51
|
Zhang Y, Fang XM. The pan-liver network theory: From traditional chinese medicine to western medicine. CHINESE J PHYSIOL 2023; 66:401-436. [PMID: 38149555 DOI: 10.4103/cjop.cjop-d-22-00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong; Issue 12th of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi-Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine (Guangxi Hospital of Integrated Chinese Medicine and Western Medicine, Ruikang Clinical Faculty of Guangxi University of Chinese Medicine), Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
52
|
Genchi VA, Palma G, Sorice GP, D'Oria R, Caccioppoli C, Marrano N, Biondi G, Caruso I, Cignarelli A, Natalicchio A, Laviola L, Giorgino F, Perrini S. Pharmacological modulation of adaptive thermogenesis: new clues for obesity management? J Endocrinol Invest 2023; 46:2213-2236. [PMID: 37378828 PMCID: PMC10558388 DOI: 10.1007/s40618-023-02125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Adaptive thermogenesis represents the main mechanism through which the body generates heat in response to external stimuli, a phenomenon that includes shivering and non-shivering thermogenesis. The non-shivering thermogenesis is mainly exploited by adipose tissue characterized by a brown aspect, which specializes in energy dissipation. A decreased amount of brown adipose tissue has been observed in ageing and chronic illnesses such as obesity, a worldwide health problem characterized by dysfunctional adipose tissue expansion and associated cardiometabolic complications. In the last decades, the discovery of a trans-differentiation mechanism ("browning") within white adipose tissue depots, leading to the generation of brown-like cells, allowed to explore new natural and synthetic compounds able to favour this process and thus enhance thermogenesis with the aim of counteracting obesity. Based on recent findings, brown adipose tissue-activating agents could represent another option in addition to appetite inhibitors and inhibitors of nutrient absorption for obesity treatment. PURPOSE This review investigates the main molecules involved in the physiological (e.g. incretin hormones) and pharmacological (e.g. β3-adrenergic receptors agonists, thyroid receptor agonists, farnesoid X receptor agonists, glucagon-like peptide-1, and glucagon receptor agonists) modulation of adaptive thermogenesis and the signalling mechanisms involved.
Collapse
Affiliation(s)
- V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Palma
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G P Sorice
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - R D'Oria
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - C Caccioppoli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - N Marrano
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Biondi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - I Caruso
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Natalicchio
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Laviola
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
53
|
Folli F, Finzi G, Manfrini R, Galli A, Casiraghi F, Centofanti L, Berra C, Fiorina P, Davalli A, La Rosa S, Perego C, Higgins PB. Mechanisms of action of incretin receptor based dual- and tri-agonists in pancreatic islets. Am J Physiol Endocrinol Metab 2023; 325:E595-E609. [PMID: 37729025 PMCID: PMC10874655 DOI: 10.1152/ajpendo.00236.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Simultaneous activation of the incretin G-protein-coupled receptors (GPCRs) via unimolecular dual-receptor agonists (UDRA) has emerged as a new therapeutic approach for type 2 diabetes. Recent studies also advocate triple agonism with molecules also capable of binding the glucagon receptor. In this scoping review, we discuss the cellular mechanisms of action (MOA) underlying the actions of these novel and therapeutically important classes of peptide receptor agonists. Clinical efficacy studies of several UDRAs have demonstrated favorable results both as monotherapies and when combined with approved hypoglycemics. Although the additive insulinotropic effects of dual glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic peptide receptor (GIPR) agonism were anticipated based on the known actions of either glucagon-like peptide-1 (GLP-1) or glucose-dependent insulinotropic peptide (GIP) alone, the additional benefits from GCGR were largely unexpected. Whether additional synergistic or antagonistic interactions among these G-protein receptor signaling pathways arise from simultaneous stimulation is not known. The signaling pathways affected by dual- and tri-agonism require more trenchant investigation before a comprehensive understanding of the cellular MOA. This knowledge will be essential for understanding the chronic efficacy and safety of these treatments.
Collapse
Affiliation(s)
- Franco Folli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
- Unit of Diabetes, Endocrinology and Metabolism, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Giovanna Finzi
- Unit of Pathology, Department of Oncology, ASST Sette Laghi, Varese, Italy
| | - Roberto Manfrini
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
- Unit of Diabetes, Endocrinology and Metabolism, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Alessandra Galli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesca Casiraghi
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Lucia Centofanti
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Cesare Berra
- IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Alberto Davalli
- Diabetes and Endocrinology Unit, Department of Internal Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano La Rosa
- Unit of Pathology, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Carla Perego
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paul B Higgins
- Department of Life & Physical Sciences, Atlantic Technological University, Letterkenny, Ireland
| |
Collapse
|
54
|
Goyal P, Rajala MS. Reprogramming of glucose metabolism in virus infected cells. Mol Cell Biochem 2023; 478:2409-2418. [PMID: 36709223 PMCID: PMC9884135 DOI: 10.1007/s11010-023-04669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/16/2023] [Indexed: 01/30/2023]
Abstract
Viral infection is a kind of cellular stress that leads to the changes in cellular metabolism. Many metabolic pathways in a host cell such as glycolysis, amino acid and nucleotide synthesis are altered following virus infection. Both oncogenic and non-oncogenic viruses depend on host cell glycolysis for their survival and pathogenesis. Recent studies have shown that the rate of glycolysis plays an important role in oncolysis as well by oncolytic therapeutic viruses. During infection, viral proteins interact with various cellular glycolytic enzymes, and this interaction enhances the catalytic framework of the enzymes subsequently the glycolytic rate of the cell. Increased activity of glycolytic enzymes following their interaction with viral proteins is vital for replication and to counteract the inhibition of glycolysis caused by immune response. In this review, the importance of host cell glycolysis and the modulation of glycolysis by various viruses such as oncogenic, non-oncogenic and oncolytic viruses are presented.
Collapse
Affiliation(s)
- Priya Goyal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Maitreyi S Rajala
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
55
|
Eng PC, Forlano R, Tan T, Manousou P, Dhillo WS, Izzi-Engbeaya C. Non-alcoholic fatty liver disease in women - Current knowledge and emerging concepts. JHEP Rep 2023; 5:100835. [PMID: 37771547 PMCID: PMC10522907 DOI: 10.1016/j.jhepr.2023.100835] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 09/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide, affecting up to 30% of adults. Progression to non-alcoholic steatohepatitis (NASH) is a key risk factor for cirrhosis, hepatocellular carcinoma and cardiovascular events. Alterations in reproductive hormones are linked to the development and/or progression of NAFLD/NASH in women. Women with polycystic ovary syndrome and those with oestrogen deficiency are at increased risk of NAFLD/NASH, with higher mortality rates in older women compared to men of similar ages. NAFLD/NASH is currently the leading indication for liver transplantation in women without hepatocellular carcinoma. Therefore, a better understanding of NAFLD in women is needed to improve outcomes. In this review, we discuss the hormonal and non-hormonal factors that contribute to NAFLD development and progression in women. Furthermore, we highlight areas of focus for clinical practice and for future research.
Collapse
Affiliation(s)
- Pei Chia Eng
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Hepatology, Imperial College Healthcare NHS Trust, London, UK
| | - Tricia Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Pinelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Hepatology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S. Dhillo
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Chioma Izzi-Engbeaya
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
56
|
Zhang J, Zheng Y, Martens L, Pfeiffer AFH. The Regulation and Secretion of Glucagon in Response to Nutrient Composition: Unraveling Their Intricate Mechanisms. Nutrients 2023; 15:3913. [PMID: 37764697 PMCID: PMC10536047 DOI: 10.3390/nu15183913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Glucagon was initially regarded as a hyperglycemic substance; however, recent research has revealed its broader role in metabolism, encompassing effects on glucose, amino acids (AAs), and lipid metabolism. Notably, the interplay of glucagon with nutrient intake, particularly of AAs, and non-nutrient components is central to its secretion. Fasting and postprandial hyperglucagonemia have long been linked to the development and progression of type 2 diabetes (T2DM). However, recent studies have brought to light the positive impact of glucagon agonists on lipid metabolism and energy homeostasis. This review explores the multifaceted actions of glucagon, focusing on its regulation, signaling pathways, and effects on glucose, AAs, and lipid metabolism. The interplay between glucagon and other hormones, including insulin and incretins, is examined to provide a mechanistic understanding of its functions. Notably, the liver-α-cell axis, which involves glucagon and amino acids, emerges as a critical aspect of metabolic regulation. The dysregulation of glucagon secretion and its impact on conditions such as T2DM are discussed. The review highlights the potential therapeutic applications of targeting the glucagon pathway in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Jiudan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| | - Yang Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Lisa Martens
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
- Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| |
Collapse
|
57
|
Hannah WB, Derks TGJ, Drumm ML, Grünert SC, Kishnani PS, Vissing J. Glycogen storage diseases. Nat Rev Dis Primers 2023; 9:46. [PMID: 37679331 DOI: 10.1038/s41572-023-00456-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/09/2023]
Abstract
Glycogen storage diseases (GSDs) are a group of rare, monogenic disorders that share a defect in the synthesis or breakdown of glycogen. This Primer describes the multi-organ clinical features of hepatic GSDs and muscle GSDs, in addition to their epidemiology, biochemistry and mechanisms of disease, diagnosis, management, quality of life and future research directions. Some GSDs have available guidelines for diagnosis and management. Diagnostic considerations include phenotypic characterization, biomarkers, imaging, genetic testing, enzyme activity analysis and histology. Management includes surveillance for development of characteristic disease sequelae, avoidance of fasting in several hepatic GSDs, medically prescribed diets, appropriate exercise regimens and emergency letters. Specific therapeutic interventions are available for some diseases, such as enzyme replacement therapy to correct enzyme deficiency in Pompe disease and SGLT2 inhibitors for neutropenia and neutrophil dysfunction in GSD Ib. Progress in diagnosis, management and definitive therapies affects the natural course and hence morbidity and mortality. The natural history of GSDs is still being described. The quality of life of patients with these conditions varies, and standard sets of patient-centred outcomes have not yet been developed. The landscape of novel therapeutics and GSD clinical trials is vast, and emerging research is discussed herein.
