51
|
Chande S, Caballero D, Ho BB, Fetene J, Serna J, Pesta D, Nasiri A, Jurczak M, Chavkin NW, Hernando N, Giachelli CM, Wagner CA, Zeiss C, Shulman GI, Bergwitz C. Slc20a1/Pit1 and Slc20a2/Pit2 are essential for normal skeletal myofiber function and survival. Sci Rep 2020; 10:3069. [PMID: 32080237 PMCID: PMC7033257 DOI: 10.1038/s41598-020-59430-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/29/2020] [Indexed: 01/25/2023] Open
Abstract
Low blood phosphate (Pi) reduces muscle function in hypophosphatemic disorders. Which Pi transporters are required and whether hormonal changes due to hypophosphatemia contribute to muscle function is unknown. To address these questions we generated a series of conditional knockout mice lacking one or both house-keeping Pi transporters Pit1 and Pit2 in skeletal muscle (sm), using the postnatally expressed human skeletal actin-cre. Simultaneous conditional deletion of both transporters caused skeletal muscle atrophy, resulting in death by postnatal day P13. smPit1-/-, smPit2-/- and three allele mutants are fertile and have normal body weights, suggesting a high degree of redundance for the two transporters in skeletal muscle. However, these mice show a gene-dose dependent reduction in running activity also seen in another hypophosphatemic model (Hyp mice). In contrast to Hyp mice, grip strength is preserved. Further evaluation of the mechanism shows reduced ERK1/2 activation and stimulation of AMP kinase in skeletal muscle from smPit1-/-; smPit2-/- mice consistent with energy-stress. Similarly, C2C12 myoblasts show a reduced oxygen consumption rate mediated by Pi transport-dependent and ERK1/2-dependent metabolic Pi sensing pathways. In conclusion, we here show that Pit1 and Pit2 are essential for normal myofiber function and survival, insights which may improve management of hypophosphatemic myopathy.
Collapse
Affiliation(s)
- Sampada Chande
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel Caballero
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Bryan B Ho
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan Fetene
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Juan Serna
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Dominik Pesta
- Department of Cellular&Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- German Diabetes Center, Düsseldorf, Germany, University of Washington, Box 355061, Foege Hall Seattle, WA, 98195, USA
| | - Ali Nasiri
- Department of Cellular&Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Jurczak
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, University of Washington, Box 355061, Foege Hall Seattle, WA, 98195, USA
| | - Nicholas W Chavkin
- Department of Bioengineering, University of Washington, Box 355061, Foege Hall Seattle, WA, 98195, USA
| | - Nati Hernando
- Institute of Physiology, University of Zürich, Switzerland and National Center of Competence in Research NCCR Kidney.CH, Zürich, Switzerland
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Box 355061, Foege Hall Seattle, WA, 98195, USA
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Switzerland and National Center of Competence in Research NCCR Kidney.CH, Zürich, Switzerland
| | - Caroline Zeiss
- Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular&Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Clemens Bergwitz
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
52
|
Amorim NML, Kee A, Coster ACF, Lucas C, Bould S, Daniel S, Weir JM, Mellett NA, Barbour J, Meikle PJ, Cohn RJ, Turner N, Hardeman EC, Simar D. Irradiation impairs mitochondrial function and skeletal muscle oxidative capacity: significance for metabolic complications in cancer survivors. Metabolism 2020; 103:154025. [PMID: 31765667 DOI: 10.1016/j.metabol.2019.154025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Metabolic complications are highly prevalent in cancer survivors treated with irradiation but the underlying mechanisms remain unknown. METHODS Chow or high fat-fed C57Bl/6J mice were irradiated (6Gy) before investigating the impact on whole-body or skeletal muscle metabolism and profiling their lipidomic signature. Using a transgenic mouse model (Tg:Pax7-nGFP), we isolated muscle progenitor cells (satellite cells) and characterised their metabolic functions. We recruited childhood cancer survivors, grouped them based on the use of total body irradiation during their treatment and established their lipidomic profile. RESULTS In mice, irradiation delayed body weight gain and impaired fat pads and muscle weights. These changes were associated with impaired whole-body fat oxidation in chow-fed mice and altered ex vivo skeletal muscle fatty acid oxidation, potentially due to a reduction in oxidative fibres and reduced mitochondrial enzyme activity. Irradiation led to fasting hyperglycaemia and impaired glucose uptake in isolated skeletal muscles. Cultured satellite cells from irradiated mice showed decreased fatty acid oxidation and reduced glucose uptake, recapitulating the host metabolic phenotype. Irradiation resulted in a remodelling of lipid species in skeletal muscles, with the extensor digitorum longus muscle being particularly affected. A large number of lipid species were reduced, with several of these species showing a positive correlation with mitochondrial enzymes activity. In cancer survivors exposed to irradiation, we found a similar decrease in systemic levels of most lipid species, and lipid species that increased were positively correlated with insulin resistance (HOMA-IR). CONCLUSION Irradiation leads to long-term alterations in body composition, and lipid and carbohydrate metabolism in skeletal muscle, and affects muscle progenitor cells. Such changes result in persistent impairment of metabolic functions, providing a new mechanism for the increased prevalence of metabolic diseases reported in irradiated individuals. In this context, changes in the lipidomic signature in response to irradiation could be of diagnostic value.
Collapse
Affiliation(s)
- Nadia M L Amorim
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Anthony Kee
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Adelle C F Coster
- School of Mathematics and Statistics, UNSW Sydney, Sydney, Australia
| | - Christine Lucas
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sarah Bould
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sara Daniel
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Jacquelyn M Weir
- Metabolomics Laboratory, Baker IDI, Heart and Diabetes Institute, Melbourne, Australia
| | - Natalie A Mellett
- Metabolomics Laboratory, Baker IDI, Heart and Diabetes Institute, Melbourne, Australia
| | - Jayne Barbour
- Mitochondrial Bioenergetics Lab, Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker IDI, Heart and Diabetes Institute, Melbourne, Australia
| | - Richard J Cohn
- School of Women's and Children's Health, UNSW Sydney, Randwick, Australia; Kids Cancer Centre, Sydney Children's Hospital Network, Randwick, Australia
| | - Nigel Turner
- Mitochondrial Bioenergetics Lab, Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia.
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
53
|
Effect of Gender, Rearing, and Cooking on the Metabolomic Profile of Porcine Muscles. Metabolites 2019; 10:metabo10010010. [PMID: 31877908 PMCID: PMC7023037 DOI: 10.3390/metabo10010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/17/2022] Open
Abstract
To clarify the relationship between the fiber type composition and meat quality, we performed metabolomic analysis using porcine longissimus dorsi (LD) muscles. In the LD of pigs raised outdoors, the expression of myosin heavy chain (MyHC)1 (slow-twitch fiber marker protein) was significantly increased compared with that of MyHC1 in pigs raised in an indoor pen, suggesting that rearing outdoors could be considered as an exercise treatment. These LD samples were subjected to metabolomic analysis for examining the profile of most primary and secondary metabolites. We found that the sex of the animal and exercise stimulation had a strong influence on the metabolomic profile in the porcine skeletal muscles, and this difference in the metabolomic profile is likely in part due to the changes in the muscle fiber type. We also examined the effects of cooking (70 °C for 1 h). The effect of exercise on the metabolomic profile was also maintained in the cooked muscle tissues. Cooking treatment resulted in an increase in some of the metabolite levels while decreasing in some other metabolite levels. Thus, our study could indicate the effect of the sex of the animal, exercise stimulus, and cooking on the metabolomic profile of pork meat.
Collapse
|
54
|
MacKay H, Scott CA, Duryea JD, Baker MS, Laritsky E, Elson AE, Garland T, Fiorotto ML, Chen R, Li Y, Coarfa C, Simerly RB, Waterland RA. DNA methylation in AgRP neurons regulates voluntary exercise behavior in mice. Nat Commun 2019; 10:5364. [PMID: 31792207 PMCID: PMC6889160 DOI: 10.1038/s41467-019-13339-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
DNA methylation regulates cell type-specific gene expression. Here, in a transgenic mouse model, we show that deletion of the gene encoding DNA methyltransferase Dnmt3a in hypothalamic AgRP neurons causes a sedentary phenotype characterized by reduced voluntary exercise and increased adiposity. Whole-genome bisulfite sequencing (WGBS) and transcriptional profiling in neuronal nuclei from the arcuate nucleus of the hypothalamus (ARH) reveal differentially methylated genomic regions and reduced expression of AgRP neuron-associated genes in knockout mice. We use read-level analysis of WGBS data to infer putative ARH neural cell types affected by the knockout, and to localize promoter hypomethylation and increased expression of the growth factor Bmp7 to AgRP neurons, suggesting a role for aberrant TGF-β signaling in the development of this phenotype. Together, these data demonstrate that DNA methylation in AgRP neurons is required for their normal epigenetic development and neuron-specific gene expression profiles, and regulates voluntary exercise behavior. AgRP neurons in the hypothalamic arcuate nucleus (ARH) are involved in regulating hunger and energy balance. Here the authors show that knockout of the DNA methyltransferase Dnmt3a in AgRP neurons of the ARH leads to a reduction in voluntary exercise along with numerous epigenetic and gene expression changes in ARH neurons.
Collapse
Affiliation(s)
- Harry MacKay
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, TX, 77030, USA
| | - C Anthony Scott
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, TX, 77030, USA
| | - Jack D Duryea
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, TX, 77030, USA
| | - Maria S Baker
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, TX, 77030, USA
| | - Eleonora Laritsky
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, TX, 77030, USA
| | - Amanda E Elson
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | - Marta L Fiorotto
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, TX, 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rui Chen
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yumei Li
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular & Cell Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard B Simerly
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Robert A Waterland
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, TX, 77030, USA. .,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
55
|
Son YH, Lee SM, Lee SH, Yoon JH, Kang JS, Yang YR, Kwon KS. Comparative molecular analysis of endurance exercise in vivo with electrically stimulated in vitro myotube contraction. J Appl Physiol (1985) 2019; 127:1742-1753. [DOI: 10.1152/japplphysiol.00091.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Exercise has positive effects on health and improves a variety of disease conditions. An in vitro model of exercise has been developed to better understand its molecular mechanisms. While various conditions have been used to mimic in vivo exercise, no specific conditions have matched a specific type of in vivo exercise. Here, we screened various electrical pulse stimulation (EPS) conditions and compared the molecular events under each condition in myotube culture with that obtained under voluntary wheel running (VWR), a mild endurance exercise, in mice. Both EPS and VWR upregulated the mRNA levels of genes involved in the slow-type twitch ( Myh7 and Myh2) and myogenesis ( Myod and Myog) and increased the protein expression of peroxisome proliferator-activated receptor-γ coactivator-1α, which is involved in mitochondrial biogenesis. These changes were accompanied by activation of p38 and AMPK. However, neither condition induced the expression of muscle-specific E3 ligases such as MAFbx and MuRF1. Both EPS and VWR consistently induced antioxidant genes such as Sod3 and Gpx4 but did not cause similar changes in the expression levels of the calcium channel/pump-related genes Ryr and Serca. Furthermore, both EPS and VWR reduced glycogen levels but not lactate levels as assessed in post-EPS culture medium and post-VWR serum, respectively. Thus we identified an in vitro EPS condition that effectively mimics VWR in mice, which can facilitate further studies of the detailed molecular mechanisms of endurance exercise in the absence of interference from multiple tissues and organs. NEW & NOTEWORTHY This study establishes an optimal condition for electrical pulse stimulation (EPS) in myotubes that shows a similar molecular signature as voluntary wheel running. The specific EPS condition 1) upregulates the mRNA of slow-twitch muscle components and myogenic transcription factors, 2) induces antioxidant genes without any muscle damage, and 3) promotes peroxisome proliferator-activated receptor-γ coactivator-1α and its upstream regulators involved in mitochondrial biogenesis.
