51
|
Liang Z, Li L, Bai L, Gao Y, Qiao Y, Wang X, Yv L, Xu JT. Spinal nerve transection-induced upregulation of SAP97 via promoting membrane trafficking of GluA1-containing AMPA receptors in the dorsal horn contributes to the pathogenesis of neuropathic pain. Neurobiol Dis 2024; 194:106471. [PMID: 38461868 DOI: 10.1016/j.nbd.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Emerging evidence has implicated an important role of synapse-associated protein-97 (SAP97)-regulated GluA1-containing AMPARs membrane trafficking in cocaine restate and in contextual episodic memory of schizophrenia. Herein, we investigated the role of SAP97 in neuropathic pain following lumbar 5 spinal nerve transection (SNT) in rats. Our results showed that SNT led to upregulation of SAP97, enhanced the interaction between SAP97 and GluA1, and increased GluA1-containing AMPARs membrane trafficking in the dorsal horn. Microinjection of AAV-EGFP-SAP97 shRNA in lumbar 5 spinal dorsal horn inhibited SAP97 production, decreased SAP97-GluA1 interaction, reduced the membrane trafficking of GluA1-containing AMPARs, and partially attenuated neuropathic pain following SNT. Intrathecal injections of SAP97 siRNA or NASPM, an antagonist of GluA1-containing AMPARs, also partially reversed neuropathic pain on day 7, but not on day 14, after SNT. Spinal overexpression of SAP97 by AAV-EGFP-SAP97 enhanced SAP97-GluA1 interaction, increased the membrane insertion of GluA1-containing AMPARs, and induced abnormal pain in naïve rats. In addition, treatment with SAP97 siRNA or NASPM i.t. injection alleviated SNT-induced allodynia and hyperalgesia and exhibited a longer effect in female rats. Together, our results indicate that the SNT-induced upregulation of SAP97 via promoting GluA1-containing AMPARs membrane trafficking in the dorsal horn contributes to the pathogenesis of neuropathic pain. Targeting spinal SAP97 might be a promising therapeutic strategy to treatment of chronic pain.
Collapse
Affiliation(s)
- Zongyi Liang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Lili Yv
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
52
|
Beecroft EV, Edwards D, Allison JR. Other Secondary Headaches: Odontogenic Pain and Other Painful Orofacial Conditions. Neurol Clin 2024; 42:615-632. [PMID: 38575270 DOI: 10.1016/j.ncl.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
This article discusses extremely common odontogenic pain conditions, which may occasionally present to the neurology clinic mimicking headache, and other uncommon orofacial pain conditions, which may do the same. Typical presentations, investigative strategies, and management are discussed, as well as highlighting key diagnostic criteria and the importance of involving oral or dental specialists where diagnostic uncertainty exists.
Collapse
Affiliation(s)
- Emma V Beecroft
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom; Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom.
| | - David Edwards
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom; Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - James R Allison
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom; Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
53
|
Rusbridge C. Neuropathic pain in cats: Mechanisms and multimodal management. J Feline Med Surg 2024; 26:1098612X241246518. [PMID: 38710218 PMCID: PMC11156241 DOI: 10.1177/1098612x241246518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
PRACTICAL RELEVANCE Chronic pain is a significant welfare concern in cats, and neuropathic pain, which arises from aberrant processing of sensory signals within the nervous system, is a subcategory of this type of pain. To comprehend this condition and how multimodal pharmacotherapy plays a central role in alleviating discomfort, it is crucial to delve into the anatomy of nociception and pain perception. In addition, there is an intricate interplay between emotional health and chronic pain in cats, and understanding and addressing the emotional factors that contribute to pain perception, and vice versa, is essential for comprehensive care.Clinical approach:Neuropathic pain is suspected if there is abnormal sensation in the area of the distribution of pain, together with a positive response to trial treatment with drugs effective for neuropathic pain. Ideally, this clinical suspicion would be supported by confirmation of a lesion at this neurolocalisation using diagnostic modalities such as MRI and neuroelectrophysiology. Alternatively, there may be a history of known trauma at that site. A variety of therapies, including analgesic, anti-inflammatory and adjuvant drugs, and neuromodulation (eg, TENS or acupuncture), can be employed to address different facets of pain pathways.Aim:This review article, aimed at primary care/ general practitioners, focuses on the identification and management of neuropathic pain in cats. Three case vignettes are included and a structured treatment algorithm is presented to guide veterinarians in tailoring interventions.Evidence base:The review draws on current literature, where available, along with the author's extensive experience and research.
Collapse
Affiliation(s)
- Clare Rusbridge
- BVMS, PhD, DipECVN, FRCVS School of Veterinary Medicine, The University of Surrey, Guildford, Surrey, UK; and Wear Referrals Veterinary Specialist & Emergency Hospital, Bradbury, Stockton-on-Tees, UK
| |
Collapse
|
54
|
Trivedi PD, Posani S, Balla N, Sheezan MM, Hussain AS, Xavier R, Popatbhai KM, Mateen MA, Prajjwal P, Marsool Marsool MD. Efficacy of pregabalin, amitriptyline, and gabapentin for neuropathic pain. Bioinformation 2024; 20:386-390. [PMID: 38854766 PMCID: PMC11161879 DOI: 10.6026/973206300200386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024] Open
Abstract
Neuropathic pain largely influences the well-being of patients. Anticonvulsant and antidepressant medications, such as Pregabalin, Gabapentin, and Amitriptyline, are routinely prescribed as initial treatments for neuropathic pain. The study sample has a total of 270 patients who meet the inclusion criteria and are further distributed into three equally sized groups (A, B, and C). Group A was administered with Gabapentine 300mg, Group B with Pregabalin 75 mg, and Amitriptyline 10 mg to Group C. The occurrence of any adverse drug response was documented using the ADR reporting form, while the pain of the patient's post-medication was recorded using a numerical pain rating scale (NPRS). The comparison of the NPRS scores of all three groups "by using ANOVA test" both at baseline and after 15 days reveal that the differences between the three groups are statistically insignificant (p > 0.089). However, after one month of continuous use, the difference becomes slightly significant (I.e., p = 0.003). Gabapentin, pregabalin, and amitriptyline demonstrate similar effectiveness in alleviating neuropathic (NeP) pain. The study concludes that gabapentin is superior to both pregabalin and amitriptyline with fewer adverse effects, leading to improved patient adherence for long-term use.
Collapse
Affiliation(s)
| | | | - Neeharika Balla
- Maharajah's Institute of Medical Sciences, Vizianagaram, India
| | | | | | - Roshni Xavier
- Medical Officer at Carewell Hospital, Padapparamba, Malappuram, Kerala , India
| | | | - Mohammed Abdul Mateen
- Shadan Institute of Medical Sciences Teaching hospital and Research Centre, Hyderabad, India
| | | | | |
Collapse
|
55
|
Ye Y, Cheng H, Wang Y, Sun Y, Zhang LD, Tang J. Macrophage: A key player in neuropathic pain. Int Rev Immunol 2024; 43:326-339. [PMID: 38661566 DOI: 10.1080/08830185.2024.2344170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
Research on the relationship between macrophages and neuropathic pain has flourished in the past two decades. It has long been believed that macrophages are strong immune effector cells that play well-established roles in tissue homeostasis and lesions, such as promoting the initiation and progression of tissue injury and improving wound healing and tissue remodeling in a variety of pathogenesis-related diseases. They are also heterogeneous and versatile cells that can switch phenotypically/functionally in response to the micro-environment signals. Apart from microglia (resident macrophages of both the spinal cord and brain), which are required for the neuropathic pain processing of the CNS, neuropathic pain signals in PNS are influenced by the interaction of tissue-resident macrophages and BM infiltrating macrophages with primary afferent neurons. And the current review looks at new evidence that suggests sexual dimorphism in neuropathic pain are caused by variations in the immune system, notably macrophages, rather than the neurological system.
Collapse
Affiliation(s)
- Ying Ye
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hao Cheng
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China
| | - Yan Wang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yan Sun
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Li-Dong Zhang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jun Tang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
56
|
Canori A, Coffman DL, Wright WG, Finley MA, Hiremath SV. Differential relationships between physical activity and pain phenotypes in individuals with spinal cord injury. J Spinal Cord Med 2024:1-10. [PMID: 38661677 DOI: 10.1080/10790268.2024.2344315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Chronic pain affects 70% of individuals with spinal cord injury (SCI) and leads to declines in health and quality of life. Neuropathic and nociceptive pain are phenotypes derived from different mechanisms that contribute to pain perception. The objective of this research was to investigate differential pain responses to moderate-to-vigorous physical activity (MVPA) in two chronic pain phenotypes: neuropathic and nociceptive pain. METHODS Community-based physical activity levels were collected for one week in 17 individuals with SCI using a wrist-worn accelerometer, and daily pain ratings were assessed and categorized by phenotype. Physical activity levels were summarized to calculate minutes of MVPA. Correlational analyses were conducted to compare relationships between pain intensity and MVPA across individual participants and between pain phenotype groups. RESULTS The neuropathic pain group revealed significant negative correlation between MVPA and pain intensity. In the nociceptive pain group, there was no significant correlation between MVPA and pain intensity. Further analysis revealed two subgroups of positive (N = 4) and negative (N = 3) correlations between MVPA and pain intensity. Pain location differed between the subgroups of nociceptive pain. Individuals with negative correlation experienced neck and upper back pain, whereas individuals with positive correlation experienced unilateral upper extremity pain. CONCLUSION Differential relationships exist between pain phenotypes and MVPA in individuals with SCI. Pain location differed between the subgroups of nociceptive pain, which we presume may indicate the presence of nociplastic pain in some individuals. These results may contribute to the advancement of personalized pain management by targeting non-pharmacological interventions for specific pain phenotypes.Trial registration: ClinicalTrials.gov identifier: NCT05236933..