Collapse
Affiliation(s)
- William B Hannah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Terry G J Derks
- Division of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah C Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Paediatrics, Duke University Medical Center, Durham, NC, USA
| | - John Vissing
- Copenhagen Neuromuscular Center, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
58
|
Yang W, Liao W, Li X, Ai W, Pan Q, Shen Z, Jiang W, Guo S. Hepatic p38α MAPK controls gluconeogenesis via FOXO1 phosphorylation at S273 during glucagon signalling in mice. Diabetologia 2023:10.1007/s00125-023-05916-5. [PMID: 37202506 DOI: 10.1007/s00125-023-05916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/09/2023] [Indexed: 05/20/2023]
Abstract
AIMS/HYPOTHESIS Hyperglucagonaemia-stimulated hepatic glucose production (HGP) contributes to hyperglycaemia during type 2 diabetes. A better understanding of glucagon action is important to enable efficient therapies to be developed for the treatment of diabetes. Here, we aimed to investigate the role of p38 MAPK family members in glucagon-induced HGP and determine the underlying mechanisms by which p38 MAPK regulates glucagon action. METHODS p38α, β, γ and δ MAPK siRNAs were transfected into primary hepatocytes, followed by measurement of glucagon-induced HGP. Adeno-associated virus serotype 8 carrying p38α MAPK short hairpin RNA (shRNA) was injected into liver-specific Foxo1 knockout, liver-specific Irs1/Irs2 double knockout and Foxo1S273D knockin mice. Foxo1S273A knockin mice were fed a high-fat diet for 10 weeks. Pyruvate tolerance tests, glucose tolerance tests, glucagon tolerance tests and insulin tolerance tests were carried out in mice, liver gene expression profiles were analysed and serum triglyceride, insulin and cholesterol levels were measured. Phosphorylation of forkhead box protein O1 (FOXO1) by p38α MAPK in vitro was analysed by LC-MS. RESULTS We found that p38α MAPK, but not the other p38 isoforms, stimulates FOXO1-S273 phosphorylation and increases FOXO1 protein stability, promoting HGP in response to glucagon stimulation. In hepatocytes and mouse models, inhibition of p38α MAPK blocked FOXO1-S273 phosphorylation, decreased FOXO1 levels and significantly impaired glucagon- and fasting-induced HGP. However, the effect of p38α MAPK inhibition on HGP was abolished by FOXO1 deficiency or a Foxo1 point mutation at position 273 from serine to aspartic acid (Foxo1S273D) in both hepatocytes and mice. Moreover, an alanine mutation at position 273 (Foxo1S273A) decreased glucose production, improved glucose tolerance and increased insulin sensitivity in diet-induced obese mice. Finally, we found that glucagon activates p38α through exchange protein activated by cAMP 2 (EPAC2) signalling in hepatocytes. CONCLUSIONS/INTERPRETATION This study found that p38α MAPK stimulates FOXO1-S273 phosphorylation to mediate the action of glucagon on glucose homeostasis in both health and disease. The glucagon-induced EPAC2-p38α MAPK-pFOXO1-S273 signalling pathway is a potential therapeutic target for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Wanbao Yang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Wang Liao
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Xiaopeng Li
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Weiqi Ai
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Quan Pan
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Zheng Shen
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Wen Jiang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
59
|
Cheng J, Zhang S, Yi Y, Qin Y, Chen ZH, Deng F, Zeng F. Hydrogen peroxide reduces root cadmium uptake but facilitates root-to-shoot cadmium translocation in rice through modulating cadmium transporters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107754. [PMID: 37236064 DOI: 10.1016/j.plaphy.2023.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Cadmium (Cd) contamination in agricultural soils has become a serious worldwide environmental problem threatening crop production and human health. Hydrogen peroxide (H2O2) is a critical second messenger in plant response to Cd exposure. However, its role in Cd accumulation in various organs of plants and the mechanistic basis of this regulation remains to be elucidated. In this study, we used electrophysiological and molecular approaches to understand how H2O2 regulates Cd uptake and translocation in rice plants. Our results showed that the pretreatment of H2O2 significantly reduced Cd uptake by rice roots, which was associated with the downregulation of OsNRAMP1 and OsNRAMP5. On the other hand, H2O2 promoted the root-to-shoot translocation of Cd, which might be attributed to the upregulation of OsHMA2 critical for Cd2+ phloem loading and the downregulation of OsHMA3 involved in the vacuolar compartmentalization of Cd2+, leading to the increased Cd accumulation in rice shoots. Furthermore, such regulatory effects of H2O2 on Cd uptake and translocation were notably amplified by the elevated level of exogenous calcium (Ca). Collectively, our results suggest that H2O2 can inhibit Cd uptake but increase root to shoot translocation through modulating the transcriptional levels of genes encoding Cd transporters, furthermore, application of Ca can amplify this effect. These findings will broaden our understanding of the regulatory mechanisms of Cd transport in rice plants and provide theoretical foundation for breeding rice for low Cd accumulation.
Collapse
Affiliation(s)
- Jianhui Cheng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Shuo Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yun Yi
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yuan Qin
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Zhong-Hua Chen
- School of Science & Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Fenglin Deng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| | - Fanrong Zeng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
60
|
Guo H, Wu H, Li Z. The Pathogenesis of Diabetes. Int J Mol Sci 2023; 24:ijms24086978. [PMID: 37108143 PMCID: PMC10139109 DOI: 10.3390/ijms24086978] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes is the most common metabolic disorder, with an extremely serious effect on health systems worldwide. It has become a severe, chronic, non-communicable disease after cardio-cerebrovascular diseases. Currently, 90% of diabetic patients suffer from type 2 diabetes. Hyperglycemia is the main hallmark of diabetes. The function of pancreatic cells gradually declines before the onset of clinical hyperglycemia. Understanding the molecular processes involved in the development of diabetes can provide clinical care with much-needed updates. This review provides the current global state of diabetes, the mechanisms involved in glucose homeostasis and diabetic insulin resistance, and the long-chain non-coding RNA (lncRNA) associated with diabetes.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
61
|
Yang M, Pan M, Huang D, Liu J, Guo Y, Liu Y, Zhang W. Glucagon Promotes Gluconeogenesis through the GCGR/PKA/CREB/PGC-1α Pathway in Hepatocytes of the Japanese Flounder Paralichthys olivaceus. Cells 2023; 12:cells12071098. [PMID: 37048171 PMCID: PMC10093564 DOI: 10.3390/cells12071098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
In order to investigate the mechanism of glucagon regulation of gluconeogenesis, primary hepatocytes of the Japanese flounder (Paralichthys olivaceus) were incubated with synthesized glucagon, and methods based on inhibitors and gene overexpression were employed. The results indicated that glucagon promoted glucose production and increased the mRNA levels of glucagon receptor (gcgr), guanine nucleotide-binding protein Gs α subunit (gnas), adenylate cyclase 2 (adcy2), protein kinase A (pka), cAMP response element-binding protein 1 (creb1), peroxisome proliferator-activated receptor-γ coactivator 1α (pgc-1α), phosphoenolpyruvate carboxykinase 1 (pck1), and glucose-6-phosphatase (g6pc) in the hepatocytes. An inhibitor of GCGR decreased the mRNA expression of gcgr, gnas, adcy2, pka, creb1, pgc-1α, pck1, g6pc, the protein expression of phosphorylated CREB and PGC-1α, and glucose production. The overexpression of gcgr caused the opposite results. An inhibitor of PKA decreased the mRNA expression of pgc-1α, pck1, g6pc, the protein expression of phosphorylated-CREB, and glucose production in hepatocytes. A CREB-targeted inhibitor significantly decreased the stimulation by glucagon of the mRNA expression of creb1, pgc-1α, and gluconeogenic genes, and glucose production decreased accordingly. After incubating the hepatocytes with an inhibitor of PGC-1α, the glucagon-activated mRNA expression of pck1 and g6pc was significantly down-regulated. Together, these results demonstrate that glucagon promotes gluconeogenesis through the GCGR/PKA/CREB/PGC-1α pathway in the Japanese flounder.
Collapse
Affiliation(s)
- Mengxi Yang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yanlin Guo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yue Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
62
|
Garg R, Katekar R, Parwez S, Agarwal A, Sahu S, Dadge S, Verma S, Goand UK, Siddiqi MI, Gayen JR. Pancreastatin inhibitor PSTi8 ameliorates streptozotocin-induced diabetes by suppressing hepatic glucose production. Eur J Pharmacol 2023; 944:175559. [PMID: 36764353 DOI: 10.1016/j.ejphar.2023.175559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Elevated plasma glucose concentration, as a consequence of excessive hepatic glucose production, plays a pivotal role in the development of diabetes. A chromogranin A-derived diabetogenic peptide Pancreastatin (PST) enhances hepatic glucose output leading to diabetes. Therefore, here we probed the role of PSTi8, a PST inhibitor in ameliorating diabetes by investigating the effect of high glucose (HG) or PST on glucose metabolism. Further, we also explored the action mechanism of the underlying anti-hyperglycemic effect of PSTi8. PSTi8 treatment rescue cultured L6 and HepG2 cells from HG and PST-induced insulin resistance, respectively. It also enhances insulin receptor kinase activity by interacting with the insulin receptor and enhancing GLUT4 translocation and glucose uptake. Thus, our in-silico and in-vitro data support the PST-dependent and independent activity of PSTi8. Additionally, PSTi8 treatment in streptozotocin-induced diabetic rats improved glucose tolerance by lowering blood glucose and plasma PST levels. Concomitantly, the treated animals exhibited reduced hepatic glucose production accompanied by downregulation of hepatic gluconeogenic genes PEPCK and G6Pase. PSTi8-treated rats also exhibited enhanced hepatic glycogen in line with reduced plasma glucagon concentrations. Consistently, improved plasma insulin levels in PSTi8-treated rats enhanced skeletal muscle glucose disposal via enhanced P-Akt expression. In summary, these findings suggest PSTi8 has anti-hyperglycemic properties with enhanced skeletal muscle glucose disposal and reduced hepatic gluconeogenesis both PST dependent as well as independent.
Collapse
Affiliation(s)
- Richa Garg
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahid Parwez
- Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arun Agarwal
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | | | - Saurabh Verma
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh K Goand
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics, India; Pharmacology Division, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
63
|
Jungnik A, Arrubla Martinez J, Plum-Mörschel L, Kapitza C, Lamers D, Thamer C, Schölch C, Desch M, Hennige AM. Phase I studies of the safety, tolerability, pharmacokinetics and pharmacodynamics of the dual glucagon receptor/glucagon-like peptide-1 receptor agonist BI 456906. Diabetes Obes Metab 2023; 25:1011-1023. [PMID: 36527386 DOI: 10.1111/dom.14948] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/21/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIM To report two phase I studies of the novel subcutaneous glucagon-like peptide-1 receptor/glucagon receptor (GLP-1R/GCGR) dual agonist BI 456906 versus placebo in healthy volunteers and people with overweight/obesity. MATERIALS AND METHODS A phase Ia study (NCT03175211) investigated single rising doses (SRDs) of BI 456906 in 24 males with a body mass index (BMI) of 20-<30 kg/m2 . A phase Ib study (NCT03591718) investigated multiple rising doses (MRDs) of BI 456906 (escalated over 6 [Part A] or 16 [Part B] weeks) in 125 adults with a BMI of 27-40 kg/m2 . RESULTS In the SRD study (N = 24), mean body weight decreased with increasing BI 456906 dose. In the MRD study, the maximum decreases in placebo-corrected mean body weight were at week 6 (-5.79%, dosage schedule [DS] 1; Part A) and week 16 (-13.8%, DS7; Part B). BI 456906 reduced plasma amino acids and glucagon, indicating target engagement at GCGRs and GLP-1Rs. Drug-related adverse events (AEs) increased with BI 456906 dose. The most frequent drug-related AE with SRDs was decreased appetite (n = 9, 50.0%), and two subjects (8.3%) did not complete the trial because of AEs (nausea and vomiting). During MRD Part A (N = 80), 10 subjects (12.5%) discontinued BI 456906, most commonly because of a cardiac or vascular AE (n = 6, 7.5%); during Part B (N = 45), eight subjects (17.8%) discontinued BI 456906, mainly because of AEs (n = 6, 13.3%), most commonly gastrointestinal disorders. CONCLUSIONS BI 456906 produced a placebo-corrected body weight loss of 13.8% (week 16), highlighting its potential to promote clinically meaningful body weight loss in people with overweight/obesity.
