51
|
Wang Z, Wu Z, Huang P. The function of miRNAs in hepatocarcinogenesis induced by hepatitis B virus X protein. Oncol Rep 2017. [DOI: 10.3892/or.2017.5716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
52
|
Asimakopoulou A, Fülöp A, Borkham-Kamphorst E, de Leur EV, Gassler N, Berger T, Beine B, Meyer HE, Mak TW, Hopf C, Henkel C, Weiskirchen R. Altered mitochondrial and peroxisomal integrity in lipocalin-2-deficient mice with hepatic steatosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2093-2110. [PMID: 28396286 DOI: 10.1016/j.bbadis.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/04/2017] [Accepted: 04/06/2017] [Indexed: 01/10/2023]
Abstract
Lipocalin-2 (LCN2) is a secreted adipokine that transports small hydrophobic molecules such as fatty acids and steroids. LCN2 limits bacterial growth by sequestering iron-containing siderophores and in mammalian liver protects against inflammation, infection, injury and other stressors. Because LCN2 modulates hepatic fat metabolism and homeostasis, we performed a comparative profiling of proteins and lipids of wild type (WT) and Lcn2-deficient mice fed either standard chow or a methionine- and choline-deficient (MCD) diet. Label-free proteomics and 2D-DIGE protein expression profiling revealed differential expression of BRIT1/MCPH1, FABP5, HMGB1, HBB2, and L-FABP, results confirmed by Western blotting. Gene ontology enrichment analysis identified enrichment for genes associated with mitochondrial membrane permeabilization and metabolic processes involving carboxylic acid. Measurements of mitochondrial membrane potential, mitochondrial chelatable iron pool, intracellular lipid peroxidation, and peroxisome numbers in primary hepatocytes confirmed that LCN2 regulates mitochondrial and peroxisomal integrity. Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight (MALDI-TOF) mass spectrometry imaging identified significant changes to sphingomyelins, triglycerides, and glycerophospholipids in livers of mice fed an MCD diet regardless of LCN2 status. However, two arachidonic acid-containing glycerophospholipids were increased in Lcn2-deficient livers. Thus, LCN2 influences peroxisomal and mitochondrial biology in the liver to maintain triglyceride balance, handle oxidative stress, and control apoptosis.
Collapse
Affiliation(s)
- Anastasia Asimakopoulou
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Annabelle Fülöp
- Applied Research Center in Biomedical Mass Spectrometry (ABIMAS), Instrumental Analysis and Bioanalysis, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Eddy Van de Leur
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | | | - Thorsten Berger
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Birte Beine
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-University, Bochum, Germany
| | - Helmut E Meyer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada; Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Carsten Hopf
- Applied Research Center in Biomedical Mass Spectrometry (ABIMAS), Instrumental Analysis and Bioanalysis, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Corinna Henkel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-University, Bochum, Germany; Bruker Daltonik GmbH, Bremen
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
53
|
Teodoro BG, Sampaio IH, Bomfim LHM, Queiroz AL, Silveira LR, Souza AO, Fernandes AMAP, Eberlin MN, Huang TY, Zheng D, Neufer PD, Cortright RN, Alberici LC. Long-chain acyl-CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle. J Physiol 2016; 595:677-693. [PMID: 27647415 DOI: 10.1113/jp272962] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/11/2016] [Indexed: 12/29/2022] Open
Abstract
KEY POINTS Long-chain acyl-CoA synthetase 6 (ACSL6) mRNA is present in human and rat skeletal muscle, and is modulated by nutritional status: exercise and fasting decrease ACSL6 mRNA, whereas acute lipid ingestion increase its expression. ACSL6 genic inhibition in rat primary myotubes decreased lipid accumulation, as well as activated the higher mitochondrial oxidative capacity programme and fatty acid oxidation through the AMPK/PGC1-α pathway. ACSL6 overexpression in human primary myotubes increased phospholipid species and decreased oxidative metabolism. ABSTRACT Long-chain acyl-CoA synthetases (ACSL 1 to 6) are key enzymes regulating the partitioning of acyl-CoA species toward different metabolic fates such as lipid synthesis or β-oxidation. Despite our understanding of ecotopic lipid accumulation in skeletal muscle being associated with metabolic diseases such as obesity and type II diabetes, the role of specific ACSL isoforms in lipid synthesis remains unclear. In the present study, we describe for the first time the presence of ACSL6 mRNA in human skeletal muscle and the role that ACSL6 plays in lipid synthesis in both rodent and human skeletal muscle. ACSL6 mRNA was observed to be up-regulated by acute high-fat meal ingestion in both rodents and humans. In rats, we also demonstrated that fasting and chronic aerobic training negatively modulated the ACSL6 mRNA and other genes of lipid synthesis. Similar results were obtained following ACSL6 knockdown in rat myotubes, which was associated with a decreased accumulation of TAGs and lipid droplets. Under the same knockdown condition, we further demonstrate an increase in fatty acid content, p-AMPK, mitochondrial content, mitochondrial respiratory rates and palmitate oxidation. These results were associated with increased PGC-1α, UCP2 and UCP3 mRNA and decreased reactive oxygen species production. In human myotubes, ACSL6 overexpression reduced palmitate oxidation and PGC-1α mRNA. In conclusion, ACSL6 drives acyl-CoA toward lipid synthesis and its downregulation improves mitochondrial biogenesis, respiratory capacity and lipid oxidation. These outcomes are associated with the activation of the AMPK/PGC1-α pathway.
Collapse
Affiliation(s)
- Bruno G Teodoro
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.,Federal Institute of Education Science and Technology of São Paulo, Sertãozinho, São Paulo, Brazil
| | - Igor H Sampaio
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Lucas H M Bomfim
- Department of Structural and Functional Biology, Institute of Biology
| | - André L Queiroz
- Department of Structural and Functional Biology, Institute of Biology
| | | | - Anderson O Souza
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Anna M A P Fernandes
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcos N Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Donghai Zheng
- Department of Kinesiology.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - P Darrell Neufer
- Department of Physiology.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Ronald N Cortright
- Department of Kinesiology.,Department of Physiology.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Luciane C Alberici
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
54
|
Tavernier A, Davail S, Ricaud K, Bernadet MD, Gontier K. Genes involved in the establishment of hepatic steatosis in Muscovy, Pekin and mule ducks. Mol Cell Biochem 2016; 424:147-161. [DOI: 10.1007/s11010-016-2850-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|
55
|
Chen WC, Wang CY, Hung YH, Weng TY, Yen MC, Lai MD. Systematic Analysis of Gene Expression Alterations and Clinical Outcomes for Long-Chain Acyl-Coenzyme A Synthetase Family in Cancer. PLoS One 2016; 11:e0155660. [PMID: 27171439 PMCID: PMC4865206 DOI: 10.1371/journal.pone.0155660] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/02/2016] [Indexed: 12/21/2022] Open
Abstract
Dysregulated lipid metabolism contributes to cancer progression. Our previous study indicates that long-chain fatty acyl-Co A synthetase (ACSL) 3 is essential for lipid upregulation induced by endoplasmic reticulum stress. In this report, we aimed to identify the role of ACSL family in cancer with systematic analysis and in vitro experiment. We explored the ACSL expression using Oncomine database to determine the gene alteration during carcinogenesis and identified the association between ACSL expression and the survival of cancer patient using PrognoScan database. ACSL1 may play a potential oncogenic role in colorectal and breast cancer and play a potential tumor suppressor role in lung cancer. Co-expression analysis revealed that ACSL1 was coexpressed with MYBPH, PTPRE, PFKFB3, SOCS3 in colon cancer and with LRRFIP1, TSC22D1 in lung cancer. In accordance with PrognoScan analysis, downregulation of ACSL1 in colon and breast cancer cell line inhibited proliferation, migration, and anchorage-independent growth. In contrast, increase of oncogenic property was observed in lung cancer cell line by attenuating ACSL1. High ACSL3 expression predicted a better prognosis in ovarian cancer; in contrast, high ACSL3 predicted a worse prognosis in melanoma. ACSL3 was coexpressed with SNUPN, TRIP13, and SEMA5A in melanoma. High expression of ACSL4 predicted a worse prognosis in colorectal cancer, but predicted better prognosis in breast, brain and lung cancer. ACSL4 was coexpressed with SERPIN2, HNRNPCL1, ITIH2, PROCR, LRRFIP1. High expression of ACSL5 predicted good prognosis in breast, ovarian, and lung cancers. ACSL5 was coexpressed with TMEM140, TAPBPL, BIRC3, PTPRE, and SERPINB1. Low ACSL6 predicted a worse prognosis in acute myeloid leukemia. ACSL6 was coexpressed with SOX6 and DARC. Altogether, different members of ACSLs are implicated in diverse types of cancer development. ACSL-coexpressed molecules may be used to further investigate the role of ACSL family in individual type of cancers.
