51
|
Orman A, Johnson DL, Comander A, Brockton N. Breast Cancer: A Lifestyle Medicine Approach. Am J Lifestyle Med 2020; 14:483-494. [PMID: 32922233 DOI: 10.1177/1559827620913263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common female cancer diagnosis in the United States (excluding skin cancers), and the second leading cause of female cancer death. This article highlights the role that lifestyle plays in primary breast cancer prevention, breast cancer treatment, and tertiary breast cancer prevention. Current data regarding the benefits of a predominantly plant-based diet in combination with physical activity and maintenance of a healthy body weight will be reviewed. The evidenced-based patient-focused recommendations developed by the World Cancer Research Fund/American Institute for Cancer Research will be discussed in the context of an overall lifestyle strategy. It is our hope that this publication empowers clinicians to provide patients with personalized cancer-protective lifestyle prescriptions.
Collapse
Affiliation(s)
| | | | - Amy Comander
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Nigel Brockton
- American Institute for Cancer Research, Arlington, Virginia
| |
Collapse
|
52
|
Lei YY, Ho SC, Cheng A, Kwok C, Cheung KL, He YQ, Lee R, Yeo W. The association between soy isoflavone intake and menopausal symptoms after breast cancer diagnosis: a prospective longitudinal cohort study on Chinese breast cancer patients. Breast Cancer Res Treat 2020; 181:167-180. [PMID: 32239423 DOI: 10.1007/s10549-020-05616-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/24/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE This study investigated the association between soy isoflavone intake and menopausal symptoms (MPS) among Chinese women with early stage breast cancer in a prospective cohort study. METHODS In an on-going prospective cohort study that involved 1462 Chinese women with early stage breast cancer, MPS were assessed at 18, 36 and 60 months after cancer diagnosis using the validated menopausal rating scale (MRS) questionnaire. Daily soy food intake for the previous 12 months was assessed at the same time using a validated food frequency questionnaire. The associations between MPS and soy isoflavone intake were evaluated in multivariable logistic regression analyses. RESULTS The prevalence of MPS was almost the same during the first 60 months after cancer diagnosis, which were 64.5%, 65.2%, and 63.9% at 18, 36, and 60 months, respectively. Patients with MPS tended to be younger than those without MPS. The intake of soy isoflavones was not associated with the total score of MRS at 18-month follow-up [highest vs lowest tertile, odds ratio (OR) = 1.00, 95% CI 0.75-1.34]. Similarly, no significant association was noted at 36-month (OR = 1.25, 95% CI 0.92-1.69) and 60-month (OR = 1.21, 95% CI 0.84-1.74) follow-up. With regards to specific domain within MRS, the risk of symptoms presenting in somatic domain was higher among breast cancer patients who were in the highest tertile of soy isoflavone intake at 36 months post-diagnosis (OR = 1.44, 95% CI 1.07-1.94, P-trend = 0.02), compared with the lowest tertile, where a stronger significant association was noted among patients who were younger than 60 years (OR = 1.52, 95% CI 1.05-2.20, P-trend = 0.03) and pre-menopausal (OR = 3.81, 95% CI 1.85-8.11, P-trend < 0.01). CONCLUSION The present study provided further evidence that soy isoflavone consumption was not associated with MPS among Chinese breast cancer patients. In fact, patients with higher intake of soy isoflavone have increased risk of experiencing somatic symptoms.
Collapse
Affiliation(s)
- Yuan-Yuan Lei
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, New Territories, Hong Kong, SAR, China
| | - Suzanne C Ho
- Division of Epidemiology, The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, New Territories, Hong Kong, SAR, China
| | - Ashley Cheng
- Department of Clinical Oncology, Princess Margaret Hospital, Hong Kong SAR, China
| | - Carol Kwok
- Department of Clinical Oncology, Princess Margaret Hospital, Hong Kong SAR, China
| | - Ka Li Cheung
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, New Territories, Hong Kong, SAR, China
| | - Yi-Qian He
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, New Territories, Hong Kong, SAR, China
| | - Roselle Lee
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, New Territories, Hong Kong, SAR, China
| | - Winnie Yeo
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, New Territories, Hong Kong, SAR, China.
- Hong Kong Cancer Institute, State Key Laboratory in Oncology in South China, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, SAR, China.
| |
Collapse
|
53
|
Dong H, Xiong F, Zhong Q, Li Y, Liu M, Ling W, Tang X, Chen Y. Urinary equol is associated with bioavailable testosterone but not total testosterone in women. Endocr J 2020; 67:257-266. [PMID: 31748434 DOI: 10.1507/endocrj.ej19-0319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Little is known about the association between equol and bioavailable testosterone (BT) in adults. In this study, we examined the associations of urinary equol concentrations with serum concentrations of total, bioavailable and free testosterone (FT), dehydroepiandrosterone sulfide (DHEAS), free androgen index (FAI) and sex hormone-binding globulin (SHBG). This cross-sectional study included 1,904 women with a mean age of 59.7 years. Urinary equol concentrations were measured using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The serum androgenic indices and SHBG were also determined. Overall, urinary equol tended to be inversely associated with bioactive forms of androgenic indices (BT, FT or FAI) but not with total testosterone (TT) or DHEAS. Urinary equol was also positively associated with SHBG. In multi-covariate-adjusted analyses stratified by menopausal status, graded and inverse associations between urinary equol and bioactive forms of androgenic indices (BT, FT and FAI) were observed in postmenopausal women (all p-trends < 0.05), but not in premenopausal women. A significant positive association between urinary equol and SHBG was observed only in postmenopausal women. No significant associations were observed between urinary equol and TT or DHEAS in either group. A path analysis indicated that these associations of equol with androgens in postmenopausal women might be mediated by SHBG. In conclusion, urinary equol exhibited graded and inverse associations with BT or FT, but not TT in women. However, further longitudinal studies of human patients are needed to confirm these results and overcome the limitations of cross-sectional studies.
Collapse
Affiliation(s)
- Hongli Dong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Feng Xiong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Qingwei Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yihong Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Meng Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Xinyi Tang
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Yuming Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
54
|
Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological implications. Redox Biol 2020; 31:101505. [PMID: 32201220 PMCID: PMC7212485 DOI: 10.1016/j.redox.2020.101505] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Compared to other organs, the brain is especially exposed to oxidative stress. In general, brains from young females tend to present lower oxidative damage in comparison to their male counterparts. This has been attributed to higher antioxidant defenses and a better mitochondrial function in females, which has been linked to neuroprotection in this group. However, these differences usually disappear with aging, and the incidence of brain pathologies increases in aged females. Sexual hormones, which suffer a decrease with normal aging, have been proposed as the key factors involved in these gender differences. Here, we provide an overview of redox status and mitochondrial function regulation by sexual hormones and their influence in normal brain aging. Furthermore, we discuss how sexual hormones, as well as phytoestrogens, may play an important role in the development and progression of several brain pathologies, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, stroke or brain cancer. Sex hormones are reduced with aging, especially in females, affecting redox balance. Normal aging is associated to a worse redox homeostasis in the brain. Young females show better mitochondrial function and higher antioxidant defenses. Development of brain pathologies is influenced by sex hormones and phytoestrogens.
Collapse
|
55
|
Cady N, Peterson SR, Freedman SN, Mangalam AK. Beyond Metabolism: The Complex Interplay Between Dietary Phytoestrogens, Gut Bacteria, and Cells of Nervous and Immune Systems. Front Neurol 2020; 11:150. [PMID: 32231636 PMCID: PMC7083015 DOI: 10.3389/fneur.2020.00150] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
The human body has a large, diverse community of microorganisms which not only coexist with us, but also perform many important physiological functions, including metabolism of dietary compounds that we are unable to process ourselves. Furthermore, these bacterial derived/induced metabolites have the potential to interact and influence not only the local gut environment, but the periphery via interaction with and modulation of cells of the immune and nervous system. This relationship is being further appreciated every day as the gut microbiome is researched as a potential target for immunomodulation. A common feature among inflammatory diseases including relapsing-remitting multiple sclerosis (RRMS) is the presence of gut microbiota dysbiosis when compared to healthy controls. However, the specifics of these microbiota-neuro-immune system interactions remain unclear. Among all factors, diet has emerged as a strongest factor regulating structure and function of gut microbial community. Phytoestrogens are one class of dietary compounds emerging as potentially being of interest in this interaction as numerous studies have identified depletion of phytoestrogen-metabolizing bacteria such as Adlercreutzia, Parabacteroides and Prevotella in RRMS patients. Additionally, phytoestrogens or their metabolites have been reported to show protective effects when compounds are administered in the animal model of MS, Experimental Autoimmune Encephalomyelitis (EAE). In this review, we will illustrate the link between MS and phytoestrogen metabolizing bacteria, characterize the importance of gut bacteria and their mechanisms of action in the production of phytoestrogen metabolites, and discuss what is known about the interactions of specific compounds with cells immune and nervous system. A better understanding of gut bacteria-mediated phytoestrogen metabolism and mechanisms through which these metabolites facilitate their biological actions will help in development of novel therapeutic options for MS as well as other inflammatory diseases.
Collapse
Affiliation(s)
- Nicole Cady
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | | | | | - Ashutosh K. Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States
- Immunology, University of Iowa, Iowa City, IA, United States
- Molecular Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
56
|
Jefferson WN, Padilla-Banks E, Suen AA, Royer LJ, Zeldin SM, Arora R, Williams CJ. Uterine Patterning, Endometrial Gland Development, and Implantation Failure in Mice Exposed Neonatally to Genistein. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:37001. [PMID: 32186404 PMCID: PMC7138129 DOI: 10.1289/ehp6336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Embryo implantation relies on precise hormonal regulation, associated gene expression changes, and appropriate female reproductive tract tissue architecture. Female mice exposed neonatally to the phytoestrogen genistein (GEN) at doses similar to those in infants consuming soy-based infant formulas are infertile due in part to uterine implantation defects. OBJECTIVES Our goal was to determine the mechanisms by which neonatal GEN exposure causes implantation defects. METHODS Female mice were exposed to GEN on postnatal days (PND)1-5 and uterine tissues collected on PND5, PND22-26, and during pregnancy. Analysis of tissue weights, morphology, and gene expression was performed using standard histology, confocal imaging with three-dimensional analysis, real-time reverse transcription polymerase chain reaction (real-time RT-PCR), and microarrays. The response of ovariectomized adults to 17 β -estradiol (E2) and artificial decidualization were measured. Leukemia inhibitory factor (LIF) injections were given intraperitoneally and implantation sites visualized. Gene expression patterns were compared with curated data sets to identify upstream regulators. RESULTS GEN-exposed mice exhibited reduced uterine weight gain in response to E2 treatment or artificial decidualization compared with controls; however, expression of select hormone responsive genes remained similar between the two groups. Uteri from pregnant GEN-exposed mice were posteriorized and had reduced glandular epithelium. Implantation failure was not rescued by LIF administration. Microarray analysis of GEN-exposed uteri during early pregnancy revealed significant overlap with several conditional uterine knockout mouse models, including Foxa2, Wnt4, and Sox17. These models exhibit reduced endometrial glands, features of posteriorization and implantation failure. Expression of Foxa2, Wnt4, and Sox17, as well as genes important for neonatal uterine differentiation (Wnt7a, Hoxa10, and Msx2), were severely disrupted on PND5 in GEN-exposed mice. DISCUSSION Our findings suggest that neonatal GEN exposure in mice disrupts expression of genes important for uterine development, causing posteriorization and diminished gland function during pregnancy that contribute to implantation failure. These findings could have implications for women who consumed soy-based formulas as infants. https://doi.org/10.1289/EHP6336.