Collapse
Affiliation(s)
- Alexandra Canori
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Donna L Coffman
- Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | - W Geoffrey Wright
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Margaret A Finley
- Department of Physical Therapy and Rehabilitation Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Shivayogi V Hiremath
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
57
|
Salib AMN, Crane MJ, Lee SH, Wainger BJ, Jamieson AM, Lipscombe D. Interleukin-1α links peripheral Ca V2.2 channel activation to rapid adaptive increases in heat sensitivity in skin. Sci Rep 2024; 14:9051. [PMID: 38643253 PMCID: PMC11032389 DOI: 10.1038/s41598-024-59424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Neurons have the unique capacity to adapt output in response to changes in their environment. Within seconds, sensory nerve endings can become hypersensitive to stimuli in response to potentially damaging events. The underlying behavioral response is well studied, but several of the key signaling molecules that mediate sensory hypersensitivity remain unknown. We previously discovered that peripheral voltage-gated CaV2.2 channels in nerve endings in skin are essential for the rapid, transient increase in sensitivity to heat, but not to mechanical stimuli, that accompanies intradermal capsaicin. Here we report that the cytokine interleukin-1α (IL-1α), an alarmin, is necessary and sufficient to trigger rapid heat and mechanical hypersensitivity in skin. Of 20 cytokines screened, only IL-1α was consistently detected in hind paw interstitial fluid in response to intradermal capsaicin and, similar to behavioral sensitivity to heat, IL-1α levels were also dependent on peripheral CaV2.2 channel activity. Neutralizing IL-1α in skin significantly reduced capsaicin-induced changes in hind paw sensitivity to radiant heat and mechanical stimulation. Intradermal IL-1α enhances behavioral responses to stimuli and, in culture, IL-1α enhances the responsiveness of Trpv1-expressing sensory neurons. Together, our data suggest that IL-1α is the key cytokine that underlies rapid and reversible neuroinflammatory responses in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Sang Hun Lee
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Brian J Wainger
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
58
|
Chen X, Gan Y, Au NPB, Ma CHE. Current understanding of the molecular mechanisms of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 2024; 17:1345811. [PMID: 38660386 PMCID: PMC11039947 DOI: 10.3389/fnmol.2024.1345811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common off-target adverse effects caused by various chemotherapeutic agents, such as cisplatin, oxaliplatin, paclitaxel, vincristine and bortezomib. CIPN is characterized by a substantial loss of primary afferent sensory axonal fibers leading to sensory disturbances in patients. An estimated of 19-85% of patients developed CIPN during the course of chemotherapy. The lack of preventive measures and limited treatment options often require a dose reduction or even early termination of life-saving chemotherapy, impacting treatment efficacy and patient survival. In this Review, we summarized the current understanding on the pathogenesis of CIPN. One prominent change induced by chemotherapeutic agents involves the disruption of neuronal cytoskeletal architecture and axonal transport dynamics largely influenced by the interference of microtubule stability in peripheral neurons. Due to an ineffective blood-nerve barrier in our peripheral nervous system, exposure to some chemotherapeutic agents causes mitochondrial swelling in peripheral nerves, which lead to the opening of mitochondrial permeability transition pore and cytochrome c release resulting in degeneration of primary afferent sensory fibers. The exacerbated nociceptive signaling and pain transmission in CIPN patients is often linked the increased neuronal excitability largely due to the elevated expression of various ion channels in the dorsal root ganglion neurons. Another important contributing factor of CIPN is the neuroinflammation caused by an increased infiltration of immune cells and production of inflammatory cytokines. In the central nervous system, chemotherapeutic agents also induce neuronal hyperexcitability in the spinal dorsal horn and anterior cingulate cortex leading to the development of central sensitization that causes CIPN. Emerging evidence suggests that the change in the composition and diversity of gut microbiota (dysbiosis) could have direct impact on the development and progression of CIPN. Collectively, all these aspects contribute to the pathogenesis of CIPN. Recent advances in RNA-sequencing offer solid platform for in silico drug screening which enable the identification of novel therapeutic agents or repurpose existing drugs to alleviate CIPN, holding immense promises for enhancing the quality of life for cancer patients who undergo chemotherapy and improve their overall treatment outcomes.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yumeng Gan
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ngan Pan Bennett Au
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Institute of Life Sciences and Healthcare, University of Portsmouth, Portsmouth, United Kingdom
| | - Chi Him Eddie Ma
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
59
|
Jeon SM, Pradeep A, Chang D, McDonough L, Chen Y, Latremoliere A, Crawford LK, Caterina MJ. Skin Reinnervation by Collateral Sprouting Following Spared Nerve Injury in Mice. J Neurosci 2024; 44:e1494232024. [PMID: 38471780 PMCID: PMC11007315 DOI: 10.1523/jneurosci.1494-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
Following peripheral nerve injury, denervated tissues can be reinnervated via regeneration of injured neurons or collateral sprouting of neighboring uninjured afferents into denervated territory. While there has been substantial focus on mechanisms underlying regeneration, collateral sprouting has received less attention. Here, we used immunohistochemistry and genetic neuronal labeling to define the subtype specificity of sprouting-mediated reinnervation of plantar hindpaw skin in the mouse spared nerve injury (SNI) model, in which productive regeneration cannot occur. Following initial loss of cutaneous afferents in the tibial nerve territory, we observed progressive centripetal reinnervation by multiple subtypes of neighboring uninjured fibers into denervated glabrous and hairy plantar skin of male mice. In addition to dermal reinnervation, CGRP-expressing peptidergic fibers slowly but continuously repopulated denervated epidermis, Interestingly, GFRα2-expressing nonpeptidergic fibers exhibited a transient burst of epidermal reinnervation, followed by a trend towards regression. Presumptive sympathetic nerve fibers also sprouted into denervated territory, as did a population of myelinated TrkC lineage fibers, though the latter did so inefficiently. Conversely, rapidly adapting Aβ fiber and C fiber low threshold mechanoreceptor (LTMR) subtypes failed to exhibit convincing sprouting up to 8 weeks after nerve injury in males or females. Optogenetics and behavioral assays in male mice further demonstrated the functionality of collaterally sprouted fibers in hairy plantar skin with restoration of punctate mechanosensation without hypersensitivity. Our findings advance understanding of differential collateral sprouting among sensory neuron subpopulations and may guide strategies to promote the progression of sensory recovery or limit maladaptive sensory phenomena after peripheral nerve injury.
Collapse
Affiliation(s)
- Sang-Min Jeon
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Aishwarya Pradeep
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dennis Chang
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Leah McDonough
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Yijia Chen
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Alban Latremoliere
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - LaTasha K Crawford
- Department of Pathological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin 53706
| | - Michael J Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
60
|
Yarmolinsky DA, Zeng X, MacKinnon-Booth N, Greene C, Kim C, Woolf CJ. Selective modification of ascending spinal outputs in acute and neuropathic pain states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588581. [PMID: 38645252 PMCID: PMC11030409 DOI: 10.1101/2024.04.08.588581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Pain hypersensitivity arises from the plasticity of peripheral and spinal somatosensory neurons, which modifies nociceptive input to the brain and alters pain perception. We utilized chronic calcium imaging of spinal dorsal horn neurons to determine how the representation of somatosensory stimuli in the anterolateral tract, the principal pathway transmitting nociceptive signals to the brain, changes between distinct pain states. In healthy conditions, we identify stable, narrowly tuned outputs selective for cooling or warming, and a neuronal ensemble activated by intense/noxious thermal and mechanical stimuli. Induction of an acute peripheral sensitization with capsaicin selectively and transiently retunes nociceptive output neurons to encode low-intensity stimuli. In contrast, peripheral nerve injury-induced neuropathic pain results in a persistent suppression of innocuous spinal outputs coupled with activation of a normally silent population of high-threshold neurons. These results demonstrate the differential modulation of specific spinal outputs to the brain during nociceptive and neuropathic pain states.
Collapse
|
61
|
Yang C, Hu Z, Drolkar G, Jia K, Zhu C, Wang C, Li Q, Wang L, Zhang G, Jokyab T, Hu X, Li H, Xu L, Wang J, Liu C, Lin N. Tibetan medicine Ruyi Zhenbao Pill ameliorates neuropathic pain by inhibiting the CXCL10-CXCR3 pathway in spinal cord of spinal nerve ligation model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117653. [PMID: 38163561 DOI: 10.1016/j.jep.2023.117653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ruyi Zhenbao Pill (RYZBP) is a traditional Tibetan medicine that has been used for over 300 years in China to treat neurological diseases, specifically neuropathic pain (NP). However, its characteristics and mechanism of action in treating NP remains unclear. AIM OF THE STUDY Based on animal experiments and transcriptomics to evaluate the characteristics and mechanism of RYZBP in treating NP. METHODS Mice were divided into six groups using random assignment: sham-operation group, spinal nerve ligation (SNL) group, RYZBP low (0.65 g kg-1), medium (1.30 g kg-1), high (2.60 g kg-1) doses groups, and positive drug pregabalin (PGB, 0.05 g kg-1) group. Mice received intragastrical administered for 14 consecutive days. SNL and intrathecal injection models were employed. The analgesic effects were assessed using the Von Frey test, Acetone test, and Hot Plate test. L5 spinal dorsal horns were collected for transcriptomics on day 15. The potential signaling pathways and Hub genes of RYZBP to ameliorate NP were obtained through transcriptomics and network pharmacology. Molecular docking was utilized to evaluate the binding ability of candidate active ingredients with the Hub genes. Finally, western blot (WB) and immunofluorescence (IF) were used to validate the predicted targets. RESULTS RYZBP demonstrated a dose-dependent alleviation of mechanical allodynia, cold and heat stimulus-induced pain in SNL mice. Transcriptomics analysis identified 24 differentially expressed genes, and pathway enrichment analysis revealed that the CXCL10-CXCR3 signal axis may be the primary biological pathway through which RYZBP relieve NP. Molecular docking test indicated that the active ingredient in RYZBP exhibit a strong affinity for the target protein CXCL10. WB and IF tests showed that RYZBP can significantly inhibit CXCL10 and CXCR3 and its downstream molecules expression in the spinal dorsal horn of SNL mice. Additionally, intrathecal injection of rmCXCL10 worsened pain hypersensitivity, while RYZBP was able to suppress the pain hypersensitivity response induced by rmCXCL10 and reduce the expression levels of CXCL10 and CXCR3 and its downstream molecules. CONCLUSION RYZBP had a significant analgesic effect on NP model, and this effect may be related to inhibiting the CXCL10-CXCR3 pathway in the spinal dorsal horn.
Collapse
Affiliation(s)
- Chao Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China; Jiangxi University of Chinese Medicine, No.1688 Meiling Avenue, Wanli District, Nanchang, 330004, PR China
| | - Zhixing Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Gyap Drolkar
- Beijing Tibetan Hospital, Beijing Tibetology Reserch Center, No.218, Xiaoguan Beili, Anwai, Beijing, 100029, PR China
| | - Kexin Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Chunyan Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Chao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Qun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Lili Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Guoxin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Tsering Jokyab
- Beijing Tibetan Hospital, Beijing Tibetology Reserch Center, No.218, Xiaoguan Beili, Anwai, Beijing, 100029, PR China
| | - Xianda Hu
- Beijing Tibetan Hospital, Beijing Tibetology Reserch Center, No.218, Xiaoguan Beili, Anwai, Beijing, 100029, PR China
| | - Honghong Li
- Beijing Tibetan Hospital, Beijing Tibetology Reserch Center, No.218, Xiaoguan Beili, Anwai, Beijing, 100029, PR China
| | - Liting Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Jialing Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, PR China.
| |
Collapse
|
62
|
Si W, Chen Z, Bei J, Chang S, Zheng Y, Gao L, Zhao G, Li X, Zhang D. Stigmasterol alleviates neuropathic pain by reducing Schwann cell-macrophage cascade in DRG by modulating IL-34/CSF1R. CNS Neurosci Ther 2024; 30:e14657. [PMID: 38572785 PMCID: PMC10993342 DOI: 10.1111/cns.14657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 04/05/2024] Open
Abstract
AIMS This study aimed to investigate the potential therapeutic applications of stigmasterol for treating neuropathic pain. METHODS Related mechanisms were investigated by DRG single-cell sequencing analysis and the use of specific inhibitors in cellular experiments. In animal experiments, 32 male Sprague-Dawley rats were randomly divided into the sham operation group, CCI group, ibuprofen group, and stigmasterol group. We performed behavioral tests, ELISA, H&E staining and immunohistochemistry, and western blotting. RESULTS Cell communication analysis by single-cell sequencing reveals that after peripheral nerve injury, Schwann cells secrete IL-34 to act on CSF1R in macrophages. After peripheral nerve injury, the mRNA expression levels of CSF1R pathway and NLRP3 inflammasome in macrophages were increased in DRG. In vitro studies demonstrated that stigmasterol can reduce the secretion of IL-34 in LPS-induced RSC96 Schwann cells; stigmasterol treatment of LPS-induced Schwann cell-conditioned medium (L-S-CM) does not induce the proliferation and migration of RAW264.7 macrophages; L-S-CM reduces CSF1R signaling pathway (CSF1R, P38MAPK, and NFκB) activation, NLRP3 inflammasome activation, and ROS production. In vivo experiments have verified that stigmasterol can reduce thermal and cold hyperalgesia in rat chronic compressive nerve injury (CCI) model; stigmasterol can reduce IL-1β, IL-6, TNF-α, CCL2, SP, and PGE2 in serum of CCI rats; immunohistochemistry and western blot confirmed that stigmasterol can reduce the levels of IL-34/CSF1R signaling pathway and NLRP3 inflammasome in DRG of CCI rats. CONCLUSION Stigmasterol alleviates neuropathic pain by reducing Schwann cell-macrophage cascade in DRG by modulating IL-34/CSF1R axis.