Collapse
Affiliation(s)
- Wei-Ching Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Yu-Hsuan Hung
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Tzu-Yang Weng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Meng-Chi Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
- Center for Infectious Diseases and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
56
|
Lian S, Guo JR, Nan XM, Ma L, Loor JJ, Bu DP. MicroRNA Bta-miR-181a regulates the biosynthesis of bovine milk fat by targeting ACSL1. J Dairy Sci 2016; 99:3916-3924. [PMID: 26971144 DOI: 10.3168/jds.2015-10484] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/21/2016] [Indexed: 01/19/2023]
Abstract
MicroRNA (miRNA) are a class of small noncoding RNA that function as important posttranscriptional regulators of gene expression. The acyl-CoA synthetase long-chain family member 1 (ACSL1) is an important enzyme in the process of milk lipid synthesis. In a previous study dealing with incubations of stearic acid in bovine mammary epithelial cells, an opposite expression pattern was observed between ACSL1 and miR-181a. Bioinformatics analysis with TargetScan and PicTar revealed ACSL1 as a potential target gene of miR-181a. The objective of this work was to determine the potential function of miR-181a on milk fat synthesis by defining the regulatory relationship between miR-181a and ACSL1. Primary bovine mammary epithelial cells were harvested from mid-lactation cows and cultured in Dulbecco's modified Eagle's medium/F-12 medium with 10% fetal bovine serum, 0.5μg/mL of insulin, 10 ng/mL of epidermal growth factor, 5μg/mL of transferrin, 1μg/mL of hydrocortisone, 1μg/mL of progesterone, 5μg/mL of estradiol, and 5μg/mL of prolactin. Cells were transfected with an miR-181a mimic to increase its expression and an miR-181a inhibitor to decrease its expression before culturing for 48 h. The results revealed that the overexpression of miR-181a inhibited the expression of ACSL1, whereas the downregulation of miR-181a increased ACSL1 expression. Western blot analysis of ACSL1 revealed similar effects. Oil-red-O staining indicated that cellular lipid droplet synthesis was decreased with the overexpression of bta-miR-181a, and treatment with the bta-miR-181a inhibitor increased concentration of lipid droplets. Furthermore, overexpression of bta-miR-181a resulted in a decrease in concentration of triacylglycerol in the cells, whereas inhibition of bta-miR-181a increased concentration of triacylglycerol. Therefore, the results indicated that bta-miR-181a may contribute to negative regulation of lipid synthesis in mammary cells via targeting ACSL1.
Collapse
Affiliation(s)
- S Lian
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - J R Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - X M Nan
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - L Ma
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D P Bu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China; CAAS-ICRAF Joint Laboratory on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing 100193, China; Synergetic Innovation Center of Food Safety and Nutrition, Harbin, 150030, China.
| |
Collapse
|
57
|
Long B, Muhamad R, Yan G, Yu J, Fan Q, Wang Z, Li X, Purnomoadi A, Achmadi J, Yan X. Quantitative proteomics analysis reveals glutamine deprivation activates fatty acid β-oxidation pathway in HepG2 cells. Amino Acids 2016; 48:1297-307. [PMID: 26837383 DOI: 10.1007/s00726-016-2182-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023]
Abstract
Glutamine, a multifunctional amino acid, functions in nutrient metabolism, energy balance, apoptosis, and cell proliferation. Lipid is an important nutrient and controls a broad range of physiological processes. Previous studies have demonstrated that glutamine can affect lipolysis and lipogenesis, but the effect of glutamine on the detailed lipid metabolism remains incompletely understood. Here, we applied the quantitative proteomics approach to estimate the relative abundance of proteins in HepG2 cells treated by glutamine deprivation. The results showed that there were 212 differentially abundant proteins in response to glutamine deprivation, including 150 significantly increased proteins and 62 significantly decreased proteins. Interestingly, functional classification showed that 43 differentially abundant proteins were related to lipid metabolism. Further bioinformatics analysis and western blotting validation revealed that lipid accumulation may be affected by β-oxidation of fatty acid induced by glutamine deprivation in HepG2 cells. Together, our results may provide the potential for regulating lipid metabolism by glutamine in animal production and human nutrition. The MS data have been deposited to the ProteomeXchange Consortium with identifier PXD003387.
Collapse
Affiliation(s)
- Baisheng Long
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Rodiallah Muhamad
- Faculty of Animal and Agricultural Sciences, Diponegoro University, Tembalang Campus, Semarang, 50275, Central Java, Indonesia
| | - Guokai Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Jie Yu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Qiwen Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zhichang Wang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Xiuzhi Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Agung Purnomoadi
- Faculty of Animal and Agricultural Sciences, Diponegoro University, Tembalang Campus, Semarang, 50275, Central Java, Indonesia
| | - Joelal Achmadi
- Faculty of Animal and Agricultural Sciences, Diponegoro University, Tembalang Campus, Semarang, 50275, Central Java, Indonesia
| | - Xianghua Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|
58
|
Yan G, Li B, Xin X, Xu M, Ji G, Yu H. MicroRNA-34a Promotes Hepatic Stellate Cell Activation via Targeting ACSL1. Med Sci Monit 2015; 21:3008-15. [PMID: 26437572 PMCID: PMC4601392 DOI: 10.12659/msm.894000] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/13/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The incidence of liver fibrosis remains high due to the lack of effective therapies. Our previous work found that microRNA (miR)-34a expression was increased, while acy1-CoA synthetase long-chain family member1 (ACSL1) was decreased, in a dimethylnitrosamine (DNS)-induced hepatic fibrosis rat model. We hypothesized that miR-34a may play a role in the process of hepatic fibrosis by targeting ACSL1. MATERIAL AND METHODS From days 2 to 14, cultured primary hepatic stellate cells (HSCs) underwent cell morphology, immunocytochemical staining, and quantitative reverse transcription PCR (RT-qPCR) for alpha smooth muscle actin (a-SMA), desmin, rno-miR-34a, and ACSL1 expression. Wild-type and mutant luciferase reporter plasmids were constructed according to the predicted miR-34a binding site on the 3'-untranslated region (UTR) of the ACSL1 mRNA and then transfected into HEK293 cells. rno-miR-34a was silenced in HSCs to confirm that rno-miR-34a negatively regulates ACSL1 expression. mRNA and protein expression of α-SMA, type I collagen, and desmin were assayed in miR-34a-silenced HSCs. RESULTS HSCs were deemed quiescent during the first 3 days and activated after 10 days. rno-miR-34a expression increased, and ACSL1 expression decreased, from day 2 to 7 to 14. rno-miR-34a was shown to specifically bind to the 3'-UTR of ACSL1. miR-34a-silenced HSCs showed higher ACSL1and lower α-SMA, type I collagen, and desmin expression than that of matching negative controls and non-transfected cells. CONCLUSIONS miR-34a appears to play an important role in the process of liver fibrosis by targeting ACSL1 and may show promise as a therapeutic molecular target for hepatic fibrosis.
