51
|
Dalley CB, Wroblewska B, Wolfe BB, Wroblewski JT. The Role of Metabotropic Glutamate Receptor 1 Dependent Signaling in Glioma Viability. J Pharmacol Exp Ther 2018; 367:59-70. [PMID: 30054311 DOI: 10.1124/jpet.118.250159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Glioma refers to malignant central nervous system tumors that have histologic characteristics in common with glial cells. The most prevalent type, glioblastoma multiforme, is associated with a poor prognosis and few treatment options. On the basis of reports of aberrant expression of mGluR1 mRNA in glioma, evidence that melanoma growth is directly influenced by glutamate metabotropic receptor 1 (mGluR1), and characterization of β-arrestin-dependent prosurvival signaling by this receptor, this study investigated the hypothesis that glioma cell lines aberrantly express mGluR1 and depend on mGluR1-mediated signaling to maintain viability and proliferation. Three glioma cell lines (Hs683, A172, and U87) were tested to confirm mGluR1 mRNA expression and the dependence of glioma cell viability on glutamate. Pharmacologic and genetic evidence is presented that suggests mGluR1 signaling specifically supports glioma proliferation and viability. For example, selective noncompetitive antagonists of mGluR1, CPCCOEt and JNJ16259685, decreased the viability of these cells in a dose-dependent manner, and glutamate metabotropic receptor 1 gene silencing significantly reduced glioma cell proliferation. Also, results of an anchorage-independent growth assay suggested that noncompetitive antagonism of mGluR1 may decrease the tumorigenic potential of Hs683 glioma cells. Finally, data are provided that support the hypothesis that a β-arrestin-dependent signaling cascade may be involved in glutamate-stimulated viability in glioma cells and that ligand bias may exist at mGluR1 expressed in these cells. Taken together, the results strongly suggest that mGluR1 may act as a proto-oncogene in glioma and be a viable drug target in glioma treatment.
Collapse
Affiliation(s)
- Carrie Bowman Dalley
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| | - Barbara Wroblewska
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| | - Barry B Wolfe
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| | - Jarda T Wroblewski
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
52
|
Pelletier JC, Chen S, Bian H, Shah R, Smith GR, Wrobel JE, Reitz AB. Dipeptide Prodrugs of the Glutamate Modulator Riluzole. ACS Med Chem Lett 2018; 9:752-756. [PMID: 30034613 DOI: 10.1021/acsmedchemlett.8b00189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
We have previously reported a prodrug strategy based on the marketed drug riluzole (2-amino-6-trifluoromethoxybenzothiazole), associated with the benefits of lower patient to patient variability of exposure and potentially once daily oral dosing, as opposed to the large variance and twice daily dosing, which is currently observed with the parent drug. Riluzole is a glutamate modulator that is currently approved by the US FDA to treat amyotrophic lateral sclerosis (ALS). Riluzole also strongly suppresses the growth of melanoma cells that express the type 1 metabotropic glutamate receptor (GRM1, mGluR1). Riluzole is a substrate for the variably expressed liver isozyme CYP1A2, which has been shown to contribute to the variance in exposure of riluzole in humans upon oral administration. In addition, an elevated Cmax following oral administration is a probable cause of increased liver enzyme levels in some patients. In order to mitigate these issues, a series of natural and unnatural dipeptide prodrugs of riluzole were prepared as products that bear lower first-pass hepatic clearance. The prodrugs were evaluated for their ability to produce riluzole in serum while remaining intact prior to absorption from the GI tract, characteristic of a type IIB prodrug. Here, we describe dipeptide conjugates of riluzole and report that the t-Bu-Gly-Sar-riluzole analog FC-3423 (6) is absorbed well and converts to riluzole in rats and mice in a regular and well-defined manner. FC-3423 strongly suppress tumor cell growth in mouse xenograft models of melanoma at a molar dose 10-fold less than that of riluzole itself.
Collapse
Affiliation(s)
- Jeffrey C. Pelletier
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Suzie Chen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, 164 Frelinghuysen Road, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Haiyan Bian
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Raj Shah
- Department of Chemical Biology, Ernest Mario School of Pharmacy, 164 Frelinghuysen Road, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Garry R. Smith
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Jay E. Wrobel
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Allen B. Reitz
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- ALS Biopharma, LLC, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
53
|
NR1 and NR3B Composed Intranuclear N-methyl-d-aspartate Receptor Complexes in Human Melanoma Cells. Int J Mol Sci 2018; 19:ijms19071929. [PMID: 29966365 PMCID: PMC6073738 DOI: 10.3390/ijms19071929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/27/2018] [Indexed: 01/05/2023] Open
Abstract
Heterotetrameric N-methyl-d-aspartate type glutamate receptors (NMDAR) are cationic channels primarily permeable for Ca2+. NR1 and NR3 subunits bind glycine, while NR2 subunits bind glutamate for full activation. As NR1 may contain a nuclear localization signal (NLS) that is recognized by importin-α, our aim was to investigate if NMDARs are expressed in the nuclei of melanocytes and melanoma cells. A detailed NMDAR subunit expression pattern was examined by RT-PCRs (reverse transcription followed by polymerase chain reaction), fractionated western blots and immunocytochemistry in human epidermal melanocytes and in human melanoma cell lines A2058, HT199, HT168M1, MEL35/0 and WM35. All kind of NMDAR subunits are expressed as mRNAs in melanocytes, as well as in melanoma cells, while NR2B protein remained undetectable in any cell type. Western blots proved the exclusive presence of NR1 and NR3B in nuclear fractions and immunocytochemistry confirmed NR1-NR3B colocalization inside the nuclei of all melanoma cells. The same phenomenon was not observed in melanocytes. Moreover, protein database analysis revealed a putative NLS in NR3B subunit. Our results support that unusual, NR1-NR3B composed NMDAR complexes are present in the nuclei of melanoma cells. This may indicate a new malignancy-related histopathological feature of melanoma cells and raises the possibility of a glycine-driven, NMDA-related nuclear Ca2+-signalling in these cells.
Collapse
|
54
|
Exploiting ROS and metabolic differences to kill cisplatin resistant lung cancer. Oncotarget 2018; 8:49275-49292. [PMID: 28525376 PMCID: PMC5564767 DOI: 10.18632/oncotarget.17568] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/17/2017] [Indexed: 01/17/2023] Open
Abstract
Cisplatin resistance remains a major problem in the treatment of lung cancer. We have discovered that cisplatin resistant (CR) lung cancer cells, regardless of the signaling pathway status, share the common parameter which is an increase in reactive oxygen species (ROS) and undergo metabolic reprogramming. CR cells were no longer addicted to the glycolytic pathway, but rather relied on oxidative metabolism. They took up twice as much glutamine and were highly sensitive to glutamine deprivation. Glutamine is hydrolyzed to glutamate for glutathione synthesis, an essential factor to abrogate high ROS via xCT antiporter. Thus, blocking glutamate flux using riluzole (an amyotropic lateral sclerosis approved drug) can selectively kill CR cells in vitro and in vivo. However, we discovered here that glutathione suppression is not the primary pathway in eradicating the CR cells. Riluzole can lead to further decrease in NAD+ (nicotinamide adenine dinucleotide) and lactate dehydrogenase-A (LDHA) expressions which in turn further heightened oxidative stress in CR cells. LDHA knocked-down cells became hypersensitive to riluzole treatments and possessed increased levels of ROS. Addition of NAD+ re-stabilized LDHA and reversed riluzole induced cell death. Thus far, no drugs are available which could overcome cisplatin resistance or kill cisplatin resistant cells. CR cells possess high levels of ROS and undergo metabolic reprogramming. These metabolic adaptations can be exploited and targeted by riluzole. Riluzole may serve as a dual-targeting agent by suppression LDHA and blocking xCT antiporter. Repurposing of riluzole should be considered for future treatment of cisplatin resistant lung cancer patients.
Collapse
|
55
|
Mehnert JM, Silk AW, Lee JH, Dudek L, Jeong BS, Li J, Schenkel JM, Sadimin E, Kane M, Lin H, Shih WJ, Zloza A, Chen S, Goydos JS. A phase II trial of riluzole, an antagonist of metabotropic glutamate receptor 1 (GRM1) signaling, in patients with advanced melanoma. Pigment Cell Melanoma Res 2018; 31:534-540. [PMID: 29453787 DOI: 10.1111/pcmr.12694] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/09/2018] [Indexed: 12/11/2022]
Abstract
Studies demonstrate that GRM, expressed by >60% of human melanomas, may be a therapeutic target. We performed a phase II trial of 100 mg PO bid of riluzole, an inhibitor of GRM1 signaling, in patients with advanced melanoma with the primary endpoint of response rate. Thirteen patients with GRM1-positive tumors were enrolled. No objective responses were observed, and accrual was stopped. Stable disease was noted in six (46%) patients, with one patient on study for 42 weeks. Riluzole was well tolerated, with fatigue (62%) as the most common adverse event. Downregulation of MAPK and PI3K/AKT was noted in 33% of paired tumor biopsies. Hypothesis-generating correlative studies suggested that downregulation of angiogenic markers and increased leukocytes at the active edge of tumor correlate with clinical benefit. Pharmacokinetic analysis showed interpatient variability consistent with prior riluzole studies. Future investigations should interrogate mechanisms of biologic activity and advance the development of agents with improved bioavailability.
Collapse
Affiliation(s)
- Janice M Mehnert
- Rutgers Cancer Institute of New Jersey/Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Ann W Silk
- Rutgers Cancer Institute of New Jersey/Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - J H Lee
- Rutgers Cancer Institute of New Jersey/Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Liesel Dudek
- Rutgers Cancer Institute of New Jersey/Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Byeong-Seon Jeong
- Rutgers Cancer Institute of New Jersey/Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jiadong Li
- Rutgers Cancer Institute of New Jersey/Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | - Evita Sadimin
- Rutgers Cancer Institute of New Jersey/Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Michael Kane
- Rutgers Cancer Institute of New Jersey/Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Hongxia Lin
- Rutgers Cancer Institute of New Jersey/Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Weichung J Shih
- Rutgers Cancer Institute of New Jersey/Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Andrew Zloza
- Rutgers Cancer Institute of New Jersey/Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Suzie Chen
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - James S Goydos
- Rutgers Cancer Institute of New Jersey/Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
56
|
Isola AL, Eddy K, Zembrzuski K, Goydos JS, Chen S. Exosomes released by metabotropic glutamate receptor 1 (GRM1) expressing melanoma cells increase cell migration and invasiveness. Oncotarget 2018; 9:1187-1199. [PMID: 29416686 PMCID: PMC5787429 DOI: 10.18632/oncotarget.23455] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes are naturally occurring membrane-bound nanovesicles generated constitutively and released by various cell types, and often in higher quantities by tumor cells. Exosomes may facilitate communication between the primary tumor and its local microenvironment, supporting cell invasion and other early events in metastasis. A neuronal receptor, metabotropic glutamate receptor 1 (GRM1), when ectopically expressed in melanocytes, induces in vitro melanocytic transformation and spontaneous malignant melanoma development in vivo in a transgenic mouse model. Our earlier studies showed that genetic modulation in GRM1 expression by siRNA or disruption of GRM1-mediated glutamate signaling interfere with downstream effectors resulting in a decrease in both cell proliferation in vitro and tumor progression in vivo. In this study, we sought to determine whether exosome formation might play a role in GRM1 mediated melanoma development and progression. To test this, we utilized in vitro cultured cells in which GRM1 expression and function could be modulated by pharmacological and genetic means and determined effects on exosome production. We also tested the effects of exosomes from GRM1 expressing melanoma cells on growth, migration and invasion of GRM1 negative cells. Our results show that although GRM1 expression has no influence on exosome quantity, exosomes produced by GRM1-positive cells modulate the ability of the recipient cell to migrate, invade and exhibit anchorage-independent cell growth.