Collapse
Affiliation(s)
- Waimei Si
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Zhenni Chen
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Jing Bei
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Shiquan Chang
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Yachun Zheng
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Li Gao
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Guoping Zhao
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Xin Li
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Di Zhang
- School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| |
Collapse
|
63
|
Duan D, Wang L, Feng Y, Hu D, Cui D. Picroside Ⅱ attenuates neuropathic pain by regulating inflammation and spinal excitatory synaptic transmission. Can J Physiol Pharmacol 2024; 102:281-292. [PMID: 37976472 DOI: 10.1139/cjpp-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nerve injury induced microglia activation, which released inflammatory mediators and developed neuropathic pain. Picroside Ⅱ (PⅡ) attenuated neuropathic pain by inhibiting the neuroinflammation of the spinal dorsal horn; however, how it engaged in the cross talk between microglia and neurons remained ambiguous. This study aimed to investigate PⅡ in the modulation of spinal synaptic transmission mechanisms on pain hypersensitivity in neuropathic rats. We investigated the analgesia of PⅡ in mechanical and thermal hyperalgesia using the spinal nerve ligation (SNL)-induced neuropathic pain model and formalin-induced tonic pain model, respectively. RNA sequencing and network pharmacology were employed to screen core targets and signaling pathways. Immunofluorescence staining and qPCR were performed to explore the expression level of microglia and inflammatory mediator mRNA. The whole-cell patch-clamp recordings were utilized to record miniature excitatory postsynaptic currents in excitatory synaptic transmission. Our results demonstrated that the analgesic of PⅡ was significant in both pain models, and the underlying mechanism may involve inflammatory signaling pathways. PⅡ reversed the SNL-induced overexpression of microglia and inflammatory factors. Moreover, PⅡ dose dependently inhibited excessive glutamate transmission. Thus, this study suggested that PⅡ attenuated neuropathic pain by inhibiting excitatory glutamate transmission of spinal synapses, induced by an inflammatory response on microglia.
Collapse
Affiliation(s)
- Dongxia Duan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Lian Wang
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yueyang Feng
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daiyu Hu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| |
Collapse
|
64
|
Salib AMN, Crane MJ, Lee SH, Wainger BJ, Jamieson AM, Lipscombe D. Interleukin-1α links peripheral Ca V2.2 channel activation to rapid adaptive increases in heat sensitivity in skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.17.572072. [PMID: 38585803 PMCID: PMC10996502 DOI: 10.1101/2023.12.17.572072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neurons have the unique capacity to adapt output in response to changes in their environment. Within seconds, sensory nerve endings can become hypersensitive to stimuli in response to potentially damaging events. The underlying behavioral response is well studied, but several of the key signaling molecules that mediate sensory hypersensitivity remain unknown. We previously discovered that peripheral voltage-gated CaV2.2 channels in nerve endings in skin are essential for the rapid, transient increase in sensitivity to heat, but not to mechanical stimuli, that accompanies intradermal capsaicin. Here we report that the cytokine interleukin-1α (IL-1α), an alarmin, is necessary and sufficient to trigger rapid heat and mechanical hypersensitivity in skin. Of 20 cytokines screened, only IL-1α was consistently detected in hind paw interstitial fluid in response to intradermal capsaicin and, similar to behavioral sensitivity to heat, IL-1α levels were also dependent on peripheral CaV2.2 channel activity. Neutralizing IL-1α in skin significantly reduced capsaicin-induced changes in hind paw sensitivity to radiant heat and mechanical stimulation. Intradermal IL-1α enhances behavioral responses to stimuli and, in culture, IL-1α enhances the responsiveness of Trpv1-expressing sensory neurons. Together, our data suggest that IL-1α is the key cytokine that underlies rapid and reversible neuroinflammatory responses in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Sang Hun Lee
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brian J Wainger
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
65
|
Hryciw DH. Special Issue: "Recent Advances in Ion Channels and Ion Channelopathies". Int J Mol Sci 2024; 25:3598. [PMID: 38612410 PMCID: PMC11012210 DOI: 10.3390/ijms25073598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this special issue was to showcase recent advanced in understanding ion channel function and dysfunction associated with disease [...].
Collapse
Affiliation(s)
- Deanne H. Hryciw
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia;
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
66
|
Xie MX, Lai RC, Xiao YB, Zhang X, Cao XY, Tian XY, Chen AN, Chen ZY, Cao Y, Li X, Zhang XL. Endophilin A2 controls touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking. Mil Med Res 2024; 11:17. [PMID: 38475827 DOI: 10.1186/s40779-024-00520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Tactile and mechanical pain are crucial to our interaction with the environment, yet the underpinning molecular mechanism is still elusive. Endophilin A2 (EndoA2) is an evolutionarily conserved protein that is documented in the endocytosis pathway. However, the role of EndoA2 in the regulation of mechanical sensitivity and its underlying mechanisms are currently unclear. METHODS Male and female C57BL/6 mice (8-12 weeks) and male cynomolgus monkeys (7-10 years old) were used in our experiments. Nerve injury-, inflammatory-, and chemotherapy-induced pathological pain models were established for this study. Behavioral tests of touch, mechanical pain, heat pain, and cold pain were performed in mice and nonhuman primates. Western blotting, immunostaining, co-immunoprecipitation, proximity ligation and patch-clamp recordings were performed to gain insight into the mechanisms. RESULTS The results showed that EndoA2 was primarily distributed in neurofilament-200-positive (NF200+) medium-to-large diameter dorsal root ganglion (DRG) neurons of mice and humans. Loss of EndoA2 in mouse NF200+ DRG neurons selectively impaired the tactile and mechanical allodynia. Furthermore, EndoA2 interacted with the mechanically sensitive ion channel Piezo2 and promoted the membrane trafficking of Piezo2 in DRG neurons. Moreover, as an adaptor protein, EndoA2 also bound to kinesin family member 5B (KIF5B), which was involved in the EndoA2-mediated membrane trafficking process of Piezo2. Loss of EndoA2 in mouse DRG neurons damaged Piezo2-mediated rapidly adapting mechanically activated currents, and re-expression of EndoA2 rescued the MA currents. In addition, interference with EndoA2 also suppressed touch sensitivity and mechanical hypersensitivity in nonhuman primates. CONCLUSIONS Our data reveal that the KIF5B/EndoA2/Piezo2 complex is essential for Piezo2 trafficking and for sustaining transmission of touch and mechanical hypersensitivity signals. EndoA2 regulates touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking in sensory neurons. Our findings identify a potential new target for the treatment of mechanical pain.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Ren-Chun Lai
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Yi-Bin Xiao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xi Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xian-Ying Cao
- Engineering Technology Research Center for Elderly Health Management in Hainan Province, Haikou, 571137, China
- College of Food Science and Technology, Hainan University, Haikou, 570228, China
| | - Xiao-Yu Tian
- College of Food Science and Technology, Hainan University, Haikou, 570228, China
| | - An-Nan Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zi-Yi Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yan Cao
- College of Food Science and Technology, Hainan University, Haikou, 570228, China
| | - Xiao Li
- College of Food Science and Technology, Hainan University, Haikou, 570228, China
| | - Xiao-Long Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
67
|
Lu YY, Tsai HP, Tsai TH, Miao HC, Zhang ZH, Wu CH. RTA-408 Regulates p-NF-κB/TSLP/STAT5 Signaling to Ameliorate Nociceptive Hypersensitivity in Chronic Constriction Injury Rats. Mol Neurobiol 2024; 61:1714-1725. [PMID: 37773082 DOI: 10.1007/s12035-023-03660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Neuropathic pain following nerve injury is a complex condition, which often puts a negative impact on life and remains a sustained problem. To make pain management better is of great significance and unmet need. RTA 408 (Omaveloxone) is a traditional Asian medicine with a valid anti-inflammatory property. Thus, we aim to investigate the therapeutic effect of RTA-408 on mechanical allodynia in chronic constriction injury (CCI) rats as well as the underlying mechanisms. Neuropathic pain was induced by using CCI of the rats' sciatic nerve (SN) and the behavior testing was measured by calibrated forceps testing. Activation of Nrf-2, the phosphorylation of nuclear factor-κB (NF-κB), and the inflammatory response were assessed by western blots. The number of apoptotic neurons and degree of glial cell reaction were examined by immunofluorescence assay. RTA-408 exerts an analgesic effect on CCI rats. RTA-408 reduces neuronal apoptosis and glial cell activation by increasing Nrf-2 expression and decreasing the inflammatory response (TNF-α/ p-NF-κB/ TSLP/ STAT5). These data suggest that RTA-408 is a candidate with potential to reduce nociceptive hypersensitivity after CCI by targeting TSLP/STAT5 signaling.
Collapse
Affiliation(s)
- Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Department of Post-Baccalaureate Medicine, School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, 821, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hsiao-Chien Miao
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Zi-Hao Zhang
- Department of Neurosurgery, Xinle City Hospital, Xinle, Hebei, 050700, People's Republic of China
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
68
|
Presto P, Sehar U, Kopel J, Reddy PH. Mechanisms of pain in aging and age-related conditions: Focus on caregivers. Ageing Res Rev 2024; 95:102249. [PMID: 38417712 DOI: 10.1016/j.arr.2024.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Pain is a complex, subjective experience that can significantly impact quality of life, particularly in aging individuals, by adversely affecting physical and emotional well-being. Whereas acute pain usually serves a protective function, chronic pain is a persistent pathological condition that contributes to functional deficits, cognitive decline, and emotional disturbances in the elderly. Despite substantial progress that has been made in characterizing age-related changes in pain, complete mechanistic details of pain processing mechanisms in the aging patient remain unknown. Pain is particularly under-recognized and under-managed in the elderly, especially among patients with Alzheimer's disease (AD), Alzheimer's disease-related dementias (ADRD), and other age-related conditions. Furthermore, difficulties in assessing pain in patients with AD/ADRD and other age-related conditions may contribute to the familial caregiver burden. The purpose of this article is to discuss the mechanisms and risk factors for chronic pain development and persistence, with a particular focus on age-related changes. Our article also highlights the importance of caregivers working with aging chronic pain patients, and emphasizes the urgent need for increased legislative awareness and improved pain management in these populations to substantially alleviate caregiver burden.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
69
|
Lu C, Lin C, Lu Y, Tsai H, Lin C, Wu C. CDDO regulates central and peripheral sensitization to attenuate post-herpetic neuralgia by targeting TRPV1/PKC-δ/p-Akt signals. J Cell Mol Med 2024; 28:e18131. [PMID: 38426931 PMCID: PMC10906387 DOI: 10.1111/jcmm.18131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 03/02/2024] Open
Abstract
Postherpetic neuralgia (PHN) is a notorious neuropathic pain featuring persistent profound mechanical hyperalgesia with significant negative impact on patients' life quality. CDDO can regulate inflammatory response and programmed cell death. Its derivative also protects neurons from damages by modulating microglia activities. As a consequence of central and peripheral sensitization, applying neural blocks may benefit to minimize the risk of PHN. This study aimed to explore whether CDDO could generate analgesic action in a PHN-rats' model. The behavioural test was determined by calibrated forceps testing. The number of apoptotic neurons and degree of glial cell reaction were assessed by immunofluorescence assay. Activation of PKC-δ and the phosphorylation of Akt were measured by western blots. CDDO improved PHN by decreasing TRPV1-positive nociceptive neurons, the apoptotic neurons, and reversed glial cell reaction in adult rats. It also suppressed the enhanced PKC-δ and p-Akt signalling in the sciatic nerve, dorsal root ganglia (DRG) and spinal dorsal horn. Our research is the promising report demonstrating the analgesic and neuroprotective action of CDDO in a PHN-rat's model by regulating central and peripheral sensitization targeting TRPV1, PKC-δ and p-Akt. It also is the first study to elucidate the role of oligodendrocyte in PHN.
