51
|
Lyall AE, Savadjiev P, del Re EC, Seitz J, O’Donnell LJ, Westin CF, Mesholam-Gately RI, Petryshen T, Wojcik JD, Nestor P, Niznikiewicz M, Goldstein J, Seidman LJ, McCarley RW, Shenton ME, Kubicki M. Utilizing Mutual Information Analysis to Explore the Relationship Between Gray and White Matter Structural Pathologies in Schizophrenia. Schizophr Bull 2019; 45:386-395. [PMID: 29618096 PMCID: PMC6403063 DOI: 10.1093/schbul/sby028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Schizophrenia has been characterized as a neurodevelopmental disorder, with structural brain abnormalities reported at all stages. However, at present, it remains unclear whether gray and white matter abnormalities represent related or independent pathologies in schizophrenia. In this study, we present findings from an integrative analysis exploring the morphological relationship between gray and white matter in 45 schizophrenia participants and 49 healthy controls. We utilized mutual information (MI), a measure of how much information two variables share, to assess the morphological dependence between gray and white matter in three segments of the corpus callsoum, and the gray matter regions these segments connect: (1) the genu and the left and right rostral middle frontal gyrus (rMFG), (2) the isthmus and the left and right superior temporal gyrus (STG), (3) the splenium and the left and right lateral occipital gyrus (LOG). We report significantly reduced MI between white matter tract dispersion of the right hemispheric callosal connections to the STG and both cortical thickness and area in the right STG in schizophrenia patients, despite a lack of group differences in cortical thickness, surface area, or dispersion. We believe that this reduction in morphological dependence between gray and white matter may reflect a possible decoupling of the developmental processes that shape morphological features of white and gray matter early in life. The present study also demonstrates the importance of studying the relationship between gray and white matter measures, as opposed to restricting analyses to gray and white matter measures independently.
Collapse
Affiliation(s)
- Amanda E Lyall
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,To whom correspondence should be addressed; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, US; tel: (617)-525-6129, fax: (617)-525-6150, e-mail:
| | - Peter Savadjiev
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Elisabetta C del Re
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,VA Boston Healthcare System, Brockton, MA
| | - Johanna Seitz
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Lauren J O’Donnell
- Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, MA
| | - Carl-Fredrik Westin
- Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, MA
| | - Raquelle I Mesholam-Gately
- Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tracey Petryshen
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Stanley Center of Psychiatry Research, Broad Institute MIT and Harvard, Boston, MA,Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Joanne D Wojcik
- Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Paul Nestor
- Research and Development, VA Boston Healthcare System, Boston, MA,Department of Psychology, University of Massachussetts, Boston, MA
| | - Margaret Niznikiewicz
- Clinical Neuroscience Division, Laboratory of Neuroscience, VA Boston Healthcare System, Brockton, MA
| | - Jill Goldstein
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Larry J Seidman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Robert W McCarley
- Clinical Neuroscience Division, Laboratory of Neuroscience, VA Boston Healthcare System, Brockton, MA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,VA Boston Healthcare System, Brockton, MA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
52
|
Zheng X, Wang X, Wang T, Zhang H, Wu H, Zhang C, Yu L, Guan Y. Gestational Exposure to Particulate Matter 2.5 (PM 2.5) Leads to Spatial Memory Dysfunction and Neurodevelopmental Impairment in Hippocampus of Mice Offspring. Front Neurosci 2019; 12:1000. [PMID: 30666183 PMCID: PMC6330280 DOI: 10.3389/fnins.2018.01000] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Prenatal exposure to air pollutants has long-term impact on growth retardation of nervous system development and is related to central nervous system diseases in children. However, it is not well-characterized whether gestational exposure to air pollutants affects the development of nervous system in offspring. Here, we investigated the effects of gestational exposure to particulate matter 2.5 (PM2.5) on hippocampus development in mice offspring, through neurobehavioral, ultrastructural, biochemical and molecular investigations. We found that spatial memory in mice offspring from PM2.5 high-dosage group was impaired. Next, hippocampal ultrastructure of the mice offspring in puberty exhibited mitochondrial damage related to PM2.5 exposure. Interestingly, EdU-positive cells in the subgranular zone (SGZ) of offspring from PM2.5 high-dosage group decreased, with NeuN+/EdU+cells reduced significantly. Furthermore, the numbers of NeuN+/TUNEL+, GFAP+/TUNEL+, and Iba1+/TUNEL+ double-labeled cells increased with PM2.5 exposure in a dosage-dependent manner. In addition, gestational exposure to PM2.5 resulted in increased levels of both mRNAs and proteins involved in apoptosis, including caspase-3, -8, -9, p53, and c-Fos, and decreased Bcl-2/Bax ratios in the hippocampus of mice offspring. Moreover, gestational exposure to PM2.5 was dosage-dependently associated with the increased secretions of inflammatory proteins, including NF-κB, TNF-α, and IL-1β. Collectively, our results suggest that gestational exposure to PM2.5 leads to spatial memory dysfunction and neurodevelopmental impairment by exerting effects on apoptotic and neuroinflammatory events, as well as the neurogenesis in hippocampus of mice offspring.
Collapse
Affiliation(s)
- Xinrui Zheng
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Xia Wang
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Tingting Wang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Hongxia Zhang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Hongjuan Wu
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Li Yu
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Yingjun Guan
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| |
Collapse
|
53
|
Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG. An Overview of Animal Models Related to Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:5-17. [PMID: 29742910 PMCID: PMC6364139 DOI: 10.1177/0706743718773728] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder that is poorly treated with current therapies. In this brief review, we provide an update regarding the use of animal models to study schizophrenia in an attempt to understand its aetiology and develop novel therapeutic strategies. Tremendous progress has been made developing and validating rodent models that replicate the aetiologies, brain pathologies, and behavioural abnormalities associated with schizophrenia in humans. Here, models are grouped into 3 categories-developmental, drug induced, and genetic-to reflect the heterogeneous risk factors associated with schizophrenia. Each of these models is associated with varied but overlapping pathophysiology, endophenotypes, behavioural abnormalities, and cognitive impairments. Studying schizophrenia using multiple models will permit an understanding of the core features of the disease, thereby facilitating preclinical research aimed at the development and validation of better pharmacotherapies to alter the progression of schizophrenia or alleviate its debilitating symptoms.
Collapse
Affiliation(s)
- Ian R Winship
- 1 Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta
| | - Serdar M Dursun
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Glen B Baker
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Priscila A Balista
- 4 Department of Pharmacy, Centro Universitario das Faculdades Metropolitanas Unidas, São Paulo, Brazil
| | - Ludmyla Kandratavicius
- 5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Joao Paulo Maia-de-Oliveira
- 3 National Institute of Science and Technology-Translational Science, Brazil.,6 Department of Clinical Medicine, Rio Grande do Norte Federal University, Natal, Brazil
| | - Jaime Hallak
- 3 National Institute of Science and Technology-Translational Science, Brazil.,5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil.,7 Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta
| | - John G Howland
- 8 Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan
| |
Collapse
|
54
|
Ultrastructural pathology of oligodendrocytes adjacent to microglia in prefrontal white matter in schizophrenia. NPJ SCHIZOPHRENIA 2018; 4:26. [PMID: 30546020 PMCID: PMC6292874 DOI: 10.1038/s41537-018-0068-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Abstract
Microglial activation has been proposed to be involved in the pathophysiology of schizophrenia (SCZ). We hypothesized that dystrophic alterations of oligodendrocytes previously reported in the prefrontal white matter in SCZ might be associated with microglial activation in the acute state of SCZ. White matter of the prefrontal cortex (BA10) was studied in post-mortem brain tissue from 21 SCZ cases and 20 normal controls. The SCZ group included 12 subjects with predominantly positive symptoms and 9 subjects with predominantly negative symptoms. Electron microscopy was applied to estimate cell density, size, volume fraction (Vv) and the number (N) of organelles in oligodendrocytes adjacent to microglia and in oligodendrocytes adjacent to myelin, neurons and capillaries and not adjacent to microglia. Cell density of oligodendrocytes was not changed in the SCZ group as compared to controls. Vv and N of mitochondria were significantly decreased, while Vv of vacuoles of endoplasmic reticulum and lipofuscin granules were significantly increased in oligodendrocytes adjacent to either microglia or myelin in the SCZ group and in patients displaying predominantly positive symptoms as compared to the control group. There were no significant differences between oligodendrocytes adjacent to microglia and to myelin. Vv and N of lipofuscin were also increased in peri-capillary oligodendrocytes. There was no effect of clinical subgroups on the parameters of peri-capillary and peri-neuronal oligodendrocytes. Though many ameboid and dystrophic microglia adjacent to oligodendrocytes were found in the SCZ samples, we provide no quantitative evidence that oligodendrocyte dystrophy is associated with microglial activation in white matter in SCZ.
