51
|
Christian SL. CD24 as a Potential Therapeutic Target in Patients with B-Cell Leukemia and Lymphoma: Current Insights. Onco Targets Ther 2022; 15:1391-1402. [PMID: 36425299 PMCID: PMC9680537 DOI: 10.2147/ott.s366625] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/10/2022] [Indexed: 01/12/2024] Open
Abstract
CD24 is a highly glycosylated glycophosphatidylinositol (GPI)-anchored protein that is expressed in many types of differentiating cells and some mature cells of the immune system as well as the central nervous system. CD24 has been extensively used as a biomarker for developing B cells as its expression levels change over the course of B cell development. Functionally, engagement of CD24 induces apoptosis in developing B cells and restricts cell growth in more mature cell types. Interestingly, CD24 is also expressed on many hematological and solid tumors. As such, it has been investigated as a therapeutic target in many solid tumors including ovarian, colorectal, pancreatic, lung and others. Most of the B-cell leukemias and lymphomas studied to date express CD24 but its role as a therapeutic target in these malignancies has, thus far, been understudied. Here, I review what is known about CD24 biology with a focus on B cell development and activation followed by a brief overview of how CD24 is being targeted in solid tumors. This is followed by an assessment of the value of CD24 as a therapeutic target in B cell leukemia and lymphoma in humans, including an evaluation of the challenges in using CD24 as a target considering its pattern of expression on normal cells.
Collapse
Affiliation(s)
- Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| |
Collapse
|
52
|
Yang J, Zhu Q, Wu Y, Qu X, Liu H, Jiang B, Ge D, Song X. Utilization of macrocyclic peptides to target protein-protein interactions in cancer. Front Oncol 2022; 12:992171. [PMID: 36465350 PMCID: PMC9714258 DOI: 10.3389/fonc.2022.992171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Protein-protein interactions (PPIs) play vital roles in normal cellular processes. Dysregulated PPIs are involved in the process of various diseases, including cancer. Thus, these PPIs may serve as potential therapeutic targets in cancer treatment. However, despite rapid advances in small-molecule drugs and biologics, it is still hard to target PPIs, especially for those intracellular PPIs. Macrocyclic peptides have gained growing attention for their therapeutic properties in targeting dysregulated PPIs. Macrocyclic peptides have some unique features, such as moderate sizes, high selectivity, and high binding affinities, which make them good drug candidates. In addition, some oncology macrocyclic peptide drugs have been approved by the US Food and Drug Administration (FDA) for clinical use. Here, we reviewed the recent development of macrocyclic peptides in cancer treatment. The opportunities and challenges were also discussed to inspire new perspectives.
Collapse
Affiliation(s)
- Jiawen Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Qu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Song
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
53
|
Qu T, Zhong T, Pang X, Huang Z, Jin C, Wang ZM, Li B, Xia Y. Ligufalimab, a novel anti-CD47 antibody with no hemagglutination demonstrates both monotherapy and combo antitumor activity. J Immunother Cancer 2022; 10:e005517. [PMID: 36450383 PMCID: PMC9717234 DOI: 10.1136/jitc-2022-005517] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND CD47 is a widely expressed transmembrane glycoprotein that delivers an antiphagocytic signal on macrophages through its interaction with SIRPα. CD47 is highly expressed in cancer cells and its overexpression is correlated with poor prognosis. CD47 blocking antibodies are actively being developed worldwide for cancer therapy, and the most challenging concern is associated with hematotoxicity. Ligufalimab (AK117) is a novel humanized IgG4 anti-CD47 antibody without hemagglutination effect. Blockade of CD47-SIRPα pathway by AK117 leads to a promising therapeutic strategy for cancer treatment with unique safety features. METHODS AK117 was discovered through a screening hierarchy excluding hemagglutination. AK117 was characterized by detecting CD47-SIRPα blocking potential. Its effect on human red blood cells was examined and the mechanism of its binding with erythrocytes was studied. The abilities of AK117 and its combination with various opsonizing antibodies to promote macrophage-dependent phagocytosis of multiple human tumor cells were determined using fluorescence microscopy and flow cytometry. In vivo, the antitumor efficacy of AK117 monotherapy and combination with AK112 (an anti-PD-1/VEGF-A bispecific antibody) was assessed in a variety of xenograft models. Toxicologic studies were evaluated in non-human primates. RESULTS AK117 bound to CD47 with high affinity and blocked the CD47-SIRPα interaction. AK117 did not induce hemagglutination and showed significantly lower degree of erythrophagocytosis compared with Hu5F9-G4, and this mechanism of hemagglutination resistance might be related to the binding conformation. AK117 enhanced macrophage-mediated phagocytosis in both hematologic cancer and solid tumor cell lines as a single agent or in combination with cetuximab and rituximab in vitro, respectively. The antitumor effects of AK117 as a single agent or in combination with AK112 were also encouraging in various xenograft models. In non-human primates, AK117 showed less hematotoxicity compared with Hu5F9-G4. CONCLUSIONS AK117 eliminated hemagglutination and also enabled to maintain full effectiveness of CD47 blockade on tumor cells, which resulted in excellent antitumor efficacy and favorable safety profile of AK117. A series of clinical trials of AK117 as a therapeutic agent in combination with various agents such as AK112 are in progress for the treatment of multiple hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Tailong Qu
- Research and Development Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Tingting Zhong
- Research and Development Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Xinghua Pang
