Medicine University of Antioquia, Cellular and Molecular Neurobiology Area and Neurobank, Group of Neuroscience (GNA), Medellín, Colombia
| | - Johanna Andrea Gutierrez Vargas
- Faculty of Medicine University of Antioquia, Cellular and Molecular Neurobiology Area and Neurobank, Group of Neuroscience (GNA), Medellín, Colombia
- Grupo de Investigación en Salud del Adulto Mayor (GISAM), Corporación Universitaria Remington, Medellín, Colombia
| | - Javier Gustavo Villamil-Ortiz
- Faculty of Medicine University of Antioquia, Cellular and Molecular Neurobiology Area and Neurobank, Group of Neuroscience (GNA), Medellín, Colombia
| | - Carlos Andres Villegas Lanau
- Faculty of Medicine University of Antioquia, Cellular and Molecular Neurobiology Area and Neurobank, Group of Neuroscience (GNA), Medellín, Colombia
| | | | - Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Gloria Patricia Cardona Gomez
- Faculty of Medicine University of Antioquia, Cellular and Molecular Neurobiology Area and Neurobank, Group of Neuroscience (GNA), Medellín, Colombia
| |
Collapse
|
93
|
Rietjens RGJ, Rabelink TJ. Unveiling the role of Mfsd2a and LPC-DHA in kidney repair. J Lipid Res 2023; 64:100422. [PMID: 37549789 PMCID: PMC10495638 DOI: 10.1016/j.jlr.2023.100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023] Open
Affiliation(s)
- Rosalie G J Rietjens
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
94
|
Zhao Y, Liu Y, Shi X. LncRNA AC012360.1 facilitates growth and metastasis by regulating the miR-139-5p/LPCAT1 axis in hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY 2023; 38:2192-2203. [PMID: 37300846 DOI: 10.1002/tox.23856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/27/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) participate in tumorigenesis and tumor progression. However, whether lncRNA AC012360.1 contributes to hepatocellular carcinoma (HCC) is unknown. In HCC tissues, differentially expressed lncRNAs were identified by bioinformatics. AC012360.1 level was validated and its role in HCC progression was investigated. Among the top 10 upregulated lncRNAs, AC012360.1 exhibited the greatest increase in HCC tissues. Additionally, AC012360.1 was upregulated in HCC tissues/cells. Moreover, AC012360.1 knockdown refrained cell proliferation/metastasis and tumor growth. Conversely, AC012360.1 overexpression showed an oncogenic role. AC012360.1 and lysophosphatidylcholine acyltransferase 1 (LPCAT1) contained miR-139-5p binding sites. Furthermore, miR-139-5p silencing partially mitigated the role of AC012360.1 knockdown, while LPCAT1 knockdown partially abolished the tumor-promoting effect of AC012360.1 overexpression. In conclusion, AC012360.1 exhibited its oncogenic function in HCC through sponging miR-139-5p and upregulating LPCAT1 expression.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Shi
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
95
|
Su WY, Tian LY, Guo LP, Huang LQ, Gao WY. PI3K signaling-regulated metabolic reprogramming: From mechanism to application. Biochim Biophys Acta Rev Cancer 2023; 1878:188952. [PMID: 37499988 DOI: 10.1016/j.bbcan.2023.188952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Oncogenic signaling involved in tumor metabolic reprogramming. Tumorigenesis was not only determined by the mutations or deletion of oncogenes but also accompanied by the reprogramming of cellular metabolism. Metabolic alterations play a crucial regulatory role in the development and progression of tumors. Oncogenic PI3K/AKT signaling mediates the metabolic switch in cancer cells and immune cells in the tumor microenvironment. PI3K/AKT and its downstream effector branch off and connect to multiple steps of metabolism, such as glucose, lipids, and amino acids. Thus, PI3K inhibitor could effectively regulate metabolic pathway and impede the oncogenic process and some key metabolic proteins or critical enzymes also constitute biomarkers for tumor diagnosis and treatment. In the current review, we summarize the significant effect of PI3K/AKT signaling toward tumor metabolism, it enables us to obtain the better understanding for this interaction and develop more effective therapeutic strategies targeting cancer cell metabolism.