Collapse
|
55
|
Promising neuroprotective effects of β-caryophyllene against LPS-induced oligodendrocyte toxicity: A mechanistic study. Biochem Pharmacol 2018; 159:154-171. [PMID: 30529211 DOI: 10.1016/j.bcp.2018.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023]
Abstract
Myelin loss subsequent to oligodendrocyte death has been reported in a variety of myelin-associated disorders such as multiple sclerosis (MS). Lipopolysaccharide (LPS) has been shown to elicit cellular responses in the central nervous system (CNS) and trigger immune infiltrates and glial cells to release a variety of inflammatory cytokines and mediators. LPS-induced oligodendrocytes toxicity may be chosen as an efficient model to evaluate the role of oligodendrocytes in neuroprotective activities of compounds. β-Caryophyllene (BCP) is a selective type 2 cannabinoid (CB2) receptor agonist. However, the mechanisms underlying the anti-inflammatory effects of BCP are not completely understood. On this basis, we aimed to investigate the protective effects of a wide range of BCP concentrations against LPS-induced toxicity in a proliferative oligodendrocyte cell line (OLN-93) and evaluate the possible correlation between BCP concentration and selective modulation of CB2, Nrf2, sphingomyelinase (SMase) and peroxisome proliferator-activated receptors (PPAR)-γ signaling pathways. We found that LPS significantly increases the levels of reactive oxygen species (ROS), nitric oxide (NO) metabolite and tumor necrosis factor (TNF)-α production while decreases the level of GSH. BCP could prevent LPS-induced cytotoxicity and excessive production of NO, ROS, and TNF-α. Also, we demonstrated that BCP's protective effects against LPS-induced oligodendrocytes toxicity were mediated via the CB2 receptor through different pathways including Nrf2/HO-1/anti-oxidant axis, and PPAR-γ, at low (0.2 and 1 µM), and high (10-50 µM) concentrations, respectively. Additionally, we observed that the addition of SMase inhibitors imipramine (IMP) and fluoxetine (FLX) synergistically increased the protective effects of BCP. Finally, BCP at low concentrations exerted promising protective effects that could be considered for the treatment of neurodegenerative disorders such as MS. However, more studies using other models of neurodegenerative diseases should be undertaken to assess different parameters such as the activity or expression of SMase.
Collapse
|
56
|
Juncal-Ruiz M, Riesco-Dávila L, Ortiz-García de la Foz V, Martínez-Garcia O, Ramírez-Bonilla M, Ocejo-Viñals JG, Leza JC, López-Hoyos M, Crespo-Facorro B. Comparison of the anti-inflammatory effect of aripiprazole and risperidone in 75 drug-naïve first episode psychosis individuals: A 3 months randomized study. Schizophr Res 2018; 202:226-233. [PMID: 29941296 DOI: 10.1016/j.schres.2018.06.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/03/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Evidence about the anti-inflammatory properties of antipsychotics has grown. However, no previous studies have compared the immunomodulatory effect of risperidone and aripiprazole. OBJECTIVES The main aim of the present work is to compare the anti-inflammatory effect of risperidone and aripiprazole on a large array of serum cytokines at 3 months following the onset of treatment. METHODS This is a prospective, randomized, open-label study. Patients were randomly assigned to risperidone or aripiprazole. From this randomization, 75 patients and 75 healthy volunteers that matched with the selected patients were picked for entry in this study. Serum concentrations of 21 cytokines/chemokines were measured at baseline and 3 months following the initiation of antipsychotic medication. RESULTS Those patients who were randomly assigned to risperidone had higher levels of IL-8 (p = 0.000) and MIP-1β (p = 0.007) than healthy volunteers at baseline, whereas no differences were found between patients initially assigned to aripiprazole and healthy volunteers. Three months following the onset of medication several cytokines decreased significantly: IL-8, MIP-1β, Fractalkine, TNF-α, IL-7, IL-13, IL-17α, IL-23, IL-21 (all ps < 0.01). No differences were found in the percentages of change between both treatments. The effect size of the two antipsychotics was similar, except for TNF-α, IL-13, IL-17α and Fractalkine, in which aripiprazole seems to have a greater effect size than risperidone, whereas risperidone seems to have a greater effect size than aripiprazole on MIP-1β. CONCLUSIONS This is the first study that has compared the immunomodulatory effect of risperidone and aripiprazole, finding that the anti-inflammatory effect of both treatments was similar.
Collapse
Affiliation(s)
- María Juncal-Ruiz
- Department of Psychiatry, Sierrallana Hospital, IDIVAL, School of Medicine, University of Cantabria, Torrelavega, Spain.
| | - Laura Riesco-Dávila
- Department of Immunology, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
| | - Víctor Ortiz-García de la Foz
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
| | - Obdulia Martínez-Garcia
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
| | - Mariluz Ramírez-Bonilla
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
| | - Javier Gonzalo Ocejo-Viñals
- Department of Immunology, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
| | - Juan Carlos Leza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Complutense University, Madrid, Spain; Instituto de Investigación Sanitaria (IIS), Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marcos López-Hoyos
- Department of Immunology, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain; Centro de investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain.
| |
Collapse
|
57
|
Studying and modulating schizophrenia-associated dysfunctions of oligodendrocytes with patient-specific cell systems. NPJ SCHIZOPHRENIA 2018; 4:23. [PMID: 30451850 PMCID: PMC6242875 DOI: 10.1038/s41537-018-0066-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Postmortem studies in patients with schizophrenia (SCZ) have revealed deficits in myelination, abnormalities in myelin gene expression and altered numbers of oligodendrocytes in the brain. However, gaining mechanistic insight into oligodendrocyte (OL) dysfunction and its contribution to SCZ has been challenging because of technical hurdles. The advent of individual patient-derived human-induced pluripotent stem cells (hiPSCs), combined with the generation of in principle any neuronal and glial cell type, including OLs and oligodendrocyte precursor cells (OPCs), holds great potential for understanding the molecular basis of the aetiopathogenesis of genetically complex psychiatric diseases such as SCZ and could pave the way towards personalized medicine. The development of neuronal and glial co-culture systems now appears to enable the in vitro study of SCZ-relevant neurobiological endophenotypes, including OL dysfunction and myelination, with unprecedented construct validity. Nonetheless, the meaningful stratification of patients before the subsequent functional analyses of patient-derived cell systems still represents an important bottleneck. Here, to improve the predictive power of ex vivo disease modelling we propose using hiPSC technology to focus on representatives of patient subgroups stratified for genomic and/or phenomic features and neurobiological cell systems. Therefore, this review will outline the evidence for the involvement of OPCs/OLs in SCZ in the context of their proposed functions, including myelination and axon support, the implications for hiPSC-based cellular disease modelling and potential strategies for patient selection.