- Research and Development Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Zhaoliang Huang
- Research and Development Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Chunshan Jin
- Research and Development Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Zhongmin Maxwell Wang
- Procurement and Sourcing Department and Clinical Operation Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Baiyong Li
- Research and Development Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Yu Xia
- President Office, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| |
Collapse
|
54
|
Zeller T, Lutz S, Münnich IA, Windisch R, Hilger P, Herold T, Tahiri N, Banck JC, Weigert O, Moosmann A, von Bergwelt-Baildon M, Flamann C, Bruns H, Wichmann C, Baumann N, Valerius T, Schewe DM, Peipp M, Rösner T, Humpe A, Kellner C. Dual checkpoint blockade of CD47 and LILRB1 enhances CD20 antibody-dependent phagocytosis of lymphoma cells by macrophages. Front Immunol 2022; 13:929339. [PMID: 36389667 PMCID: PMC9647079 DOI: 10.3389/fimmu.2022.929339] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by ‘Don´t Eat Me!’ signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ). To boost ADCP, Fc-silent antibodies against LILRB1 and LILRB2 were generated (LILRB1-IgGσ and LILRB2-IgGσ, respectively). While LILRB2-IgGσ was not effective, LILRB1-IgGσ significantly enhanced ADCP of lymphoma cell lines when combined with both rituximab and CD47-IgGσ. LILRB1-IgGσ promoted serial engulfment of lymphoma cells and potentiated ADCP by non-polarized M0 as well as polarized M1 and M2 macrophages, but required CD47 co-blockade and the presence of the CD20 antibody. Importantly, complementing rituximab and CD47-IgGσ, LILRB1-IgGσ increased ADCP of chronic lymphocytic leukemia (CLL) or lymphoma cells isolated from patients. Thus, dual checkpoint blockade of CD47 and LILRB1 may be promising to improve antibody therapy of CLL and lymphomas through enhancing ADCP by macrophages.
Collapse
Affiliation(s)
- Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Lutz
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Ira A. Münnich
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Patricia Hilger
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natyra Tahiri
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Jan C. Banck
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Weigert
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Moosmann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- DZIF – German Center for Infection Research, Munich, Germany
- Helmholtz Zentrum München, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cindy Flamann
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Niklas Baumann
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Denis M. Schewe
- Department of Pediatrics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
- *Correspondence: Christian Kellner,
| |
Collapse
|
55
|
Targeting CXCR4 and CD47 Receptors: An Overview of New and Old Molecules for a Biological Personalized Anticancer Therapy. Int J Mol Sci 2022; 23:ijms232012499. [PMID: 36293358 PMCID: PMC9604048 DOI: 10.3390/ijms232012499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Biological therapy, with its multifaceted applications, has revolutionized the treatment of tumors, mainly due to its ability to exclusively target cancer cells and reduce the adverse effects on normal tissues. This review focuses on the therapies targeting the CXCR4 and CD47 receptors. We surveyed the results of early clinical trials testing compounds classified as nonpeptides, small peptides, CXCR4 antagonists or specific antibodies whose activity reduces or completely blocks the intracellular signaling pathways and cell proliferation. We then examined antibodies and fusion proteins against CD47, the receptor that acts as a “do not eat me” signal to phagocytes escaping immune surveillance. Despite these molecules being tested in early clinical trials, some drawbacks are emerging that impair their use in practice. Finally, we examined the ImmunoGenic Surrender mechanism that involves crosstalk and co-internalization of CXCR4 and CD47 upon engagement of CXCR4 by ligands or other molecules. The favorable effect of such compounds is dual as CD47 surface reduction impact on the immune response adds to the block of CXCR4 proliferative potential. These results suggest that a combination of different therapeutic approaches has more beneficial effects on patients’ survival and may pave the way for new accomplishments in personalized anticancer therapy.
Collapse
|
56
|
Wang SH, Chou WC, Huang HC, Lee TA, Hsiao TC, Wang LH, Huang KB, Kuo CT, Chao CH, Chang SJ, Hsu JM, Weng J, Ren N, Li FA, Lai YJ, Zhou C, Hung MC, Li CW. Deglycosylation of SLAMF7 in breast cancers enhances phagocytosis. Am J Cancer Res 2022; 12:4721-4736. [PMID: 36381324 PMCID: PMC9641385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023] Open
Abstract
N-linked glycosylation of proteins is one of the post-translational modifications (PTMs) that shield tumor antigens from immune attack. Signaling lymphocytic activation molecule family 7 (SLAMF7) suppresses cancer cell phagocytosis and is an ideal target under clinical development. PTM of SLAMF7, however, remains less understood. In this study, we investigated the role of N-glycans on SLAMF7 in breast cancer progression. We identified seven N-linked glycosylation motifs on SLAMF7, which are majorly occupied by complex structures. Evolutionally conserved N98 residue is enriched with high mannose and sialylated glycans. Hyperglycosylated SLAMF7 was associated with STT3A expression in breast cancer cells. Inhibition of STT3A by a small molecule inhibitor, N-linked glycosylation inhibitor-1 (NGI-1), reduced glycosylation of SLAMF7, resulting in enhancing antibody affinity and phagocytosis. To provide an on-target effect, we developed an antibody-drug conjugate (ADC) by coupling the anti-SLAMF7 antibody with NGI-1. Deglycosylation of SLAMF7 increases antibody recognition and promotes macrophage engulfment of breast cancer cells. Our work suggests deglycosylation by ADC is a potential strategy to enhance the response of immunotherapeutic agents.