Collapse
Affiliation(s)
- Wen Ya Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lu Yao Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lan Pin Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Qi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wen Yuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
96
|
Cui N, Zhang W, Su F, Zhang Z, Qiao W, Sun Y, Yang B, Kuang H, Wang Q. Metabolomics and Lipidomics Study Unveils the Impact of Tauroursodeoxycholic Acid on Hyperlipidemic Mice. Molecules 2023; 28:6352. [PMID: 37687178 PMCID: PMC10490038 DOI: 10.3390/molecules28176352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Bear bile powder is an essential, traditional and valuable Chinese herbal medicine that clears heat, calms the liver, and improves eyesight. Early studies have shown that bear bile powder has lipid-lowering activity, but due to the scarcity of natural bear bile powder resources, it has yet to be used on a large scale. Researchers have found that tauroursodeoxycholic acid (TUDCA) is the primary characteristic bioactive substance of bear bile powder. This study aimed to investigate the therapeutic effect of TUDCA on high-fat diet (HFD)-induced hyperlipidemia. A hyperlipidemia model was established by feeding mice high-fat chow, following the intervention of different concentrations of TUDCA (25/50/100 mg/kg) orally, the hallmark biochemical indexes (total cholesterol (TC), total triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)), histopathological examination (hematoxylin-eosin (HE) staining and oil red O (ORO) staining), and metabolomic analysis of serum and liver. The results showed that TUDCA could downregulate total TC, TG, LDL-C, upregulate HDL-C, reduce fat deposition in hepatocytes, reverse hepatocyte steatosis, and exhibit prominent lipid-lowering activity. In addition, it may play a therapeutic role by regulating glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Na Cui
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Wensen Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Fazhi Su
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Zhihong Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Weijie Qiao
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China; (N.C.); (W.Z.); (F.S.); (Z.Z.); (W.Q.); (Y.S.); (B.Y.)
| | - Qiuhong Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou 510006, China
| |
Collapse
|
97
|
Wang J, Zhang M, Ding Y, Lin Y, Xue Y, Wang X, Wang X. Coronaviral Main Protease Induces LPCAT3 Cleavage and Endoplasmic Reticulum (ER) Stress. Viruses 2023; 15:1696. [PMID: 37632038 PMCID: PMC10457833 DOI: 10.3390/v15081696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Zoonotic coronaviruses infect mammals and birds, causing pulmonary and gastrointestinal infections. Some animal coronaviruses, such as the porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV), lead to severe diarrhea and animal deaths. Gastrointestinal symptoms were also found in COVID-19 and SARS patients. However, the pathogenesis of gastrointestinal symptoms in coronavirus diseases remains elusive. In this study, the main protease-induced LPCAT3 cleavage was monitored by exogenous gene expression and protease inhibitors, and the related regulation of gene expression was confirmed by qRT-PCR and gene knockdown. Interestingly, LPCAT3 plays an important role in lipid absorption in the intestines. The Mpro of coronaviruses causing diarrhea, such as PEDV and MERS-CoV, but not the Mpro of HCoV-OC43 and HCoV-HKU1, which could induce LPCAT3 cleavage. Mutagenesis analysis and inhibitor experiments indicated that LPCAT3 cleavage was independent of the catalytic activity of Mpro. Moreover, LPCAT3 cleavage in cells boosted CHOP and GRP78 expression, which were biomarkers of ER stress. Since LPCAT3 is critical for lipid absorption in the intestines and malabsorption may lead to diarrhea in coronavirus diseases, Mpro-induced LPCAT3 cleavage might trigger gastrointestinal symptoms during coronavirus infection.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.W.); (M.Z.); (Y.D.); (Y.L.)
| | - Meifang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.W.); (M.Z.); (Y.D.); (Y.L.)