Collapse
|
58
|
de Almeida V, Martins-de-Souza D. Cannabinoids and glial cells: possible mechanism to understand schizophrenia. Eur Arch Psychiatry Clin Neurosci 2018; 268:727-737. [PMID: 29392440 DOI: 10.1007/s00406-018-0874-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/24/2018] [Indexed: 01/03/2023]
Abstract
Clinical and neurobiological findings have reported the involvement of endocannabinoid signaling in the pathophysiology of schizophrenia. This system modulates dopaminergic and glutamatergic neurotransmission that is associated with positive, negative, and cognitive symptoms of schizophrenia. Despite neurotransmitter impairments, increasing evidence points to a role of glial cells in schizophrenia pathobiology. Glial cells encompass three main groups: oligodendrocytes, microglia, and astrocytes. These cells promote several neurobiological functions, such as myelination of axons, metabolic and structural support, and immune response in the central nervous system. Impairments in glial cells lead to disruptions in communication and in the homeostasis of neurons that play role in pathobiology of disorders such as schizophrenia. Therefore, data suggest that glial cells may be a potential pharmacological tool to treat schizophrenia and other brain disorders. In this regard, glial cells express cannabinoid receptors and synthesize endocannabinoids, and cannabinoid drugs affect some functions of these cells that can be implicated in schizophrenia pathobiology. Thus, the aim of this review is to provide data about the glial changes observed in schizophrenia, and how cannabinoids could modulate these alterations.
Collapse
Affiliation(s)
- Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-862, Brazil.
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-862, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
59
|
Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional Microglia-Neuron Communication in Health and Disease. Front Cell Neurosci 2018; 12:323. [PMID: 30319362 PMCID: PMC6170615 DOI: 10.3389/fncel.2018.00323] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia are ramified cells that exhibit highly motile processes, which continuously survey the brain parenchyma and react to any insult to the CNS homeostasis. Although microglia have long been recognized as a crucial player in generating and maintaining inflammatory responses in the CNS, now it has become clear, that their function are much more diverse, particularly in the healthy brain. The innate immune response and phagocytosis represent only a little segment of microglia functional repertoire that also includes maintenance of biochemical homeostasis, neuronal circuit maturation during development and experience-dependent remodeling of neuronal circuits in the adult brain. Being equipped by numerous receptors and cell surface molecules microglia can perform bidirectional interactions with other cell types in the CNS. There is accumulating evidence showing that neurons inform microglia about their status and thus are capable of controlling microglial activation and motility while microglia also modulate neuronal activities. This review addresses the topic: how microglia communicate with other cell types in the brain, including fractalkine signaling, secreted soluble factors and extracellular vesicles. We summarize the current state of knowledge of physiological role and function of microglia during brain development and in the mature brain and further highlight microglial contribution to brain pathologies such as Alzheimer’s and Parkinson’s disease, brain ischemia, traumatic brain injury, brain tumor as well as neuropsychiatric diseases (depression, bipolar disorder, and schizophrenia).
Collapse
Affiliation(s)
- Zsuzsanna Szepesi
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oscar Manouchehrian
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Bachiller
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
60
|
Gładysz D, Krzywdzińska A, Hozyasz KK. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment? Mol Neurobiol 2018; 55:6387-6435. [PMID: 29307081 PMCID: PMC6061181 DOI: 10.1007/s12035-017-0822-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders (ASD) are characterized by impairments in language and communication development, social behavior, and the occurrence of stereotypic patterns of behavior and interests. Despite substantial speculation about causes of ASD, its exact etiology remains unknown. Recent studies highlight a link between immune dysfunction and behavioral traits. Various immune anomalies, including humoral and cellular immunity along with abnormalities at the molecular level, have been reported. There is evidence of altered immune function both in cerebrospinal fluid and peripheral blood. Several studies hypothesize a role for neuroinflammation in ASD and are supported by brain tissue and cerebrospinal fluid analysis, as well as evidence of microglial activation. It has been shown that immune abnormalities occur in a substantial number of individuals with ASD. Identifying subgroups with immune system dysregulation and linking specific cellular immunophenotypes to different symptoms would be key to defining a group of patients with immune abnormalities as a major etiology underlying behavioral symptoms. These determinations would provide the opportunity to investigate causative treatments for a defined patient group that may specifically benefit from such an approach. This review summarizes recent insights into immune system dysfunction in individuals with ASD and discusses the potential implications for future therapies.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | | | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
61
|
The neuropathological study of myelin oligodendrocyte glycoprotein in the temporal lobe of schizophrenia patients. Acta Neuropsychiatr 2018; 30:232-240. [PMID: 29564992 DOI: 10.1017/neu.2018.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Recent studies based on the neuroimaging analysis, genomic analysis and transcriptome analysis of the postmortem brain suggest that the pathogenesis of schizophrenia is related to myelin-oligodendrocyte abnormalities. However, no serious neuropathological investigation of this protein in the schizophrenic brain has yet been performed. In this study, to confirm the change in neuropathological findings due to the pathogenesis of this disease, we observed the expression of myelin-oligodendrocyte directly in the brain tissue of schizophrenia patients. METHODS Myelin oligodendrocyte glycoprotein (MOG) was evaluated in the cortex of the superior temporal gyrus (STG) and the hippocampus in 10 schizophrenic and nine age- and sex-matched normal control postmortem brains. RESULTS The expression of MOG was significantly lower in the middle layer of the neocortex of the STG and stratum lucidum of CA3 in the hippocampus in the long-term schizophrenic brains (patients with ≥30 years of illness duration) than in the age-matched controls. Furthermore, the thickness of MOG-positive fibre-like structures was significantly lower in both regions of the long-term schizophrenic brains than in the age-matched controls. CONCLUSION These findings suggest that a long duration of illness has a marked effect on the expression of MOG in these regions, and that myelin-oligodendrocyte abnormalities in these regions may be related to the progressive pathophysiology of schizophrenia.
Collapse
|
62
|
Hidese S, Ota M, Sasayama D, Matsuo J, Ishida I, Hiraishi M, Teraishi T, Hattori K, Kunugi H. Manual dexterity and brain structure in patients with schizophrenia: A whole-brain magnetic resonance imaging study. Psychiatry Res Neuroimaging 2018; 276:9-14. [PMID: 29702462 DOI: 10.1016/j.pscychresns.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/08/2018] [Accepted: 04/13/2018] [Indexed: 11/17/2022]
Abstract
The Purdue Pegboard Test (PPT) is a motor coordination task used to assess manual dexterity. Although several brain regions are thought to be involved in PPT performance, the relationship of the task with decreased insular volume has not been investigated. The PPT was administered to 83 subjects diagnosed with schizophrenia (mean ± standard deviation age: 38.6 ± 11.2 years; 47 males, 36 females) and 130 healthy controls (42.1 ± 15.2 years; 67 males, 63 females). All subjects were Japanese and right-handed. Gray matter volume was analyzed using voxel-based morphometry in statistical parametric mapping, while white matter measures were analyzed using diffusion tensor imaging in tract-based spatial statistics. For the patients with schizophrenia, the left-hand scores positively correlated with the right insular and bilateral operculum volumes, while the summation score (sum of left-, right-, and both-hands scores) positively correlated with the right insular volume, and the summation and assembly (number of assemblies completed) scores correlated with the diffuse white matter fractional anisotropy, axial diffusivity, and radial diffusivity values. In contrast, no significant correlations were found for the controls. These results suggested that decreased insular volume and white matter measures contributed to the impairments in manual dexterity observed in subjects with schizophrenia.