Collapse
Affiliation(s)
- Allison L. Isola
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University, Piscataway, NJ 08854, USA
- Joint Graduate Program in Toxicology, Rutgers, The State University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University, Piscataway, NJ 08854, USA
| | - Krzysztof Zembrzuski
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University, Piscataway, NJ 08854, USA
| | - James S. Goydos
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University, Piscataway, NJ 08854, USA
- Joint Graduate Program in Toxicology, Rutgers, The State University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
57
|
Schott M, de Jel MM, Engelmann JC, Renner P, Geissler EK, Bosserhoff AK, Kuphal S. Selenium-binding protein 1 is down-regulated in malignant melanoma. Oncotarget 2018. [PMID: 29535818 PMCID: PMC5828193 DOI: 10.18632/oncotarget.23853] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Selenium-binding protein 1 (SELENBP1) expression is reduced in various epithelial cancer entities compared to corresponding normal tissue and has already been described as a tumor suppressor involved in the regulation of cell proliferation, senescence, migration and apoptosis. We identified SELENBP1 to be down-regulated in cutaneous melanoma, a malignant cancer of pigment-producing melanocytes in the skin, which leads to the assumption that SELENBP1 also functions as tumor suppressor in the skin, as shown by others e.g. for prostate or lung carcinoma. However, in vitro analyses indicate that SELENBP1 re-expression in human melanoma cell lines has no impact on cell proliferation, migration or tube formation of the tumor cells themselves when compared to control-transfected cells. Interestingly, supernatant taken from melanoma cell lines transfected with a SELENBP1 re-expression plasmid led to suppression of vessel formation of HMEC cells. Furthermore, SELENBP1 re-expression alters the sensitivity of melanoma cells for Vemurafenib treatment. The data also hint to a functional interaction of SELENBP1 with GPX1 (Glutathione peroxidase 1). Low SELENBP1 mRNA levels correlate inversely with GPX1 expression in melanoma. The re-expression of SELENBP1 combined with down-regulation of GPX1 expression led to reduction of the proliferation of melanoma cells. In summary, SELENBP1 influences the tumor microenvironment and SELENBP1 action is functionally influenced by GPX1.
Collapse
Affiliation(s)
- Mandy Schott
- University of Erlangen, Institute of Biochemistry, Biochemistry and Molecular Medicine, Erlangen, Germany
| | - Miriam M de Jel
- University of Erlangen, Institute of Biochemistry, Biochemistry and Molecular Medicine, Erlangen, Germany
| | - Julia C Engelmann
- University of Regensburg, Institute of Functional Genomics, Statistical Bioinformatics, Regensburg, Germany
| | - Philipp Renner
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Edward K Geissler
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Anja K Bosserhoff
- University of Erlangen, Institute of Biochemistry, Biochemistry and Molecular Medicine, Erlangen, Germany
| | - Silke Kuphal
- University of Erlangen, Institute of Biochemistry, Biochemistry and Molecular Medicine, Erlangen, Germany
| |
Collapse
|
58
|
Wei W, Ehlerding EB, Lan X, Luo Q, Cai W. PET and SPECT imaging of melanoma: the state of the art. Eur J Nucl Med Mol Imaging 2018; 45:132-150. [PMID: 29085965 PMCID: PMC5700861 DOI: 10.1007/s00259-017-3839-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Melanoma represents the most aggressive form of skin cancer, and its incidence continues to rise worldwide. 18F-FDG PET imaging has transformed diagnostic nuclear medicine and has become an essential component in the management of melanoma, but still has its drawbacks. With the rapid growth in the field of nuclear medicine and molecular imaging, a variety of promising probes that enable early diagnosis and detection of melanoma have been developed. The substantial preclinical success of melanin- and peptide-based probes has recently resulted in the translation of several radiotracers to clinical settings for noninvasive imaging and treatment of melanoma in humans. In this review, we focus on the latest developments in radiolabeled molecular imaging probes for melanoma in preclinical and clinical settings, and discuss the challenges and opportunities for future development.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
59
|
Chen HC, Sierra J, Yu LJ, Cerchio R, Wall BA, Goydos J, Chen S. Activation of Grm1 expression by mutated BRaf (V600E) in vitro and in vivo. Oncotarget 2017; 9:5861-5875. [PMID: 29464040 PMCID: PMC5814180 DOI: 10.18632/oncotarget.23637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Our laboratory previously showed that ectopic expression of Grm1 is sufficient to induce spontaneous melanoma formation with 100% penetrance in transgenic mouse model, TG-3, which harbors wild-type BRaf. Studies identified Grm1 expression in human melanoma cell lines and primary to secondary metastatic melanoma biopsies having wild-type or mutated BRaf, but not in normal melanocytes or benign nevi. Grm1 expression was detected in tissues from mice genetically engineered with inducible melanocyte-specific BRafV600E. Additionally, stable clones derived from introduction of exogenous BRafV600E in mouse melanocytes also showed Grm1 expression, which was not detected in the parental or empty vector-derived cells, suggesting that expression of BRafV600E could activate Grm1 expression. Despite aberrant Grm1 expression in the inducible, melanocyte-specific BRafV600E mice, no tumors formed. However, in older mice, the melanocytes underwent senescence, as demonstrated previously by others. It was proposed that upregulated p15 and TGFβ contributed to the senescence phenotype. In contrast, in older TG-3 mice the levels of p15 and TGFβ remained the same or lower. Taken together, these results suggest the temporal regulation on the expression of "oncogenes" such as Grm1 or BRafV600E is critical in the future fate of the cells. If BRafV600E is turned on first, Grm1 expression can be induced, but this is not sufficient to result in development of melanoma; the cells undergo senescence. In contrast, if ectopic expression of Grm1 is turned on first, then regardless of wild-type or mutated BRaf in the melanocytes melanoma development is the consequence.
Collapse
Affiliation(s)
- Ho-Chung Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway 08854, NJ, USA
| | - Jairo Sierra
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway 08854, NJ, USA.,Rutgers-GSBS at Robert Wood Johnson Medical School, Piscataway 08854, NJ, USA
| | - Lumeng Jenny Yu
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway 08854, NJ, USA
| | - Robert Cerchio
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway 08854, NJ, USA.,Pharmacology and Toxicology Graduate Program, Rutgers University, Piscataway 08854, NJ, USA
| | - Brian A Wall
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway 08854, NJ, USA.,Global Product Safety, Colgate-Palmolive Company, Piscataway 08854, NJ, USA
| | - James Goydos
- Rutgers-GSBS at Robert Wood Johnson Medical School, Piscataway 08854, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick 08903, NJ, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway 08854, NJ, USA.,Rutgers-GSBS at Robert Wood Johnson Medical School, Piscataway 08854, NJ, USA.,Pharmacology and Toxicology Graduate Program, Rutgers University, Piscataway 08854, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick 08903, NJ, USA
| |
Collapse
|
60
|
Pérez-Guijarro E, Day CP, Merlino G, Zaidi MR. Genetically engineered mouse models of melanoma. Cancer 2017; 123:2089-2103. [PMID: 28543694 DOI: 10.1002/cncr.30684] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 01/04/2023]
Abstract
Melanoma is a complex disease that exhibits highly heterogeneous etiological, histopathological, and genetic features, as well as therapeutic responses. Genetically engineered mouse (GEM) models provide powerful tools to unravel the molecular mechanisms critical for melanoma development and drug resistance. Here, we expound briefly the basis of the mouse modeling design, the available technology for genetic engineering, and the aspects influencing the use of GEMs to model melanoma. Furthermore, we describe in detail the currently available GEM models of melanoma. Cancer 2017;123:2089-103. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
61
|
Cao Y, Lin SH, Wang Y, Chin YE, Kang L, Mi J. Glutamic Pyruvate Transaminase GPT2 Promotes Tumorigenesis of Breast Cancer Cells by Activating Sonic Hedgehog Signaling. Theranostics 2017; 7:3021-3033. [PMID: 28839461 PMCID: PMC5566103 DOI: 10.7150/thno.18992] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
Increased glutamine metabolism is a hallmark of cancer. Mitochondrial glutamic pyruvate transaminase (GPT2) catalyzes the reversible transamination between alanine and α-ketoglutarate (α-KG), also known as 2-oxoglutarate, to generate pyruvate and glutamate during cellular glutamine catabolism. However, the precise role of GPT2 in tumorigenesis remains elusive. Here, we report that in breast cancer tissue samples and breast cancer cell lines, GPT2 expression level was markedly elevated and correlated with the pathological grades of breast cancers. GPT2 overexpression increased the subpopulation of breast cancer stem cells in vitro and promoted tumorigenesis in mice. GPT2 reduced α-KG level in cells leading to the inhibition of proline hydroxylase 2 (PHD2) activity involved in the regulation of HIF1α stability. Accumulation of HIF1α, resulting from GPT2-α-KG-PHD2 axial, constitutively activates sonic hedgehog (Shh) signaling pathway. Overall, GPT2 promotes tumorigenesis and stemness of breast cancer cells by activating the Shh signaling, suggesting that GTP2 is a potential target for breast cancer therapy.
Collapse
|
62
|
Dolfi SC, Medina DJ, Kareddula A, Paratala B, Rose A, Dhami J, Chen S, Ganesan S, Mackay G, Vazquez A, Hirshfield KM. Riluzole exerts distinct antitumor effects from a metabotropic glutamate receptor 1-specific inhibitor on breast cancer cells. Oncotarget 2017; 8:44639-44653. [PMID: 28591718 PMCID: PMC5546507 DOI: 10.18632/oncotarget.17961] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 04/20/2017] [Indexed: 01/04/2023] Open
Abstract
Recent evidence suggests that glutamate signaling plays an important role in cancer. Riluzole is a glutamate release inhibitor and FDA-approved drug for the treatment of amyotrophic lateral sclerosis. It has been investigated as an inhibitor of cancer cell growth and tumorigenesis with the intention of repurposing it for the treatment of cancer. Riluzole is thought to act by indirectly inhibiting glutamate signaling. However, the specific effects of riluzole in breast cancer cells are not well understood. In this study, the anti-cancer effects of riluzole were explored in a panel of breast cancer cell lines in comparison to the metabotropic glutamate receptor 1-specific inhibitor BAY 36-7620. While both drugs inhibited breast cancer cell proliferation, there were distinct functional effects suggesting that riluzole action may be metabotropic glutamate receptor 1-independent. Riluzole induced mitotic arrest independent of oxidative stress while BAY 36-7620 had no measurable effect on mitosis. BAY 36-7620 had a more pronounced and significant effect on DNA damage than riluzole. Riluzole altered cellular metabolism as demonstrated by changes in oxidative phosphorylation and cellular metabolite levels. These results provide a better understanding of the functional action of riluzole in the treatment of breast cancer.