Collapse
Affiliation(s)
| | | | | | - Christoph Kapitza
- Profil Institute for Metabolic Research, Neuss, Germany
- Profil Mainz GmbH & Co. KG, Mainz, Germany
| | | | - Claus Thamer
- Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | | | | | | |
Collapse
|
64
|
Kuo YW, Lee JD, Lee CP, Huang YC, Lee M. Association between initial in-hospital heart rate and glycemic control in patients with acute ischemic stroke and diabetes mellitus. BMC Endocr Disord 2023; 23:69. [PMID: 36991469 PMCID: PMC10054020 DOI: 10.1186/s12902-023-01325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND A high resting heart rate (HR) has been associated with an increased risk of diabetes mellitus. This study explored the association between initial in-hospital HR and glycemic control in patients with acute ischemic stroke (AIS) and diabetes mellitus. METHODS We analyzed data from 4,715 patients with AIS and type 2 diabetes mellitus enrolled in the Chang Gung Research Database between January 2010 and September 2018. The study outcome was unfavorable glycemic control, defined as glycated hemoglobin (HbA1c) ≥ 7%. In statistical analyses, the mean initial in-hospital HR was used as both a continuous and categorical variable. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression analysis. The associations between the HR subgroups and HbA1c levels were analyzed using a generalized linear model. RESULTS Compared with the reference group (HR < 60 bpm), the adjusted ORs for unfavorable glycemic control were 1.093 (95% CI 0.786-1.519) for an HR of 60-69 bpm, 1.370 (95% CI 0.991-1.892) for an HR of 70-79 bpm, and 1.608 (95% CI 1.145-2.257) for an HR of ≥ 80 bpm. Even after adjusting for possible confounders, the HbA1c levels after admission and discharge among diabetic stroke patients increased significantly in the subgroups with higher HRs (p < 0.001). CONCLUSIONS High initial in-hospital HR is associated with unfavorable glycemic control in patients with AIS and diabetes mellitus, particularly in those with an HR of ≥ 80 bpm, compared with those with an HR of < 60 bpm.
Collapse
Affiliation(s)
- Ya-Wen Kuo
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, Taiwan
- Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jiann-Der Lee
- Department of Neurology, Chiayi Chang Gung Memorial Hospital, No.6, W. Sec., Jiapu Rd., Puzi City, Chiayi County 613, Chiayi, Taoyuan, Taiwan (R.O.C.).
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chuan-Pin Lee
- Health Information and Epidemiology Laboratory, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yen-Chu Huang
- Department of Neurology, Chiayi Chang Gung Memorial Hospital, No.6, W. Sec., Jiapu Rd., Puzi City, Chiayi County 613, Chiayi, Taoyuan, Taiwan (R.O.C.)
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng Lee
- Department of Neurology, Chiayi Chang Gung Memorial Hospital, No.6, W. Sec., Jiapu Rd., Puzi City, Chiayi County 613, Chiayi, Taoyuan, Taiwan (R.O.C.)
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
65
|
Hædersdal S, Andersen A, Knop FK, Vilsbøll T. Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nat Rev Endocrinol 2023; 19:321-335. [PMID: 36932176 DOI: 10.1038/s41574-023-00817-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/19/2023]
Abstract
Insulin and glucagon exert opposing effects on glucose metabolism and, consequently, pancreatic islet β-cells and α-cells are considered functional antagonists. The intra-islet hypothesis has previously dominated the understanding of glucagon secretion, stating that insulin acts to inhibit the release of glucagon. By contrast, glucagon is a potent stimulator of insulin secretion and has been used to test β-cell function. Over the past decade, α-cells have received increasing attention due to their ability to stimulate insulin secretion from neighbouring β-cells, and α-cell-β-cell crosstalk has proven central for glucose homeostasis in vivo. Glucagon is not only the counter-regulatory hormone to insulin in glucose metabolism but also glucagon secretion is more susceptible to changes in the plasma concentration of certain amino acids than to changes in plasma concentrations of glucose. Thus, the actions of glucagon also include a central role in amino acid turnover and hepatic fat oxidation. This Review provides insights into glucagon secretion, with a focus on the local paracrine actions on glucagon and the importance of α-cell-β-cell crosstalk. We focus on dysregulated glucagon secretion in obesity, non-alcoholic fatty liver disease and type 2 diabetes mellitus. Lastly, the future potential of targeting hyperglucagonaemia and applying dual and triple receptor agonists with glucagon receptor-activating properties in combination with incretin hormone receptor agonism is discussed.
Collapse
Affiliation(s)
- Sofie Hædersdal
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
| | - Andreas Andersen
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
66
|
Xiao Y, Wang Y, Ryu J, Liu W, Zou H, Zhang R, Yan Y, Dai Z, Zhang D, Sun LZ, Liu F, Zhou Z, Dong LQ. Upregulated TGF-β1 contributes to hyperglycaemia in type 2 diabetes by potentiating glucagon signalling. Diabetologia 2023; 66:1142-1155. [PMID: 36917279 DOI: 10.1007/s00125-023-05889-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 03/16/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-stimulated hepatic gluconeogenesis contributes to endogenous glucose production during fasting. Recent studies suggest that TGF-β is able to promote hepatic gluconeogenesis in mice. However, the physiological relevance of serum TGF-β levels to human glucose metabolism and the mechanism by which TGF-β enhances gluconeogenesis remain largely unknown. As enhanced gluconeogenesis is a signature feature of type 2 diabetes, elucidating the molecular mechanisms underlying TGF-β-promoted hepatic gluconeogenesis would allow us to better understand the process of normal glucose production and the pathophysiology of this process in type 2 diabetes. This study aimed to investigate the contribution of upregulated TGF-β1 in human type 2 diabetes and the molecular mechanism underlying the action of TGF-β1 in glucose metabolism. METHODS Serum levels of TGF-β1 were measured by ELISA in 74 control participants with normal glucose tolerance and 75 participants with type 2 diabetes. Human liver tissue was collected from participants without obesity and with or without type 2 diabetes for the measurement of TGF-β1 and glucagon signalling. To investigate the role of Smad3, a key signalling molecule downstream of the TGF-β1 receptor, in mediating the effect of TGF-β1 on glucagon signalling, we generated Smad3 knockout mice. Glucose levels in Smad3 knockout mice were measured during prolonged fasting and a glucagon tolerance test. Mouse primary hepatocytes were isolated from Smad3 knockout and wild-type (WT) mice to investigate the underlying molecular mechanisms. Smad3 phosphorylation was detected by western blotting, levels of cAMP were detected by ELISA and levels of protein kinase A (PKA)/cAMP response element-binding protein (CREB) phosphorylation were detected by western blotting. The dissociation of PKA subunits was measured by immunoprecipitation. RESULTS We observed higher levels of serum TGF-β1 in participants without obesity and with type 2 diabetes than in healthy control participants, which was positively correlated with HbA1c and fasting blood glucose levels. In addition, hyperactivation of the CREB and Smad3 signalling pathways was observed in the liver of participants with type 2 diabetes. Treating WT mouse primary hepatocytes with TGF-β1 greatly potentiated glucagon-stimulated PKA/CREB phosphorylation and hepatic gluconeogenesis. Mechanistically, TGF-β1 treatment induced the binding of Smad3 to the regulatory subunit of PKA (PKA-R), which prevented the association of PKA-R with the catalytic subunit of PKA (PKA-C) and led to the potentiation of glucagon-stimulated PKA signalling and gluconeogenesis. CONCLUSIONS/INTERPRETATION The hepatic TGF-β1/Smad3 pathway sensitises the effect of glucagon/PKA signalling on gluconeogenesis and synergistically promotes hepatic glucose production. Reducing serum levels of TGF-β1 and/or preventing hyperactivation of TGF-β1 signalling could be a novel approach for alleviating hyperglycaemia in type 2 diabetes.
Collapse
Affiliation(s)
- Yang Xiao
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanfei Wang
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Endocrinology, The First People's Hospital of Foshan, Foshan, China
| | - Jiyoon Ryu
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Wei Liu
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Division of Biliopancreatic Surgery and Bariatric Surgery, Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hailan Zou
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rong Zhang
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yin Yan
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Deling Zhang
- Department of Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Lily Q Dong
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
67
|
Cattaneo L, Piccioli-Cappelli F, Minuti A, Trevisi E. Metabolic and physiological adaptations to first and second lactation in Holstein dairy cows. J Dairy Sci 2023; 106:3559-3575. [PMID: 36907763 DOI: 10.3168/jds.2022-22684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/28/2022] [Indexed: 03/12/2023]
Abstract
Huge differences exist between cow yields and body sizes during their first and second lactations. The transition period is the most critical and investigated phase of the lactation cycle. We compared metabolic and endocrine responses between cows at different parities during the transition period and early lactation. Eight Holstein dairy cows were monitored at their first and second calving during which they were reared under the same conditions. Milk yield, dry matter intake (DMI), and body weight (BW) were regularly measured, and energy balance, efficiency, and lactation curves were calculated. Blood samples were collected on scheduled days from -21 d relative to calving (DRC) to 120 DRC for the assessment of metabolic and hormonal profiles (biomarkers of metabolism, mineral status, inflammation, and liver function). Large variations in the period in question for almost all variables investigated were observed. Compared with their first lactation, cows during their second lactation had higher DMI (+15%) and BW (+13%), their milk yield was greater (+26%), lactation peak was higher and earlier (36.6 kg/d at 48.8 DRC vs. 45.0 kg/d at 62.9 DRC), but persistency was reduced. Milk fat, protein, and lactose contents were higher during the first lactation and coagulation properties were better (higher titratable acidity, faster and firmer curd formation). Postpartum negative energy balance was more severe the during the second lactation (1.4-fold at 7 DRC) and plasma glucose was lower. Circulating insulin and insulin-like growth factor-1 were lower in second-calving cows during the transition period. At the same time, markers of body reserve mobilization (β-hydroxybutyrate and urea) increased. Moreover, albumin, cholesterol, and γ-glutamyl transferase were higher during second lactation, whereas bilirubin and alkaline phosphatase were lower. The inflammatory response after calving was not different, as suggested by the similar haptoglobin concentrations and only transient differences in ceruloplasmin. Blood growth hormone did not differ during the transition period but was lower during the second lactation at 90 DRC, whereas circulating glucagon was higher. These results agree with the differences in milk yield and confirmed the hypothesis of a different metabolic and hormonal status between the first and second lactation partly related to different degrees of maturity.
Collapse
Affiliation(s)
- L Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - F Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122 Piacenza, Italy.
| |
Collapse
|
68
|
Chen SY, Beretta M, Olzomer EM, Shah DP, Wong DYH, Alexopoulos SJ, Aleksovska I, Salamoun JM, Garcia CJ, Cochran BJ, Rye KA, Smith GC, Byrne FL, Morris MJ, Santos WL, Cantley J, Hoehn KL. Targeting negative energy balance with calorie restriction and mitochondrial uncoupling in db/db mice. Mol Metab 2023; 69:101684. [PMID: 36731653 PMCID: PMC9932728 DOI: 10.1016/j.molmet.2023.101684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Calorie restriction is a first-line treatment for overweight individuals with metabolic impairments. However, few patients can adhere to long-term calorie restriction. An alternative approach to calorie restriction that also causes negative energy balance is mitochondrial uncoupling, which decreases the amount of energy that can be extracted from food. Herein we compare the metabolic effects of calorie restriction with the mitochondrial uncoupler BAM15 in the db/db mouse model of severe hyperglycemia, obesity, hypertriglyceridemia, and fatty liver. METHODS Male db/db mice were treated with ∼50% calorie restriction, BAM15 at two doses of 0.1% and 0.2% (w/w) admixed in diet, or 0.2% BAM15 with time-restricted feeding from 5 weeks of age. Mice were metabolically phenotyped over 4 weeks with assessment of key readouts including body weight, glucose tolerance, and liver steatosis. At termination, liver tissues were analysed by metabolomics and qPCR. RESULTS Calorie restriction and high-dose 0.2% BAM15 decreased body weight to a similar extent, but mice treated with BAM15 had far better improvement in glucose control. High-dose BAM15 treatment completely normalized fasting glucose and glucose tolerance to levels similar to lean db/+ control mice. Low-dose 0.1% BAM15 did not affect body mass but partially improved glucose tolerance to a similar degree as 50% calorie restriction. Both calorie restriction and high-dose BAM15 significantly improved hyperglucagonemia and liver and serum triglyceride levels. Combining high-dose BAM15 with time-restricted feeding to match the time that calorie restricted mice were fed resulted in the best metabolic phenotype most similar to lean db/+ controls. BAM15-mediated improvements in glucose control were associated with decreased glucagon levels and decreased expression of enzymes involved in hepatic gluconeogenesis. CONCLUSIONS BAM15 and calorie restriction treatments improved most metabolic disease phenotypes in db/db mice. However, mice fed BAM15 had superior effects on glucose control compared to the calorie restricted group that consumed half as much food. Submaximal dosing with BAM15 demonstrated that its beneficial effects on glucose control are independent of weight loss. These data highlight the potential for mitochondrial uncoupler pharmacotherapies in the treatment of metabolic disease.