Collapse
Affiliation(s)
- Wendy N. Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alisa A. Suen
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Lindsey J. Royer
- Department of Obstetrics, Gynecology, and Reproductive Biology, Institute for Quantitative Health Science and Engineering, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sharon M. Zeldin
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology, and Reproductive Biology, Institute for Quantitative Health Science and Engineering, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Carmen J. Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
57
|
Wang Q, Huang H, Zhao N, Ni X, Udelsman R, Zhang Y. Phytoestrogens and Thyroid Cancer Risk: A Population-Based Case-Control Study in Connecticut. Cancer Epidemiol Biomarkers Prev 2019; 29:500-508. [PMID: 31826911 DOI: 10.1158/1055-9965.epi-19-0456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/28/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Very few previous studies have examined the relationship between thyroid cancer risk and intake of phytoestrogens (PE); furthermore, these studies have reached inconsistent results. METHODS We analyzed data from a population-based case-control study in Connecticut from 2010 to 2011, including 387 histologically confirmed thyroid cancer cases and 433 population-based controls, with compound data available concerning specific PEs. Multivariate unconditional logistic regression models were used to estimate the associations between specific PEs and the risk of thyroid cancer, adjusting for potential confounders. RESULTS An elevated risk of thyroid cancer was associated with moderate to high levels of coumestrol intake [OR = 2.48, 95% confidence interval (CI), 1.39-4.43 for 40-80 μg/day; OR = 2.41, 95% CI, 1.32-4.40 for 80-130 μg/day; and OR = 2.38, 95% CI, 1.26-4.50 for >200 μg/day compared with <40 μg/day], and the main elevation in risk appeared among microcarcinomas (≤1 cm). A decreased risk of papillary macrocarcinomas (>1 cm; OR = 0.26, 95% CI, 0.08-0.85 for 1,860-3,110 μg/day compared with <760 μg/day) was associated with moderate genistein intake among women. CONCLUSIONS Our study suggests that high coumestrol intake increases the risk of thyroid cancer, especially microcarcinomas, whereas moderate amounts of genistein intake appear to be protective for females with thyroid macrocarcinomas. IMPACT The study highlights the importance of distinguishing between microcarcinomas and macrocarcinomas in future research on the etiology of thyroid cancer.
Collapse
Affiliation(s)
- Qian Wang
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut
| | - Huang Huang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut
| | - Nan Zhao
- Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Ni
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Robert Udelsman
- Endocrine Neoplasm Institute, Miami Cancer Institute, Miami, Florida
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut. .,Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
58
|
Arakawa S, Inoue M, Kinouchi R, Morizumi S, Yamaguchi M, Shimazu Y, Takeda M. Dietary constituent genistein inhibits the hyperexcitability of trigeminal nociceptive neurons associated with mechanical hyperalgesia following orofacial inflammation. J Oral Biosci 2019; 61:215-220. [DOI: 10.1016/j.job.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/03/2023]
|
59
|
Bhalla Y, Chadha K, Chadha R, Karan M. Daidzein cocrystals: An opportunity to improve its biopharmaceutical parameters. Heliyon 2019; 5:e02669. [PMID: 31763466 PMCID: PMC6861730 DOI: 10.1016/j.heliyon.2019.e02669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 06/19/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
Abstract
The present study involves the contribution of cocrystallization towards the modification of the biopharmaceutical parameters of poorly watersoluble plant-originated isoflavone, daidzein (DAID). The cocrystals were prepared with GRAS status coformers i.e., isonicotinamide, theobromine and cytosine using mechanochemical grinding and characterized by various analytical techniques (DSC, FT-IR, PXRD and solid-state NMR). Crystal structures were obtained from PXRD data using BIOVIA Materials Studio software and compared in terms of supramolecular motifs. An additional qualitative and quantitative insight into interactions between both components of the cocrystal illustrated the presence of OH⋯N and OH⋯O=C heterosynthons and revealed a stabilizing role of hydrogen bonding. The cocrystals were further evaluated for their solubility, intrinsic dissolution and in vivo profile. Solubility and dissolution studies of pure daidzein and its cocrystals, namely daidzein-isonicotinamide (DIS), daidzein-cytosine (DCYT) and daidzein-theobromine (DTB) exhibited an almost 2-fold improvement. Evaluation of maximum concentration (Cmax) of cocrystals reveals that the DIS cocrystal shows the highest Cmax of 1848.7 ng/ml followed by DCYT cocrystal (1614.9 ng/ml) and DTB cocrystal (1326.0 ng/ml) in comparison to DAID which has a Cmax 870.5 ng/ml. Each of these cocrystals showed significant enhancement in in vivo and in vitro activities in comparison to daidzein. Thus, this report suggests cocrystallization as a viable approach to resolve the solubility and bioavailability issues that circumvent the use of a therapeutically potential isoflavone, daidzein.
Collapse
Affiliation(s)
- Yashika Bhalla
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Kunal Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Maninder Karan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
60
|
Evaluation of protective efficacy of flaxseed lignan-Secoisolariciresinol diglucoside against mercuric chloride-induced nephrotoxicity in rats. Mol Biol Rep 2019; 46:6171-6179. [DOI: 10.1007/s11033-019-05052-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/28/2019] [Indexed: 11/25/2022]
|
61
|
Chrzanowska AM, Díaz-Álvarez M, Wieczorek PP, Poliwoda A, Martín-Esteban A. The application of the supported liquid membrane and molecularly imprinted polymers as solid acceptor phase for selective extraction of biochanin A from urine. J Chromatogr A 2019; 1599:9-16. [DOI: 10.1016/j.chroma.2019.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 01/21/2023]
|
62
|
Hessenberger S, Botzi K, Degrassi C, Kovalsky P, Schwab C, Schatzmayr D, Schatzmayr G, Fink-Gremmels J. Interactions between plant-derived oestrogenic substances and the mycoestrogen zearalenone in a bioassay with MCF-7 cells. Pol J Vet Sci 2019; 20:513-520. [PMID: 29166278 DOI: 10.1515/pjvs-2017-0062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human and animal diets may contain several non-steroidal oestrogenic compounds which originate either from plants (phytoestrogens) or from fungi that infect plants (mycoestrogens such as zearalenone (ZEN)). Phytoestrogens may compete with ZEN in binding to the oestrogen receptor β and thereby may counteract the oestrogenic activity of ZEN. Using a modified version of the E-screen assay, plant-derived oestrogenic substances were tested for their proliferative or anti-proliferative effect on oestrogen-dependent MCF-7 cells. The samples were additionally tested for their ability to influence the oestrogenic activity of ZEN (1 μM). Among the individual substances tested, 8-prenylnaringenin had the strongest effect, as cell proliferation was increased by 78% at the lowest concentration (0.23 μM), and by 167% at the highest concentration (29.4 μM). Coumestrol (5.83 μM) increased cell proliferation by 39%, and genistein (370 μM) by 61%, respectively. Xanthohumol and enterolactone did not stimulate cell proliferation significantly. In the co-incubation experiments with ZEN, none of the single substances was able to decrease the oestrogenic activity of ZEN. Only for 8-prenylnaringenin (14.7 and 29.4 μM) was a trend towards an increase in the ZEN-induced cell proliferation up to 72% observed. In conclusion, with the exception of 8-prenylnaringenin, no substantial interaction between phytoestrogens and the mycotoxin ZEN could be detected using a bioassays with MCF-7 cells.
Collapse
|
63
|
Johny A, Fæste CK, Bogevik AS, Berge GM, Fernandes JMO, Ivanova L. Development and Validation of a Liquid Chromatography High-Resolution Mass Spectrometry Method for the Simultaneous Determination of Mycotoxins and Phytoestrogens in Plant-Based Fish Feed and Exposed Fish. Toxins (Basel) 2019; 11:toxins11040222. [PMID: 31013949 PMCID: PMC6520669 DOI: 10.3390/toxins11040222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022] Open
Abstract
New protein sources in fish feed require the assessment of the carry-over potential of contaminants and anti-nutrients from feed ingredients into the fish, and the assessment of possible health risks for consumers. Presently, plant materials including wheat and legumes make up the largest part of aquafeeds, so evaluation of the transfer capabilities of typical toxic metabolites from plant-infesting fungi and of vegetable phytoestrogens into fish products is of great importance. With the aim of facilitating surveillance of relevant mycotoxins and isoflavones, we have developed and validated a multi-analyte LC-HRMS/MS method that can be used to ensure compliance to set maximum levels in feed and fish. The method performance characteristics were determined, showing high specificity for all 25 targeted analytes, which included 19 mycotoxins and three isoflavones and their corresponding aglycons with sufficient to excellent sensitivities and uniform analytical linearity in different matrices. Depending on the availability of matching stable isotope-labelled derivates or similar-structure homologues, calibration curves were generated either by using internal standards or by matrix-matched external standards. Precision and recovery data were in the accepted range, although they varied between the different analytes. This new method was considered as fit-for-purpose and applied for the analysis of customised fish feed containing wheat gluten, soy, or pea protein concentrate as well as salmon and zebrafish fed on diets with these ingredients for a period of up to eight weeks. Only mycotoxin enniatin B, at a level near the limit of detection, and low levels of isoflavones were detected in the feed, demonstrating the effectiveness of maximum level recommendations and modern feed processing technologies in the Norwegian aquaculture industry. Consequently, carry-over into fish muscle was not observed, confirming that fillets from plant-fed salmon were safe for human consumption.