Collapse
Affiliation(s)
- Young Hoon Son
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seung-Min Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seol Hee Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jong Hyeon Yoon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jae Sook Kang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
56
|
Hyatt JPK, Brown EA, Deacon HM, McCall GE. Muscle-Specific Sensitivity to Voluntary Physical Activity and Detraining. Front Physiol 2019; 10:1328. [PMID: 31708796 PMCID: PMC6819312 DOI: 10.3389/fphys.2019.01328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/03/2019] [Indexed: 11/29/2022] Open
Abstract
Aerobic physical activity triggers adaptations in skeletal muscle including a fast-to-slow shift in myosin heavy chain (MHC) isoforms, an enhanced capillary network, and mitochondrial biogenesis to meet increased demands placed upon this tissue. Although the magnitude of these responses appears to be dependent on muscle phenotype as well as training volume and/or intensity, the whole-muscle response to detraining remains mostly unexplored. Here, we hypothesized that the shifts toward slower MHC phentotype and the increased capillarity and mitochondrial oxidative markers induced with training would return toward sedentary (SED) control levels sooner in the fast plantaris than in the slow soleus muscle as a result of detraining. Soleus and plantaris muscles from 8-week (TR 8wk) voluntarily running adult female Sprague–Dawley rats were compared to muscles from SED and detrained rats (DETR) (4 weeks voluntary running followed by 4 weeks of reduced activity), which were subdivided into low- (DETR Lo) and high-running-distance (DETR Hi) groups. We show that maintaining the fast-to-slow MHC isoform shift required consistent aerobic training in the soleus and plantaris muscles: detraining clearly abolished any fast-to-slow gains in the plantaris, whereas the training volume in DETR Hi rats appeared to influence the MHC return to basal levels in the soleus. Total capillary number (per mm2) in the plantaris increased in all groups compared to SED levels, but, in the soleus, this enhancement was observed only in the TR 8wk rats. Generally, increased mitochondrial markers for aerobicitiy were observed in TR 8wk plantaris, but not soleus, muscles. In a second experiment, we show that the muscle-specific adaptations were similar after 4 weeks of voluntary exercise (TR 4wk) as in 4 weeks (TR 8wk). Taken together, our findings suggest that the plantaris muscle is more sensitive to voluntary physical activity and detraining than the soleus muscle; these results also demonstrate that the soleus muscle requires a greater aerobic challenge (i.e., intensity, duration) to trigger phenotypic, angiogenic, or aerobic enzyme adaptations. Our findings generally suggest that muscular aerobic fitness to voluntary running, or its loss during detraining, manifests as changes occurring primarily within fast, rather than slow, muscle phenotypes.
Collapse
Affiliation(s)
- Jon-Philippe K Hyatt
- College of Integrative Sciences and Arts, Arizona State University, Tempe, AZ, United States
| | - Emily A Brown
- Department of Exercise Science, University of Puget Sound, Tacoma, WA, United States
| | - Hannah M Deacon
- College of Integrative Sciences and Arts, Arizona State University, Tempe, AZ, United States
| | - Gary E McCall
- Department of Exercise Science, University of Puget Sound, Tacoma, WA, United States
| |
Collapse
|
57
|
Blackwood EA, Hofmann C, Santo Domingo M, Bilal AS, Sarakki A, Stauffer W, Arrieta A, Thuerauf DJ, Kolkhorst FW, Müller OJ, Jakobi T, Dieterich C, Katus HA, Doroudgar S, Glembotski CC. ATF6 Regulates Cardiac Hypertrophy by Transcriptional Induction of the mTORC1 Activator, Rheb. Circ Res 2019; 124:79-93. [PMID: 30582446 DOI: 10.1161/circresaha.118.313854] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Endoplasmic reticulum (ER) stress dysregulates ER proteostasis, which activates the transcription factor, ATF6 (activating transcription factor 6α), an inducer of genes that enhance protein folding and restore ER proteostasis. Because of increased protein synthesis, it is possible that protein folding and ER proteostasis are challenged during cardiac myocyte growth. However, it is not known whether ATF6 is activated, and if so, what its function is during hypertrophic growth of cardiac myocytes. OBJECTIVE To examine the activity and function of ATF6 during cardiac hypertrophy. METHODS AND RESULTS We found that ER stress and ATF6 were activated and ATF6 target genes were induced in mice subjected to an acute model of transverse aortic constriction, or to free-wheel exercise, both of which promote adaptive cardiac myocyte hypertrophy with preserved cardiac function. Cardiac myocyte-specific deletion of Atf6 (ATF6 cKO [conditional knockout]) blunted transverse aortic constriction and exercise-induced cardiac myocyte hypertrophy and impaired cardiac function, demonstrating a role for ATF6 in compensatory myocyte growth. Transcript profiling and chromatin immunoprecipitation identified RHEB (Ras homologue enriched in brain) as an ATF6 target gene in the heart. RHEB is an activator of mTORC1 (mammalian/mechanistic target of rapamycin complex 1), a major inducer of protein synthesis and subsequent cell growth. Both transverse aortic constriction and exercise upregulated RHEB, activated mTORC1, and induced cardiac hypertrophy in wild type mouse hearts but not in ATF6 cKO hearts. Mechanistically, knockdown of ATF6 in neonatal rat ventricular myocytes blocked phenylephrine- and IGF1 (insulin-like growth factor 1)-mediated RHEB induction, mTORC1 activation, and myocyte growth, all of which were restored by ectopic RHEB expression. Moreover, adeno-associated virus 9- RHEB restored cardiac growth to ATF6 cKO mice subjected to transverse aortic constriction. Finally, ATF6 induced RHEB in response to growth factors, but not in response to other activators of ATF6 that do not induce growth, indicating that ATF6 target gene induction is stress specific. CONCLUSIONS Compensatory cardiac hypertrophy activates ER stress and ATF6, which induces RHEB and activates mTORC1. Thus, ATF6 is a previously unrecognized link between growth stimuli and mTORC1-mediated cardiac growth.
Collapse
Affiliation(s)
- Erik A Blackwood
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Christoph Hofmann
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.).,Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.)
| | - Michelle Santo Domingo
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Alina S Bilal
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Anup Sarakki
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Winston Stauffer
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Adrian Arrieta
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Donna J Thuerauf
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Fred W Kolkhorst
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Oliver J Müller
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.).,Department of Internal Medicine III, University of Kiel, Germany, and German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany (O.J.M.)
| | - Tobias Jakobi
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.).,Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III, University Hospital Heidelberg, Germany (T.J., C.D.)
| | - Christoph Dieterich
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.).,Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III, University Hospital Heidelberg, Germany (T.J., C.D.)
| | - Hugo A Katus
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.)
| | - Shirin Doroudgar
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.)
| | - Christopher C Glembotski
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| |
Collapse
|
58
|
Ramachandran K, Senagolage MD, Sommars MA, Futtner CR, Omura Y, Allred AL, Barish GD. Dynamic enhancers control skeletal muscle identity and reprogramming. PLoS Biol 2019; 17:e3000467. [PMID: 31589602 PMCID: PMC6799888 DOI: 10.1371/journal.pbio.3000467] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 10/17/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscles consist of fibers of differing metabolic activities and contractility, which become remodeled in response to chronic exercise, but the epigenomic basis for muscle identity and adaptation remains poorly understood. Here, we used chromatin immunoprecipitation sequencing of dimethylated histone 3 lysine 4 and acetylated histone 3 lysine 27 as well as transposase-accessible chromatin profiling to dissect cis-regulatory networks across muscle groups. We demonstrate that in vivo enhancers specify muscles in accordance with myofiber composition, show little resemblance to cultured myotube enhancers, and identify glycolytic and oxidative muscle-specific regulators. Moreover, we find that voluntary wheel running and muscle-specific peroxisome proliferator-activated receptor gamma coactivator-1 alpha (Pgc1a) transgenic (mTg) overexpression, which stimulate endurance performance in mice, result in markedly different changes to the epigenome. Exercise predominantly leads to enhancer hypoacetylation, whereas mTg causes hyperacetylation at different sites. Integrative analysis of regulatory regions and gene expression revealed that exercise and mTg are each associated with myocyte enhancer factor (MEF) 2 and estrogen-related receptor (ERR) signaling and transcription of genes promoting oxidative metabolism. However, exercise was additionally associated with regulation by retinoid X receptor (RXR), jun proto-oncogene (JUN), sine oculis homeobox factor (SIX), and other factors. Overall, our work defines the unique enhancer repertoires of skeletal muscles in vivo and reveals that divergent exercise-induced or PGC1α-driven epigenomic programs direct partially convergent transcriptional networks.
Collapse
Affiliation(s)
- Krithika Ramachandran
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Madhavi D. Senagolage
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Meredith A. Sommars
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Christopher R. Futtner
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yasuhiro Omura
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Amanda L. Allred
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Grant D. Barish
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
59
|
Ng SY, Mikhail A, Ljubicic V. Mechanisms of exercise-induced survival motor neuron expression in the skeletal muscle of spinal muscular atrophy-like mice. J Physiol 2019; 597:4757-4778. [PMID: 31361024 PMCID: PMC6767691 DOI: 10.1113/jp278454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022] Open
Abstract
Key points Spinal muscular atrophy (SMA) is a health‐ and life‐limiting neuromuscular disorder caused by a deficiency in survival motor neuron (SMN) protein. While historically considered a motor neuron disease, current understanding of SMA emphasizes its systemic nature, which requires addressing affected peripheral tissues such as skeletal muscle in particular. Chronic physical activity is beneficial for SMA patients, but the cellular and molecular mechanisms of exercise biology are largely undefined in SMA. After a single bout of exercise, canonical responses such as skeletal muscle AMP‐activated protein kinase (AMPK), p38 mitogen‐activated protein kinase (p38) and peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) activation were preserved in SMA‐like Smn2B/− animals. Furthermore, molecules involved in SMN transcription were also altered following physical activity. Collectively, these changes were coincident with an increase in full‐length SMN transcription and corrective SMN pre‐mRNA splicing. This study advances understanding of the exercise biology of SMA and highlights the AMPK–p38–PGC‐1α axis as a potential regulator of SMN expression in muscle.
Abstract Chronic physical activity is safe and effective in spinal muscular atrophy (SMA) patients, but the underlying cellular events that drive physiological adaptations are undefined. We examined the effects of a single bout of exercise on molecular mechanisms associated with adaptive remodelling in the skeletal muscle of Smn2B/− SMA‐like mice. Skeletal muscles were collected from healthy Smn2B/+ mice and Smn2B/− littermates at pre‐ (postnatal day (P) 9), early‐ (P13) and late‐ (P21) symptomatic stages to characterize SMA disease progression. Muscles were also collected from Smn2B/− animals exercised to fatigue on a motorized treadmill. Intracellular signalling and gene expression were examined using western blotting, confocal immunofluorescence microscopy, real‐time quantitative PCR and endpoint PCR assays. Basal skeletal muscle AMP‐activated protein kinase (AMPK) and p38 mitogen‐activated protein kinase (p38) expression and activity were not affected by SMA‐like conditions. Canonical exercise responses such as AMPK, p38 and peroxisome proliferator‐activated receptor γ coactivator‐1α (PGC‐1α) activation were observed following a bout of exercise in Smn2B/− animals. Furthermore, molecules involved in survival motor neuron (SMN) transcription, including protein kinase B (AKT) and extracellular signal‐regulated kinases (ERK)/ETS‐like gene 1 (ELK1), were altered following physical activity. Acute exercise was also able to mitigate aberrant proteolytic signalling in the skeletal muscle of Smn2B/− mice. Collectively, these changes were coincident with an exercise‐evoked increase in full‐length SMN mRNA expression. This study advances our understanding of the exercise biology of SMA and highlights the AMPK–p38–PGC‐1α axis as a potential regulator of SMN expression alongside AKT and ERK/ELK1 signalling. Spinal muscular atrophy (SMA) is a health‐ and life‐limiting neuromuscular disorder caused by a deficiency in survival motor neuron (SMN) protein. While historically considered a motor neuron disease, current understanding of SMA emphasizes its systemic nature, which requires addressing affected peripheral tissues such as skeletal muscle in particular. Chronic physical activity is beneficial for SMA patients, but the cellular and molecular mechanisms of exercise biology are largely undefined in SMA. After a single bout of exercise, canonical responses such as skeletal muscle AMP‐activated protein kinase (AMPK), p38 mitogen‐activated protein kinase (p38) and peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) activation were preserved in SMA‐like Smn2B/− animals. Furthermore, molecules involved in SMN transcription were also altered following physical activity. Collectively, these changes were coincident with an increase in full‐length SMN transcription and corrective SMN pre‐mRNA splicing. This study advances understanding of the exercise biology of SMA and highlights the AMPK–p38–PGC‐1α axis as a potential regulator of SMN expression in muscle.