Collapse
Affiliation(s)
- Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Divya P Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Derek Y H Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Isabella Aleksovska
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joseph M Salamoun
- Department of Chemistry and Virginia Tech Centre for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Christopher J Garcia
- Department of Chemistry and Virginia Tech Centre for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Blake J Cochran
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kerry-Anne Rye
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Greg C Smith
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Margaret J Morris
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Centre for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA
| | - James Cantley
- School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
69
|
Yuan H, Kang Q, Li Z, Bai X, Jia J, Han D, Wu X, Li M. Crispr-Cas9 mediated complete deletion of glucagon receptor in mice display hyperglucagonemia and α-cell hyperplasia. Biochem Biophys Res Commun 2023; 643:121-128. [PMID: 36596263 DOI: 10.1016/j.bbrc.2022.12.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Glucagon receptor plays an important role in the regulation of glucose metabolism. Studies have revealed that glucagon receptor antagonism is a potential effective treatment for diabetes. However, the functions of GCGR have not been fully illustrated. Although two Gcgr truncation knockout mice models have been widely used for GCGR function studies, truncated gene may remain neomorphic and/or dominant-negative function. In this study, we took the advantages of Crispr-Cas9 technique and generated a novel allele of GCGR in the mouse that yields complete loss of GCGR protein. Our studies reveal that complete deletion of Gcgr results in hyperglucagonemia, α-cell hyperplasia, improvement of glucose tolerance. These results are similar to the Gcgr-truncated mutation in mice. Hence, we provide a novel strain of GCGR knockout mice for the GCGR function studies.
Collapse
Affiliation(s)
- Hang Yuan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; Department of Cardiac Surgery, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, 361016, China
| | - Qi Kang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhehui Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xuanxuan Bai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianxin Jia
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Daxiong Han
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xijie Wu
- Department of Cardiac Surgery, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, 361016, China.
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536007, China.
| |
Collapse
|
70
|
Scheen AJ, Lefèbvre PJ. Glucagon, from past to present: a century of intensive research and controversies. Lancet Diabetes Endocrinol 2023; 11:129-138. [PMID: 36566754 DOI: 10.1016/s2213-8587(22)00349-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
2022 corresponds to the 100th anniversary of the discovery of glucagon. This TimeCapsule aims to recall the main steps leading to the discovery, characterisation, and clinical importance of the so-called second pancreatic hormone. We describe the early historical findings in basic research (ie, discovery, purification, structure, α-cell origin, radioimmunoassay, glucagon gene [GCG], and glucagon receptor [GLR]), in which three future Nobel Prize laureates were actively involved. Considered as an anti-insulin hormone, glucagon was rapidly used to treat insulin-induced hypoglycaemic coma episodes in people with type 1 diabetes. A key step in the story of glucagon was the discovery of its role and the role of α cells in the physiology and pathophysiology (ie, paracrinopathy) of type 2 diabetes. This concept led to the design of different strategies targeting glucagon, among which GLP-1 receptor (GLP1R) agonists were a major breakthrough, and combination of inhibition of glucagon secretion with stimulation of insulin secretion (both in a glucose-dependent manner). Taking advantage of the glucagon-induced increase in energy metabolism, biased coagonists were developed. Besides the GLP-1 receptor, these coagonists also target the glucagon receptor to further promote weight loss. Thus, the 100-year story of glucagon has most probably not come to an end.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of medicine, CHU Liège, Liège University, Liège, Belgium.
| | - Pierre J Lefèbvre
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of medicine, CHU Liège, Liège University, Liège, Belgium
| |
Collapse
|
71
|
Vadmand AC, Nissen AA, Mathiesen S, Soerum ME, Gerbek T, Fridh MK, Sørensen K, Hartmann B, Holst JJ, Müller K. Metabolic Dysregulation in Adult Survivors of Pediatric Hematopoietic Stem Cell Transplantation: The Role of Incretins. J Clin Endocrinol Metab 2023; 108:453-462. [PMID: 36181459 DOI: 10.1210/clinem/dgac561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/19/2022] [Indexed: 01/20/2023]
Abstract
CONTEXT Survivors of pediatric hematopoietic stem cell transplantation (HSCT) have increased risk of developing metabolic syndrome (MetS), but the mechanisms are poorly understood. OBJECTIVE We aimed to test the hypothesis that insufficient secretion of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) plays a pathogenetic role in HSCT survivors with MetS. METHODS This cross-sectional cohort study, conducted at the Danish national referral center for HSCT, studied 42 male HSCT survivors (median age 28.9 years) for a median 21.2 years from HSCT, along with 15 age- and sex-matched healthy controls. Main outcome measures were glucose metabolism and incretin hormones (by oral glucose tolerance test [OGTT]) and MetS criteria. The hypothesis was formulated before data collection. RESULTS GLP-1, GIP, and glucagon during an OGTT were similar in patients and controls, with no overall difference between survivors with (24%) and without MetS. However, fasting glucagon was significantly higher in patients with hypertriglyceridemia (mean difference [MD]: 6.1 pmol/L; 95% CI, 1.5-10.8; P = 0.01), and correlated with HDL (MD: 4.7 mmol/L; 95% CI, -0.6 to 9.9; P = 0.08), android-gynoid ratio (correlation coefficient [r] = 0.6, P = 0.0001) and waist-hip ratio (r = 0.5, P = 0.002). A similar pattern was seen for GIP, correlating positively with triglyceride (MD: 60%; 95% CI, 44-82; P = 0.002). GIP levels were significantly increased in patients treated with total body irradiation (TBI) (MD: 165%; 95% CI, 118-230; P = 0.004), which was found to be a significant risk factor for MetS. CONCLUSION This study demonstrates an altered production of incretin hormones in HSCT survivors previously treated with TBI, developing dyslipidemia and abdominal adiposity.
Collapse
Affiliation(s)
- Amalia Christina Vadmand
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Anne Anker Nissen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Sidsel Mathiesen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Maria Ebbesen Soerum
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Tina Gerbek
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Martin Kaj Fridh
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Kaspar Sørensen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Bolette Hartmann
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jens Juul Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Klaus Müller
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
- Institute for Inflammation Research, University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| |
Collapse
|
72
|
Gao J, Li H, Xu H, Liu Y, Cai M, Shi Y, Zhang J, Wang H. High glucose-induced glucagon resistance and membrane distribution of GCGR revealed by super-resolution imaging. iScience 2023; 26:105967. [PMID: 36824278 PMCID: PMC9941209 DOI: 10.1016/j.isci.2023.105967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The glucagon receptor (GCGR) is a member of the class B G protein-coupled receptor family. Many research works have been carried out on GCGR structure, glucagon signaling pathway, and GCGR antagonists. However, the expression and fine distribution of GCGR proteins in response to glucagon under high glucose remain unclear. Using direct stochastic optical reconstruction microscopy (dSTORM) imaging, nanoscale GCGR clusters were observed on HepG2 cell membranes, and high glucose promoted GCGR expression and the formation of more and larger clusters. Moreover, glucagon stimulation under high glucose did not inhibit GCGR levels as significantly as that under low glucose and did not increase the downstream cyclic 3,5'-adenosine monophosphate-protein kinase A (cAMP-PKA) signal, and there were still large-size clusters on the membranes, indicating that high glucose induced glucagon resistance. In addition, high glucose induced stronger glucagon resistance in hepatoma cells compared with hepatic cells. Our work will pave a way to further our understanding of the pathogenesis of diabetes and develop more effective drugs targeting GCGR.
Collapse
Affiliation(s)
- Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China,Corresponding author
| | - Hongru Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China,University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China
| | - Yong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China
| | - Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China
| | - Jingrui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China,University of Science and Technology of China, Hefei, Anhui 230027, China,Laboratory for Marine Biology and Biotechnology, Qing dao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, Shandong 266237, China,Corresponding author
| |
Collapse
|
73
|
Pixner T, Stummer N, Schneider AM, Lukas A, Gramlinger K, Julian V, Thivel D, Mörwald K, Mangge H, Dalus C, Aigner E, Furthner D, Weghuber D, Maruszczak K. The relationship between glucose and the liver-alpha cell axis - A systematic review. Front Endocrinol (Lausanne) 2023; 13:1061682. [PMID: 36686477 PMCID: PMC9849557 DOI: 10.3389/fendo.2022.1061682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Until recently, glucagon was considered a mere antagonist to insulin, protecting the body from hypoglycemia. This notion changed with the discovery of the liver-alpha cell axis (LACA) as a feedback loop. The LACA describes how glucagon secretion and pancreatic alpha cell proliferation are stimulated by circulating amino acids. Glucagon in turn leads to an upregulation of amino acid metabolism and ureagenesis in the liver. Several increasingly common diseases (e.g., non-alcoholic fatty liver disease, type 2 diabetes, obesity) disrupt this feedback loop. It is important for clinicians and researchers alike to understand the liver-alpha cell axis and the metabolic sequelae of these diseases. While most of previous studies have focused on fasting concentrations of glucagon and amino acids, there is limited knowledge of their dynamics after glucose administration. The authors of this systematic review applied PRISMA guidelines and conducted PubMed searches to provide results of 8078 articles (screened and if relevant, studied in full). This systematic review aims to provide better insight into the LACA and its mediators (amino acids and glucagon), focusing on the relationship between glucose and the LACA in adult and pediatric subjects.