Collapse
Affiliation(s)
- Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Department of NCNP Brain Physiology and Pathology, Division of Cognitive and Behavioral Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Junko Matsuo
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Ikki Ishida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Moeko Hiraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Department of NCNP Brain Physiology and Pathology, Division of Cognitive and Behavioral Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
63
|
Vikhreva OV, Rakhmanova VI, Orlovskaya DD, Uranova NA. [Ultrastructural pathology of oligodendrocytes in white matter in continuous attack-like schizophrenia and a role for microglia]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:69-74. [PMID: 29927407 DOI: 10.17116/jnevro20181185169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIM Previously the authors have reported the ultrastructural pathology and deficits of oligodendrocytes in gray and white matter of the prefrontal cortex in continuous paranoid schizophrenia. The aim of the present work was to study the effects of microglia on the ultrastructure of oligodendrocytes in white matter underlying the prefrontal cortex (BA10) in attack-like schizophrenia. MATERIAL AND METHODS Postmortem morphometric electron microscopic study of oligodendrocytes in close apposition to microglia was performed in white matter underlying the prefrontal cortex (BA10). Nine cases of chronic attack-like schizophrenia and 20 normal controls were studied. Areas of oligodendrocytes, volume density (Vv) and the number of mitochondria, vacuoles of endoplasmic reticulum and lipofuscin granules were estimated. Group comparison was performed using ANCOVA. RESULTS The schizophrenia group differed from the control group by paucity of ribosomes in cytoplasm of oligodendrocytes, cytoplasm swelling, a significant increase in Vv and number of vacuoles and lipofuscin granules. Significant correlations between the parameters of vacuoles and lipofuscin granules and mitochondria were found only in the schizophrenia group. CONCLUSION Dystrophic alterations of oligodendrocytes apposed microglial cells were found in the white matter of the prefrontal cortex in chronic schizophrenia as compared to controls. Microglia might contribute to abnormalities of lipid and protein metabolism of oligodendrocytes.
Collapse
Affiliation(s)
| | | | | | - N A Uranova
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
64
|
Uranova NA, Vikhreva OV, Rakhmanova VI, Orlovskaya DD. [Ultrastructural pathology of oligodendrocytes in the white matter in continuous paranoid schizophrenia: a role for microglia]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:76-81. [PMID: 29053125 DOI: 10.17116/jnevro20171179176-81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM Previously the authors have reported the ultrastructural pathology and deficit of oligodendrocytes in gray and white matter of the prefrontal cortex in schizophrenia. The aim of the study was to determine of the effects of microglia on the ultrastructure of oligodendrocytes in the white matter underlying the prefrontal cortex in continuous schizophrenia. MATERIAL AND METHODS Postmortem morphometric electron microscopic study of oligodendrocytes in close apposition to microglia was performed in white matter underlying the prefrontal cortex (BA10). Eleven cases of chronic continuous schizophrenia and 11 normal controls were studied. Areas of oligodendrocytes, of their nuclei and cytoplasm, volume density (Vv) and the number of mitochondria, vacuoles of endoplasmic reticulum and lipofuscin granules were estimated. Group comparison was performed using ANCOVA. RESULTS The schizophrenia group differed from the control group by paucity of ribosomes in the cytoplasm of oligodendrocytes, a significant decrease in Vv and the number of mitochondria and increase in the number of lipofuscin granules. Significant correlations between the parameters of lipofuscin granules, mitochondria and vacuoles were found only in the schizophrenia group. The number of lipofuscin granules were correlated positively with the illness duration. CONCLUSION Dystrophic alterations of oligodendrocytes attached to microglial cells were found in the white matter of the prefrontal cortex in chronic paranoid schizophrenia as compared to controls. The data obtained suggest that microglia might contribute to abnormalities of energy, lipid and protein metabolism of oligodendrocytes in schizophrenia.
Collapse
Affiliation(s)
- N A Uranova
- Mental Health Research Centre, Moscow, Russia
| | | | | | | |
Collapse
|
65
|
Klocke C, Allen JL, Sobolewski M, Blum JL, Zelikoff JT, Cory-Slechta DA. Exposure to fine and ultrafine particulate matter during gestation alters postnatal oligodendrocyte maturation, proliferation capacity, and myelination. Neurotoxicology 2018; 65:196-206. [PMID: 29079486 PMCID: PMC5857223 DOI: 10.1016/j.neuro.2017.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022]
Abstract
Accumulating studies indicate that the brain is a direct target of air pollution exposure during the fetal period. We have previously demonstrated that exposure to concentrated ambient particles (CAPs) during gestation produces ventriculomegaly, periventricular hypermyelination, and enlargement of the corpus callosum (CC) during postnatal development in mice. This study aimed to further characterize the cellular basis of the observed hypermyelination and determine if this outcome, among other effects, persisted as the brain matured. Analysis of CC-1+ mature oligodendrocytes in the CC at postnatal days (PNDs) 11-15 suggest a premature maturational shift in number and proportion of total cells in prenatally CAPs-exposed males and females, with no overall change in total CC cellularity. The overall number of Olig2+ lineage cells in the CC was not affected in either sex at the same postnatal timepoint. Assessment of myelin status at early brain maturity (PNDs 57-61) revealed persistent hypermyelination in CAPs-exposed animals of both sexes. In addition, ventriculomegaly was persistent in CAPs-treated females, with possible amelioration of ventriculomegaly in CAPs-exposed males. When oligodendrocyte precursor cell (OPC) pool status was analyzed at PNDs 57-61, there were significant CAPs-induced alterations in cycling Ki67+/Olig2+ cell number and proportion of total cells in the female CC. Total CC cellularity was slightly elevated in CAPs-exposed males at PNDs 57-61. Overall, these data support a growing body of evidence that demonstrate the vulnerability of the developing brain to environmental insults such as ambient particulate matter. The sensitivity of oligodendrocytes and myelin, in particular, to such an insult warrants further investigation into the mechanistic underpinnings of OPC and myelin disruption by constituent air pollutants.
Collapse
Affiliation(s)
- Carolyn Klocke
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| | - Joshua L Allen
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Jason L Blum
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| |
Collapse
|
66
|
Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM, Pang T. Microglia: Housekeeper of the Central Nervous System. Cell Mol Neurobiol 2018; 38:53-71. [PMID: 28534246 DOI: 10.1007/s10571-017-0504-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
Microglia, of myeloid origin, play fundamental roles in the control of immune responses and the maintenance of central nervous system homeostasis. These cells, just like peripheral macrophages, may be activated into M1 pro-inflammatory or M2 anti-inflammatory phenotypes by appropriate stimuli. Microglia do not respond in isolation, but form part of complex networks of cells influencing each other. This review addresses the complex interaction of microglia with each cell type in the brain: neurons, astrocytes, cerebrovascular endothelial cells, and oligodendrocytes. We also highlight the participation of microglia in the maintenance of homeostasis in the brain, and their roles in the development and progression of age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- John Alimamy Kabba
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yazhou Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Handson Christian
- Department of Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wenchen Ruan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Kitchen Chenai
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, People's Republic of China
| | - Luyong Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20057, USA.
| |
Collapse
|
67
|
Rebouças DB, Rabelo-da-Ponte FD, Massuda R, Czepielewski LS, Gama CS. The Relationship between Cytokines and Verbal Memory in Individuals with Schizophrenia and Their Unaffected Siblings. Neuroimmunomodulation 2018; 25:334-339. [PMID: 30248668 DOI: 10.1159/000492716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/31/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Verbal memory impairment may be considered an endophenotype in schizophrenia (SZ), also affecting the siblings of SZ subjects. Furthermore, the immune-inflammatory system response has an important modulatory effect on brain processes, especially on memory circuits. OBJECTIVE Investigating the relationship between TNF-α and IL-6 and memory performance in patients with SZ, their unaffected siblings (SB) and healthy controls (HC). METHODS 35 subjects with SZ, 36 SB, and 47 HC underwent a neurocognitive assessment for verbal memory by means of the revised Hopkins Verbal Learning Test (HVLT-R) in addition to serum cytokines analyses. RESULTS SZ patients performed worse in HVLT-R than SB and HC, but SB and HC were not different. Regarding the biomarker levels, we found significant results of TNF-α for both groups. However, we did not find differences between groups after multiple-comparisons analysis. There were no significant correlations between episodic verbal memory, TNF-α, and IL-6. CONCLUSION The results are compatible with the hypothesis that deficits in verbal memory of individuals with SZ could be secondary to inadequate functioning of cognitive processing areas, such as proactive cognitive control.