Collapse
Affiliation(s)
- Amritha Johny
- Toxinology Research Group, Norwegian Veterinary Institute, Oslo 0454, Norway.
| | | | - André S Bogevik
- Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, Fyllingsdalen 5141, Norway.
| | - Gerd Marit Berge
- Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, Sunndalsøra 6600, Norway.
| | | | - Lada Ivanova
- Chemistry Section, Norwegian Veterinary Institute, Oslo 0454, Norway.
| |
Collapse
|
64
|
Křížová L, Dadáková K, Kašparovská J, Kašparovský T. Isoflavones. Molecules 2019; 24:E1076. [PMID: 30893792 PMCID: PMC6470817 DOI: 10.3390/molecules24061076] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Phytoestrogens are naturally occurring nonsteroidal phenolic plant compounds that, due to their molecular structure and size, resemble vertebrate steroids estrogens. This review is focused on plant flavonoids isoflavones, which are ranked among the most estrogenic compounds. The main dietary sources of isoflavones for humans are soybean and soybean products, which contain mainly daidzein and genistein. When they are consumed, they exert estrogenic and/or antiestrogenic effects. Isoflavones are considered chemoprotective and can be used as an alternative therapy for a wide range of hormonal disorders, including several cancer types, namely breast cancer and prostate cancer, cardiovascular diseases, osteoporosis, or menopausal symptoms. On the other hand, isoflavones may also be considered endocrine disruptors with possible negative influences on the state of health in a certain part of the population or on the environment. This review deals with isoflavone classification, structure, and occurrence, with their metabolism, biological, and health effects in humans and animals, and with their utilization and potential risks.
Collapse
Affiliation(s)
- Ludmila Křížová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| | - Kateřina Dadáková
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| | - Jitka Kašparovská
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| | - Tomáš Kašparovský
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| |
Collapse
|
65
|
Abstract
Isoflavones isolated from members of the Fabaceae (primarily Leguminosae) family have been characterized for their phytoestrogenic properties, but certain derivatives have also shown potential as possible cancer therapeutic agents. ME-344, related to phenoxodiol (Fig. 1), is a second generation isoflavone with a recent history of both preclinical and early clinical testing. The drug has unusual cytotoxicity profiles, where cancer cell lines can be categorized as either intrinsically sensitive or resistant to the drug. Evolving studies show that the cytotoxic properties of the drug are enacted through targeting mitochondrial bioenergetics. While the drug has undergone early Phase I/II trials in solid tumors with confined dose limiting effects and some evidence of disease response, there is a continuing need to define specific cellular targets that determine sensitivity, with the long-term goal of applying such information to individualized therapy. This review article details some of the existing and ongoing studies that are assisting in the continued drug development processes that may lead to new drug application (NDA) status.
Collapse
Affiliation(s)
- Leilei Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Zhiwei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Danyelle M Townsend
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
66
|
Chantal NM, Paul Désiré DD, Caude BD, Yolande Sandrine MN, Lohik MN, Francine MM, Larissa DT, Mireille KP, Pierre K. Neuroprotective Effects of the Anthocleista Schweinfurthii Gilg. (Loganiaceae) Stem Bark Extract in Postmenopause-Like Model of Ovariectomized Wistar Rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2019; 16:jcim-2017-0137. [PMID: 30661055 DOI: 10.1515/jcim-2017-0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/23/2018] [Indexed: 11/15/2022]
Abstract
Background Estrogen deficiency in postmenopausal period causes severe neuroendocrine changes in brain which influences memory and other nervous functions. Anthocleista schweinfurthii is used traditionally to treat female infertility and menopause related symptoms. This study was performed to investigate the potential neuroprotective effects of aqueous extract of Anthocleista schweinfurthii on brain in a postmenopause-like model of ovariectomized Wistar rats. Methods Thirty animals were sham-operated or ovariectomized (Ovx) 84 days after surgery, six groups of five rats each were daily treated orally during 28 days with: distilled water for groups 1 (sham-operated) and 2 (Ovx), estradiol valerate (group 3) and the three doses of extracts {groups 4, 5 and 6 (Ovx)}. Biochemical and histological evaluations focused on brain. Results Compared to sham-operated control, ovariectomy decreased total protein levels in brain (p<0.01) which was increased by plant extract at the dose of 300 mg/kg (p<0.05), underlying its anabolic properties. Ovariectomy significantly decreased magnesium levels in brain (p<0.001). Anthocleista schweinfurthii increased significantly magnesium levels (p<0.01), showing its capacity to act on synaptic conduction. Ovariectomy induced oxidative stress by increasing malondialdehyde levels (p<0.05) and decreasing reduced glutathione levels (p<0.05) in brain. The plant extract exhibited antioxidative activity by reducing malondialdehyde levels and increasing glutathione levels in brain. Damage in brain structure which was caused by ovariectomy disappeared following the treatment. Conclusions Results suggest that Anthocleista schweinfurthii may have neuroprotective effects in Ovx Wistar rats by increasing total protein, magnesium levels and reducing oxidative stress in brain.
Collapse
Affiliation(s)
- Ngoungoure Madeleine Chantal
- Animal Physiology Laboratory, Department of Animal Biology and Physiology, Faculty of Science,University of Yaoundé I, Yaoundé, Cameroon
| | - Dzeufiet Djomeni Paul Désiré
- Animal Physiology Laboratory, Department of Animal Biology and Physiology, Faculty of Science,University of Yaoundé I, Yaoundé, Cameroon
| | - Bilanda Danielle Caude
- Animal Physiology Laboratory, Department of Animal Biology and Physiology, Faculty of Science,University of Yaoundé I, Yaoundé, Cameroon
| | - Mengue Ngandena Yolande Sandrine
- Animal Physiology Laboratory, Department of Animal Biology and Physiology, Faculty of Science,University of Yaoundé I, Yaoundé, Cameroon
| | - Mbolang Nguegang Lohik
- Animal Physiology Laboratory, Department of Animal Biology and Physiology, Faculty of Science,University of Yaoundé I, Yaoundé, Cameroon
| | - Mballa Marguerite Francine
- Animal Physiology Laboratory, Department of Animal Biology and Physiology, Faculty of Science,University of Yaoundé I, Yaoundé, Cameroon
| | - Dzekui Tchuo Larissa
- Animal Physiology Laboratory, Department of Animal Biology and Physiology, Faculty of Science,University of Yaoundé I, Yaoundé, Cameroon
| | - Kameni Poumeni Mireille
- Animal Physiology Laboratory, Department of Animal Biology and Physiology, Faculty of Science,University of Yaoundé I, Yaoundé, Cameroon
| | - Kamtchouing Pierre
- Animal Physiology Laboratory, Department of Animal Biology and Physiology, Faculty of Science,University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
67
|
Hilliar M, Swick RA. Nutritional implications of feeding reduced-protein diets to meat chickens. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an19221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Global interest has emerged for the implementation of reduced-protein diets for meat chickens. The necessity of their development stems from environmental impacts and health and welfare concerns surrounding current meat-chicken production. Reduced crude-protein diets are possible with the increasing affordability of supplemental crystalline amino acids. Supplementing broiler feed with methionine, lysine and threonine is common practice in industry and has enabled a reduction of dietary crude protein to the levels currently used. However, further reduction of dietary protein often results in poor performance. Several nutritional options have been investigated with a focus on crystalline essential and non-essential amino acids such as glycine. However, reducing the crude protein of meat-chicken diets does change the ingredient and nutrient profile aside from the amino acid composition. Alterations in non-protein nitrogen concentrations, dietary electrolyte balance, minerals, fibre and carbohydrates, methyl-donors and polyphenols must be considered in formulations to ensure successful implementation of reduced-protein diets. The ability to maintain performance with reduced-protein diets may benefit sustainability and longevity of the meat-chicken industry.
Collapse
|
68
|
Perez‐Cornago A, Appleby PN, Boeing H, Gil L, Kyrø C, Ricceri F, Murphy N, Trichopoulou A, Tsilidis KK, Khaw K, Luben RN, Gislefoss RE, Langseth H, Drake I, Sonestedt E, Wallström P, Stattin P, Johansson A, Landberg R, Nilsson LM, Ozasa K, Tamakoshi A, Mikami K, Kubo T, Sawada N, Tsugane S, Key TJ, Allen NE, Travis RC. Circulating isoflavone and lignan concentrations and prostate cancer risk: a meta-analysis of individual participant data from seven prospective studies including 2,828 cases and 5,593 controls. Int J Cancer 2018; 143:2677-2686. [PMID: 29971774 PMCID: PMC6283047 DOI: 10.1002/ijc.31640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 11/07/2022]
Abstract
Phytoestrogens may influence prostate cancer development. This study aimed to examine the association between prediagnostic circulating concentrations of isoflavones (genistein, daidzein, equol) and lignans (enterolactone and enterodiol) and the risk of prostate cancer. Individual participant data were available from seven prospective studies (two studies from Japan with 241 cases and 503 controls and five studies from Europe with 2,828 cases and 5,593 controls). Because of the large difference in circulating isoflavone concentrations between Japan and Europe, analyses of the associations of isoflavone concentrations and prostate cancer risk were evaluated separately. Prostate cancer risk by study-specific fourths of circulating concentrations of each phytoestrogen was estimated using multivariable-adjusted conditional logistic regression. In men from Japan, those with high compared to low circulating equol concentrations had a lower risk of prostate cancer (multivariable-adjusted OR for upper quartile [Q4] vs. Q1 = 0.61, 95% confidence interval [CI] = 0.39-0.97), although there was no significant trend (OR per 75 percentile increase = 0.69, 95 CI = 0.46-1.05, ptrend = 0.085); Genistein and daidzein concentrations were not significantly associated with risk (ORs for Q4 vs. Q1 = 0.70, 0.45-1.10 and 0.71, 0.45-1.12, respectively). In men from Europe, circulating concentrations of genistein, daidzein and equol were not associated with risk. Circulating lignan concentrations were not associated with the risk of prostate cancer, overall or by disease aggressiveness or time to diagnosis. There was no strong evidence that prediagnostic circulating concentrations of isoflavones or lignans are associated with prostate cancer risk, although further research is warranted in populations where isoflavone intakes are high.