Collapse
Affiliation(s)
- Thomas Pixner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Nathalie Stummer
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Anna Maria Schneider
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Lukas
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Karin Gramlinger
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
| | - Valérie Julian
- Department of Sport Medicine and Functional Explorations, Diet and Musculoskeletal Health Team, Human Nutrition Research Center (CRNH), INRA, University Hospital of Clermont-Ferrand, University of Clermont Auvergne, Clermont-Ferrand, France
| | - David Thivel
- Laboratory of Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), University of Clermont Auvergne, Clermont-Ferrand, France
| | - Katharina Mörwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Christopher Dalus
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Elmar Aigner
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Dieter Furthner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Maruszczak
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
74
|
Lopes AM, Rios M, Beleza J, Carvalho DD, Monteiro S, Montanha T, Martins S, Guimarães JT, Fernandes RJ, Magalhães J, Teixeira VH, Ascensão A. Adding protein to a carbohydrate pre-exercise beverage does not influence running performance and metabolism. J Sports Med Phys Fitness 2023; 63:53-59. [PMID: 35415998 DOI: 10.23736/s0022-4707.22.13714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND To analyze whether pre-exercise CHO+PRO vs. CHO intake distinctly influences running performance and metabolic biomarkers along a various of exercise intensities. METHODS In a randomized, double blind, counterbalanced, crossover and placebo control design, 10 middle distance runners were tested in 3 occasions. After 10 h of fasting, participants ingested isovolumic beverages (0.75+0.25g·BW-1 of CHO+PRO, 1.0g·BW-1 of CHO and placebo control) 30 min before a treadmill running incremental protocol of 4 min steps until exhaustion. Venous blood was collected at fasting, 30 min after beverage ingestion and after the 3rd and 7th running steps. Oxygen uptake-related variables, including respiratory exchange ratio, heart rate, plasma glucose, insulin, glucagon, free fatty acids, blood lactate concentrations, gastrointestinal discomfort and rate of perceived exertion were measured. RESULTS The addition of PRO to CHO had no influence on the measured variables, which did not differ between conditions along all incremental protocol intensities. The intake of CHO+PRO (compared to CHO) tended to decrease glycemia (106.5±21.3 vs. 113.6±26.5) and to increase insulinemia (14.4±15.1 vs. 12.7±10.8) at intensities close to maximum oxygen uptake. CONCLUSIONS The addition of PRO to a pre-exercise CHO beverage had no impact on running performance and related metabolic variables at a wide spectrum of exercise intensities.
Collapse
Affiliation(s)
- Ana M Lopes
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, Porto, Portugal - .,Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, University of Porto, Porto, Portugal -
| | - Manoel Rios
- Center of Research, Education, Innovation and Intervention in Sport (CIFI2 D), Faculty of Sport, University of Porto, Porto, Portugal.,Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Jorge Beleza
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, Porto, Portugal.,Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, University of Porto, Porto, Portugal
| | - Diogo D Carvalho
- Center of Research, Education, Innovation and Intervention in Sport (CIFI2 D), Faculty of Sport, University of Porto, Porto, Portugal.,Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Sofia Monteiro
- Center of Research, Education, Innovation and Intervention in Sport (CIFI2 D), Faculty of Sport, University of Porto, Porto, Portugal.,Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Tiago Montanha
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, Porto, Portugal
| | - Sandra Martins
- Department of Clinical Pathology, São João Hospital Center, Faculty of Medicine, University of Porto, Porto, Portugal.,EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| | - João T Guimarães
- Department of Clinical Pathology, São João Hospital Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ricardo J Fernandes
- Center of Research, Education, Innovation and Intervention in Sport (CIFI2 D), Faculty of Sport, University of Porto, Porto, Portugal.,Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - José Magalhães
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, Porto, Portugal.,Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, University of Porto, Porto, Portugal
| | - Vitor H Teixeira
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, Porto, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - António Ascensão
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, Porto, Portugal.,Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
75
|
Feris F, McRae A, Kellogg TA, McKenzie T, Ghanem O, Acosta A. Mucosal and hormonal adaptations after Roux-en-Y gastric bypass. Surg Obes Relat Dis 2023; 19:37-49. [PMID: 36243547 PMCID: PMC9797451 DOI: 10.1016/j.soard.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023]
Abstract
The aim of this study was to perform a comprehensive literature review regarding the relevant hormonal and histologic changes observed after Roux-en-Y gastric bypass (RYGB). We aimed to describe the relevant hormonal (glucagon-like peptides 1 and 2 [GLP-1 and GLP-2], peptide YY [PYY], oxyntomodulin [OXM], bile acids [BA], cholecystokinin [CCK], ghrelin, glucagon, gastric inhibitory polypeptide [GIP], and amylin) profiles, as well as the histologic (mucosal cellular) adaptations happening after patients undergo RYGB. Our review compiles the current evidence and furthers the understanding of the rationale behind the food intake regulatory adaptations occurring after RYGB surgery. We identify gaps in the literature where the potential for future investigations and therapeutics may lie. We performed a comprehensive database search without language restrictions looking for RYGB bariatric surgery outcomes in patients with pre- and postoperative blood work hormonal profiling and/or gut mucosal biopsies. We gathered the relevant study results and describe them in this review. Where human findings were lacking, we included animal model studies. The amalgamation of physiologic, metabolic, and cellular adaptations following RYGB is yet to be fully characterized. This constitutes a fundamental aspiration for enhancing and individualizing obesity therapy.
Collapse
Affiliation(s)
- Fauzi Feris
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Alison McRae
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Todd A Kellogg
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Travis McKenzie
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Omar Ghanem
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
76
|
Wang Y, Liu G, Liu X, Chen M, Zeng Y, Li Y, Wu X, Wang X, Sheng J. Serpentine Enhances Insulin Regulation of Blood Glucose through Insulin Receptor Signaling Pathway. Pharmaceuticals (Basel) 2022; 16:ph16010016. [PMID: 36678512 PMCID: PMC9861791 DOI: 10.3390/ph16010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Insulin sensitizers targeting insulin receptors (IR) are a potential drug for the treatment of diabetes. Serpentine is an alkaloid component in the root of Catharanthus roseus (L.) G. Don. Serpentine screened by surface plasmon resonance (SPR) technology has the ability to target IR. The objective of this study was to investigate whether serpentine could modulate the role of insulin in regulating blood glucose through insulin receptors in cells and in animal models of diabetes. SPR technology was used to detect the affinity of different concentrations of serpentine with insulin receptors. The Western blotting method was used to detect the expression levels of key proteins of the insulin signaling pathway in C2C12 cells and 3T3-L1 cells as well as in muscle and subcutaneous adipose tissue of diabetic mice after serpentine and insulin treatment. Diabetic mice were divided into four groups and simultaneously injected with insulin or serpentine, and the blood glucose concentration and serum levels of insulin, glucagon, and C-peptide were measured 150 min later. mRNA levels of genes related to lipid metabolism and glucose metabolism in liver, muscle, and subcutaneous adipose tissue were detected by RT-PCR. Serpentine was able to bind to the extracellular domain of IR with an affinity of 2.883 × 10-6 M. Serpentine combined with insulin significantly enhanced the ability of insulin to activate the insulin signaling pathway and significantly enhanced the glucose uptake capacity of C2C12 cells. Serpentine enhanced the ability of low-dose insulin (1 nM) and normal-dose insulin (100 nM) to activate the insulin signaling pathway. Serpentine also independently activated AMPK phosphorylation, thus stimulating glucose uptake by C2C12 cells. In high-fat-diet/streptozotocin (HFD/STZ)-induced diabetic mice, serpentine significantly prolonged the hypoglycemic time of insulin, significantly reduced the use of exogenous insulin, and inhibited endogenous insulin secretion. In addition, serpentine alone significantly increased the expression of GSK-3β mRNA in muscle tissue, thus enhancing glucose uptake, and at the same time, serpentine significantly increased glucagon secretion and liver gluconeogenesis. Serpentine enhances the ability of insulin to regulate blood glucose through the insulin receptor, and can also regulate blood glucose alone, but it has a negative regulation mechanism and cannot produce a hypoglycemic effect. Therefore, serpentine may be useful as an insulin sensitizer to assist insulin to lower blood glucose.
Collapse
Affiliation(s)
- Yinghao Wang
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Scientific Observing and Experimental Station of Tea Resources and Processing in Yunnan, Ministry of Agriculture, Kunming 650201, China
- Department of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Guanfu Liu
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Scientific Observing and Experimental Station of Tea Resources and Processing in Yunnan, Ministry of Agriculture, Kunming 650201, China
| | - Xutao Liu
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Scientific Observing and Experimental Station of Tea Resources and Processing in Yunnan, Ministry of Agriculture, Kunming 650201, China
| | - Minhua Chen
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Scientific Observing and Experimental Station of Tea Resources and Processing in Yunnan, Ministry of Agriculture, Kunming 650201, China
| | - Yuping Zeng
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Scientific Observing and Experimental Station of Tea Resources and Processing in Yunnan, Ministry of Agriculture, Kunming 650201, China
| | - Yuyan Li
- Department of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyun Wu
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Scientific Observing and Experimental Station of Tea Resources and Processing in Yunnan, Ministry of Agriculture, Kunming 650201, China
- Department of Science, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (X.W.); (X.W.); (J.S.)
| | - Xuanjun Wang
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Scientific Observing and Experimental Station of Tea Resources and Processing in Yunnan, Ministry of Agriculture, Kunming 650201, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
- Correspondence: (X.W.); (X.W.); (J.S.)
| | - Jun Sheng
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Scientific Observing and Experimental Station of Tea Resources and Processing in Yunnan, Ministry of Agriculture, Kunming 650201, China
- Correspondence: (X.W.); (X.W.); (J.S.)
| |
Collapse
|
77
|
Yaribeygi H, Maleki M, Butler AE, Jamialahmadi T, Sahebkar A. New insights into cellular links between sodium-glucose cotransporter-2 inhibitors and ketogenesis. J Cell Biochem 2022; 123:1879-1890. [PMID: 36153819 DOI: 10.1002/jcb.30327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022]
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are a newly developed class of highly effective antidiabetic therapies that normalize hyperglycemia via urinary glucose excretion. However, they may be accompanied by certain side effects that negatively impact their therapeutic benefits. SGLT2is induce a metabolic shift from glucose to fatty acids and thus increase lipolysis which, in turn, induces ketogenesis. The complete pathways linking SGLT2is to ketoacidosis have not yet been fully elucidated, though much is now known. Therefore, in this mechanistic study, we present the current knowledge and shed light upon the possible cellular pathways involved. A deeper understanding of the possible links between SGLT2is and ketogenesis could help to prevent adverse side effects in diabetic patients treated with these drugs.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
78
|
Integrating Network Pharmacology and Transcriptomic Strategies to Explore the Pharmacological Mechanism of Hydroxysafflor Yellow A in Delaying Liver Aging. Int J Mol Sci 2022; 23:ijms232214281. [PMID: 36430769 PMCID: PMC9697017 DOI: 10.3390/ijms232214281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Aging affects the structure and function of the liver. Hydroxysafflor yellow A (HSYA) effectively improves liver aging (LA) in mice, but the potential mechanisms require further exploration. In this study, an integrated approach combining network pharmacology and transcriptomics was used to elucidate the potential mechanisms of HSYA delay of LA. The targets of HSYA were predicted using the PharmMapper, SwissTargetPrediction, and CTD databases, and the targets of LA were collected from the GeneCards database. An ontology (GO) analysis and a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation of genes related to HSYA delay of LA were performed using the DAVID database, and Cytoscape software was used to construct an HSYA target pathway network. The BMKCloud platform was used to sequence mRNA from mouse liver tissue, screen differentially expressed genes (DEGs) that were altered by HSYA, and enrich their biological functions and signaling pathways through the OmicShare database. The results of the network pharmacology and transcriptomic analyses were combined. Then, quantitative real-time PCR (qRT-PCR) and Western blot experiments were used to further verify the prediction results. Finally, the interactions between HSYA and key targets were assessed by molecular docking. The results showed that 199 potentially targeted genes according to network pharmacology and 480 DEGs according to transcriptomics were involved in the effects of HSYA against LA. An integrated analysis revealed that four key targets, including HSP90AA1, ATP2A1, NOS1 and CRAT, as well as their three related pathways (the calcium signaling pathway, estrogen signaling pathway and cGMP-PKG signaling pathway), were closely related to the therapeutic effects of HSYA. A gene and protein expression analysis revealed that HSYA significantly inhibited the expressions of HSP90AA1, ATP2A1 and NOS1 in the liver tissue of aging mice. The molecular docking results showed that HSYA had high affinities with the HSP90AA1, ATP2A1 and NOS1 targets. Our data demonstrate that HSYA may delay LA in mice by inhibiting the expressions of HSP90AA1, ATP2A1 and NOS1 and regulating the calcium signaling pathway, the estrogen signaling pathway, and the cGMP-PKG signaling pathway.