Collapse
Affiliation(s)
- Sonia C Dolfi
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Daniel J Medina
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Aparna Kareddula
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Bhavna Paratala
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Ashley Rose
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Jatinder Dhami
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Shridar Ganesan
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Gillian Mackay
- CRUK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK
| | - Alexei Vazquez
- CRUK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK
| | - Kim M Hirshfield
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| |
Collapse
|
63
|
Xi SS, Bai XX, Gu L, Bao LH, Yang HM, An W, Wang XM, Zhang H. Metabotropic glutamate receptor 5 mediates the suppressive effect of 6-OHDA-induced model of Parkinson's disease on liver cancer. Pharmacol Res 2017; 121:145-157. [PMID: 28455267 DOI: 10.1016/j.phrs.2017.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/16/2017] [Accepted: 04/24/2017] [Indexed: 12/29/2022]
Abstract
Numerous epidemiological studies suggested that there is a variable cancer risk in patients with Parkinson's disease (PD). However, the underlying mechanisms remain unclear. In the present study, the role of metabotropic glutamate receptor 5 (mGluR5) has been investigated in 6-hydroxydopamine (6-OHDA)-induced PD combined with liver cancer both in vitro and in vivo. We found that PD cellular model from 6-OHDA-lesioned MN9D cells suppressed the growth, migration, and invasion of Hepa1-6 cells via down-regulation of mGluR5-mediated ERK and Akt pathway. The application of 2-methyl-6-(phenylethyl)-pyridine and knockdown of mGluR5 further decreased the effect on Hepa-1-6 cells when co-cultured with conditioned media. The effect was increased by (S)-3,5-dihydroxyphenylglycine and overexpression of mGluR5. Moreover, more release of glutamate from 6-OHDA-lesioned MN9D cells suppressed mGluR5-mediated effect of Hepa1-6 cells. Application of riluzole eliminated the increased glutamate release induced by 6-OHDA in MN9D cells and aggravated the suppressive effect on Hepa-1-6 cells. In addition, the growth of implanted liver cancer was inhibited in 6-OHDA induced PD-like rats, and was associated with increased glutamate release in the serum and down-regulation of mGluR5 in tumor tissue. Collectively, these results indicate that selective antagonism of glutamate and mGluR5 has a potentially beneficial effect in both liver cancer and PD, and thus may provide more understanding for the clinical investigation and further an additional therapeutic target for these two diseases.
Collapse
Affiliation(s)
- Shao-Song Xi
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Xiao-Xu Bai
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Li-Hui Bao
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Hui-Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Wei An
- Department of Cell Biology, School of Basic Medical Sciences, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Xiao-Min Wang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
64
|
Liao S, Ruiz Y, Gulzar H, Yelskaya Z, Ait Taouit L, Houssou M, Jaikaran T, Schvarts Y, Kozlitina K, Basu-Roy U, Mansukhani A, Mahajan SS. Osteosarcoma cell proliferation and survival requires mGluR5 receptor activity and is blocked by Riluzole. PLoS One 2017; 12:e0171256. [PMID: 28231291 PMCID: PMC5322947 DOI: 10.1371/journal.pone.0171256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/17/2017] [Indexed: 11/18/2022] Open
Abstract
Osteosarcomas are malignant tumors of bone, most commonly seen in children and adolescents. Despite advances in modern medicine, the poor survival rate of metastatic osteosarcoma has not improved in two decades. In the present study we have investigated the effect of Riluzole on a human and mouse metastatic osteosarcoma cells. We show that LM7 cells secrete glutamate in the media and that mGluR5 receptors are required for the proliferation of LM7 cells. Riluzole, which is known to inhibit glutamate release, inhibits proliferation, induces apoptosis and prevents migration of LM7 cells. This is also seen with Fenobam, a specific blocker of mGluR5. We also show that Riluzole alters the phosphorylation status of AKT/P70 S6 kinase, ERK1/2 and JNK1/2. Thus Riluzole is an effective drug to inhibit proliferation and survival of osteosarcoma cells and has therapeutic potential for the treatment of osteosarcoma exhibiting autocrine glutamate signaling.
Collapse
Affiliation(s)
- Sally Liao
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Yuleisy Ruiz
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Hira Gulzar
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Zarina Yelskaya
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Lyes Ait Taouit
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Murielle Houssou
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Trisha Jaikaran
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Yuriy Schvarts
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Kristina Kozlitina
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Upal Basu-Roy
- Department of Microbiology & Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, United States of America
| | - Alka Mansukhani
- Department of Microbiology & Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, United States of America
| | - Shahana S. Mahajan
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
- Brain and Mind Research Institute, Weil Cornell Medical College, New York, NY, United States of America
| |
Collapse
|
65
|
Isola AL, Eddy K, Chen S. Biology, Therapy and Implications of Tumor Exosomes in the Progression of Melanoma. Cancers (Basel) 2016; 8:E110. [PMID: 27941674 PMCID: PMC5187508 DOI: 10.3390/cancers8120110] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/17/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer is the second leading cause of death in the United States, and about 6% of the estimated cancer diagnoses this year will be melanoma cases. Melanomas are derived from transformation of the pigment producing cells of the skin, melanocytes. Early stage melanoma is usually curable by surgical resection, but late stage or subsequent secondary metastatic tumors are treated with some success with chemotherapies, radiation and/or immunotherapies. Most cancer patients die from metastatic disease, which is especially the case in melanoma. A better understanding of tumor metastasis will provide insights and guide rational therapeutic designs. Recently, the importance of melanoma-derived exosomes in the progression of that cancer has become more apparent, namely, their role in various stages of metastasis, including the induction of migration, invasion, primary niche manipulation, immune modulation and pre-metastatic niche formation. This review focuses on the critical roles that melanoma exosomes play in the progression of this deadly disease.
Collapse
Affiliation(s)
- Allison L Isola
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, the State University, Piscataway, NJ 08854, USA.
- Joint Graduate Program in Toxicology, Rutgers, The State University, Piscataway, NJ 08854, USA.
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, the State University, Piscataway, NJ 08854, USA.
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, the State University, Piscataway, NJ 08854, USA.
- Joint Graduate Program in Toxicology, Rutgers, The State University, Piscataway, NJ 08854, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
66
|
Speyer CL, Nassar MA, Hachem AH, Bukhsh MA, Jafry WS, Khansa RM, Gorski DH. Riluzole mediates anti-tumor properties in breast cancer cells independent of metabotropic glutamate receptor-1. Breast Cancer Res Treat 2016; 157:217-228. [DOI: 10.1007/s10549-016-3816-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/23/2016] [Indexed: 02/05/2023]
|
67
|
Isola AL, Chen S. Exosomes: The Link between GPCR Activation and Metastatic Potential? Front Genet 2016; 7:56. [PMID: 27092178 PMCID: PMC4824768 DOI: 10.3389/fgene.2016.00056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022] Open
Abstract
The activation of G-Protein Coupled Receptors (GPCRs) by their respective ligands initiates a cascade of multiple signaling processes within the cell, regulating growth, metabolism and other essential cellular functions. Dysregulation and aberrant expression of these GPCRs and their subsequent signaling cascades are associated with many different types of pathologies, including cancer. The main life threatening complication in patients diagnosed with cancer is the dissemination of cells from the primary tumor to distant vital organs within the body, metastasis. Communication between the primary tumor, immune system, and the site of future metastasis are some of the key events in the early stages of metastasis. It has been postulated that the communication is mediated by nanovesicles that, under non-pathological conditions, are released by normal cells to relay signals to other cells in the body. These nanovesicles are called exosomes, and are utilized by the tumor cell to influence changes within the recipient cell, such as bone marrow progenitor cells, and cells within the site of future metastatic growth, in order to prepare the site for colonization. Tumor cells have been shown to release an increased number of exosomes when compared to their normal cell counterpart. Exosome production and release are regulated by proteins involved in localization, degradation and size of the multivesicular body, whose function may be altered within cancer cells, resulting in the release of an increased number of these vesicles. This review investigates the possibility of GPCR signaling cascades acting as the upstream activator of proteins involved in exosome production and release, linking a commonly targeted trans-membrane protein class with cellular communication utilized by tumor cells in early stages of metastasis.
Collapse
Affiliation(s)
- Allison L Isola
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers the State UniversityPiscataway, NJ, USA; Joint Graduate Program in Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers the State UniversityPiscataway, NJ, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers the State UniversityPiscataway, NJ, USA; Joint Graduate Program in Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers the State UniversityPiscataway, NJ, USA; Rutgers Cancer Institute of New JerseyNew Brunswick, NJ, USA
| |
Collapse
|
68
|
Yu LJ, Wall BA, Wangari-Talbot J, Chen S. Metabotropic glutamate receptors in cancer. Neuropharmacology 2016; 115:193-202. [PMID: 26896755 DOI: 10.1016/j.neuropharm.2016.02.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 01/31/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are widely known for their roles in synaptic signaling. However, accumulating evidence suggests roles of mGluRs in human malignancies in addition to synaptic transmission. Somatic cell homeostasis presents intriguing possibilities of mGluRs and glutamate signaling as novel targets for human cancers. More recently, aberrant glutamate signaling has been shown to participate in the transformation and maintenance of various cancer types, including glioma, melanoma skin cancer, breast cancer, and prostate cancer, indicating that genes encoding mGluRs, GRMs, can function as oncogenes. Here, we provide a review on the interactions of mGluRs and their ligand, glutamate, in processes that promote the growth of tumors of neuronal and non-neuronal origins. Further, we discuss the evolution of riluzole, a glutamate release inhibitor approved for amyotrophic lateral sclerosis (ALS), but now fashioned as an mGluR1 inhibitor for melanoma therapy and as a radio-sensitizer for tumors that have metastasized to the brain. With the success of riluzole, it is not far-fetched to believe that other drugs that may act directly or indirectly on other mGluRs can be beneficial for multiple applications. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Lumeng J Yu
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, NJ, USA
| | - Brian A Wall
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, NJ, USA; Global Product Safety, Colgate-Palmolive Company, Piscataway, NJ, USA
| | - Janet Wangari-Talbot
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, NJ, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, NJ, USA; The Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
69
|
Rab32 and Rab38 genes in chordate pigmentation: an evolutionary perspective. BMC Evol Biol 2016; 16:26. [PMID: 26818140 PMCID: PMC4728774 DOI: 10.1186/s12862-016-0596-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022] Open
Abstract
Background The regulation of cellular membrane trafficking in all eukaryotes is a very complex mechanism, mostly regulated by the Rab family proteins. Among all membrane-enclosed organelles, melanosomes are the cellular site for synthesis, storage and transport of melanin granules, making them an excellent model for studies on organelle biogenesis and motility. Specific Rab proteins, as Rab32 and Rab38, have been shown to play a key role in melanosome biogenesis. We analysed the Rab32 and Rab38 genes in the teleost zebrafish and in the cephalochordate amphioxus, gaining insight on their evolutionary history following gene and genome duplications. Results We studied the molecular evolution of Rab supergroup III in deuterostomes by phylogenetic reconstruction, intron and synteny conservation. We discovered a novel amino acid stretch, named FALK, shared by three related classes belonging to Rab supergroup III: Rab7L1, Rab32LO and Rab32/Rab38. Among these, we demonstrated that the Rab32LO class, already present in the last common eukaryotic ancestor, was lost in urochordates and vertebrates. Synteny shows that one zebrafish gene, Rab38a, which is expressed in pigmented cells, retained the linkage with tyrosinase, a protein essential for pigmentation. Moreover, the chromosomal linkage of Rab32 or Rab38 with a member of the glutamate receptor metabotropic (Grm) family has been retained in all analysed gnathostomes, suggesting a conserved microsynteny in the vertebrate ancestor. Expression patterns of Rab32 and Rab38 genes in zebrafish, and Rab32/38 in amphioxus, indicate their involvement in development of pigmented cells and notochord. Conclusions Phylogenetic, intron conservation and synteny analyses point towards an evolutionary scenario based on a duplication of a single invertebrate Rab32/38 gene giving rise to vertebrate Rab32 and Rab38. The expression patterns of Rab38 paralogues highlight sub-functionalization event. Finally, the discovery of a chromosomal linkage between the Rab32 or Rab38 gene with a Grm opens new perspectives on possible conserved bystander gene regulation across the vertebrate evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0596-1) contains supplementary material, which is available to authorized users.
