51
|
Rong X, Wei F, Luo RQ, Yuan X, Kuang QQ, Yin DP, Huang SS, Jiang YM, Liu H. Discrimination of Single Living Rat Pancreatic α, β, δ, and Pancreatic Polypeptide (PP) Cells Using Raman Spectroscopy. APPLIED SPECTROSCOPY 2018; 72:706-714. [PMID: 29350550 DOI: 10.1177/0003702818757993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Primary pancreatic α, β, δ, and pancreatic polypeptide (PP) cells are reliable cell models for diabetes research. However, the separation and purification of these cells in living conditions remains an obstacle for researchers. The interaction of visible light with cellular molecules can produce Raman scattering, which can be analyzed to obtain cellular intrinsic molecular fingerprints. It has been speculated that primary pancreatic α, β, δ, and PP cells can be identified and separated from each other according to their spectral differences. To test this hypothesis, Raman spectra detection was performed on rat islet cells. Single islet cells identified by Raman scattering under living conditions were verified using immunohistochemistry. Thus, Raman data were acquired from a pure line of islet cells as a training sample and then used to establish the discriminant function. Then, using the principal component analysis-linear discriminate analysis (PCA-LDA) method, the four types of islet cells could be identified and discriminated by Raman spectroscopy. This study provides a label-free and noninvasive method for discriminating islet cell types in a randomly distributed mixed islet cell population via their physical properties rather than by using antibodies or fluorescence labeling.
Collapse
Affiliation(s)
- Xi Rong
- 1 The Department of Geriatric Endocrinology, the First Affiliated Hospital of 74626 Guangxi Medical University, Nanning, China
| | - Fang Wei
- 1 The Department of Geriatric Endocrinology, the First Affiliated Hospital of 74626 Guangxi Medical University, Nanning, China
| | - Rui-Qiong Luo
- 1 The Department of Geriatric Endocrinology, the First Affiliated Hospital of 74626 Guangxi Medical University, Nanning, China
| | - Xue Yuan
- 1 The Department of Geriatric Endocrinology, the First Affiliated Hospital of 74626 Guangxi Medical University, Nanning, China
| | - Qi-Qi Kuang
- 2 74626 Guangxi Medical University, Nanning, China
| | | | - Shu-Shi Huang
- 3 245477 The Laboratory of Biophysics, Guangxi Academy of Sciences, Nanning, China
| | - Yue-Ming Jiang
- 4 74626 Department of Health Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hong Liu
- 1 The Department of Geriatric Endocrinology, the First Affiliated Hospital of 74626 Guangxi Medical University, Nanning, China
| |
Collapse
|
52
|
Wang Y, Dorrell C, Naugler WE, Heskett M, Spellman P, Li B, Galivo F, Haft A, Wakefield L, Grompe M. Long-Term Correction of Diabetes in Mice by In Vivo Reprogramming of Pancreatic Ducts. Mol Ther 2018; 26:1327-1342. [PMID: 29550076 DOI: 10.1016/j.ymthe.2018.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 12/17/2022] Open
Abstract
Direct lineage reprogramming can convert readily available cells in the body into desired cell types for cell replacement therapy. This is usually achieved through forced activation or repression of lineage-defining factors or pathways. In particular, reprogramming toward the pancreatic β cell fate has been of great interest in the search for new diabetes therapies. It has been suggested that cells from various endodermal lineages can be converted to β-like cells. However, it is unclear how closely induced cells resemble endogenous pancreatic β cells and whether different cell types have the same reprogramming potential. Here, we report in vivo reprogramming of pancreatic ductal cells through intra-ductal delivery of an adenoviral vector expressing the transcription factors Pdx1, Neurog3, and Mafa. Induced β-like cells are mono-hormonal, express genes essential for β cell function, and correct hyperglycemia in both chemically and genetically induced diabetes models. Compared with intrahepatic ducts and hepatocytes treated with the same vector, pancreatic ducts demonstrated more rapid activation of β cell transcripts and repression of donor cell markers. This approach could be readily adapted to humans through a commonly performed procedure, endoscopic retrograde cholangiopancreatography (ERCP), and provides potential for cell replacement therapy in type 1 diabetes patients.
Collapse
Affiliation(s)
- Yuhan Wang
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Craig Dorrell
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Willscott E Naugler
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael Heskett
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paul Spellman
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA; CEDAR Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Bin Li
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Feorillo Galivo
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Annelise Haft
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Leslie Wakefield
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
53
|
Jung Y, Zhou R, Kato T, Usui JK, Muratani M, Oishi H, Heck MMS, Takahashi S. Isl1β Overexpression With Key β Cell Transcription Factors Enhances Glucose-Responsive Hepatic Insulin Production and Secretion. Endocrinology 2018; 159:869-882. [PMID: 29220426 DOI: 10.1210/en.2017-00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022]
Abstract
Adenoviral gene transfer of key β cell developmental regulators including Pdx1, Neurod1, and Mafa (PDA) has been reported to generate insulin-producing cells in the liver. However, PDA insulin secretion is transient and glucose unresponsive. Here, we report that an additional β cell developmental regulator, insulin gene enhancer binding protein splicing variant (Isl1β), improved insulin production and glucose-responsive secretion in PDA mice. Microarray gene expression analysis suggested that adenoviral PDA transfer required an additional element for mature β cell generation, such as Isl1 and Elf3 in the liver. In vitro promoter analysis indicated that splicing variant Isl1, or Isl1β, is an important factor for transcriptional activity of the insulin gene. In vivo bioluminescence monitoring using insulin promoter-luciferase transgenic mice verified that adenoviral PDA + Isl1β transfer produced highly intense luminescence from the liver, which peaked at day 7 and persisted for more than 10 days. Using insulin promoter-GFP transgenic mice, we further confirmed that Isl1β supplementation to PDA augmented insulin-producing cells in the liver, insulin production and secretion, and β cell‒related genes. Finally, the PDA + Isl1β combination ameliorated hyperglycemia in diabetic mice for 28 days and enhanced glucose tolerance and responsiveness. Thus, our results suggest that Isl1β is a key additional transcriptional factor for advancing the generation of insulin-producing cells in the liver in combination with PDA.
Collapse
Affiliation(s)
- Yunshin Jung
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tennodai, Japan
| | - Ruyi Zhou
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Japan
| | - Toshiki Kato
- School of Integrative and Global Majors, University of Tsukuba, Tennodai, Japan
- Department of Regenerative Medicine and Stem Cell Biology, Faculty of Medicine, University of Tsukuba, Tennodai, Japan
| | - Jeffrey K Usui
- School of Medicine, Stony Brook University, Stony Brook, New York
| | - Masafumi Muratani
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tennodai, Japan
| | - Hisashi Oishi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Japan
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tennodai, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tennodai, Japan
| | - Margarete M S Heck
- Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Japan
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tennodai, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tennodai, Japan
| |
Collapse
|
54
|
Lee EM, Park I, Lee YJ, You YH, Kim JW, Kim MJ, Ahn YB, Kim P, Ko SH. Effect of resveratrol treatment on graft revascularization after islet transplantation in streptozotocin-induced diabetic mice. Islets 2018; 10:25-39. [PMID: 29333922 PMCID: PMC5800387 DOI: 10.1080/19382014.2017.1414764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/22/2017] [Accepted: 12/03/2017] [Indexed: 01/07/2023] Open
Abstract
We evaluated the effect of resveratrol (RSV) on graft survival after islet transplantation (ITx) in diabetic mice. Isolated islets from Balb/c mice (200 IEQ) were transplanted under the kidney capsule of diabetic Balb/c mice. Vehicle or RSV (200 mg/kg/day, orally) was given for 14 days after ITx. Two more control groups [STZ-treated (No-ITx-Control) and STZ+RSV-treated (No-ITx-RSV) mice without ITx] were added. Glucose tolerance tests (GTT) was performed at 14 days after ITx. In vitro, isolated islets pretreated with vehicle or RSV (1 μM) were incubated in a hypoxic chamber (O2 1%, 1hr). Some of the ITx was performed in mouse insulin 1 gene promoter-green fluorescent protein (MIP-GFP) transgenic mice and analyzed using an in vivo imaging system. After 14 days of ITx, 2-hr glucose levels on GTT in the RSV-treated group were significantly lower than those of other control groups. But the glucose status was not improved in No-ITx mice with RSV. At day 3, the percentage of Ki-67/insulin co-stained cells in islet graft was significantly increased in the RSV-ITx group. Immunostaining with anti-insulin and anti-BS-1 antibodies revealed significantly higher insulin-stained area and vascular density in RSV-treated islet grafts. The mean vessel volume per islet graft measured by in vivo imaging was significantly higher in the RSV-treated group at day 3. In isolated islets cultured in hypoxic conditions, the cell death rate and oxidative stress were significantly attenuated with RSV pretreatment. Hypoxic treatment for isolated islets decreased the expression of SIRT-1 mRNA, and this attenuation was recovered by RSV pretreatment. Our data suggest that RSV treatment improved glycemic control, beta-cell proliferation, reduced oxidative stress, and enhanced islet revascularization and the outcome of ITx in diabetic mice.
Collapse
Affiliation(s)
- Eun-Mi Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Inwon Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ye-Jee Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Hye You
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myung-Jun Kim
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yu-Bae Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
55
|
Kim H, Kim H, Kim K, German MS, Kim H. Ectopic serotonin production in β-cell specific transgenic mice. Biochem Biophys Res Commun 2017; 495:1986-1991. [PMID: 29223399 DOI: 10.1016/j.bbrc.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
Genetically modified mice have been widely used in the field of β-cell research. However, analysis of results gathered using genetically modified organisms should be interpreted carefully as the results may be confounded by several factors. Here, we showed the ectopic serotonin (5-HT) production in β-cells of RIP-CreMgn, MIP-GFP, and MIP-Cre/ERT mice. These mice contained a human growth hormone (hGH) cassette to enhance transgene expression and hGH expression and Stat5 phosphorylation were detected in pancreatic islets of these mice. The expression level of tryptophan hydroxylase 1 (Tph1) was upregulated in pancreatic islets of transgenic mice with an hGH cassette but not in transgenic mice without an hGH cassette. Ectopic 5-HT production was not observed in β-cell-specific prolactin receptor (Prlr) knockout mice or Stat5 knockout mice crossed with RIP-CreMgn. We further confirmed that 5-HT production in β-cells of several transgenic mice was induced by hGH expression followed by the activation of the Prlr-Stat5-Tph1 pathway. These findings indicate that results obtained using transgenic mice containing the hGH cassette should be interpreted with care.
Collapse
Affiliation(s)
- Hyeongseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyunki Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kyuho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Michael S German
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, CA 94143-0669, USA
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
56
|
Yamamoto J, Imai J, Izumi T, Takahashi H, Kawana Y, Takahashi K, Kodama S, Kaneko K, Gao J, Uno K, Sawada S, Asano T, Kalinichenko VV, Susaki EA, Kanzaki M, Ueda HR, Ishigaki Y, Yamada T, Katagiri H. Neuronal signals regulate obesity induced β-cell proliferation by FoxM1 dependent mechanism. Nat Commun 2017; 8:1930. [PMID: 29208957 PMCID: PMC5717276 DOI: 10.1038/s41467-017-01869-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022] Open
Abstract
Under insulin-resistant conditions such as obesity, pancreatic β-cells proliferate to prevent blood glucose elevations. A liver–brain–pancreas neuronal relay plays an important role in this process. Here, we show the molecular mechanism underlying this compensatory β-cell proliferation. We identify FoxM1 activation in islets from neuronal relay-stimulated mice. Blockade of this relay, including vagotomy, inhibits obesity-induced activation of the β-cell FoxM1 pathway and suppresses β-cell expansion. Inducible β-cell-specific FoxM1 deficiency also blocks compensatory β-cell proliferation. In isolated islets, carbachol and PACAP/VIP synergistically promote β-cell proliferation through a FoxM1-dependent mechanism. These findings indicate that vagal nerves that release several neurotransmitters may allow simultaneous activation of multiple pathways in β-cells selectively, thereby efficiently promoting β-cell proliferation and maintaining glucose homeostasis during obesity development. This neuronal signal-mediated mechanism holds potential for developing novel approaches to regenerating pancreatic β-cells. Neuronal signals, in particular those transmitted via the vagal nerve, regulate both β-cell function and proliferation. Here, Yamamoto et al. show that the forkhead box M1 pathway is required for vagal signal-mediated induction of β-cell proliferation during obesity.