Collapse
Affiliation(s)
- Gangli Yan
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai, P.R. China
- Department of Neurology, The No. 161 People’s Liberation Army (PLA) Hospital, Wuhan, Hubei, P.R. China
| | - Binbin Li
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai, P.R. China
| | - Xuan Xin
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai, P.R. China
- Department of Pathology, The General Hospital of the Jinan Military Command, Jinan, Shandong, P.R. China
| | - Midie Xu
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai, P.R. China
| | - Guoqing Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Hongyu Yu
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai, P.R. China
| |
Collapse
|
59
|
Thimgan MS, Seugnet L, Turk J, Shaw PJ. Identification of genes associated with resilience/vulnerability to sleep deprivation and starvation in Drosophila. Sleep 2015; 38:801-14. [PMID: 25409104 DOI: 10.5665/sleep.4680] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/10/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND STUDY OBJECTIVES Flies mutant for the canonical clock protein cycle (cyc(01)) exhibit a sleep rebound that is ∼10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc(01) mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. DESIGN We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc(01) mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. SETTING Laboratory. PATIENTS OR PARTICIPANTS Drosophila melanogaster. INTERVENTIONS Sleep deprivation and starvation. MEASUREMENTS AND RESULTS We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc(01) mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. CONCLUSIONS We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis.
Collapse
Affiliation(s)
- Matthew S Thimgan
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO.,Missouri University of Science and Technology, Department of Biological Sciences, Rolla, MO
| | - Laurent Seugnet
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO.,Centre de Recherche en Neurosciences de Lyon, Integrated Physiology of Arousal Systems Team, Lyon, France
| | - John Turk
- Division of Endocrinology, Diabetes, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Paul J Shaw
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
60
|
Yan S, Yang XF, Liu HL, Fu N, Ouyang Y, Qing K. Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: An update. World J Gastroenterol 2015; 21:3492-3498. [PMID: 25834313 PMCID: PMC4375570 DOI: 10.3748/wjg.v21.i12.3492] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/18/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023] Open
Abstract
Long-chain acyl-CoA synthetase (ACSL) family members include five different ACSL isoforms, each encoded by a separate gene and have multiple spliced variants. ACSLs on endoplasmic reticulum and mitochondrial outer membrance catalyze fatty acids with chain lengths from 12 to 20 carbon atoms to form acyl-CoAs, which are lipid metabolic intermediates and involved in fatty acid metabolism, membrane modifications and various physiological processes. Gain- or loss-of-function studies have shown that the expression of individual ACSL isoforms can alter the distribution and amount of intracellular fatty acids. Changes in the types and amounts of fatty acids, in turn, can alter the expression of intracellular ACSLs. ACSL family members affect not only the proliferation of normal cells, but the proliferation of malignant tumor cells. They also regulate cell apoptosis through different signaling pathways and molecular mechanisms. ACSL members have individual functions in fatty acid metabolism in different types of cells depending on substrate preferences, subcellular location and tissue specificity, thus contributing to liver diseases and metabolic diseases, such as fatty liver disease, obesity, atherosclerosis and diabetes. They are also linked to neurological disorders and other diseases. However, the mechanisms are unclear. This review addresses new findings in the classification and properties of ACSLs and the fatty acid metabolism-associated effects of ACSLs in diseases.
Collapse
|
61
|
Bertram K, Valcu CM, Weitnauer M, Linne U, Görlach A. NOX1 supports the metabolic remodeling of HepG2 cells. PLoS One 2015; 10:e0122002. [PMID: 25806803 PMCID: PMC4373763 DOI: 10.1371/journal.pone.0122002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/09/2015] [Indexed: 12/31/2022] Open
Abstract
NADPH oxidases are important sources of reactive oxygen species (ROS) which act as signaling molecules in the regulation of protein expression, cell proliferation, differentiation, migration and cell death. The NOX1 subunit is over-expressed in several cancers and NOX1 derived ROS have been repeatedly linked with tumorigenesis and tumor progression although underlying pathways are ill defined. We engineered NOX1-depleted HepG2 hepatoblastoma cells and employed differential display 2DE experiments in order to investigate changes in NOX1-dependent protein expression profiles. A total of 17 protein functions were identified to be dysregulated in NOX1-depleted cells. The proteomic results support a connection between NOX1 and the Warburg effect and a role for NOX in the regulation of glucose and glutamine metabolism as well as of lipid, protein and nucleotide synthesis in hepatic tumor cells. Metabolic remodeling is a common feature of tumor cells and understanding the underlying mechanisms is essential for the development of new cancer treatments. Our results reveal a manifold involvement of NOX1 in the metabolic remodeling of hepatoblastoma cells towards a sustained production of building blocks required to maintain a high proliferative rate, thus rendering NOX1 a potential target for cancer therapy.
Collapse
Affiliation(s)
- Katharina Bertram
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich at the Technical University Munich, Lazarettstr. 36, Munich, Germany
| | - Cristina-Maria Valcu
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich at the Technical University Munich, Lazarettstr. 36, Munich, Germany
- * E-mail: (CMV), (AG)
| | - Michael Weitnauer
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich at the Technical University Munich, Lazarettstr. 36, Munich, Germany
| | - Uwe Linne
- Chemistry Department—Mass Spectrometry, Philipps-University Marburg, Hans-Meerwein-Strasse, Marburg, Germany
| | - Agnes Görlach
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich at the Technical University Munich, Lazarettstr. 36, Munich, Germany
- * E-mail: (CMV), (AG)
| |
Collapse
|
62
|
He H, Liu HH, Wang JW, Lv J, Li L, Pan ZX. Molecular cloning of the goose ACSL3 and ACSL5 coding domain sequences and their expression characteristics during goose fatty liver development. Mol Biol Rep 2014; 41:2045-53. [PMID: 24469710 DOI: 10.1007/s11033-014-3053-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 01/04/2014] [Indexed: 01/02/2023]
Abstract
It has been demonstrated that ACSL3 and ACSL5 play important roles in fat metabolism. To investigate the primary functions of ACSL3 and ACSL5 and to evaluate their expression levels during goose fatty liver development, we cloned the ACSL3 and ACSL5 coding domain sequences (CDSs) of geese using RT-PCR and analyzed their expression characteristics under different conditions using qRT-PCR. The results showed that the goose ACSL3 (JX511975) and ACSL5 (JX511976) sequences have high similarities with the chicken sequences both at the nucleotide and amino acid levels. Both ACSL3 and ACSL5 have high expression levels in goose liver. The expression levels of ACSL3 and ACSL5 in goose liver and hepatocytes can be changed by overfeeding geese and by treatment with unsaturated fatty acids, respectively. Together, these results indicate that ACSL3 and ACSL5 play important roles during fatty liver development. The different expression characteristics of goose ACSL3 and ACSL5 suggest that these two genes may be responsible for specific functions.
Collapse
Affiliation(s)
- H He
- Key Lab of Animal Genetic Resources, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | | | | | | | | | | |
Collapse
|
63
|
Cui M, Wang Y, Sun B, Xiao Z, Ye L, Zhang X. MiR-205 modulates abnormal lipid metabolism of hepatoma cells via targeting acyl-CoA synthetase long-chain family member 1 (ACSL1) mRNA. Biochem Biophys Res Commun 2014; 444:270-5. [PMID: 24462768 DOI: 10.1016/j.bbrc.2014.01.051] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/15/2014] [Indexed: 02/06/2023]
Abstract
The abnormal lipid metabolism is considered as a hallmarker of tumorigenesis. Liver is the central organ for metabolic homeostasis. Hence, the development of hepatocellular carcinoma (HCC) always exhibits alterations of metabolism. MicroRNAs emerge as key post-transcriptional modulators of gene expression in physiologic and pathologic states. Here, we aim to explore the mechanism of abnormal lipid metabolism of hepatoma cells. Previously, our group reported that miR-205 as a tumor suppressor was down-regulated in HCC. Therefore, we supposed that miR-205 might be involved in the event. Interestingly, in this study we uncover that miR-205 deregulates lipid metabolism in HCC through targeting acyl-CoA synthetase long-chain family member 1 (ACSL1) mRNA, which is an important and abundant lipid metabolism enzyme in liver. We identified that miR-205 was able to down-regulate ACSL1 via targeting its 3'UTR in the cells. Oil red O staining showed that miR-205 disordered the lipogenesis in hepatoma cells and anti-miR-205 resulted in the accumulation of triglyceride in the cells depending on ACSL1. Moreover, we validated that the low levels of miR-205 were negatively related to high levels of ACSL1 in clinical HCC tissues. The expression levels of ACSL1 and its metabolite triglyceride levels were remarkably increased in hepatitis B virus X protein (HBx)-induced liver cancer tissues from the HBx transgenic mice model. Thus, we conclude that miR-205-targeted ACSL1 may contribute to the abnormal lipid metabolism of liver cancer. Our finding provides new insights into the dysregulation of lipid metabolism in HCC mediated by miR-205 targeting ACSL1 mRNA.