Collapse
Affiliation(s)
- Chun‐Ching Lu
- Department of Orthopaedics and TraumatologyNational Yang Ming Chiao Tung University HospitalYilanTaiwan
- Department of Orthopaedics, School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Orthopaedics and TraumatologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Chia‐Yang Lin
- Department of Nuclear MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Ying‐Yi Lu
- Department of DermatologyKaohsiung Veterans General HospitalKaohsiungTaiwan
- Department of Post‐Baccalaureate Medicine, School of Medicine, College of MedicineNational Sun Yat‐sen UniversityKaohsiungTaiwan
- Shu‐Zen Junior College of Medicine and ManagementKaohsiungTaiwan
| | - Hung‐Pei Tsai
- Division of Neurosurgery, Department of SurgeryKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Chih‐Lung Lin
- Division of Neurosurgery, Department of SurgeryKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of Surgery, School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Chieh‐Hsin Wu
- Division of Neurosurgery, Department of SurgeryKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of Surgery, School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Center for Big Data ResearchKaohsiung Medical UniversityKaohsiungTaiwan
- Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
70
|
Saxer F, Hollinger A, Bjurström M, Conaghan P, Neogi T, Schieker M, Berenbaum F. Pain-phenotyping in osteoarthritis: Current concepts, evidence, and considerations towards a comprehensive framework for assessment and treatment. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100433. [PMID: 38225987 PMCID: PMC10788802 DOI: 10.1016/j.ocarto.2023.100433] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024] Open
Abstract
Objectives Pain as central symptom of osteoarthritis (OA) needs to be addressed as part of successful treatment. The assessment of pain as feature of disease or outcome in clinical practice and drug development remains a challenge due to its multidimensionality and the plethora of confounders. This article aims at providing insights into our understanding of OA pain-phenotypes and suggests a framework for systematic and comprehensive assessments. Methods This narrative review is based on a search of current literature for various combinations of the search terms "pain-phenotype" and "knee OA" and summarizes current knowledge on OA pain-phenotypes, putting OA pain and its assessment into perspective of current research efforts. Results Pain is a complex phenomenon, not necessarily associated with tissue damage. Various pain-phenotypes have been described in knee OA. Among those, a phenotype with high pain levels not necessarily matching structural changes and a phenotype with low pain levels and impact are relatively consistent. Further subgroups can be differentiated based on patient reported outcome measures, assessments of comorbidities, anxiety and depression, sleep, activity and objective measures such as quantitative sensory testing. Conclusions The complexity of both OA as disease and pain in OA prompt the definition of a set of variables that facilitate assessments comparable across studies to maximize our understanding of pain, as central concern for the patient.
Collapse
Affiliation(s)
- F. Saxer
- Novartis Biomedical Research, Novartis Campus, 4002, Basel, Switzerland
- Medical Faculty, University of Basel, 4002, Basel, Switzerland
| | - A. Hollinger
- Novartis Biomedical Research, Novartis Campus, 4002, Basel, Switzerland
- Intensive Care Unit, Department of Acute Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - M.F. Bjurström
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - P.G. Conaghan
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, UK
| | - T. Neogi
- Clinical Epidemiology Research and Training Unit and Rheumatology, Boston University School of Medicine Epidemiology, Boston University School of Public Health, United States
| | - M. Schieker
- Novartis Biomedical Research, Novartis Campus, 4002, Basel, Switzerland
- Medical Faculty, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - F. Berenbaum
- Department of Rheumatology, Sorbonne Université, INSERM CRSA, AP-HP Hopital Saint Antoine, Paris, France
| |
Collapse
|
71
|
Huang L, Sharma D, Feng X, Pan Z, Wu S, Munoz D, Bekker A, Hu H, Tao YX. RALY participates in nerve trauma-induced nociceptive hypersensitivity through triggering Eif4g2 gene expression in primary sensory neurons. Br J Pharmacol 2024; 181:735-751. [PMID: 37782223 PMCID: PMC10873045 DOI: 10.1111/bph.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Peripheral nerve trauma-induced dysregulation of pain-associated genes in the primary sensory neurons of dorsal root ganglion (DRG) contributes to neuropathic pain genesis. RNA-binding proteins participate in gene transcription. We hypothesized that RALY, an RNA-binding protein, participated in nerve trauma-induced dysregulation of DRG pain-associated genes and nociceptive hypersensitivity. METHODS AND RESULTS Immunohistochemistry staining showed that RALY was expressed exclusively in the nuclei of DRG neurons. Peripheral nerve trauma caused by chronic constriction injury (CCI) of unilateral sciatic nerve produced time-dependent increases in the levels of Raly mRNA and RALY protein in injured DRG. Blocking this increase through DRG microinjection of adeno-associated virus 5 (AAV5)-expressing Raly shRNA reduced the CCI-induced elevation in the amount of eukaryotic initiation factor 4 gamma 2 (Eif4g2) mRNA and Eif4g2 protein in injured DRG and mitigated the development and maintenance of CCI-induced nociceptive hypersensitivity, without altering basal (acute) response to noxious stimuli and locomotor activity. Mimicking DRG increased RALY through DRG microinjection of AAV5 expressing Raly mRNA up-regulated the expression of Eif4g2 mRNA and Eif4g2 protein in the DRG and led to hypersensitive responses to noxious stimuli in the absence of nerve trauma. Mechanistically, CCI promoted the binding of RALY to the promoter of Eif4g2 gene and triggered its transcriptional activity. CONCLUSION AND IMPLICATIONS Our findings indicate that RALY participates in nerve trauma-induced nociceptive hypersensitivity likely through transcriptionally triggering Eif4g2 expression in the DRG. RALY may be a potential target in neuropathic pain management.
Collapse
Affiliation(s)
- Lina Huang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Dilip Sharma
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Xiaozhou Feng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Zhiqiang Pan
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Daisy Munoz
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Huijuan Hu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ07103, USA
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ07103, USA
| |
Collapse
|
72
|
Rotterman TM, Haley-Johnson Z, Pottorf TS, Chopra T, Chang E, Zhang S, McCallum WM, Fisher S, Franklin H, Alvarez M, Cope TC, Alvarez FJ. Modulation of central synapse remodeling after remote peripheral injuries by the CCL2-CCR2 axis and microglia. Cell Rep 2024; 43:113776. [PMID: 38367237 PMCID: PMC10947500 DOI: 10.1016/j.celrep.2024.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024] Open
Abstract
Microglia-mediated synaptic plasticity after CNS injury varies depending on injury severity, but the mechanisms that adjust synaptic plasticity according to injury differences are largely unknown. This study investigates differential actions of microglia on essential spinal motor synaptic circuits following different kinds of nerve injuries. Following nerve transection, microglia and C-C chemokine receptor type 2 signaling permanently remove Ia axons and synapses from the ventral horn, degrading proprioceptive feedback during motor actions and abolishing stretch reflexes. However, Ia synapses and reflexes recover after milder injuries (nerve crush). These different outcomes are related to the length of microglia activation, being longer after nerve cuts, with slower motor-axon regeneration and extended expression of colony-stimulating factor type 1 in injured motoneurons. Prolonged microglia activation induces CCL2 expression, and Ia synapses recover after ccl2 is deleted from microglia. Thus, microglia Ia synapse removal requires the induction of specific microglia phenotypes modulated by nerve regeneration efficiencies. However, synapse preservation was not sufficient to restore the stretch-reflex function.
Collapse
Affiliation(s)
- Travis M Rotterman
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Zoë Haley-Johnson
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Tana S Pottorf
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Tavishi Chopra
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Ethan Chang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Shannon Zhang
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Sarah Fisher
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Haley Franklin
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; The Alabama College of Osteopathic Medicine, Dothan, AL 36301, USA
| | - Myriam Alvarez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Timothy C Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA; W.H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
73
|
Ozdemir Y, Nakamoto K, Boivin B, Bullock D, Andrews NA, González-Cano R, Costigan M. Quantification of stimulus-evoked tactile allodynia in free moving mice by the chainmail sensitivity test. Front Pharmacol 2024; 15:1352464. [PMID: 38464715 PMCID: PMC10920263 DOI: 10.3389/fphar.2024.1352464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
Chronic pain occurs at epidemic levels throughout the population. Hypersensitivity to touch, is a cardinal symptom of chronic pain. Despite dedicated research for over a century, quantifying this hypersensitivity has remained impossible at scale. To address these issues, we developed the Chainmail Sensitivity Test (CST). Our results show that control mice spend significantly more time on the chainmail portion of the device than mice subject to neuropathy. Treatment with gabapentin abolishes this difference. CST-derived data correlate well with von Frey measurements and quantify hypersensitivity due to inflammation. Our study demonstrates the potential of the CST as a standardized tool for assessing mechanical hypersensitivity in mice with minimal operator input.
Collapse
Affiliation(s)
- Yildirim Ozdemir
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Kazuo Nakamoto
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Bruno Boivin
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Daniel Bullock
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nick A. Andrews
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- In Vivo Scientific Services, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Rafael González-Cano
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), Biosanitary Research Institute ibs.GRANADA, University of Granada, Granada, Spain
| | - Michael Costigan
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
74
|
Iadarola MJ, Sapio MR, Loydpierson AJ, Mervis CB, Fehrenbacher JC, Vasko MR, Maric D, Eisenberg DP, Nash TA, Kippenhan JS, Garvey MH, Mannes AJ, Gregory MD, Berman KF. Syntaxin1A overexpression and pain insensitivity in individuals with 7q11.23 duplication syndrome. JCI Insight 2024; 9:e176147. [PMID: 38261410 DOI: 10.1172/jci.insight.176147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Genetic modifications leading to pain insensitivity phenotypes, while rare, provide invaluable insights into the molecular biology of pain and reveal targets for analgesic drugs. Pain insensitivity typically results from Mendelian loss-of-function mutations in genes expressed in nociceptive (pain-sensing) dorsal root ganglion (DRG) neurons that connect the body to the spinal cord. We document a pain insensitivity mechanism arising from gene overexpression in individuals with the rare 7q11.23 duplication syndrome (Dup7), who have 3 copies of the approximately 1.5-megabase Williams syndrome (WS) critical region. Based on parental accounts and pain ratings, people with Dup7, mainly children in this study, are pain insensitive following serious injury to skin, bones, teeth, or viscera. In contrast, diploid siblings (2 copies of the WS critical region) and individuals with WS (1 copy) show standard reactions to painful events. A converging series of human assessments and cross-species cell biological and transcriptomic studies identified 1 likely candidate in the WS critical region, STX1A, as underlying the pain insensitivity phenotype. STX1A codes for the synaptic vesicle fusion protein syntaxin1A. Excess syntaxin1A was demonstrated to compromise neuropeptide exocytosis from nociceptive DRG neurons. Taken together, these data indicate a mechanism for producing "genetic analgesia" in Dup7 and offer previously untargeted routes to pain control.
Collapse
Affiliation(s)
- Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Amelia J Loydpierson
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carolyn B Mervis
- Neurodevelopmental Sciences Laboratory, Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael R Vasko
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke (NINDS), and
| | - Daniel P Eisenberg
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Tiffany A Nash
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - J Shane Kippenhan
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Madeline H Garvey
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael D Gregory
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| |
Collapse
|
75
|
Mardelle U, Bretaud N, Daher C, Feuillet V. From pain to tumor immunity: influence of peripheral sensory neurons in cancer. Front Immunol 2024; 15:1335387. [PMID: 38433844 PMCID: PMC10905387 DOI: 10.3389/fimmu.2024.1335387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
The nervous and immune systems are the primary sensory interfaces of the body, allowing it to recognize, process, and respond to various stimuli from both the external and internal environment. These systems work in concert through various mechanisms of neuro-immune crosstalk to detect threats, provide defense against pathogens, and maintain or restore homeostasis, but can also contribute to the development of diseases. Among peripheral sensory neurons (PSNs), nociceptive PSNs are of particular interest. They possess a remarkable capability to detect noxious stimuli in the periphery and transmit this information to the brain, resulting in the perception of pain and the activation of adaptive responses. Pain is an early symptom of cancer, often leading to its diagnosis, but it is also a major source of distress for patients as the disease progresses. In this review, we aim to provide an overview of the mechanisms within tumors that are likely to induce cancer pain, exploring a range of factors from etiological elements to cellular and molecular mediators. In addition to transmitting sensory information to the central nervous system, PSNs are also capable, when activated, to produce and release neuropeptides (e.g., CGRP and SP) from their peripheral terminals. These neuropeptides have been shown to modulate immunity in cases of inflammation, infection, and cancer. PSNs, often found within solid tumors, are likely to play a significant role in the tumor microenvironment, potentially influencing both tumor growth and anti-tumor immune responses. In this review, we discuss the current state of knowledge about the degree of sensory innervation in tumors. We also seek to understand whether and how PSNs may influence the tumor growth and associated anti-tumor immunity in different mouse models of cancer. Finally, we discuss the extent to which the tumor is able to influence the development and functions of the PSNs that innervate it.