Collapse
Affiliation(s)
- Junpei Yamamoto
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hironori Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yohei Kawana
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Junhong Gao
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kenji Uno
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shojiro Sawada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, University of Hiroshima, Hiroshima, 734-8553, Japan
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Etsuo A Susaki
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Osaka, 565-0871, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, 332-0012, Japan
| | - Makoto Kanzaki
- Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8579, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Osaka, 565-0871, Japan
| | - Yasushi Ishigaki
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.,Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Morioka, 020-8505, Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.,Japan Agency for Medical Research and Development, Project for Elucidating and Controlling Mechanisms of Aging and Longevity, Tokyo, 100-0004, Japan.,Japan Agency for Medical Research and Development, CREST, Tokyo, 100-1004, Japan
| |
Collapse
|
57
|
Kimura H, Ogawa Y, Fujimoto H, Mukai E, Kawashima H, Arimitsu K, Toyoda K, Fujita N, Yagi Y, Hamamatsu K, Murakami T, Murakami A, Ono M, Nakamoto Y, Togashi K, Inagaki N, Saji H. Evaluation of 18F-labeled exendin(9-39) derivatives targeting glucagon-like peptide-1 receptor for pancreatic β-cell imaging. Bioorg Med Chem 2017; 26:463-469. [PMID: 29273416 DOI: 10.1016/j.bmc.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 01/09/2023]
Abstract
β-cell mass (BCM) is known to be decreased in subjects with type-2 diabetes (T2D). Quantitative analysis for BCM would be useful for understanding how T2D progresses and how BCM affects treatment efficacy and for earlier diagnosis of T2D and development of new therapeutic strategies. However, a noninvasive method to measure BCM has not yet been developed. We developed four 18F-labeled exendin(9-39) derivatives for β-cell imaging by PET: [18F]FB9-Ex(9-39), [18F]FB12-Ex(9-39), [18F]FB27-Ex(9-39), and [18F]FB40-Ex(9-39). Affinity to the glucagon-like peptide-1 receptor (GLP-1R) was evaluated with dispersed islet cells of ddY mice. Uptake of exendin(9-39) derivatives in the pancreas as well as in other organs was evaluated by a biodistribution study. Small-animal PET study was performed after injecting [18F]FB40-Ex(9-39). FB40-Ex(9-39) showed moderate affinity to the GLP-1R. Among all of the derivatives, [18F]FB40-Ex(9-39) resulted in the highest uptake of radioactivity in the pancreas 30 min after injection. Moreover, it showed significantly less radioactivity accumulated in the liver and kidney, resulting in an overall increase in the pancreas-to-organ ratio. In the PET imaging study, pancreas was visualized at 30 min after injection of [18F]FB40-Ex(9-39). [18F]FB40-Ex(9-39) met the basic requirements for an imaging probe for GLP-1R in pancreatic β-cells. Further enhancement of pancreatic uptake and specific binding to GLP-1R will lead to a clear visualization of pancreatic β-cells.
Collapse
Affiliation(s)
- Hiroyuki Kimura
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Yu Ogawa
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Fujimoto
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Eri Mukai
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hidekazu Kawashima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Radioisotope Research Center, Kyoto Pharmaceutical University, 1 Misasagi-shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kenji Arimitsu
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kentaro Toyoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naotaka Fujita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yusuke Yagi
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Keita Hamamatsu
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsushi Murakami
- Research & Development Division, Arkray, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto 602-0008, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
58
|
Olehnik SK, Fowler JL, Avramovich G, Hara M. Quantitative analysis of intra- and inter-individual variability of human beta-cell mass. Sci Rep 2017; 7:16398. [PMID: 29180621 PMCID: PMC5703964 DOI: 10.1038/s41598-017-16300-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022] Open
Abstract
Pancreatic beta-cell mass is a critical determinant of the progression of diabetes. The loss of beta-cells in various types of diabetes has been documented in comparison to age, sex and body mass index (BMI) matched control subjects. However, the underlying heterogeneity of beta-cell mass in healthy individuals has not been considered. In this study, the inter-individual heterogeneity in beta-cell/islet mass was examined among 10 cases of age-matched non-diabetic male subjects in relation to BMI, pancreas weight, and the percent ratio, volume and number of islets in the whole pancreas. Beta-cell/islet mass was measured using a large-scale unbiased quantification method. In contrast to previous studies, we found no clinically relevant correlation between beta-cell/islet mass and age, BMI or pancreas weight, with large differences in beta-cell/islet mass and islet number among the individuals. Our method extracts the comprehensive information out of individual pancreas providing multifaceted parameters to study the intrinsic heterogeneity of the human pancreas.
Collapse
Affiliation(s)
- Scott K Olehnik
- Department of Medicine, The University of Chicago, Chicago, Illinois, 60637, USA
| | - Jonas L Fowler
- Department of Medicine, The University of Chicago, Chicago, Illinois, 60637, USA
| | - Gil Avramovich
- Department of Medicine, The University of Chicago, Chicago, Illinois, 60637, USA
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, Illinois, 60637, USA.
| |
Collapse
|
59
|
Pancreatic Inflammation Redirects Acinar to β Cell Reprogramming. Cell Rep 2017; 17:2028-2041. [PMID: 27851966 DOI: 10.1016/j.celrep.2016.10.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 09/06/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022] Open
Abstract
Using a transgenic mouse model to express MafA, Pdx1, and Neurog3 (3TF) in a pancreatic acinar cell- and doxycycline-dependent manner, we discovered that the outcome of transcription factor-mediated acinar to β-like cellular reprogramming is dependent on both the magnitude of 3TF expression and on reprogramming-induced inflammation. Overly robust 3TF expression causes acinar cell necrosis, resulting in marked inflammation and acinar-to-ductal metaplasia. Generation of new β-like cells requires limiting reprogramming-induced inflammation, either by reducing 3TF expression or by eliminating macrophages. The new β-like cells were able to reverse streptozotocin-induced diabetes 6 days after inducing 3TF expression but failed to sustain their function after removal of the reprogramming factors.
Collapse
|
60
|
Pauerstein PT, Tellez K, Willmarth KB, Park KM, Hsueh B, Efsun Arda H, Gu X, Aghajanian H, Deisseroth K, Epstein JA, Kim SK. A radial axis defined by semaphorin-to-neuropilin signaling controls pancreatic islet morphogenesis. Development 2017; 144:3744-3754. [PMID: 28893946 DOI: 10.1242/dev.148684] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/04/2017] [Indexed: 12/24/2022]
Abstract
The islets of Langerhans are endocrine organs characteristically dispersed throughout the pancreas. During development, endocrine progenitors delaminate, migrate radially and cluster to form islets. Despite the distinctive distribution of islets, spatially localized signals that control islet morphogenesis have not been discovered. Here, we identify a radial signaling axis that instructs developing islet cells to disperse throughout the pancreas. A screen of pancreatic extracellular signals identified factors that stimulated islet cell development. These included semaphorin 3a, a guidance cue in neural development without known functions in the pancreas. In the fetal pancreas, peripheral mesenchymal cells expressed Sema3a, while central nascent islet cells produced the semaphorin receptor neuropilin 2 (Nrp2). Nrp2 mutant islet cells developed in proper numbers, but had defects in migration and were unresponsive to purified Sema3a. Mutant Nrp2 islets aggregated centrally and failed to disperse radially. Thus, Sema3a-Nrp2 signaling along an unrecognized pancreatic developmental axis constitutes a chemoattractant system essential for generating the hallmark morphogenetic properties of pancreatic islets. Unexpectedly, Sema3a- and Nrp2-mediated control of islet morphogenesis is strikingly homologous to mechanisms that regulate radial neuronal migration and cortical lamination in the developing mammalian brain.
Collapse
Affiliation(s)
- Philip T Pauerstein
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Krissie Tellez
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kirk B Willmarth
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Keon Min Park
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian Hsueh
- Departments of Bioengineering and of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H Efsun Arda
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl Deisseroth
- Departments of Bioengineering and of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
61
|
Scavuzzo MA, Yang D, Borowiak M. Organotypic pancreatoids with native mesenchyme develop Insulin producing endocrine cells. Sci Rep 2017; 7:10810. [PMID: 28883507 PMCID: PMC5589819 DOI: 10.1038/s41598-017-11169-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Replacement of lost beta cells in patients with diabetes has the potential to alleviate them of their disease, yet current protocols to make beta cells are inadequate for therapy. In vitro screens can reveal the signals necessary for endocrine maturation to improve beta cell production, however the complexities of in vivo development that lead to beta cell formation are lost in two-dimensional systems. Here, we create three-dimensional organotypic pancreatic cultures, named pancreatoids, composed of embryonic day 10.5 murine epithelial progenitors and native mesenchyme. These progenitors assemble in scaffold-free, floating conditions and, with the inclusion of native mesenchyme, develop into pancreatoids expressing markers of different pancreatic lineages including endocrine-like cells. Treatment of pancreatoids with (-)-Indolactam-V or phorbol 12-myristate 13-acetate, two protein kinase C activators, leads to altered morphology which otherwise would be overlooked in two-dimensional systems. Protein kinase C activation also led to fewer Insulin+ cells, decreased Ins1 and Ins2 mRNA levels, and increased Pdx1 and Hes1 mRNA levels with a high number of DBA+ cells. Thus, organotypic pancreatoids provide a useful tool for developmental studies, and can further be used for disease modeling, small molecules and genetic screens, or applied to human pluripotent stem cell differentiation for beta-like cell formation.
Collapse
Affiliation(s)
- Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diane Yang
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA. .,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX, 77030, USA. .,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
62
|
Kondo Y, Toyoda T, Ito R, Funato M, Hosokawa Y, Matsui S, Sudo T, Nakamura M, Okada C, Zhuang X, Watanabe A, Ohta A, Inagaki N, Osafune K. Identification of a small molecule that facilitates the differentiation of human iPSCs/ESCs and mouse embryonic pancreatic explants into pancreatic endocrine cells. Diabetologia 2017; 60:1454-1466. [PMID: 28534195 DOI: 10.1007/s00125-017-4302-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/12/2017] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Pancreatic beta-like cells generated from human induced pluripotent stem cells (hiPSCs) or human embryonic stem cells (hESCs) offer an appealing donor tissue source. However, differentiation protocols that mainly use growth factors are costly. Therefore, in this study, we aimed to establish efficient differentiation protocols to change hiPSCs/hESCs to insulin (INS)+ cells using novel small-molecule inducers. METHODS We screened small molecules that increased the induction rate of INS+ cells from hESC-derived pancreatic and duodenal homeobox 1 (PDX1)+ pancreatic progenitor cells. The differentiation protocol to generate INS+ cells from hiPSCs/hESCs was optimised using hit compounds, and INS+ cells induced with the compounds were characterised for their in vitro and in vivo functions. The inducing activity of the hit compounds was also examined using mouse embryonic pancreatic tissues in an explant culture system. Finally, RNA sequencing analyses were performed on the INS+ cells to elucidate the mechanisms of action by which the hit compounds induced pancreatic endocrine differentiation. RESULTS One hit compound, sodium cromoglicate (SCG), was identified out of approximately 1250 small molecules screened. When SCG was combined with a previously described protocol, the induction rate of INS+ cells increased from a mean ± SD of 5.9 ± 1.5% (n = 3) to 16.5 ± 2.1% (n = 3). SCG induced neurogenin 3-positive cells at a mean ± SD of 32.6 ± 4.6% (n = 3) compared with 14.2 ± 3.6% (n = 3) for control treatment without SCG, resulting in an increased generation of endocrine cells including insulin-producing cells. Similar induction by SCG was confirmed using mouse embryonic pancreatic explants. We also confirmed that the mechanisms of action by which SCG induced pancreatic endocrine differentiation included the inhibition of bone morphogenetic protein 4 signalling. CONCLUSIONS/INTERPRETATION SCG improves the generation of pancreatic endocrine cells from multiple hiPSC/hESC lines and mouse embryonic pancreatic explants by facilitating the differentiation of endocrine precursors. This discovery will contribute to elucidating the mechanisms of pancreatic endocrine development and facilitate cost-effective generation of INS+ cells from hiPSCs/hESCs. DATA AVAILABILITY The RNA sequencing data generated during the current study are available in the Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo ) with series accession number GSE89973.