Collapse
Affiliation(s)
- Diego B Rebouças
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Francisco Diego Rabelo-da-Ponte
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Massuda
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Psiquiatria, Universidade Federal do Paraná, Curitiba, Brazil
| | - Leticia S Czepielewski
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Clarissa S Gama
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre,
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre,
| |
Collapse
|
68
|
Zhou T, Ahmad TK, Gozda K, Truong J, Kong J, Namaka M. Implications of white matter damage in amyotrophic lateral sclerosis (Review). Mol Med Rep 2017; 16:4379-4392. [PMID: 28791401 PMCID: PMC5646997 DOI: 10.3892/mmr.2017.7186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which involves the progressive degeneration of motor neurons. ALS has long been considered a disease of the grey matter; however, pathological alterations of the white matter (WM), including axonal loss, axonal demyelination and oligodendrocyte death, have been reported in patients with ALS. The present review examined motor neuron death as the primary cause of ALS and evaluated the associated WM damage that is guided by neuronal‑glial interactions. Previous studies have suggested that WM damage may occur prior to the death of motor neurons, and thus may be considered an early indicator for the diagnosis and prognosis of ALS. However, the exact molecular mechanisms underlying early‑onset WM damage in ALS have yet to be elucidated. The present review explored the detailed anatomy of WM and identified several pathological mechanisms that may be implicated in WM damage in ALS. In addition, it associated the pathophysiological alterations of WM, which may contribute to motor neuron death in ALS, with similar mechanisms of WM damage that are involved in multiple sclerosis (MS). Furthermore, the early detection of WM damage in ALS, using neuroimaging techniques, may lead to earlier therapeutic intervention, using immunomodulatory treatment strategies similar to those used in relapsing‑remitting MS, aimed at delaying WM damage in ALS. Early therapeutic approaches may have the potential to delay motor neuron damage and thus prolong the survival of patients with ALS. The therapeutic interventions that are currently available for ALS are only marginally effective. However, early intervention with immunomodulatory drugs may slow the progression of WM damage in the early stages of ALS, thus delaying motor neuron death and increasing the life expectancy of patients with ALS.
Collapse
Affiliation(s)
- Ting Zhou
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Tina Khorshid Ahmad
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Kiana Gozda
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jessica Truong
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Michael Namaka
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
- Department of Medical Rehabilitation, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 1R9, Canada
| |
Collapse
|
69
|
Forbes TA, Gallo V. All Wrapped Up: Environmental Effects on Myelination. Trends Neurosci 2017; 40:572-587. [PMID: 28844283 PMCID: PMC5671205 DOI: 10.1016/j.tins.2017.06.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
Abstract
To date, studies have demonstrated the dynamic influence of exogenous environmental stimuli on multiple regions of the brain. This environmental influence positively and negatively impacts programs governing myelination, and acts on myelinating oligodendrocyte (OL) cells across the human lifespan. Developmentally, environmental manipulation of OL progenitor cells (OPCs) has profound effects on the establishment of functional cognitive, sensory, and motor programs. Furthermore, central nervous system (CNS) myelin remains an adaptive entity in adulthood, sensitive to environmentally induced structural changes. Here, we discuss the role of environmental stimuli on mechanisms governing programs of CNS myelination under normal and pathological conditions. Importantly, we highlight how these extrinsic cues can influence the intrinsic power of myelin plasticity to promote functional recovery.
Collapse
Affiliation(s)
- Thomas A Forbes
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
70
|
The mechanical importance of myelination in the central nervous system. J Mech Behav Biomed Mater 2017; 76:119-124. [PMID: 28462864 DOI: 10.1016/j.jmbbm.2017.04.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023]
Abstract
Neurons in the central nervous system are surrounded and cross-linked by myelin, a fatty white substance that wraps around axons to create an electrically insulating layer. The electrical function of myelin is widely recognized; yet, its mechanical importance remains underestimated. Here we combined nanoindentation testing and histological staining to correlate brain stiffness to the degree of myelination in immature, pre-natal brains and mature, post-natal brains. We found that both gray and white matter tissue stiffened significantly (p≪0.001) upon maturation: the gray matter stiffness doubled from 0.31±0.20kPa pre-natally to 0.68±0.20kPa post-natally; the white matter stiffness tripled from 0.45±0.18kPa pre-natally to 1.33±0.64kPa post-natally. At the same time, the white matter myelin content increased significantly (p≪0.001) from 58±2% to 74±9%. White matter stiffness and myelin content were correlated with a Pearson correlation coefficient of ρ=0.92 (p≪0.001). Our study suggests that myelin is not only important to ensure smooth electrical signal propagation in neurons, but also to protect neurons against physical forces and provide a strong microstructural network that stiffens the white matter tissue as a whole. Our results suggest that brain tissue stiffness could serve as a biomarker for multiple sclerosis and other forms of demyelinating disorders. Understanding how tissue maturation translates into changes in mechanical properties and knowing the precise brain stiffness at different stages of life has important medical implications in development, aging, and neurodegeneration.
Collapse
|
71
|
Dupont AC, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Tronel C, Arlicot N. Translocator Protein-18 kDa (TSPO) Positron Emission Tomography (PET) Imaging and Its Clinical Impact in Neurodegenerative Diseases. Int J Mol Sci 2017; 18:ijms18040785. [PMID: 28387722 PMCID: PMC5412369 DOI: 10.3390/ijms18040785] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
In vivo exploration of activated microglia in neurodegenerative diseases is achievable by Positron Emission Tomography (PET) imaging, using dedicated radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO). In this review, we emphasized the major advances made over the last 20 years, thanks to TSPO PET imaging, to define the pathophysiological implication of microglia activation and neuroinflammation in neurodegenerative diseases, including Parkinson’s disease, Huntington’s disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. The extent and upregulation of TSPO as a molecular biomarker of activated microglia in the human brain is now widely documented in these pathologies, but its significance, and especially its protective or deleterious action regarding the disease’s stage, remains under debate. Thus, we exposed new and plausible suggestions to enhance the contribution of TSPO PET imaging for biomedical research by exploring microglia’s role and interactions with other cells in brain parenchyma. Multiplex approaches, associating TSPO PET radiopharmaceuticals with other biomarkers (PET imaging of cellular metabolism, neurotransmission or abnormal protein aggregates, but also other imaging modalities, and peripheral cytokine levels measurement and/or metabolomics analysis) was considered. Finally, the actual clinical impact of TSPO PET imaging as a routine biomarker of neuroinflammation was put into perspective regarding the current development of diagnostic and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | | | - Maria Joao Santiago Ribeiro
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Denis Guilloteau
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Claire Tronel
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Nicolas Arlicot
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| |
Collapse
|
72
|
Xiu Y, Cheng GH, Peng C, Wang Y, Li YD, Chao FL, Tang Y. Ultrastructural abnormalities and loss of myelinated fibers in the corpus callosum of demyelinated mice induced by cuprizone. J Neurosci Res 2016; 95:1677-1689. [DOI: 10.1002/jnr.23997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/01/2016] [Accepted: 11/21/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Yun Xiu
- Institute of Life Science; Chongqing Medical University; Chongqing People's Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences; Chongqing Medical University; Chongqing People's Republic of China
| | - Guo-hua Cheng
- Department of Histology and Embryology, Faculty of Basic Medical Sciences; Chongqing Medical University; Chongqing People's Republic of China
| | - Chao Peng
- Department of Histology and Embryology, Faculty of Basic Medical Sciences; Chongqing Medical University; Chongqing People's Republic of China
| | - Yun Wang
- Department of Histology and Embryology, Faculty of Basic Medical Sciences; Chongqing Medical University; Chongqing People's Republic of China
| | - Yong-de Li
- Department of Histology and Embryology, Faculty of Basic Medical Sciences; Chongqing Medical University; Chongqing People's Republic of China
| | - Feng-lei Chao
- Department of Histology and Embryology, Faculty of Basic Medical Sciences; Chongqing Medical University; Chongqing People's Republic of China
| | - Yong Tang
- Department of Histology and Embryology, Faculty of Basic Medical Sciences; Chongqing Medical University; Chongqing People's Republic of China
| |
Collapse
|
73
|
Xu H, Zhang H, Zhang J, Huang Q, Shen Z, Wu R. Evaluation of neuron-glia integrity by in vivo proton magnetic resonance spectroscopy: Implications for psychiatric disorders. Neurosci Biobehav Rev 2016; 71:563-577. [PMID: 27702600 DOI: 10.1016/j.neubiorev.2016.09.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/05/2023]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) has been widely applied in human studies. There is now a large literature describing findings of brain MRS studies with mental disorder patients including schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders. However, the findings are mixed and cannot be reconciled by any of the existing interpretations. Here we proposed the new theory of neuron-glia integrity to explain the findings of brain 1H-MRS stuies. It proposed the neurochemical correlates of neuron-astrocyte integrity and axon-myelin integrity on the basis of update of neurobiological knowledge about neuron-glia communication and of experimental MRS evidence for impairments in neuron-glia integrity from the authors and the other investigators. Following the neuron-glia integrity theories, this review collected evidence showing that glutamate/glutamine change is a good marker for impaired neuron-astrocyte integrity and that changes in N-acetylaspartate and lipid precursors reflect impaired myelination. Moreover, this new theory enables us to explain the differences between MRS findings in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Haiyun Xu
- The Mental Health Center, Shantou University Medical College, China.