Collapse
Affiliation(s)
- Ming Cui
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yue Wang
- Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Baodi Sun
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zelin Xiao
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Lihong Ye
- Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xiaodong Zhang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
64
|
Vickers KC, Sethupathy P, Baran-Gale J, Remaley AT. Complexity of microRNA function and the role of isomiRs in lipid homeostasis. J Lipid Res 2013; 54:1182-91. [PMID: 23505317 DOI: 10.1194/jlr.r034801] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are key posttranscriptional regulators of biological pathways that govern lipid metabolic phenotypes. Recent advances in high-throughput small RNA sequencing technology have revealed the complex and dynamic repertoire of miRNAs. Specifically, it has been demonstrated that a single genomic locus can give rise to multiple, functionally distinct miRNA isoforms (isomiR). There are several mechanisms by which isomiRs can be generated, including processing heterogeneity and posttranscriptional modifications, such as RNA editing, exonuclease-mediated nucleotide trimming, and/or nontemplated nucleotide addition (NTA). NTAs are dominant at the 3'-end of a miRNA, are most commonly uridylation or adenlyation events, and are catalyzed by one or more of several nucleotidyl transferase enzymes. 3' NTAs can affect miRNA stability and/or activity and are physiologically regulated, whereas modifications to the 5'-ends of miRNAs likely alter miRNA targeting activity. Recent evidence also suggests that the biogenesis of specific miRNAs, or small RNAs that act as miRNAs, can occur through unconventional mechanisms that circumvent key canonical miRNA processing steps. The unveiling of miRNA diversity has significantly added to our view of the complexity of miRNA function. In this review we present the current understanding of the biological relevance of isomiRs and their potential role in regulating lipid metabolism.
Collapse
Affiliation(s)
- Kasey C Vickers
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | |
Collapse
|
65
|
Dong B, Kan CFK, Singh AB, Liu J. High-fructose diet downregulates long-chain acyl-CoA synthetase 3 expression in liver of hamsters via impairing LXR/RXR signaling pathway. J Lipid Res 2013; 54:1241-54. [PMID: 23427282 DOI: 10.1194/jlr.m032599] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long-chain acyl-CoA synthetases (ACSL) play key roles in fatty acid metabolism in liver and other metabolic tissues in an isozyme-specific manner. In this study, we examined the effects of a fructose-enriched diet on expressions of ACSL isoforms in the liver of hamsters. We showed that the fructose diet markedly reduced the mRNA and protein expressions of ACSL3 in hamster liver without significant effects on other ACSLs. The decrease in ACSL3 abundance was accompanied by a reduction in ACSL-catalyzed synthesis of arachidonyl-CoA and oleoyl-CoA in liver homogenates of hamsters fed the fructose diet as opposed to normal diet. We further showed that fructose diet specifically reduced expressions of three key components of the LXR signaling pathway, namely, liver X receptor (LXR)α, LXRβ, and retinoid X receptor (RXR)β. Exogenous expression and activation of LXRα/β increased hamster ACSL3 promoter activities in a LXR-responsive element (LXRE)-dependent fashion. Finally, we showed that treating hamsters with LXR agonist GW3965 increased hepatic ACSL3 expression without affecting other ACSL isoforms. Furthermore, the ligand-induced increases of ACSL3 expression were accompanied with the reduction of hepatic triglyceride levels in GW3965-treated hamster liver. Altogether, our studies demonstrate that fructose diet has a negative impact on LXR signaling pathway in liver tissue and reduction of ACSL3 expression/activity could be a causal factor for fructose-induced hepatic steatosis.
Collapse
Affiliation(s)
- Bin Dong
- Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | | | |
Collapse
|
66
|
Gender-dependent gene expressions in brown adipose tissue of lean and obese rats fed a high fat diet. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-012-0332-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
67
|
Li Q, Tao Z, Shi L, Ban D, Zhang B, Yang Y, Zhang H, Wu C. Expression and genome polymorphism of ACSL1 gene in different pig breeds. Mol Biol Rep 2012; 39:8787-92. [DOI: 10.1007/s11033-012-1741-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 06/07/2012] [Indexed: 12/31/2022]
|
68
|
Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proc Natl Acad Sci U S A 2012; 109:E715-24. [PMID: 22308341 DOI: 10.1073/pnas.1111600109] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mechanisms that promote an inflammatory environment and accelerated atherosclerosis in diabetes are poorly understood. We show that macrophages isolated from two different mouse models of type 1 diabetes exhibit an inflammatory phenotype. This inflammatory phenotype associates with increased expression of long-chain acyl-CoA synthetase 1 (ACSL1), an enzyme that catalyzes the thioesterification of fatty acids. Monocytes from humans and mice with type 1 diabetes also exhibit increased ACSL1. Furthermore, myeloid-selective deletion of ACSL1 protects monocytes and macrophages from the inflammatory effects of diabetes. Strikingly, myeloid-selective deletion of ACSL1 also prevents accelerated atherosclerosis in diabetic mice without affecting lesions in nondiabetic mice. Our observations indicate that ACSL1 plays a critical role by promoting the inflammatory phenotype of macrophages associated with type 1 diabetes; they also raise the possibilities that diabetic atherosclerosis has an etiology that is, at least in part, distinct from the etiology of nondiabetic vascular disease and that this difference is because of increased monocyte and macrophage ACSL1 expression.
Collapse
|
69
|
Kanter JE, Tang C, Oram JF, Bornfeldt KE. Acyl-CoA synthetase 1 is required for oleate and linoleate mediated inhibition of cholesterol efflux through ATP-binding cassette transporter A1 in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:358-64. [PMID: 22020260 DOI: 10.1016/j.bbalip.2011.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/30/2011] [Accepted: 10/01/2011] [Indexed: 12/31/2022]
Abstract
Diabetes and insulin resistance increase the risk of cardiovascular disease caused by atherosclerosis through mechanisms that are poorly understood. Lipid-loaded macrophages are key contributors to all stages of atherosclerosis. We have recently shown that diabetes associated with increased plasma lipids reduces cholesterol efflux and levels of the reverse cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) in mouse macrophages, which likely contributes to macrophage lipid accumulation in diabetes. Furthermore, we and others have shown that unsaturated fatty acids reduce ABCA1-mediated cholesterol efflux, and that this effect is mediated by the acyl-CoA derivatives of the fatty acids. We therefore investigated whether acyl-CoA synthetase 1 (ACSL1), a key enzyme mediating acyl-CoA synthesis in macrophages, could directly influence ABCA1 levels and cholesterol efflux in these cells. Mouse macrophages deficient in ACSL1 exhibited reduced sensitivity to oleate- and linoleate-mediated ABCA1 degradation, which resulted in increased ABCA1 levels and increased apolipoprotein A-I-dependent cholesterol efflux in the presence of these fatty acids, as compared with wildtype mouse macrophages. Conversely, overexpression of ACSL1 resulted in reduced ABCA1 levels and reduced cholesterol efflux in the presence of unsaturated fatty acids. Thus, the reduced ABCA1 and cholesterol efflux in macrophages subjected to conditions of diabetes and elevated fatty load may, at least in part, be mediated by ACSL1. These observations raise the possibility that ABCA1 levels could be increased by inhibition of acyl-CoA synthetase activity in vivo. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Jenny E Kanter
- Department of Pathology, Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
70
|
Melton EM, Cerny RL, Watkins PA, DiRusso CC, Black PN. Human fatty acid transport protein 2a/very long chain acyl-CoA synthetase 1 (FATP2a/Acsvl1) has a preference in mediating the channeling of exogenous n-3 fatty acids into phosphatidylinositol. J Biol Chem 2011; 286:30670-30679. [PMID: 21768100 DOI: 10.1074/jbc.m111.226316] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The trafficking of fatty acids across the membrane and into downstream metabolic pathways requires their activation to CoA thioesters. Members of the fatty acid transport protein/very long chain acyl-CoA synthetase (FATP/Acsvl) family are emerging as key players in the trafficking of exogenous fatty acids into the cell and in intracellular fatty acid homeostasis. We have expressed two naturally occurring splice variants of human FATP2 (Acsvl1) in yeast and 293T-REx cells and addressed their roles in fatty acid transport, activation, and intracellular trafficking. Although both forms (FATP2a (M(r) 70,000) and FATP2b (M(r) 65,000 and lacking exon3, which encodes part of the ATP binding site)) were functional in fatty acid import, only FATP2a had acyl-CoA synthetase activity, with an apparent preference toward very long chain fatty acids. To further address the roles of FATP2a or FATP2b in fatty acid uptake and activation, LC-MS/MS was used to separate and quantify different acyl-CoA species (C14-C24) and to monitor the trafficking of different classes of exogenous fatty acids into intracellular acyl-CoA pools in 293T-REx cells expressing either isoform. The use of stable isotopically labeled fatty acids demonstrated FATP2a is involved in the uptake and activation of exogenous fatty acids, with a preference toward n-3 fatty acids (C18:3 and C22:6). Using the same cells expressing FATP2a or FATP2b, electrospray ionization/MS was used to follow the trafficking of stable isotopically labeled n-3 fatty acids into phosphatidylcholine and phosphatidylinositol. The expression of FATP2a resulted in the trafficking of C18:3-CoA and C22:6-CoA into both phosphatidylcholine and phosphatidylinositol but with a distinct preference for phosphatidylinositol. Collectively these data demonstrate FATP2a functions in fatty acid transport and activation and provides specificity toward n-3 fatty acids in which the corresponding n-3 acyl-CoAs are preferentially trafficked into acyl-CoA pools destined for phosphatidylinositol incorporation.