Collapse
Affiliation(s)
- Ugo Mardelle
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clara Daher
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Vincent Feuillet
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
76
|
Al Mohamad F, Rios Rodriguez V, Haibel H, Protopopov M, Rademacher J, Sieper J, Torgutalp M, Käding H, Proft F, Poddubnyy D. Association of nociplastic and neuropathic pain components with the presence of residual symptoms in patients with axial spondyloarthritis receiving biological disease-modifying antirheumatic drugs. RMD Open 2024; 10:e004009. [PMID: 38360039 PMCID: PMC10875534 DOI: 10.1136/rmdopen-2023-004009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE To evaluate the association of nociplastic (NoP) and neuropathic pain (NP) components with residual symptoms in patients with radiographic axial spondyloarthritis (r-axSpA) receiving biological disease-modifying antirheumatic drugs (bDMARDs). METHODS 78 patients with r-axSpA from the GErman SPondyloarthritis Inception Cohort receiving a bDMARD for at least 3 months were included in this analysis. The Widespread Pain Index (WPI) and the PainDETECT (PD) questionnaire were used to quantify the NoP and the NP components, respectively. Axial Spondyloarthritis Disease Activity Score (ASDAS) and the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) were used as measures of residual symptoms. C reactive protein (CRP) was used as a measure of systemic inflammatory activity. Univariable and multivariable regression analyses of disease activity were performed. The regions of the WPI score and items of the PD score were used for cluster analyses. RESULTS Linear multivariable regression analysis showed that WPI and PD were independently associated with ASDAS (b=0.1, 95% CI 0.04 to 0.17, and b=0.05, 95% CI 0.02 to 0.08, respectively) and BASDAI (b=0.24, 95% CI 0.08 to 0.39, and b=0.17, 95% CI 0.1 to 0.25, respectively) in r-axSpA patients receiving stable treatment with bDMARDs. Furthermore, WPI and PD were found to be significantly associated with the presence of relevant residual symptoms as defined by BASDAI ≥4 (OR 1.93, 95% CI 1.09 to 4.15, and OR 1.32, 95% CI 1.04 to 1.85, respectively). The effects were present also in patients with normal level of CRP. Cluster analysis revealed three distinct pain distribution profiles and four specific sensory symptom constellations allowing differentiation of different pain subtypes. CONCLUSION Both NoP and NP components seem to be associated with residual symptoms in patients with r-axSpA receiving treatment with bDMARDs.
Collapse
Affiliation(s)
- Fares Al Mohamad
- Department of Gastroenterology, Infectious Diseases and Rheumatology (including Clinical Nutrition), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Valeria Rios Rodriguez
- Department of Gastroenterology, Infectious Diseases and Rheumatology (including Clinical Nutrition), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hildrun Haibel
- Department of Gastroenterology, Infectious Diseases and Rheumatology (including Clinical Nutrition), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mikhail Protopopov
- Department of Gastroenterology, Infectious Diseases and Rheumatology (including Clinical Nutrition), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Rademacher
- Department of Gastroenterology, Infectious Diseases and Rheumatology (including Clinical Nutrition), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim Sieper
- Department of Gastroenterology, Infectious Diseases and Rheumatology (including Clinical Nutrition), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Murat Torgutalp
- Department of Gastroenterology, Infectious Diseases and Rheumatology (including Clinical Nutrition), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Henriette Käding
- Department of Gastroenterology, Infectious Diseases and Rheumatology (including Clinical Nutrition), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fabian Proft
- Department of Gastroenterology, Infectious Diseases and Rheumatology (including Clinical Nutrition), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectious Diseases and Rheumatology (including Clinical Nutrition), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Epidemiology Unit, German Rheumatism Research Centre Berlin, Berlin, Germany
| |
Collapse
|
77
|
Le D, Zhang C, Liu L, Zhao M, Liang Y, Liao P, Yang F. Neuropathic pain development following nerve injury is mediated by SOX11-ARID1A-SOCS3 transcriptional regulation in the spinal cord. Mol Biol Rep 2024; 51:281. [PMID: 38324208 DOI: 10.1007/s11033-023-09183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND Neuropathic pain, a complex condition originating from nervous system damage, remains a significant clinical challenge due to limited understanding of its underlying mechanisms. Recent research highlights the SOX11 transcription factor, known for its role in nervous system development, as a crucial player in neuropathic pain development and maintenance. This study investigates the role of the SOX11-ARID1A-SOCS3 pathway in neuropathic pain modulation within the spinal cord. METHODS AND RESULTS Using a spinal nerve ligation (SNL) model in mice, we observed a significant upregulation of Sox11 in the spinal cord dorsal horn post-injury. Intrathecal administration of Sox11 shRNA mitigated SNL-induced neuropathic pain behaviors, including mechanical allodynia and heat hyperalgesia. Further, we demonstrated that Sox11 regulates neuropathic pain via transcriptional control of ARID1A, with subsequent modulation of SOCS3 expression. Knockdown of ARID1A and SOCS3 via shRNA resulted in alleviation of Sox11-induced pain sensitization. Additionally, Sox11 overexpression led to an increase in ARID1A binding to the SOCS3 promoter, enhancing chromatin accessibility and indicating a direct regulatory relationship. These findings were further supported by in vitro luciferase reporter assays and chromatin accessibility analysis. CONCLUSIONS The SOX11-ARID1A-SOCS3 pathway plays a pivotal role in the development and maintenance of neuropathic pain. Sox11 acts as a master regulator, modulating ARID1A, which in turn influences SOCS3 expression, thereby contributing to the modulation of neuropathic pain. These findings provide a deeper understanding of the molecular mechanisms underlying neuropathic pain and highlight potential therapeutic targets for its treatment. The differential regulation of this pathway in the spinal cord and dorsal root ganglia (DRG) underscores its complexity and the need for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongsheng Le
- Department of Pain Management, Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Chao Zhang
- Department of Pain Management, Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Li Liu
- Department of Pain Management, Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Mailin Zhao
- Department of Pain Management, Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yingping Liang
- Department of Pain Management, Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Pingsheng Liao
- Department of Pain Management, Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Fan Yang
- Department of Pain Management, Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
78
|
Mullins CF, Palumbo GJ, Harris S, Al-Kaisy O, Wesley S, Yearwood T, Al-Kaisy A. Effectiveness of combined dorsal root ganglion and spinal cord stimulation: a retrospective, single-centre case series for chronic focal neuropathic pain. PAIN MEDICINE (MALDEN, MASS.) 2024; 25:116-124. [PMID: 37738574 DOI: 10.1093/pm/pnad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVE This case series retrospectively reviewed the outcomes in patients implanted with combined, synchronous dorsal root ganglion stimulation (DRGS) and spinal cord stimulation (SCS) connected to a single implantable pulse generator (IPG) in a tertiary referral neuromodulation centre in the United Kingdom. METHODS Twenty-six patients underwent a trial of DRGS+SCS for treating focal neuropathic pain between January 2016 and December 2019, with a follow-up in February 2022. A Transgrade approach was employed for DRGS. Patients were provided with 3 possible stimulation programs: DRGS-only, SCS-only, or DRGS+SCS. Patients were assessed for pain intensity, patients' global impression of change (PGIC), preferred lead(s) and complications. RESULTS Twenty patients were successful and went on for full implantation. The most common diagnosis was Complex Regional Pain Syndrome. After an average of 3.1 years follow-up, 1 patient was lost to follow-up, and 2 were non-responders. Of the remaining 17 patients, 16 (94%) continued to report a PGIC of 7. The average pain intensity at Baseline was 8.5 on an NRS scale of 0-10. At the last follow-up, the average NRS reduction overall was 78.9% with no statistical difference between those preferring DRGS+SCS (n = 9), SCS-only (n = 3) and DRGS-only (n = 5). The combination of DRGS+SCS was preferred by 53% at the last follow-up. There were no serious neurological complications. CONCLUSIONS This retrospective case series demonstrates the potential effectiveness of combined DRGS+SCS with sustained analgesia observed at an average follow-up of over 3 years. Implanting combined DRGS+SCS may provide programming flexibility and therapeutic alternatives.
Collapse
Affiliation(s)
- Cormac F Mullins
- Pain Management Department, Gassiot House, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
- Department of Pain Medicine, South Infirmary Victoria University Hospital, Cork T12X23H, Ireland
| | - Gaetano Joseph Palumbo
- Pain Management Department, Gassiot House, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
| | - Stephany Harris
- Pain Management Department, Gassiot House, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
| | - Omar Al-Kaisy
- Pain Management Department, Gassiot House, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
| | - Sam Wesley
- Pain Management Department, Gassiot House, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
| | - Thomas Yearwood
- Pain Management Department, Gassiot House, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
| | - Adnan Al-Kaisy
- Pain Management Department, Gassiot House, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
| |
Collapse
|
79
|
Álvarez-Herms J, González-Benito A, Corbi F, Odriozola A. What if gastrointestinal complications in endurance athletes were gut injuries in response to a high consumption of ultra-processed foods? Please take care of your bugs if you want to improve endurance performance: a narrative review. Eur J Appl Physiol 2024; 124:383-402. [PMID: 37839038 DOI: 10.1007/s00421-023-05331-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
To improve performance and recovery faster, athletes are advised to eat more often than usual and consume higher doses of simple carbohydrates, during and after exercise. Sports energetic supplements contain food additives, such as artificial sweeteners, emulsifiers, acidity regulators, preservatives, and salts, which could be harmful to the gut microbiota and impair the intestinal barrier function. The intestinal barrier plays a critical function in bidirectionally regulation of the selective transfer of nutrients, water, and electrolytes, while preventing at the same time, the entrance of harmful substances (selective permeability). The gut microbiota helps to the host to regulate intestinal homeostasis through metabolic, protective, and immune functions. Globally, the gut health is essential to maintain systemic homeostasis in athletes, and to ensure proper digestion, metabolization, and substrate absorption. Gastrointestinal complaints are an important cause of underperformance and dropout during endurance events. These complications are directly related to the loss of gut equilibrium, mainly linked to microbiota dysbiosis and leaky gut. In summary, athletes must be cautious with the elevated intake of ultra-processed foods and specifically those contained on sports nutrition supplements. This review points out the specific nutritional interventions that should be implemented and/or discontinued depending on individual gut functionality.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab (Physiology and Molecular Laboratory), Collado Hermoso, Segovia, Spain.
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - A González-Benito
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - F Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Lleida (UdL), Lleida, Spain
| | - A Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
80
|
Parameshwarappa V, Norena AJ. The effects of acute and chronic noise trauma on stimulus-evoked activity across primary auditory cortex layers. J Neurophysiol 2024; 131:225-240. [PMID: 38198658 DOI: 10.1152/jn.00427.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Exposure to intense noise environments is a major cause of sensorineural hearing loss and auditory perception disorders, such as tinnitus and hyperacusis, which may have a central origin. The effects of noise-induced hearing loss on the auditory cortex have been documented in many studies. One limitation of these studies, however, is that the effects of noise trauma have been mostly studied at the granular layer (i.e, the main cortical recipient of thalamic input), while the cortex is a very complex structure, with six different layers each having its own pattern of connectivity and role in sensory processing. The present study aims to investigate the effects of acute and chronic noise trauma on the laminar pattern of stimulus-evoked activity in the primary auditory cortex of the anesthetized guinea pig. We show that acute and chronic noise trauma are both followed by an increase in stimulus-evoked cortical responses, mostly in the granular and supragranular layers. The cortical responses are more monotonic as a function of the intensity level after noise trauma. There was minimal change, if any, in local field potential (LFP) amplitude after acute noise trauma, while LFP amplitude was enhanced after chronic noise trauma. Finally, LFP and the current source density analysis suggest that acute but more specifically chronic noise trauma is associated with the emergence of a new sink in the supragranular layer. This result suggests that supragranular layers become a major input recipient. We discuss the possible mechanisms and functional implications of these changes.NEW & NOTEWORTHY Our study shows that cortical activity is enhanced after trauma and that the sequence of cortical column activation during stimulus-evoked response is altered, i.e. the supragranular layer becomes a major input recipient. We speculate that these large cortical changes may play a key role in the auditory hypersensitivity (hyperacusis) that can be triggered after noise trauma in human subjects.