Collapse
Affiliation(s)
- Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Andrew Mikhail
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
60
|
Raun SH. Exercise training of mice - a heated topic. J Physiol 2019; 597:4869-4870. [PMID: 31429081 DOI: 10.1113/jp278715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
61
|
Maternal exercise before and during pregnancy alleviates metabolic dysfunction associated with high-fat diet in pregnant mice, without significant changes in gut microbiota. Nutr Res 2019; 69:42-57. [PMID: 31670066 DOI: 10.1016/j.nutres.2019.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
Although maternal exercise before and during pregnancy is beneficial, the effects of exercise on microbiota changes during pregnancy are unknown. Here we tested the hypothesis that maternal exercise before and during pregnancy would positively affect glucose homeostasis, pancreatic cell function, and gut microbiota dysbiosis in high-fat diet (HFD) fed dams. Female C57BL/6 mice were fed either a HFD or a low-fat diet (LFD) for 12 weeks. The HFD mice were split into two groups for 4 weeks prior to pregnancy initiation and throughout the pregnancy: sedentary (HFD) or exercised (HFD + Ex). Food intake, body weight, body composition, and glucose and insulin tolerance were measured. At gestation day 19, blood, pancreas, gonadal visceral and subcutaneous fat, plantaris muscle, and cecum were collected for analysis. Both HFD and HFD + Ex mice had impaired glucose clearance compared to LFD mice at 15 days of gestation. No changes were found in pancreatic α- or β-cell health. HFD + Ex mice had significantly reduced visceral fat mass, serum insulin, and leptin levels and increased high-density lipoprotein levels, compared to HFD-fed mice. In contrast to our hypothesis, microbiota diversity and composition were not different among groups. The relative abundance of five bacterial phyla, such as Firmicutes, Bacteroidetes, Verrucomicrobia, Deferribacteres, and Actinobacteria, were not significantly altered with diet or exercise during pregnancy. Our findings suggest that maternal exercise prevents excess visceral fat accumulation, hyperinsulinemia, and hyperleptinemia associated with a HFD, but not through the alterations of gut microbiota composition or diversity during pregnancy.
Collapse
|
62
|
Kim Y, Park KW, Oh J, Kim J, Yoon YW. Alterations in protein expression patterns of spinal peroxisome proliferator-activated receptors after spinal cord injury. Neurol Res 2019; 41:883-892. [DOI: 10.1080/01616412.2019.1629081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Youngkyung Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Won Park
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeonghwa Oh
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Junesun Kim
- BK21 PLUS Program, Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Young Wook Yoon
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
63
|
Clarke MV, Russell PK, Zajac JD, Davey RA. The androgen receptor in the hypothalamus positively regulates hind-limb muscle mass and voluntary physical activity in adult male mice. J Steroid Biochem Mol Biol 2019; 189:187-194. [PMID: 30853652 DOI: 10.1016/j.jsbmb.2019.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
We have previously shown that expression of the androgen receptor (AR) in neurons within the brain positively regulates hind-limb muscle mass and physical activity in male mice. To further investigate the region of the brain responsible for mediating these effects of testosterone and to determine whether they are only important for muscle mass accrual during development or whether they are also important for the maintenance of muscle mass in the adult, we deleted the AR specifically in the hypothalamus of adult male mice (Hyp-ARKOs). Hyp-ARKO mice were generated by bilateral stereotaxic microinjection of an adeno-associated virus (AAV) expressing GFP and iCre recombinase under the control of the e-synapsin promoter into the hypothalamus of 10-week-old exon 3-AR floxed male mice. AR mRNA was deleted by 45% in the hypothalamus of Hyp-ARKOs at 5 weeks post-AAV-eSyn-iCre injection. This led to an increase in the mass of the androgen-dependent organs, seminal vesicles and kidneys, by 30% (P < 0.01) and 10% (P < 0.05) respectively, and an increase in serum luteinizing hormone (LH) by 2 fold (P < 0.05). Whilst the mean value for serum testosterone was higher in the Hyp-ARKOs, this did not reach statistical significance. Despite a phenotype consistent with increased androgen bioactivity in Hyp-ARKOs, which would be expected to increase muscle mass, the mass of the hind-limb muscles, gastrocnemius (Gast) (P = 0.001), extensor digitorum longus (EDL) (P < 0.001) and soleus (Sol) (P < 0.01) were paradoxically decreased by 12-19% compared to controls. Voluntary physical activity was reduced by 65% (P < 0.05) in Hyp-ARKO male mice and was associated with a reduction in gene expression of Drd1a and Maob (P ≤ 0.05) in the hypothalamus, suggesting involvement of the brain dopaminergic system. These data provide compelling evidence that androgen signalling via the AR in the hypothalamus acts to positively regulate the maintenance of hind-limb muscle mass and voluntary activity in adult male mice, independent of AR signalling in peripheral tissues.
Collapse
Affiliation(s)
- Michele V Clarke
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Patricia K Russell
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia.
| |
Collapse
|
64
|
Cardiac adaptation to exercise training in health and disease. Pflugers Arch 2019; 472:155-168. [PMID: 31016384 DOI: 10.1007/s00424-019-02266-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023]
Abstract
The heart is the primary pump that circulates blood through the entire cardiovascular system, serving many important functions in the body. Exercise training provides favorable anatomical and physiological changes that reduce the risk of heart disease and failure. Compared with pathological cardiac hypertrophy, exercise-induced physiological cardiac hypertrophy leads to an improvement in heart function. Exercise-induced cardiac remodeling is associated with gene regulatory mechanisms and cellular signaling pathways underlying cellular, molecular, and metabolic adaptations. Exercise training also promotes mitochondrial biogenesis and oxidative capacity leading to a decrease in cardiovascular disease. In this review, we summarized the exercise-induced adaptation in cardiac structure and function to understand cellular and molecular signaling pathways and mechanisms in preclinical and clinical trials.
Collapse
|
65
|
Pourrazi H, Jafari A. Effects of a Combination of Dietary Restriction and Exercise Training on Myocardial Apoptosis in Male Rats. NUTRITION AND FOOD SCIENCES RESEARCH 2019. [DOI: 10.29252/nfsr.6.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
66
|
Manta A, Stouth DW, Xhuti D, Chi L, Rebalka IA, Kalmar JM, Hawke TJ, Ljubicic V. Chronic exercise mitigates disease mechanisms and improves muscle function in myotonic dystrophy type 1 mice. J Physiol 2019; 597:1361-1381. [PMID: 30628727 DOI: 10.1113/jp277123] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Myotonic dystrophy type 1 (DM1), the second most common muscular dystrophy and most prevalent adult form of muscular dystrophy, is characterized by muscle weakness, wasting and myotonia. A microsatellite repeat expansion mutation results in RNA toxicity and dysregulation of mRNA processing, which are the primary downstream causes of the disorder. Recent studies with DM1 participants demonstrate that exercise is safe, enjoyable and elicits benefits in muscle strength and function; however, the molecular mechanisms of exercise adaptation in DM1 are undefined. Our results demonstrate that 7 weeks of volitional running wheel exercise in a pre-clinical DM1 mouse model resulted in significantly improved motor performance, muscle strength and endurance, as well as reduced myotonia. At the cellular level, chronic physical activity attenuated RNA toxicity, liberated Muscleblind-like 1 protein from myonuclear foci and improved mRNA alternative splicing. ABSTRACT Myotonic dystrophy type 1 (DM1) is a trinucleotide repeat expansion neuromuscular disorder that is most prominently characterized by skeletal muscle weakness, wasting and myotonia. Chronic physical activity is safe and satisfying, and can elicit functional benefits such as improved strength and endurance in DM1 patients, but the underlying cellular basis of exercise adaptation is undefined. Our purpose was to examine the mechanisms of exercise biology in DM1. Healthy, sedentary wild-type (SED-WT) mice, as well as sedentary human skeletal actin-long repeat animals, a murine model of DM1 myopathy (SED-DM1), and DM1 mice with volitional access to a running wheel for 7 weeks (EX-DM1), were utilized. Chronic exercise augmented strength and endurance in vivo and in situ in DM1 mice. These alterations coincided with normalized measures of myopathy, as well as increased mitochondrial content. Electromyography revealed a 70-85% decrease in the duration of myotonic discharges in muscles from EX-DM1 compared to SED-DM1 animals. The exercise-induced enhancements in muscle function corresponded at the molecular level with mitigated spliceopathy, specifically the processing of bridging integrator 1 and muscle-specific chloride channel (CLC-1) transcripts. CLC-1 protein content and sarcolemmal expression were lower in SED-DM1 versus SED-WT animals, but they were similar between SED-WT and EX-DM1 groups. Chronic exercise also attenuated RNA toxicity, as indicated by reduced (CUG)n foci-positive myonuclei and sequestered Muscleblind-like 1 (MBNL1). Our data indicate that chronic exercise-induced physiological improvements in DM1 occur in concert with mitigated primary downstream disease mechanisms, including RNA toxicity, MBNL1 loss-of-function, and alternative mRNA splicing.
Collapse
Affiliation(s)
- Alexander Manta
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Derek W Stouth
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Donald Xhuti
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Leon Chi
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Jayne M Kalmar
- Department of Kinesiology & Physical Education, Wilfred Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
67
|
Manzanares G, Brito-da-Silva G, Gandra PG. Voluntary wheel running: patterns and physiological effects in mice. ACTA ACUST UNITED AC 2018; 52:e7830. [PMID: 30539969 PMCID: PMC6301263 DOI: 10.1590/1414-431x20187830] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/09/2018] [Indexed: 11/22/2022]
Abstract
Exercise can prevent and improve the pathophysiology of diseases and promote healthy aging. Thus, understanding the mechanisms that regulate the beneficial effects of exercise may lead to the development of new strategies to enhance quality of life and to counteract chronic diseases. Voluntary wheel running is an interesting model to study the effects of exercise in mice. Compared to forced treadmill exercise, voluntary wheel running presents several advantages such as: 1) running pattern is similar to natural running behavior of mice; 2) it is performed under non-stressed conditions, according to the rhythmicity of the animal; 3) it does not require direct interference from the researcher, and can be easily applied in long-term studies. Mice run spontaneously when given access to running wheels, for a total distance of ∼4 to 20 km per day and a total activity time of ∼3 to 7 hours a day. Hence, voluntary wheel running can result in robust endurance-like adaptation in skeletal and cardiac muscles and protect from sarcopenia. However, due to the lack of control over exercise parameters in voluntary exercise models, it is important for the researcher to understand the patterns and variability of wheel running in mice, as well as the factors that can affect voluntary running activity. Overall, voluntary wheel running in mice is a very interesting approach to study the chronic adaptation to exercise, analyze the effects of exercise, and test exercise capacity in different experimental models.
Collapse
Affiliation(s)
- G Manzanares
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil
| | - G Brito-da-Silva
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil
| | - P G Gandra
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil
| |
Collapse
|
68
|
Kay JC, Claghorn GC, Thompson Z, Hampton TG, Garland T. Electrocardiograms of mice selectively bred for high levels of voluntary exercise: Effects of short-term exercise training and the mini-muscle phenotype. Physiol Behav 2018; 199:322-332. [PMID: 30508549 DOI: 10.1016/j.physbeh.2018.11.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022]
Abstract
Changes in cardiac function that occur with exercise training have been studied in detail, but those accompanying evolved increases in the duration or intensity of physical activity are poorly understood. To address this gap, we studied electrocardiograms (ECGs) of mice from an artificial selection experiment in which four replicate lines are bred for high voluntary wheel running (HR) while four non-selected lines are maintained as controls (C). ECGs were recorded using an ECGenie (Mouse Specifics, Inc.) both before and after six days of wheel access (as used in the standard protocol to select breeders). We hypothesized that HR mice would show innate differences in ECG characteristics and that the response to training would be greater in HR mice relative to C mice because the former run more. After wheel access, in statistical analyses controlling for variation in body mass, all mice had lower heart rates, and mice from HR lines had longer PR intervals than C lines. Also after wheel access, male mice had increased heart rate variability, whereas females had decreased heart rate variability. With body mass as a covariate, six days of wheel access significantly increased ventricle mass in both HR and C males. Within the HR lines, a subset of mice known as mini-muscle individuals have a 50% reduction in hindlimb muscle mass and generally larger internal organs, including the heart ventricles. As compared with normal-muscled individuals, mini-muscle individuals had a longer QRS complex, both before and after wheel access. Some studies in other species of mammals have shown correlations between athletic performance and QRS duration. Correlations between wheel running and either heart rate or QRS duration (before wheel running) among the eight individual lines of the HR selection experiment or among 17 inbred mouse strains taken from the literature were not statistically significant. However, total revolutions and average speed were negatively correlated with PR duration among lines of the HR selection experiment for males, and duration of running was negatively correlated with PR duration among 17 inbred strains for females. We conclude that HR mice have enhanced trainability of cardiac function as compared with C mice (as indicated by their longer PR duration after wheel access), and that the mini-muscle phenotype causes cardiac changes that have been associated with increased athletic performance in previous studies of mammals.