| | - Handi Zhang
- The Mental Health Center, Shantou University Medical College, China
| | - Jie Zhang
- The Mental Health Center, Shantou University Medical College, China
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, China
| | - Zhiwei Shen
- The Department of Radiology, the second affiliated hospital, Shantou University Medical College, China
| | - Renhua Wu
- The Department of Radiology, the second affiliated hospital, Shantou University Medical College, China
| |
Collapse
|
74
|
Vikhreva OV, Rakhmanova VI, Orlovskaya DD, Uranova NA. Ultrastructural alterations of oligodendrocytes in prefrontal white matter in schizophrenia: A post-mortem morphometric study. Schizophr Res 2016; 177:28-36. [PMID: 27156647 DOI: 10.1016/j.schres.2016.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Neuroimaging studies showed abnormalities in frontal white matter (WM) in schizophrenia that were associated with clinical symptoms. Previously, we reported ultrastructural alterations of myelinated fibers and reduction in the numerical density of oligodendrocytes in BA 10 WM in patients with schizophrenia. We aimed to perform a qualitative and morphometric study of the ultrastructure of oligodendrocytes in BA 10 WM in schizophrenia and in normal controls. METHODS The study was performed using electron microscopy and morphometry. Size, volume density (Vv) and the number (N) of organelles of oligodendrocytes were estimated in 21 patients with schizophrenia and 20 normal controls. The data were examined using the Kolmogorov-Smirnov test for normality. Pearson correlation analysis was performed to assess possible correlations between the parameters measured and age, post-mortem interval, neuroleptic treatment and duration of the disease. Comparisons between the schizophrenia patients and controls were performed using ANCOVA tests. RESULTS We found oligodendrocyte swelling, vacuolation, paucity of ribosomes and mitochondria and accumulation of lipofuscin granules in schizophrenia as compared to controls. Morphometry detected a significant reduction in Vv and N of mitochondria and the increase in Vv and N of lipofuscin granules and vacuoles in oligodendrocytes in the schizophrenic group as compared to controls. CONCLUSION Alterations of oligodendrocytes in schizophrenia provide evidence for the disturbance of their energy, lipid and protein metabolism in prefrontal WM. Oligodendrocyte abnormalities might disturb axonal integrity and circuitry and contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- O V Vikhreva
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| | - V I Rakhmanova
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| | - D D Orlovskaya
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| | - N A Uranova
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia.
| |
Collapse
|
75
|
Chew LJ, DeBoy CA. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology 2016; 110:605-625. [PMID: 26116759 PMCID: PMC4690794 DOI: 10.1016/j.neuropharm.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
White matter disease afflicts both developing and mature central nervous systems. Both cell intrinsic and extrinsic dysregulation result in profound changes in cell survival, axonal metabolism and functional performance. Experimental models of developmental white matter (WM) injury and demyelination have not only delineated mechanisms of signaling and inflammation, but have also paved the way for the discovery of pharmacological approaches to intervention. These reagents have been shown to enhance protection of the mature oligodendrocyte cell, accelerate progenitor cell recruitment and/or differentiation, or attenuate pathological stimuli arising from the inflammatory response to injury. Here we highlight reports of studies in the CNS in which compounds, namely peptides, hormones, and small molecule agonists/antagonists, have been used in experimental animal models of demyelination and neonatal brain injury that affect aspects of excitotoxicity, oligodendrocyte development and survival, and progenitor cell function, and which have been demonstrated to attenuate damage and improve WM protection in experimental models of injury. The molecular targets of these agents include growth factor and neurotransmitter receptors, morphogens and their signaling components, nuclear receptors, as well as the processes of iron transport and actin binding. By surveying the current evidence in non-immune targets of both the immature and mature WM, we aim to better understand pharmacological approaches modulating endogenous oligodendroglia that show potential for success in the contexts of developmental and adult WM pathology. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, USA
| |
Collapse
|
76
|
Weickenmeier J, de Rooij R, Budday S, Steinmann P, Ovaert T, Kuhl E. Brain stiffness increases with myelin content. Acta Biomater 2016; 42:265-272. [PMID: 27475531 DOI: 10.1016/j.actbio.2016.07.040] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/31/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Brain stiffness plays an important role in neuronal development and disease, but reported stiffness values vary significantly for different species, for different brains, and even for different regions within the same brain. Despite extensive research throughout the past decade, the mechanistic origin of these stiffness variations remains elusive. Here we show that brain tissue stiffness is correlated to the underlying tissue microstructure and directly proportional to the local myelin content. In 116 indentation tests of six freshly harvested bovine brains, we found that the cerebral stiffnesses of 1.33±0.63kPa in white matter and 0.68±0.20kPa in gray matter were significantly different (p<0.01). Strikingly, while the inter-specimen variation was rather moderate, the minimum and maximum cerebral white matter stiffnesses of 0.59±0.19 kPa and 2.36±0.64kPa in each brain varied by a factor of four on average. To provide a mechanistic interpretation for this variation, we performed a histological characterization of the tested brain regions. We stained the samples with hematoxylin and eosin and luxol fast blue and quantified the local myelin content using image analysis. Interestingly, we found that the cerebral white matter stiffness increased with increasing myelin content, from 0.72kPa at a myelin content of 64-2.45kPa at a myelin content of 89%, with a Pearson correlation coefficient of ρ=0.91 (p<0.01). This direct correlation could have significant neurological implications. During development, our results could help explain why immature, incompletely myelinated brains are softer than mature, myelinated brains and more vulnerable to mechanical insult as evident, for example, in shaken baby syndrome. During demyelinating disease, our findings suggest to use stiffness alterations as clinical markers for demyelination to quantify the onset of disease progression, for example, in multiple sclerosis. Taken together, our study indicates that myelin might play a more important function than previously thought: It not only insulates signal propagation and improves electrical function of single axons, it also provides structural support and mechanical stiffness to the brain as a whole. STATEMENT OF SIGNIFICANCE Increasing evidence suggests that the mechanical environment of the brain plays an important role in neuronal development and disease. Reported stiffness values vary significantly, but the origin of these variations remains unknown. Here we show that stiffness of our brain is correlated to the underlying tissue microstructure and directly proportional to the local myelin content. Myelin has been discovered in 1854 as an insulating layer around nerve cells to improve electric signal propagation. Our study now shows that it also plays an important mechanical role: Using a combined mechanical characterization and histological characterization, we found that the white matter stiffness increases linearly with increasing myelin content, from 0.5kPa at a myelin content of 63-2.5kPa at 92%.