Collapse
Affiliation(s)
- Yasushi Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryo Ito
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Michinori Funato
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshiya Hosokawa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Satoshi Matsui
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomomi Sudo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masahiro Nakamura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Chihiro Okada
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Mitsubishi Space Software Co., Ltd, 5-4-36, Tsukaguchi-honmachi, Amagasaki, Hyogo, Japan
| | - Xiaotong Zhuang
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Ohta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
63
|
Stancill JS, Cartailler JP, Clayton HW, O'Connor JT, Dickerson MT, Dadi PK, Osipovich AB, Jacobson DA, Magnuson MA. Chronic β-Cell Depolarization Impairs β-Cell Identity by Disrupting a Network of Ca 2+-Regulated Genes. Diabetes 2017; 66:2175-2187. [PMID: 28550109 PMCID: PMC5521870 DOI: 10.2337/db16-1355] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/17/2017] [Indexed: 12/18/2022]
Abstract
We used mice lacking Abcc8, a key component of the β-cell KATP-channel, to analyze the effects of a sustained elevation in the intracellular Ca2+ concentration ([Ca2+]i) on β-cell identity and gene expression. Lineage tracing analysis revealed the conversion of β-cells lacking Abcc8 into pancreatic polypeptide cells but not to α- or δ-cells. RNA-sequencing analysis of FACS-purified Abcc8-/- β-cells confirmed an increase in Ppy gene expression and revealed altered expression of more than 4,200 genes, many of which are involved in Ca2+ signaling, the maintenance of β-cell identity, and cell adhesion. The expression of S100a6 and S100a4, two highly upregulated genes, is closely correlated with membrane depolarization, suggesting their use as markers for an increase in [Ca2+]i Moreover, a bioinformatics analysis predicts that many of the dysregulated genes are regulated by common transcription factors, one of which, Ascl1, was confirmed to be directly controlled by Ca2+ influx in β-cells. Interestingly, among the upregulated genes is Aldh1a3, a putative marker of β-cell dedifferentiation, and other genes associated with β-cell failure. Taken together, our results suggest that chronically elevated β-cell [Ca2+]i in Abcc8-/- islets contributes to the alteration of β-cell identity, islet cell numbers and morphology, and gene expression by disrupting a network of Ca2+-regulated genes.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | | | - Hannah W Clayton
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - James T O'Connor
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
64
|
Houtz J, Borden P, Ceasrine A, Minichiello L, Kuruvilla R. Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion. Dev Cell 2017; 39:329-345. [PMID: 27825441 DOI: 10.1016/j.devcel.2016.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/15/2016] [Accepted: 10/06/2016] [Indexed: 01/19/2023]
Abstract
Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate β cell dysfunction.
Collapse
Affiliation(s)
- Jessica Houtz
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Philip Borden
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Alexis Ceasrine
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 224 Mudd Hall, Baltimore, MD 21218, USA
| | | | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 224 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
65
|
Rodnoi P, Rajkumar M, Moin ASM, Georgia SK, Butler AE, Dhawan S. Neuropeptide Y expression marks partially differentiated β cells in mice and humans. JCI Insight 2017; 2:94005. [PMID: 28614797 DOI: 10.1172/jci.insight.94005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/10/2017] [Indexed: 12/27/2022] Open
Abstract
β Cells are formed in embryonic life by differentiation of endocrine progenitors and expand by replication during neonatal life, followed by transition into functional maturity. In this study, we addressed the potential contribution of neuropeptide Y (NPY) in pancreatic β cell development and maturation. We show that NPY expression is restricted from the progenitor populations during pancreatic development and marks functionally immature β cells in fetal and neonatal mice and humans. NPY expression is epigenetically downregulated in β cells upon maturation. Neonatal β cells that express NPY are more replicative, and knockdown of NPY expression in neonatal mouse islets reduces replication and enhances insulin secretion in response to high glucose. These data show that NPY expression likely promotes replication and contributes to impaired glucose responsiveness in neonatal β cells. We show that NPY expression reemerges in β cells in mice fed with high-fat diet as well as in diabetes in mice and humans, establishing a potential new mechanism to explain impaired β cell maturity in diabetes. Together, these studies highlight the contribution of NPY in the regulation of β cell differentiation and have potential applications for β cell supplementation for diabetes therapy.
Collapse
Affiliation(s)
- Pope Rodnoi
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Mohan Rajkumar
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Abu Saleh Md Moin
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Senta K Georgia
- Children's Hospital Los Angeles (CHLA), Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Alexandra E Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Sangeeta Dhawan
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
66
|
Extensive phenotypic characterization of a new transgenic mouse reveals pleiotropic perturbations in physiology due to mesenchymal hGH minigene expression. Sci Rep 2017; 7:2397. [PMID: 28546545 PMCID: PMC5445072 DOI: 10.1038/s41598-017-02581-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/13/2017] [Indexed: 12/28/2022] Open
Abstract
The human growth hormone (hGH) minigene used for transgene stabilization in mice has been recently identified to be locally expressed in the tissues where transgenes are active and associated with phenotypic alterations. Here we extend these findings by analyzing the effect of the hGH minigene in TgC6hp55 transgenic mice which express the human TNFR1 under the control of the mesenchymal cell-specific CollagenVI promoter. These mice displayed a fully penetrant phenotype characterized by growth enhancement accompanied by perturbations in metabolic, skeletal, histological and other physiological parameters. Notably, this phenotype was independent of TNF-TNFR1 signaling since the genetic ablation of either Tnf or Tradd did not rescue the phenotype. Further analyses showed that the hGH minigene was expressed in several tissues, also leading to increased hGH protein levels in the serum. Pharmacological blockade of GH signaling prevented the development of the phenotype. Our results indicate that the unplanned expression of the hGH minigene in CollagenVI expressing mesenchymal cells can lead through local and/or systemic mechanisms to enhanced somatic growth followed by a plethora of primary and/or secondary effects such as hyperphagia, hypermetabolism, disturbed glucose homeostasis, altered hematological parameters, increased bone formation and lipid accumulation in metabolically critical tissues.
Collapse
|
67
|
Pant S, Li C, Gong Z, Chen N. Line-scan focal modulation microscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:50502. [PMID: 28549085 DOI: 10.1117/1.jbo.22.5.050502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 05/18/2023]
Abstract
We report the development of a line-scan focal modulation microscope (LSFMM) that is capable of high-speed image acquisition ( > 40 ?? fps ) with uncompromised optical sectioning capability. The improved background rejection and axial resolution of this imaging modality, enabled by focal modulation, are quantified with three-dimensional imaging data obtained from fluorescent beads. The signal-to-background ratio for the LSFMM system is one- to two-orders of magnitude higher than that for line-scanning confocal systems when imaging deep (up to 100 ?m) into a turbid medium of optical properties similar to biological tissues. The imaging performance of LSFMM, in terms of both spatial and temporal resolutions, is further demonstrated with in vivo imaging experiments with live zebrafish larvae.
Collapse
Affiliation(s)
- Shilpa Pant
- National University of Singapore, Department of Biomedical Engineering, Singapore
| | - Caixia Li
- National University of Singapore, Department of Biological Science, Singapore
| | - Zhiyuan Gong
- National University of Singapore, Department of Biological Science, Singapore
| | - Nanguang Chen
- National University of Singapore, Department of Biomedical Engineering, Singapore
| |
Collapse
|
68
|
Sphingosine kinase 1-interacting protein is a novel regulator of glucose-stimulated insulin secretion. Sci Rep 2017; 7:779. [PMID: 28396589 PMCID: PMC5429731 DOI: 10.1038/s41598-017-00900-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) is essential in keeping blood glucose levels within normal range. GSIS is impaired in type 2 diabetes, and its recovery is crucial in treatment of the disease. We find here that sphingosine kinase 1-interacting protein (SKIP, also called Sphkap) is highly expressed in pancreatic β-cells but not in α-cells. Intraperitoneal glucose tolerance test showed that plasma glucose levels were decreased and insulin levels were increased in SKIP−/− mice compared to SKIP+/+ mice, but exendin-4-enhanced insulin secretion was masked. GSIS was amplified more in SKIP−/− but exendin-4-enhanced insulin secretion was masked compared to that in SKIP+/+ islets. The ATP and cAMP content were similarly increased in SKIP+/+ and SKIP−/− islets; depolarization-evoked, PKA and cAMP-mediated insulin secretion were not affected. Inhibition of PDE activity equally augmented GSIS in SKIP+/+ and SKIP−/− islets. These results indicate that SKIP modulates GSIS by a pathway distinct from that of cAMP-, PDE- and sphingosine kinase-dependent pathways.
Collapse
|
69
|
β Cell Aging Markers Have Heterogeneous Distribution and Are Induced by Insulin Resistance. Cell Metab 2017; 25:898-910.e5. [PMID: 28380379 PMCID: PMC5471618 DOI: 10.1016/j.cmet.2017.03.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/10/2017] [Accepted: 03/21/2017] [Indexed: 01/09/2023]
Abstract
We hypothesized that the known heterogeneity of pancreatic β cells was due to subpopulations of β cells at different stages of their life cycle with different functional capacities and that further changes occur with metabolic stress and aging. We identified new markers of aging in β cells, including IGF1R. In β cells IGF1R expression correlated with age, dysfunction, and expression of known age markers p16ink4a, p53BP1, and senescence-associated β-galactosidase. The new markers showed striking heterogeneity both within and between islets in both mouse and human pancreas. Acute induction of insulin resistance with an insulin receptor antagonist or chronic ER stress resulted in increased expression of aging markers, providing insight into how metabolic stress might accelerate dysfunction and decline of β cells. These novel findings about β cell and islet heterogeneity, and how they change with age, open up an entirely new set of questions about the pathogenesis of type 2 diabetes.
Collapse
|
70
|
Kaitsuka T, Kobayashi K, Otsuka W, Kubo T, Hakim F, Wei FY, Shiraki N, Kume S, Tomizawa K. Erythropoietin facilitates definitive endodermal differentiation of mouse embryonic stem cells via activation of ERK signaling. Am J Physiol Cell Physiol 2017; 312:C573-C582. [PMID: 28298334 DOI: 10.1152/ajpcell.00071.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
Artificially generated pancreatic β-cells from pluripotent stem cells are expected for cell replacement therapy for type 1 diabetes. Several strategies are adopted to direct pluripotent stem cells toward pancreatic differentiation. However, a standard differentiation method for clinical application has not been established. It is important to develop more effective and safer methods for generating pancreatic β-cells without toxic or mutagenic chemicals. In the present study, we screened several endogenous factors involved in organ development to identify the factor, which induced the efficiency of pancreatic differentiation and found that treatment with erythropoietin (EPO) facilitated the differentiation of mouse embryonic stem cells (ESCs) into definitive endoderm. At an early stage of differentiation, EPO treatment significantly increased Sox17 gene expression, as a marker of the definitive endoderm. Contrary to the canonical function of EPO, it did not affect the levels of phosphorylated JAK2 and STAT5, but stimulated the phosphorylation of ERK1/2 and Akt. The MEK inhibitor U0126 significantly inhibited EPO-induced Sox17 expression. The differentiation of ESCs into definitive endoderm is an important step for the differentiation into pancreatic and other endodermal lineages. This study suggests a possible role of EPO in embryonic endodermal development and a new agent for directing the differentiation into endodermal lineages like pancreatic β-cells.