Collapse
Affiliation(s)
- Jarren C Kay
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35406, USA
| | - Gerald C Claghorn
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Zoe Thompson
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA; Department of Molecular & Integrative Physiology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
69
|
Voluntary exercise improves muscle function and does not exacerbate muscle and heart pathology in aged Duchenne muscular dystrophy mice. J Mol Cell Cardiol 2018; 125:29-38. [PMID: 30336143 DOI: 10.1016/j.yjmcc.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/21/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy is a severe muscle wasting disease, characterized by a severely reduced lifespan in which cardiomyopathy is one of the leading causes of death. Multiple therapies aiming at dystrophin restoration have been approved. It is anticipated that these therapies will maintain muscle function for longer and extend the ambulatory period, which in turn will increase the cardiac workload which could be detrimental for cardiac function. We investigated the effects of voluntary running exercise in combination with low dystrophin levels on function and pathology of skeletal muscle and heart. We divided 15.5-month old female mdx (no dystrophin), mdx-XistΔhs (varying low dystrophin levels) and wild type mice (BL10-WT and XistΔhs-WT) to either a sedentary or voluntary wheel running regime and assessed muscle function at 17.5 months of age. Thereafter, a cardiac MRI was obtained, and muscle and heart histopathology were assessed. We show that voluntary exercise is beneficial to skeletal muscle and heart function in dystrophic mice while not affecting muscle pathology. Low amounts of dystrophin further improve skeletal muscle and cardiac function. These findings suggest that voluntary exercise may be beneficial for skeletal muscle and heart in DMD patients, especially in conjunction with low amounts of dystrophin.
Collapse
|
70
|
Liu J, Lee I, Feng HZ, Galen SS, Hüttemann PP, Perkins GA, Jin JP, Hüttemann M, Malek MH. Aerobic Exercise Preconception and During Pregnancy Enhances Oxidative Capacity in the Hindlimb Muscles of Mice Offspring. J Strength Cond Res 2018; 32:1391-1403. [PMID: 29309390 DOI: 10.1519/jsc.0000000000002416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Liu, J, Lee, I, Feng, H-Z, Galen, SS, Hüttemann, PP, Perkins, GA, Jin, J-P, Hüttemann, M, and Malek, MH. Aerobic exercise preconception and during pregnancy enhances oxidative capacity in the hindlimb muscles of mice offspring. J Strength Cond Res 32(5): 1391-1403, 2018-Little is known about the effect of maternal exercise on offspring skeletal muscle health. The purpose of this study, therefore, was to determine whether maternal exercise (preconception and during pregnancy) alters offspring skeletal muscle capillarity and mitochondrial biogenesis. We hypothesized that offspring from exercised dams would have higher capillarity and mitochondrial density in the hindlimb muscles compared with offspring from sedentary dams. Female mice in the exercise condition had access to a running wheel in their individual cage 30 days before mating and throughout pregnancy, whereas the sedentary group did not have access to the running wheel before mating and during pregnancy. Male offspring from both groups were killed when they were 2 months old, and their tissues were analyzed. The results indicated no significant (p > 0.05) mean differences for capillarity density, capillarity-to-fiber ratio, or regulators of angiogenesis such as VEGF-A and TSP-1. Compared with offspring from sedentary dams, however, offspring from exercised dams had an increase in protein expression of myosin heavy chain type I (MHC I) (∼134%; p = 0.009), but no change in MHC II. For mitochondrial morphology, we found significant (all p-values ≤ 0.0124) increases in mitochondrial volume density (∼55%) and length (∼18%) as well as mitochondria per unit area (∼19%). For mitochondrial enzymes, there were also significant (all p-values ≤ 0.0058) increases in basal citrate synthase (∼79%) and cytochrome c oxidase activity (∼67%) in the nonoxidative muscle fibers as well as increases in basal (ATP) (∼52%). Last, there were also significant mean differences in protein expression for regulators (FIS1, Lon protease, and TFAM) of mitochondrial biogenesis. These findings suggest that maternal exercise before and during pregnancy enhances offspring skeletal muscle mitochondria functionality, but not capillarity.
Collapse
Affiliation(s)
- Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Han-Zhong Feng
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Sujay S Galen
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Philipp P Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California
| | - J-P Jin
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan.,Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Moh H Malek
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan.,Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan.,Integrative Physiology of Exercise Laboratory, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
71
|
Schmitt A, Haug AL, Schlegel F, Fragasso A, Munz B. Effects of 10 weeks of regular running exercise with and without parallel PDTC treatment on expression of genes encoding sarcomere-associated proteins in murine skeletal muscle. Cell Stress Chaperones 2018; 23:1041-1054. [PMID: 29797237 PMCID: PMC6111093 DOI: 10.1007/s12192-018-0914-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Physical exercise can induce various adaptation reactions in skeletal muscle tissue, such as sarcomere remodeling. The latter involves degradation of damaged sarcomere components, as well as de novo protein synthesis and sarcomere assembly. These processes are controlled by specific protease systems in parallel with molecular chaperones that assist in folding of newly synthesized polypeptide chains and their incorporation into sarcomeres. Since acute exercise induces oxidative stress and inflammation, leading to activation of the transcription factor NFκB (nuclear factor kappa B), we speculated that this transcription factor might also play a role in the regulation of long-term adaptation to regular exercise. Thus, we studied skeletal muscle adaptation to running exercise in a murine model system, with and without parallel treatment with the NFκB-inhibitory, anti-oxidant and anti-inflammatory drug pyrrolidine dithiocarbamate (PDTC). In control mice, 10 weeks of uphill (15° incline) treadmill running for 60 min thrice a week at a final speed of 14 m/min had differential, but only minor effects on many genes encoding molecular chaperones for sarcomere proteins, and/or factors involved in the degradation of the latter. Furthermore, there were marked differences between individual muscles. PDTC treatment modulated gene expression patterns as well, both in sedentary and exercising mice; however, most of these effects were also modest and there was little effect of PDTC treatment on exercise-induced changes in gene expression. Taken together, our data suggest that moderate-intensity treadmill running, with or without parallel PDTC treatment, had little effect on the expression of genes encoding sarcomere components and sarcomere-associated factors in murine skeletal muscle tissue.
Collapse
Affiliation(s)
- Angelika Schmitt
- Department of Sports Medicine, Medical Clinic, University Hospital Tübingen, Hoppe-Seyler-Str. 6, 72076, Tübingen, Germany
| | - Anne-Lena Haug
- Department of Sports Medicine, Medical Clinic, University Hospital Tübingen, Hoppe-Seyler-Str. 6, 72076, Tübingen, Germany
| | - Franziska Schlegel
- Department of Sports Medicine, Medical Clinic, University Hospital Tübingen, Hoppe-Seyler-Str. 6, 72076, Tübingen, Germany
| | - Annunziata Fragasso
- Department of Sports Medicine, Medical Clinic, University Hospital Tübingen, Hoppe-Seyler-Str. 6, 72076, Tübingen, Germany
| | - Barbara Munz
- Department of Sports Medicine, Medical Clinic, University Hospital Tübingen, Hoppe-Seyler-Str. 6, 72076, Tübingen, Germany.
| |
Collapse
|
72
|
Rupert JE, Joll JE, Elkhatib WY, Organ JM. Mouse Hind Limb Skeletal Muscle Functional Adaptation in a Simulated Fine Branch Arboreal Habitat. Anat Rec (Hoboken) 2018; 301:434-440. [PMID: 29418121 DOI: 10.1002/ar.23744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/06/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022]
Abstract
The musculoskeletal system is remarkably plastic during growth. The purpose of this study was to examine the muscular plasticity in functional and structural properties in a model known to result in significant developmental plasticity of the postcranial skeleton. Fifteen weanling C57BL/6 mice were raised to 16 weeks of age in one of two enclosures: a climbing enclosure that simulates a fine branch arboreal habitat and is traversed by steel wires crossing at 45° relative to horizontal at multiple intersections, and a control enclosure that resembles a parking deck with no wires but the same volume of habitable space. At killing, ex vivo contractility properties of the soleus (SOL) and extensor digitorum longus (EDL) muscles were examined. Our results demonstrate that EDL muscles of climbing mice contracted with higher specific forces and were comprised of muscle fibers with slower myosin heavy chain isoforms. EDL muscles also fatigued at a higher rate in climbing mice compared to controls. SOL muscle function is not affected by the climbing environment. Likewise, mass and architecture of both EDL and SOL muscles were not different between climbing and control mice. Our data demonstrate that functional adaptation does not require concomitant architectural adaptation in order to increase contractile force. Anat Rec, 301:434-440, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joseph E Rupert
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - J Ethan Joll
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37212
| | - Wiaam Y Elkhatib
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jason M Organ
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Department of Anthropology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indiana 46202.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana 46202
| |
Collapse
|
73
|
A comparison of two types of running wheel in terms of mouse preference, health, and welfare. Physiol Behav 2018; 191:82-90. [DOI: 10.1016/j.physbeh.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/23/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
|
74
|
Jardí F, Laurent MR, Dubois V, Kim N, Khalil R, Decallonne B, Vanderschueren D, Claessens F. Androgen and estrogen actions on male physical activity: a story beyond muscle. J Endocrinol 2018; 238:R31-R52. [PMID: 29743340 DOI: 10.1530/joe-18-0125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022]
Abstract
Physical inactivity is a pandemic that contributes to several chronic diseases and poses a significant burden on health care systems worldwide. The search for effective strategies to combat sedentary behavior has led to an intensification of the research efforts to unravel the biological substrate controlling activity. A wide body of preclinical evidence makes a strong case for sex steroids regulating physical activity in both genders, albeit the mechanisms implicated remain unclear. The beneficial effects of androgens on muscle as well as on other peripheral functions might play a role in favoring adaptation to exercise. Alternatively or in addition, sex steroids could act on specific brain circuitries to boost physical activity. This review critically discusses the evidence supporting a role for androgens and estrogens stimulating male physical activity, with special emphasis on the possible role of peripheral and/or central mechanisms. Finally, the potential translation of these findings to humans is briefly discussed.
Collapse
Affiliation(s)
- Ferran Jardí
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Michaël R Laurent
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Gerontology and GeriatricsDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Vanessa Dubois
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nari Kim
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Rougin Khalil
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
75
|
Kay JC, Ramirez J, Contreras E, Garland T. Reduced non-bicarbonate skeletal muscle buffering capacity in mice with the mini-muscle phenotype. ACTA ACUST UNITED AC 2018; 221:jeb.172478. [PMID: 29650754 DOI: 10.1242/jeb.172478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/09/2018] [Indexed: 11/20/2022]
Abstract
Muscle pH decreases during exercise, which may impair function. Endurance training typically reduces muscle buffering capacity as a result of changes in fiber-type composition, but existing comparisons of species that vary in activity level are ambiguous. We hypothesized that high-runner (HR) lines of mice from an experiment that breeds mice for voluntary wheel running would have altered muscle buffering capacity as compared with their non-selected control counterparts. We also expected that 6 days of wheel access, as used in the selection protocol, would reduce buffering capacity, especially for HR mice. Finally, we expected a subset of HR mice with the 'mini-muscle' phenotype to have relatively low buffering capacity as a result of fewer type IIb fibers. We tested non-bicarbonate buffering capacity of thigh muscles. Only HR mice expressing the mini-muscle phenotype had significantly reduced buffering capacity, females had lower buffering capacity than males, and wheel access had no significant effect.