Collapse
Affiliation(s)
- Vinay Parameshwarappa
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Arnaud J Norena
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| |
Collapse
|
81
|
Wang S, Jiang C, Cao K, Li R, Gao Z, Wang Y. HK2 in microglia and macrophages contribute to the development of neuropathic pain. Glia 2024; 72:396-410. [PMID: 37909251 DOI: 10.1002/glia.24482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Neuropathic pain is a complex pain condition accompanied by prominent neuroinflammation involving activation of both central and peripheral immune cells. Metabolic switch to glycolysis is an important feature of activated immune cells. Hexokinase 2 (HK2), a key glycolytic enzyme enriched in microglia, has recently been shown important in regulating microglial functions. Whether and how HK2 is involved in neuropathic pain-related neuroinflammation remains unknown. Using a HK2-tdTomato reporter line, we found that HK2 was prominently elevated in spinal microglia. Pharmacological inhibition of HK2 effectively alleviated nerve injury-induced acute mechanical pain. However, selective ablation of Hk2 in microglia reduced microgliosis in the spinal dorsal horn (SDH) with little analgesic effects. Further analyses showed that nerve injury also significantly induced HK2 expression in dorsal root ganglion (DRG) macrophages. Deletion of Hk2 in myeloid cells, including both DRG macrophages and spinal microglia, led to the alleviation of mechanical pain during the first week after injury, along with attenuated microgliosis in the ipsilateral SDH, macrophage proliferation in DRGs, and suppressed inflammatory responses in DRGs. These data suggest that HK2 plays an important role in regulating neuropathic pain-related immune cell responses at acute phase and that HK2 contributes to neuropathic pain onset primarily through peripheral monocytes and DRG macrophages rather than spinal microglia.
Collapse
Affiliation(s)
- Siyuan Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Jiang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelei Cao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Frontier Research Center of Brain & Brain-machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Run Li
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Frontier Research Center of Brain & Brain-machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
82
|
Kwon JY, Kim JE, Kim JS, Chun SY, Soh K, Yoon JH. Artificial sensory system based on memristive devices. EXPLORATION (BEIJING, CHINA) 2024; 4:20220162. [PMID: 38854486 PMCID: PMC10867403 DOI: 10.1002/exp.20220162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 06/11/2024]
Abstract
In the biological nervous system, the integration and cooperation of parallel system of receptors, neurons, and synapses allow efficient detection and processing of intricate and disordered external information. Such systems acquire and process environmental data in real-time, efficiently handling complex tasks with minimal energy consumption. Memristors can mimic typical biological receptors, neurons, and synapses by implementing key features of neuronal signal-processing functions such as selective adaption in receptors, leaky integrate-and-fire in neurons, and synaptic plasticity in synapses. External stimuli are sensitively detected and filtered by "artificial receptors," encoded into spike signals via "artificial neurons," and integrated and stored through "artificial synapses." The high operational speed, low power consumption, and superior scalability of memristive devices make their integration with high-performance sensors a promising approach for creating integrated artificial sensory systems. These integrated systems can extract useful data from a large volume of raw data, facilitating real-time detection and processing of environmental information. This review explores the recent advances in memristor-based artificial sensory systems. The authors begin with the requirements of artificial sensory elements and then present an in-depth review of such elements demonstrated by memristive devices. Finally, the major challenges and opportunities in the development of memristor-based artificial sensory systems are discussed.
Collapse
Affiliation(s)
- Ju Young Kwon
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Ji Eun Kim
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Jong Sung Kim
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Suk Yeop Chun
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoulRepublic of Korea
| | - Keunho Soh
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Jung Ho Yoon
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| |
Collapse
|
83
|
Becker G, Atuati SF, Oliveira SM. G Protein-Coupled Receptors and Ion Channels Involvement in Cisplatin-Induced Peripheral Neuropathy: A Review of Preclinical Studies. Cancers (Basel) 2024; 16:580. [PMID: 38339331 PMCID: PMC10854671 DOI: 10.3390/cancers16030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cisplatin is a platinum-based chemotherapy drug widely used to treat various solid tumours. Although it is effective in anti-cancer therapy, many patients develop peripheral neuropathy during and after cisplatin treatment. Peripheral neuropathy results from lesions or diseases in the peripheral somatosensory nervous system and is a significant cause of debilitation and suffering in patients. In recent years, preclinical studies have been conducted to elucidate the mechanisms involved in chemotherapy-induced peripheral neuropathic pain, as well as to promote new therapeutic targets since current treatments are ineffective and are associated with adverse effects. G-protein coupled receptors and ion channels play a significant role in pain processing and may represent promising targets for improving the management of cisplatin-induced neuropathic pain. This review describes the role of G protein-coupled receptors and ion channels in cisplatin-induced pain, analysing preclinical experimental studies that investigated the role of each receptor subtype in the modulation of cisplatin-induced pain.
Collapse
|
84
|
Cao J, Hu C, Ding Z, Chen J, Liu S, Li Q. Mechanism of IRF5-regulated CXCL13/CXCR5 Signaling Axis in CCI-induced Neuropathic Pain in Rats. Curr Mol Med 2024; 24:940-949. [PMID: 37622691 DOI: 10.2174/1566524023666230825120836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Neuropathic pain is chronic and affects the patient's life. Studies have shown that IRF5 and CXCL13/CXCR5 are involved in neuropathic pain; however, their interactions are unknown. OBJECTIVE In this study, a rat neuropathic pain model was constructed by inducing chronic compression injury (CCI). IRF5 recombinant lentiviral vector and CXCL13 neutralizing antibody were administered to investigate their action mechanisms in neuropathic pain. Consequently, the new strategies for disease treatment could be evolved. METHODS The CCI rats were intrathecally injected with recombinant lentivirus plasmid LV-IRF5 (overexpression), LV-SH-IRF5 (silencing), and CXCL13 neutralizing antibody. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured. The tumor necrosis factor (TNF)-alpha, interleukin (IL)-1β, and IL-6 levels were recorded via the enzyme-linked immunosorbent assay (ELISA). The spinal cord was stained using hematoxylin-eosin (HE). The binding of IRF5 to CXCL13 was analyzed by chromatin immunoprecipitation (ChIP) and dual luciferase reporter assay. The IRF5, neuronal nuclei (NeuN), CXCL13, and CXCR5 expressions were detected through quantitative real-time polymerase chain reaction and Western blot. RESULTS The MWT and TWL values in the CCI group were lower than in the Sham group. The expressions of CXCL13, CXCR5, and IRF5 in CCI rats were gradually increased with the modeling time. IRF5 silencing suppressed the expression of NeuN and lumbar enlargement in CCI rats and promoted MWT and TWL. Moreover, IRF5 silencing inhibited the expressions of CXCR5 and CXCL13 genes and down-regulated the expression levels of inflammatory factors. IRF5 was directly and specifically bound with the endogenous CXCL13 promoter and thus regulated it. IRF5 overexpression exacerbated the disease phenotype of CCI-induced neuropathic pain in rats. Administration of CXCL13 neutralizing antibodies reversed the IRF5 overexpression effects. CONCLUSION The IRF5 silencing alleviated neuropathic pain in CCI rats by downregulating the pain threshold, inflammatory cytokine levels, and CXCL13/CXCR5 signaling. IRF5 overexpression exacerbated the disease parameters of CCI-induced neuropathic pain in rats; however, they were reversed by neutralizing antibodies against CXCL13.
Collapse
Affiliation(s)
- Jiawei Cao
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| | - Chungu Hu
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Juan Chen
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| | - Songhua Liu
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| | - Qiongcan Li
- Department of Anesthesiology, Changsha Central Hospital Affiliated to South China University, Changsha, 410028, Hunan, China
| |
Collapse
|
85
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
86
|
Bansal K, Singh V, Singh S, Mishra S. Neuroprotective Potential of Hesperidin as Therapeutic Agent in the Treatment of Brain Disorders: Preclinical Evidence-based Review. Curr Mol Med 2024; 24:316-326. [PMID: 36959141 DOI: 10.2174/1566524023666230320144722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/25/2023]
Abstract
Neurodegenerative disorders (NDs) are progressive morbidities that represent a serious health issue in the aging world population. There is a contemporary upsurge in worldwide interest in the area of traditional remedies and phytomedicines are widely accepted by researchers due to their health-promoted effects and fewer side effects. Hesperidin, a flavanone glycoside present in the peels of citrus fruits, possesses various biological activities including anti-inflammatory and antioxidant actions. In various preclinical studies, hesperidin has provided significant protective actions in a variety of brain disorders such as Alzheimer's disease, epilepsy, Parkinson's disease, multiple sclerosis, depression, neuropathic pain, etc. as well as their underlying mechanisms. The findings indicate that the neuroprotective effects of hesperidin are mediated by modulating antioxidant defence activities and neural growth factors, diminishing apoptotic and neuro-inflammatory pathways. This review focuses on the potential role of hesperidin in managing and treating diverse brain disorders.
Collapse
Affiliation(s)
- Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Vanshita Singh
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Sakshi Singh
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Samiksha Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| |
Collapse
|
87
|
da Silva MDV, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, Casagrande R, Verri WA. Stem cells and pain. World J Stem Cells 2023; 15:1035-1062. [PMID: 38179216 PMCID: PMC10762525 DOI: 10.4252/wjsc.v15.i12.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by either actual or potential tissue damage or even resemble that unpleasant experience. For years, science has sought to find treatment alternatives, with minimal side effects, to relieve pain. However, the currently available pharmacological options on the market show significant adverse events. Therefore, the search for a safer and highly efficient analgesic treatment has become a priority. Stem cells (SCs) are non-specialized cells with a high capacity for replication, self-renewal, and a wide range of differentiation possibilities. In this review, we provide evidence that the immune and neuromodulatory properties of SCs can be a valuable tool in the search for ideal treatment strategies for different types of pain. With the advantage of multiple administration routes and dosages, therapies based on SCs for pain relief have demonstrated meaningful results with few downsides. Nonetheless, there are still more questions than answers when it comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an evolving field that merits further investigation towards the development of SC-based analgesic therapies, and this review will approach all of these aspects.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Maiara Piva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Mariana Stinglin Rosa Ribas
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Beatriz Hoffmann Salles Bianchini
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Olivia K Heintz
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, State University of Londrina, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
88
|
Wang X, Zhuang Y, Lin Z, Chen S, Chen L, Huang H, Lin H, Wu S. Research hotspots and trends on neuropathic pain-related mood disorders: a bibliometric analysis from 2003 to 2023. FRONTIERS IN PAIN RESEARCH 2023; 4:1233444. [PMID: 38179224 PMCID: PMC10764508 DOI: 10.3389/fpain.2023.1233444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Neuropathic Pain (NP) is often accompanied by mood disorders, which seriously affect the quality of life of patients. This study aimed to analyze the hotspots and trends in NP-related mood disorder research using bibliometric methods and to provide valuable predictions for future research in this field. Methods Articles and review articles on NP-related mood disorders published from January 2003 to May 2023 were retrieved from the Web of Science Core Collection. We used CiteSpace to analyze publications, countries, institutions, authors, cited authors, journals, cited journals, references, cited references, and keywords. We also analyzed collaborative network maps and co-occurrence network maps. Results A total of 4,540 studies were collected for analysis. The number of publications concerning NP-related mood disorders every year shows an upward trend. The United States was a major contributor in this field. The University of Toronto was the most productive core institution. C GHELARDINI was the most prolific author, and RH DWORKIN was the most frequently cited author. PAIN was identified as the journal with the highest productivity and citation rate. The current research hotspots mainly included quality of life, efficacy, double-blind methodology, gabapentin, pregabalin, postherpetic neuralgia, and central sensitization. The frontiers in research mainly focused on the mechanisms associated with microglia activation, oxidative stress, neuroinflammation, and NP-related mood disorders. Discussion In conclusion, the present study provided insight into the current state and trends in NP-related mood disorder research over the past 20 years. Consequently, researchers will be able to identify new perspectives on potential collaborators and cooperative institutions, hot topics, and research frontiers in this field.