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yanli Ding
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.W.); (M.Z.); (Y.D.); (Y.L.)
| | - Yuxi Lin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.W.); (M.Z.); (Y.D.); (Y.L.)
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China;
| | - Xiaohong Wang
- Shandong Foreign Trade Vocational College, Qingdao 266100, China;
| | - Xin Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.W.); (M.Z.); (Y.D.); (Y.L.)
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Song Li’ Academician Workstation, School of Pharmaceutical Sciences, Hainan University, Sanya 572000, China
| |
Collapse
|
98
|
Cheng YJ, Fan F, Zhang Z, Zhang HJ. Lipid metabolism in malignant tumor brain metastasis: reprogramming and therapeutic potential. Expert Opin Ther Targets 2023; 27:861-878. [PMID: 37668244 DOI: 10.1080/14728222.2023.2255377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Brain metastasis is a highly traumatic event in the progression of malignant tumors, often symbolizing higher mortality. Metabolic alterations are hallmarks of cancer, and the mask of lipid metabolic program rearrangement in cancer progression is gradually being unraveled. AREAS COVERED In this work, we reviewed clinical and fundamental studies related to lipid expression and activity changes in brain metastases originating from lung, breast, and cutaneous melanomas, respectively. Novel roles of lipid metabolic reprogramming in the development of brain metastasis from malignant tumors were identified and its potential as a therapeutic target was evaluated. Published literature and clinical studies in databases consisting of PubMed, Embase, Scopus and www.ClinicalTrials.gov from 1990 to 2022 were searched. EXPERT OPINION Lipid metabolic reprogramming in brain metastasis is involved in de novo lipid synthesis within low lipid availability environments, regulation of lipid uptake and storage, metabolic interactions between brain tumors and the brain microenvironment, and membrane lipid remodeling, in addition to being a second messenger for signal transduction. Although some lipid metabolism modulators work efficiently in preclinical models, there is still a long way to go from laboratory to clinic. This area of research holds assurance for the organ-targeted treatment of brain metastases through drug-regulated metabolic targets and dietary interventions.
Collapse
Affiliation(s)
- Yan-Jie Cheng
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Oncology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Fan Fan
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Zhong Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Hai-Jun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
99
|
Shi M, Han S, Klier K, Fobo G, Montrone C, Yu S, Harada M, Henning AK, Friedrich N, Bahls M, Dörr M, Nauck M, Völzke H, Homuth G, Grabe HJ, Prehn C, Adamski J, Suhre K, Rathmann W, Ruepp A, Hertel J, Peters A, Wang-Sattler R. Identification of candidate metabolite biomarkers for metabolic syndrome and its five components in population-based human cohorts. Cardiovasc Diabetol 2023; 22:141. [PMID: 37328862 PMCID: PMC10276453 DOI: 10.1186/s12933-023-01862-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/20/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Metabolic Syndrome (MetS) is characterized by risk factors such as abdominal obesity, hypertriglyceridemia, low high-density lipoprotein cholesterol (HDL-C), hypertension, and hyperglycemia, which contribute to the development of cardiovascular disease and type 2 diabetes. Here, we aim to identify candidate metabolite biomarkers of MetS and its associated risk factors to better understand the complex interplay of underlying signaling pathways. METHODS We quantified serum samples of the KORA F4 study participants (N = 2815) and analyzed 121 metabolites. Multiple regression models adjusted for clinical and lifestyle covariates were used to identify metabolites that were Bonferroni significantly associated with MetS. These findings were replicated in the SHIP-TREND-0 study (N = 988) and further analyzed for the association of replicated metabolites with the five components of MetS. Database-driven networks of the identified metabolites and their interacting enzymes were also constructed. RESULTS We identified and replicated 56 MetS-specific metabolites: 13 were positively associated (e.g., Val, Leu/Ile, Phe, and Tyr), and 43 were negatively associated (e.g., Gly, Ser, and 40 lipids). Moreover, the majority (89%) and minority (23%) of MetS-specific metabolites were associated with low HDL-C and hypertension, respectively. One lipid, lysoPC a C18:2, was negatively associated with MetS and all of its five components, indicating that individuals with MetS and each of the risk factors had lower concentrations of lysoPC a C18:2 compared to corresponding controls. Our metabolic networks elucidated these observations by revealing impaired catabolism of branched-chain and aromatic amino acids, as well as accelerated Gly catabolism. CONCLUSION Our identified candidate metabolite biomarkers are associated with the pathophysiology of MetS and its risk factors. They could facilitate the development of therapeutic strategies to prevent type 2 diabetes and cardiovascular disease. For instance, elevated levels of lysoPC a C18:2 may protect MetS and its five risk components. More in-depth studies are necessary to determine the mechanism of key metabolites in the MetS pathophysiology.