Collapse
Affiliation(s)
- Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Kobayashi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Wakako Otsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Kubo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Farzana Hakim
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Nobuaki Shiraki
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan; and.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shoen Kume
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan; and.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan;
| |
Collapse
|
71
|
Briant LJB, Zhang Q, Vergari E, Kellard JA, Rodriguez B, Ashcroft FM, Rorsman P. Functional identification of islet cell types by electrophysiological fingerprinting. J R Soc Interface 2017; 14:20160999. [PMID: 28275121 PMCID: PMC5378133 DOI: 10.1098/rsif.2016.0999] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023] Open
Abstract
The α-, β- and δ-cells of the pancreatic islet exhibit different electrophysiological features. We used a large dataset of whole-cell patch-clamp recordings from cells in intact mouse islets (N = 288 recordings) to investigate whether it is possible to reliably identify cell type (α, β or δ) based on their electrophysiological characteristics. We quantified 15 electrophysiological variables in each recorded cell. Individually, none of the variables could reliably distinguish the cell types. We therefore constructed a logistic regression model that included all quantified variables, to determine whether they could together identify cell type. The model identified cell type with 94% accuracy. This model was applied to a dataset of cells recorded from hyperglycaemic βV59M mice; it correctly identified cell type in all cells and was able to distinguish cells that co-expressed insulin and glucagon. Based on this revised functional identification, we were able to improve conductance-based models of the electrical activity in α-cells and generate a model of δ-cell electrical activity. These new models could faithfully emulate α- and δ-cell electrical activity recorded experimentally.
Collapse
Affiliation(s)
- Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Joely A Kellard
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
- Metabolic Research, Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, SE-405 30 Göteborg, Sweden
| |
Collapse
|
72
|
Jiang FX, Li K, Archer M, Mehta M, Jamieson E, Charles A, Dickinson JE, Matsumoto M, Morahan G. Differentiation of Islet Progenitors Regulated by Nicotinamide into Transcriptome-Verified β Cells That Ameliorate Diabetes. Stem Cells 2017; 35:1341-1354. [DOI: 10.1002/stem.2567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/21/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Fang-Xu Jiang
- Islet Cell Development Program, Harry Perkins Institute of Medical Research, and Centre for Medical Research
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | - Kevin Li
- Islet Cell Development Program, Harry Perkins Institute of Medical Research, and Centre for Medical Research
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | | | - Munish Mehta
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | - Emma Jamieson
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | - Adrian Charles
- School of Women's and Infants' Health; The University of Western Australia; Nedlands Australia
| | - Jan E. Dickinson
- School of Women's and Infants' Health; The University of Western Australia; Nedlands Australia
| | | | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| |
Collapse
|
73
|
Agrawalla BK, Lee HW, Phue WH, Raju A, Kim JJ, Kim HM, Kang NY, Chang YT. Two-Photon Dye Cocktail for Dual-Color 3D Imaging of Pancreatic Beta and Alpha Cells in Live Islets. J Am Chem Soc 2017; 139:3480-3487. [DOI: 10.1021/jacs.6b12122] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bikram Keshari Agrawalla
- Department
of Chemistry and Medicinal Chemistry Program, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Hyo Won Lee
- Department
of Energy Systems Research, Ajou University, Suwon 443749, Korea
| | - Wut-Hmone Phue
- Department
of Chemistry and Medicinal Chemistry Program, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Anandhkumar Raju
- Laboratory
of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, # 02-02 Helios, 138667 Singapore
| | - Jong-Jin Kim
- Department
of Chemistry and Medicinal Chemistry Program, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Hwan Myung Kim
- Department
of Energy Systems Research, Ajou University, Suwon 443749, Korea
| | - Nam-Young Kang
- Laboratory
of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, # 02-02 Helios, 138667 Singapore
| | - Young-Tae Chang
- Department
of Chemistry and Medicinal Chemistry Program, National University of Singapore, 3 Science Drive 3, 117543 Singapore
- Laboratory
of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, # 02-02 Helios, 138667 Singapore
| |
Collapse
|
74
|
Wang Y, Galivo F, Pelz C, Haft A, Lee J, Kim SK, Grompe M. Efficient generation of pancreatic β-like cells from the mouse gallbladder. Stem Cell Res 2016; 17:587-596. [PMID: 27833043 DOI: 10.1016/j.scr.2016.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 12/18/2022] Open
Abstract
Direct reprogramming is a promising approach for the replacement of β cells in diabetes. Reprogramming of cells originating from the endodermal lineage, such as acinar cells in the pancreas, liver cells and gallbladder cells has been of particular interest because of their developmental proximity to β cells. Our previous work showed that mouse gallbladder epithelium can be partially reprogrammed in vitro to generate islet-like cells (rGBC1). Here, the reprogramming protocol was substantially improved, yielding cells (rGBC2) closer to functional β cells than the 1st generation method with higher conversion efficiency and insulin expression. In addition to insulin synthesis and processing, rGBC2 presented many hallmark features of β cells, including insulin secretion in response to high glucose stimulation. Gene expression analysis indicated that rGBC2 clustered closer with β cells and had a metabolic gene expression profile resembling neonatal β cells. When transplanted into immune-deficient animals, rGBC2 were stable for at least 5months and further matured in vivo. Taken together, this approach provides further understanding of endodermal lineage conversion and potential for development of cell replacement therapy for type 1 diabetes patients.
Collapse
Affiliation(s)
- Yuhan Wang
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Feorillo Galivo
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Carl Pelz
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Annelise Haft
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jonghyeob Lee
- Department of Developmental Biology, Department of Medicine (Division of Oncology), Stanford University School of Medicine, Stanford, CA, USA
| | - Seung K Kim
- Department of Developmental Biology, Department of Medicine (Division of Oncology), Stanford University School of Medicine, Stanford, CA, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
75
|
Shuai H, Xu Y, Yu Q, Gylfe E, Tengholm A. Fluorescent protein vectors for pancreatic islet cell identification in live-cell imaging. Pflugers Arch 2016; 468:1765-77. [PMID: 27539300 PMCID: PMC5026721 DOI: 10.1007/s00424-016-1864-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 11/25/2022]
Abstract
The islets of Langerhans contain different types of endocrine cells, which are crucial for glucose homeostasis. β- and α-cells that release insulin and glucagon, respectively, are most abundant, whereas somatostatin-producing δ-cells and particularly pancreatic polypeptide-releasing PP-cells are more scarce. Studies of islet cell function are hampered by difficulties to identify the different cell types, especially in live-cell imaging experiments when immunostaining is unsuitable. The aim of the present study was to create a set of vectors for fluorescent protein expression with cell-type-specific promoters and evaluate their applicability in functional islet imaging. We constructed six adenoviral vectors for expression of red and green fluorescent proteins controlled by the insulin, preproglucagon, somatostatin, or pancreatic polypeptide promoters. After transduction of mouse and human islets or dispersed islet cells, a majority of the fluorescent cells also immunostained for the appropriate hormone. Recordings of the sub-plasma membrane Ca(2+) and cAMP concentrations with a fluorescent indicator and a protein biosensor, respectively, showed that labeled cells respond to glucose and other modulators of secretion and revealed a striking variability in Ca(2+) signaling among α-cells. The measurements allowed comparison of the phase relationship of Ca(2+) oscillations between different types of cells within intact islets. We conclude that the fluorescent protein vectors allow easy identification of specific islet cell types and can be used in live-cell imaging together with organic dyes and genetically encoded biosensors. This approach will facilitate studies of normal islet physiology and help to clarify molecular defects and disturbed cell interactions in diabetic islets.
Collapse
Affiliation(s)
- Hongyan Shuai
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23, Uppsala, Sweden
| | - Yunjian Xu
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23, Uppsala, Sweden
| | - Qian Yu
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23, Uppsala, Sweden
| | - Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
76
|
Stereological analyses of the whole human pancreas. Sci Rep 2016; 6:34049. [PMID: 27658965 PMCID: PMC5034323 DOI: 10.1038/srep34049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/07/2016] [Indexed: 11/08/2022] Open
Abstract
The large size of human tissues requires a practical stereological approach to perform a comprehensive analysis of the whole organ. We have developed a method to quantitatively analyze the whole human pancreas, as one of the challenging organs to study, in which endocrine cells form various sizes of islets that are scattered unevenly throughout the exocrine pancreas. Furthermore, the human pancreas possesses intrinsic characteristics of intra-individual variability, i.e. regional differences in endocrine cell/islet distribution, and marked inter-individual heterogeneity regardless of age, sex and disease conditions including obesity and diabetes. The method is built based on large-scale image capture, computer-assisted unbiased image analysis and quantification, and further mathematical analyses, using widely-used software such as Fiji/ImageJ and MATLAB. The present study includes detailed protocols of every procedure as well as all the custom-written computer scripts, which can be modified according to specific experimental plans and specimens of interest.
Collapse
|
77
|
Chen C, Chmelova H, Cohrs CM, Chouinard JA, Jahn SR, Stertmann J, Uphues I, Speier S. Alterations in β-Cell Calcium Dynamics and Efficacy Outweigh Islet Mass Adaptation in Compensation of Insulin Resistance and Prediabetes Onset. Diabetes 2016; 65:2676-85. [PMID: 27207518 DOI: 10.2337/db15-1718] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/05/2016] [Indexed: 11/13/2022]
Abstract
Emerging insulin resistance is normally compensated by increased insulin production of pancreatic β-cells, thereby maintaining normoglycemia. However, it is unclear whether this is achieved by adaptation of β-cell function, mass, or both. Most importantly, it is still unknown which of these adaptive mechanisms fail when type 2 diabetes develops. We performed longitudinal in vivo imaging of β-cell calcium dynamics and islet mass of transplanted islets of Langerhans throughout diet-induced progression from normal glucose homeostasis, through compensation of insulin resistance, to prediabetes. The results show that compensation of insulin resistance is predominated by alterations of β-cell function, while islet mass only gradually expands. Hereby, functional adaptation is mediated by increased calcium efficacy, which involves Epac signaling. Prior to prediabetes, β-cell function displays decreased stimulated calcium dynamics, whereas islet mass continues to increase through prediabetes onset. Thus, our data reveal a predominant role of islet function with distinct contributions of triggering and amplifying pathway in the in vivo processes preceding diabetes onset. These findings support protection and recovery of β-cell function as primary goals for prevention and treatment of diabetes and provide insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Chunguang Chen
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Clinic Carl Gustav Carus, Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany German Research Foundation-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Helena Chmelova
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Clinic Carl Gustav Carus, Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany German Research Foundation-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian M Cohrs
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Clinic Carl Gustav Carus, Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany German Research Foundation-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julie A Chouinard
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Clinic Carl Gustav Carus, Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany German Research Foundation-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Stephan R Jahn
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Clinic Carl Gustav Carus, Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany German Research Foundation-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julia Stertmann
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Clinic Carl Gustav Carus, Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany German Research Foundation-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ingo Uphues
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Stephan Speier
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Clinic Carl Gustav Carus, Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany German Research Foundation-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
78
|
Ali Y, Diez J, Selander L, Zheng X, Edlund H, Berggren PO. The anterior chamber of the eye is a transplantation site that supports and enables visualisation of beta cell development in mice. Diabetologia 2016; 59:1007-11. [PMID: 26847769 DOI: 10.1007/s00125-016-3883-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 01/15/2016] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS In vivo imaging of the developing pancreas is challenging due to the inaccessibility of the tissue. To circumvent this, on embryonic day 10.5 (E10.5) we transplanted a mouse developing pancreatic bud into the anterior chamber of the eye (ACE) to determine whether the eye is a useful transplant site to support pancreas development. METHODS We transplanted an E10.5 dorsal pancreatic bud into the ACE of a syngeneic recipient mouse. Using a mouse insulin promoter-green fluorescent protein (MIP-GFP) mouse as the tissue donor, we non-invasively imaged the pancreatic bud as it develops at single beta cell resolution across time. RESULTS The transplanted pancreatic bud rapidly engrafts and vascularises when transplanted into the ACE. The pancreatic progenitor cells differentiate into exocrine and endocrine cells, including cells expressing insulin, glucagon and somatostatin. The morphology of the transplanted pancreatic bud resembles that of the native developing pancreas. Beta cells within the transplanted pancreatic bud respond to glucose in a manner similar to that of native fetal beta cells and superior to that of in vitro developed beta cells. Unlike in vitro grown pancreatic explants, pancreatic tissue developing in the ACE is vascularised, providing the developing pancreatic tissue with a milieu resembling the native situation. CONCLUSIONS/INTERPRETATION Altogether, we show that the ACE is able to support growth, differentiation and function of a developing pancreatic bud across time in vivo.