Collapse
Affiliation(s)
- Shih-Han Wang
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Te-An Lee
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Tzu-Chun Hsiao
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Ling-Hui Wang
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal UniversityGuilin 541004, PR China
| | - Chun-Tse Kuo
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Chi-Hong Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | | | - Jung-Mao Hsu
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
| | - Jialei Weng
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai, PR China
| | - Ning Ren
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai, PR China
- Institute of Fudan Minhang Academic Health System (AHS), and Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan UniversityShanghai, PR China
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Yun-Ju Lai
- Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts LowellLowell, MA, USA
| | - Chenhao Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai, PR China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
- Department of Biotechnology, Asia UniversityTaichung, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| |
Collapse
|
57
|
Ge W, Shentu D, Wang Y, Wang Y, Xue S, Yue M, Mao T, Zhang X, Xu H, Li S, Ma J, Yao J, Cui J, Wang L. A novel angiogenesis-based molecular signature related to prognosis and tumor immune interactions of pancreatic cancer. Front Cell Dev Biol 2022; 10:1001606. [PMID: 36274838 PMCID: PMC9582445 DOI: 10.3389/fcell.2022.1001606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Angiogenesis, a hallmark of cancer, is related to prognosis, tumor progression, and treatment response. Nevertheless, the correlation of angiogenesis-based molecular signature with clinical outcome and immune cell infiltration has not been thoroughly studied in pancreatic cancer. In this study, multiple bioinformatics methods were combined to evaluate prognosis, immune cell infiltration, and the alterations of angiogenesis-related genes (ARGs) in PC samples, and further establish a novel angiogenesis-related gene signature. Moreover, the protein and mRNA expression levels of four angiogenesis risk genes were determined by Human Protein Atlas (HPA) database and qPCR analysis, respectively. Here, we recognized two distinct angiogenesis subtypes and two gene subtypes, and revealed the critical roles of ARGs in the tumor immune microenvironment (TIME), clinical features, and prognosis. Consequently, we established an ARGs score to predict prognosis and therapeutic response of PC patients, and validated its robust predictive ability. Additionally, the ARGs score was markedly associated with clinical outcomes, tumor mutation burden (TMB), and chemotherapeutic drug sensitivity. In brief, our findings imply that the ARGs score is a robust prognostic indicator and may contribute to the development of effective individualized therapies for PC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Jiujie Cui
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liwei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
58
|
Mishra AK, Ali A, Dutta S, Banday S, Malonia SK. Emerging Trends in Immunotherapy for Cancer. Diseases 2022; 10:60. [PMID: 36135216 PMCID: PMC9498256 DOI: 10.3390/diseases10030060] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in cancer immunology have enabled the discovery of promising immunotherapies for various malignancies that have shifted the cancer treatment paradigm. The innovative research and clinical advancements of immunotherapy approaches have prolonged the survival of patients with relapsed or refractory metastatic cancers. Since the U.S. FDA approved the first immune checkpoint inhibitor in 2011, the field of cancer immunotherapy has grown exponentially. Multiple therapeutic approaches or agents to manipulate different aspects of the immune system are currently in development. These include cancer vaccines, adoptive cell therapies (such as CAR-T or NK cell therapy), monoclonal antibodies, cytokine therapies, oncolytic viruses, and inhibitors targeting immune checkpoints that have demonstrated promising clinical efficacy. Multiple immunotherapeutic approaches have been approved for specific cancer treatments, while others are currently in preclinical and clinical trial stages. Given the success of immunotherapy, there has been a tremendous thrust to improve the clinical efficacy of various agents and strategies implemented so far. Here, we present a comprehensive overview of the development and clinical implementation of various immunotherapy approaches currently being used to treat cancer. We also highlight the latest developments, emerging trends, limitations, and future promises of cancer immunotherapy.
Collapse
Affiliation(s)
- Alok K. Mishra
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Amjad Ali
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Shubham Dutta
- MassBiologics, UMass Chan Medical School, Boston, MA 02126, USA
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K. Malonia
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
59
|
Yang M, Mahanty A, Jin C, Wong ANN, Yoo JS. Label-free metabolic imaging for sensitive and robust monitoring of anti-CD47 immunotherapy response in triple-negative breast cancer. J Immunother Cancer 2022; 10:jitc-2022-005199. [PMID: 36096527 PMCID: PMC9472253 DOI: 10.1136/jitc-2022-005199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background Immunotherapy is revolutionizing cancer treatment from conventional radiotherapies and chemotherapies to immune checkpoint inhibitors which use patients’ immune system to recognize and attack cancer cells. Despite the huge clinical success and vigorous development of immunotherapies, there is a significant unmet need for a robust tool to identify responders to specific immunotherapy. Early and accurate monitoring of immunotherapy response is indispensable for personalized treatment and effective drug development. Methods We established a label-free metabolic intravital imaging (LMII) technique to detect two-photon excited autofluorescence signals from two coenzymes, NAD(P)H (reduced nicotinamide adenine dinucleotide (phosphate) hydrogen) and FAD (flavin adenine dinucleotide) as robust imaging markers to monitor metabolic responses to immunotherapy. Murine models of triple-negative breast cancer (TNBC) were established and tested with different therapeutic regimens including anti-cluster of differentiation 47 (CD47) immunotherapy to monitor time-course treatment responses using the developed metabolic imaging technique. Results We first imaged the mechanisms of the CD47-signal regulatory protein alpha pathway in vivo, which unravels macrophage-mediated antibody-dependent cellular phagocytosis and illustrates the metabolism of TNBC cells and macrophages. We further visualized the autofluorescence of NAD(P)H and FAD and found a significant increase during tumor growth. Following anti-CD47 immunotherapy, the imaging signal was dramatically decreased demonstrating the sensitive monitoring capability of NAD(P)H and FAD imaging for therapeutic response. NAD(P)H and FAD intravital imaging also showed a marked decrease after chemotherapy and radiotherapy. A comparative study with conventional whole-body bioluminescence and fluorescent glucose imaging demonstrated superior sensitivity of metabolic imaging. Flow cytometry validated metabolic imaging results. In vivo immunofluorescent staining revealed the targeting ability of NAD(P)H imaging mainly for tumor cells and a small portion of immune-active cells and that of FAD imaging mainly for immunosuppressive cells such as M2-like tumor-associated macrophages. Conclusions Collectively, this study showcases the potential of the LMII technique as a powerful tool to visualize dynamic changes of heterogeneous cell metabolism of cancer cells and immune infiltrates in response to immunotherapy thus providing sensitive and complete monitoring. Leveraged on ability to differentiate cancer cells and immunosuppressive macrophages, the presented imaging approach provides particularly useful imaging biomarkers for emerged innate immune checkpoint inhibitors such as anti-CD47 therapy.