Collapse
Affiliation(s)
- Aurora Perez‐Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
| | - Paul N. Appleby
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
| | - Heiner Boeing
- Department of EpidemiologyGerman Institute of Human Nutrition Potsdam‐RehbrückeNuthetalGermany
| | - Leire Gil
- Public Health Division of Gipuzkoa‐BIODONOSTIABasque Regional Health DepartmentSan SebastianSpain
- CIBER of Epidemiology and Public HealthMadridSpain
| | - Cecilie Kyrø
- Danish Cancer Society Research Center, Strandboulevarden 49CopenhagenDenmark
| | - Fulvio Ricceri
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
- Unit of EpidemiologyRegional Health Service ASL TO3GrugliascoItaly
| | - Neil Murphy
- Section of Nutrition and MetabolismInternational Agency for Research on CancerLyonFrance
| | | | - Konstantinos K. Tsilidis
- Department of Epidemiology and BiostatisticsSchool of Public Health, Imperial College LondonLondonUnited Kingdom
- Department of Hygiene and EpidemiologyUniversity of Ioannina School of MedicineIoanninaGreece
| | - Kay‐Tee Khaw
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUnited Kingdom
| | - Robert N. Luben
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Hilde Langseth
- Department of ResearchCancer Registry of NorwayOsloNorway
| | - Isabel Drake
- Department of Clinical Sciences in MalmöLund UniversityMalmöSweden
| | - Emily Sonestedt
- Department of Clinical Sciences in MalmöLund UniversityMalmöSweden
| | - Peter Wallström
- Department of Clinical Sciences in MalmöLund UniversityMalmöSweden
- Clinical Research CentreSkåne University HospitalMalmöSweden
| | - Pär Stattin
- Department of Surgical SciencesUppsala UniversityUppsalaSweden
| | - Anders Johansson
- Nutritional Research and Molecular PeriodontologyUmeå UniversityUmeöSweden
| | - Rikard Landberg
- Department of Biology and Biological EngineeringFood and Nutrition Science, Chalmers University of TechnologyGothenburgSweden
- Department of Public Health and Clinical MedicineNutritional Research, Umeå UniversityUmeåSweden
| | - Lena Maria Nilsson
- Department of Public Health and Clinical MedicineNutritional Research, Umeå UniversityUmeåSweden
- Arctic Research Centre, Umeå UniversityUmeåSweden
| | - Kotaro Ozasa
- Department of EpidemiologyRadiation Effects Research FoundationMinami‐kuHiroshimaJapan
| | - Akiko Tamakoshi
- Department of Public HealthHokkaido University Graduate School of MedicineKita‐kuSapporoJapan
| | - Kazuya Mikami
- Department of UrologyKyoto Prefectural University of Medicine Graduate School of Medical ScienceKamikgyo‐kuKyotoJapan
| | - Tatsuhiko Kubo
- Department of Preventive Medicine and Community HealthUniversity of Occupational and Environmental HealthYahatanishi‐kuKitakyushuJapan
| | - Norie Sawada
- Epidemiology and Prevention GroupCenter for Public Health Sciences, National Cancer CenterTokyoJapan
| | - Shoichiro Tsugane
- Epidemiology and Prevention GroupCenter for Public Health Sciences, National Cancer CenterTokyoJapan
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
| | - Naomi E. Allen
- Clinical Trial Service Unit, Nuffield Department of Population HealthBig Data Institute, University of OxfordOxfordUnited Kingdom
- Epidemiological Studies Unit, Nuffield Department of Population HealthBig Data Institute, University of OxfordOxfordUnited Kingdom
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
69
|
Deng T, Liu J, Zhang M, Wang Y, Zhu G, Wang J. Inhibition effect of phytoestrogen calycosin on TGF-β1-induced hepatic stellate cell activation, proliferation, and migration via estrogen receptor β. Can J Physiol Pharmacol 2018; 96:1268-1275. [DOI: 10.1139/cjpp-2018-0474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present study was designed to investigate the effects of calycosin on hepatic stellate cell (HSC) function and to explore whether the drug exerts its effect through the estrogen receptor. HSC proliferation and migration were measured by MTT assay and transwell chamber assay, respectively. The mRNA and protein expression of α-SMA, COL-I, and ERβ were detected by real-time PCR and Western blotting. The co-localization and expression of α-SMA and ERβ protein were detected by immunofluorescence. All the studies were investigated in the absence or presence of ICI 182,780. The results showed that calycosin inhibited the proliferation of activated HSCs and remarkably inhibited HSC migration. Calycosin significantly reduced the expression of α-SMA and COL-I in activated HSCs. However, with co-treatment with ICI 182,780, the inhibitory effect of calycosin against the above effects was strongly negated. Importantly, calycosin significantly downregulated the expression of ERβ protein, while co-treatment with ICI 182,780 partially reversed the ERβ downregulation. In addition, α-SMA decreased with the decrease of ERβ expression and the subtype of ERβ on HSC is ERβ5. In conclusion, calycosin inhibits proliferation, activation, and migration of TGF-β1-induced HSCs. The effect may be related to binding and downregulation of ERβ5.
Collapse
Affiliation(s)
- Tan Deng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
| | - Jing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
| | - Mengmeng Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
| | - Yaxin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
| | - Guannan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
| | - Jiajia Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
| |
Collapse
|
70
|
Tiwari MK, Mishra PC. Scavenging of hydroxyl, methoxy, and nitrogen dioxide free radicals by some methylated isoflavones. J Mol Model 2018; 24:287. [DOI: 10.1007/s00894-018-3805-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/21/2018] [Indexed: 11/25/2022]
|
71
|
Hüser S, Guth S, Joost HG, Soukup ST, Köhrle J, Kreienbrock L, Diel P, Lachenmeier DW, Eisenbrand G, Vollmer G, Nöthlings U, Marko D, Mally A, Grune T, Lehmann L, Steinberg P, Kulling SE. Effects of isoflavones on breast tissue and the thyroid hormone system in humans: a comprehensive safety evaluation. Arch Toxicol 2018; 92:2703-2748. [PMID: 30132047 PMCID: PMC6132702 DOI: 10.1007/s00204-018-2279-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary plant constituents of certain foods and feeds such as soy, linseeds, and red clover. Furthermore, isoflavone-containing preparations are marketed as food supplements and so-called dietary food for special medical purposes to alleviate health complaints of peri- and postmenopausal women. Based on the bioactivity of isoflavones, especially their hormonal properties, there is an ongoing discussion regarding their potential adverse effects on human health. This review evaluates and summarises the evidence from interventional and observational studies addressing potential unintended effects of isoflavones on the female breast in healthy women as well as in breast cancer patients and on the thyroid hormone system. In addition, evidence from animal and in vitro studies considered relevant in this context was taken into account along with their strengths and limitations. Key factors influencing the biological effects of isoflavones, e.g., bioavailability, plasma and tissue concentrations, metabolism, temporality (pre- vs. postmenopausal women), and duration of isoflavone exposure, were also addressed. Final conclusions on the safety of isoflavones are guided by the aim of precautionary consumer protection.
Collapse
Affiliation(s)
- S Hüser
- Institute for Food Toxicology, Senate Commission on Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - S Guth
- Institute for Food Toxicology, Senate Commission on Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - H G Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - S T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - J Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, CVK, Berlin, Germany
| | - L Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - P Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - D W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Karlsruhe, Germany
| | - G Eisenbrand
- Division of Food Chemistry and Toxicology, Molecular Nutrition, Department of Chemistry, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - G Vollmer
- Department of Biology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - U Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - D Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - A Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - T Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - L Lehmann
- Department of Food Chemistry, Institute for Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - P Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - S E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
72
|
Craft Beers made with Addition of Umbrian Legumes: Healthy and Nutritional Characterization. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Legumes are very rich in phytochemicals and in particular isoflavones. In this work we have developed techniques to get the brewing craft beers made with the addition of Umbrian legumes (chickling and lentils), to verify if the healthy and nutritional characteristic of these product change. The results obtained show that probably during the processes of cooking and fermentation a transfer of the biologically active substances from the “special ingredients” to the finished beer takes place. From healthy and nutritional characterization of the beers important results emerged: an interesting mineral profile and a large content of molecules with antioxidant activity like phenolic compounds (350–630 mg/L). It should also be noted that within the group of phenolic compounds present in these beers were also found interesting amount of isoflavones in particular genistin and daidzin, which in addition to being powerful antioxidants have other beneficial effects and therefore can act in the prevention of cancer, inflammatory, cardiovascular, postmenopausal, cognitive, and immune diseases.
Collapse
|
73
|
Das D, Sarkar S, Bordoloi J, Wann SB, Kalita J, Manna P. Daidzein, its effects on impaired glucose and lipid metabolism and vascular inflammation associated with type 2 diabetes. Biofactors 2018; 44:407-417. [PMID: 30191623 DOI: 10.1002/biof.1439] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022]
Abstract
Over the last decades, the incidence of type 2 diabetes (T2D) is increasing substantially. Emerging evidences from epidemiological studies have shown the association between higher intake of soy isoflavones and reduced risk of T2D and its associated health risks. Daidzein, a soy isoflavone, has been found to have a promising therapeutic potential in managing T2D pathophysiology. Fermented soybean is the major source of daidzein; however, it can also be formed via the consumption of its glycosylated moiety, daidzin with subsequent hydrolysis by intestinal bacterial enzyme. Many studies reported the prophylactic effect of daidzein on the improvement of hyperglycemia, insulin resistance, dislipidemia, obesity, inflammation, and other complications associated with T2D. The molecular mechanisms underlying the action of daidzein include diverged pathways where daidzein has been shown to interact with several signaling molecules and receptors to achieve desirable effect. Although the specific molecular mechanism is still elusive, further studies are thus needed to understand it in detail. In this review, we discuss the antidiabetic potential of daidzein with respect to the evidences from various clinical, preclinical, and cell culture studies and the underlying molecular mechanism in a precise way to have a comprehensive account on this isoflavone with promising therapeutic potential. © 2018 BioFactors, 44(5):407-417, 2018.
Collapse
Affiliation(s)
- Dibyendu Das
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam, India
| | - Sanjib Sarkar
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam, India
| | - Jijnasa Bordoloi
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam, India
| | - Sawlang Borsingh Wann
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam, India
| | - Jatin Kalita
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam, India
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam, India
| |
Collapse
|
74
|
Guo H, Zhang Z, Yao Y, Liu J, Chang R, Liu Z, Hao H, Huang T, Wen J, Zhou T. A new strategy for statistical analysis-based fingerprint establishment: Application to quality assessment of Semen sojae praeparatum. Food Chem 2018; 258:189-198. [PMID: 29655722 DOI: 10.1016/j.foodchem.2018.03.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/09/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Semen sojae praeparatum with homology of medicine and food is a famous traditional Chinese medicine. A simple and effective quality fingerprint analysis, coupled with chemometrics methods, was developed for quality assessment of Semen sojae praeparatum. First, similarity analysis (SA) and hierarchical clusting analysis (HCA) were applied to select the qualitative markers, which obviously influence the quality of Semen sojae praeparatum. 21 chemicals were selected and characterized by high resolution ion trap/time-of-flight mass spectrometry (LC-IT-TOF-MS). Subsequently, principal components analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were conducted to select the quantitative markers of Semen sojae praeparatum samples from different origins. Moreover, 11 compounds with statistical significance were determined quantitatively, which provided an accurate and informative data for quality evaluation. This study proposes a new strategy for "statistic analysis-based fingerprint establishment", which would be a valuable reference for further study.