Collapse
|
77
|
Watkins CC, Andrews SR. Clinical studies of neuroinflammatory mechanisms in schizophrenia. Schizophr Res 2016; 176:14-22. [PMID: 26235751 DOI: 10.1016/j.schres.2015.07.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/08/2015] [Accepted: 07/08/2015] [Indexed: 12/27/2022]
Abstract
Schizophrenia is a pervasive neurodevelopmental disorder that appears to result from genetic and environmental factors. Although the dopamine hypothesis is the driving theory behind the majority of translation research in schizophrenia, emerging evidence suggests that aberrant immune mechanisms in the peripheral and central nervous system influence the etiology of schizophrenia and the pathophysiology of psychotic symptoms that define the illness. The initial interest in inflammatory processes comes from epidemiological data and historical observations, dating back several decades. A growing body of research on developmental exposure to infection, stress-induced inflammatory response, glial cell signaling, structural and functional brain changes and therapeutic trials demonstrates the impact that inflammation has on the onset and progression of schizophrenia. Research in animal models of psychosis has helped to advance clinical and basic science investigations of the immune mechanisms disrupted in schizophrenia. However, they are limited by the inability to recapitulate the human experience of hallucinations, delusions and thought disorder that define psychosis. To date, translational studies of inflammatory mechanisms in human subjects have not been reviewed in great detail. Here, we critically review clinical studies that focus on inflammatory mechanisms in schizophrenia. Understanding the neuroinflammatory mechanisms involved in schizophrenia may be essential in identifying potential therapeutic targets to minimize the morbidity and mortality of schizophrenia by interrupting disease development.
Collapse
Affiliation(s)
- Crystal C Watkins
- Memory Center in Neuropsychiatry, Sheppard Pratt Health Systems, Baltimore, MD, United States; Department of Psychiatry, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, United States.
| | - Sarah Ramsay Andrews
- Department of Psychiatry, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, United States
| |
Collapse
|
78
|
Steullet P, Cabungcal JH, Monin A, Dwir D, O'Donnell P, Cuenod M, Do KQ. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A "central hub" in schizophrenia pathophysiology? Schizophr Res 2016; 176:41-51. [PMID: 25000913 PMCID: PMC4282982 DOI: 10.1016/j.schres.2014.06.021] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 12/18/2022]
Abstract
Accumulating evidence points to altered GABAergic parvalbumin-expressing interneurons and impaired myelin/axonal integrity in schizophrenia. Both findings could be due to abnormal neurodevelopmental trajectories, affecting local neuronal networks and long-range synchrony and leading to cognitive deficits. In this review, we present data from animal models demonstrating that redox dysregulation, neuroinflammation and/or NMDAR hypofunction (as observed in patients) impairs the normal development of both parvalbumin interneurons and oligodendrocytes. These observations suggest that a dysregulation of the redox, neuroimmune, and glutamatergic systems due to genetic and early-life environmental risk factors could contribute to the anomalies of parvalbumin interneurons and white matter in schizophrenia, ultimately impacting cognition, social competence, and affective behavior via abnormal function of micro- and macrocircuits. Moreover, we propose that the redox, neuroimmune, and glutamatergic systems form a "central hub" where an imbalance within any of these "hub" systems leads to similar anomalies of parvalbumin interneurons and oligodendrocytes due to the tight and reciprocal interactions that exist among these systems. A combination of vulnerabilities for a dysregulation within more than one of these systems may be particularly deleterious. For these reasons, molecules, such as N-acetylcysteine, that possess antioxidant and anti-inflammatory properties and can also regulate glutamatergic transmission are promising tools for prevention in ultra-high risk patients or for early intervention therapy during the first stages of the disease.
Collapse
Affiliation(s)
- P Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - J H Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - A Monin
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - D Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - P O'Donnell
- Neuroscience Research Unit, Pfizer, Inc., 700 Main Street, Cambridge, MA 02139, USA
| | - M Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - K Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland.
| |
Collapse
|
79
|
Koivukangas J, Björnholm L, Tervonen O, Miettunen J, Nordström T, Kiviniemi V, Mäki P, Mukkala S, Moilanen I, Barnett JH, Jones PB, Nikkinen J, Veijola J. Body mass index and brain white matter structure in young adults at risk for psychosis - The Oulu Brain and Mind Study. Psychiatry Res Neuroimaging 2016; 254:169-176. [PMID: 27474847 DOI: 10.1016/j.pscychresns.2016.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 05/09/2016] [Accepted: 06/30/2016] [Indexed: 11/28/2022]
Abstract
Antipsychotic medications and psychotic illness related factors may affect both weight and brain structure in people with psychosis. Genetically high-risk individuals offer an opportunity to study the relationship between body mass index (BMI) and brain structure free from these potential confounds. We examined the effect of BMI on white matter (WM) microstructure in subjects with familial risk for psychosis (FR). We used diffusion tensor imaging and tract-based spatial statistics to explore the effect of BMI on whole brain FA in 42 (13 males) participants with FR and 46 (16 males) control participants aged 20-25 years drawn from general population-based Northern Finland Birth Cohort 1986. We also measured axial, radial and mean diffusivities. Most of the participants were normal weight rather than obese. In the FR group, decrease in fractional anisotropy and increase in radial diffusivity were associated with an increase in BMI in several brain areas. In controls the opposite pattern was seen in participants with higher BMI. There was a statistically significant interaction between group and BMI on FA and radial and mean diffusivities. Our results suggest that the effect of BMI on WM differs between individuals with FR for psychosis and controls.
Collapse
Affiliation(s)
- Jenni Koivukangas
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland; Aurora Doctoral Program, University of Oulu, Oulu, Finland.
| | - Lassi Björnholm
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Osmo Tervonen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Jouko Miettunen
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland; Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland; Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Tanja Nordström
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland; Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Pirjo Mäki
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland; Department of Psychiatry, Länsi-Pohja Healthcare District, Finland; Department of Psychiatry, Middle Ostrobothnia Central Hospital, Kiuru, Finland; Mental Health Services, Joint Municipal Authority of Wellbeing in Raahe District, Finland; Mental Health Services, Basic Health Care District of Kallio, Finland; Visala Hospital, Northern Ostrobothnia Hospital District, Finland
| | - Sari Mukkala
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Irma Moilanen
- Aurora Doctoral Program, University of Oulu, Oulu, Finland; Clinic of Child Psychiatry, Oulu University Hospital, Oulu, Finland; PEDEGO Research Center, and Medical Research Center Oulu, University of Oulu, Finland
| | - Jennifer H Barnett
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Cambridge Cognition, Cambridge, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Juha Nikkinen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
| | - Juha Veijola
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland; Aurora Doctoral Program, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
80
|
Pasternak O, Kubicki M, Shenton ME. In vivo imaging of neuroinflammation in schizophrenia. Schizophr Res 2016; 173:200-212. [PMID: 26048294 PMCID: PMC4668243 DOI: 10.1016/j.schres.2015.05.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
In recent years evidence has accumulated to suggest that neuroinflammation might be an early pathology of schizophrenia that later leads to neurodegeneration, yet the exact role in the etiology, as well as the source of neuroinflammation, are still not known. The hypothesis of neuroinflammation involvement in schizophrenia is quickly gaining popularity, and thus it is imperative that we have reliable and reproducible tools and measures that are both sensitive, and, most importantly, specific to neuroinflammation. The development and use of appropriate human in vivo imaging methods can help in our understanding of the location and extent of neuroinflammation in different stages of the disorder, its natural time-course, and its relation to neurodegeneration. Thus far, there is little in vivo evidence derived from neuroimaging methods. This is likely the case because the methods that are specific and sensitive to neuroinflammation are relatively new or only just being developed. This paper provides a methodological review of both existing and emerging positron emission tomography and magnetic resonance imaging techniques that identify and characterize neuroinflammation. We describe \how these methods have been used in schizophrenia research. We also outline the shortcomings of existing methods, and we highlight promising future techniques that will likely improve state-of-the-art neuroimaging as a more refined approach for investigating neuroinflammation in schizophrenia.