Collapse
Affiliation(s)
- Yusuf Ali
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636 921, Republic of Singapore.
- Singapore Eye Research Institute, The Academia, Singapore, Republic of Singapore.
| | - Juan Diez
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636 921, Republic of Singapore
- Singapore Eye Research Institute, The Academia, Singapore, Republic of Singapore
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Lars Selander
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Xiaofeng Zheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636 921, Republic of Singapore
- Singapore Eye Research Institute, The Academia, Singapore, Republic of Singapore
| | - Helena Edlund
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636 921, Republic of Singapore
- Singapore Eye Research Institute, The Academia, Singapore, Republic of Singapore
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
79
|
Shalaly ND, Ria M, Johansson U, Åvall K, Berggren PO, Hedhammar M. Silk matrices promote formation of insulin-secreting islet-like clusters. Biomaterials 2016; 90:50-61. [PMID: 26986856 DOI: 10.1016/j.biomaterials.2016.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/29/2022]
Abstract
Ex vivo expansion of endocrine cells constitutes an interesting alternative to be able to match the unmet need of transplantable pancreatic islets. However, endocrine cells become fragile once removed from their extracellular matrix (ECM) and typically become senescent and loose insulin expression during conventional 2D culture. Herein we develop a protocol where 3D silk matrices functionalized with ECM-derived motifs are used for generation of insulin-secreting islet-like clusters from mouse and human primary cells. The obtained clusters were shown to attain an islet-like spheroid shape and to maintain functional insulin release upon glucose stimulation in vitro. Furthermore, in vivo imaging of transplanted murine clusters showed engraftment with increasing vessel formation during time. There was no sign of cell death and the clusters maintained or increased in size throughout the period, thus suggesting a suitable cluster size for transplantation.
Collapse
Affiliation(s)
- Nancy Dekki Shalaly
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Massimiliano Ria
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, S-17176 Stockholm, Sweden
| | - Ulrika Johansson
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Karin Åvall
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, S-17176 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, S-17176 Stockholm, Sweden
| | - My Hedhammar
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden.
| |
Collapse
|
80
|
Ghislain J, Fontés G, Tremblay C, Kebede MA, Poitout V. Dual-Reporter β-Cell-Specific Male Transgenic Rats for the Analysis of β-Cell Functional Mass and Enrichment by Flow Cytometry. Endocrinology 2016; 157:1299-306. [PMID: 26671180 PMCID: PMC4769371 DOI: 10.1210/en.2015-1550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mouse β-cell-specific reporter lines have played a key role in diabetes research. Although the rat provides several advantages, its use has lagged behind the mouse due to the relative paucity of genetic models. In this report we describe the generation and characterization of transgenic rats expressing a Renilla luciferase (RLuc)-enhanced yellow fluorescent protein (YFP) fusion under control of a 9-kb genomic fragment from the rat ins2 gene (RIP7-RLuc-YFP). Analysis of RLuc luminescence and YFP fluorescence revealed that reporter expression is restricted to β-cells in the adult rat. Physiological characteristics including body weight, fat and lean mass, fasting and fed glucose levels, glucose and insulin tolerance, and β-cell mass were similar between two RIP7-RLuc-YFP lines and wild-type littermates. Glucose-induced insulin secretion in isolated islets was indistinguishable from controls in one of the lines, whereas surprisingly, insulin secretion was defective in the second line. Consequently, subsequent studies were limited to the former line. We asked whether transgene activity was responsive to glucose as shown previously for the ins2 gene. Exposing islets ex vivo to high glucose (16.7 mM) or in vivo infusion of glucose for 24 hours increased luciferase activity in islets, whereas the fraction of YFP-positive β-cells after glucose infusion was unchanged. Finally, we showed that fluorescence-activated cell sorting of YFP-positive islet cells can be used to enrich for β-cells. Overall, this transgenic line will enable for the first time the application of both fluorescence and bioluminescence/luminescence-based approaches for the study of rat β-cells.
Collapse
Affiliation(s)
- Julien Ghislain
- Montreal Diabetes Research Center (J.G., G.F., C.T., M.A.K., V.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (J.G., G.F., C.T., M.A.K., V.P.), and Departments of Medicine (V.P.) and Biochemistry (V.P.), University of Montreal, Montréal, Québec, Canada H2X 0A9
| | - Ghislaine Fontés
- Montreal Diabetes Research Center (J.G., G.F., C.T., M.A.K., V.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (J.G., G.F., C.T., M.A.K., V.P.), and Departments of Medicine (V.P.) and Biochemistry (V.P.), University of Montreal, Montréal, Québec, Canada H2X 0A9
| | - Caroline Tremblay
- Montreal Diabetes Research Center (J.G., G.F., C.T., M.A.K., V.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (J.G., G.F., C.T., M.A.K., V.P.), and Departments of Medicine (V.P.) and Biochemistry (V.P.), University of Montreal, Montréal, Québec, Canada H2X 0A9
| | - Melkam A Kebede
- Montreal Diabetes Research Center (J.G., G.F., C.T., M.A.K., V.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (J.G., G.F., C.T., M.A.K., V.P.), and Departments of Medicine (V.P.) and Biochemistry (V.P.), University of Montreal, Montréal, Québec, Canada H2X 0A9
| | - Vincent Poitout
- Montreal Diabetes Research Center (J.G., G.F., C.T., M.A.K., V.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (J.G., G.F., C.T., M.A.K., V.P.), and Departments of Medicine (V.P.) and Biochemistry (V.P.), University of Montreal, Montréal, Québec, Canada H2X 0A9
| |
Collapse
|
81
|
Malhotra D, Linehan JL, Dileepan T, Lee YJ, Purtha WE, Lu JV, Nelson RW, Fife BT, Orr HT, Anderson MS, Hogquist KA, Jenkins MK. Tolerance is established in polyclonal CD4(+) T cells by distinct mechanisms, according to self-peptide expression patterns. Nat Immunol 2016; 17:187-95. [PMID: 26726812 PMCID: PMC4718891 DOI: 10.1038/ni.3327] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022]
Abstract
Studies of repertoires of mouse monoclonal CD4(+) T cells have revealed several mechanisms of self-tolerance; however, which mechanisms operate in normal repertoires is unclear. Here we studied polyclonal CD4(+) T cells specific for green fluorescent protein expressed in various organs, which allowed us to determine the effects of specific expression patterns on the same epitope-specific T cells. Peptides presented uniformly by thymic antigen-presenting cells were tolerated by clonal deletion, whereas peptides excluded from the thymus were ignored. Peptides with limited thymic expression induced partial clonal deletion and impaired effector T cell potential but enhanced regulatory T cell potential. These mechanisms were also active for T cell populations specific for endogenously expressed self antigens. Thus, the immunotolerance of polyclonal CD4(+) T cells was maintained by distinct mechanisms, according to self-peptide expression patterns.
Collapse
Affiliation(s)
- Deepali Malhotra
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| | - Jonathan L. Linehan
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| | - Thamotharampillai Dileepan
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| | - You Jeong Lee
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| | - Whitney E. Purtha
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA, 94143
| | - Jennifer V. Lu
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA, 94143
| | - Ryan W. Nelson
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Harry T. Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| | - Mark S. Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA, 94143
| | - Kristin A. Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| | - Marc K. Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA, 55455
| |
Collapse
|
82
|
Lavine JA, Kibbe CR, Baan M, Sirinvaravong S, Umhoefer HM, Engler KA, Meske LM, Sacotte KA, Erhardt DP, Davis DB. Cholecystokinin expression in the β-cell leads to increased β-cell area in aged mice and protects from streptozotocin-induced diabetes and apoptosis. Am J Physiol Endocrinol Metab 2015; 309:E819-28. [PMID: 26394663 PMCID: PMC4652070 DOI: 10.1152/ajpendo.00159.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022]
Abstract
Cholecystokinin (CCK) is a peptide hormone produced in the gut and brain with beneficial effects on digestion, satiety, and insulin secretion. CCK is also expressed in pancreatic β-cells, but only in models of obesity and insulin resistance. Whole body deletion of CCK in obese mice leads to reduced β-cell mass expansion and increased apoptosis. We hypothesized that islet-derived CCK is important in protection from β-cell apoptosis. To determine the specific role of β-cell-derived CCK in β-cell mass dynamics, we generated a transgenic mouse that expresses CCK in the β-cell in the lean state (MIP-CCK). Although this transgene contains the human growth hormone minigene, we saw no expression of human growth hormone protein in transgenic islets. We examined the ability of MIP-CCK mice to maintain β-cell mass when subjected to apoptotic stress, with advanced age, and after streptozotocin treatment. Aged MIP-CCK mice have increased β-cell area. MIP-CCK mice are resistant to streptozotocin-induced diabetes and exhibit reduced β-cell apoptosis. Directed CCK overexpression in cultured β-cells also protects from cytokine-induced apoptosis. We have identified an important new paracrine/autocrine effect of CCK in protection of β-cells from apoptotic stress. Understanding the role of β-cell CCK adds to the emerging knowledge of classic gut peptides in intraislet signaling. CCK receptor agonists are being investigated as therapeutics for obesity and diabetes. While these agonists clearly have beneficial effects on body weight and insulin sensitivity in peripheral tissues, they may also directly protect β-cells from apoptosis.
Collapse
Affiliation(s)
- Jeremy A Lavine
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carly R Kibbe
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mieke Baan
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sirinart Sirinvaravong
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Heidi M Umhoefer
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kimberly A Engler
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Louise M Meske
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kaitlyn A Sacotte
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Daniel P Erhardt
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; Geriatric Research Education and Clinical Centers, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
83
|
Agudo J, Ruzo A, Park ES, Sweeney R, Kana V, Wu M, Zhao Y, Egli D, Merad M, Brown BD. GFP-specific CD8 T cells enable targeted cell depletion and visualization of T-cell interactions. Nat Biotechnol 2015; 33:1287-1292. [PMID: 26524661 PMCID: PMC4675673 DOI: 10.1038/nbt.3386] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/23/2015] [Indexed: 11/09/2022]
Abstract
There are numerous cell types with scarcely understood functions, and whose interactions with the immune system are not well characterized. To facilitate their study, we generated a mouse bearing enhanced green fluorescent protein (EGFP)-specific CD8+ T-cells. Transfer of the T-cells into EGFP reporter animals killed GFP-expressing cells, allowing selective depletion of desired cell types, or interrogation of T-cell interactions with specific populations. Using this system, we eliminate HCN4+ GFP-expressing cells in the heart and elicit their importance in cardiac function. We also show that naïve T-cells are recruited into the mouse brain by antigen-expressing microglia, providing evidence of an immune surveillance pathway in the central nervous system. The just EGFP death-inducing (JEDI) T-cells enable visualization of a T-cell antigen. They also make it possible to utilize hundreds of GFP-expressing mice, tumors, and pathogens, to study T-cell interactions with virtually any cell type, to model disease states, or to determine the functions of poorly characterized cell populations.