Collapse
Affiliation(s)
- Hui Guo
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yuan Yao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China.
| | - Jialin Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Ruirui Chang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China.
| | - Zhao Liu
- Shimadzu China Co. Ltd., Shanghai 200233, China.
| | - Hongyuan Hao
- Shimadzu China Co. Ltd., Shanghai 200233, China.
| | | | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
75
|
Yashin AY, Yashunskii DB, Vedenin AN, Nifant’ev NE, Nemzer BV, Yashin YI. Chromatographic Determination of Lignans (Antioxidants) in Food Products. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s106193481805012x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
76
|
Genistein Exposure Interferes with Pharmacokinetics of Celecoxib in SD Male Rats by UPLC-MS/MS. Biochem Res Int 2018; 2017:6510232. [PMID: 29387488 PMCID: PMC5745716 DOI: 10.1155/2017/6510232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/13/2017] [Accepted: 10/25/2017] [Indexed: 12/29/2022] Open
Abstract
Objective To discuss the effects of genistein on the metabolism of celecoxib in vitro and in vivo. Method In vitro, the effects of genistein on the metabolism of celecoxib were studied using rat and human liver microsomes. In vivo, pharmacokinetics of celecoxib was evaluated in rats with or without genistein. Fifteen Sprague-Dawley (SD) rats were randomized into three groups: celecoxib (A group), celecoxib and 50 mg/kg genistein (B group), and celecoxib and 100 mg/kg genistein (C group). Single dose of 33.3 mg/kg celecoxib was orally administered 30 min after genistein ig. At 0.5, 1, 2, 3, 4, 6, 8, 10, 12, and 24 h after celecoxib administration, 300–400 µl blood samples were collected and the concentration of celecoxib was analyzed by ultrahigh-performance liquid chromatography-tandem mass spectrometry system. Result Genistein showed notable inhibitory effects on three microsomes. It affected pharmacokinetics of celecoxib in vivo experiments. Genistein had dramatically ability to suppress CYP2C9∗1 and ∗3. After pretreatment with genistein, AUC and Cmax of the C group were higher than B group. CLz/F of C group was lower than the B group. Conclusion Genistein inhibits the conversion of celecoxib in vitro and in vivo. So, the dosage of celecoxib should be adjusted if it was used associated with genistein.
Collapse
|
77
|
Applová L, Karlíčková J, Říha M, Filipský T, Macáková K, Spilková J, Mladěnka P. The isoflavonoid tectorigenin has better antiplatelet potential than acetylsalicylic acid. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 35:11-17. [PMID: 28991640 DOI: 10.1016/j.phymed.2017.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/12/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND One reason for the lower incidence of cardiovascular diseases in Asian countries may be the high intake of isoflavonoids and their antiplatelet effects may be an important factor. To date, there is limited comparison of a range of isoflavonoids and knowledge of their effects at different levels of platelet aggregation. PURPOSE To screen the antiplatelet effects of a number of isoflavonoids on the arachidonic acid based aggregation pathway and investigate how the antiplatelet activity might occur. METHODS The antiplatelet effects were first screened in whole human blood where platelet aggregation was induced by arachidonic acid. Further analysis was targeted at search of the mechanism of action. RESULTS Thirteen of the eighteen tested isoflavonoids had significant inhibitory effect on platelet aggregation in whole human blood. Genistein had the same potency as clinically used acetylsalicylic acid (ASA) while tectorigenin was clearly stronger than ASA. Further analyses showed that the effect of tectorigenin was not based on inhibition of cyclooxygenase-1 in contrast to ASA or thromboxane synthase but by competitive antagonism at thromboxane receptors. CONCLUSION Tectorigenin is a more potent antiplatelet compound than ASA and thus an interesting substance for further testing.
Collapse
Affiliation(s)
- Lenka Applová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jana Karlíčková
- Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Michal Říha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Tomáš Filipský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Kateřina Macáková
- Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jiřina Spilková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
78
|
Peng Y, Shi Y, Zhang H, Mine Y, Tsao R. Anti-inflammatory and anti-oxidative activities of daidzein and its sulfonic acid ester derivatives. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
79
|
Khanna S, Stewart R, Gnyawali S, Harris H, Balch M, Spieldenner J, Sen CK, Rink C. Phytoestrogen isoflavone intervention to engage the neuroprotective effect of glutamate oxaloacetate transaminase against stroke. FASEB J 2017; 31:4533-4544. [PMID: 28655710 DOI: 10.1096/fj.201700353] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022]
Abstract
In the pathophysiologic setting of cerebral ischemia, excitotoxic levels of glutamate contribute to neuronal cell death. Our previous work demonstrated the ability of glutamate oxaloacetate transaminase (GOT) to metabolize neurotoxic glutamate in the stroke-affected brain. Here, we seek to identify small-molecule inducers of GOT expression to mitigate ischemic stroke injury. From a panel of phytoestrogen isoflavones, biochanin A (BCA) was identified as the most potent inducer of GOT gene expression in neural cells. BCA significantly increased GOT mRNA and protein expression at 24 h and protected against glutamate-induced cell death. Of note, this protection was lost when GOT was knocked down. To validate outcomes in vivo, C57BL/6 mice were intraperitoneally injected with BCA (5 and 10 mg/kg) for 4 wk and subjected to ischemic stroke. BCA levels were significantly increased in plasma and brain of mice. Immunohistochemistry demonstrated increased GOT protein expression in the brain. BCA attenuated stroke lesion volume as measured by 9.4T MRI and improved sensorimotor function-this protection was lost with GOT knockdown. BCA increased luciferase activity in cells that were transfected with the pERRE3tk-LUC plasmid, which demonstrated transactivation of GOT. This increase was lost when estrogen-related receptor response element sites were mutated. Taken together, BCA represents a natural phytoestrogen that mitigates stroke-induced injury by inducing GOT expression.-Khanna, S., Stewart, R., Gnyawali, S., Harris, H., Balch, M., Spieldenner, J., Sen, C. K., Rink, C. Phytoestrogen isoflavone intervention to engage the neuroprotective effect of glutamate oxaloacetate transaminase against stroke.
Collapse
Affiliation(s)
- Savita Khanna
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Richard Stewart
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Surya Gnyawali
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hallie Harris
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Maria Balch
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - James Spieldenner
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Chandan K Sen
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Cameron Rink
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
80
|
Takahashi M, Muromoto R, Kojima H, Takeuchi S, Kitai Y, Kashiwakura JI, Matsuda T. Biochanin A enhances RORγ activity through STAT3-mediated recruitment of NCOA1. Biochem Biophys Res Commun 2017; 489:503-508. [PMID: 28579428 DOI: 10.1016/j.bbrc.2017.05.181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022]
Abstract
Interleukin (IL)-17-producing T cells play important roles in autoimmunity, chronic inflammation and host protection against extracellular bacteria and fungi. The retinoic acid receptor-related orphan receptors (ROR) α and γ are key regulators of the IL-17-producing phenotype. We previously showed that the isoflavone biochanin A enhanced ROR-mediated transcriptional activity. Here, we investigated the possible mechanisms underlying this ROR activation. Biochanin A-treated murine thymoma EL4 and primary splenocytes demonstrated enhanced induction of IL-17. Biochanin A also induced tyrosine-phosphorylation of signal transducer and activator of transcription 3 (STAT3) in these cells. Stable knockdown of either RORγ or STAT3 in EL4 cells canceled biochanin A-induced upregulation of IL-17 expression. Importantly, biochanin A enhanced complex formation between RORγ and STAT3 or nuclear-receptor coactivator 1 (NCOA1). Furthermore, the biochanin A-induced RORγ-NCOA1 complex was disrupted by a dominant negative mutant of STAT3 or by the STAT3 specific inhibitor Stattic. These results suggest that biochanin A activates RORγ-dependent IL-17 transcription through the enhancement of STAT3 phosphorylation and STAT3-mediated recruitment of NCOA1 to RORγ.
Collapse
Affiliation(s)
- Miki Takahashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Hiroyuki Kojima
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku Sapporo, 060-0819, Japan
| | - Shinji Takeuchi
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku Sapporo, 060-0819, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
81
|
Kašparovská J, Dadáková K, Lochman J, Hadrová S, Křížová L, Kašparovský T. Changes in equol and major soybean isoflavone contents during processing and storage of yogurts made from control or isoflavone-enriched bovine milk determined using LC-MS (TOF) analysis. Food Chem 2017; 222:67-73. [PMID: 28041561 DOI: 10.1016/j.foodchem.2016.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 11/25/2016] [Accepted: 12/04/2016] [Indexed: 01/22/2023]
Abstract
The effect of supplementing a basal diet for dairy cows with "Soybean extract 40" (Biomedica, Prague, Czech Republic), containing 40% soybean isoflavones, on the contents of daidzein, glycitein, genistein, and equol in milk as well as fresh and mature yogurts was estimated. To determine the contents of these isoflavonoids, an efficient analytical LC-MS (TOF) technique was used. The "Soybean extract 40" used in our study contained an especially high proportion of daidzein (307gkg-1). In both milk and yogurt samples, the amounts of daidzein and its metabolite equol were significantly higher in samples obtained from cows that received the isoflavone extract-supplemented diet than from those that received the basal diet, as the precursor daidzein contributed to the increased equol concentrations. Fermentation caused significant changes in the daidzein and glycitein concentrations. With maturation, the concentrations of daidzein and equol were unaffected, while the glycitein concentration decreased significantly.