Collapse
Affiliation(s)
- Minfeng Yang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Arpan Mahanty
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Chunjing Jin
- The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Jung Sun Yoo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
60
|
Akalu YT, Mercau ME, Ansems M, Hughes LD, Nevin J, Alberto EJ, Liu XN, He LZ, Alvarado D, Keler T, Kong Y, Philbrick WM, Bosenberg M, Finnemann SC, Iavarone A, Lasorella A, Rothlin CV, Ghosh S. Tissue-specific modifier alleles determine Mertk loss-of-function traits. eLife 2022; 11:80530. [PMID: 35969037 PMCID: PMC9433089 DOI: 10.7554/elife.80530] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
Knockout (KO) mouse models play critical roles in elucidating biological processes behind disease-associated or disease-resistant traits. As a presumed consequence of gene KO, mice display certain phenotypes. Based on insight into the molecular role of said gene in a biological process, it is inferred that the particular biological process causally underlies the trait. This approach has been crucial towards understanding the basis of pathological and/or advantageous traits associated with Mertk KO mice. Mertk KO mice suffer from severe, early-onset retinal degeneration. MERTK, expressed in retinal pigment epithelia, is a receptor tyrosine kinase with a critical role in phagocytosis of apoptotic cells or cellular debris. Therefore, early-onset, severe retinal degeneration was described to be a direct consequence of failed MERTK-mediated phagocytosis of photoreceptor outer segments by retinal pigment epithelia. Here, we report that the loss of Mertk alone is not sufficient for retinal degeneration. The widely used Mertk KO mouse carries multiple coincidental changes in its genome that affect the expression of a number of genes, including the Mertk paralog Tyro3. Retinal degeneration manifests only when the function of Tyro3 is concomitantly lost. Furthermore, Mertk KO mice display improved anti-tumor immunity. MERTK is expressed in macrophages. Therefore, enhanced anti-tumor immunity was inferred to result from the failure of macrophages to dispose of cancer cell corpses, resulting in a pro-inflammatory tumor microenvironment. The resistance against two syngeneic mouse tumor models observed in Mertk KO mice is not, however, phenocopied by the loss of Mertk alone. Neither Tyro3 nor macrophage phagocytosis by alternate genetic redundancy accounts for the absence of anti-tumor immunity. Collectively, our results indicate that context-dependent epistasis of independent modifier alleles determines Mertk KO traits.
Collapse
Affiliation(s)
- Yemsratch T Akalu
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Maria E Mercau
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Marleen Ansems
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Lindsey D Hughes
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - James Nevin
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Emily J Alberto
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Xinran N Liu
- Department of Cell Biology, Center for Cellular and Molecular Imaging, Yale School of MedicineNew HavenUnited States
| | - Li-Zhen He
- Celldex TherapeuticsNew HavenUnited States
| | | | | | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W. M. Keck Foundation Biotechnology Resource Laboratory, School of Medicine, Yale UniversityNew HavenUnited States
| | - William M Philbrick
- Center on Endocrinology and Metabolism, Yale Genome Editing Center, School of Medicine, Yale UniversityNew HavenUnited States
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology and Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Silvia C Finnemann
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham UniversityBronxUnited States
| | - Antonio Iavarone
- Departments of Neurology and Pathology and Cell Biology, Institute for Cancer Genetics, Columbia Medical CenterNew YorkUnited States
| | - Anna Lasorella
- Departments of Pediatrics and Pathology and Cell Biology, Institute for Cancer Genetics, Columbia UniversityNew YorkUnited States
| | - Carla V Rothlin
- Departments of Immunobiology and Pharmacology, Yale School of MedicineNew HavenUnited States
| | - Sourav Ghosh
- Departments of Neurology and Pharmacology, Yale School of MedicineNew HavenUnited States
| |
Collapse
|
61
|
Yang X, Gao M, Xu R, Tao Y, Luo W, Wang B, Zhong W, He L, He Y. Hyperthermia combined with immune checkpoint inhibitor therapy in the treatment of primary and metastatic tumors. Front Immunol 2022; 13:969447. [PMID: 36032103 PMCID: PMC9412234 DOI: 10.3389/fimmu.2022.969447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
According to the difference in temperature, thermotherapy can be divided into thermal ablation and mild hyperthermia. The main advantage of thermal ablation is that it can efficiently target tumors in situ, while mild hyperthermia has a good inhibitory effect on distant metastasis. There are some similarities and differences between the two therapies with respect to inducing anti-tumor immune responses, but neither of them results in sustained systemic immunity. Malignant tumors (such as breast cancer, pancreatic cancer, nasopharyngeal carcinoma, and brain cancer) are recurrent, highly metastatic, and highly invasive even after treatment, hence a single therapy rarely resolves the clinical issues. A more effective and comprehensive treatment strategy using a combination of hyperthermia and immune checkpoint inhibitor (ICI) therapies has gained attention. This paper summarizes the relevant preclinical and clinical studies on hyperthermia combined with ICI therapies and compares the efficacy of two types of hyperthermia combined with ICIs, in order to provide a better treatment for the recurrence and metastasis of clinically malignant tumors.