Collapse
|
79
|
Hope DCD, Hinds CE, Lopes T, Vincent ML, Shrewsbury JV, Yu ATC, Davies I, Scott R, Jones B, Murphy KG, Minnion JS, Sardini A, Carling D, Lutz TA, Bloom SR, Tan TMM, Owen BM. Hypoaminoacidemia underpins glucagon-mediated energy expenditure and weight loss. Cell Rep Med 2022; 3:100810. [PMID: 36384093 PMCID: PMC9729826 DOI: 10.1016/j.xcrm.2022.100810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Glucagon analogs show promise as components of next-generation, multi-target, anti-obesity therapeutics. The biology of chronic glucagon treatment, in particular, its ability to induce energy expenditure and weight loss, remains poorly understood. Using a long-acting glucagon analog, G108, we demonstrate that glucagon-mediated body weight loss is intrinsically linked to the hypoaminoacidemia associated with its known amino acid catabolic action. Mechanistic studies reveal an energy-consuming response to low plasma amino acids in G108-treated mice, prevented by dietary amino acid supplementation and mimicked by a rationally designed low amino acid diet. Therefore, low plasma amino acids are a pre-requisite for G108-mediated energy expenditure and weight loss. However, preventing hypoaminoacidemia with additional dietary protein does not affect the ability of G108 to improve glycemia or hepatic steatosis in obese mice. These studies provide a mechanism for glucagon-mediated weight loss and confirm the hepatic glucagon receptor as an attractive molecular target for metabolic disease therapeutics.
Collapse
Affiliation(s)
- David C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Charlotte E Hinds
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tatiana Lopes
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Matthew L Vincent
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jed V Shrewsbury
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Arthur T C Yu
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Iona Davies
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Rebecca Scott
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ben Jones
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Kevin G Murphy
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - James S Minnion
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alessandro Sardini
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - David Carling
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Bryn M Owen
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
80
|
Kang Q, Zheng J, Jia J, Xu Y, Bai X, Chen X, Zhang XK, Wong FS, Zhang C, Li M. Disruption of the glucagon receptor increases glucagon expression beyond α-cell hyperplasia in zebrafish. J Biol Chem 2022; 298:102665. [PMID: 36334626 PMCID: PMC9719020 DOI: 10.1016/j.jbc.2022.102665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
The glucagon receptor (GCGR) is a potential target for diabetes therapy. Several emerging GCGR antagonism-based therapies are under preclinical and clinical development. However, GCGR antagonism, as well as genetically engineered GCGR deficiency in animal models, are accompanied by α-cell hyperplasia and hyperglucagonemia, which may limit the application of GCGR antagonism. To better understand the physiological changes in α cells following GCGR disruption, we performed single cell sequencing of α cells isolated from control and gcgr-/- (glucagon receptor deficient) zebrafish. Interestingly, beyond the α-cell hyperplasia, we also found that the expression of gcga, gcgb, pnoca, and several glucagon-regulatory transcription factors were dramatically increased in one cluster of gcgr-/- α cells. We further confirmed that glucagon mRNA was upregulated in gcgr-/- animals by in situ hybridization and that glucagon promoter activity was increased in gcgr-/-;Tg(gcga:GFP) reporter zebrafish. We also demonstrated that gcgr-/- α cells had increased glucagon protein levels and increased granules after GCGR disruption. Intriguingly, the increased mRNA and protein levels could be suppressed by treatment with high-level glucose or knockdown of the pnoca gene. In conclusion, these data demonstrated that GCGR deficiency not only induced α-cell hyperplasia but also increased glucagon expression in α cells, findings which provide more information about physiological changes in α-cells when the GCGR is disrupted.
Collapse
Affiliation(s)
- Qi Kang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jihong Zheng
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianxin Jia
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Ying Xu
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuanxuan Bai
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinhua Chen
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mingyu Li
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
81
|
Peng H, Hou M, Wu Z, Wang J, Zhou M, Zhuang X, Xing J, Tao Q, Huang L, Zhou F, Zhang S, Feng Q, Hou Y, Yu Q. Plasma exosomal miR-122 regulates the efficacy of metformin via AMPK in type 2 diabetes and hepatocellular carcinoma. Heliyon 2022; 8:e11503. [DOI: 10.1016/j.heliyon.2022.e11503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/25/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
|
82
|
Gómez-Martínez DG, Ramos F, Ramos M, Robles F. A bioinspired model for the generation of a motivational state from energy homeostasis. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
83
|
Important Hormones Regulating Lipid Metabolism. Molecules 2022; 27:molecules27207052. [PMID: 36296646 PMCID: PMC9607181 DOI: 10.3390/molecules27207052] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
There is a wide variety of kinds of lipids, and complex structures which determine the diversity and complexity of their functions. With the basic characteristic of water insolubility, lipid molecules are independent of the genetic information composed by genes to proteins, which determine the particularity of lipids in the human body, with water as the basic environment and genes to proteins as the genetic system. In this review, we have summarized the current landscape on hormone regulation of lipid metabolism. After the well-studied PI3K-AKT pathway, insulin affects fat synthesis by controlling the activity and production of various transcription factors. New mechanisms of thyroid hormone regulation are discussed, receptor α and β may mediate different procedures, the effect of thyroid hormone on mitochondria provides a new insight for hormones regulating lipid metabolism. Physiological concentration of adrenaline induces the expression of extrapituitary prolactin in adipose tissue macrophages, which promotes fat weight loss. Manipulation of hormonal action has the potential to offer a new therapeutic horizon for the global burden of obesity and its associated complications such as morbidity and mortality.
Collapse
|
84
|
Endocrine-metabolic adaptations in Dorper ewes: comparison between single and twin pregnancies during gestation, parturition, and postpartum. Trop Anim Health Prod 2022; 54:307. [DOI: 10.1007/s11250-022-03306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
|
85
|
Xiao F, Deng J, Jiao F, Hu X, Jiang H, Yuan F, Chen S, Niu Y, Jiang X, Guo F. Hepatic cytokine-inducible SH2-containing protein (CISH) regulates gluconeogenesis via cAMP-responsive element binding protein (CREB). FASEB J 2022; 36:e22541. [PMID: 36083102 DOI: 10.1096/fj.202200870r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Impairment of gluconeogenesis is a key factor responsible for hyperglycemia in patients with type 2 diabetes. As an important member of the suppressors of cytokine signaling (SOCS) protein family, many physiological functions of cytokine-inducible SH2-containing protein (CISH) have been described; however, the role of hepatic CISH in gluconeogenesis is poorly understood. In the present study, we observed that hepatic CISH expression was reduced in fasted wild-type (WT) mice. Overexpression of CISH decreased glucose production in mouse primary hepatocytes, while silencing of CISH had the opposite effects. In addition, adenovirus-mediated hepatic CISH overexpression resulted in improved glucose tolerance and decreased gluconeogenesis in WT and leptin receptor-deficient diabetic (db/db) mice. In contrast, adenovirus-mediated hepatic CISH knockdown impaired glucose tolerance and increased gluconeogenesis in WT mice. We also generated liver-specific CISH knockout (LV-CISH KO) mice and discovered that these mice had a similar phenotype in glucose tolerance and gluconeogenesis as mice injected with adenoviruses that knockdown CISH expression. Mechanistically, we found that CISH overexpression decreased and CISH knockdown increased the mRNA and protein levels of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase 1 (PEPCK), two key enzymes involved in gluconeogenesis, in vitro, and in vivo. Moreover, we discovered that the phosphorylation of cAMP-responsive element binding protein 1 (CREB), a transcription factor of G6pase and Pepck, was required for regulating gluconeogenesis by CISH. Taken together, this study identifies hepatic CISH as an important regulator of gluconeogenesis. Our results also provide important insights into the metabolic functions of the SOCS protein family and the potential targets for the treatment of diabetes.
Collapse
Affiliation(s)
- Fei Xiao
- Jinshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jiali Deng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fuxin Jiao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Hu
- Jinshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Haizhou Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feixiang Yuan
- Jinshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shanghai Chen
- Jinshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuguo Niu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxue Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feifan Guo
- Jinshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
86
|
Hagan DW, Ferreira SM, Santos GJ, Phelps EA. The role of GABA in islet function. Front Endocrinol (Lausanne) 2022; 13:972115. [PMID: 36246925 PMCID: PMC9558271 DOI: 10.3389/fendo.2022.972115] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gamma aminobutyric acid (GABA) is a non-proteinogenic amino acid and neurotransmitter that is produced in the islet at levels as high as in the brain. GABA is synthesized by the enzyme glutamic acid decarboxylase (GAD), of which the 65 kDa isoform (GAD65) is a major autoantigen in type 1 diabetes. Originally described to be released via synaptic-like microvesicles or from insulin secretory vesicles, beta cells are now understood to release substantial quantities of GABA directly from the cytosol via volume-regulated anion channels (VRAC). Once released, GABA influences the activity of multiple islet cell types through ionotropic GABAA receptors and metabotropic GABAB receptors. GABA also interfaces with cellular metabolism and ATP production via the GABA shunt pathway. Beta cells become depleted of GABA in type 1 diabetes (in remaining beta cells) and type 2 diabetes, suggesting that loss or reduction of islet GABA correlates with diabetes pathogenesis and may contribute to dysfunction of alpha, beta, and delta cells in diabetic individuals. While the function of GABA in the nervous system is well-understood, the description of the islet GABA system is clouded by differing reports describing multiple secretion pathways and effector functions. This review will discuss and attempt to unify the major experimental results from over 40 years of literature characterizing the role of GABA in the islet.
Collapse
Affiliation(s)
- D. Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Sandra M. Ferreira
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Gustavo J. Santos
- Islet Biology and Metabolism Lab – I.B.M. Lab, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
87
|
Effects of adrenergic-stimulated lipolysis and cytokine production on in vitro mouse adipose tissue-islet interactions. Sci Rep 2022; 12:15831. [PMID: 36138030 PMCID: PMC9499973 DOI: 10.1038/s41598-022-18262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Inflammatory cytokines and non-esterified fatty acids (NEFAs) are obesity-linked factors that disturb insulin secretion. The aim of this study was to investigate whether pancreatic adipose tissue (pWAT) is able to generate a NEFA/cytokine overload within the pancreatic environment and as consequence to impact on insulin secretion. Pancreatic fat is a minor fat depot, therefore we used high-fat diet (HFD) feeding to induce pancreatic steatosis in mice. Relative Adipoq and Lep mRNA levels were higher in pWAT of HFD compared to chow diet mice. Regardless of HFD, Adipoq and Lep mRNA levels of pWAT were at least 10-times lower than those of epididymal fat (eWAT). Lipolysis stimulating receptors Adrb3 and Npr1 were expressed in pWAT and eWAT, and HFD reduced their expression in eWAT only. In accordance, HFD impaired lipolysis in eWAT but not in pWAT. Despite expression of Npr mRNA, lipolysis was stimulated solely by the adrenergic agonists, isoproterenol and adrenaline. Short term co-incubation of islets with CD/HFD pWAT did not alter insulin secretion. In the presence of CD/HFD eWAT, glucose stimulated insulin secretion only upon isoproterenol-induced lipolysis, i.e. in the presence of elevated NEFA. Isoproterenol augmented Il1b and Il6 mRNA levels both in pWAT and eWAT. These results suggest that an increased sympathetic activity enhances NEFA and cytokine load of the adipose microenvironment, including that of pancreatic fat, and by doing so it may alter beta-cell function.