Collapse
Affiliation(s)
- Jarren C Kay
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Jocelyn Ramirez
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Erick Contreras
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
76
|
Lancel S, Hesselink MK, Woldt E, Rouillé Y, Dorchies E, Delhaye S, Duhem C, Thorel Q, Mayeuf-Louchart A, Pourcet B, Montel V, Schaart G, Beton N, Picquet F, Briand O, Salles JP, Duez H, Schrauwen P, Bastide B, Bailleul B, Staels B, Sebti Y. Endospanin-2 enhances skeletal muscle energy metabolism and running endurance capacity. JCI Insight 2018; 3:98081. [PMID: 29720572 DOI: 10.1172/jci.insight.98081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/28/2018] [Indexed: 11/17/2022] Open
Abstract
Metabolic stresses such as dietary energy restriction or physical activity exert beneficial metabolic effects. In the liver, endospanin-1 and endospanin-2 cooperatively modulate calorie restriction-mediated (CR-mediated) liver adaptations by controlling growth hormone sensitivity. Since we found CR to induce endospanin protein expression in skeletal muscle, we investigated their role in this tissue. In vivo and in vitro endospanin-2 triggers ERK phosphorylation in skeletal muscle through an autophagy-dependent pathway. Furthermore, endospanin-2, but not endospanin-1, overexpression decreases muscle mitochondrial ROS production, induces fast-to-slow fiber-type switch, increases skeletal muscle glycogen content, and improves glucose homeostasis, ultimately promoting running endurance capacity. In line, endospanin-2-/- mice display higher lipid peroxidation levels, increased mitochondrial ROS production under mitochondrial stress, decreased ERK phosphorylation, and reduced endurance capacity. In conclusion, our results identify endospanin-2 as a potentially novel player in skeletal muscle metabolism, plasticity, and function.
Collapse
Affiliation(s)
- Steve Lancel
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Matthijs Kc Hesselink
- School for Nutrition, Toxicology and Metabolism, Deptartments of Human Biology and Human Movement Sciences, Maastricht University Medical Center, NL-6200 MD Maastricht, the Netherlands
| | - Estelle Woldt
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Yves Rouillé
- Center of Infection and Immunity of Lille (CIIL), Inserm, U1019, CNRS UMR-8204, Institut Pasteur de Lille, Université de Lille, France
| | - Emilie Dorchies
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Stephane Delhaye
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Christian Duhem
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Quentin Thorel
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Alicia Mayeuf-Louchart
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Benoit Pourcet
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Valérie Montel
- URePSS, Université de Lille, EA 7369, F-59650 Villeneuve d'Ascq, France
| | - Gert Schaart
- School for Nutrition, Toxicology and Metabolism, Deptartments of Human Biology and Human Movement Sciences, Maastricht University Medical Center, NL-6200 MD Maastricht, the Netherlands
| | - Nicolas Beton
- INSERM UMR1043 (CPTP), Université de Toulouse, Paul Sabatier, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Florence Picquet
- URePSS, Université de Lille, EA 7369, F-59650 Villeneuve d'Ascq, France
| | - Olivier Briand
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean Pierre Salles
- INSERM UMR1043 (CPTP), Université de Toulouse, Paul Sabatier, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Hélène Duez
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Patrick Schrauwen
- School for Nutrition, Toxicology and Metabolism, Deptartments of Human Biology and Human Movement Sciences, Maastricht University Medical Center, NL-6200 MD Maastricht, the Netherlands
| | - Bruno Bastide
- URePSS, Université de Lille, EA 7369, F-59650 Villeneuve d'Ascq, France
| | - Bernard Bailleul
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Bart Staels
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Yasmine Sebti
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
77
|
Vujic A, Lerchenmüller C, Wu TD, Guillermier C, Rabolli CP, Gonzalez E, Senyo SE, Liu X, Guerquin-Kern JL, Steinhauser ML, Lee RT, Rosenzweig A. Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat Commun 2018; 9:1659. [PMID: 29695718 PMCID: PMC5916892 DOI: 10.1038/s41467-018-04083-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/23/2018] [Indexed: 12/29/2022] Open
Abstract
Loss of cardiomyocytes is a major cause of heart failure, and while the adult heart has a limited capacity for cardiomyogenesis, little is known about what regulates this ability or whether it can be effectively harnessed. Here we show that 8 weeks of running exercise increase birth of new cardiomyocytes in adult mice (~4.6-fold). New cardiomyocytes are identified based on incorporation of 15N-thymidine by multi-isotope imaging mass spectrometry (MIMS) and on being mononucleate/diploid. Furthermore, we demonstrate that exercise after myocardial infarction induces a robust cardiomyogenic response in an extended border zone of the infarcted area. Inhibition of miR-222, a microRNA increased by exercise in both animal models and humans, completely blocks the cardiomyogenic exercise response. These findings demonstrate that cardiomyogenesis can be activated by exercise in the normal and injured adult mouse heart and suggest that stimulation of endogenous cardiomyocyte generation could contribute to the benefits of exercise. The adult mammalian heart has a limited cardiomyogenic capacity. Here the authors show that intensive exercise leads to a 4.6-fold increase in murine cardiomyocyte proliferation requiring the expression of miR-222, and that exercise induces an extended cardiomyogenic response in the murine heart after infarction.
Collapse
Affiliation(s)
- Ana Vujic
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Carolin Lerchenmüller
- Massachusetts General Hospital, Cardiology Division and Corrigan Minehan Heart Center, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Ting-Di Wu
- Institut Curie, PSL Research University, INSERM, U1196, 91405, Orsay, France.,Université Paris-Sud, Université Paris-Saclay, CNRS, UMR 9187, 91405, Orsay, France
| | - Christelle Guillermier
- Harvard Medical School, Boston, MA, 02115, USA.,Center for NanoImaging, Brigham and Women's Hospital, Cambridge, MA, 02138, USA.,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Charles P Rabolli
- Massachusetts General Hospital, Cardiology Division and Corrigan Minehan Heart Center, Boston, MA, 02114, USA
| | - Emilia Gonzalez
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Samuel E Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaojun Liu
- Massachusetts General Hospital, Cardiology Division and Corrigan Minehan Heart Center, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Jean-Luc Guerquin-Kern
- Institut Curie, PSL Research University, INSERM, U1196, 91405, Orsay, France.,Université Paris-Sud, Université Paris-Saclay, CNRS, UMR 9187, 91405, Orsay, France
| | - Matthew L Steinhauser
- Harvard Medical School, Boston, MA, 02115, USA.,Center for NanoImaging, Brigham and Women's Hospital, Cambridge, MA, 02138, USA.,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| | - Anthony Rosenzweig
- Massachusetts General Hospital, Cardiology Division and Corrigan Minehan Heart Center, Boston, MA, 02114, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
78
|
Rodrigues AC, Natali AJ, Cunha DNQD, Costa AJLD, Moura AGD, Araújo Carneiro-Júnior M, Félix LB, Brum PC, Prímola-Gomes TN. Moderate Continuous Aerobic Exercise Training Improves Cardiomyocyte Contractility in Β1 Adrenergic Receptor Knockout Mice. Arq Bras Cardiol 2018; 110:256-262. [PMID: 29466489 PMCID: PMC5898776 DOI: 10.5935/abc.20180025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022] Open
Abstract
Background The lack of cardiac β1-adrenergic receptors
(β1-AR) negatively affects the regulation of both
cardiac inotropy and lusitropy, leading, in the long term, to heart failure
(HF). Moderate-intensity aerobic exercise (MCAE) is recommended as an
adjunctive therapy for patients with HF. Objective We tested the effects of MCAE on the contractile properties of left
ventricular (LV) myocytes from β1 adrenergic receptor
knockout (β1ARKO) mice. Methods Four- to five-month-old male wild type (WT) and β1ARKO mice
were divided into groups: WT control (WTc) and trained (WTt); and
β1ARKO control (β1ARKOc) and trained
(β1ARKOt). Animals from trained groups were submitted
to a MCAE regimen (60 min/day; 60% of maximal speed, 5 days/week) on a
treadmill, for 8 weeks. P ≤ 0.05 was considered significant in all
comparisons. Results The β1ARKO and exercised mice exhibited a higher (p <
0.05) running capacity than WT and sedentary ones, respectively. The
β1ARKO mice showed higher body (BW), heart (HW) and
left ventricle (LVW) weights, as well as the HW/BW and LVW/BW than WT mice.
However, the MCAE did not affect these parameters. Left ventricular myocytes
from β1ARKO mice showed increased (p < 0.05) amplitude
and velocities of contraction and relaxation than those from WT. In
addition, MCAE increased (p < 0.05) amplitude and velocities of
contraction and relaxation in β1ARKO mice. Conclusion MCAE improves myocyte contractility in the left ventricle of
β1ARKO mice. This is evidence to support the
therapeutic value of this type of exercise training in the treatment of
heart diseases involving β1-AR desensitization or
reduction.
Collapse
|
79
|
Chronic exercise induces pathological left ventricular hypertrophy in adrenaline-deficient mice. Int J Cardiol 2018; 253:113-119. [DOI: 10.1016/j.ijcard.2017.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/28/2017] [Accepted: 10/02/2017] [Indexed: 11/20/2022]
|
80
|
Chung E, Joiner HE, Skelton T, Looten KD, Manczak M, Reddy PH. Maternal exercise upregulates mitochondrial gene expression and increases enzyme activity of fetal mouse hearts. Physiol Rep 2017; 5:5/5/e13184. [PMID: 28292876 PMCID: PMC5350185 DOI: 10.14814/phy2.13184] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
Maternal exercise during pregnancy has been shown to improve the long‐term health of offspring in later life. Mitochondria are important organelles for maintaining adequate heart function, and mitochondrial dysfunction is linked to cardiovascular disease. However, the effects of maternal exercise during pregnancy on mitochondrial biogenesis in hearts are not well understood. Thus, the purpose of this study was to test the hypothesis that mitochondrial gene expression in fetal myocardium would be upregulated by maternal exercise. Twelve‐week‐old female C57BL/6 mice were divided into sedentary and exercise groups. Mice in the exercise group were exposed to a voluntary cage‐wheel from gestational day 1 through 17. Litter size and individual fetal weights were taken when pregnant dams were sacrificed at 17 days of gestation. Three to four hearts from the same group were pooled to study gene expression, protein expression, and enzyme activity. There were no significant differences in litter size, sex distribution, and average fetal body weight per litter between sedentary and exercised dams. Genes encoding mitochondrial biogenesis and dynamics, including nuclear respiratory factor‐1 (Nrf1), Nrf2, and dynamin‐related GTPase termed mitofusin‐2 (Mfn2) were significantly upregulated in the fetal hearts from exercised dams. Cytochrome c oxidase activity and ATP production were significantly increased, while the hydrogen peroxide level was significantly decreased in the fetal hearts by maternal exercise. Our results demonstrate that maternal exercise initiated at day 1 of gestation could transfer the positive mitochondrial phenotype to fetal hearts.