Collapse
Affiliation(s)
- Ximing Yang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Miaozhi Gao
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Runshi Xu
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yangyang Tao
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Luo
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Binya Wang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wenliang Zhong
- Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Ophthalmology and Otolaryngology Diseases Prevention and Treatment with Traditional Chinese Medicine and Visual Function Protection Engineering and Technological Research Center, Changsha, China
| | - Lan He
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yingchun He
- Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Ophthalmology and Otolaryngology Diseases Prevention and Treatment with Traditional Chinese Medicine and Visual Function Protection Engineering and Technological Research Center, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, China
- *Correspondence: Yingchun He,
| |
Collapse
|
62
|
Peipp M, Klausz K, Boje AS, Zeller T, Zielonka S, Kellner C. Immunotherapeutic targeting of activating natural killer cell receptors and their ligands in cancer. Clin Exp Immunol 2022; 209:22-32. [PMID: 35325068 PMCID: PMC9307233 DOI: 10.1093/cei/uxac028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells exert an important role in cancer immune surveillance. Recognition of malignant cells and controlled activation of effector functions are facilitated by the expression of activating and inhibitory receptors, which is a complex interplay that allows NK cells to discriminate malignant cells from healthy tissues. Due to their unique profile of effector functions, the recruitment of NK cells is attractive in cancer treatment and a key function of NK cells in antibody therapy is widely appreciated. In recent years, besides the low-affinity fragment crystallizable receptor for immunoglobulin G (FcγRIIIA), the activating natural killer receptors p30 (NKp30) and p46 (NKp46), as well as natural killer group 2 member D (NKG2D), have gained increasing attention as potential targets for bispecific antibody-derivatives to redirect NK cell cytotoxicity against tumors. Beyond modulation of the receptor activity on NK cells, therapeutic targeting of the respective ligands represents an attractive approach. Here, novel therapeutic approaches to unleash NK cells by engagement of activating NK-cell receptors and alternative strategies targeting their tumor-expressed ligands in cancer therapy are summarized.
Collapse
Affiliation(s)
- Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ammelie Svea Boje
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Christian Kellner
- Correspondence: Christian Kellner, Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
63
|
Song N, Liu J, Zhang K, Yang J, Cui K, Miao Z, Zhao F, Meng H, Chen L, Chen C, Li Y, Shao M, Su W, Wang H. The LIM Protein AJUBA is a Potential Oncogenic Target and Prognostic Marker in Human Cancer via Pan-Cancer Analysis. Front Cell Dev Biol 2022; 10:921897. [PMID: 35898403 PMCID: PMC9309301 DOI: 10.3389/fcell.2022.921897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose: The LIM (Lin-11, Isl1, MEC-3) domain protein AJUBA is involved in multiple biological functions, and its aberrant expression is related to the occurrence and progression of various cancers. However, there are no analytical studies on AJUBA in pan-cancer. Methods: We performed a comprehensive pan-cancer analysis and explored the potential oncogenic roles of AJUBA, including gene expression, genetic mutation, protein phosphorylation, clinical diagnostic biomarker, prognosis, and AJUBA-related immune infiltration based on The Cancer Genome Atlas and Genotype-Tissue Expression databases. Results: The results revealed that the expression of AJUBA highly correlated with poor clinical outcomes in patients with different types of cancer. Meanwhile, AJUBA expression was positively correlated with cancer-associated fibroblasts in many human cancers, such as breast invasive carcinoma, colon adenocarcinoma, brain lower-grade glioma, lung adenocarcinoma (LUAD), and ovarian serous cystadenocarcinoma (OV). Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that AJUBA is mainly involved in protein serine/threonine kinase activity, cell–cell junction, covalent chromatin modification, and Hippo signaling pathway. Conclusion: The pan-cancer study reveals the oncogenic roles of AJUBA and provides a comprehensive understanding of the molecular biological genetic information of AJUBA in various tumors.
Collapse
Affiliation(s)
- Na Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ke Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Kai Cui
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhuang Miao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Feiyue Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hongjing Meng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lu Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chong Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yushan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Minglong Shao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Haijun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- *Correspondence: Haijun Wang,
| |
Collapse
|
64
|
Vladimirova YV, Mølmer MK, Antonsen KW, Møller N, Rittig N, Nielsen MC, Møller HJ. A New Serum Macrophage Checkpoint Biomarker for Innate Immunotherapy: Soluble Signal-Regulatory Protein Alpha (sSIRPα). Biomolecules 2022; 12:biom12070937. [PMID: 35883493 PMCID: PMC9312483 DOI: 10.3390/biom12070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
Background and Aims: The macrophage “don’t eat me” pathway CD47/SIRPα is a target for promising new immunotherapy. We hypothesized that a soluble variant of SIRPα is present in the blood and may function as a biomarker. Methods: Monocyte derived macrophages (MDMs) from human buffy-coats were stimulated into macrophage subtypes by LPS and IFN-γ (M1), IL-4 and IL-13 (M2a), IL-10 (M2c) and investigated using flow cytometry. Soluble SIRPα (sSIRPα) was measured in cell cultures and serum by Western blotting and an optimized ELISA. Serum samples were obtained from 120 healthy individuals and from 8 individuals challenged by an LPS injection. Results: All macrophage phenotypes expressed SIRPα by flowcytometry, and sSIRPα was present in all culture supernatants including unstimulated cells. M1 macrophages expressed the lowest level of SIRPαand released the highest level of sSIRPα (p < 0.05). In vivo, the serum level of sSIRPα increased significantly (p < 0.0001) after an LPS challenge in humans. The median concentration in healthy individuals was 28.7 µg/L (19.8−41.1, 95% reference interval), and 20.5 µg/L in an IFCC certified serum reference material. The protein was stable in serum for prolonged storage and repeated freeze/thawing. Conclusions: We demonstrate that sSIRPα is produced constitutively and the concentration increases upon macrophage activation both in vitro and in vivo. It is present in human serum where it may function as a biomarker for the activity of tumor-associated macrophages (TAMs), and for monitoring the effect of immunotherapy.