Collapse
|
88
|
Oh JH, Han YE, Bao YR, Kang CW, Koo J, Ku CR, Cho YH, Lee EJ. Olfactory marker protein regulation of glucagon secretion in hyperglycemia. Exp Mol Med 2022; 54:1502-1510. [PMID: 36104518 PMCID: PMC9534918 DOI: 10.1038/s12276-022-00843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
The olfactory marker protein (OMP), which is also expressed in nonolfactory tissues, plays a role in regulating the kinetics and termination of olfactory transduction. Thus, we hypothesized that OMP may play a similar role in modulating the secretion of hormones involved in Ca2+ and cAMP signaling, such as glucagon. In the present study, we confirmed nonolfactory α-cell-specific OMP expression in human and mouse pancreatic islets as well as in the murine α-cell line αTC1.9. Glucagon and OMP expression increased under hyperglycemic conditions. Omp knockdown in hyperglycemic αTC1.9 cells using small-interfering RNA (siRNA) reduced the responses to glucagon release and the related signaling pathways compared with the si-negative control. The OMPlox/lox;GCGcre/w mice expressed basal glucagon levels similar to those in the wild-type OMPlox/lox mice but showed resistance against streptozotocin-induced hyperglycemia. The ectopic olfactory signaling events in pancreatic α-cells suggest that olfactory receptor pathways could be therapeutic targets for reducing excessive glucagon levels.
Collapse
Affiliation(s)
- Ju Hun Oh
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Ye Eon Han
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Ya Ru Bao
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Chan Woo Kang
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu, 42988, South Korea
| | - Cheol Ryong Ku
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon Hee Cho
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| | - Eun Jig Lee
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea.
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
89
|
Habegger KM. Cross Talk Between Insulin and Glucagon Receptor Signaling in the Hepatocyte. Diabetes 2022; 71:1842-1851. [PMID: 35657690 PMCID: PMC9450567 DOI: 10.2337/dbi22-0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022]
Abstract
While the consumption of external energy (i.e., feeding) is essential to life, this action induces a temporary disturbance of homeostasis in an animal. A primary example of this effect is found in the regulation of glycemia. In the fasted state, stored energy is released to maintain physiological glycemic levels. Liver glycogen is liberated to glucose, glycerol and (glucogenic) amino acids are used to build new glucose molecules (i.e., gluconeogenesis), and fatty acids are oxidized to fuel long-term energetic demands. This regulation is driven primarily by the counterregulatory hormones epinephrine, growth hormone, cortisol, and glucagon. Conversely, feeding induces a rapid influx of diverse nutrients, including glucose, that disrupt homeostasis. Consistently, a host of hormonal and neural systems under the coordination of insulin are engaged in the transition from fasting to prandial states to reduce this disruption. The ultimate action of these systems is to appropriately store the newly acquired energy and to return to the homeostatic norm. Thus, at first glance it is tempting to assume that glucagon is solely antagonistic regarding the anabolic effects of insulin. We have been intrigued by the role of glucagon in the prandial transition and have attempted to delineate its role as beneficial or inhibitory to glycemic control. The following review highlights this long-known yet poorly understood hormone.
Collapse
Affiliation(s)
- Kirk M. Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
90
|
Perry RJ. Regulation of Hepatic Lipid and Glucose Metabolism by INSP3R1. Diabetes 2022; 71:1834-1841. [PMID: 35657697 PMCID: PMC9450566 DOI: 10.2337/dbi22-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022]
Abstract
With the rising epidemics of obesity and nonalcoholic fatty liver disease (NAFLD) and its downstream consequences including steatohepatitis, cirrhosis, and type 2 diabetes in the U.S. and worldwide, new therapeutic approaches are urgently needed to treat these devastating conditions. Glucagon, known for a century to be a glucose-raising hormone and clearly demonstrated to contribute to fasting and postprandial hyperglycemia in both type 1 and type 2 diabetes, represents an unlikely target to improve health in those with metabolic syndrome. However, recent work from our group and others' identifies an unexpected role for glucagon as a potential means of treating NAFLD, improving insulin sensitivity, and improving the lipid profile. We propose a unifying, calcium-dependent mechanism for glucagon's effects both to stimulate hepatic gluconeogenesis and to enhance hepatic mitochondrial oxidation: signaling through the inositol 1,4,5-trisphosphate receptor type 1 (INSP3R1), glucagon activates phospholipase C (PKC)/protein kinase A (PKA) signaling to enhance adipose triglyceride lipase (ATGL)-dependent intrahepatic lipolysis and, in turn, increase cytosolic gluconeogenesis by allosteric activation of pyruvate carboxylase. Simultaneously in the mitochondria, calcium transferred through mitochondria-associated membranes activates several dehydrogenases in the tricarboxylic acid cycle, correlated with an increase in mitochondrial energy expenditure and reduction in ectopic lipid. This model suggests that short-term, cyclic treatment with glucagon or other INSP3R1 antagonists could hold promise as a means to reset lipid homeostasis in patients with NAFLD.
Collapse
Affiliation(s)
- Rachel J. Perry
- Section of Endocrinology & Metabolism, Department of Internal Medicine, and Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
91
|
Lee CJ, Schnieders JH, Rubakhin SS, Patel AV, Liu C, Naji A, Sweedler JV. d-Amino Acids and Classical Neurotransmitters in Healthy and Type 2 Diabetes-Affected Human Pancreatic Islets of Langerhans. Metabolites 2022; 12:metabo12090799. [PMID: 36144204 PMCID: PMC9501506 DOI: 10.3390/metabo12090799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The pancreatic islets of Langerhans are clusters of cells that function as endocrine units synthesizing and releasing insulin and a range of additional peptide hormones. The structural and chemical characteristics of islets change during type 2 diabetes development. Although a range of metabolites including neurotransmitters has been reported in rodent islets, the involvement of these cell-to-cell signaling molecules within human pancreatic islets in the pathophysiology of type 2 diabetes is not well known, despite studies suggesting that these molecules impact intra- and inter-islet signaling pathways. We characterize the enigmatic cell-to-cell signaling molecules, d-serine (d-Ser) and d-aspartate (d-Asp), along with multiple classical neurotransmitters and related molecules, in healthy versus type 2 diabetes-affected human islets using capillary electrophoresis separations. Significantly reduced d-Ser percentage and gamma-aminobutyric acid (GABA) levels were found in type 2 diabetes-affected islets compared to healthy islets. In addition, the negative correlations of many of the signaling molecules, such as d-Ser percentage (r = −0.35), d-Asp (r = −0.32), serotonin (r = −0.42), and GABA (r = −0.39) levels, with hemoglobin A1c (HbA1c) levels and thus with the progression of type 2 diabetes further demonstrate the disruption in intra- or inter-islet signaling pathways and suggest that these cell-to-cell signaling molecules may be potential therapeutic targets.
Collapse
Affiliation(s)
- Cindy J. Lee
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jack H. Schnieders
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Stanislav S. Rubakhin
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Amit V. Patel
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan V. Sweedler
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
92
|
Cao X, Liao W, Wang S. Food protein-derived bioactive peptides for the management of nutrition related chronic diseases. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:277-307. [PMID: 35940708 DOI: 10.1016/bs.afnr.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dietary intervention via modifications of dietary pattern or supplementations of naturally derived bioactive compounds has been considered as an efficient approach in management of nutrition related chronic diseases. Food protein-derived bioactive peptide is representative of natural compounds which show the potential to prevent or mitigate nutrition related chronic diseases. In the past decades, substantial research has been conducted concentrating on the characterization, bioavailability, and activity assessment of bioactive peptides. Although various activities of bioactive peptides have been reported, the activity testes of most peptides were only conducted in cells and animal models. Some clinical trials of bioactive peptides were also reported but only limited to antihypertensive peptides, antidiabetic peptides and peptides modulating blood lipid profile. Hereby, clinical evidence of bioactive peptides in management of nutrition-related chronic diseases is summarized in this chapter, which aims at providing implications for the clinical studies of bioactive peptides in the future.
Collapse
Affiliation(s)
- Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
93
|
Story LH, Wilson LM. New Developments in Glucagon Treatment for Hypoglycemia. Drugs 2022; 82:1179-1191. [PMID: 35932416 DOI: 10.1007/s40265-022-01754-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Glucagon is essential for endogenous glucose regulation along with the paired hormone, insulin. Unlike insulin, pharmaceutical use of glucagon has been limited due to the unstable nature of the peptide. Glucagon has the potential to address hypoglycemia as a major limiting factor in the treatment of diabetes, which remains very common in the type 1 and type 2 diabetes. Recent developments are poised to change this paradigm and expand the use of glucagon for people with diabetes. Glucagon emergency kits have major limitations for their use in treating severe hypoglycemia. A complicated reconstitution and injection process often results in incomplete or aborted administration. New preparations include intranasal glucagon with an easy-to-use and needle-free nasal applicator as well as two stable liquid formulations in pre-filled injection devices. These may ease the burden of severe hypoglycemia treatment. The liquid preparations may also have a role in the treatment of non-severe hypoglycemia. Despite potential benefits of expanded use of glucagon, undesirable side effects (nausea, vomiting), cost, and complexity of adding another medication may limit real-world use. Additionally, more long-term safety and outcome data are needed before widespread, frequent use of glucagon is recommended by providers.
Collapse
Affiliation(s)
- LesleAnn Hayward Story
- Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, OR, USA
| | - Leah M Wilson
- Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
94
|
Acevedo‐Acevedo S, Stefkovich ML, Kang SWS, Cunningham RP, Cultraro CM, Porat‐Shliom N. LKB1 acts as a critical brake for the glucagon-mediated fasting response. Hepatol Commun 2022; 6:1949-1961. [PMID: 35357082 PMCID: PMC9315124 DOI: 10.1002/hep4.1942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/08/2022] Open
Abstract
As important as the fasting response is for survival, an inability to shut it down once nutrients become available can lead to exacerbated disease and severe wasting. The liver is central to transitions between feeding and fasting states, with glucagon being a key initiator of the hepatic fasting response. However, the precise mechanisms controlling fasting are not well defined. One potential mediator of these transitions is liver kinase B1 (LKB1), given its role in nutrient sensing. Here, we show LKB1 knockout mice have a severe wasting and prolonged fasting phenotype despite increased food intake. By applying RNA sequencing and intravital microscopy, we show that loss of LKB1 leads to a dramatic reprogramming of the hepatic lobule through robust up-regulation of periportal genes and functions. This is likely mediated through the opposing effect that LKB1 has on glucagon pathways and gene expression. Conclusion: Our findings show that LKB1 acts as a brake to the glucagon-mediated fasting response, resulting in "periportalization" of the hepatic lobule and whole-body metabolic inefficiency. These findings reveal a mechanism by which hepatic metabolic compartmentalization is regulated by nutrient-sensing.