Collapse
Affiliation(s)
- Eunhee Chung
- Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio, San Antonio, Texas
| | - Hayli E Joiner
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Tracer Skelton
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Kalli D Looten
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Maria Manczak
- Cell Biology and Biochemistry and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - P Hemachandra Reddy
- Cell Biology and Biochemistry and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
81
|
Luckey SW, Haines CD, Konhilas JP, Luczak ED, Messmer-Kratzsch A, Leinwand LA. Cyclin D2 is a critical mediator of exercise-induced cardiac hypertrophy. Exp Biol Med (Maywood) 2017; 242:1820-1830. [PMID: 28901173 PMCID: PMC5714145 DOI: 10.1177/1535370217731503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
A number of signaling pathways underlying pathological cardiac hypertrophy have been identified. However, few studies have probed the functional significance of these signaling pathways in the context of exercise or physiological pathways. Exercise studies were performed on females from six different genetic mouse models that have been shown to exhibit alterations in pathological cardiac adaptation and hypertrophy. These include mice expressing constitutively active glycogen synthase kinase-3β (GSK-3βS9A), an inhibitor of CaMK II (AC3-I), both GSK-3βS9A and AC3-I (GSK-3βS9A/AC3-I), constitutively active Akt (myrAkt), mice deficient in MAPK/ERK kinase kinase-1 (MEKK1-/-), and mice deficient in cyclin D2 (cyclin D2-/-). Voluntary wheel running performance was similar to NTG littermates for five of the mouse lines. Exercise induced significant cardiac growth in all mouse models except the cyclin D2-/- mice. Cardiac function was not impacted in the cyclin D2-/- mice and studies using a phospho-antibody array identified six proteins with increased phosphorylation (greater than 150%) and nine proteins with decreased phosphorylation (greater than 33% decrease) in the hearts of exercised cyclin D2-/- mice compared to exercised NTG littermate controls. Our results demonstrate that unlike the other hypertrophic signaling molecules tested here, cyclin D2 is an important regulator of both pathologic and physiological hypertrophy. Impact statement This research is relevant as the hypertrophic signaling pathways tested here have only been characterized for their role in pathological hypertrophy, and not in the context of exercise or physiological hypertrophy. By using the same transgenic mouse lines utilized in previous studies, our findings provide a novel and important understanding for the role of these signaling pathways in physiological hypertrophy. We found that alterations in the signaling pathways tested here had no impact on exercise performance. Exercise induced cardiac growth in all of the transgenic mice except for the mice deficient in cyclin D2. In the cyclin D2 null mice, cardiac function was not impacted even though the hypertrophic response was blunted and a number of signaling pathways are differentially regulated by exercise. These data provide the field with an understanding that cyclin D2 is a key mediator of physiological hypertrophy.
Collapse
Affiliation(s)
- Stephen W Luckey
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
- Biology Department, Seattle University, Seattle, WA 98122, USA
| | - Chris D Haines
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
| | - John P Konhilas
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
- Sarver Molecular Cardiovascular Research Program, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Elizabeth D Luczak
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Antke Messmer-Kratzsch
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
| |
Collapse
|
82
|
Deloux R, Vitiello D, Mougenot N, Noirez P, Li Z, Mericskay M, Ferry A, Agbulut O. Voluntary Exercise Improves Cardiac Function and Prevents Cardiac Remodeling in a Mouse Model of Dilated Cardiomyopathy. Front Physiol 2017; 8:899. [PMID: 29187823 PMCID: PMC5694775 DOI: 10.3389/fphys.2017.00899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/24/2017] [Indexed: 01/14/2023] Open
Abstract
Objective: Despite the indubitable beneficial effect of exercise to prevent of cardiovascular diseases, there is still a lack of studies investigating the impact of exercise in non-ischemic dilated cardiomyopathy. Here, we investigated the impact of voluntary exercise on cardiac function in a mouse model of non-ischemic dilated cardiomyopathy (αMHC-MerCreMer:Sf/Sf), induced by cardiac-specific inactivation of the Serum Response Factor. Materials and Methods: Seven days after tamoxifen injection, 20 αMHC-MerCreMer:Sf/Sf mice were assigned to sedentary (n = 8) and exercise (n = 12) groups. Seven additional αMHC-MerCreMer:Sf/Sf mice without tamoxifen injection were used as control. The exercise group performed 4 weeks of voluntary running on wheel (1.8 ± 0.12 km/day). Cardiac function, myocardial fibrosis, and mitochondrial energetic pathways were then blindly assessed. Results: Exercised mice exhibited a smaller decrease of left ventricular (LV) fractional shortening and ejection fraction compared to control mice. This was associated with a lower degree of LV remodeling in exercised mice, as shown by a lower LV end-systolic intrerventricular septal and posterior wall thickness decrease from baseline values compared to sedentary mice. Moreover, exercised mice displayed a reduced gene expression of atrial and brain natriuretic factors. These benefits were associated by a reduced level of myocardial fibrosis. In addition, exercised mice exhibited a higher mitochondrial aconitase, voltage-dependent anion-selective channel 1 and PPAR gamma coactivators-1 alpha proteins levels suggesting that the increase of mitochondrial biogenesis and/or metabolism slowed the progression of dilated cardiomyopathy in exercised animals. Conclusions: In conclusion, our results support the role of voluntary exercise to improve outcomes in non-ischemic dilated heart failure (HF) and also support its potential for a routine clinical use in the future.
Collapse
Affiliation(s)
- Robin Deloux
- Sorbonne Universités, UPMC University Paris 06, Institut de Biologie Paris-Seine, UMR Centre National de la Recherche Scientifique 8256, Biological Adaptation and Aging, Paris, France.,UMR-S 1180, National Institute for Health and Medical Research, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Damien Vitiello
- Sorbonne Universités, UPMC University Paris 06, Institut de Biologie Paris-Seine, UMR Centre National de la Recherche Scientifique 8256, Biological Adaptation and Aging, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institute for Research in Medicine and Epidemiology of Sport, EA7329, National Institute of Sport, Expertise and Performance, Université Paris Descartes, Paris, France
| | - Nathalie Mougenot
- Sorbonne Universités, UPMC University Paris 06, UMS28, Plateforme d'Expérimentation Coeur, Muscles, Vaisseaux, Paris, France
| | - Philippe Noirez
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institute for Research in Medicine and Epidemiology of Sport, EA7329, National Institute of Sport, Expertise and Performance, Université Paris Descartes, Paris, France
| | - Zhenlin Li
- Sorbonne Universités, UPMC University Paris 06, Institut de Biologie Paris-Seine, UMR Centre National de la Recherche Scientifique 8256, Biological Adaptation and Aging, Paris, France
| | - Mathias Mericskay
- Sorbonne Universités, UPMC University Paris 06, Institut de Biologie Paris-Seine, UMR Centre National de la Recherche Scientifique 8256, Biological Adaptation and Aging, Paris, France.,UMR-S 1180, National Institute for Health and Medical Research, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Arnaud Ferry
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Sorbonne Universités, UPMC University Paris 06, Institut de Myologie, UMR-S 794, National Institute for Health and Medical Research, UMR Centre National De La Recherche Scientifique 7215, Paris, France
| | - Onnik Agbulut
- Sorbonne Universités, UPMC University Paris 06, Institut de Biologie Paris-Seine, UMR Centre National de la Recherche Scientifique 8256, Biological Adaptation and Aging, Paris, France
| |
Collapse
|
83
|
Tyagi S, Beqollari D, Lee CS, Walker LA, Bannister RA. Semi-automated Analysis of Mouse Skeletal Muscle Morphology and Fiber-type Composition. J Vis Exp 2017. [PMID: 28892032 DOI: 10.3791/56024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
For years, distinctions between skeletal muscle fiber types were best visualized by myosin-ATPase staining. More recently, immunohistochemical staining of myosin heavy chain (MyHC) isoforms has emerged as a finer discriminator of fiber-type. Type I, type IIA, type IIX and type IIB fibers can now be identified with precision based on their MyHC profile; however, manual analysis of these data can be slow and down-right tedious. In this regard, rapid, accurate assessment of fiber-type composition and morphology is a very desirable tool. Here, we present a protocol for state-of-the-art immunohistochemical staining of MyHCs in frozen sections obtained from mouse hindlimb muscle in concert with a novel semi-automated algorithm that accelerates analysis of fiber-type and fiber morphology. As expected, the soleus muscle displayed staining for type I and type IIA fibers, but not for type IIX or type IIB fibers. On the other hand, the tibialis anterior muscle was composed predominantly of type IIX and type IIB fibers, a small fraction of type IIA fibers and little or no type I fibers. Several image transformations were used to generate probability maps for the purpose of measuring different aspects of fiber morphology (i.e., cross-sectional area (CSA), maximal and minimal Feret diameter). The values obtained for these parameters were then compared with manually-obtained values. No significant differences were observed between either mode of analysis with regards to CSA, maximal or minimal Feret diameter (all p > 0.05), indicating the accuracy of our method. Thus, our immunostaining analysis protocol may be applied to the investigation of effects on muscle composition in many models of aging and myopathy.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Department of Medicine-Cardiology Division, University of Colorado School of Medicine
| | - Donald Beqollari
- Department of Medicine-Cardiology Division, University of Colorado School of Medicine
| | - Chang Seok Lee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine
| | - Lori A Walker
- Department of Medicine-Cardiology Division, University of Colorado School of Medicine
| | - Roger A Bannister
- Department of Medicine-Cardiology Division, University of Colorado School of Medicine;
| |
Collapse
|
84
|
Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Sci Rep 2017; 7:7168. [PMID: 28769032 PMCID: PMC5540913 DOI: 10.1038/s41598-017-07149-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle is composed of heterogeneous populations of myofibers that are classified as slow- and fast-twitch fibers. The muscle fiber-type is regulated in a coordinated fashion by multiple genes, including transcriptional factors and microRNAs (miRNAs). However, players involved in this regulation are not fully elucidated. One of the members of the Vestigial-like factors, Vgll2, is thought to play a pivotal role in TEA domain (TEAD) transcription factor-mediated muscle-specific gene expression because of its restricted expression in skeletal muscles of adult mice. Here, we generated Vgll2 null mice and investigated Vgll2 function in adult skeletal muscles. These mice presented an increased number of fast-twitch type IIb fibers and exhibited a down-regulation of slow type I myosin heavy chain (MyHC) gene, Myh7, which resulted in exercise intolerance. In accordance with the decrease in Myh7, down-regulation of miR-208b, encoded within Myh7 gene and up-regulation of targets of miR-208b, Sox6, Sp3, and Purβ, were observed in Vgll2 deficient mice. Moreover, we detected the physical interaction between Vgll2 and TEAD1/4 in neonatal skeletal muscles. These results suggest that Vgll2 may be both directly and indirectly involved in the programing of slow muscle fibers through the formation of the Vgll2-TEAD complex.
Collapse
|
85
|
Gremmelspacher T, Gerlach J, Hubbe A, Haas CA, Häussler U. Neurogenic Processes Are Induced by Very Short Periods of Voluntary Wheel-Running in Male Mice. Front Neurosci 2017; 11:385. [PMID: 28751854 PMCID: PMC5508020 DOI: 10.3389/fnins.2017.00385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/20/2017] [Indexed: 01/17/2023] Open
Abstract
Even in the adult mammalian brain progenitor cells proliferate and give rise to young neurons which integrate into the neuronal network. The dentate gyrus possesses such a neurogenic niche reactive to external stimuli like physical activity. In most studies mice or rats have been exposed to wheel running for periods of several weeks to activate neurogenesis while early neurogenic processes induced by very short running periods are less well understood. To address this issue, we allowed male C57Bl/6 mice free access to a running wheel for 2 or 7 days. We injected bromodeoxyuridine (BrdU) before the last running night, respectively, and quantified cell proliferation with immunocytochemistry for BrdU and Ki-67. Furthermore, we performed immunocytochemistry for doublecortin (DCX) and real-time RT-qPCR for NeuroD1 to characterize and quantify changes in neurogenesis on the protein and mRNA level. Real-time RT-qPCR for neurogenic niche factors (BDNF, FGF-2, BMP4, Noggin) was used to detect changes in the molecular composition of the neurogenic niche. Interestingly, we observed that cell proliferation was already affected after 2 days of running showing a transient decrease, which was followed by a rebound with increased proliferation after 7 days. Neurogenesis was stimulated after 2 days of running, reflected by elevated NeuroD1 mRNA levels, and it was significantly increased after 7 days as indicated by DCX immunostaining. On the level of niche factors we observed changes in expression in favor of neuronal differentiation (increased BDNF mRNA expression) and proliferation (decreased BMP4 mRNA expression) already after 2 days, although increased proliferation is reflected on the cellular level only later. In summary, our data show that 2 days of running are sufficient to activate neurogenic processes and we hypothesize that a strong pressure toward differentiation privileges neurogenesis while proliferation lags behind.