Collapse
|
70
|
Dumas SJ, Humbert M, Cohen-Kaminsky S. [The cancer paradigm in pulmonary arterial hypertension: towards anti-remodeling therapies targeting metabolic dysfunction?]. Biol Aujourdhui 2016; 210:171-189. [PMID: 28327277 DOI: 10.1051/jbio/2016022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 11/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, complex and multifactorial disease in which pulmonary vascular remodeling plays a major role ending in right heart failure and death. Current specific therapies of PAH that mainly target the vasoconstriction/vasodilatation imbalance are not curative. Bi-pulmonary transplantation remains the only option in patients resistant to current therapies. It is thus crucial to identify novel vascular anti-remodeling therapeutic targets. This remodeling displays several properties of cancer cells, especially overproliferation and apoptosis resistance of pulmonary vascular cells, hallmarks of cancer related to the metabolic shift known as the "Warburg effect". The latter is characterized by a shift of ATP production, from oxidative phosphorylation to low rate aerobic glycolysis. In compensation, the cancer cells exhibit exacerbated glutaminolysis thus resulting in glutamine addiction, necessary to their overproliferation. Glutamine intake results in glutamate production, a molecule at the crossroads of energy metabolism and cancer cell communication, thus contributing to cell proliferation. Accordingly, therapeutic strategies targeting glutamate production, its release into the extracellular space and its membrane receptors have been suggested to treat different types of cancers, not only in the central nervous system but also in the periphery. We propose that similar strategies targeting glutamatergic signaling may be considered in PAH, especially as they could affect not only the vascular remodeling but also the right heart hypertrophy known to involve the glutaminolysis pathway. Ongoing studies aim to characterize the involvement of the glutamate pathway and its receptors in vascular remodeling, and the therapeutic potential of specific molecules targeting this pathway.
Collapse
Affiliation(s)
- Sébastien J Dumas
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France - AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France - AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Sylvia Cohen-Kaminsky
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
71
|
Topiol S, Sabio M. 7TM X-ray structures for class C GPCRs as new drug-discovery tools. 1. mGluR5. Bioorg Med Chem Lett 2016; 26:484-494. [DOI: 10.1016/j.bmcl.2015.11.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 11/28/2022]
|
72
|
Mairhofer DG, Ortner D, Tripp CH, Schaffenrath S, Fleming V, Heger L, Komenda K, Reider D, Dudziak D, Chen S, Becker JC, Flacher V, Stoitzner P. Impaired gp100-Specific CD8(+) T-Cell Responses in the Presence of Myeloid-Derived Suppressor Cells in a Spontaneous Mouse Melanoma Model. J Invest Dermatol 2015; 135:2785-2793. [PMID: 26121214 PMCID: PMC4652066 DOI: 10.1038/jid.2015.241] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/01/2015] [Accepted: 06/11/2015] [Indexed: 12/12/2022]
Abstract
Murine tumor models that closely reflect human diseases are important tools to investigate carcinogenesis and tumor immunity. The transgenic (tg) mouse strain tg(Grm1)EPv develops spontaneous melanoma due to ectopic overexpression of the metabotropic glutamate receptor 1 (Grm1) in melanocytes. In the present study, we characterized the immune status and functional properties of immune cells in tumor-bearing mice. Melanoma development was accompanied by a reduction in the percentages of CD4(+) T cells including regulatory T cells (Tregs) in CD45(+) leukocytes present in tumor tissue and draining lymph nodes (LNs). In contrast, the percentages of CD8(+) T cells were unchanged, and these cells showed an activated phenotype in tumor mice. Endogenous melanoma-associated antigen glycoprotein 100 (gp100)-specific CD8(+) T cells were not deleted during tumor development, as revealed by pentamer staining in the skin and draining LNs. They, however, were unresponsive to ex vivo gp100-peptide stimulation in late-stage tumor mice. Interestingly, immunosuppressive myeloid-derived suppressor cells (MDSCs) were recruited to tumor tissue with a preferential accumulation of granulocytic MDSC (grMDSCs) over monocytic MDSC (moMDSCs). Both subsets produced Arginase-1, inducible nitric oxide synthase (iNOS), and transforming growth factor-β and suppressed T-cell proliferation in vitro. In this work, we describe the immune status of a spontaneous melanoma mouse model that provides an interesting tool to develop future immunotherapeutical strategies.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Cell Proliferation
- Disease Models, Animal
- Humans
- Lymphocyte Activation
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Random Allocation
- Suppressor Factors, Immunologic/immunology
- Suppressor Factors, Immunologic/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Cells, Cultured
- gp100 Melanoma Antigen/immunology
- gp100 Melanoma Antigen/metabolism
Collapse
Affiliation(s)
- David G Mairhofer
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Ortner
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph H Tripp
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria; Oncotyrol, Center for Personalized Cancer Medicine, Innsbruck, Austria
| | - Sandra Schaffenrath
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria; Oncotyrol, Center for Personalized Cancer Medicine, Innsbruck, Austria
| | - Viktor Fleming
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria; Department of Dermatology, Laboratory of DC-Biology, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Erlangen, Germany
| | - Lukas Heger
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria; Department of Dermatology, Laboratory of DC-Biology, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Erlangen, Germany
| | - Kerstin Komenda
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Reider
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria; Oncotyrol, Center for Personalized Cancer Medicine, Innsbruck, Austria
| | - Diana Dudziak
- Department of Dermatology, Laboratory of DC-Biology, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Erlangen, Germany
| | - Suzie Chen
- Department of Chemical Biology, Lab for Cancer Research, Rutgers University, Piscataway, New Jersey, USA
| | - Jürgen C Becker
- Department for Translational Dermato-Oncology, Center for Medical Biotechnology, University Hospital Essen, Essen, Germany
| | - Vincent Flacher
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
73
|
Kuzu OF, Nguyen FD, Noory MA, Sharma A. Current State of Animal (Mouse) Modeling in Melanoma Research. CANCER GROWTH AND METASTASIS 2015; 8:81-94. [PMID: 26483610 PMCID: PMC4597587 DOI: 10.4137/cgm.s21214] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 11/16/2022]
Abstract
Despite the considerable progress in understanding the biology of human cancer and technological advancement in drug discovery, treatment failure remains an inevitable outcome for most cancer patients with advanced diseases, including melanoma. Despite FDA-approved BRAF-targeted therapies for advanced stage melanoma showed a great deal of promise, development of rapid resistance limits the success. Hence, the overall success rate of melanoma therapy still remains to be one of the worst compared to other malignancies. Advancement of next-generation sequencing technology allowed better identification of alterations that trigger melanoma development. As development of successful therapies strongly depends on clinically relevant preclinical models, together with the new findings, more advanced melanoma models have been generated. In this article, besides traditional mouse models of melanoma, we will discuss recent ones, such as patient-derived tumor xenografts, topically inducible BRAF mouse model and RCAS/TVA-based model, and their advantages as well as limitations. Although mouse models of melanoma are often criticized as poor predictors of whether an experimental drug would be an effective treatment, development of new and more relevant models could circumvent this problem in the near future.
Collapse
Affiliation(s)
- Omer F Kuzu
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Felix D Nguyen
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohammad A Noory
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Arati Sharma
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
74
|
Atypical signaling of metabotropic glutamate receptor 1 in human melanoma cells. Biochem Pharmacol 2015; 98:182-9. [PMID: 26291396 DOI: 10.1016/j.bcp.2015.08.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/12/2015] [Indexed: 11/21/2022]
Abstract
The metabotropic glutamate 1 (mGlu1) receptor has emerged as a novel target for the treatment of metastatic melanoma and various other cancers. Our laboratory has demonstrated that a selective, non-competitive mGlu1 receptor antagonist slows human melanoma growth in vitro and in vivo. In this study, we sought to determine if the activation of a canonical G protein-dependent signal transduction cascade, which is often used as an output of mGlu1 receptor activity in neuronal cells, correlated with mGlu1 receptor-mediated melanoma cell viability. Glutamate, the endogenous ligand of mGlu1 receptors, significantly increased melanoma cell viability, but did not stimulate phosphoinositide (PI) hydrolysis in several human melanoma cell lines. In contrast, melanoma cell viability was not increased by quisqualate, a highly potent mGlu1 receptor agonist, or DHPG, a selective group I mGlu receptor agonist. Similarly to glutamate, quisqualate also failed to stimulate PI hydrolysis in mGlu1 receptor-expressing melanoma cells. These results suggest that the canonical G protein-dependent signal transduction cascade is not coupled to mGlu1 receptors in all human melanoma cells. On the other hand, dynamin inhibition selectively decreased viability of mGlu1 receptor-expressing melanoma cells, suggesting that a mechanism requiring internalization may control melanoma cell viability. Taken together, these data demonstrate that the approaches commonly used to study mGlu1 receptor function and signaling in other systems may be inappropriate for studying mGlu1 receptor-mediated melanoma cell viability.
Collapse
|
75
|
Hu H, Takano N, Xiang L, Gilkes DM, Luo W, Semenza GL. Hypoxia-inducible factors enhance glutamate signaling in cancer cells. Oncotarget 2015; 5:8853-68. [PMID: 25326682 PMCID: PMC4253402 DOI: 10.18632/oncotarget.2593] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Signaling through glutamate receptors has been reported in human cancers, but the molecular mechanisms are not fully delineated. We report that in hepatocellular carcinoma and clear cell renal carcinoma cells, increased activity of hypoxia-inducible factors (HIFs) due to hypoxia or VHL loss-of-function, respectively, augmented release of glutamate, which was mediated by HIF-dependent expression of the SLC1A1 and SLC1A3 genes encoding glutamate transporters. In addition, HIFs coordinately regulated expression of the GRIA2 and GRIA3 genes, which encode glutamate receptors. Binding of glutamate to its receptors activated SRC family kinases and downstream pathways, which stimulated cancer cell proliferation, apoptosis resistance, migration and invasion in different cancer cell lines. Thus, coordinate regulation of glutamate transporters and receptors by HIFs was sufficient to activate key signal transduction pathways that promote cancer progression.