Collapse
Affiliation(s)
- Elaina M Melton
- Departments of Biochemistry, Lincoln, Nebraska 68588; Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Ronald L Cerny
- Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Paul A Watkins
- Kennedy Krieger Research Institute, Baltimore, Maryland 21205
| | | | - Paul N Black
- Departments of Biochemistry, Lincoln, Nebraska 68588.
| |
Collapse
|
71
|
Expression of Long-chain Fatty Acyl-CoA Synthetase 4 in Breast and Prostate Cancers Is Associated with Sex Steroid Hormone Receptor Negativity. Transl Oncol 2011; 3:91-8. [PMID: 20360933 DOI: 10.1593/tlo.09202] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 11/01/2009] [Accepted: 11/04/2009] [Indexed: 01/05/2023] Open
Abstract
Previous studies have shown that key enzymes involved in lipid metabolic pathways are differentially expressed in normal compared with tumor tissues. However, the precise role played by dysregulated expression of lipid metabolic enzymes and altered lipid homeostasis in carcinogenesis remains to be established. Fatty acid synthase is overexpressed in a variety of cancers, including breast and prostate. The purpose of the present study was to examine the expression patterns of additional lipid metabolic enzymes in human breast and prostate cancers. This was accomplished by analysis of published expression databases, with confirmation by immunoblot assays. Our results indicate that the fatty acid-activating enzyme, long-chain fatty acyl-CoA synthetase 4 (ACSL4), is differentially expressed in human breast cancer as a function of estrogen receptor alpha (ER) status. In 10 separate studies, ACSL4 messenger RNA (mRNA) was overexpressed in ER-negative breast tumors. Of 50 breast cancer cell lines examined, 17 (89%) of 19 ER-positive lines were negative for ACSL4 mRNA expression and 20 (65%) of 31 ER-negative lines expressed ACSL4 mRNA. The inverse relationship between ER expression and ACSL4 expression was also observed for androgen receptor status in both breast and prostate cancers. Furthermore, loss of steroid hormone sensitivity, such as that observed in Raf1-transfected MCF-7 cells and LNCaP-AI cells, was associated with induction of ACSL4 expression. Ablation of ACSL4 expression inMDA-MB-231 breast cancer cells had no effect on cell proliferation; however, sensitivity to the cytotoxic effects of triacsin C was increased three-fold in the cells lacking ACSL4.
Collapse
|
72
|
Oleaginous yeast Yarrowia lipolytica mutants with a disrupted fatty acyl-CoA synthetase gene accumulate saturated fatty acid. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
73
|
Abstract
Mycobacterium tuberculosis is an extremely successful pathogen that demonstrates the capacity to modulate its host both at the cellular and tissue levels. At the cellular level, the bacterium enters its host macrophage and arrests phagosome maturation, thus avoiding many of the microbicidal responses associated with this phagocyte. Nonetheless, the intracellular environment places certain demands on the pathogen, which, in response, senses the environmental shifts and upregulates specific metabolic programs to allow access to nutrients, minimize the consequences of stress, and sustain infection. Despite its intracellular niche, Mycobacterium tuberculosis demonstrates a marked capacity to modulate the tissues surrounding infected cells through the release of potent, bioactive cell wall constituents. These cell wall lipids are released from the host cell by an exocytic process and induce physiological changes in neighboring phagocytes, which drives formation of a granuloma. This tissue response leads to the generation and accumulation of caseous debris and the progression of the human tuberculosis granuloma. Completion of the life cycle of tuberculosis requires damaging the host to release infectious bacteria into the airways to spread the infection. This damage reflects the pathogen's ability to subvert the host's innate and acquired immune responses to its own nefarious ends.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
74
|
Chang YS, Tsai CT, Huangfu CA, Huang WY, Lei HY, Lin CF, Su IJ, Chang WT, Wu PH, Chen YT, Hung JH, Young KC, Lai MD. ACSL3 and GSK-3β are essential for lipid upregulation induced by endoplasmic reticulum stress in liver cells. J Cell Biochem 2011; 112:881-93. [PMID: 21328461 DOI: 10.1002/jcb.22996] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is essential for lipid biosynthesis, and stress signals in this organelle are thought to alter lipid metabolism. Elucidating the mechanisms that underlie the dysregulation of lipid metabolism in hepatocytes may lead to novel therapeutic approaches for the treatment of lipid accumulation. We first tested the effects of several inhibitors on lipid dysregulation induced by tunicamycin, an ER stress inducer. Triacsin C, an inhibitor of long-chain acyl-CoA synthetase (ACSL) 1, 3, and 4, was the most potent among these inhibitors. We then analyzed the expression of the ACSL family during ER stress. The expression of ACSL3 was induced by ER stress in HuH-7 cells and in mice livers. ACSL3 shRNA, but not ACSL1 shRNA, inhibited the induction of lipid accumulation. GSK-3β inhibitors attenuated ACSL3 expression and the lipid accumulation induced by ER stress in HuH-7 cells. shRNA that target GSK-3β also inhibited the upregulation of ACSL3 and lipid accumulation in HuH-7 and HepG2 cells. The hepatitis B virus mutant large surface protein, which is known to induce ER stress, increased the lipid content of cells. Similarly, Triacsin C, and GSK-3β inhibitors abrogated the lipid dysregulation caused by the hepatitis B virus mutant large surface protein. Altogether, ACSL3 and GSK-3β represent novel therapeutic targets for lipid dysregulation by ER stress.
Collapse
Affiliation(s)
- Yung-Sheng Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Joo JI, Yun JW. Gene expression profiling of adipose tissues in obesity susceptible and resistant rats under a high fat diet. Cell Physiol Biochem 2011; 27:327-40. [PMID: 21471722 DOI: 10.1159/000327959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2011] [Indexed: 11/19/2022] Open
Abstract
Different responses to a high fat diet (HFD) can occur even within a group of animals with the same genetic background, such as obesity-prone (OP) or obesity-resistant (OR) phenotypes, on the same feeding. To explain these phenotypes, we performed an analysis of gene expression differences in brown (BAT) and white adipose tissue (WAT) of OP and OR rats. Microarray analysis of transcripts revealed that 91 and 53 genes showed significant differences in expression between the BAT and WAT gene, respectively. Surprisingly, a majority of these genes were significantly down-regulated in adipose tissues in response to HFD feeding. K-means clustering of the expression levels of these genes identified 4 distinct groupings of genes with significant expression levels. Only a limited number of genes were significantly regulated in adipose tissues in response to HFD feeding, whereas expression levels of a large number of genes differed significantly between OP and OR rat. Our observations support that distinct discrepancies exist in gene-expression regulations in adipose tissues, and that alteration likely resulted from significant differences in genes encoding metabolic enzymes. To the best of our knowledge, this study provided the first direct comparison of gene-expression changes between OP and OR rats.