Collapse
Affiliation(s)
- Yoanna V. Vladimirova
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark; (Y.V.V.); (M.K.M.); (K.W.A.); (M.C.N.)
| | - Marie K. Mølmer
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark; (Y.V.V.); (M.K.M.); (K.W.A.); (M.C.N.)
| | - Kristian W. Antonsen
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark; (Y.V.V.); (M.K.M.); (K.W.A.); (M.C.N.)
| | - Niels Møller
- Department of Endocrinology and Internal Medicine, Medical/Steno Research Laboratories, Aarhus University Hospital, 8200 Aarhus N, Denmark; (N.M.); (N.R.)
| | - Nikolaj Rittig
- Department of Endocrinology and Internal Medicine, Medical/Steno Research Laboratories, Aarhus University Hospital, 8200 Aarhus N, Denmark; (N.M.); (N.R.)
| | - Marlene C. Nielsen
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark; (Y.V.V.); (M.K.M.); (K.W.A.); (M.C.N.)
| | - Holger J. Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark; (Y.V.V.); (M.K.M.); (K.W.A.); (M.C.N.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
- Correspondence:
| |
Collapse
|
65
|
Freile JÁ, Ustyanovska Avtenyuk N, Corrales MG, Lourens HJ, Huls G, van Meerten T, Cendrowicz E, Bremer E. CD24 Is a Potential Immunotherapeutic Target for Mantle Cell Lymphoma. Biomedicines 2022; 10:1175. [PMID: 35625912 PMCID: PMC9138264 DOI: 10.3390/biomedicines10051175] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 01/05/2023] Open
Abstract
CD24 and its ligand Siglec-10 were described as an innate immune checkpoint in carcinoma. Here, we investigated this axis in B-cell lymphoma by assessing CD24 expression and evaluating pro-phagocytic effects of CD24 antibody treatment in comparison to hallmark immune checkpoint CD47. In mantle cell lymphoma (MCL) and follicular lymphoma patients, high mRNA expression of CD24 correlated with poor overall survival, whereas CD47 expression did not. Conversely, CD24 expression did not correlate with survival in diffuse large B-cell lymphoma (DLBCL), whereas CD47 did. CD24 was also highly expressed on MCL cell lines, where treatment with CD24 antibody clones SN3 or ML5 potently induced phagocytosis, with SN3 yielding >90% removal of MCL cells and triggering phagocytosis of primary patient-derived MCL cells by autologous macrophages. Treatment with CD24 mAb was superior to CD47 mAb in MCL and was comparable in magnitude to the effect observed in carcinoma lines. Reversely, CD24 mAb treatment was less effective than CD47 mAb treatment in DLBCL. Finally, phagocytic activity of clone SN3 appeared at least partly independent of antibody-dependent cellular phagocytosis (ADCP), suggesting CD24/Siglec-10 checkpoint activity, whereas clone ML5 solely induced ADCP. In conclusion, CD24 is an immunotherapeutic target of potential clinical relevance for MCL, but not DLBCL.