Collapse
Affiliation(s)
- Judith Agudo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Albert Ruzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eun Sook Park
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert Sweeney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Veronika Kana
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yong Zhao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dieter Egli
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mount Sinai Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brian D Brown
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mount Sinai Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
84
|
Tennant BR, Chen J, Shih AZL, Luciani DS, Hoffman BG. Myt3 Mediates Laminin-V/Integrin-β1-Induced Islet-Cell Migration via Tgfbi. Mol Endocrinol 2015; 29:1254-68. [PMID: 26177052 PMCID: PMC5414683 DOI: 10.1210/me.2014-1387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 07/10/2015] [Indexed: 12/17/2022] Open
Abstract
Myt3 is a prosurvival factor in pancreatic islets; however, its role in islet-cell development is not known. Here, we demonstrate that myelin transcription factor 3 (Myt3) is expressed in migrating islet cells in the developing and neonatal pancreas and thus sought to determine whether Myt3 plays a role in this process. Using an ex vivo model of islet-cell migration, we demonstrate that Myt3 suppression significantly inhibits laminin-V/integrin-β1-dependent α- and β-cell migration onto 804G, and impaired 804G-induced F-actin and E-cadherin redistribution. Exposure of islets to proinflammatory cytokines, which suppress Myt3 expression, had a similar effect, whereas Myt3 overexpression partially rescued the migratory ability of the islet cells. We show that loss of islet-cell migration, due to Myt3 suppression or cytokine exposure, is independent of effects on islet-cell survival or proliferation. Myt3 suppression also had no effect on glucose-induced calcium influx, F-actin remodeling or insulin secretion by β-cells. RNA-sequencing (RNA-seq) analysis of transduced islets showed that Myt3 suppression results in the up-regulation of Tgfbi, a secreted diabetogenic factor thought to impair cellular adhesion. Exposure of islets to exogenous transforming growth factor β-induced (Tgfbi) impaired islet-cell migration similar to Myt3 suppression. Taken together, these data suggest a model by which cytokine-induced Myt3 suppression leads to Tgfbi de-repression and subsequently to impaired islet-cell migration, revealing a novel role for Myt3 in regulating islet-cell migration.
Collapse
Affiliation(s)
- Bryan R Tennant
- Child and Family Research Institute (B.R.T., J.C., A.Z.L.S., D.S.L., B.G.H.), British Columbia Children's Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Surgery (D.S.L., B.G.H.), University of British Columbia, Vancouver, British Columbia, Canada V5Z 4E3
| | - Jenny Chen
- Child and Family Research Institute (B.R.T., J.C., A.Z.L.S., D.S.L., B.G.H.), British Columbia Children's Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Surgery (D.S.L., B.G.H.), University of British Columbia, Vancouver, British Columbia, Canada V5Z 4E3
| | - Alexis Z L Shih
- Child and Family Research Institute (B.R.T., J.C., A.Z.L.S., D.S.L., B.G.H.), British Columbia Children's Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Surgery (D.S.L., B.G.H.), University of British Columbia, Vancouver, British Columbia, Canada V5Z 4E3
| | - Dan S Luciani
- Child and Family Research Institute (B.R.T., J.C., A.Z.L.S., D.S.L., B.G.H.), British Columbia Children's Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Surgery (D.S.L., B.G.H.), University of British Columbia, Vancouver, British Columbia, Canada V5Z 4E3
| | - Brad G Hoffman
- Child and Family Research Institute (B.R.T., J.C., A.Z.L.S., D.S.L., B.G.H.), British Columbia Children's Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Surgery (D.S.L., B.G.H.), University of British Columbia, Vancouver, British Columbia, Canada V5Z 4E3
| |
Collapse
|
85
|
Pauerstein PT, Sugiyama T, Stanley SE, McLean GW, Wang J, Martín MG, Kim SK. Dissecting Human Gene Functions Regulating Islet Development With Targeted Gene Transduction. Diabetes 2015; 64:3037-49. [PMID: 25901096 PMCID: PMC4512220 DOI: 10.2337/db15-0042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/09/2015] [Indexed: 01/19/2023]
Abstract
During pancreas development, endocrine precursors and their progeny differentiate, migrate, and cluster to form nascent islets. The transcription factor Neurogenin 3 (Neurog3) is required for islet development in mice, but its role in these dynamic morphogenetic steps has been inferred from fixed tissues. Moreover, little is known about the molecular genetic functions of NEUROG3 in human islet development. We developed methods for gene transduction by viral microinjection in the epithelium of cultured Neurog3-null mutant fetal pancreas, permitting genetic complementation in a developmentally relevant context. In addition, we developed methods for quantitative assessment of live-cell phenotypes in single developing islet cells. Delivery of wild-type NEUROG3 rescued islet differentiation, morphogenesis, and live cell deformation, whereas the patient-derived NEUROG3(R107S) allele partially restored indicators of islet development. NEUROG3(P39X), a previously unreported patient allele, failed to restore islet differentiation or morphogenesis and was indistinguishable from negative controls, suggesting that it is a null mutation. Our systems also permitted genetic suppression analysis and revealed that targets of NEUROG3, including NEUROD1 and RFX6, can partially restore islet development in Neurog3-null mutant mouse pancreata. Thus, advances described here permitted unprecedented assessment of gene functions in regulating crucial dynamic aspects of islet development in the fetal pancreas.
Collapse
Affiliation(s)
- Philip T Pauerstein
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Takuya Sugiyama
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Susan E Stanley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Graeme W McLean
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Jing Wang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Martín G Martín
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
86
|
Baan M, Kibbe CR, Bushkofsky JR, Harris TW, Sherman DS, Davis DB. Transgenic expression of the human growth hormone minigene promotes pancreatic β-cell proliferation. Am J Physiol Regul Integr Comp Physiol 2015. [PMID: 26202070 DOI: 10.1152/ajpregu.00244.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transgenic mouse models are designed to study the role of specific proteins. To increase transgene expression the human growth hormone (hGH) minigene, including introns, has been included in many transgenic constructs. Until recently, it was thought that the hGH gene was not spliced, transcribed, and translated to produce functional hGH protein. We generated a transgenic mouse with the transcription factor Forkhead box M1 (FoxM1) followed by the hGH minigene, under control of the mouse insulin promoter (MIP) to target expression specifically in the pancreatic β-cell. Expression of FoxM1 in isolated pancreatic islets in vitro stimulates β-cell proliferation. We aimed to investigate the effect of FoxM1 on β-cell mass in a mouse model for diabetes mellitus. However, we found inadvertent coexpression of hGH protein from a spliced, bicistronic mRNA. MIP-FoxM1-hGH mice had lower blood glucose and higher pancreatic insulin content, due to increased β-cell proliferation. hGH signals through the murine prolactin receptor, and expression of its downstream targets tryptophan hydroxylase-1 (Tph1), tryptophan hydroxylase-2 (Tph2), and cytokine-inducible SH2 containing protein (Cish) was increased. Conversely, transcriptional targets of FoxM1 were not upregulated. Our data suggest that the phenotype of MIP-FoxM1-hGH mice is due primarily to hGH activity and that the FoxM1 protein remains largely inactive. Over the past decades, multiple transgenic mouse strains were generated that make use of the hGH minigene to increase transgene expression. Our work suggests that each will need to be carefully screened for inadvertent hGH production and critically evaluated for the use of proper controls.
Collapse
Affiliation(s)
- Mieke Baan
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Carly R Kibbe
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Justin R Bushkofsky
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Ted W Harris
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Dawn S Sherman
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
87
|
Cheng Y, Su Y, Shan A, Jiang X, Ma Q, Wang W, Ning G, Cao Y. Generation and Characterization of Transgenic Mice Expressing Mouse Ins1 Promoter for Pancreatic β-Cell-Specific Gene Overexpression and Knockout. Endocrinology 2015; 156:2724-31. [PMID: 25885930 DOI: 10.1210/en.2015-1104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The technologies for pancreatic β-cell-specific gene overexpression or knockout are fundamental for investigations of functional genes in vivo. Here we generated the Ins1-Cre-Dsred and Ins1-rtTA mouse models, which expressed the Cre recombinase or reverse tetracycline regulatable transactivator (rtTA) without hGH minigene under the control of mouse Ins1 promoter. Our data showed that the Cre-mediated recombination and rtTA-mediated activation could be efficiently detected at embryonic day 13.5 when these models were crossed with the reporter mice (ROSA(mT/mG) or tetO-HIST1H2BJ/GFP). The Cre and rtTA expression was restricted to β-cells without leakage in the brain and other tissues. Moreover, both the transgenic lines showed normal glucose tolerance and insulin secretion. These results suggested that the Ins1-Cre-Dsred and Ins1-rtTA mice could be used to knock out or overexpress target genes in embryos and adults to facilitate β-cell researches.
Collapse
Affiliation(s)
- Yulong Cheng
- Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (Y.C., G.N.), and Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., A.S., X.J., Q.M., W.W., G.N., Y.C.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Yutong Su
- Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (Y.C., G.N.), and Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., A.S., X.J., Q.M., W.W., G.N., Y.C.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Aijing Shan
- Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (Y.C., G.N.), and Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., A.S., X.J., Q.M., W.W., G.N., Y.C.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Xiuli Jiang
- Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (Y.C., G.N.), and Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., A.S., X.J., Q.M., W.W., G.N., Y.C.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Qinyun Ma
- Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (Y.C., G.N.), and Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., A.S., X.J., Q.M., W.W., G.N., Y.C.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Weiqing Wang
- Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (Y.C., G.N.), and Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., A.S., X.J., Q.M., W.W., G.N., Y.C.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Guang Ning
- Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (Y.C., G.N.), and Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., A.S., X.J., Q.M., W.W., G.N., Y.C.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Yanan Cao
- Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (Y.C., G.N.), and Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., A.S., X.J., Q.M., W.W., G.N., Y.C.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
88
|
Estall JL, Screaton RA. To Be(ta Cell) or Not to Be(ta cell): New Mouse Models for Studying Gene Function in the Pancreatic β-Cell. Endocrinology 2015; 156:2365-7. [PMID: 26091426 DOI: 10.1210/en.2015-1418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A challenge in the pancreatic β-cell field has been to identify a promoter fragment that is active only in the β-cell compartment and inactive in other regions, such as the hypothalamic region of the brain. The presence of Cre recombinase alone in some models may also affect glucoregulation, confounding interpretation of gene function in the β-cell. A paper presented within describes the development and characterization of 2 new transgenic mice expressing Cre recombinase under the mouse insulin1 promoter that are useful for β-cell-specific gene ablation: the first is constitutive and coexpresses DsRed (Ins1-Cre-DsRed); the second allows β-cell-specific expression of the reverse tetracycline-controlled transactivator, which can be used for drug-dependent expression of a target gene of interest for overexpression studies. These novel models show robust specificity and efficiency and will be valuable tools for functional studies of gene action in β-cells, potentially alleviating current issues associated with previously available mouse lines.
Collapse
Affiliation(s)
- Jennifer L Estall
- Institut de Recherches Cliniques de Montréal (J.L.E.), Montreal, Quebec, Canada H2W 1R7; and Department of Biochemistry (R.A.S.), University of Toronto and Sunnybrook Research Institute, Toronto, Canada M4N 3M5
| | - Robert A Screaton
- Institut de Recherches Cliniques de Montréal (J.L.E.), Montreal, Quebec, Canada H2W 1R7; and Department of Biochemistry (R.A.S.), University of Toronto and Sunnybrook Research Institute, Toronto, Canada M4N 3M5
| |
Collapse
|
89
|
Chmelova H, Cohrs CM, Chouinard JA, Petzold C, Kuhn M, Chen C, Roeder I, Kretschmer K, Speier S. Distinct roles of β-cell mass and function during type 1 diabetes onset and remission. Diabetes 2015; 64:2148-60. [PMID: 25605805 DOI: 10.2337/db14-1055] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/10/2015] [Indexed: 11/13/2022]
Abstract
Cure of type 1 diabetes (T1D) by immune intervention at disease onset depends on the restoration of insulin secretion by endogenous β-cells. However, little is known about the potential of β-cell mass and function to recover after autoimmune attack ablation. Using a longitudinal in vivo imaging approach, we show how functional status and mass of β-cells adapt in response to the onset and remission of T1D. We demonstrate that infiltration reduces β-cell mass prior to onset and, together with emerging hyperglycemia, affects β-cell function. After immune intervention, persisting hyperglycemia prevents functional recovery but promotes β-cell mass increase in mouse islets. When blood glucose levels return to normoglycemia β-cell mass expansion stops, and subsequently glucose tolerance recovers in combination with β-cell function. Similar to mouse islets, human islets exhibit cell exhaustion and recovery in response to transient hyperglycemia. However, the effect of hyperglycemia on human islet mass increase is minor and transient. Our data demonstrate a major role of functional exhaustion and recovery of β-cells during T1D onset and remission. Therefore, these findings support early intervention therapy for individuals with T1D.