Collapse
Affiliation(s)
| | | | - Jan Lochman
- Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Sylvie Hadrová
- Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | | | | |
Collapse
|
82
|
Patisaul HB. Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours. Proc Nutr Soc 2017; 76:130-144. [PMID: 27389644 PMCID: PMC5646220 DOI: 10.1017/s0029665116000677] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A wide range of health benefits have been ascribed to soya intake including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms. Because it is a hormonally active diet, however, soya can also be endocrine disrupting, suggesting that intake has the potential to cause adverse health effects in certain circumstances, particularly when exposure occurs during development. Consequently, the question of whether or not soya phyto-oestrogens are beneficial or harmful to human health is neither straightforward nor universally applicable to all groups. Possible benefits and risks depend on age, health status, and even the presence or absence of specific gut microflora. As global consumption increases, greater awareness and consideration of the endocrine-disrupting properties of soya by nutrition specialists and other health practitioners is needed. Consumption by infants and small children is of particular concern because their hormone-sensitive organs, including the brain and reproductive system, are still undergoing sexual differentiation and maturation. Thus, their susceptibility to the endocrine-disrupting activities of soya phyto-oestrogens may be especially high. As oestrogen receptor partial agonists with molecular and cellular properties similar to anthropogenic endocrine disruptors such as bisphenol A, the soya phyto-oestrogens provide an interesting model for how attitudes about what is 'synthetic' v. what is 'natural,' shapes understanding and perception of what it means for a compound to be endocrine disrupting and/or potentially harmful. This review describes the endocrine-disrupting properties of soya phyto-oestrogens with a focus on neuroendocrine development and behaviour.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences,Center for Human Health and the Environment,NC State University,Raleigh,NC 27695,USA
| |
Collapse
|
83
|
Wang YX, Tian K, He CC, Ma XL, Zhang F, Wang HG, An D, Heng B, Jiang YG, Liu YQ. Genistein inhibits hypoxia, ischemic-induced death, and apoptosis in PC12 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:227-233. [PMID: 28192752 DOI: 10.1016/j.etap.2017.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 06/06/2023]
Abstract
A hypoxia/ischemia neuronal model was established in PC12 cells using oxygen-glucose deprivation (OGD). OGD-induced neuronal death, apoptosis, glutamate receptor subunit GluR2 expression, and potassium channel currents were evaluated in the present study to determine the effects of genistein in mediating the neuronal death and apoptosis induced by hypoxia and ischemia, as well as its underlying mechanism. OGD exposure reduced the cell viability, increased apoptosis, decreased the GluR2 expression, and decreased the voltage-activated potassium currents. Genistein partially reversed the effects induced by OGD. Therefore, genistein may prevent hypoxia/ischemic-induced neuronal apoptosis that is mediated by alterations in GluR2 expression and voltage-activated potassium currents.
Collapse
Affiliation(s)
- Yu-Xiang Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kun Tian
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Cong-Cong He
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xue-Ling Ma
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Feng Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hong-Gang Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Di An
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bin Heng
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu-Gang Jiang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
84
|
Heng D, Zhang T, Tian Y, Yu S, Liu W, Xu K, Liu J, Ding Y, Zhu B, Yang Y, Zhang C. Effects of dietary soybean isoflavones (SI) on reproduction in the young breeder rooster. Anim Reprod Sci 2017; 177:124-131. [PMID: 28041654 DOI: 10.1016/j.anireprosci.2016.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/02/2016] [Accepted: 12/22/2016] [Indexed: 11/15/2022]
Abstract
Soybean isoflavones (SIs) are phytoestrogens that competitive with estrogens in body. Although SIs play an important role in reproduction, their role in testicular development in roosters is unknown. This study was conducted to investigate the effect of SIs on testicular development and serum reproductive hormone profiles in young breeder roosters (70-133days old). Gene expression of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD), which are related to testosterone synthesis, in rooster testis were also evaluated after treatment with different SI doses. Although SIs had no significant effect on body weight, 5mg/kg SIs significantly increased the testis index and serum levels of reproductive hormones (gonadotropin releasing hormone, follicle- stimulating hormone, luteinizing hormone, and testosterone).To further investigate whether SIs regulate hormone synthesis via StAR, p450scc, 3β-HSD, real time-PCR was performed to measure the mRNA levels of the corresponding genes. The results showed that 5mg/kg of SIs significantly increased StAR mRNA levels. However, there were no significant effects on p450scc or 3β-HSD mRNA levels. Moreover, the spermatogonial development and the number of germ cell layers were increased by treatment with 5mg/kg of SIs. These results suggest that SIs promote testicular growth by increasing reproductive hormone secretion, which is closely related to StAR expression, to positively regulate reproduction in young roosters.
Collapse
Affiliation(s)
- Dai Heng
- College of Life Science, Capital Normal University, Beijing 100048, People's Republic of China
| | - Tao Zhang
- Animal Husbandry and Veterinary Medicine, Ningxia Agricultural School, Yinchuan, Ningxia 750021, People's Republic of China
| | - Ye Tian
- College of Life Science, Capital Normal University, Beijing 100048, People's Republic of China
| | - Shangyu Yu
- College of Life Science, Capital Normal University, Beijing 100048, People's Republic of China
| | - Wenbo Liu
- College of Life Science, Capital Normal University, Beijing 100048, People's Republic of China
| | - Kaili Xu
- College of Life Science, Capital Normal University, Beijing 100048, People's Republic of China
| | - Juan Liu
- College of Life Science, Capital Normal University, Beijing 100048, People's Republic of China
| | - Yu Ding
- College of Life Science, Capital Normal University, Beijing 100048, People's Republic of China
| | - Baochang Zhu
- College of Life Science, Capital Normal University, Beijing 100048, People's Republic of China
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Ningxia 750004, People's Republic of China.
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, People's Republic of China.
| |
Collapse
|
85
|
Yan Z, Zhang X, Li C, Jiao S, Dong W. Association between consumption of soy and risk of cardiovascular disease: A meta-analysis of observational studies. Eur J Prev Cardiol 2017; 24:735-747. [PMID: 28067550 DOI: 10.1177/2047487316686441] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zhaoli Yan
- Department of Neurosurgery, The Affiliated Hospital of Shandong Traditional Chinese Medicine University, China
| | - Xinyue Zhang
- Clinic Medical College, Shandong Traditional Chinese Medicine University, China
| | - Chunlin Li
- Department of Information, The Affiliated Hospital of Shandong Traditional Chinese Medicine University, China
| | - Shouchun Jiao
- Department of Rehabilitation, Laigang Hospital Affiliated to Taishan Medical College, China
| | - Wenyao Dong
- Clinic Medical College, Shandong Traditional Chinese Medicine University, China
| |
Collapse
|
86
|
Heravi M, Zadsirjan V, Hamidi H, Tabar Amiri PH. Total synthesis of natural products containing benzofuran rings. RSC Adv 2017. [DOI: 10.1039/c7ra03551a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this review, various approaches for the construction of benzofurans as an important moiety in different natural products during the total synthesis of the natural of products are underscored.
Collapse
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry
- School of Sciences
- Alzahra University
- Tehran
- Iran
| | - Vahideh Zadsirjan
- Department of Chemistry
- School of Sciences
- Alzahra University
- Tehran
- Iran
| | - Hoda Hamidi
- Department of Chemistry
- School of Sciences
- Alzahra University
- Tehran
- Iran
| | | |
Collapse
|
87
|
Pons DG, Nadal-Serrano M, Torrens-Mas M, Oliver J, Roca P. The Phytoestrogen Genistein Affects Breast Cancer Cells Treatment Depending on the ERα/ERβ Ratio. J Cell Biochem 2016; 117:218-29. [PMID: 26100284 DOI: 10.1002/jcb.25268] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/18/2015] [Indexed: 12/17/2022]
Abstract
Genistein (GEN) is a phytoestrogen found in soybeans. GEN exerts its functions through its interaction with the estrogen receptors (ER), ERα and ERβ, and we previously reported that the ERα/ERβ ratio is an important factor to consider in GEN-treated breast cancer cells. The aim of this study was to investigate the effects of GEN in breast cancer cells with different ERα/ERβ ratio: MCF-7 (high ratio), T47D (low ratio), and MCF-7 overexpressing ERβ (MCF7 + ERβ) treated with cisplatin (CDDP), paclitaxel (PTX) or tamoxifen (TAM). Cell viability, ROS production, autophagy, apoptosis, antioxidant enzymes protein levels, and cell cycle were analyzed. GEN treatment provoked an increase in cell viability in MCF-7 cells and in the antioxidant enzymes protein levels in combination with the cytotoxic agents, decreasing ROS production (CDDP + GEN and TAM+GEN) and autophagy (TAM + GEN) or apoptosis (CDDP + GEN and TAM + GEN). Moreover GEN treatment enhanced the cell cycle S phase entry in CDDP+GEN- and TAM + GEN-treated MCF-7 cells and, in the case of CDDP + GEN, increased the proportion of cells in the G2/M phase and decreased it in the subG0 /G1 phase. Otherwise, in the T47D and MCF7 + ERβ cells the combination of GEN with cytotoxic treatments did not cause significant changes in these parameters, even TAM + GEN-treated T47D cells showed less cell viability due to an increment in the autophagy. In conclusion, GEN consumption may be counterproductive in those patients receiving anticancer treatment with a high ERα/ERβ ratio diagnosed breast cancer and it could be harmless or even beneficial in those patients with a lower ERα/ERβ ratio breast cancer cells.
Collapse
Affiliation(s)
- Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS-IdISPa), Universitat de les Illes Balears, E07122 Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Spain
| | - Mercedes Nadal-Serrano
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS-IdISPa), Universitat de les Illes Balears, E07122 Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Spain
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS-IdISPa), Universitat de les Illes Balears, E07122 Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS-IdISPa), Universitat de les Illes Balears, E07122 Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS-IdISPa), Universitat de les Illes Balears, E07122 Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Spain
| |
Collapse
|
88
|
Harris DM, Besselink E, Henning SM, Go VLW, Heber D. Phytoestrogens Induce Differential Estrogen Receptor Alpha- or Beta-Mediated Responses in Transfected Breast Cancer Cells. Exp Biol Med (Maywood) 2016; 230:558-68. [PMID: 16118406 DOI: 10.1177/153537020523000807] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Increased intake of phytoestrogens may be associated with a lower risk of cancer in the breast and several other sites, although there is controversy surrounding this activity. One of the mechanisms proposed to explain the activity of phytoestrogens is their ability to bind and activate human estrogen receptor a (ERα) and human estrogen receptor β (ERβ). Nine phytoestrogens were tested for their ability to transactivate ERα or ERβ at a range of doses. Mammary adenocarcinoma (MCF-7) cells were co-transfected with either ERα or ERβ, and an estrogen-response element was linked to a luciferase reporter gene. Dose-dependent responses were compared with the endogenous ligand 17β-estradiol. Purified genistein, daidzein, apigenin, and coumestrol showed differential and robust transactivation of ERα- and ERβ-induced transcription, with an up to 100-fold stronger activation of ERβ. Equol, naringenin, and kaempferol were weaker agonists. When activity was evaluated against a background of 0.5 nM 17β-estradiol, the addition of genistein, daidzein, and resveratrol superstimulated the system, while kaempferol and quercetin were antagonists at the highest doses. This transfection assay provides an excellent model to evaluate the activation of ERα and ERβ by different phytoestrogens in a breast cancer context and can be used as a screening bioassay tool to evaluate the estrogenic activity of extracts of herbs and foods.