Collapse
Affiliation(s)
- Hongxia Hu
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Naoharu Takano
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lisha Xiang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniele M Gilkes
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Weibo Luo
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gregg L Semenza
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
76
|
Yu LJ, Wall BA, Chen S. The current management of brain metastasis in melanoma: a focus on riluzole. Expert Rev Neurother 2015; 15:779-92. [PMID: 26092602 DOI: 10.1586/14737175.2015.1055321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain metastasis is a common endpoint in human malignant melanoma, and the prognosis for patients remains poor despite advancements in therapy. Current treatment for melanoma metastatic to the brain is grouped into those providing symptomatic relief such as corticosteroids and antiepileptic agents, to those that are disease modifying. Related to the latter group, recent studies have demonstrated that aberrant glutamate signaling plays a role in the transformation and maintenance of various cancer types, including melanoma. Glutamate secretion from these and surrounding cells have been found to stimulate regulatory pathways that control tumor growth, proliferation and survival in vitro and in vivo. The antiglutamatergic actions of an inhibitor of glutamate release, riluzole, have been detected by its ability to clear glutamate from the synapse, and it has been shown to inhibit glutamate release rather than directly inhibiting glutamate receptors. Preclinical studies have demonstrated the ability of riluzole to act as a radiosensitizing agent in melanoma. The effect of riluzole on downstream glutamatergic signaling has pointed to cross talk between the metabotropic G-protein-coupled glutamate receptors implicated in a subset of human melanomas with other signaling pathways, including apoptotic, angiogenic, ROS and cell invasion mechanisms, thus establishing its potential to be further explored in combination therapy regimens for both primary human melanoma and melanoma metastatic to the brain.
Collapse
Affiliation(s)
- Lumeng J Yu
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, the State University, Piscataway, NJ, 08854, USA
| | | | | |
Collapse
|
77
|
Gelb T, Pshenichkin S, Rodriguez OC, Hathaway HA, Grajkowska E, DiRaddo JO, Wroblewska B, Yasuda RP, Albanese C, Wolfe BB, Wroblewski JT. Metabotropic glutamate receptor 1 acts as a dependence receptor creating a requirement for glutamate to sustain the viability and growth of human melanomas. Oncogene 2015; 34:2711-20. [PMID: 25065592 PMCID: PMC5853109 DOI: 10.1038/onc.2014.231] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/14/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022]
Abstract
Metabotropic glutamate 1 (mGlu) receptor has been proposed as a target for the treatment of metastatic melanoma. Studies have demonstrated that inhibiting the release of glutamate (the natural ligand of mGlu1 receptors), results in a decrease of melanoma tumor growth in mGlu1 receptor-expressing melanomas. Here we demonstrate that mGlu1 receptors, which have been previously characterized as oncogenes, also behave like dependence receptors by creating a dependence on glutamate for sustained cell viability. In the mGlu1 receptor-expressing melanoma cell lines SK-MEL-2 (SK2) and SK-MEL-5 (SK5), we show that glutamate is both necessary and sufficient to maintain cell viability, regardless of underlying genetic mutations. Addition of glutamate increased DNA synthesis, whereas removal of glutamate not only suppressed DNA synthesis but also promoted cell death in SK2 and SK5 melanoma cells. Using genetic and pharmacological inhibitors, we established that this effect of glutamate is mediated by the activation of mGlu1 receptors. The stimulatory potential of mGlu1 receptors was further confirmed in vivo in a melanoma cell xenograft model. In this model, subcutaneous injection of SK5 cells with short hairpin RNA-targeted downregulation of mGlu1 receptors resulted in a decrease in the rate of tumor growth relative to control. We also demonstrate for the first time that a selective mGlu1 receptor antagonist JNJ16259685 ((3,4-Dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone) slows SK2 and SK5 melanoma tumor growth in vivo. Taken together, these data suggest that pharmacological inhibition of mGlu1 receptors may be a novel approach for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- T Gelb
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - S Pshenichkin
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - O C Rodriguez
- Department of Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - H A Hathaway
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - E Grajkowska
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - J O DiRaddo
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - B Wroblewska
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - R P Yasuda
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - C Albanese
- Department of Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - B B Wolfe
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - J T Wroblewski
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
78
|
Teh JLF, Shah R, La Cava S, Dolfi SC, Mehta MS, Kongara S, Price S, Ganesan S, Reuhl KR, Hirshfield KM, Karantza V, Chen S. Metabotropic glutamate receptor 1 disrupts mammary acinar architecture and initiates malignant transformation of mammary epithelial cells. Breast Cancer Res Treat 2015; 151:57-73. [PMID: 25859923 DOI: 10.1007/s10549-015-3365-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/31/2015] [Indexed: 01/20/2023]
Abstract
Metabotropic glutamate receptor 1 (mGluR1/Grm1) is a member of the G-protein-coupled receptor superfamily, which was once thought to only participate in synaptic transmission and neuronal excitability, but has more recently been implicated in non-neuronal tissue functions. We previously described the oncogenic properties of Grm1 in cultured melanocytes in vitro and in spontaneous melanoma development with 100 % penetrance in vivo. Aberrant mGluR1 expression was detected in 60-80 % of human melanoma cell lines and biopsy samples. As most human cancers are of epithelial origin, we utilized immortalized mouse mammary epithelial cells (iMMECs) as a model system to study the transformative properties of Grm1. We introduced Grm1 into iMMECs and isolated several stable mGluR1-expressing clones. Phenotypic alterations in mammary acinar architecture were assessed using three-dimensional morphogenesis assays. We found that mGluR1-expressing iMMECs exhibited delayed lumen formation in association with decreased central acinar cell death, disrupted cell polarity, and a dramatic increase in the activation of the mitogen-activated protein kinase pathway. Orthotopic implantation of mGluR1-expressing iMMEC clones into mammary fat pads of immunodeficient nude mice resulted in mammary tumor formation in vivo. Persistent mGluR1 expression was required for the maintenance of the tumorigenic phenotypes in vitro and in vivo, as demonstrated by an inducible Grm1-silencing RNA system. Furthermore, mGluR1 was found be expressed in human breast cancer cell lines and breast tumor biopsies. Elevated levels of extracellular glutamate were observed in mGluR1-expressing breast cancer cell lines and concurrent treatment of MCF7 xenografts with glutamate release inhibitor, riluzole, and an AKT inhibitor led to suppression of tumor progression. Our results are likely relevant to human breast cancer, highlighting a putative role of mGluR1 in the pathophysiology of breast cancer and the potential of mGluR1 as a novel therapeutic target.
Collapse
Affiliation(s)
- Jessica L F Teh
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Rosenberg SA, Niglio SA, Salehomoum N, Chan JLK, Jeong BS, Wen Y, Li J, Fukui J, Chen S, Shin SS, Goydos JS. Targeting Glutamatergic Signaling and the PI3 Kinase Pathway to Halt Melanoma Progression. Transl Oncol 2015; 8:1-9. [PMID: 25749171 PMCID: PMC4350641 DOI: 10.1016/j.tranon.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/19/2022] Open
Abstract
Our group has previously reported that the majority of human melanomas (> 60%) express the metabotropic glutamate receptor 1 (GRM1) and that the glutamate release inhibitor riluzole, a drug currently used to treat amyotrophic lateral sclerosis, can induce apoptosis in GRM1-expressing melanoma cells. Our group previously reported that in vitro riluzole treatment reduces cell growth in three-dimensional (3D) soft agar colony assays by 80% in cells with wildtype phosphoinositide 3-kinase (PI3K) pathway activation. However, melanoma cell lines harboring constitutive activating mutations of the PI3K pathway (PTEN and NRAS mutations) showed only a 35% to 40% decrease in colony formation in soft agar in the presence of riluzole. In this study, we have continued our preclinical studies of riluzole and its effect on melanoma cells alone and in combination with inhibitors of the PI3 kinase pathway: the AKT inhibitor, API-2, and the mammalian target of rapamycin (mTOR) inhibitor, rapamycin. We modeled these combinatorial therapies on various melanoma cell lines in 3D and 2D systems and in vivo. Riluzole combined with mTOR inhibition is more effective at halting melanoma anchorage-independent growth and xenograft tumor progression than either agent alone. PI3K signaling changes associated with this combinatorial treatment shows that 3D (nanoculture) modeling of cell signaling more closely resembles in vivo signaling than monolayer models. Riluzole combined with mTOR inhibition is effective at halting tumor cell progression independent of BRAF mutational status. This makes this combinatorial therapy a potentially viable alternative for metastatic melanoma patients who are BRAF WT and are therefore ineligible for vemurafenib therapy.
Collapse
Affiliation(s)
- Stephen A Rosenberg
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI, USA; Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Scot A Niglio
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Negar Salehomoum
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Joseph L-K Chan
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Byeong-Seon Jeong
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yu Wen
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jiadong Li
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jami Fukui
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, NJ, USA
| | - Seung-Shick Shin
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - James S Goydos
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
80
|
Hathaway HA, Pshenichkin S, Grajkowska E, Gelb T, Emery AC, Wolfe BB, Wroblewski JT. Pharmacological characterization of mGlu1 receptors in cerebellar granule cells reveals biased agonism. Neuropharmacology 2015; 93:199-208. [PMID: 25700650 DOI: 10.1016/j.neuropharm.2015.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 01/14/2023]
Abstract
The majority of existing research on the function of metabotropic glutamate (mGlu) receptor 1 focuses on G protein-mediated outcomes. However, similar to other G protein-coupled receptors (GPCR), it is becoming apparent that mGlu1 receptor signaling is multi-dimensional and does not always involve G protein activation. Previously, in transfected CHO cells, we showed that mGlu1 receptors activate a G protein-independent, β-arrestin-dependent signal transduction mechanism and that some mGlu1 receptor ligands were incapable of stimulating this response. Here we set out to investigate the physiological relevance of these findings in a native system using primary cultures of cerebellar granule cells. We tested the ability of a panel of compounds to stimulate two mGlu1 receptor-mediated outcomes: (1) protection from decreased cell viability after withdrawal of trophic support and (2) G protein-mediated phosphoinositide (PI) hydrolysis. We report that the commonly used mGlu1 receptor ligands quisqualate, DHPG, and ACPD are completely biased towards PI hydrolysis and do not induce mGlu1 receptor-stimulated neuroprotection. On the other hand, endogenous compounds including glutamate, aspartate, cysteic acid, cysteine sulfinic acid, and homocysteic acid stimulate both responses. These results show that some commonly used mGlu1 receptor ligands are biased agonists, stimulating only a fraction of mGlu1 receptor-mediated responses in neurons. This emphasizes the importance of utilizing multiple agonists and assays when studying GPCR function.