Collapse
Affiliation(s)
- Xiaohua Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yueyang Zhuang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhigang Lin
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Shuijin Chen
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Lechun Chen
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Hongye Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hui Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Shiye Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
89
|
Rosner J, de Andrade DC, Davis KD, Gustin SM, Kramer JLK, Seal RP, Finnerup NB. Central neuropathic pain. Nat Rev Dis Primers 2023; 9:73. [PMID: 38129427 PMCID: PMC11329872 DOI: 10.1038/s41572-023-00484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Central neuropathic pain arises from a lesion or disease of the central somatosensory nervous system such as brain injury, spinal cord injury, stroke, multiple sclerosis or related neuroinflammatory conditions. The incidence of central neuropathic pain differs based on its underlying cause. Individuals with spinal cord injury are at the highest risk; however, central post-stroke pain is the most prevalent form of central neuropathic pain worldwide. The mechanisms that underlie central neuropathic pain are not fully understood, but the pathophysiology likely involves intricate interactions and maladaptive plasticity within spinal circuits and brain circuits associated with nociception and antinociception coupled with neuronal hyperexcitability. Modulation of neuronal activity, neuron-glia and neuro-immune interactions and targeting pain-related alterations in brain connectivity, represent potential therapeutic approaches. Current evidence-based pharmacological treatments include antidepressants and gabapentinoids as first-line options. Non-pharmacological pain management options include self-management strategies, exercise and neuromodulation. A comprehensive pain history and clinical examination form the foundation of central neuropathic pain classification, identification of potential risk factors and stratification of patients for clinical trials. Advanced neurophysiological and neuroimaging techniques hold promise to improve the understanding of mechanisms that underlie central neuropathic pain and as predictive biomarkers of treatment outcome.
Collapse
Affiliation(s)
- Jan Rosner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Daniel C de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Karen D Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sylvia M Gustin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - John L K Kramer
- International Collaboration on Repair Discoveries, ICORD, University of British Columbia, Vancouver, Canada
- Department of Anaesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Rebecca P Seal
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
90
|
Rahman S, Kidwai A, Rakhamimova E, Elias M, Caldwell W, Bergese SD. Clinical Diagnosis and Treatment of Chronic Pain. Diagnostics (Basel) 2023; 13:3689. [PMID: 38132273 PMCID: PMC10743062 DOI: 10.3390/diagnostics13243689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
More than 600 million people globally are estimated to be living with chronic pain. It is one of the most common complaints seen in an outpatient setting, with over half of patients complaining of pain during a visit. Failure to properly diagnose and manage chronic pain is associated with substantial morbidity and mortality, especially when opioids are involved. Furthermore, it is a tremendous financial strain on the healthcare system, as over USD 100 billion is spent yearly in the United States on healthcare costs related to pain management and opioids. This exceeds the costs of diabetes, heart disease, and cancer-related care combined. Being able to properly diagnose, manage, and treat chronic pain conditions can substantially lower morbidity, mortality, and healthcare costs in the United States. This review will outline the current definitions, biopsychosocial model, subclassifications, somatosensory assessments, imaging, clinical prediction models, and treatment modalities associated with chronic pain.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergio D. Bergese
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (S.R.); (A.K.); (E.R.); (M.E.); (W.C.)
| |
Collapse
|
91
|
Canfora F, Ottaviani G, Calabria E, Pecoraro G, Leuci S, Coppola N, Sansone M, Rupel K, Biasotto M, Di Lenarda R, Mignogna MD, Adamo D. Advancements in Understanding and Classifying Chronic Orofacial Pain: Key Insights from Biopsychosocial Models and International Classifications (ICHD-3, ICD-11, ICOP). Biomedicines 2023; 11:3266. [PMID: 38137487 PMCID: PMC10741077 DOI: 10.3390/biomedicines11123266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
In exploring chronic orofacial pain (COFP), this review highlights its global impact on life quality and critiques current diagnostic systems, including the ICD-11, ICOP, and ICHD-3, for their limitations in addressing COFP's complexity. Firstly, this study outlines the global burden of chronic pain and the importance of distinguishing between different pain types for effective treatment. It then delves into the specific challenges of diagnosing COFP, emphasizing the need for a more nuanced approach that incorporates the biopsychosocial model. This review critically examines existing classification systems, highlighting their limitations in fully capturing COFP's multifaceted nature. It advocates for the integration of these systems with the DSM-5's Somatic Symptom Disorder code, proposing a unified, multidisciplinary diagnostic approach. This recommendation aims to improve chronic pain coding standardization and acknowledge the complex interplay of biological, psychological, and social factors in COFP. In conclusion, here, we highlight the need for a comprehensive, universally applicable classification system for COFP. Such a system would enable accurate diagnosis, streamline treatment strategies, and enhance communication among healthcare professionals. This advancement holds potential for significant contributions to research and patient care in this challenging field, offering a broader perspective for scientists across disciplines.
Collapse
Affiliation(s)
- Federica Canfora
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 5 Via Pansini, 80131 Naples, Italy; (F.C.); (D.A.)
| | - Giulia Ottaviani
- Department of Surgical, Medical and Health Sciences, University of Trieste, 447 Strada di Fiume, 34149 Trieste, Italy
| | - Elena Calabria
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Giuseppe Pecoraro
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 5 Via Pansini, 80131 Naples, Italy; (F.C.); (D.A.)
| | - Stefania Leuci
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 5 Via Pansini, 80131 Naples, Italy; (F.C.); (D.A.)
| | - Noemi Coppola
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 5 Via Pansini, 80131 Naples, Italy; (F.C.); (D.A.)
| | - Mattia Sansone
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 5 Via Pansini, 80131 Naples, Italy; (F.C.); (D.A.)
| | - Katia Rupel
- Department of Surgical, Medical and Health Sciences, University of Trieste, 447 Strada di Fiume, 34149 Trieste, Italy
| | - Matteo Biasotto
- Department of Surgical, Medical and Health Sciences, University of Trieste, 447 Strada di Fiume, 34149 Trieste, Italy
| | - Roberto Di Lenarda
- Department of Surgical, Medical and Health Sciences, University of Trieste, 447 Strada di Fiume, 34149 Trieste, Italy
| | - Michele Davide Mignogna
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 5 Via Pansini, 80131 Naples, Italy; (F.C.); (D.A.)
| | - Daniela Adamo
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 5 Via Pansini, 80131 Naples, Italy; (F.C.); (D.A.)
| |
Collapse
|
92
|
Ji H, Kim KR, Park JJ, Lee JY, Sim Y, Choi H, Kim S. Combination Gene Delivery Reduces Spinal Cord Pathology in Rats With Peripheral Neuropathic Pain. THE JOURNAL OF PAIN 2023; 24:2211-2227. [PMID: 37442406 DOI: 10.1016/j.jpain.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Although peripheral neuropathic pain is caused by peripheral nerve injury, it is not simply a peripheral nervous system disease. It causes abnormalities in both the central and peripheral nervous systems. Pathological phenomena, such as hyperactivation of sensory neurons and inflammation, are observed in both the dorsal root ganglion and spinal cord. Pain signals originating from the periphery are transmitted to the brain via the SC, and the signals are modulated by pathologically changing SC conditions. Therefore, the modulation of SC pathology is important for peripheral NP treatment. We investigated the effects of KLS-2031 (recombinant adeno-associated viruses expressing glutamate decarboxylase 65, glial cell-derived neurotrophic factor, and interleukin-10) delivered to the dorsal root ganglion on aberrant neuronal excitability and neuroinflammation in the SC of rats with peripheral NP. Results showed that KLS-2031 administration restored excessive excitatory transmission and inhibitory signals in substantia gelatinosa neurons. Moreover, KLS-2031 restored the in vivo hypersensitivity of wide dynamic range neurons and mitigated neuroinflammation in the SC by regulating microglia and astrocytes. Collectively, these findings demonstrated that KLS-2031 efficiently suppressed pathological pain signals and inflammation in the SC of peripheral NP model, and is a potential novel therapeutic approach for NP in clinical settings. PERSPECTIVE: Our study demonstrated that KLS-2031, a combination gene therapy delivered by transforaminal epidural injection, not only mitigates neuroinflammation but also improves SC neurophysiological function, including excitatory-inhibitory balance. These findings support the potential of KLS-2031 as a novel modality that targets multiple aspects of the complex pathophysiology of neuropathic pain.
Collapse
Affiliation(s)
- Hyelin Ji
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Kyung-Ran Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Jang-Joon Park
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Ju Youn Lee
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Yeomoon Sim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea; Business Development, Handok Inc., Seoul, Republic of Korea
| | - Heonsik Choi
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea; Healthcare Research Institute, Kolon Advanced Research Center, Kolon Industries, Seoul, Republic of Korea
| | - Sujeong Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| |
Collapse
|
93
|
van der Heijden RA, Biswal S. Up-and-coming Radiotracers for Imaging Pain Generators. Semin Musculoskelet Radiol 2023; 27:661-675. [PMID: 37935213 PMCID: PMC10629993 DOI: 10.1055/s-0043-1775745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Chronic musculoskeletal pain is among the most highly prevalent diseases worldwide. Managing patients with chronic pain remains very challenging because current imaging techniques focus on morphological causes of pain that can be inaccurate and misleading. Moving away from anatomical constructs of disease, molecular imaging has emerged as a method to identify diseases according to their molecular, physiologic, or cellular signatures that can be applied to the variety of biomolecular changes that occur in nociception and pain processing and therefore have tremendous potential for precisely pinpointing the source of a patient's pain. Several molecular imaging approaches to image the painful process are now available, including imaging of voltage-gated sodium channels, calcium channels, hypermetabolic processes, the substance P receptor, the sigma-1 receptor, and imaging of macrophage trafficking. This article provides an overview of promising molecular imaging approaches for the imaging of musculoskeletal pain with a focus on preclinical methods.
Collapse
Affiliation(s)
- Rianne A. van der Heijden
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandip Biswal
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
94
|
Yang P, Chen H, Wang T, Su H, Li J, He Y, Su S. Electroacupuncture promotes synaptic plasticity in rats with chronic inflammatory pain-related depression by upregulating BDNF/TrkB/CREB signaling pathway. Brain Behav 2023; 13:e3310. [PMID: 37948105 PMCID: PMC10726860 DOI: 10.1002/brb3.3310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Chronic inflammatory pain (CIP) frequently coincides with depression among patients. The onset and development of pain and depression are associated with altered neural synaptic plasticity. Electroacupuncture (EA) can effectively relieve CIP and depression. However, the underlying mechanisms have not been fully illustrated. OBJECTIVE To explore whether EA can relieve CIP and depression by regulating hippocampal synaptic plasticity, and the present study offers foundational evidence for the efficacy of EA in treating CIP-related depression (CIPD). METHODS Rats were divided into four groups: 0.9% normal saline group, complete Freund's adjuvant (CFA) group, CFA + duloxetine group, and CFA + EA group. Pain hypersensitivity was detected by mechanical withdrawal threshold and thermal paw withdrawal latency, and the depression level was gauged using the open field test, the sucrose preference test, and the forced swimming test. The morphology of the hippocampal neurons was observed using Nissl staining. The protein expression levels of synuclein (Syn), postsynaptic density protein-95 (PSD-95), brain-derived neurotrophic factors (BDNFs), tyrosine-protein kinase B (TrKB), p-TrkB, cAMP response element binding protein (CREB), and p-CREB were measured by western blotting and immunofluorescence staining. BDNF and TrkB mRNA expression were detected using quantitative real-time polymerase chain reaction (PCR) (qRT-PCR). The content of 5-hydroxytryptamine (5-HT) and γ-aminobutyric acid (GABA) was detected using enzyme-linked immunosorbent assay, and the glutamic acid (Glu) content was determined using the ultraviolet colorimetry method. The hippocampal neuron ultrastructure was observed using transmission electron microscopy. RESULTS EA could alleviate CIP and related depressive behaviors as well as protect the hippocampal neuronal structure from damage and regulate 5-HT/GABA/Glu levels in the hippocampus. Additionally, EA could significantly increase the expression of synapse-associated proteins such as PSD-95 and Syn by activating the BDNF/TrKB/CREB signaling pathway. CONCLUSION EA improves pain and depressive behaviors in CIPD rats, and the mechanism may be related to synaptic plasticity mediated by the BDNF/TrKB/CREB signaling pathway.