Collapse
Affiliation(s)
- Helena Chmelova
- Deutsche Forschungsgemeinschaft (DFG)-Research Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus of Technische Universität Dresden, German Centre for Diabetes Research (DZD), Dresden, Germany
| | - Christian M Cohrs
- Deutsche Forschungsgemeinschaft (DFG)-Research Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus of Technische Universität Dresden, German Centre for Diabetes Research (DZD), Dresden, Germany
| | - Julie A Chouinard
- Deutsche Forschungsgemeinschaft (DFG)-Research Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus of Technische Universität Dresden, German Centre for Diabetes Research (DZD), Dresden, Germany
| | - Cathleen Petzold
- Deutsche Forschungsgemeinschaft (DFG)-Research Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Matthias Kuhn
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Chunguang Chen
- Deutsche Forschungsgemeinschaft (DFG)-Research Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus of Technische Universität Dresden, German Centre for Diabetes Research (DZD), Dresden, Germany
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karsten Kretschmer
- Deutsche Forschungsgemeinschaft (DFG)-Research Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus of Technische Universität Dresden, German Centre for Diabetes Research (DZD), Dresden, Germany
| | - Stephan Speier
- Deutsche Forschungsgemeinschaft (DFG)-Research Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus of Technische Universität Dresden, German Centre for Diabetes Research (DZD), Dresden, Germany
| |
Collapse
|
90
|
Abstract
Pancreatic beta cells are clustered in islets of Langerhans together with alpha cells in an arrangement that facilitates the tight coordination of insulin and glucagon secretion at the source of their release. Other secretory cells, including somatostatin-secreting delta cells and pancreatic polypeptide cells, co-localise with alpha and beta cells in the islet and serve to modulate islet endocrine output. A multitude of non-secretory cell types, including endothelial cells, pericytes, stromal cells, glial cells and macrophages, complete the cellular make up of the islet, which is further enhanced by (para)sympathetic nerve terminals that impinge on the islets via neurotransmitters released in the islet microenvironment. While this islet architecture is relatively simple compared with the vast complexity of the central nervous system, the constellation of cell types united in the islet nevertheless provides a rich substrate for local paracrine and autocrine interactions that affect diverse aspects of islet physiology, ranging from the modulation of hormone secretion to the regulation of islet cell mass via proliferation and death. In this issue of Diabetologia (DOI: 10.1007/s00125-015-3552-5 ), Yang et al take the notion of rich crosstalk within the islet as their point of departure for a systematic evaluation of the beta cell-protective properties of an extensive panel of over 200 factors, with some surprising and highly interesting results, as discussed in this commentary.
Collapse
Affiliation(s)
- Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA,
| |
Collapse
|
91
|
Ilegems E, van Krieken PP, Edlund PK, Dicker A, Alanentalo T, Eriksson M, Mandic S, Ahlgren U, Berggren PO. Light scattering as an intrinsic indicator for pancreatic islet cell mass and secretion. Sci Rep 2015; 5:10740. [PMID: 26030284 PMCID: PMC5377231 DOI: 10.1038/srep10740] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/27/2015] [Indexed: 12/23/2022] Open
Abstract
The pancreatic islet of Langerhans is composed of endocrine cells producing and releasing hormones from secretory granules in response to various stimuli for maintenance of blood glucose homeostasis. In order to adapt to a variation in functional demands, these islets are capable of modulating their hormone secretion by increasing the number of endocrine cells as well as the functional response of individual cells. A failure in adaptive mechanisms will lead to inadequate blood glucose regulation and thereby to the development of diabetes. It is therefore necessary to develop tools for the assessment of both pancreatic islet mass and function, with the aim of understanding cellular regulatory mechanisms and factors guiding islet plasticity. Although most of the existing techniques rely on the use of artificial indicators, we present an imaging methodology based on intrinsic optical properties originating from mature insulin secretory granules within endocrine cells that reveals both pancreatic islet mass and function. We demonstrate the advantage of using this imaging strategy by monitoring in vivo scattering signal from pancreatic islets engrafted into the anterior chamber of the mouse eye, and how this versatile and noninvasive methodology permits the characterization of islet morphology and plasticity as well as hormone secretory status.
Collapse
Affiliation(s)
- E Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm SE-171 76, Sweden
| | - P P van Krieken
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm SE-171 76, Sweden
| | - P K Edlund
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm SE-171 76, Sweden
| | - A Dicker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm SE-171 76, Sweden
| | - T Alanentalo
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm SE-171 76, Sweden
| | - M Eriksson
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - S Mandic
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm SE-171 76, Sweden
| | - U Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - P-O Berggren
- 1] The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm SE-171 76, Sweden [2] Diabetes Research Institute, Miller School of Medicine, University of Miami, FL 33136, Miami [3] Lee Kong Chian School of Medicine, Nanyang Technological University, Imperial College London, Novena Campus, Singapore
| |
Collapse
|
92
|
Yamada T, Cavelti-Weder C, Caballero F, Lysy PA, Guo L, Sharma A, Li W, Zhou Q, Bonner-Weir S, Weir GC. Reprogramming Mouse Cells With a Pancreatic Duct Phenotype to Insulin-Producing β-Like Cells. Endocrinology 2015; 156:2029-38. [PMID: 25836667 PMCID: PMC4430605 DOI: 10.1210/en.2014-1987] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reprogramming technology has opened the possibility of converting one cell type into another by forced expression of transgenes. Transduction of adenoviral vectors encoding 3 pancreatic transcription factors, Pdx1, Ngn3, and MafA, into mouse pancreas results in direct reprogramming of exocrine cells to insulin-producing β-like cells. We hypothesized that cultured adult pancreatic duct cells could be reprogrammed to become insulin-producing β-cells by adenoviral-mediated expression of this same combination of factors. Exocrine were isolated from adult mouse insulin 1 promoter (MIP)-green fluorescent protein (GFP) transgenic mice to allow new insulin-expressing cells to be detected by GFP fluorescence. Cultured cells were transduced by an adenoviral vector carrying a polycistronic construct Ngn3/Pdx1/MafA/mCherry (Ad-M3C) or mCherry sequence alone as a control vector. In addition, the effects of glucagon-like peptide-1 (GLP-1) receptor agonist, exendin-4 (Ex-4) on the reprogramming process were examined. GFP(+) cells appeared 2 days after Ad-M3C transduction; the reprogramming efficiency was 8.6 ± 2.6% by day 4 after transduction. Ad-M3C also resulted in increased expression of β-cell markers insulin 1 and 2, with enhancement by Ex-4. Expression of other β-cell markers, neuroD and GLP-1 receptor, were also significantly up-regulated. The amount of insulin release into the media and insulin content of the cells were significantly higher in the Ad-M3C-transduced cells; this too was enhanced by Ex-4. The transduced cells did not secrete insulin in response to increased glucose, indicating incomplete differentiation to β-cells. Thus, cultured murine adult pancreatic cells with a duct phenotype can be directly reprogrammed to insulin-producing β-like cells by adenoviral delivery of 3 pancreatic transcription factors.
Collapse
Affiliation(s)
- Takatsugu Yamada
- Section on Islet Cell and Regenerative Biology (T.Y., C.C.-W., F.C., P.A.L., L.G., A.S., S.B.-W., G.C.W.), Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215; and Department of Stem Cell and Regenerative Biology (W.L., Q.Z.), Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Buras ED, Yang L, Saha P, Kim J, Mehta P, Yang Y, Hilsenbeck S, Kojima H, Chen W, Smith CW, Chan L. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice. FASEB J 2015; 29:3537-48. [PMID: 25953849 DOI: 10.1096/fj.15-271452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022]
Abstract
Adipose tissue macrophages (ATMs) play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet (HFD)-induced obesity has been shown to lead to ATM accumulation in rodents; however, the impact of hyperglycemia on ATM dynamics in HFD-fed type 2 diabetic models has not been studied. We previously showed that hyperglycemia induces the appearance of proinsulin (PI)-producing proinflammatory bone marrow (BM)-derived cells (PI-BMDCs) in rodents. We fed a 60% HFD to C57BL6/J mice to produce an obese type 2 diabetes model. Absent in chow-fed animals, PI-BMDCs account for 60% of the ATMs in the type 2 diabetic mice. The PI-ATM subset expresses TNF-α and other inflammatory markers, and is highly enriched within crownlike structures (CLSs). We found that amelioration of hyperglycemia by different hypoglycemic agents forestalled PI-producing ATM accumulation and adipose inflammation in these animals. We developed a diphtheria toxin receptor-based strategy to selectively ablate PI-BMDCs among ATMs. Application of the maneuver in HFD-fed type 2 diabetic mice was found to lead to near total disappearance of complex CLSs and reversal of insulin resistance and hepatosteatosis in these animals. In sum, we have identified a novel ATM subset in type 2 diabetic rodents that underlies systemic insulin resistance.
Collapse
Affiliation(s)
- Eric Dale Buras
- *Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Children's Nutrition Research Center, U.S. Department of Agriculture, Houston, Texas, USA; and Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Lina Yang
- *Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Children's Nutrition Research Center, U.S. Department of Agriculture, Houston, Texas, USA; and Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Pradip Saha
- *Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Children's Nutrition Research Center, U.S. Department of Agriculture, Houston, Texas, USA; and Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jongoh Kim
- *Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Children's Nutrition Research Center, U.S. Department of Agriculture, Houston, Texas, USA; and Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Pooja Mehta
- *Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Children's Nutrition Research Center, U.S. Department of Agriculture, Houston, Texas, USA; and Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yisheng Yang
- *Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Children's Nutrition Research Center, U.S. Department of Agriculture, Houston, Texas, USA; and Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Susan Hilsenbeck
- *Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Children's Nutrition Research Center, U.S. Department of Agriculture, Houston, Texas, USA; and Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hideto Kojima
- *Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Children's Nutrition Research Center, U.S. Department of Agriculture, Houston, Texas, USA; and Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Wenhao Chen
- *Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Children's Nutrition Research Center, U.S. Department of Agriculture, Houston, Texas, USA; and Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - C Wayne Smith
- *Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Children's Nutrition Research Center, U.S. Department of Agriculture, Houston, Texas, USA; and Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Lawrence Chan
- *Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Children's Nutrition Research Center, U.S. Department of Agriculture, Houston, Texas, USA; and Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
94
|
Izumi K, Mine K, Inoue Y, Teshima M, Ogawa S, Kai Y, Kurafuji T, Hirakawa K, Miyakawa D, Ikeda H, Inada A, Hara M, Yamada H, Akashi K, Niho Y, Ina K, Kobayashi T, Yoshikai Y, Anzai K, Yamashita T, Minagawa H, Fujimoto S, Kurisaki H, Shimoda K, Katsuta H, Nagafuchi S. Reduced Tyk2 gene expression in β-cells due to natural mutation determines susceptibility to virus-induced diabetes. Nat Commun 2015; 6:6748. [PMID: 25849081 PMCID: PMC4396380 DOI: 10.1038/ncomms7748] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/24/2015] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence suggests that viruses play an important role in the development of diabetes. Although the diabetogenic encephalomyocarditis strain D virus induces diabetes in restricted lines of inbred mice, the susceptibility genes to virus-induced diabetes have not been identified. We report here that novel Tyrosine kinase 2 (Tyk2) gene mutations are present in virus-induced diabetes-sensitive SJL and SWR mice. Mice carrying the mutant Tyk2 gene on the virus-resistant C57BL/6 background are highly sensitive to virus-induced diabetes. Tyk2 gene expression is strongly reduced in Tyk2-mutant mice, associated with low Tyk2 promoter activity, and leads to decreased expression of interferon-inducible genes, resulting in significantly compromised antiviral response. Tyk2-mutant pancreatic β-cells are unresponsive even to high dose of Type I interferon. Reversal of virus-induced diabetes could be achieved by β-cell-specific Tyk2 gene expression. Thus, reduced Tyk2 gene expression in pancreatic β-cells due to natural mutation is responsible for susceptibility to virus-induced diabetes. Diabetes can be caused by viral infections in humans and some inbred mice, suggesting genetic predisposition. Here the authors show that mutations in Tyk2 gene underlie susceptibility to virus-induced diabetes in mice, due to Tyk2 requirement for antiviral response in insulin-producing cells.