Collapse
Affiliation(s)
- Jimena Álvarez Freile
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Natasha Ustyanovska Avtenyuk
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Macarena González Corrales
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Harm Jan Lourens
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Gerwin Huls
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Tom van Meerten
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Ewa Cendrowicz
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| |
Collapse
|
66
|
Li M, Yu H, Qi F, Ye Y, Hu D, Cao J, Wang D, Mi L, Wang Z, Ding N, Ping L, Shu S, Zhu J. Anti-CD47 immunotherapy in combination with BCL-2 inhibitor to enhance anti-tumor activity in B-cell lymphoma. Hematol Oncol 2022; 40:596-608. [PMID: 35477179 DOI: 10.1002/hon.3009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
CD47 expressed on cancer cells enables macrophage immune evasion. Blocking CD47 using anti-CD47 monoclonal antibodies (mAbs) is a promising strategy. The anti-CD47 mAb TJC4 has anti-tumor activity but lacks hematological toxicity. Venetoclax, a B-cell lymphoma 2 (BCL-2) inhibitor for B-cell malignancy, induces phosphatidylserine (PS) extracellular exposure, representing an 'eat-me' signal for macrophages. The present study aimed to explore whether TJC4-Venetoclax combined therapy exerts synergistic anti-cancer properties in B-cell lymphoma. In vitro, flow cytometry and microscopy assessed whether TJC4 monotherapy or combination treatment could promote macrophage-mediated phagocytosis of tumor cells. Induced PS exposure on the cell membrane was measured using flow cytometry with Annexin V-FITC staining. In vivo, Venetoclax and TJC4's synergistic anti-tumor effects were evaluated. B cell lymphoma cell lines express high levels of CD47 and patients with diffuse large B cell lymphoma expressing CD47 have a worse clinical prognosis. TJC4 eliminates tumor cells via macrophage-mediated phagocytosis. In vitro and in vivo, the TJC4-Venetoclax combination increased phagocytosis significantly compared with either agent alone, showing synergistic phagocytosis, and displayed synergistic anti-cancer properties in B-cell lymphoma. Our results support the TJC4-Venetoclax combination as a promising therapy, and suppressing BCL-2 and CD47 simultaneously could represent a novel therapeutic paradigm for B-cell lymphoma. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Hui Yu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Fei Qi
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Yingying Ye
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Dingyao Hu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Jiaowu Cao
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Dedao Wang
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Lan Mi
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | | | - Ning Ding
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Lingyan Ping
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Shaokun Shu
- Department of Biomedical Engineering, Peking University, Beijing, 100871, China
| | - Jun Zhu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| |
Collapse
|
67
|
Zhao X, Wang J, Wang Y, Zhang M, Zhao W, Zhang H, Zhao L. Interferon‑stimulated gene 15 promotes progression of endometrial carcinoma and weakens antitumor immune response. Oncol Rep 2022; 47:110. [PMID: 35445736 PMCID: PMC9073416 DOI: 10.3892/or.2022.8321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Endometrial carcinoma (EC) is one of the most common gynecological cancers with a poor prognosis. Therefore, clarifying the details of the molecular mechanisms is of great importance for EC diagnosis and clinical management. Interferon-stimulated gene 15 (ISG15) plays an important role in the development of various cancers. However, its role in EC remains unclear. High ISG15 expression was observed in EC, which was associated with poor clinical outcomes and pathological stage of patients with EC, thus representing a promising marker for EC progression. Further exploratory analysis revealed that the elevated ISG15 levels in EC were driven by aberrant DNA methylation, independent of copy number variation and specific transcription factor aberrations. Accordingly, knockdown of ISG15 by small interfering RNA attenuated the malignant cellular phenotype of EC cell lines, including proliferation and colony formation in vitro. Finally, investigation of the molecular mechanisms indicated that ISG15 promoted the cell cycle G1/S transition in EC. Furthermore, ISG15 promoted EC progression by activating the MYC proto-oncogene protein signaling pathway. Moreover, ECs with high levels of ISG15 harbored a more vital immune escape ability, evidenced not only by significantly less invasive CD8+ T cells, but also higher expression of T cell inhibitory factors, such as programmed death-ligand 1. These results suggest a tumor-promoting role of ISG15 in EC, which may be a promising marker for diagnosis, prognosis and therapeutic immunity.
Collapse
Affiliation(s)
- Xiwa Zhao
- Department of Obstetrics and Gynecology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jingjing Wang
- The Research Center, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yaojie Wang
- The Research Center, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Mengmeng Zhang
- Department of Obstetrics and Gynecology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Wei Zhao
- Department of Obstetrics and Gynecology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hui Zhang
- Department of Obstetrics and Gynecology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Lianmei Zhao
- The Research Center, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
68
|
Wang Y, Zhao C, Liu Y, Wang C, Jiang H, Hu Y, Wu J. Recent Advances of Tumor Therapy Based on the CD47-SIRPα Axis. Mol Pharm 2022; 19:1273-1293. [PMID: 35436123 DOI: 10.1021/acs.molpharmaceut.2c00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is still a major disease that is currently difficult for humans to overcome. When the expression of the cluster of differentiation 47 (CD47) is upregulated, tumor cells interact with the macrophage inhibitory receptor signal regulatory protein α (SIRPα) to transmit the "Don't eat me" signal, thereby avoiding phagocytosis by the macrophages. Therefore, when the CD47-SIRPα axis is inhibited, the macrophages' phagocytic function can be restored and can also exert antitumor effects. This Review mainly introduces recent advances in tumor therapy targeted on the CD47-SIRPα axis, including the antibody and fusion protein, small molecule, gene therapy, cell therapy, and drug delivery system, to inhibit the function of CD47 expressed on tumor cells and promote tumor phagocytosis by macrophages. In addition, this Review also summarizes the current approaches to avoid anemia, a common side effect of CD47-SIRPα inhibitions, and provides ideas for clinical transformation.