Collapse
Affiliation(s)
- Pu Yang
- The First School of Clinical MedicineGuangxi University of Chinese MedicineNanningGuangxiChina
| | - Haiyan Chen
- Department of NursingThe First Affiliated Hospital of Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Tian Wang
- The First School of Clinical MedicineGuangxi University of Chinese MedicineNanningGuangxiChina
| | - Hong Su
- The First School of Clinical MedicineGuangxi University of Chinese MedicineNanningGuangxiChina
| | - Jing Li
- The First School of Clinical MedicineGuangxi University of Chinese MedicineNanningGuangxiChina
| | - Yujun He
- Faculty of Acupuncture, Moxibustion and TuinaGuangxi University of Chinese MedicineNanningGuangxiChina
| | - Shengyong Su
- Department of Acupuncture and MoxibustionThe First Affiliated Hospital of Guangxi University of Chinese MedicineNanningGuangxiChina
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese MedicineNanningGuangxiChina
| |
Collapse
|
95
|
Weiss T, Koehler H, Croy I. Pain and Reorganization after Amputation: Is Interoceptive Prediction a Key? Neuroscientist 2023; 29:665-675. [PMID: 35950521 PMCID: PMC10623598 DOI: 10.1177/10738584221112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an ongoing discussion on the relevance of brain reorganization following amputation for phantom limb pain. Recent attempts to provide explanations for seemingly controversial findings-specifically, maladaptive plasticity versus persistent functional representation as a complementary process-acknowledged that reorganization in the primary somatosensory cortex is not sufficient to explain phantom limb pain satisfactorily. Here we provide theoretical considerations that might help integrate the data reviewed and suppose a possible additional driver of the development of phantom limb pain-namely, an error in interoceptive predictions to somatosensory sensations and movements of the missing limb. Finally, we derive empirically testable consequences based on our considerations to guide future research.
Collapse
Affiliation(s)
- Thomas Weiss
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| | - Hanna Koehler
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Ilona Croy
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
96
|
Wu D, Wang P, Zhao C, Su J, Zhang J, Ma W, Zhang Y, Xu H. Levo-tetrahydropalmatine ameliorates neuropathic pain by inhibiting the activation of the Clec7a-MAPK/NF-κB-NLRP3 inflammasome axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155075. [PMID: 37741158 DOI: 10.1016/j.phymed.2023.155075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 08/27/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Because of the complex pathogenesis of neuropathic pain (NP), the therapeutic efficacy of existing drugs is not satisfactory. Accumulating studies have indicated that neuroinflammation may play a key role in NP onset and progression. Levo-tetrahydropalmatine (l-THP) has been extensively used for relieving chronic pain for decades. However, its potential mechanisms against NP have not yet been fully elucidated. PURPOSE Exploring and elucidating the therapeutic effect and pharmacological mechanism of l-THP in treating NP. METHODS RNA-seq and bioinformatics analyses were carried out to identify effective target profiling of I-THP in chronic constrictive injury (CCI) rats. The I-THP related hub targets and signaling pathways were obtained via bioinformatics analysis, then subjected to in-depth analyses through experiments in vivo. A gain-of-function study further confirmed the role of Clec7a in l-THP-mediated pain relief. Finally, the interaction between l-THP and Clec7a was verified through molecular docking and surface plasmon resonance (SPR). RESULTS l-THP treatment effectively alleviated mechanical and thermal allodynia in NP model rats. Functionally, the I-THP effective targets were mainly enriched in inflammatory response-related pathways. Furthermore, Clec7a-MAPK/NF-κB-NLRP3 inflammasome axis was selected as one of the potential pathways of l-THP against NP. Mechanically, l-THP markedly reduced CCI-induced Clec7a overexpression, significantly inhibited the Clec7a-triggered phosphorylation of MAPK and NF-κB-p65, and decreased the expression of pyroptosis-related protein NLRP3 and Caspase-1-p20. The analgesic effect of l-THP on NP was partly eliminated when transfecting the overexpression vector virus pLVSO5Clec7a. Importantly, molecular docking and SPR data revealed that l-THP directly binds with the Clec7a protein. CONCLUSION This study is the first to indicate that l-THP may exert an analgesic effect through inhibiting neuroinflammation via the Clec7a-MAPK/NF-κB-NLRP3 inflammasome axis, supporting the clinical utility of l-THP in NP therapy.
Collapse
Affiliation(s)
- Dan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Jin Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Junhong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Wangming Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China.
| |
Collapse
|
97
|
Walters ET. Exaptation and Evolutionary Adaptation in Nociceptor Mechanisms Driving Persistent Pain. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:314-330. [PMID: 38035556 PMCID: PMC10922759 DOI: 10.1159/000535552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Several evolutionary explanations have been proposed for why chronic pain is a major clinical problem. One is that some mechanisms important for driving chronic pain, while maladaptive for modern humans, were adaptive because they enhanced survival. Evidence is reviewed for persistent nociceptor hyperactivity (PNH), known to promote chronic pain in rodents and humans, being an evolutionarily adaptive response to significant bodily injury, and primitive molecular mechanisms related to cellular injury and stress being exapted (co-opted or repurposed) to drive PNH and consequent pain. SUMMARY PNH in a snail (Aplysia californica), squid (Doryteuthis pealeii), fruit fly (Drosophila melanogaster), mice, rats, and humans has been documented as long-lasting enhancement of action potential discharge evoked by peripheral stimuli, and in some of these species as persistent extrinsically driven ongoing activity and/or intrinsic spontaneous activity (OA and SA, respectively). In mammals, OA and SA are often initiated within the protected nociceptor soma long after an inducing injury. Generation of OA or SA in nociceptor somata may be very rare in invertebrates, but prolonged afterdischarge in nociceptor somata readily occurs in sensitized Aplysia. Evidence for the adaptiveness of injury-induced PNH has come from observations of decreased survival of injured squid exposed to predators when PNH is blocked, from plausible survival benefits of chronic sensitization after severe injuries such as amputation, and from the functional coherence and intricacy of mammalian PNH mechanisms. Major contributions of cAMP-PKA signaling (with associated calcium signaling) to the maintenance of PNH both in mammals and molluscs suggest that this ancient stress signaling system was exapted early during the evolution of nociceptors to drive hyperactivity following bodily injury. Vertebrates have retained core cAMP-PKA signaling modules for PNH while adding new extracellular modulators (e.g., opioids) and cAMP-regulated ion channels (e.g., TRPV1 and Nav1.8 channels). KEY MESSAGES Evidence from multiple phyla indicates that PNH is a physiological adaptation that decreases the risk of attacks on injured animals. Core cAMP-PKA signaling modules make major contributions to the maintenance of PNH in molluscs and mammals. This conserved signaling has been linked to ancient cellular responses to stress, which may have been exapted in early nociceptors to drive protective hyperactivity that can persist while bodily functions recover after significant injury.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
98
|
Deng W, Zou H, Qian L, de Souza SC, Chen Q, Cao S. Stauntonia chinensis injection relieves neuropathic pain by increasing the expression of PSD-95 and reducing the proliferation of phagocytic microglia. IBRAIN 2023; 10:3-18. [PMID: 38682013 PMCID: PMC11045182 DOI: 10.1002/ibra.12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 05/01/2024]
Abstract
Neuroinflammation induced by engulfment of synapses by phagocytic microglia plays a crucial role in neuropathic pain. Stauntonia chinensis is extracted from Stauntonia chinensis DC, which has been used as a traditional Chinese medicine to control trigeminal neuralgia or sciatica. However, the specific anti-neuralgia mechanism of Stauntonia chinensis is unknown. In this study, the analgesic effect of Stauntonia chinensis injection (SCI) in mice with neuropathic pain and the possible mechanisms are explored. We find that a local injection of 0.1 mL Stauntonia chinensis for 14 days can considerably relieve mechanical hyperalgesia and thermal hyperalgesia in mice with sciatic chronic constriction injury (CCI). Immunofluorescence staining shows that SCI reduces neuroinflammation in the spinal cord of CCI mice. RNA sequencing reveals that the expression of postsynaptic density protein 95 (PSD-95), a postsynaptic scaffold protein, is downregulated in the spinal cord of CCI mice, but upregulated after SCI administration. Immunofluorescence experiments also demonstrate that SCI administration reverses microglia proliferation and PSD-95 downregulation in CCI mice. These data suggest that SCI relieves neuropathic pain by increasing the expression of PSD-95 and reducing the proliferation of phagocytic microglia.
Collapse
Affiliation(s)
- Wenwen Deng
- Department of CardiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Lab of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| | - Helin Zou
- Guizhou Key Lab of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| | - Li Qian
- Department of Pain MedicineGuizhou Provincial Orthopedics HospitalGuiyangGuizhouChina
| | | | - Qian Chen
- Department of Pain MedicineGuizhou Provincial Orthopedics HospitalGuiyangGuizhouChina
| | - Song Cao
- Guizhou Key Lab of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
99
|
Zhou X, Li Z, Xing B. Efficacy and safety of TRPV1-related preparations in the treatment of inflammatory arthralgia. Medicine (Baltimore) 2023; 102:e36268. [PMID: 38013379 PMCID: PMC10681444 DOI: 10.1097/md.0000000000036268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Currently, medications for the treatment of inflammatory arthralgia are limited. The role and safety of transient receptor potential vanilloid subtype 1 (TRPV1)-related preparations in reducing inflammatory arthralgia have not yet been fully established. Thus, we aimed to review the efficacy and safety of TRPV1-related preparations for the treatment of inflammatory arthralgia. METHODS We searched PubMed, Web of Science, Cochrane, and Embase databases for relevant studies, and the primary outcome was pain score (VAS, PI, NRS, and WOMAC). RESULTS Six randomized controlled trials involving 481 patients were analyzed. Patients with inflammatory arthralgia who received TRPV1-related preparations had lower pain scores after treatment than those who received placebo or nonsteroidal anti-inflammatory agents (standardized mean difference = -0.525; 95% confidence interval [CI], -0.789 to -0.261; P < .001). There was no significant difference in the incidence of total adverse reactions between the TRPV1-related preparations and control groups (relative risk = 1.225; 95% CI, 0.685 to 2.191; P = .494). CONCLUSION TRPV1-related preparations are clinically safe and effective in the treatment of inflammatory arthralgia and are superior to placebo or nonsteroidal drugs. This may be the preferred treatment for patients with inflammatory arthralgia.
Collapse
Affiliation(s)
- Xin Zhou
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ziping Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bingfeng Xing
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
100
|
Smith WR, Valrie CR, Jaja C, Kenney MO. Precision, integrative medicine for pain management in sickle cell disease. FRONTIERS IN PAIN RESEARCH 2023; 4:1279361. [PMID: 38028431 PMCID: PMC10666191 DOI: 10.3389/fpain.2023.1279361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Sickle cell disease (SCD) is a prevalent and complex inherited pain disorder that can manifest as acute vaso-occlusive crises (VOC) and/or chronic pain. Despite their known risks, opioids are often prescribed routinely and indiscriminately in managing SCD pain, because it is so often severe and debilitating. Integrative medicine strategies, particularly non-opioid therapies, hold promise in safe and effective management of SCD pain. However, the lack of evidence-based methods for managing SCD pain hinders the widespread implementation of non-opioid therapies. In this review, we acknowledge that implementing personalized pain treatment strategies in SCD, which is a guideline-recommended strategy, is currently fraught with limitations. The full implementation of pharmacological and biobehavioral pain approaches targeting mechanistic pain pathways faces challenges due to limited knowledge and limited financial and personnel support. We recommend personalized medicine, pharmacogenomics, and integrative medicine as aspirational strategies for improving pain care in SCD. As an organizing model that is a comprehensive framework for classifying pain subphenotypes and mechanisms in SCD, and for guiding selection of specific strategies, we present evidence updating pain research pioneer Richard Melzack's neuromatrix theory of pain. We advocate for using the updated neuromatrix model to subphenotype individuals with SCD, to better select personalized multimodal treatment strategies, and to identify research gaps fruitful for exploration. We present a fairly complete list of currently used pharmacologic and non-pharmacologic SCD pain therapies, classified by their mechanism of action and by their hypothesized targets in the updated neuromatrix model.
Collapse
Affiliation(s)
- Wally R. Smith
- Division of General Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Cecelia R. Valrie
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, United States
| | - Cheedy Jaja
- College of Nursing, University of South Florida School of Nursing, Tampa, FL, United States
| | - Martha O. Kenney
- Department of Anesthesiology, Duke University, Durham, NC, United States
| |
Collapse
|