Collapse
Affiliation(s)
- D M Harris
- The UCLA Center for Human Nutrition, 13-145 Warren Hall, 900 Veteran Avenue, Los Angeles, CA 90095-1742, USA.
| | | | | | | | | |
Collapse
|
89
|
Anwer F, Chaurasia S, Khan AA. Hormonally active agents in the environment: a state-of-the-art review. REVIEWS ON ENVIRONMENTAL HEALTH 2016; 31:415-433. [PMID: 27487487 DOI: 10.1515/reveh-2016-0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
After the Second World War, infatuation with modern products has exponentially widened the spectrum of chemicals used. Some of them are capable of hijacking the endocrine system by blocking or imitating a hormone and are referred to as hormonally active chemicals or endocrine disruptors. These are chemicals that the body was not designed for evolutionarily and they are present in every matrix of the environment. We are living in a chemical world where the exposures are ubiquitous and take place in combinations that can interact with the endocrine system and some other metabolic activities in unexpected ways. The complexity of interaction of these compounds can be understood by the fact that they interfere with gene expression at extremely low levels, consequently harming an individual life form, its offspring or population. As the endocrine system plays a critical role in many biological or physiological functions, by interfering body's endocrine system, endocrine disrupting compounds (EDCs) have various adverse effects on human health, starting from birth defects to developmental disorders, deadly deseases like cancer and even immunological disorders. Most of these compounds have not been tested yet for safety and their effects cannot be assessed by the available techniques. The establishment of proper exposure measurement techniques and integrating correlation is yet to be achieved to completely understand the impacts at various levels of the endocrine axis.
Collapse
|
90
|
Molecular and Therapeutic Targets of Genistein in Alzheimer's Disease. Mol Neurobiol 2016; 54:7028-7041. [PMID: 27796744 DOI: 10.1007/s12035-016-0215-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a devastating brain disorder characterized by an increased level of amyloid-beta (Aβ) peptide deposition and neuronal cell death leading to an impairment of learning and thinking skills. The Aβ deposition is a key factor in senile plaques of the AD brain which cause the elevation of intracellular calcium ions and the production of formidable free radicals, both of which greatly contribute to the AD-associated cascade, leading to unstoppable neuronal loss in the hippocampal region of the brain. Natural products are currently considered as an alternative strategy for the discovery of novel multipotent drugs against AD. They include the naturally occurring dietary soy isoflavone genistein which has been recognized to possess several health-promoting effects. Genistein has been mainly focused because of its potential on amelioration of Aβ-induced impairment and its antioxidant capacity to scavenge the free radicals produced in AD. It can also directly interact with the targeted signaling proteins and stabilize their activity to prevent AD. An improved understanding of the direct interactions between genistein and target proteins would contribute to the further development of AD treatment. This review mainly focuses on molecular targets and the therapeutic effects regulated by genistein, which has the ability to directly target the Aβ peptide and to control its activity involved in intracellular signaling pathways, which otherwise would lead to neuronal death in the hippocampal region of the AD brain.
Collapse
|
91
|
Sheng J, Xu T, Zhang E, Zhang X, Wei W, Zou Y. Synthesis of Coumestrol and Aureol. JOURNAL OF NATURAL PRODUCTS 2016; 79:2749-2753. [PMID: 27704859 DOI: 10.1021/acs.jnatprod.6b00510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A total synthesis of coumestrol (1) and aureol (2) is described. The Perkin condensation of 2-bromo-4-hydroxylphenylacetic acid (6) and o-hydroxybenzaldehydes (7) gave the corresponding 2'-bromo-3-arylcoumarins (9). A copper-catalyzed consecutive hydroxylation and aerobic oxidative coupling of 9 under microwave conditions facilitated the total synthesis of 1 and 2, respectively, with spectroscopic data highly similar to those of natural products.
Collapse
Affiliation(s)
- Jianfei Sheng
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou, 510006, People's Republic of China
- Zhongshan WanYuan New Drug R&D Co., Ltd. , Zhongshan City, 528451, People's Republic of China
| | - Tianlong Xu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences , Guangzhou, 510650, People's Republic of China
- Zhongshan WanYuan New Drug R&D Co., Ltd. , Zhongshan City, 528451, People's Republic of China
| | - Ensheng Zhang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences , Guangzhou, 510650, People's Republic of China
- Zhongshan WanYuan New Drug R&D Co., Ltd. , Zhongshan City, 528451, People's Republic of China
| | - Xuejing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou, 510006, People's Republic of China
- Zhongshan WanYuan New Drug R&D Co., Ltd. , Zhongshan City, 528451, People's Republic of China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University , Guangzhou, 510080, People's Republic of China
| | - Wentao Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou, 510006, People's Republic of China
- Zhongshan WanYuan New Drug R&D Co., Ltd. , Zhongshan City, 528451, People's Republic of China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou, 510006, People's Republic of China
- Zhongshan WanYuan New Drug R&D Co., Ltd. , Zhongshan City, 528451, People's Republic of China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University , Guangzhou, 510080, People's Republic of China
| |
Collapse
|
92
|
Zhu Y, Xu H, Li M, Gao Z, Huang J, Liu L, Huang X, Li Y. Daidzein impairs Leydig cell testosterone production and Sertoli cell function in neonatal mouse testes: An in vitro study. Mol Med Rep 2016; 14:5325-5333. [PMID: 27840926 DOI: 10.3892/mmr.2016.5896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/26/2016] [Indexed: 11/06/2022] Open
Abstract
Isoflavone is a type of phytoestrogen that exists in soy‑based products. Previous studies have reported that certain foods containing isoflavones, particularly infant formula, may have potential adverse effects on male reproductive function. However, few studies have focused on the effects of isoflavones on testosterone biosynthesis and Sertoli cell function during the neonatal period. The aim of the present study was to investigate the influence of daidzein, a common isoflavone, on testosterone secretion and Sertoli cell function during the neonatal period. The organ culture method was used to assess the effects of daidzein on neonatal mouse testes. Cultured testes were treated with daidzein (0, 0.03, 0.3, 3 or 30 µmol/l) for 72 h. To verify the mechanism of action of daidzein on androgen production, Leydig cells were also treated with daidzein for 24 h. As anticipated, testosterone secretions were suppressed by daidzein (30 µmol/l) in cultured testes and Leydig cells. Further analysis demonstrated that the expression levels of steroidogenic acute regulatory protein (StAR), cholesterol side‑chain cleavage enzyme (P450scc) and 3β‑hydroxysteroid dehydrogenase (3β‑HSD), which are transport proteins and key enzymes in androgen biosynthesis, were suppressed in cultured neonatal mouse testes. In addition, the expression levels of StAR, P450scc, 3β‑HSD and 17α‑hydroxylase/20‑lyase were decreased in Leydig cells. Notably, proliferation of Sertoli cells was also inhibited by daidzein (30 µmol/l). Furthermore, the expression levels of vimentin were significantly suppressed in the testes following treatment with daidzein, whereas inhibin B expression exhibited no change. In conclusion, daidzein may suppress steroidogenic capability and impair Sertoli cell function in the neonatal period in vitro.
Collapse
Affiliation(s)
- Yanfeng Zhu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hua Xu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Li
- Department of Public Health, Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Zhibin Gao
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jie Huang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Linxi Liu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoming Huang
- Department of Public Health, Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Yun Li
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
93
|
Li L, Liu JZ, Luo M, Wang W, Huang YY, Efferth T, Wang HM, Fu YJ. Efficient extraction and preparative separation of four main isoflavonoids from Dalbergia odorifera T. Chen leaves by deep eutectic solvents-based negative pressure cavitation extraction followed by macroporous resin column chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:40-48. [DOI: 10.1016/j.jchromb.2016.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023]
|
94
|
Soto-Zarazúa MG, Bah M, García-Alcocer MG, Berumen LC, Costa CS, Bessa MJ, Rodrigues F, Teixeira JP, Oliveira MBPP. Assessment of Beneficial and Possible Toxic Effects of Two New Alfalfa-Derived Shelf Products. J Med Food 2016; 19:970-977. [PMID: 30913400 DOI: 10.1089/jmf.2016.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aerial parts of Medicago sativa L. have been used as food and its consumption has been associated with health benefits, one among the most important being menopausal symptoms control. This work was aimed to explore possible pharmacological effects of two new alfalfa-derived products that have recently emerged as daily beverage preparations. In exploring their potential estrogenic effects, they produced no relevant alteration in the uterus. However, lowering glucose levels until normal values without causing further hypoglycemic effect were observed, when rats were treated with 1.5 g/kg/day samples. In vivo acute toxicity was not found when the alfalfa products were tested up to 3 g/kg rat weight. Furthermore, in vitro studies were conducted to assess their possible toxic effects. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase tests were carried out on the Caco-2 cell model to determine cell viability and membrane integrity. A concentration-dependent effect was observed, with a significant decrease in cell viability after exposure to concentrations of alfalfa product up to 100 mg/mL (after 3 h of incubation) and 50 mg/mL (after 24 h of treatment). Although in vitro level, the decrease in cell viability at these still low doses may underlie some toxicity, making necessary additional studies before any recommendation of a sustained consumption of these products by humans.
Collapse
Affiliation(s)
- María G Soto-Zarazúa
- 1 Chemical and Biological Sciences Postgraduate Department, Faculty of Chemistry, Autonomous University of Querétaro, Querétaro, Mexico .,2 REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Porto, Portugal
| | - Moustapha Bah
- 1 Chemical and Biological Sciences Postgraduate Department, Faculty of Chemistry, Autonomous University of Querétaro, Querétaro, Mexico
| | - María G García-Alcocer
- 1 Chemical and Biological Sciences Postgraduate Department, Faculty of Chemistry, Autonomous University of Querétaro, Querétaro, Mexico
| | - Laura C Berumen
- 1 Chemical and Biological Sciences Postgraduate Department, Faculty of Chemistry, Autonomous University of Querétaro, Querétaro, Mexico
| | - Carla Sofia Costa
- 3 Department of Environmental Health, Portuguese National Institute of Health , Porto, Portugal .,4 EPIUnit-Institute of Public Health, University of Porto , Porto, Portugal
| | - Maria João Bessa
- 3 Department of Environmental Health, Portuguese National Institute of Health , Porto, Portugal
| | - Francisca Rodrigues
- 2 REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Porto, Portugal
| | - João Paulo Teixeira
- 3 Department of Environmental Health, Portuguese National Institute of Health , Porto, Portugal .,4 EPIUnit-Institute of Public Health, University of Porto , Porto, Portugal
| | | |
Collapse
|
95
|
The effect of red clover formononetin content on live-weight gain, carcass characteristics and muscle equol content of finishing lambs. ACTA ACUST UNITED AC 2016. [DOI: 10.1017/s1357729800090160] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractTo investigate the effect of red clover formononetin concentration on lamb growth rate and carcass characteristics, 20 lambs (10 ewe lambs and 10 wethers) were grazed on each of three forages : red clover with a high formononetin concentration (HF), red clover with a low formononetin concentration (LF) and a control perennial ryegrass. Animals were finished at condition score 3L, at which point half of all animals were slaughtered immediately, while the other half of the animals were moved to a common ryegrass plot for 3 weeks as a 'withdrawal' period. Mean formononetin concentrations were 0-0, 4-7 and 3-3 g/kg dry matter (DM) for grass, HF and LF swards respectively. The clover swards had higher crude protein concentrations and lower fibre and water-soluble carbohydrate concentrations than the control ryegrass sward. Lambs grazing the HF clover gained 40 g/day live weight more (P < 0-1) than lambs on the other two forages without an increase in forage DM intake as estimated using the nalkane technique. There was no difference in the empty body weight, killing-out proportion, carcass fat class or condition score between animals finished on any of the three forages. Following the 3-week withdrawal period on ryegrass, there were significant residual effects of previous grazed forage on carcass weight, with HF lambs producing heavier carcasses than other lambs. Plasma concentrations of growth hormone and insulin-like growth factor-1 were highest in lambs grazing the HF clover, and suggest a physiological mechanism for the increased growth rates of these animals. There were no differences in the equol contents of the meat of lambs finished on the clover, compared with animals finished on grass, suggesting that there would be no implications for human health following consumption of meat produced from lambs grazing red clover, even with a relatively high concentration of formo'nonetin.