Collapse
Affiliation(s)
- Hannah A Hathaway
- Department of Pharmacology and Physiology, Georgetown University, Washington, D.C. 20057, USA.
| | - Sergey Pshenichkin
- Department of Pharmacology and Physiology, Georgetown University, Washington, D.C. 20057, USA
| | - Ewa Grajkowska
- Department of Pharmacology and Physiology, Georgetown University, Washington, D.C. 20057, USA
| | - Tara Gelb
- Department of Pharmacology and Physiology, Georgetown University, Washington, D.C. 20057, USA
| | - Andrew C Emery
- Section on Molecular Neuroscience, National Institute of Mental Health IRP, Bldg 49, Room 5A27, Bethesda, MD 20892, USA
| | - Barry B Wolfe
- Department of Pharmacology and Physiology, Georgetown University, Washington, D.C. 20057, USA
| | - Jarda T Wroblewski
- Department of Pharmacology and Physiology, Georgetown University, Washington, D.C. 20057, USA
| |
Collapse
|
81
|
Inhibitors of glutamate release from breast cancer cells; new targets for cancer-induced bone-pain. Sci Rep 2015; 5:8380. [PMID: 25670024 PMCID: PMC4323637 DOI: 10.1038/srep08380] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/19/2015] [Indexed: 01/20/2023] Open
Abstract
Glutamate is an important signaling molecule in a wide variety of tissues. Aberrant glutamatergic signaling disrupts normal tissue homeostasis and induces several disruptive pathological conditions including pain. Breast cancer cells secrete high levels of glutamate and often metastasize to bone. Exogenous glutamate can disrupt normal bone turnover and may be responsible for cancer-induced bone pain (CIBP). CIBP is a significant co-morbidity that affects quality of life for many advanced-stage breast cancer patients. Current treatment options are commonly accompanied by serious side-effects that negatively impact patient care. Identifying small molecule inhibitors of glutamate release from aggressive breast cancer cells advances a novel, mechanistic approach to targeting CIBP that could advance treatment for several pathological conditions. Using high-throughput screening, we investigated the ability of approximately 30,000 compounds from the Canadian Compound Collection to reduce glutamate release from MDA-MB-231 breast cancer cells. This line is known to secrete high levels of glutamate and has been demonstrated to induce CIBP by this mechanism. Positive chemical hits were based on the potency of each molecule relative to a known pharmacological inhibitor of glutamate release, sulfasalazine. Efficacy was confirmed and drug-like molecules were identified as potent inhibitors of glutamate secretion from MDA-MB-231, MCF-7 and Mat-Ly-Lu cells.
Collapse
|
82
|
Fujinaga M, Xie L, Yamasaki T, Yui J, Shimoda Y, Hatori A, Kumata K, Zhang Y, Nengaki N, Kawamura K, Zhang MR. Synthesis and Evaluation of 4-Halogeno-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-[11C]methylbenzamide for Imaging of Metabotropic Glutamate 1 Receptor in Melanoma. J Med Chem 2015; 58:1513-23. [DOI: 10.1021/jm501845n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masayuki Fujinaga
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Joji Yui
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yoko Shimoda
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akiko Hatori
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Katsushi Kumata
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yiding Zhang
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nobuki Nengaki
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- SHI Accelerator
Service Co. Ltd., 5-9-11 Kitashinagawa, Shinagawa-ku, Tokyo 141-8686, Japan
| | - Kazunori Kawamura
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
83
|
Abstract
Melanoma is a malignant tumor of melanocytes. Although extensive investigations have been done to study metabolic changes in primary melanoma in vivo and in vitro, little effort has been devoted to metabolic profiling of metastatic tumors in organs other than lymph nodes. In this work, NMR-based metabolomics combined with multivariate data analysis is used to study metastatic B16-F10 melanoma in C57BL/6J mouse spleen. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonal Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to find important metabolites responsible for discriminating the control and the melanoma groups. Two different strategies, i.e. spectral binning and spectral deconvolution, are used to reduce the original spectral data before statistical analysis. Spectral deconvolution is found to be superior for identifying a set of discriminatory metabolites between the control and the melanoma groups, especially when the sample size is small. OPLS results show that the melanoma group can be well separated from its control group. It is found that taurine, glutamate, aspartate, O-Phosphoethanolamine, niacinamide,ATP, lipids and glycerol derivatives are decreased statistically and significantly while alanine, malate, xanthine, histamine, dCTP, GTP, thymidine, 2'-Deoxyguanosine are statistically and significantly elevated. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in spleen.
Collapse
Affiliation(s)
- Xuan Wang
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Mary Hu
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ju Feng
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Maili Liu
- Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Jian Zhi Hu
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
- To whom correspondence should be addressed: Jian Zhi Hu; ; Phone: (509) 371-6544; Fax: (509) 371-6546
| |
Collapse
|
84
|
Wall BA, Yu LJ, Khan A, Haffty B, Goydos JS, Chen S. Riluzole is a radio-sensitizing agent in an in vivo model of brain metastasis derived from GRM1 expressing human melanoma cells. Pigment Cell Melanoma Res 2014; 28:105-9. [PMID: 25363352 DOI: 10.1111/pcmr.12327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022]
Abstract
Approximately 50% of patients having metastatic melanoma develop brain metastases during the course of their illness. Evidence exists that melanoma cells have increased aptitude for the repair of sublethal DNA damage caused by ionizing radiation therapy. To address the radio-resistance of melanoma, many groups adopted radiotherapy schedules that deliver larger daily fractions of radiation, but due to the risk of neurotoxicity, these large fractions cannot be delivered to the whole brain for patients with brain metastases. Here, we used orthotopic implanted GRM1 expressing human melanoma cell xenografts in mice, to demonstrate that animals receiving concurrent glutamate signaling blockade (riluzole) and radiation led to a decrease in intracranial tumor growth compared to either modality alone. These preclinical results suggest riluzole may cause radio-sensitization that offers enhanced efficacy for a subset of human melanoma patients undergoing radiotherapy for brain metastasis.
Collapse
Affiliation(s)
- Brian A Wall
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University, Piscataway, NJ, USA; Joint Graduate Program of Toxicology and Pharmacology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | | | | |
Collapse
|
85
|
Valiya Veettil M, Dutta D, Bottero V, Bandyopadhyay C, Gjyshi O, Sharma-Walia N, Dutta S, Chandran B. Glutamate secretion and metabotropic glutamate receptor 1 expression during Kaposi's sarcoma-associated herpesvirus infection promotes cell proliferation. PLoS Pathog 2014; 10:e1004389. [PMID: 25299066 PMCID: PMC4192595 DOI: 10.1371/journal.ppat.1004389] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 08/07/2014] [Indexed: 12/23/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) is etiologically associated with endothelial Kaposi's sarcoma (KS) and B-cell proliferative primary effusion lymphoma (PEL), common malignancies seen in immunocompromised HIV-1 infected patients. The progression of these cancers occurs by the proliferation of cells latently infected with KSHV, which is highly dependent on autocrine and paracrine factors secreted from the infected cells. Glutamate and glutamate receptors have emerged as key regulators of intracellular signaling pathways and cell proliferation. However, whether they play any role in the pathological changes associated with virus induced oncogenesis is not known. Here, we report the first systematic study of the role of glutamate and its metabotropic glutamate receptor 1 (mGluR1) in KSHV infected cell proliferation. Our studies show increased glutamate secretion and glutaminase expression during de novo KSHV infection of endothelial cells as well as in KSHV latently infected endothelial and B-cells. Increased mGluR1 expression was detected in KSHV infected KS and PEL tissue sections. Increased c-Myc and glutaminase expression in the infected cells was mediated by KSHV latency associated nuclear antigen 1 (LANA-1). In addition, mGluR1 expression regulating host RE-1 silencing transcription factor/neuron restrictive silencer factor (REST/NRSF) was retained in the cytoplasm of infected cells. KSHV latent protein Kaposin A was also involved in the over expression of mGluR1 by interacting with REST in the cytoplasm of infected cells and by regulating the phosphorylation of REST and interaction with β-TRCP for ubiquitination. Colocalization of Kaposin A with REST was also observed in KS and PEL tissue samples. KSHV infected cell proliferation was significantly inhibited by glutamate release inhibitor and mGluR1 antagonists. These studies demonstrated that elevated glutamate secretion and mGluR1 expression play a role in KSHV induced cell proliferation and suggest that targeting glutamate and mGluR1 is an attractive therapeutic strategy to effectively control the KSHV associated malignancies. Kaposi's sarcoma associated herpesvirus (KSHV), prevalent in immunosuppressed HIV infected individuals and transplant recipients, is etiologically associated with cancers such as endothelial Kaposi's sarcoma (KS) and B-cell primary effusion lymphoma (PEL). Both KS and PEL develop from the unlimited proliferation of KSHV infected cells. Increased secretion of various host cytokines and growth factors, and the activation of their corresponding receptors, are shown to be contributing to the proliferation of KSHV latently infected cells. Glutamate, a neurotransmitter, is also involved in several cellular events including cell proliferation. In the present study, we report that KSHV-infected latent cells induce the secretion of glutamate and activation of metabotropic glutamate receptor 1 (mGluR1), and KSHV latency associated LANA-1 and Kaposin A proteins are involved in glutaminase and mGluR1 expression. Our functional analysis showed that elevated secretion of glutamate and mGluR1 activation is linked to increased proliferation of KSHV infected cells and glutamate release inhibitor and glutamate receptor antagonists blocked the proliferation of KSHV infected cells. These studies show that proliferation of cancer cells latently infected with KSHV in part depends upon glutamate and glutamate receptor and therefore could potentially be used as therapeutic targets for the control and elimination of KSHV associated cancers.
Collapse
Affiliation(s)
- Mohanan Valiya Veettil
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| | - Dipanjan Dutta
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Virginie Bottero
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Chirosree Bandyopadhyay
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Olsi Gjyshi
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Sujoy Dutta
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Bala Chandran
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| |
Collapse
|
86
|
Gelb T, Hathaway HA, Wroblewski JT. Triple threat treatment: Exploiting the dependence receptor properties of metabotropic glutamate receptor 1 against melanoma. Mol Cell Oncol 2014; 1:e969163. [PMID: 27308372 PMCID: PMC4905213 DOI: 10.4161/23723548.2014.969163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 08/22/2014] [Accepted: 08/22/2014] [Indexed: 11/19/2022]
Abstract
Melanoma cells that express metabotropic glutamate 1 (mGlu1) receptors depend on glutamate for their survival and proliferation. The dependence receptor properties of mGlu1 allow us to propose and justify three promising approaches for melanoma treatment: glutamate depletion, mGlu1 receptor antagonism, and targeting of mGlu1 receptor signaling.
Collapse
Affiliation(s)
- Tara Gelb
- Department of Pharmacology and Physiology; Georgetown University ; Washington, DC USA
| | - Hannah A Hathaway
- Department of Pharmacology and Physiology; Georgetown University ; Washington, DC USA
| | - Jarda T Wroblewski
- Department of Pharmacology and Physiology; Georgetown University ; Washington, DC USA
| |
Collapse
|
87
|
Schiffner S, Braunger BM, de Jel MM, Coupland SE, Tamm ER, Bosserhoff AK. Tg(Grm1) transgenic mice: a murine model that mimics spontaneous uveal melanoma in humans? Exp Eye Res 2014; 127:59-68. [PMID: 25051141 DOI: 10.1016/j.exer.2014.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 10/25/2022]
Abstract
Although rare, uveal melanoma (UM) is the most common primary intraocular tumor in adults. About half of UM patients develop metastatic disease typically in the liver and die within a short period, due to ineffective systemic therapies. UM has unique and distinct genetic features predictive of metastasis. Animal models are required to improve our understanding of therapeutic options in disseminated UM. Since spontaneous murine UM models are lacking, our aim was to analyze the suitability of the established transgenic melanoma mouse model Tg(Grm1) as a new UM model system. We demonstrated that adult Grm1 transgenic mice develop choroidal thickening and uveal melanocytic neoplasia with expression of the melanocytic markers S100B and MelanA. Further, we showed that GRM1 is expressed in human UM, similar to skin melanoma. This study presents a new mouse model for spontaneous UM and suggests that the glutamate signaling pathway is a possible target for UM therapy.