Collapse
Affiliation(s)
- Kenichi Izumi
- 1] Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan [2] Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan [3] Department of Hepatology, Diabetes and Endocrinology, School of Medicine, Saga University, Saga 849-8501, Japan
| | - Keiichiro Mine
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitaka Inoue
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Miho Teshima
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shuichiro Ogawa
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuji Kai
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Toshinobu Kurafuji
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kanako Hirakawa
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Daiki Miyakawa
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Haruka Ikeda
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akari Inada
- Department of Diabetes and Genes, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Hisakata Yamada
- Division of Host Defense, Research Center for Prevention of Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshiyuki Niho
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keisuke Ina
- Department of Molecular Anatomy, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Takashi Kobayashi
- Department of Infectious Diseases Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Research Center for Prevention of Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Keizo Anzai
- Department of Hepatology, Diabetes and Endocrinology, School of Medicine, Saga University, Saga 849-8501, Japan
| | - Teruo Yamashita
- Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health, 7-6 Nagare, Tsujimachi, Kita-ku, Nagoya, Aichi 462-8576, Japan
| | - Hiroko Minagawa
- Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health, 7-6 Nagare, Tsujimachi, Kita-ku, Nagoya, Aichi 462-8576, Japan
| | - Shuji Fujimoto
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hironori Kurisaki
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuya Shimoda
- Division of Gastroenterology and Hematology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hitoshi Katsuta
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Seiho Nagafuchi
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
95
|
Abstract
Gi-GPCRs, G protein-coupled receptors that signal via Gα proteins of the i/o class (Gαi/o), acutely regulate cellular behaviors widely in mammalian tissues, but their impact on the development and growth of these tissues is less clear. For example, Gi-GPCRs acutely regulate insulin release from pancreatic β cells, and variants in genes encoding several Gi-GPCRs--including the α-2a adrenergic receptor, ADRA2A--increase the risk of type 2 diabetes mellitus. However, type 2 diabetes also is associated with reduced total β-cell mass, and the role of Gi-GPCRs in establishing β-cell mass is unknown. Therefore, we asked whether Gi-GPCR signaling regulates β-cell mass. Here we show that Gi-GPCRs limit the proliferation of the insulin-producing pancreatic β cells and especially their expansion during the critical perinatal period. Increased Gi-GPCR activity in perinatal β cells decreased β-cell proliferation, reduced adult β-cell mass, and impaired glucose homeostasis. In contrast, Gi-GPCR inhibition enhanced perinatal β-cell proliferation, increased adult β-cell mass, and improved glucose homeostasis. Transcriptome analysis detected the expression of multiple Gi-GPCRs in developing and adult β cells, and gene-deletion experiments identified ADRA2A as a key Gi-GPCR regulator of β-cell replication. These studies link Gi-GPCR signaling to β-cell mass and diabetes risk and identify it as a potential target for therapies to protect and increase β-cell mass in patients with diabetes.
Collapse
|
96
|
Gong GC, Fan WZ, Li DZ, Tian X, Chen SJ, Fu YC, Xu WC, Wei CJ. Increased Specific Labeling of INS-1 Pancreatic Beta-Cell by Using RIP-Driven Cre Mutants with Reduced Activity. PLoS One 2015; 10:e0129092. [PMID: 26046525 PMCID: PMC4457865 DOI: 10.1371/journal.pone.0129092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023] Open
Abstract
Ectopically expressed Cre recombinase in extrapancreatic tissues in RIP-Cre mice has been well documented. The objective of this study was to find a simple solution that allows for improved beta-cell specific targeting. To this end, the RIP-Cre and reporter CMV-loxP-DsRed-loxP-EGFP expression cassettes were configurated into a one-plasmid and two-plasmid systems, which labeled approximately 80% insulin-positive INS-1 cells after 48 h transfection. However, off-target labeling was robustly found in more than 15% insulin-negative Ad293 cells. When an IRES element was inserted in front of Cre to reduce the translation efficiency, the ratio of recombination between INS-1 and Ad293 cells increased 3-4-fold. Further, a series of Cre mutants were generated by site-directed mutagenesis. When one of the mutants, Cre(H289P) in both configurations, was used in the experiment, the percentage of recombination dropped to background levels in a number of insulin-negative cell lines, but decreased only slightly in INS-1 cells. Consistently, DNA substrate digestion assay showed that the enzymatic activity of Cre(H289P) was reduced by 30-fold as compared to that of wild-type. In this study, we reported the generation of constructs containing RIP and Cre mutants, which enabled enhanced beta-cell specific labeling in vitro. These tools could be invaluable for beta-cell targeting and to the study of islet development.
Collapse
Affiliation(s)
- Gen-cheng Gong
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Wen-zhu Fan
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Di-zheng Li
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Xiong Tian
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Shao-jun Chen
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
| | - Yu-cai Fu
- Laboratory of Cell Senescence, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Wen-can Xu
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Chi-ju Wei
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, China
- * E-mail:
| |
Collapse
|
97
|
Brouwers B, de Faudeur G, Osipovich AB, Goyvaerts L, Lemaire K, Boesmans L, Cauwelier EJG, Granvik M, Pruniau VPEG, Van Lommel L, Van Schoors J, Stancill JS, Smolders I, Goffin V, Binart N, in't Veld P, Declercq J, Magnuson MA, Creemers JWM, Schuit F, Schraenen A. Impaired islet function in commonly used transgenic mouse lines due to human growth hormone minigene expression. Cell Metab 2014; 20:979-90. [PMID: 25470546 PMCID: PMC5674787 DOI: 10.1016/j.cmet.2014.11.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/29/2014] [Accepted: 11/04/2014] [Indexed: 11/15/2022]
Abstract
The human growth hormone (hGH) minigene is frequently used in the derivation of transgenic mouse lines to enhance transgene expression. Although this minigene is present in the transgenes as a secondcistron, and thus not thought to be expressed, we found that three commonly used lines, Pdx1-Cre(Late), RIP-Cre, and MIP-GFP, each expressed significant amounts of hGH in pancreatic islets. Locally secreted hGH binds to prolactin receptors on β cells, activates STAT5 signaling, and induces pregnancy-like changes in gene expression, thereby augmenting pancreatic β cell mass and insulin content. In addition, islets of Pdx1-Cre(Late) mice have lower GLUT2 expression and reduced glucose-induced insulin release and are protected against the β cell toxin streptozotocin. These findings may be important when interpreting results obtained when these and other hGH minigene-containing transgenic mice are used.
Collapse
Affiliation(s)
- Bas Brouwers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Geoffroy de Faudeur
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Anna B Osipovich
- Center for Stem Cell Biology and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lotte Goyvaerts
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Katleen Lemaire
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Leen Boesmans
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Elisa J G Cauwelier
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Mikaela Granvik
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Vincent P E G Pruniau
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Leentje Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Jolien Van Schoors
- Center for Neurosciences, Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Jennifer S Stancill
- Center for Stem Cell Biology and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ilse Smolders
- Center for Neurosciences, Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Vincent Goffin
- INSERM U845, Research Center Growth and Signaling, PRL/GH Pathophysiology Laboratory, Faculty of Medicine, University Paris Descartes, Sorbonne Paris Cité, Paris 75993, France
| | - Nadine Binart
- INSERM U693, Faculté de Médecine Paris-Sud, University Paris-Sud, Le Kremlin-Bicêtre 94276, France
| | - Peter in't Veld
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Jeroen Declercq
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Mark A Magnuson
- Center for Stem Cell Biology and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium.
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium.
| | - Anica Schraenen
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
98
|
An integrated cell purification and genomics strategy reveals multiple regulators of pancreas development. PLoS Genet 2014; 10:e1004645. [PMID: 25330008 PMCID: PMC4199491 DOI: 10.1371/journal.pgen.1004645] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 08/02/2014] [Indexed: 12/15/2022] Open
Abstract
The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus. Discovery of specific pancreas developmental regulators has accelerated in recent years. In contrast, the global regulatory programs controlling pancreas development are poorly understood compared to other organs or tissues like heart or blood. Decoding this regulatory logic may accelerate development of replacement organs from renewable sources like stem cells, but this goal requires identification of regulators and assessment of their functions on a global scale. To address this important challenge for pancreas biology, we combined purification of normal and mutant cells with genome-scale methods to generate and analyze expression profiles from developing pancreas cells. Our work revealed regulatory gene sets governing development of pancreas progenitor cells and their progeny. Our integrative approach nominated multiple pancreas developmental regulators, including suspected risk genes for human diabetes, which we validated by phenotyping mutant mice on a scale not previously reported. Selection of these candidate regulators was unbiased; thus it is remarkable that all were essential for pancreatic islet development. Thus, our studies provide a new heuristic resource for identifying genetic functions underlying pancreas development and diseases like diabetes mellitus.
Collapse
|
99
|
Miyatsuka T, Matsuoka TA, Sasaki S, Kubo F, Shimomura I, Watada H, German MS, Hara M. Chronological analysis with fluorescent timer reveals unique features of newly generated β-cells. Diabetes 2014; 63:3388-93. [PMID: 24834978 PMCID: PMC4392905 DOI: 10.2337/db13-1312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although numerous studies have uncovered the molecular mechanisms regulating pancreas development, it remains to be clarified how β-cells arise from progenitors and how recently specified β-cells are different from preexisting β-cells. To address these questions, we developed a mouse model in which the insulin 1 promoter drives DsRed-E5 Timer fluorescence that shifts its spectrum over time. In transgenic embryos, green fluorescent β-cells were readily detected by FACS and could be distinguished from mature β-cells only until postnatal day 0, suggesting that β-cell neogenesis occurs exclusively during embryogenesis. Transcriptome analysis with green fluorescent cells sorted by FACS demonstrated that newly differentiated β-cells highly expressed progenitor markers, such as Sox9, Neurog3, and Pax4, showing the progenitor-like features of newborn β-cells. Flow cytometric analysis of cell cycle dynamics showed that green fluorescent cells were mostly quiescent, and differentiated β-cells were mitotically active. Thus, the precise temporal resolution of this model enables us to dissect the unique features of newly specified insulin-producing cells, which could enhance our understanding of β-cell neogenesis for future cell therapy.
Collapse
Affiliation(s)
- Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taka-aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shugo Sasaki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumiyo Kubo
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Michael S German
- Diabetes Center, University of California San Francisco, San Francisco, CA
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
100
|
Nishimura W, Oishi H, Funahashi N, Fujiwara T, Takahashi S, Yasuda K. Generation and characterization of MafA-Kusabira Orange mice. Endocr J 2014; 62:37-51. [PMID: 25273397 DOI: 10.1507/endocrj.ej14-0296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MafA and MafB are basic leucine zipper transcription factors expressed in mature pancreatic β- and α-cells, respectively. MafA is not only an insulin gene transcription factor but is also critical for the maturation and maintenance of β-cell function, whereas MafB is expressed in immature β-cells during development and in compromised β-cells in diabetes. In this study, we developed a mouse model to easily trace the promoter activity of MafA in β-cells as a tool for studying β-cell differentiation, maturation, regeneration and function using the expression of the fluorescent protein Kusabira Orange (KOr) driven by the BAC-mafA promoter. The expression of KOr was highly restricted to β-cells in the transgenic pancreas. By crossing MafA-KOr mice with MafB(GFP/+) reporter mice, simultaneous monitoring of MafA and MafB expressions in the isolated islets was successfully performed. This system can be a useful tool for examining dynamic changes in the differentiation and function of pancreatic islets by visualizing the expressions of MafA and MafB.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Cell Differentiation
- Crosses, Genetic
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Insulin/blood
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/metabolism
- Luminescent Agents/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Maf Transcription Factors, Large/genetics
- Maf Transcription Factors, Large/metabolism
- MafB Transcription Factor/genetics
- MafB Transcription Factor/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Organ Specificity
- Promoter Regions, Genetic
- Recombinant Proteins/metabolism
- Tissue Culture Techniques
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Wataru Nishimura
- Department of Metabolic Disorders, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | | | | | | | | | | |
Collapse
|