Collapse
|
96
|
Landete JM, Arqués J, Medina M, Gaya P, de Las Rivas B, Muñoz R. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health. Crit Rev Food Sci Nutr 2016; 56:1826-43. [PMID: 25848676 DOI: 10.1080/10408398.2013.789823] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phytoestrogens are polyphenols similar to human estrogens found in plants or derived from plant precursors. Phytoestrogens are found in high concentration in soya, flaxseed and other seeds, fruits, vegetables, cereals, tea, chocolate, etc. They comprise several classes of chemical compounds (stilbenes, coumestans, isoflavones, ellagitannins, and lignans) which are structurally similar to endogenous estrogens but which can have both estrogenic and antiestrogenic effects. Although epidemiological and experimental evidence indicates that intake of phytoestrogens in foods may be protective against certain chronic diseases, discrepancies have been observed between in vivo and in vitro experiments. The microbial transformations have not been reported so far in stilbenes and coumestans. However, isoflavones, ellagitanins, and lignans are metabolized by intestinal bacteria to produce equol, urolithins, and enterolignans, respectively. Equol, urolithin, and enterolignans are more bioavailable, and have more estrogenic/antiestrogenic and antioxidant activity than their precursors. Moreover, equol, urolithins and enterolignans have anti-inflammatory effects and induce antiproliferative and apoptosis-inducing activities. The transformation of isoflavones, ellagitanins, and lignans by intestinal microbiota is essential to be protective against certain chronic diseases, as cancer, cardiovascular disease, osteoporosis, and menopausal symptoms. Bioavailability, bioactivity, and health effects of dietary phytoestrogens are strongly determined by the intestinal bacteria of each individual.
Collapse
Affiliation(s)
- J M Landete
- a Departamento de Tecnología de Alimentos , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) . Madrid , Spain
| | - J Arqués
- a Departamento de Tecnología de Alimentos , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) . Madrid , Spain
| | - M Medina
- a Departamento de Tecnología de Alimentos , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) . Madrid , Spain
| | - P Gaya
- a Departamento de Tecnología de Alimentos , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) . Madrid , Spain
| | - B de Las Rivas
- b Departamento de Biotecnología Bacteriana , Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC) , Madrid , Spain
| | - R Muñoz
- b Departamento de Biotecnología Bacteriana , Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC) , Madrid , Spain
| |
Collapse
|
97
|
Nayak M, Jung Y, Kim I. Syntheses of pterocarpenes and coumestans via regioselective cyclodehydration. Org Biomol Chem 2016; 14:8074-87. [PMID: 27503798 DOI: 10.1039/c6ob01451h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A highly efficient synthetic route to pterocarpenes and coumestans is described. BCl3-mediated dehydrative cyclization of 1,3-diaryloxyacetones under mild conditions permitted regioselective ring closure to afford 3-((2-iodoaryloxy)methyl)benzofurans which were converted to the corresponding pterocarpenes by Pd-catalyzed intramolecular direct arylation. The subsequent benzylic oxidation led to coumestans. This sequence was applied to the formal syntheses of coumestrol and the proposed structure of plicadin as well as total syntheses of flemichapparins B and C.
Collapse
Affiliation(s)
- Maloy Nayak
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| | | | | |
Collapse
|
98
|
Kasparovska J, Pecinkova M, Dadakova K, Krizova L, Hadrova S, Lexa M, Lochman J, Kasparovsky T. Effects of Isoflavone-Enriched Feed on the Rumen Microbiota in Dairy Cows. PLoS One 2016; 11:e0154642. [PMID: 27124615 PMCID: PMC4849651 DOI: 10.1371/journal.pone.0154642] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/15/2016] [Indexed: 01/04/2023] Open
Abstract
In this study, we compared the effects of two diets containing different isoflavone concentrations on the isoflavone transfer from feed into milk and on the rumen microbiota in lactating dairy cows. The on-farm experiment was conducted on twelve lactating Czech Fleckvieh x Holstein cows divided into two groups, each with similar mean milk yield. Twice daily, cows were individually fed a diet based on maize silage, meadow hay and supplemental mixture. Control group (CTRL) received the basal diet while the experimental group (EXP) received the basal diet supplemented with 40% soybean isoflavone extract. The average daily isoflavone intake in the EXP group (16 g/day) was twice as high as that in the CTRL group (8.4 g/day, P<0.001). Total isoflavone concentrations in milk from the CTRL and EXP groups were 96.89 and 276.07 μg/L, respectively (P<0.001). Equol concentrations in milk increased from 77.78 μg/L in the CTRL group to 186.30 μg/L in the EXP group (P<0.001). The V3-4 region of bacterial 16S rRNA genes was used for metagenomic analysis of the rumen microbiome. The experimental cows exhibited fewer OTUs at a distance level of 0.03 compared to control cows (P<0.05) and reduced microbial richness compared to control cows based on the calculated Inverse Simpson and Shannon indices. Non-metric multidimensional scaling analysis showed that the major contributor to separation between the experimental and control groups were changes in the representation of bacteria belonging to the phyla Bacteroidetes, Proteobacteria, Firmicutes, and Planctomycetes. Surprisingly, a statistically significant positive correlation was found only between isoflavones and the phyla Burkholderiales (r = 0.65, P<0.05) and unclassified Betaproteobacteria (r = 0.58, P<0.05). Previous mouse and human studies of isoflavone effects on the composition of gastrointestinal microbial populations generally report similar findings.
Collapse
Affiliation(s)
- Jitka Kasparovska
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martina Pecinkova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katerina Dadakova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ludmila Krizova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sylvie Hadrova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Matej Lexa
- Department of Information Technologies, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomas Kasparovsky
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
99
|
Kristanc L, Kreft S. European medicinal and edible plants associated with subacute and chronic toxicity part I: Plants with carcinogenic, teratogenic and endocrine-disrupting effects. Food Chem Toxicol 2016; 92:150-64. [PMID: 27090581 DOI: 10.1016/j.fct.2016.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 12/14/2022]
Abstract
In recent decades, the use of herbal medicines and food products has been widely embraced in many developed countries. These products are generally highly accepted by consumers who often believe that "natural" equals "safe". This is, however, an oversimplification because several botanicals have been found to contain toxic compounds in concentrations harmful to human health. Acutely toxic plants are in most cases already recognised as dangerous as a result of their traditional use, but plants with subacute and chronic toxicity are difficult or even impossible to detect by traditional use or by clinical research studies. In this review, we systematically address major issues including the carcinogenicity, teratogenicity and endocrine-disrupting effects associated with the use of herbal preparations with a strong focus on plant species that either grow natively or are cultivated in Europe. The basic information regarding the molecular mechanisms of the individual subtypes of plant-induced non-acute toxicity is given, which is followed by a discussion of the pathophysiological and clinical characteristics. We describe the genotoxic and carcinogenic effects of alkenylbenzenes, pyrrolizidine alkaloids and bracken fern ptaquiloside, the teratogenicity issues regarding anthraquinone glycosides and specific alkaloids, and discuss the human health concerns regarding the phytoestrogens and licorice consumption in detail.
Collapse
Affiliation(s)
- Luka Kristanc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia; Primary Healthcare of Gorenjska, ZD Kranj, Gosposvetska Ulica 10, 4000 Kranj, Slovenia.
| | - Samo Kreft
- Faculty of Pharmacy, University of Ljubljana, Tržaška Cesta 32, 1000 Ljubljana, Slovenia
| |
Collapse
|
100
|
Lim W, Song G. Stimulatory Effects of Coumestrol on Embryonic and Fetal Development Through AKT and ERK1/2 MAPK Signal Transduction. J Cell Physiol 2016; 231:2733-40. [PMID: 26991852 DOI: 10.1002/jcp.25381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/15/2016] [Indexed: 01/25/2023]
Abstract
Successful establishment of pregnancy is required for fetal-maternal interactions regulating implantation, embryonic development and placentation. A uterine environment with insufficient growth factors and nutrients increases the incidence of intrauterine growth restriction (IUGR) leading to an impaired uterine environment. In the present study, we demonstrated the effects of the phytoestrogen coumestrol on conceptus development in the pig that is regarded as an excellent biomedical animal model for research on IUGR. Results of this study indicated that coumestrol induced migration of porcine trophectoderm (pTr) cells in a concentration-dependent manner. In response to coumestrol, the phosphorylation of AKT, P70S6K, S6, ERK1/2 MAPK, and P90RSK proteins were activated in pTr cells and ERK1/2 MAPK and P90RSK phosphorylation was prolonged for a longer period than for the other proteins. To identify the signal transduction pathway induced by coumestrol, pharmacological inhibitors U0126 (an ERK1/2 inhibitor) and LY294002 (a PI3K inhibitor) were used to pretreat pTr cells. The results showed that coumestrol-induced phosphorylation of ERK1/2 MAPK and P90RSK was blocked by U0126. In addition, the increased phosphorylation in response to coumestrol was completely inhibited following pre-treatment incubation of pTr cells in the presence of LY294002 and U0126. Furthermore, these two inhibitors suppressed the ability of coumestrol to induce migration of pTr cells. Collectively, these findings suggest that coumestrol affects embryonic development through activation of the PI3K/AKT and ERK1/2 MAPK cell signal transduction pathways and improvement in the uterine environment through coumestrol supplementation may provide beneficial effects of enhancing embryonic and fetal survival and development. J. Cell. Physiol. 231: 2733-2740, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|