Collapse
Affiliation(s)
- Susanne Schiffner
- University of Regensburg, Institute of Pathology, Molecular Pathology, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Barbara M Braunger
- University of Regensburg, Institute of Human Anatomy and Embryology, Universitaetsstraße 31, 93053 Regensburg, Germany
| | - Miriam M de Jel
- University of Regensburg, Institute of Pathology, Molecular Pathology, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Sarah E Coupland
- University of Liverpool, Institute of Translational Medicine, Molecular and Clinical Cancer Medicine, Daulby Street, Liverpool L69 3GA, United Kingdom
| | - Ernst R Tamm
- University of Regensburg, Institute of Human Anatomy and Embryology, Universitaetsstraße 31, 93053 Regensburg, Germany
| | - Anja K Bosserhoff
- University of Regensburg, Institute of Pathology, Molecular Pathology, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
88
|
Cho HP, Engers DW, Venable DF, Niswender CM, Lindsley CW, Conn PJ, Emmitte KA, Rodriguez AL. A novel class of succinimide-derived negative allosteric modulators of metabotropic glutamate receptor subtype 1 provides insight into a disconnect in activity between the rat and human receptors. ACS Chem Neurosci 2014; 5:597-610. [PMID: 24798819 DOI: 10.1021/cn5000343] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recent progress in the discovery of mGlu₁ allosteric modulators has suggested the modulation of mGlu₁ could offer possible treatment for a number of central nervous system disorders; however, the available chemotypes are inadequate to fully investigate the therapeutic potential of mGlu₁ modulation. To address this issue, we used a fluorescence-based high-throughput screening assay to screen an allosteric modulator-biased library of compounds to generate structurally diverse mGlu₁ negative allosteric modulator hits for chemical optimization. Herein, we describe the discovery and characterization of a novel mGlu₁ chemotype. This series of succinimide negative allosteric modulators, exemplified by VU0410425, exhibited potent inhibitory activity at rat mGlu₁ but was, surprisingly, inactive at human mGlu₁. VU0410425 and a set of chemically diverse mGlu₁ negative allosteric modulators previously reported in the literature were utilized to examine this species disconnect between rat and human mGlu₁ activity. Mutation of the key transmembrane domain residue 757 and functional screening of VU0410425 and the literature compounds suggests that amino acid 757 plays a role in the activity of these compounds, but the contribution of the residue is scaffold specific, ranging from critical to minor. The operational model of allosterism was used to estimate the binding affinities of each compound to compare to functional data. This novel series of mGlu₁ negative allosteric modulators provides valuable insight into the pharmacology underlying the disconnect between rat and human mGlu₁ activity, an issue that must be understood to progress the therapeutic potential of allosteric modulators of mGlu₁.
Collapse
Affiliation(s)
| | | | | | | | - Craig W. Lindsley
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | | | - Kyle A. Emmitte
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | | |
Collapse
|
89
|
Lau C, Killian KJ, Samuels Y, Rudloff U. ERBB4 mutation analysis: emerging molecular target for melanoma treatment. Methods Mol Biol 2014; 1102:461-80. [PMID: 24258993 DOI: 10.1007/978-1-62703-727-3_24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent sequencing efforts in melanoma have elucidated many previously unknown molecular pathways and biological mechanisms involved in melanoma development and progression and have yielded a number of promising targets for molecular therapy. As sequencing technologies have become more sophisticated and have revealed an ever-increasing complexity of the genetic landscape of melanoma, it has become clear that sequencing methods applied to clinical specimens have to reliably capture not only recurrent "hotspot" mutations like BRAFV600 and NRASQ61 or "mini-hotspot" mutations like exon 11 and 13 c-KIT but also heterogeneous somatic mutations dispersed across multiple functionally conserved regions of genes or entire genes. One such example in melanoma is the ERBB4 receptor, or HER4, a member of the Erb receptor family, which has recently been shown to be a major oncogenic "driver" in melanoma. Mutated ERBB4 signaling activates both aberrant ERBB4 and PI3K-AKT signal transduction, mediates sensitivity to small-molecule inhibition with the dual-tyrosine kinase inhibitor lapatinib, and has recently also been implied in oncogenic glutamatergic signaling in melanoma. Mutations involving the ERBB4 gene act as "gain-of-function" mutations and predominantly involve the extracellular domains of the receptor. Additional sequencing efforts have recently identified recurrent mutations ("mini-hotspots") or mutation clusters which affect the regulation of, e.g., ligand binding, arrangement of extracellular domain alignment, or intramolecular tether formation.In this chapter, we describe the methods used to determine the mutation status of all exons of the ERBB4 gene in clinical specimens obtained from patients afflicted by metastatic melanoma. Upon slight modifications, this protocol can also be used for mutational analysis of other oncogenes affected by "non-hotspot" mutations dispersed across multiple exons. This sequencing technique has successfully been applied within a clinical trial selecting patients with ERBB4-mutant melanoma for lapatinib treatment. With the increasing emergence of low-frequency oncogenes affected by heterogeneous activating mutations located in different exons and regions this method will provide a mean to translate the promise of recently obtained genetic knowledge into clinical genotype-directed targeted therapy trials.
Collapse
Affiliation(s)
- Christopher Lau
- Clinical Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|
90
|
Shtivelman E, Davies MA, Hwu P, Yang J, Lotem M, Oren M, Flaherty KT, Fisher DE. Pathways and therapeutic targets in melanoma. Oncotarget 2014; 5:1701-52. [PMID: 24743024 PMCID: PMC4039128 DOI: 10.18632/oncotarget.1892] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 02/07/2023] Open
Abstract
This review aims to summarize the current knowledge of molecular pathways and their clinical relevance in melanoma. Metastatic melanoma was a grim diagnosis, but in recent years tremendous advances have been made in treatments. Chemotherapy provided little benefit in these patients, but development of targeted and new immune approaches made radical changes in prognosis. This would not have happened without remarkable advances in understanding the biology of disease and tremendous progress in the genomic (and other "omics") scale analyses of tumors. The big problems facing the field are no longer focused exclusively on the development of new treatment modalities, though this is a very busy area of clinical research. The focus shifted now to understanding and overcoming resistance to targeted therapies, and understanding the underlying causes of the heterogeneous responses to immune therapy.
Collapse
Affiliation(s)
| | | | - Patrick Hwu
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James Yang
- National Cancer Institute, NIH, Washington DC, USA
| | - Michal Lotem
- Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Moshe Oren
- The Weizmann Institute of Science, Rehovot, Israel
| | | | - David E. Fisher
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| |
Collapse
|
91
|
Nord KH, Lilljebjörn H, Vezzi F, Nilsson J, Magnusson L, Tayebwa J, de Jong D, Bovée JVMG, Hogendoorn PCW, Szuhai K. GRM1 is upregulated through gene fusion and promoter swapping in chondromyxoid fibroma. Nat Genet 2014; 46:474-7. [DOI: 10.1038/ng.2927] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/27/2014] [Indexed: 12/14/2022]
|
92
|
Xie L, Yui J, Fujinaga M, Hatori A, Yamasaki T, Kumata K, Wakizaka H, Furutsuka K, Takei M, Jin ZH, Furukawa T, Kawamura K, Zhang MR. Molecular imaging of ectopic metabotropic glutamate 1 receptor in melanoma with a positron emission tomography radioprobe (18) F-FITM. Int J Cancer 2014; 135:1852-9. [PMID: 24643962 DOI: 10.1002/ijc.28842] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/25/2014] [Indexed: 11/09/2022]
Abstract
Oncoimaging using positron emission tomography (PET) with a specific radioprobe would facilitate individualized cancer management. Evidence indicates that ectopically expressed metabotropic glutamate 1 (mGlu1) receptor independently induces melanocyte carcinogenesis, and it is therefore becoming an important target for personalized diagnosis and treatment strategies for melanomas. Here, we report the development of an oncoprotein-based PET imaging platform in melanomas for noninvasive visualization and quantification of mGlu1 with a novel mGlu1-specific radioprobe, 4-(18)F-fluoro-N-[4-[6-(isopropyl amino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ((18)F-FITM). (18)F-FITM shows excellent pharmacokinetics, namely the dense and specific accumulation in mGlu1-positive melanomas versus mGlu1-negative hepatoma and normal tissues. Furthermore, the accumulation levels of radioactivity corresponded to the extent of tumor and to levels of mGlu1 protein expression in melanomas and melanoma metastasis. The (18)F-FITM PET imaging platform, as a noninvasive personalized diagnostic tool, is expected to open a new avenue for defining individualized therapeutic strategies, clinical trials, patient management and understanding mGlu1-triggered oncologic events in melanomas.
Collapse
Affiliation(s)
- Lin Xie
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Speyer CL, Hachem AH, Assi AA, Johnson JS, DeVries JA, Gorski DH. Metabotropic glutamate receptor-1 as a novel target for the antiangiogenic treatment of breast cancer. PLoS One 2014; 9:e88830. [PMID: 24633367 PMCID: PMC3954556 DOI: 10.1371/journal.pone.0088830] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 01/13/2014] [Indexed: 02/07/2023] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are normally expressed in the central nervous system, where they mediate neuronal excitability and neurotransmitter release. Certain cancers, including melanoma and gliomas, express various mGluR subtypes that have been implicated as playing a role in disease progression. Recently, we detected metabotropic glutamate receptor-1 (gene: GRM1; protein: mGluR1) in breast cancer and found that it plays a role in the regulation of cell proliferation and tumor growth. In addition to cancer cells, brain endothelial cells express mGluR1. In light of these studies, and because angiogenesis is both a prognostic indicator in cancer correlating with a poorer prognosis and a potential therapeutic target, we explored a potential role for mGluR1 in mediating endothelial cell (EC) proliferation and tumor-induced angiogenesis. GRM1 and mGluR1 were detected in various types of human ECs and, using mGluR1-specific inhibitors or shRNA silencing, we demonstrated that EC growth and Matrigel tube formation are dependent on mGluR1 signaling. In addition, loss of mGluR1 activity leads to reduced angiogenesis in a murine Matrigel sponge implant model as well as a murine tumor model. These results suggest a role for mGluR1 in breast cancer as a pro-angiogenic factor as well as a mediator of tumor progression. They also suggest mGluR1 as a potential new molecular target for the anti-angiogenic therapy of breast cancer.