Collapse
Affiliation(s)
- Mengya Shi
- TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Partner Neuherberg, Munich-Neuherberg, Germany
| | - Siyu Han
- TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Partner Neuherberg, Munich-Neuherberg, Germany
| | - Kristin Klier
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Gisela Fobo
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Corinna Montrone
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Shixiang Yu
- TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Makoto Harada
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Partner Neuherberg, Munich-Neuherberg, Germany
| | - Ann-Kristin Henning
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Martin Bahls
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Dörr
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Diabetes Research (DZD), Partner Greifswald, Neuherberg, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Greifswald, Germany
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine—Qatar, Education City—Qatar Foundation, Doha, Qatar
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
- Institute of Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Andreas Ruepp
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Hertel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), Partner Neuherberg, Munich-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, Ludwig Maximilian University of Munich (LMU), Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Health (DZHK E.V., Partner-Site Munich), Munich, Germany
| | - Rui Wang-Sattler
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Partner Neuherberg, Munich-Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| |
Collapse
|
100
|
Pagura L, Dumoulin PC, Ellis CC, Mendes MT, Estevao IL, Almeida IC, Burleigh BA. Fatty acid elongases 1-3 have distinct roles in mitochondrial function, growth, and lipid homeostasis in Trypanosoma cruzi. J Biol Chem 2023; 299:104715. [PMID: 37061002 PMCID: PMC10203773 DOI: 10.1016/j.jbc.2023.104715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023] Open
Abstract
Trypanosomatids are a diverse group of uniflagellate protozoan parasites that include globally relevant pathogens such as Trypanosoma cruzi, the causative agent of Chagas disease. Trypanosomes lack the fatty acid synthase system typically used for de novo fatty acid (FA) synthesis in other eukaryotes. Instead, these microbes have evolved a modular FA elongase (ELO) system comprised of individual ELO enzymes (ELO1-4) that can operate processively to generate long chain- and very long chain-FAs. The importance of ELO's for maintaining lipid homeostasis in trypanosomatids is currently unclear, given their ability to take up and utilize exogenous FAs for lipid synthesis. To assess ELO function in T. cruzi, we generated individual KO lines, Δelo1, Δelo2, and Δelo3, in which the genes encoding ELO1-3 were functionally disrupted in the parasite insect stage (epimastigote). Using unbiased lipidomic and metabolomic analyses, in combination with metabolic tracing and biochemical approaches, we demonstrate that ELO2 and ELO3 are required for global lipid homeostasis, whereas ELO1 is dispensable for this function. Instead, ELO1 activity is needed to sustain mitochondrial activity and normal growth in T. cruzi epimastigotes. The cross-talk between microsomal ELO1 and the mitochondrion is a novel finding that, we propose, merits further examination of the trypanosomatid ELO pathway as critical for central metabolism.
Collapse
Affiliation(s)
- Lucas Pagura
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Peter C Dumoulin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Cameron C Ellis
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Maria T Mendes
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Igor L Estevao
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA.
| | - Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA.
| |
Collapse
|