Collapse
Affiliation(s)
- Jeong In Joo
- Department of Biotechnology, Daegu University, Kyungsan, Korea
| | | |
Collapse
|
76
|
Zhu LH, Meng H, Duan XJ, Xu GQ, Zhang J, Gong DQ. Gene expression profile in the liver tissue of geese after overfeeding. Poult Sci 2011; 90:107-17. [PMID: 21177450 DOI: 10.3382/ps.2009-00616] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Geese form a fatty liver after feeding on a carbohydrate-rich diet, possibly as an evolutionary adaptation to accumulate reserves for migration. To gain insight into the gene-regulation processes of hepatic steatosis in geese, we examined the profile of transcriptional expression in goose fatty liver and control liver by suppression subtractive hybridization and measured the levels of serum biochemical variables. We found 107 genes whose expression was different between the treatment and control groups. The main functions of these genes are metabolic processes, including the metabolism of carbohydrates, amino acids, and lipids. Twenty-four genes were classified using the Kyoto Encyclopaedia of Genes and Genomes pathways. Twelve genes that related to metabolic and cellular processes were confirmed by quantitative RT-PCR. A specific positive effect of feeding was observed on the expression of genes involved mainly in unsaturated fatty acids and triglyceride synthesis, and a negative effect was observed on genes involved in β-oxidation, cholesterol metabolism, and glycolysis. The results could serve as an important reference for the development of goose breeding for fatty liver production and human liver disease research.
Collapse
Affiliation(s)
- L H Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| | | | | | | | | | | |
Collapse
|
77
|
Joo JI, Oh TS, Kim DH, Choi DK, Wang X, Choi JW, Yun JW. Differential expression of adipose tissue proteins between obesity-susceptible and -resistant rats fed a high-fat diet. Proteomics 2011; 11:1429-48. [PMID: 21365757 DOI: 10.1002/pmic.201000515] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/17/2010] [Accepted: 01/12/2011] [Indexed: 01/10/2023]
Abstract
One of the major questions in the field of obesity is why some humans become obese (obesity prone, OP) and others resist the development of obesity (obesity resistant, OR) when exposed to a high-calorie diet, which has not been completely studied. Therefore, in the present study, in order to gain insight into the molecular mechanisms underlying this propensity, we have performed a comparative analysis of protein expression profiles in white adipose tissue (WAT) and brown adipose tissue (BAT) of rats fed a high-fat diet by 2-DE and MALDI-TOF-MS. Protein mapping of homogenates revealed significant alterations to a number of proteins; 60 and 70 proteins were differentially regulated in BAT and WAT, respectively. For careful interpretation of proteomic results, we categorized the identified proteins into two groups by analysis of both average spot density of pooled six rat adipose tissues and individual spot density of each adipose tissue of six rats as a function of body weight. One of the most striking findings of this study was that significant changes of Ehd1 and laminin receptor in BAT as well as antiquitin, DJ-1 protein, and paraoxonase 2 in WAT were found for the first time in obese rats. In addition, we confirmed the increased expression of some thermogenic enzymes and decreased lipogenic enzymes in adipose tissues of OR rats by immunoblot analysis. To our knowledge, this is the first proteomic study of profiling of protein modulation in OP and OR rats, thereby providing the first global evidence for different propensities to obesity between OP and OR rats.
Collapse
Affiliation(s)
- Jeong In Joo
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, Korea
| | | | | | | | | | | | | |
Collapse
|
78
|
Krammer J, Digel M, Ehehalt F, Stremmel W, Füllekrug J, Ehehalt R. Overexpression of CD36 and acyl-CoA synthetases FATP2, FATP4 and ACSL1 increases fatty acid uptake in human hepatoma cells. Int J Med Sci 2011; 8:599-614. [PMID: 22022213 PMCID: PMC3198256 DOI: 10.7150/ijms.8.599] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 09/27/2011] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Understanding the mechanisms of long chain fatty acid (LCFA) uptake in hepatic cells is of high medical importance to treat and to prevent fatty liver disease (FLD). ACSs (Acyl-CoA synthetases) are a family of enzymes that catalyze the esterification of fatty acids (FA) with CoA. Recent studies suggest that ACS enzymes drive the uptake of LCFA indirectly by their enzymatic activity and could promote special metabolic pathways dependent on their localization.The only protein located at the plasma membrane which has consistently been shown to enhance FA uptake is CD36. AIMS The current study investigated whether ACSs and CD36 could regulate hepatic LCFA uptake. METHODS AND RESULTS FATP2 and FATP4 were both localized to the ER of HuH7 and HepG2 cells as shown by double immunofluorescence in comparison to marker proteins. ACSL1 was located at mitochondria in both cell lines. Overexpression of FATP2, FATP4 and ACSL1 highly increased ACS activity as well as the uptake of [3H]-oleic acid and fluorescent Bodipy-C12 (B12) fatty acid. Quantitative FACS analysis showed a correlation between ACS expression levels and B12 uptake. FATP2 had the highest effect on B12 uptake of all proteins tested. CD36 was mainly localized at the plasma membrane. Whereas [3H]-oleic acid uptake was increased after overexpression, CD36 had no effect on B12 uptake. CONCLUSION Uptake of LCFA into hepatoma cells can be regulated by the expression levels of intracellular enzymes. We propose that ACS enzymes drive FA uptake indirectly by esterification. Therefore these molecules are potential targets for treatment of nonalcoholic fatty liver disease (NAFLD) or steatohepatitis (NASH).
Collapse
Affiliation(s)
- Julia Krammer
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
79
|
Kim MJ, Wainwright HC, Locketz M, Bekker LG, Walther GB, Dittrich C, Visser A, Wang W, Hsu FF, Wiehart U, Tsenova L, Kaplan G, Russell DG. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2010; 2:258-74. [PMID: 20597103 PMCID: PMC2913288 DOI: 10.1002/emmm.201000079] [Citation(s) in RCA: 350] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The progression of human tuberculosis (TB) to active disease and transmission involves the development of a caseous granuloma that cavitates and releases infectious Mycobacterium tuberculosis bacilli. In the current study, we exploited genome-wide microarray analysis to determine that genes for lipid sequestration and metabolism were highly expressed in caseous TB granulomas. Immunohistological analysis of these granulomas confirmed the disproportionate abundance of the proteins involved in lipid metabolism in cells surrounding the caseum; namely, adipophilin, acyl-CoA synthetase long-chain family member 1 and saposin C. Biochemical analysis of the lipid species within the caseum identified cholesterol, cholesteryl esters, triacylglycerols and lactosylceramide, which implicated low-density lipoprotein-derived lipids as the most likely source. M. tuberculosis infection in vitro induced lipid droplet formation in murine and human macrophages. Furthermore, the M. tuberculosis cell wall lipid, trehalose dimycolate, induced a strong granulomatous response in mice, which was accompanied by foam cell formation. These results provide molecular and biochemical evidence that the development of the human TB granuloma to caseation correlates with pathogen-mediated dysregulation of host lipid metabolism.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid omega-Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease. PPAR Res 2010; 2009:952734. [PMID: 20300478 PMCID: PMC2840373 DOI: 10.1155/2009/952734] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/30/2009] [Indexed: 02/08/2023] Open
Abstract
Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis), due to a decrease in mitochondria β-oxidation with an increase in both peroxisomal β-oxidation, and microsomal ω-oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs). How steatosis increases PPARα activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid β-oxidation and ω-oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA), monounsaturated (MUFA), or saturated (SFA) may be determined by the interplay of PPARs and HNF4α with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the ω-oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPARα. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid ω-hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA) CYP4A and long-chain fatty acid (LCFA) CYP4Fω-hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to steatohepatitis.