Collapse
Affiliation(s)
- Yuchen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Chenxuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Haojie Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
69
|
Li L, Yu X, Ma G, Ji Z, Bao S, He X, Song L, Yu Y, Shi M, Liu X. Identification of an Innate Immune-Related Prognostic Signature in Early-Stage Lung Squamous Cell Carcinoma. Int J Gen Med 2021; 14:9007-9022. [PMID: 34876838 PMCID: PMC8643179 DOI: 10.2147/ijgm.s341175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022] Open
Abstract
Background Early-stage lung squamous cell carcinoma (LUSC) progression is accompanied by changes in immune microenvironments and the expression of immune-related genes (IRGs). Identifying innate IRGs associated with prognosis may improve treatment and reveal new immunotherapeutic targets. Methods Gene expression profiles and clinical data of early-stage LUSC patients were obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases and IRGs from the InnateDB database. Univariate and multivariate Cox regression and LASSO regression analyses were performed to identify an innate IRG signature model prognostic in patients with early-stage LUSC. The predictive ability of this model was assessed by time-dependent receiver operator characteristic curve analysis, with the independence of the model-determined risk score assessed by univariate and multivariate Cox regression analyses. Overall survival (OS) in early-stage LUSC patients was assessed using a nomogram and decision curve analysis (DCA). Functional and biological pathways were determined by gene set enrichment analysis, and differences in biological functions and immune microenvironments between the high- and low-risk groups were assessed by ESTIMATE and the CIBERSORT algorithm. Results A signature involving six IRGs (SREBF2, GP2, BMX, NR1H4, DDX41, and GOPC) was prognostic of OS. Samples were divided into high- and low-risk groups based on median risk scores. OS was significantly shorter in the high-risk than in the low-risk group in the training (P < 0.001), GEO validation (P = 0.00021) and TCGA validation (P = 0.034) cohorts. Multivariate Cox regression analysis showed that risk score was an independent risk factor for OS, with the combination of risk score and T stage being optimally predictive of clinical benefit. GSEA, ESTIMATE, and the CIBERSORT algorithm showed that immune cell infiltration was higher and immune-related pathways were more strongly expressed in the low-risk group. Conclusion A signature that includes these six innate IRGs may predict prognosis in patients with early-stage LUSC.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xue Yu
- Department of Pediatrics, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 420100, People's Republic of China
| | - Guanqiang Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhiqi Ji
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shihao Bao
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaopeng He
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Yang Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiangyan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| |
Collapse
|
70
|
Features of repertoire diversity and gene expression in human cytotoxic T cells following allogeneic hematopoietic cell transplantation. Commun Biol 2021; 4:1177. [PMID: 34635773 PMCID: PMC8505416 DOI: 10.1038/s42003-021-02709-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
Cytomegalovirus reactivation is still a critical concern following allogeneic hematopoietic cell transplantation, and cellular immune reconstitution of cytomegalovirus-specific cytotoxic T-cells is necessary for the long-term control of cytomegalovirus reactivation after allogeneic hematopoietic cell transplantation. Here we show the features of repertoire diversity and the gene expression profile of HLA-A24 cytomegalovirus-specific cytotoxic T-cells in actual recipients according to the cytomegalovirus reactivation pattern. A skewed preference for BV7 genes and sequential “G” amino acids motif is observed in complementarity-determining region-3 of T cell receptor-β. Increased binding scores are observed in T-cell clones with complementarity-determining region-3 of T cell receptor-β with a “(G)GG” motif. Single-cell RNA-sequence analyses demonstrate the homogenous distribution of the gene expression profile in individual cytomegalovirus-specific cytotoxic T-cells within each recipient. On the other hand, bulk RNA-sequence analyses reveal that gene expression profiles among patients are different according to the cytomegalovirus reactivation pattern, and are associated with cytokine production or cell division. These methods and results can help us to better understand immune reconstitution following hematopoietic cell transplantation, leading to future studies on the clinical application of adoptive T-cell therapies. Cytomegalovirus reactivation is an important concern after allogeneic stem cell transplantation (allo-HCT) or organ transplantation. Here, Hideki Nakasone et al. investigate changes in repertoire diversity and gene expression among clinically-transferred T cells to improve our understanding of immune reconstitution following allo-HCT.
Collapse
|
71
|
Hematologic complications of immune checkpoint inhibitors. Blood 2021; 139:3594-3604. [PMID: 34610113 PMCID: PMC9227102 DOI: 10.1182/blood.2020009016] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Immune checkpoint inhibitors are a class of anti-neoplastic therapies that unleash immune cells to kill malignant cells. There are currently 7 medications FDA-approved for the treatment of 14 solid tumors and 2 hematological malignancies. These medications commonly cause immune-related adverse effects due to overactive T lymphocytes, autoantibody production, and/or cytokine dysregulation. Hematological toxicities are rare and of uncertain mechanism, and therefore management is often based on experiences with familiar conditions involving these perturbed immune responses, such as autoimmune hemolytic anemia, immune thrombocytopenia, and idiopathic aplastic anemia. Management is challenging because one must attend to the hematological toxicity while simultaneously attending to the malignancy, with the imperative that effective cancer therapy be maintained or minimally interrupted if possible. The purpose of this review is to assist clinicians by providing a clinical and pathophysiological framework in which to view these problems.
Collapse
|
72
|
Tan Y, Wang M, Zhang Y, Ge S, Zhong F, Xia G, Sun C. Tumor-Associated Macrophages: A Potential Target for Cancer Therapy. Front Oncol 2021; 11:693517. [PMID: 34178692 PMCID: PMC8222665 DOI: 10.3389/fonc.2021.693517] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages, an important class of innate immune cells that maintain body homeostasis and ward off foreign pathogens, exhibit a high degree of plasticity and play a supportive role in different tissues and organs. Thus, dysfunction of macrophages may contribute to advancement of several diseases, including cancer. Macrophages within the tumor microenvironment are known as tumor-associated macrophages (TAMs), which typically promote cancer cell initiation and proliferation, accelerate angiogenesis, and tame anti-tumor immunity to promote tumor progression and metastasis. Massive infiltration of TAMs or enrichment of TAM-related markers usually indicates cancer progression and a poor prognosis, and consequently tumor immunotherapies targeting TAMs have gained significant attention. Here, we review the interaction between TAMs and cancer cells, discuss the origin, differentiation and phenotype of TAMs, and highlight the role of TAMs in pro-cancer functions such as tumor initiation and development, invasive metastasis, and immunosuppression. Finally, we review therapies targeting TAMs, which are very promising therapeutic strategies for malignant tumors.
Collapse
Affiliation(s)
- Yifan Tan
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Zhang
- Department of Systems Biology for Medicine, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengyang Ge
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fan Zhong
- Department of Systems Biology for Medicine, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guowei Xia
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuanyu Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|