Collapse
Affiliation(s)
- Teresa Gremmelspacher
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of FreiburgFreiburg, Germany
| | - Johannes Gerlach
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of FreiburgFreiburg, Germany.,BrainLinks-BrainTools, Cluster of Excellence, University of FreiburgFreiburg, Germany.,Faculty of Biology, University of FreiburgFreiburg, Germany
| | - Alix Hubbe
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of FreiburgFreiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of FreiburgFreiburg, Germany.,BrainLinks-BrainTools, Cluster of Excellence, University of FreiburgFreiburg, Germany
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of FreiburgFreiburg, Germany.,BrainLinks-BrainTools, Cluster of Excellence, University of FreiburgFreiburg, Germany
| |
Collapse
|
86
|
|
87
|
Lee KJ, Jung KH, Cho JY, Lee ST, Kim HS, Shim JH, Lee SK, Kim M, Chu K. High-Fat Diet and Voluntary Chronic Aerobic Exercise Recover Altered Levels of Aging-Related Tryptophan Metabolites along the Kynurenine Pathway. Exp Neurobiol 2017; 26:132-140. [PMID: 28680298 PMCID: PMC5491581 DOI: 10.5607/en.2017.26.3.132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Tryptophan metabolites regulate a variety of physiological processes, and their downstream metabolites enter the kynurenine pathway. Age-related changes of metabolites and activities of associated enzymes in this pathway are suggestable and would be potential intervention targets. Blood levels of serum tryptophan metabolites in C57BL/6 mice of different ages, ranging from 6 weeks to 10 months, were assessed using high-performance liquid chromatography, and the enzyme activities for each metabolic step were estimated using the ratio of appropriate metabolite levels. Mice were subjected to voluntary chronic aerobic exercise or high-fat diet to assess their ability to rescue age-related alterations in the kynurenine pathway. The ratio of serum kynurenic acid (KYNA) to 3-hydroxylkynurenine (3-HK) decreased with advancing age. Voluntary chronic aerobic exercise and high-fat diet rescued the decreased KYNA/3-HK ratio in the 6-month-old and 8-month-old mice groups. Tryptophan metabolites and their associated enzyme activities were significantly altered during aging, and the KYNA/3-HK ratio was a meaningful indicator of aging. Exercise and high-fat diet could potentially recover the reduction of the KYNA/3-HK ratio in the elderly.
Collapse
Affiliation(s)
- Keon-Joo Lee
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea.,Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea.,Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology & Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea.,Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Hwa Suk Kim
- Department of Clinical Pharmacology & Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
| | - Jun Hwa Shim
- Department of Clinical Pharmacology & Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea.,Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea.,Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea.,Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
88
|
Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular Mechanisms Underlying Cardiac Adaptation to Exercise. Cell Metab 2017; 25:1012-1026. [PMID: 28467921 PMCID: PMC5512429 DOI: 10.1016/j.cmet.2017.04.025] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Exercise elicits coordinated multi-organ responses including skeletal muscle, vasculature, heart, and lung. In the short term, the output of the heart increases to meet the demand of strenuous exercise. Long-term exercise instigates remodeling of the heart including growth and adaptive molecular and cellular re-programming. Signaling pathways such as the insulin-like growth factor 1/PI3K/Akt pathway mediate many of these responses. Exercise-induced, or physiologic, cardiac growth contrasts with growth elicited by pathological stimuli such as hypertension. Comparing the molecular and cellular underpinnings of physiologic and pathologic cardiac growth has unveiled phenotype-specific signaling pathways and transcriptional regulatory programs. Studies suggest that exercise pathways likely antagonize pathological pathways, and exercise training is often recommended for patients with chronic stable heart failure or following myocardial infarction. Herein, we summarize the current understanding of the structural and functional cardiac responses to exercise as well as signaling pathways and downstream effector molecules responsible for these adaptations.
Collapse
Affiliation(s)
- Rick B Vega
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - John P Konhilas
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | - Daniel P Kelly
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Leslie A Leinwand
- Molecular, Cellular and Developmental Biology, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
89
|
Abstract
Numerous animal cardiac exercise models using animal subjects have been established to uncover the cardiovascular physiological mechanism of exercise or to determine the effects of exercise on cardiovascular health and disease. In most cases, animal-based cardiovascular exercise modalities include treadmill running, swimming, and voluntary wheel running with a series of intensities, times, and durations. Those used animals include small rodents (e.g., mice and rats) and large animals (e.g., rabbits, dogs, goats, sheep, pigs, and horses). Depending on the research goal, each experimental protocol should also describe whether its respective exercise treatment can produce the anticipated acute or chronic cardiovascular adaptive response. In this chapter, we will briefly describe the most common kinds of animal models of acute and chronic cardiovascular exercises that are currently being conducted and are likely to be chosen in the near future. Strengths and weakness of animal-based cardiac exercise modalities are also discussed.
Collapse
|
90
|
Tallis J, Higgins MF, Seebacher F, Cox VM, Duncan MJ, James RS. The effects of 8 weeks voluntary wheel running on the contractile performance of isolated locomotory (soleus) and respiratory (diaphragm) skeletal muscle during early ageing. J Exp Biol 2017; 220:3733-3741. [DOI: 10.1242/jeb.166603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
Decreased skeletal muscle performance with increasing age is strongly associated with reduced mobility and quality of life. Increased physical activity is a widely prescribed method of reducing the detrimental effects of ageing on skeletal muscle contractility. The present study uses isometric and work loop testing protocols to uniquely investigate the effects of 8 weeks of voluntary wheel running on the contractile performance of isolated dynapenic soleus and diaphragm muscles of 38 week old CD1 mice. When compared to untrained controls, voluntary wheel running induced significant improvements in maximal isometric stress and work loop power, a reduced resistance to fatigue, but greater cumulative work during fatiguing work loop contractions in isolated muscle. These differences occurred without appreciable changes in LDH, CS, SERCA or MHC expression synonymous with this form of training in younger rodent models. Despite the given improvement in contractile performance, the average running distance significantly declined over the course of the training period, indicating that this form of training may not be sufficient to fully counteract the longer term ageing induced decline in skeletal muscle contractile performance. Although these results indicate that regular low intensity physical activity may be beneficial in offsetting the age-related decline in skeletal muscle contractility, the present findings infer that future work focusing on the maintenance of a healthy body mass with increasing age and its effects on myosin-actin cross bridge kinetics and Ca2+ handling, is needed to clarify the mechanisms causing the improved contractile performance in trained dynapenic skeletal muscle.
Collapse
Affiliation(s)
- Jason Tallis
- School of Life Sciences, James Starley Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Matthew F. Higgins
- Department of Sport, Outdoor and Exercise Science, Derby University, Kedleston Road, Derby, DE22 1GB, UK
| | - Frank Seebacher
- School of Biological Sciences, A08 University of Sydney, Science Road, Sydney, NSW, 2006, Australia
| | - Val M. Cox
- School of Life Sciences, James Starley Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Michael J. Duncan
- School of Life Sciences, James Starley Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Rob S. James
- School of Life Sciences, James Starley Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
91
|
White Z, Terrill J, White RB, McMahon C, Sheard P, Grounds MD, Shavlakadze T. Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice. Skelet Muscle 2016; 6:45. [PMID: 27964759 PMCID: PMC5155391 DOI: 10.1186/s13395-016-0117-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022] Open
Abstract
Background There is much interest in the capacity of resistance exercise to prevent the age-related loss of skeletal muscle mass and function, known as sarcopenia. This study investigates the molecular basis underlying the benefits of resistance exercise in aging C57BL/6J mice of both sexes. Results This study is the first to demonstrate that long-term (34 weeks) voluntary resistance wheel exercise (RWE) initiated at middle age, from 15 months, prevents sarcopenia in selected hindlimb muscles and causes hypertrophy in soleus, by 23 months of age in both male and female C57BL/6J mice. Compared with 23-month-old sedentary (SED) controls, RWE (0–6 g of resistance) increased intramuscular mitochondrial density and oxidative capacity (measured by citrate synthase and NADH-TR) and increased LC3II/I ratios (a marker of autophagy) in exercised mice of both sexes. RWE also reduced mRNA expression of Gadd45α (males only) and Runx1 (females only) but had no effect on other markers of denervation including Chrng, Chrnd, Musk, and Myog. RWE increased heart mass in all mice, with a more pronounced increase in females. Significant sex differences were also noted among SED mice, with Murf1 mRNA levels increasing in male, but decreasing in old female mice between 15 and 23 months. Conclusions Overall, long-term RWE initiated from 15 month of age significantly improved some markers of the mitochondrial and autophagosomal pathways and prevented age-related muscle wasting. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0117-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zoe White
- School of Anatomy, Physiology and Human Biology, The University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA, 6009, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, UWA and Harry Perkins Institute of Medical Research, Crawley, 6009, WA, Australia
| | - Jessica Terrill
- School of Anatomy, Physiology and Human Biology, The University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA, 6009, Australia.,School of Chemistry and Biochemistry, UWA, Crawley, 6009, WA, Australia
| | - Robert B White
- School of Anatomy, Physiology and Human Biology, The University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | - Phillip Sheard
- Department of Physiology, University of Otago, Dunedin, 9010, New Zealand
| | - Miranda D Grounds
- School of Anatomy, Physiology and Human Biology, The University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Tea Shavlakadze
- School of Anatomy, Physiology and Human Biology, The University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
92
|
Roles of Peroxisome Proliferator-Activated Receptor β/δ in skeletal muscle physiology. Biochimie 2016; 136:42-48. [PMID: 27916646 DOI: 10.1016/j.biochi.2016.11.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
Abstract
More than two decades of studying Peroxisome Proliferator-Activated Receptors (PPARs) has led to an understanding of their implications in various physiological processes that are key for health and disease. All three PPAR isotypes, PPARα, PPARβ/δ, and PPARγ, are activated by a variety of molecules, including fatty acids, eicosanoids and phospholipids, and regulate a spectrum of genes involved in development, lipid and carbohydrate metabolism, inflammation, and proliferation and differentiation of many cell types in different tissues. The hypolipidemic and antidiabetic functions of PPARα and PPARγ in response to fibrate and thiazolidinedione treatment, respectively, are well documented. However, until more recently the functions of PPARβ/δ were less well defined, but are now becoming more recognized in fatty acid metabolism, energy expenditure, and tissue repair. Skeletal muscle is an active metabolic organ with high plasticity for adaptive responses to varying conditions such as fasting or physical exercise. It is the major site of energy expenditure resulting from lipid and glucose catabolism. Here, we review the multifaceted roles of PPARβ/δ in skeletal muscle physiology.
Collapse
|
93
|
King MA, Leon LR, Morse DA, Clanton TL. Unique cytokine and chemokine responses to exertional heat stroke in mice. J Appl Physiol (1985) 2016; 122:296-306. [PMID: 27909226 DOI: 10.1152/japplphysiol.00667.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 01/19/2023] Open
Abstract
In heat stroke, cytokines are believed to play important roles in multiorgan dysfunction and recovery of damaged tissue. The time course of the cytokine response is well defined in passive heat stroke (PHS), but little is known about exertional heat stroke (EHS). In this study we used a recently developed mouse EHS model to measure the responses of circulating cytokines/chemokines and cytokine gene expression in muscle. A very rapid increase in circulating IL-6 was observed at maximum core temperature (Tc,max) that peaked at 0.5 h of recovery and disappeared by 3 h. IL-10 was not elevated at any time. This contrasts with PHS where both IL-6 and IL-10 peak at 3 h of recovery. Keratinocyte chemoattractant (KC), granulocyte-colony-stimulating factor (G-CSF), macrophage inflammatory protein (MIP)-2, MIP-1β, and monocyte chemoattractive factor-1 also demonstrated near peak responses at 0.5 h. Only G-CSF and KC remained elevated at 3 h. Muscle mRNA for innate immune cytokines (IL-6, IL-10, IL-1β, but not TNF-α) were greatly increased in diaphragm and soleus compared with similar measurements in PHS. We hypothesized that these altered cytokine responses in EHS may be due to a lower Tc,max achieved in EHS or a lower overall heat load. However, when these variables were controlled for, they could not account for the differences between EHS and PHS. We conclude that moderate exercise, superimposed on heat exposure, alters the pattern of circulating cytokine and chemokine production and muscle cytokine expression in EHS. This response may comprise an endocrine reflex to exercise in heat that initiates survival pathways and early onset tissue repair mechanisms. NEW & NOTEWORTHY Immune modulators called cytokines are released following extreme hyperthermia leading to heat stroke. It is not known whether exercise in hyperthermia, leading to EHS, influences this response. Using a mouse model of EHS, we discovered a rapid accumulation of interleukin-6 and other cytokines involved in immune cell trafficking. This response may comprise a protective mechanism for early induction of cell survival and tissue repair pathways needed for recovery from thermal injury.