Collapse
|
81
|
Weedon-Fekjaer MS, Dalen KT, Solaas K, Staff AC, Duttaroy AK, Nebb HI. Activation of LXR increases acyl-CoA synthetase activity through direct regulation of ACSL3 in human placental trophoblast cells. J Lipid Res 2010; 51:1886-96. [PMID: 20219900 DOI: 10.1194/jlr.m004978] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Placental fatty acid transport and metabolism are important for proper growth and development of the feto-placental unit. The nuclear receptors, liver X receptors alpha and beta (LXRalpha and LXRbeta), are key regulators of lipid metabolism in many tissues, but little is known about their role in fatty acid transport and metabolism in placenta. The current study investigates the LXR-mediated regulation of long-chain acyl-CoA synthetase 3 (ACSL3) and its functions in human placental trophoblast cells. We demonstrate that activation of LXR increases ACSL3 expression, acyl-CoA synthetase activity, and fatty acid uptake in human tropholast cells. Silencing of ACSL3 in these cells attenuates the LXR-mediated increase in acyl-CoA synthetase activity. Furthermore, we show that ACSL3 is directly regulated by LXR through a conserved LXR responsive element in the ACSL3 promoter. Our results suggest that LXR plays a regulatory role in fatty acid metabolism by direct regulation of ACSL3 in human placental trophoblast cells.
Collapse
Affiliation(s)
- M Susanne Weedon-Fekjaer
- Faculty of Medicine, University of Oslo, and Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
82
|
Li LO, Klett EL, Coleman RA. Acyl-CoA synthesis, lipid metabolism and lipotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:246-51. [PMID: 19818872 PMCID: PMC2824076 DOI: 10.1016/j.bbalip.2009.09.024] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/22/2009] [Accepted: 09/25/2009] [Indexed: 12/14/2022]
Abstract
Although the underlying causes of insulin resistance have not been completely delineated, in most analyses, a recurring theme is dysfunctional metabolism of fatty acids. Because the conversion of fatty acids to activated acyl-CoAs is the first and essential step in the metabolism of long-chain fatty acid metabolism, interest has grown in the synthesis of acyl-CoAs, their contribution to the formation of signaling molecules like ceramide and diacylglycerol, and their direct effects on cell function. In this review, we cover the evidence for the involvement of acyl-CoAs in what has been termed lipotoxicity, the regulation of the acyl-CoA synthetases, and the emerging functional roles of acyl-CoAs in the major tissues that contribute to insulin resistance and lipotoxicity, adipose, liver, heart and pancreas.
Collapse
Affiliation(s)
- Lei O. Li
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Eric L. Klett
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rosalind A. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
83
|
Saraswathi V, Hasty AH. Inhibition of long-chain acyl coenzyme A synthetases during fatty acid loading induces lipotoxicity in macrophages. Arterioscler Thromb Vasc Biol 2009; 29:1937-43. [PMID: 19679826 PMCID: PMC2766024 DOI: 10.1161/atvbaha.109.195362] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Obesity is often associated with hypertriglyceridemia and elevated free fatty acids (FFAs), which are independent risk factors for cardiovascular disease and diabetes. Although impairment of cholesterol homeostasis is known to induce toxicity in macrophages, the consequence of altered fatty acid homeostasis is not clear. METHODS AND RESULTS Long-chain acyl CoA synthetases (ACSLs) play a critical role in fatty acid homeostasis by channeling fatty acids to diverse metabolic pools. We treated mouse peritoneal macrophages (MPMs) with VLDL or FFAs in the presence of triacsin C, an inhibitor of the 3 ACSL isoforms present in macrophages. Treatment of macrophages with VLDL and triacsin C resulted in reduced TG accumulation but increased intracellular FFA levels, which induced lipotoxicity characterized by apoptosis. Treatment of MPMs with the saturated fatty acid stearic acid in the presence of triacsin C increased intracellular stearic acid and induced apoptosis. Stromal vascular cells collected from high-fat diet-fed mice displayed foam cell morphology and exhibited increased mRNA levels of macrophage markers and ACSL1. Importantly, all of these changes were associated with increased FFA level in AT. CONCLUSIONS Inhibition of ACSLs during fatty acid loading results in apoptosis via accumulation of FFAs. Our data have implications in understanding the consequences of dysregulated fatty acid metabolism in macrophages.
Collapse
Affiliation(s)
| | - Alyssa H. Hasty
- Correspondence to: Alyssa H. Hasty, Vanderbilt University Medical Center, 702 Light Hall, Nashville, TN 37232-0615, Phone: 615-322-5177, Fax: 615-322-8973,
| |
Collapse
|
84
|
Wu M, Liu H, Chen W, Fujimoto Y, Liu J. Hepatic Expression of Long-Chain Acyl-CoA Synthetase 3 is Upregulated in Hyperlipidemic Hamsters. Lipids 2009; 44:989-98. [DOI: 10.1007/s11745-009-3341-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 08/28/2009] [Indexed: 12/13/2022]
|
85
|
Li LO, Ellis JM, Paich HA, Wang S, Gong N, Altshuller G, Thresher RJ, Koves TR, Watkins SM, Muoio DM, Cline GW, Shulman GI, Coleman RA. Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition. J Biol Chem 2009; 284:27816-27826. [PMID: 19648649 DOI: 10.1074/jbc.m109.022467] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In mammals, a family of five acyl-CoA synthetases (ACSLs), each the product of a separate gene, activates long chain fatty acids to form acyl-CoAs. Because the ACSL isoforms have overlapping preferences for fatty acid chain length and saturation and are expressed in many of the same tissues, the individual function of each isoform has remained uncertain. Thus, we constructed a mouse model with a liver-specific knock-out of ACSL1, a major ACSL isoform in liver. Eliminating ACSL1 in liver resulted in a 50% decrease in total hepatic ACSL activity and a 25-35% decrease in long chain acyl-CoA content. Although the content of triacylglycerol was unchanged in Acsl1(L)(-/-) liver after mice were fed either low or high fat diets, in isolated primary hepatocytes the absence of ACSL1 diminished the incorporation of [(14)C]oleate into triacylglycerol. Further, small but consistent increases were observed in the percentage of 16:0 in phosphatidylcholine and phosphatidylethanolamine and of 18:1 in phosphatidylethanolamine and lysophosphatidylcholine, whereas concomitant decreases were seen in 18:0 in phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and lysophosphatidylcholine. In addition, decreases in long chain acylcarnitine content and diminished production of acid-soluble metabolites from [(14)C]oleate suggested that hepatic ACSL1 is important for mitochondrial beta-oxidation of long chain fatty acids. Because the Acsl1(L)(-/-) mice were not protected from developing either high fat diet-induced hepatic steatosis or insulin resistance, our study suggests that lowering the content of hepatic acyl-CoA without a concomitant decrease in triacylglycerol and other lipid intermediates is insufficient to protect against hepatic insulin resistance.
Collapse
Affiliation(s)
- Lei O Li
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jessica M Ellis
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Heather A Paich
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Shuli Wang
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nan Gong
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - George Altshuller
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Randy J Thresher
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Timothy R Koves
- Department of Medicine, Duke University, Durham, North Carolina 27710
| | | | - Deborah M Muoio
- Department of Medicine, Duke University, Durham, North Carolina 27710
| | - Gary W Cline
- Department of Internal Medicine and Cellular and Molecular Physiology, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06510
| | - Gerald I Shulman
- Department of Internal Medicine and Cellular and Molecular Physiology, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06510
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
86
|
HIV replication enhances production of free fatty acids, low density lipoproteins and many key proteins involved in lipid metabolism: a proteomics study. PLoS One 2008; 3:e3003. [PMID: 18714345 PMCID: PMC2500163 DOI: 10.1371/journal.pone.0003003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 07/22/2008] [Indexed: 12/30/2022] Open
Abstract
Background HIV-infected patients develop multiple metabolic abnormalities including insulin resistance, lipodystrophy and dyslipidemia. Although progression of these disorders has been associated with the use of various protease inhibitors and other antiretroviral drugs, HIV-infected individuals who have not received these treatments also develop lipid abnormalities albeit to a lesser extent. How HIV alters lipid metabolism in an infected cell and what molecular changes are affected through protein interaction pathways are not well-understood. Results Since many genetic, epigenetic, dietary and other factors influence lipid metabolism in vivo, we have chosen to study genome-wide changes in the proteomes of a human T-cell line before and after HIV infection in order to circumvent computational problems associated with multiple variables. Four separate experiments were conducted including one that compared 14 different time points over a period of >3 months. By subtractive analyses of protein profiles overtime, several hundred differentially expressed proteins were identified in HIV-infected cells by mass spectrometry and each protein was scrutinized for its biological functions by using various bioinformatics programs. Herein, we report 18 HIV-modulated proteins and their interaction pathways that enhance fatty acid synthesis, increase low density lipoproteins (triglycerides), dysregulate lipid transport, oxidize lipids, and alter cellular lipid metabolism. Conclusions We conclude that HIV replication alone (i.e. without any influence of antiviral drugs, or other human genetic factors), can induce novel cellular enzymes and proteins that are significantly associated with biologically relevant processes involved in lipid synthesis, transport and metabolism (p = <0.0002–0.01). Translational and clinical studies on the newly discovered proteins may now shed light on how some of these proteins may be useful for early diagnosis of individuals who might be at high risk for developing lipid-related disorders. The target proteins could then be used for future studies in the development of inhibitors for preventing lipid-metabolic anomalies. This is the first direct evidence that HIV-modulates production of proteins that are significantly involved in disrupting the normal lipid-metabolic pathways.