Collapse
Affiliation(s)
- Suehelay Acevedo‐Acevedo
- Thoracic and GI Malignancies BranchCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Megan L. Stefkovich
- Thoracic and GI Malignancies BranchCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Sun Woo Sophie Kang
- Thoracic and GI Malignancies BranchCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Rory P. Cunningham
- Thoracic and GI Malignancies BranchCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Constance M. Cultraro
- Thoracic and GI Malignancies BranchCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Natalie Porat‐Shliom
- Thoracic and GI Malignancies BranchCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
95
|
Liu M, Sun B, Zhou X, Chen L. Disturbed glucose metabolism by perfluorobutanesulfonate pollutant and benefit of young fecal transplantation in aged zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113721. [PMID: 35660380 DOI: 10.1016/j.ecoenv.2022.113721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is an environmental pollutant of emerging concern, which significantly impacts the metabolism and health of animals. Because of the loss of functional capacity, the aged animals are regarded more susceptible to the toxicity of environmental pollutants. In the present study, aged zebrafish were employed as the toxicological animal and transplanted with the feces collected from young donors for 14 days, after which the acclimated elderly were exposed to PFBS at environmentally relevant concentrations (0 and 100 μg/L) for another 14 days. When the exposure was concluded, glucose metabolic disturbances of PFBS in the aged and efficacy of young fecal transplant to mitigate the toxicity of PFBS were explored along the gut-liver axis. The results showed that PFBS exposure significantly inhibited the enzymatic activity of α-amylase in the gut, but increased the alanine aminotransferase (ALT) activity in the blood of the aged zebrafish, suggesting the impairment of intestinal digestive functions of carbohydrates and the induction of liver damage by PFBS. However, young fecal transplantation successfully ameliorated the toxicity of PFBS on α-amylase and ALT, underlining the benefits conveyed to the health of the elderly. In addition, transplantation of young feces was efficient to alleviate the hyperglycemia symptom in the elderly via stimulating the secretion of insulin. PFBS exposure increased blood glucagon level, disrupted insulin receptor transcription, and depleted hepatic glycogen store, which were all mitigated by young fecal transplant. Hepatic proteomic analysis also found dynamic interactions between young fecal transplantation and PFBS pollutant on the metabolic pathways of glucose and glycogen, involving glycolysis, gluconeogenesis, glycogenesis, and glycogenolysis. Overall, the present findings highlighted the beneficial effects of young fecal transplantation to protect the aged from the glucose metabolism toxicity of PFBS, thus providing a plausible measure to improve the health aging status.
Collapse
Affiliation(s)
- Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangzhen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
96
|
Cao J, Zheng R, Chang X, Zhao Y, Zhang D, Gao M, Yin Z, Jiang C, Zhang J. Cyclocarya paliurus triterpenoids suppress hepatic gluconeogenesis via AMPK-mediated cAMP/PKA/CREB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154175. [PMID: 35609386 DOI: 10.1016/j.phymed.2022.154175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Abnormal enhancement of hepatic gluconeogenesis is a vital mechanism of the pathogenesis of Type 2 diabetes mellitus (T2DM); thus, its suppression may present an efficient therapeutic strategy for T2DM. Cyclocarya paliurus (CP), a plant species native to China, has been reported to have anti-hyperglycemia activity. Our previous studies have revealed that Cyclocarya paliurus triterpenic acids (CPT) exert the favorable glucose-lowering activity, but the regulatory effect of CPT on hepatic gluconeogenesis is still unclarified. PURPOSE This study aimed to investigate the potential role and mechanism of CPT in gluconeogenesis. STUDY DESIGN In this study, the ameliorative effect and underlying mechanism of CPT on gluconeogenesis were investigated: high-fat diet and streptozotocin-induced T2DM mice and glucagon-challenged mouse primary hepatocytes. METHODS T2DM model mice with or without oral administration of CPT for 4 weeks were monitored for body weight, glucose and lipid metabolism. Hematoxylin and eosin staining was used to observe liver lipid deposition. Real-time PCR assays were performed to examine the mRNA expression of glucose-6-phosphate (G6Pase), and phosphoenolpyruvate carboxykinase (PEPCK), two key enzymes involved in liver gluconeogenesis. Western blotting was used to determine AMP-dependent protein kinase (AMPK) expression and induction of the glucagon signaling pathway. The possible mechanism of CPT on liver gluconeogenesis was further explored in glucagon-induced mouse primary hepatocytes. RESULTS In vivo and in vitro experiments revealed that CPT treatment significantly reduced fasting blood glucose, total cholesterol and triglyceride levels, and improved insulin resistance. Furthermore, CPT could obviously decreased the mRNA and protein expression of G6Pase and PEPCK, the cyclic AMP content, the phosphorylation level of protein kinase A and cyclic AMP response element-binding protein. But CPT promoted the phosphorylation of AMP-dependent protein kinase (AMPK) and activation of phosphodiesterase 4B. Mechanistically, intervention with Compound C (an AMPK inhibitor) partially blocked the suppressive effect of CPT on hepatic gluconeogenesis. CONCLUSION These findings suggested that CPT may inhibit hepatic gluconeogenesis against T2DM by activating AMPK.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Endocrinology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Rendong Zheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xiaoyan Chang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Yuanyuan Zhao
- Department of Endocrinology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Zhiqi Yin
- Department of TCMs Pharmaceuticals, School of TCM & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Jian Zhang
- Department of Endocrinology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
97
|
Bao P, Zhang Z, Liang Y, Yu Z, Xiao Z, Wang Y, Yu Y, Liu W, Chen X, Huang Z, Su Y, Chen R, Ge J. Role of the Gut Microbiota in Glucose Metabolism During Heart Failure. Front Cardiovasc Med 2022; 9:903316. [PMID: 35859583 PMCID: PMC9289393 DOI: 10.3389/fcvm.2022.903316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Background Blood glucose disorders are prevalent in heart failure, while the influence of the gut microbiota on this process remains unclear. Here, we used heart failure model mice and fecal microbiota transplantation (FMT) mice to evaluate the effect of the gut microbiota on the regulation of blood glucose during heart failure. Methods Thoracic aortic constriction (TAC) surgery was performed in a heart failure model, while an antibiotic cocktail was used to eliminate the microbiota to establish a germ-free (GF) model. Blood glucose, insulin, and glucagon levels were measured, and an intraperitoneal glucose tolerance test (IPGTT) was performed. 16S rRNA sequencing and metabolomics were used to evaluate the changes in gut microbiota structure and metabolism induced by TAC. Another group of FMT mice was established to observe the effect of the gut microbiota on host metabolism. Results After microbiota clearance, the glucagon concentration, the homeostasis model assessment for insulin resistance (HOMA-IR), and the area under the curve (AUC) of the IPGTT were decreased significantly in the TAC germ-free (TAC-GF) group in the third month as compared to the other groups. 16S rRNA sequencing indicated that TAC surgery affected the gut microbiota structure, and fecal metabolomics suggested that noradrenaline and adrenaline levels were higher in the TAC group than in the sham group. The FMT mice transplanted with the feces of the TAC (FMT-TAC) mice displayed a higher AUC of IPGTT, accompanied by a higher glucagon level, insulin level, and HOMA-IR than those of the mice in the other groups. The serum metabolomics of the FMT-TAC group showed that noradrenaline levels were significantly higher than those of the FMT-sham group. Conclusion The gut microbiota and its metabolism were altered during heart failure, which increased blood glucose and glucagon in the host.
Collapse
Affiliation(s)
- Pei Bao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Zhang
- Reproductive Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yixiu Liang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Department of Cardiovascular Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziqing Yu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Department of Cardiovascular Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zilong Xiao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yucheng Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Yu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xueying Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenzhen Huang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangang Su
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yangang Su
| | - Ruizhen Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Department of Cardiovascular Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Ruizhen Chen
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
98
|
Mice blocking Ser347 phosphorylation of pregnane x receptor develop hepatic fasting-induced steatosis and hypertriglyceridemia. Biochem Biophys Res Commun 2022; 615:75-80. [PMID: 35609418 PMCID: PMC9233068 DOI: 10.1016/j.bbrc.2022.05.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022]
Abstract
Nuclear receptor Pregnane X Receptor (PXR; NR1I2) has transcriptional regulation functions for energy homeostasis in the liver. Mouse PXR has a conserved phosphorylation motif at serine 347 (serine 350 in humans) within the ligand-binding domain. PXR phosphorylated at this motif is expressed in mouse livers in response to fasting. Mice with a PXR∗Ser347Ala knockin mutation (PXR KI) were generated to block phosphorylation, and utilized to investigate the role of Ser347 phosphorylation in vivo. PXR KI mice had decreased body weight at 8-weeks of age and had much greater weight loss after fasting compared with PXR WT mice. The cDNA microarray analysis of hepatic mRNAs showed that cell death or apoptotic signaling was induced in fasting PXR KI mice. Moreover, increasing hepatic lipids, triglycerides and the development of hypertriglyceridemia were observed in fasting PXR KI mice. These findings are indicative that blocking phosphorylation prevents mice from maintaining hepatic energy homeostasis. Thus, phosphorylated PXR may be an essential factor to prevent the liver from developing damage caused by fasting.
Collapse
|
99
|
Wilkins BP, Finch AM, Wang Y, Smith NJ. Orphan GPR146: an alternative therapeutic pathway to achieve cholesterol homeostasis? Trends Endocrinol Metab 2022; 33:481-492. [PMID: 35550855 DOI: 10.1016/j.tem.2022.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/27/2022]
Abstract
Atherosclerosis predisposes to myriad cardiovascular complications, including myocardial infarction and stroke. Statins have revolutionised cholesterol management but they do not work for all patients, particularly those with familial hypercholesterolaemia (FH). Genome-wide association studies have linked SNPs at orphan G protein-coupled receptor 146 (GPR146) to human atherosclerosis but how GPR146 influences serum cholesterol homeostasis was only recently described. Gpr146 deletion in mice reduces serum cholesterol and atherosclerotic plaque burden, confirming GPR146 as a potential therapeutic target for managing circulating cholesterol. Critically, this effect was independent of the low-density lipoprotein receptor. While still an orphan, the activation of GPR146 by serum suggests identification of its endogenous ligand is tantalisingly close. Herein, we discuss the evidence for GPR146 inhibition as a treatment for atherosclerosis.
Collapse
Affiliation(s)
- Brendan P Wilkins
- Orphan Receptor Pharmacology Laboratory, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia; Molecular Pharmacology Drug Design, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Angela M Finch
- Molecular Pharmacology Drug Design, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Nicola J Smith
- Orphan Receptor Pharmacology Laboratory, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia; Molecular Pharmacology Drug Design, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
100
|
Zhang H, Liu J, Yang Z, Zeng L, Wei K, Zhu L, Tang L, Wang D, Zhou Y, Lv J, Zhou N, Tang K, Ma J, Huang B. TCR activation directly stimulates PYGB-dependent glycogenolysis to fuel the early recall response in CD8 + memory T cells. Mol Cell 2022; 82:3077-3088.e6. [PMID: 35738262 DOI: 10.1016/j.molcel.2022.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
Glycolysis facilitates the rapid recall response of CD8+ memory T (Tm) cells. However, it remains unclear whether Tm cells uptake exogenous glucose or mobilize endogenous sugar to fuel glycolysis. Here, we show that intracellular glycogen rather than extracellular glucose acts as the major carbon source for the early recall response. Following antigenic stimulation, Tm cells exhibit high glycogen phosphorylase (brain form, PYGB) activity, leading to glycogenolysis and release of glucose-6-phosphate (G6P). Elevated G6P mainly flows to glycolysis but is also partially channeled to the pentose phosphate pathway, which maintains the antioxidant capacity necessary for later recall stages. Mechanistically, TCR signaling directly induces phosphorylation of PYGB by LCK-ZAP70. Functionally, the glycogenolysis-fueled early recall response of CD8+ Tm cells accelerates the clearance of OVA-Listeria monocytogenes in an infected mouse model. Thus, we uncover a specific dependency on glycogen for the initial activation of memory T cells, which may have therapeutic implications for adaptive immunity.
Collapse
Affiliation(s)
- Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jincheng Liu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoshun Yang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Zeng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keke Wei
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liyan Zhu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Tang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dianheng Wang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yabo Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Nannan Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|