Collapse
Affiliation(s)
- Michelle A King
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, The University of Florida; and
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Deborah A Morse
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, The University of Florida; and
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, The University of Florida; and
| |
Collapse
|
94
|
Loss of β-adrenergic-stimulated phosphorylation of CaV1.2 channels on Ser1700 leads to heart failure. Proc Natl Acad Sci U S A 2016; 113:E7976-E7985. [PMID: 27864509 DOI: 10.1073/pnas.1617116113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
L-type Ca2+ currents conducted by voltage-gated calcium channel 1.2 (CaV1.2) initiate excitation-contraction coupling in the heart, and altered expression of CaV1.2 causes heart failure in mice. Here we show unexpectedly that reducing β-adrenergic regulation of CaV1.2 channels by mutation of a single PKA site, Ser1700, in the proximal C-terminal domain causes reduced contractile function, cardiac hypertrophy, and heart failure without changes in expression, localization, or function of the CaV1.2 protein in the mutant mice (SA mice). These deficits were aggravated with aging. Dual mutation of Ser1700 and a nearby casein-kinase II site (Thr1704) caused accelerated hypertrophy, heart failure, and death in mice with these mutations (STAA mice). Cardiac hypertrophy was increased by voluntary exercise and by persistent β-adrenergic stimulation. PKA expression was increased, and PKA sites Ser2808 in ryanodine receptor type-2, Ser16 in phospholamban, and Ser23/24 in troponin-I were hyperphosphorylated in SA mice, whereas phosphorylation of substrates for calcium/calmodulin-dependent protein kinase II was unchanged. The Ca2+ pool in the sarcoplasmic reticulum was increased, the activity of calcineurin was elevated, and calcineurin inhibitors improved contractility and ameliorated cardiac hypertrophy. Cardio-specific expression of the SA mutation also caused reduced contractility and hypertrophy. These results suggest engagement of compensatory mechanisms, which initially may enhance the contractility of individual myocytes but eventually contribute to an increased sensitivity to cardiovascular stress and to heart failure in vivo. Our results demonstrate that normal regulation of CaV1.2 channels by phosphorylation of Ser1700 in cardiomyocytes is required for cardiovascular homeostasis and normal physiological regulation in vivo.
Collapse
|
95
|
Battistuzzo CR, Rank MM, Flynn JR, Morgan DL, Callister R, Callister RJ, Galea MP. Effects Of treadmill training on hindlimb muscles of spinal cord-injured mice. Muscle Nerve 2016; 55:232-242. [PMID: 27273462 PMCID: PMC5324672 DOI: 10.1002/mus.25211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 01/18/2023]
Abstract
Introduction: Treadmill training is known to prevent muscle atrophy after spinal cord injury (SCI), but the training duration required to optimize recovery has not been investigated. Methods: Hemisected mice were randomized to 3, 6, or 9 weeks of training or no training. Muscle fiber type composition and fiber cross‐sectional area (CSA) of medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) were assessed using ATPase histochemistry. Results: Muscle fiber type composition of SCI animals did not change with training. However, 9 weeks of training increased the CSA of type IIB and IIX fibers in TA and MG muscles. Conclusions: Nine weeks of training after incomplete SCI was effective in preventing atrophy of fast‐twitch muscles, but there were limited effects on slow‐twitch muscles and muscle fiber type composition. These data provide important evidence of the benefits of exercising paralyzed limbs after SCI. Muscle Nerve, 2016 Muscle Nerve55: 232–242, 2017
Collapse
Affiliation(s)
- Camila R Battistuzzo
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michelle M Rank
- School of Medical Sciences, RMIT University, Melbourne, Victoria, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jamie R Flynn
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - David L Morgan
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Robin Callister
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Robert J Callister
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Mary P Galea
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
96
|
Jay PY, Akhirome E, Magnan RA, Zhang MR, Kang L, Qin Y, Ugwu N, Regmi SD, Nogee JM, Cheverud JM. Transgenerational cardiology: One way to a baby's heart is through the mother. Mol Cell Endocrinol 2016; 435:94-102. [PMID: 27555292 PMCID: PMC5014674 DOI: 10.1016/j.mce.2016.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/17/2022]
Abstract
Despite decades of progress, congenital heart disease remains a major cause of mortality and suffering in children and young adults. Prevention would be ideal, but formidable biological and technical hurdles face any intervention that seeks to target the main causes, genetic mutations in the embryo. Other factors, however, significantly modify the total risk in individuals who carry mutations. Investigation of these factors could lead to an alternative approach to prevention. To define the risk modifiers, our group has taken an "experimental epidemiologic" approach via inbred mouse strain crosses. The original intent was to map genes that modify an individual's risk of heart defects caused by an Nkx2-5 mutation. During the analysis of >2000 Nkx2-5(+/-) offspring from one cross we serendipitously discovered a maternal-age associated risk, which also exists in humans. Reciprocal ovarian transplants between young and old mothers indicate that the incidence of heart defects correlates with the age of the mother and not the oocyte, which implicates a maternal pathway as the basis of the risk. The quantitative risk varies between strain backgrounds, so maternal genetic polymorphisms determine the activity of a factor or factors in the pathway. Most strikingly, voluntary exercise by the mother mitigates the risk. Therefore, congenital heart disease can in principle be prevented by targeting a maternal pathway even if the embryo carries a causative mutation. Further mechanistic insight is necessary to develop an intervention that could be implemented on a broad scale, but the physiology of maternal-fetal interactions, aging, and exercise are notoriously complex and undefined. This suggests that an unbiased genetic approach would most efficiently lead to the relevant pathway. A genetic foundation would lay the groundwork for human studies and clinical trials.
Collapse
Affiliation(s)
- Patrick Y Jay
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA; Departments of Genetics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
| | - Ehiole Akhirome
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Rachel A Magnan
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - M Rebecca Zhang
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Lillian Kang
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Yidan Qin
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Nelson Ugwu
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Suk Dev Regmi
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Julie M Nogee
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - James M Cheverud
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
97
|
Hiroux C, Vandoorne T, Koppo K, De Smet S, Hespel P, Berardi E. Physical Activity Counteracts Tumor Cell Growth in Colon Carcinoma C26-Injected Muscles: An Interim Report. Eur J Transl Myol 2016; 26:5958. [PMID: 27478560 PMCID: PMC4942703 DOI: 10.4081/ejtm.2016.5958] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle tissue is a rare site of tumor metastasis but is the main target of the degenerative processes occurring in cancer-associated cachexia syndrome. Beneficial effects of physical activity in counteracting cancer-related muscle wasting have been described in the last decades. Recently it has been shown that, in tumor xeno-transplanted mouse models, physical activity is able to directly affect tumor growth by modulating inflammatory responses in the tumor mass microenvironment. Here, we investigated the effect of physical activity on tumor cell growth in colon carcinoma C26 cells injected tibialis anterior muscles of BALB/c mice. Histological analyses revealed that 4 days of voluntary wheel running significantly counteracts tumor cell growth in C26-injected muscles compared to the non-injected sedentary controls. Since striated skeletal muscle tissue is the site of voluntary contraction, our results confirm that physical activity can also directly counteract tumor cell growth in a metabolically active tissue that is usually not a target for metastasis.
Collapse
Affiliation(s)
- Charlotte Hiroux
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven , Belgium
| | - Tijs Vandoorne
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven , Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven , Belgium
| | - Stefan De Smet
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven , Belgium
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven , Belgium
| | - Emanuele Berardi
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven , Belgium
| |
Collapse
|
98
|
Moo EK, Fortuna R, Sibole SC, Abusara Z, Herzog W. In vivo Sarcomere Lengths and Sarcomere Elongations Are Not Uniform across an Intact Muscle. Front Physiol 2016; 7:187. [PMID: 27252660 PMCID: PMC4879144 DOI: 10.3389/fphys.2016.00187] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/09/2016] [Indexed: 11/15/2022] Open
Abstract
Sarcomere lengths have been a crucial outcome measure for understanding and explaining basic muscle properties and muscle function. Sarcomere lengths for a given muscle are typically measured at a single spot, often in the mid-belly of the muscle, and at a given muscle length. It is then assumed implicitly that the sarcomere length measured at this single spot represents the sarcomere lengths at other locations within the muscle, and force-length, force-velocity, and power-velocity properties of muscles are often implied based on these single sarcomere length measurements. Although, intuitively appealing, this assumption is yet to be supported by systematic evidence. The objective of this study was to measure sarcomere lengths at defined locations along and across an intact muscle, at different muscle lengths. Using second harmonic generation (SHG) imaging technique, sarcomere patterns in passive mouse tibialis anterior (TA) were imaged in a non-contact manner at five selected locations (“proximal,” “distal,” “middle,” “medial,” and “lateral” TA sites) and at three different lengths encompassing the anatomical range of motion of the TA. We showed that sarcomere lengths varied substantially within small regions of the muscle and also for different sites across the entire TA. Also, sarcomere elongations with muscle lengthening were non-uniform across the muscle, with the highest sarcomere stretches occurring near the myotendinous junction. We conclude that muscle mechanics derived from sarcomere length measured from a small region of a muscle may not well-represent the sarcomere length and associated functional properties of the entire muscle.
Collapse
Affiliation(s)
- Eng Kuan Moo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary Calgary, AB, Canada
| | - Rafael Fortuna
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary Calgary, AB, Canada
| | - Scott C Sibole
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary Calgary, AB, Canada
| | - Ziad Abusara
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary Calgary, AB, Canada
| |
Collapse
|
99
|
Effects of ACE2 deficiency on physical performance and physiological adaptations of cardiac and skeletal muscle to exercise. Hypertens Res 2016; 39:506-12. [DOI: 10.1038/hr.2016.28] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 01/05/2023]
|
100
|
Sultana N, Dienes B, Benedetti A, Tuluc P, Szentesi P, Sztretye M, Rainer J, Hess MW, Schwarzer C, Obermair GJ, Csernoch L, Flucher BE. Restricting calcium currents is required for correct fiber type specification in skeletal muscle. Development 2016; 143:1547-59. [PMID: 26965373 PMCID: PMC4909858 DOI: 10.1242/dev.129676] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/29/2016] [Indexed: 11/20/2022]
Abstract
Skeletal muscle excitation-contraction (EC) coupling is independent of calcium influx. In fact, alternative splicing of the voltage-gated calcium channel CaV1.1 actively suppresses calcium currents in mature muscle. Whether this is necessary for normal development and function of muscle is not known. However, splicing defects that cause aberrant expression of the calcium-conducting developmental CaV1.1e splice variant correlate with muscle weakness in myotonic dystrophy. Here, we deleted CaV1.1 (Cacna1s) exon 29 in mice. These mice displayed normal overall motor performance, although grip force and voluntary running were reduced. Continued expression of the developmental CaV1.1e splice variant in adult mice caused increased calcium influx during EC coupling, altered calcium homeostasis, and spontaneous calcium sparklets in isolated muscle fibers. Contractile force was reduced and endurance enhanced. Key regulators of fiber type specification were dysregulated and the fiber type composition was shifted toward slower fibers. However, oxidative enzyme activity and mitochondrial content declined. These findings indicate that limiting calcium influx during skeletal muscle EC coupling is important for the secondary function of the calcium signal in the activity-dependent regulation of fiber type composition and to prevent muscle disease.
Collapse
Affiliation(s)
- Nasreen Sultana
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Ariane Benedetti
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Petronel Tuluc
- Department of Pharmacology, University of Innsbruck, Innsbruck 6020, Austria
| | - Peter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Monika Sztretye
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Johannes Rainer
- Division of Molecular Pathophysiology, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Michael W Hess
- Division of Histology and Embryology, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Gerald J Obermair
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Laszlo Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Bernhard E Flucher
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|