Collapse
|
87
|
Bionaz M, Loor JJ. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J Nutr 2008; 138:1019-24. [PMID: 18492828 DOI: 10.1093/jn/138.6.1019] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lactating bovine mammary gland is a formidable triacylglycerol-synthesizing machine and, as such, represents an ideal model for studying putative functions of distinct isoforms of solute carrier family 27 transporters [(SLC27A) 1, 2, 3, 5, 6], long chain acyl-CoA synthetases [(ACSL) 1, 3, 4, 5, 6], fatty acid binding proteins [(FABP) 1, 3, 4, 5, 6], 1-acylglycerol-3-phosphate O-acyltransferases [(AGPAT) 1, 2, 3, 4, 5, 6, 7, 8], and lipins [(LPIN) 1, 2, 3]. The relative percentage of mRNA abundance and fold-changes in the expression of isoforms in mammary tissue from 6 cows each at -15, 15, 60, and 240 d relative to parturition were analyzed using quantitative PCR. Transcripts of FABP isoforms were most abundant, accounting for 78% of the 28 genes measured, and SLC27A isoforms were least abundant (< 0.5% of genes measured). mRNA of AGPAT, ACSL, and LPIN accounted for approximately 12, 7, or approximately 2%, respectively, of all genes measured. The mRNA abundance at 60 d postpartum for FABP3, ACSL1, AGPAT6, and LPIN1 was 80-, 7-, 15-, and 20-fold greater relative to -15 d. Transcripts of these isoforms constituted the most abundant within each specific gene family. SLC27A2, SLC27A5, and SLC27A6 had peak expression at 240, 240, or 15 d relative to parturition, respectively. Results suggest that SLC27A6, ACSL1, FABP3, AGPAT6, and LPIN1 coordinately regulate the channeling of fatty acids toward copious milk fat synthesis in bovine mammary.
Collapse
Affiliation(s)
- Massimo Bionaz
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
88
|
Zhou Y, Abidi P, Kim A, Chen W, Huang TT, Kraemer FB, Liu J. Transcriptional activation of hepatic ACSL3 and ACSL5 by oncostatin m reduces hypertriglyceridemia through enhanced beta-oxidation. Arterioscler Thromb Vasc Biol 2007; 27:2198-205. [PMID: 17761945 DOI: 10.1161/atvbaha.107.148429] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In our previous studies that examined in vivo activities of oncostatin M (OM) in upregulation of hepatic LDL receptor (LDLR) expression, we observed reductions of LDL-cholesterol and triglyceride (TG) levels in OM-treated hyperlipidemic hamsters. Interestingly, the OM effect of lowering plasma TG was more pronounced than LDL-cholesterol reduction, suggesting additional LDLR-independent actions. Here, we investigated mechanisms underlying the direct TG-lowering effect of OM. METHODS AND RESULTS We demonstrate that OM activates transcription of long-chain acyl-coenzymeA (CoA) synthetase isoforms 3 and 5 (ACSL3, ACSL5) in HepG2 cells through the extracellular signal-regulated kinase (ERK) signaling pathway. Increased acyl-CoA synthetase activities in OM-stimulated HepG2 cells and in livers of OM-treated hamsters are associated with decreased TG accumulation and increased fatty acid beta-oxidation. We further show that overexpression of ACSL3 or ACSL5 alone in the absence of OM led to fatty acid partitioning into beta-oxidation. Importantly, we demonstrate that transfection of siRNAs targeted to ACSL3 and ACSL5 abrogated the enhancing effect of OM on fatty acid oxidation in HepG2 cells. CONCLUSIONS These new findings identify ACSL3 and ACSL5 as OM-regulated genes that function in fatty acid metabolism and suggest a novel cellular mechanism by which OM directly lowers the plasma TG in hyperlipidemic animals through stimulating the transcription of ACSL specific isoforms in the liver.
Collapse
Affiliation(s)
- Yue Zhou
- VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Mashek DG, Li LO, Coleman RA. Long-chain acyl-CoA synthetases and fatty acid channeling. FUTURE LIPIDOLOGY 2007; 2:465-476. [PMID: 20354580 PMCID: PMC2846691 DOI: 10.2217/17460875.2.4.465] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thirteen homologous proteins comprise the long-chain acyl-CoA synthetase (ACSL), fatty acid transport protein (FATP), and bubblegum (ACSBG) subfamilies that activate long-chain and very-long-chain fatty acids to form acyl-CoAs. Gain- and loss-of-function studies show marked differences in the ability of these enzymes to channel fatty acids into different pathways of complex lipid synthesis. Further, the ability of the ACSLs and FATPs to enhance cellular FA uptake does not always require these proteins to be present on the plasma membrane; instead, FA uptake can be increased by enhancing its conversion to acyl-CoA and its metabolism in downstream pathways. Since altered fatty acid metabolism is a hallmark of numerous metabolic diseases and pathological conditions, the ACSL, FATP and ACSBG isoforms are likely to play important roles in disease etiology.
Collapse
Affiliation(s)
- Douglas G. Mashek
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, 55108
| | - Lei O. Li
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Rosalind A. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
90
|
Bhusari S, Liu Z, Hearne LB, Spiers DE, Lamberson WR, Antoniou E. Expression profiling of heat stress effects on mice fed ergot alkaloids. Toxicol Sci 2006; 95:89-97. [PMID: 17093207 DOI: 10.1093/toxsci/kfl142] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fescue toxicosis affects wild and domestic animals consuming ergot alkaloids contained in tall fescue forage infected with the endophytic fungus, Neotyphodium coenophialum. When animals are consuming infected fescue (E+) forage during periods of elevated ambient temperatures (summer), a range of phenotypic disorders collectively called summer slump is observed. It is characterized by hyperthermia, with an accompanying decrease in feed intake, growth, milk yield, and reproductive fitness. Laboratory mice also exhibit symptoms of fescue toxicosis at thermoneutral (TN) temperature, as indicated by reduced growth rate and reproductive fitness. Our goal was to characterize the differences in gene expression in liver of mice exposed to summer-type heat stress (HS) and E+ when compared to mice fed E+ at TN temperature. Mice were fed E+ diet under HS (34 +/- 1 degrees C; n = 13; E+HS) or TN conditions (24 +/- 1 degrees C; n = 14; E+TN) for a period of 2 weeks between 47 and 60 days of age. Genes differentially expressed between E+HS versus E+TN were identified using DNA microarrays. Forty-one genes were differentially expressed between treatment groups. Expressions of eight genes were measured using quantitative real-time PCR. Genes coding for phase I detoxification enzymes were upregulated in E+HS mouse liver. This detoxification pathway is known to produce reactive oxidative species. We observed an upregulation of genes involved in the protection against reactive oxidative species. Key genes involved in de novo lipogenesis and lipid transport were also upregulated. Finally, genes involved in DNA damage control and unfolded protein responses were downregulated.
Collapse
Affiliation(s)
- Sachin Bhusari
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|