Collapse
Affiliation(s)
- Cecilia L. Speyer
- Tumor Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ali H. Hachem
- University of Michigan, Dearborn, Michigan, United States of America
| | - Ali A. Assi
- University of Michigan, Dearborn, Michigan, United States of America
| | - Jennifer S. Johnson
- Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - John A. DeVries
- Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - David H. Gorski
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
94
|
Wen Y, Li J, Koo J, Shin SS, Lin Y, Jeong BS, Mehnert JM, Chen S, Cohen-Sola KA, Goydos JS. Activation of the glutamate receptor GRM1 enhances angiogenic signaling to drive melanoma progression. Cancer Res 2014; 74:2499-509. [PMID: 24491800 DOI: 10.1158/0008-5472.can-13-1531] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glutamate-triggered signal transduction is thought to contribute widely to cancer pathogenesis. In melanoma, overexpression of the metabotropic glutamate receptor (GRM)-1 occurs frequently and its ectopic expression in melanocytes is sufficient for neoplastic transformation. Clinical evaluation of the GRM1 signaling inhibitor riluzole in patients with advanced melanoma has demonstrated tumor regressions that are associated with a suppression of the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathways. Together, these results prompted us to investigate the downstream consequences of GRM1 signaling and its disruption in more detail. We found that melanoma cells with enhanced GRM1 expression generated larger tumors in vivo marked by more abundant blood vessels. Media conditioned by these cells in vitro contained relatively higher concentrations of interleukin-8 and VEGF due to GRM1-mediated activation of the AKT-mTOR-HIF1 pathway. In clinical specimens from patients receiving riluzole, we confirmed an inhibition of MAPK and PI3K/AKT activation in posttreatment as compared with pretreatment tumor specimens, which exhibited a decreased density of blood vessels. Together, our results demonstrate that GRM1 activation triggers proangiogenic signaling in melanoma, offering a mechanistic rationale to design treatment strategies for the most suitable combinatorial use of GRM1 inhibitors in patients.
Collapse
Affiliation(s)
- Yu Wen
- Authors' Affiliations: Division of Surgical Oncology, Department of Surgery; Division of Medical Oncology, Department of Medicine, Rutgers Robert Wood Johnson Medical School; Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway; and Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Wall BA, Wangari-Talbot J, Shin SS, Schiff D, Sierra J, Yu LJ, Khan A, Haffty B, Goydos JS, Chen S. Disruption of GRM1-mediated signalling using riluzole results in DNA damage in melanoma cells. Pigment Cell Melanoma Res 2014; 27:263-74. [PMID: 24330389 DOI: 10.1111/pcmr.12207] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/26/2013] [Indexed: 12/17/2022]
Abstract
Gain of function of the neuronal receptor, metabotropic glutamate receptor 1 (Grm1), was sufficient to induce melanocytic transformation in vitro and spontaneous melanoma development in vivo when ectopically expressed in melanocytes. The human form of this receptor, GRM1, has been shown to be ectopically expressed in a subset of human melanomas but not benign nevi or normal melanocytes, suggesting that misregulation of GRM1 is involved in the pathogenesis of certain human melanomas. Sustained stimulation of Grm1 by the ligand, glutamate, is required for the maintenance of transformed phenotypes in vitro and tumorigenicity in vivo. In this study, we investigate the mechanism of an inhibitor of glutamate release, riluzole, on human melanoma cells that express metabotropic glutamate receptor 1 (GRM1). Various in vitro assays conducted show that inhibition of glutamate release in several human melanoma cell lines resulted in an increase of oxidative stress and DNA damage response markers.
Collapse
Affiliation(s)
- Brian A Wall
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Joint Graduate Program of Toxicology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Metabotropic glutamate receptor-1 contributes to progression in triple negative breast cancer. PLoS One 2014; 9:e81126. [PMID: 24404125 PMCID: PMC3880256 DOI: 10.1371/journal.pone.0081126] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/09/2013] [Indexed: 12/31/2022] Open
Abstract
TNBC is an aggressive breast cancer subtype that does not express hormone receptors (estrogen and progesterone receptors, ER and PR) or amplified human epidermal growth factor receptor type 2 (HER2), and there currently exist no targeted therapies effective against it. Consequently, finding new molecular targets in triple negative breast cancer (TNBC) is critical to improving patient outcomes. Previously, we have detected the expression of metabotropic glutamate receptor-1 (gene: GRM1; protein: mGluR1) in TNBC and observed that targeting glutamatergic signaling inhibits TNBC growth both in vitro and in vivo. In this study, we explored how mGluR1 contributes to TNBC progression, using the isogenic MCF10 progression series, which models breast carcinogenesis from nontransformed epithelium to malignant basal-like breast cancer. We observed that mGluR1 is expressed in human breast cancer and that in MCF10A cells, which model nontransformed mammary epithelium, but not in MCF10AT1 cells, which model atypical ductal hyperplasia, mGluR1 overexpression results in increased proliferation, anchorage-independent growth, and invasiveness. In contrast, mGluR1 knockdown results in a decrease in these activities in malignant MCF10CA1d cells. Similarly, pharmacologic inhibition of glutamatergic signaling in MCF10CA1d cells results in a decrease in proliferation and anchorage-independent growth. Finally, transduction of MCF10AT1 cells, which express c-Ha-ras, using a lentiviral construct expressing GRM1 results in transformation to carcinoma in 90% of resultant xenografts. We conclude that mGluR1 cooperates with other factors in hyperplastic mammary epithelium to contribute to TNBC progression and therefore propose that glutamatergic signaling represents a promising new molecular target for TNBC therapy.
Collapse
|
97
|
Shim JS, Liu JO. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int J Biol Sci 2014; 10:654-63. [PMID: 25013375 PMCID: PMC4081601 DOI: 10.7150/ijbs.9224] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/06/2014] [Indexed: 01/02/2023] Open
Abstract
Drug repositioning (also referred to as drug repurposing), the process of finding new uses of existing drugs, has been gaining popularity in recent years. The availability of several established clinical drug libraries and rapid advances in disease biology, genomics and bioinformatics has accelerated the pace of both activity-based and in silico drug repositioning. Drug repositioning has attracted particular attention from the communities engaged in anticancer drug discovery due to the combination of great demand for new anticancer drugs and the availability of a wide variety of cell- and target-based screening assays. With the successful clinical introduction of a number of non-cancer drugs for cancer treatment, drug repositioning now became a powerful alternative strategy to discover and develop novel anticancer drug candidates from the existing drug space. In this review, recent successful examples of drug repositioning for anticancer drug discovery from non-cancer drugs will be discussed.
Collapse
Affiliation(s)
- Joong Sup Shim
- 1. Faculty of Health Sciences, University of Macau, Av. Padre Tomas Pereira, Taipa, Macau SAR, China
- ✉ Corresponding author: Joong Sup Shim, Ph.D. Faculty of Health Sciences, University of Macau, Av. Padre Tomas Pereira, Taipa, Macau SAR, China. Tel: +853-8397-8445 ; or Jun O. Liu, Ph.D, Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N Wolfe St, Baltimore, MD 21205. Tel: +1-410-955-4619
| | - Jun O. Liu
- 2. Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N Wolfe St, Baltimore, MD 21205, USA
- ✉ Corresponding author: Joong Sup Shim, Ph.D. Faculty of Health Sciences, University of Macau, Av. Padre Tomas Pereira, Taipa, Macau SAR, China. Tel: +853-8397-8445 ; or Jun O. Liu, Ph.D, Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N Wolfe St, Baltimore, MD 21205. Tel: +1-410-955-4619
| |
Collapse
|
98
|
Mohamed A, Deng X, Khuri FR, Owonikoko TK. Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin Lung Cancer 2014; 15:7-15. [PMID: 24377741 PMCID: PMC3970234 DOI: 10.1016/j.cllc.2013.09.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 09/04/2013] [Accepted: 09/10/2013] [Indexed: 12/16/2022]
Abstract
Disordered cancer metabolism was described almost a century ago as an abnormal adaptation of cancer cells to glucose utilization especially in hypoxic conditions; the so-called Warburg effect. Greater research interest in this area in the past two decades has led to the recognition of the critical coupling of specific malignant phenotypes such as increased proliferation and resistance to programmed cell death (apoptosis) with altered metabolic handling of key molecules that are essential for normal cellular metabolism. The altered glucose metabolism frequently encountered in cancer cells has already been exploited for cancer diagnosis and treatment. The role of other glycolytic pathway intermediates and alternative pathways for energy generation and macromolecular synthesis in cancer cells has only become recognized more recently. Especially, the important role of altered glutamine metabolism in the malignant behavior of cancer cells and the potential exploitation of this cellular adaptation for therapeutic targeting has now emerged as an important area of cancer research. Expectedly, attempts to exploit this understanding for diagnostic and therapeutic ends are running apace with the elucidation of the complex metabolic alterations that accompany neoplastic transformation. Because lung cancer is a leading cause of cancer death with limited curative therapy options, careful elucidation of the mechanism and consequences of disordered cancer metabolism in lung cancer is warranted. This review provides a concise, systematic overview of the current understanding of the role of altered glutamine metabolism in cancer, and how these findings intersect with current and future approaches to lung cancer management.
Collapse
Affiliation(s)
- Amr Mohamed
- Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA.
| |
Collapse
|
99
|
Ribeiro MPC, Nunes-Correia I, Santos AE, Custódio JBA. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells. Exp Cell Res 2013; 321:288-96. [PMID: 24240127 DOI: 10.1016/j.yexcr.2013.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/28/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022]
Abstract
Recent reports suggest that N-methyl-d-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination.
Collapse
Affiliation(s)
- Mariana P C Ribeiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Nunes-Correia
- Center for Neuroscience and Cell Biology, Flow Cytometry Unit, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - José B A Custódio
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
100
|
Cui M, Naczynski D, Zevon M, Griffith CK, Sheihet L, Poventud-Fuentes I, Chen S, Roth CM, Moghe PV. Multifunctional albumin nanoparticles as combination drug carriers for intra-tumoral chemotherapy. Adv Healthc Mater 2013; 2:1236-45. [PMID: 23495216 PMCID: PMC5720860 DOI: 10.1002/adhm.201200467] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Indexed: 01/23/2023]
Abstract
Current cancer therapies are challenged by weakly soluble drugs and by drug combinations that exhibit non-uniform biodistribution and poor bioavailability. In this study, we have presented a new platform of advanced healthcare materials based on albumin nanoparticles (ANPs) engineered as tumor penetrating, delivery vehicles of combinatorially applied factors to solid tumors. These materials were designed to overcome three sequential key barriers: tissue level transport across solid tumor matrix; uptake kinetics into individual cancer cells; therapeutic resistance to single chemotherapeutic drugs. The ANPs were designed to penetrate deeper into solid tumor matrices using collagenase decoration and evaluated using a three-dimensional multicellular melanoma tumor spheroid model. Collagenase modified ANPs exhibited 1-2 orders of magnitude greater tumor penetration than unmodified ANPs into the spheroid mass after 96 hours, and showed preferential uptake into individual cancer cells for smaller sized ANPs (<100 nm). For enhanced efficacy, collagenase coated ANPs were modified with two therapeutic agents, curcumin and riluzole, with complementary mechanisms of action for combined cell cycle arrest and apoptosis in melanoma. The collagenase coated, drug loaded nanoparticles induced significantly more cell death within 3-D tumor models than the unmodified, dual drug loaded ANP particles and the kinetics of cytotoxicity was further influenced by the ANP size. Thus, multifunctional nanoparticles can be imbued with complementary size and protease activity features that allow them to penetrate solid tumors and deliver combinatorial therapeutic payload with enhanced cancer cytotoxicity but minimal collateral damage to healthy primary cells.
Collapse
Affiliation(s)
- Mingjie Cui
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Dominik Naczynski
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Margot Zevon
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Craig K. Griffith
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA
| | - Larisa Sheihet
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Suzie Chen
- Department of Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Charles M. Roth
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|