Collapse
Affiliation(s)
- Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Applied Mathematics, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; VA Boston Healthcare System, Brockton, MA, USA
| |
Collapse
|
81
|
Karlsgodt KH. Diffusion Imaging of White Matter In Schizophrenia: Progress and Future Directions. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:209-217. [PMID: 27453952 PMCID: PMC4955654 DOI: 10.1016/j.bpsc.2015.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diffusion tensor imaging (DTI) is a powerful tool for the in-vivo assessment of white matter microstructure. The application of DTI methodologies to the study of schizophrenia has supported and advanced the hypothesis of schizophrenia as a disorder of disrupted connectivity. In the context of impaired structural connectivity, the extended time frame of white matter development may offer unique opportunities for treatment that can capitalize on the neural flexibility that is still present in the period leading up to and after disease onset. Therefore, it is important to gain a clear understanding of white matter deficits and how they may emerge and change across the illness. However, while there is broad consistency in the findings of white matter deficits in patients with schizophrenia, there is also a great deal of variability in specific findings across studies. In this review, the aim is to move beyond summarizing case-control analyses, to consider the many factors that may impact DTI measures, to explain variability of findings, and to explore future directions for the field. The topics explored include ways to parse DTI patterns associated with different disease subtypes, ways in which novel and established treatments might interact with or enhance white matter, ways of dissociating developmental change from the disease process itself, and understanding the role of emerging analytic methodologies.
Collapse
Affiliation(s)
- Katherine H Karlsgodt
- Psychiatry Research Division, Zucker Hillside Hospital and Feinstein Institute for Medical Research; Department of Psychiatry, Hofstra NorthShore LIJ School of Medicine
| |
Collapse
|
82
|
Lewis CS, Torres L, Miyauchi JT, Rastegar C, Patete JM, Smith JM, Wong SS, Tsirka SE. Absence of Cytotoxicity towards Microglia of Iron Oxide (α-Fe 2O 3) Nanorhombohedra. Toxicol Res (Camb) 2016; 5:836-847. [PMID: 27274811 PMCID: PMC4890976 DOI: 10.1039/c5tx00421g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/04/2016] [Indexed: 12/11/2022] Open
Abstract
Understanding the nature of interactions between nanomaterials, such as commercially ubiquitous hematite (α-Fe2O3) Nanorhombohedra (N-Rhomb) and biological systems is of critical importance for gaining insight into the practical applicability of nanomaterials. Microglia represent the first line of defense in the central nervous system (CNS) during severe injury or disease such as Parkinson's and Alzheimer's disease as illustrative examples. Hence, to analyze the potential cytotoxic effect of nanorhombohedra exposure in the presence of microglia, we have synthesized Rhodamine B (RhB) labeled-α-Fe2O3 N-Rhomb, with lengths of 47 ± 10 nm and widths of 35 ± 8 nm. Internalization of RhB labeled-α-Fe2O3 N-Rhomb by microglia in the mouse brain was observed, and a dose-dependent increase in the cellular iron content as probed by cellular fluorescence was detected in cultured microglia after nanoparticle exposure. The cells maintained clear functional viability, exhibiting little to no cytotoxic effects after 24 and 48 hours at acceptable, physiological concentrations. Importantly, the nanoparticle exposure did not induce microglial cells to produce either tumor necrosis factor alpha (TNFα) or interleukin 1-beta (IL1β), two pro-inflammatory cytokines, nor did exposure induce the production of nitrites and reactive oxygen species (ROS), which are common indicators for the onset of inflammation. Finally, we propose that under the conditions of our experiments, i.e. in the presence of RhB labeled-α-Fe2O3 N-Rhomb maintaining concentrations of up to 100 µg/mL after 48 hours of incubation, the in vitro and in vivo internalization of RhB labeled-α-Fe2O3 N-Rhomb are likely to be clathrin-dependent, which represents a conventional mechanistic uptake route for most cells. Given the crucial role that microglia play in many neurological disorders, understanding the potential cytotoxic effects of these nanostructures is of fundamental importance if they are to be used in a therapeutic setting.
Collapse
Affiliation(s)
- Crystal S. Lewis
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
| | - Luisa Torres
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| | - Jeremy T. Miyauchi
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| | - Cyrus Rastegar
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| | - Jonathan M. Patete
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
| | - Jacqueline M. Smith
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
| | - Stanislaus S. Wong
- Department of Chemistry
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-3400
, USA
.
- Condensed Matter Physics and Materials Science Department
, Building 480
, Brookhaven National Laboratory
,
Upton
, New York 11973
, USA
| | - Stella E. Tsirka
- Department of Pharmacological Sciences
, State University of New York at Stony Brook
,
Stony Brook
, New York 11794-8651
, USA
.
| |
Collapse
|
83
|
Ayers-Ringler JR, Jia YF, Qiu YY, Choi DS. Role of astrocytic glutamate transporter in alcohol use disorder. World J Psychiatry 2016; 6:31-42. [PMID: 27014596 PMCID: PMC4804266 DOI: 10.5498/wjp.v6.i1.31] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/18/2015] [Accepted: 01/11/2016] [Indexed: 02/05/2023] Open
Abstract
Alcohol use disorder (AUD) is one of the most widespread neuropsychiatric conditions, having a significant health and socioeconomic impact. According to the 2014 World Health Organization global status report on alcohol and health, the harmful use of alcohol is responsible for 5.9% of all deaths worldwide. Additionally, 5.1% of the global burden of disease and injury is ascribed to alcohol (measured in disability adjusted life years, or disability adjusted life years). Although the neurobiological basis of AUD is highly complex, the corticostriatal circuit contributes significantly to the development of addictive behaviors. In-depth investigation into the changes of the neurotransmitters in this circuit, dopamine, gamma-aminobutyricacid, and glutamate, and their corresponding neuronal receptors in AUD and other addictions enable us to understand the molecular basis of AUD. However, these discoveries have also revealed a dearth of knowledge regarding contributions from non-neuronal sources. Astrocytes, though intimately involved in synaptic function, had until recently been noticeably overlooked in their potential role in AUD. One major function of the astrocyte is protecting neurons from excitotoxicity by removing glutamate from the synapse via excitatory amino acid transporter type 2. The importance of this key transporter in addiction, as well as ethanol withdrawal, has recently become evident, though its regulation is still under investigation. Historically, pharmacotherapy for AUD has been focused on altering the activity of neuronal glutamate receptors. However, recent clinical evidence has supported the animal-based findings, showing that regulating glutamate homeostasis contributes to successful management of recovery from AUD.
Collapse
|
84
|
Abstract
Despite a lack of recent progress in the treatment of schizophrenia, our understanding of its genetic and environmental causes has considerably improved, and their relationship to aberrant patterns of neurodevelopment has become clearer. This raises the possibility that 'disease-modifying' strategies could alter the course to - and of - this debilitating disorder, rather than simply alleviating symptoms. A promising window for course-altering intervention is around the time of the first episode of psychosis, especially in young people at risk of transition to schizophrenia. Indeed, studies performed in both individuals at risk of developing schizophrenia and rodent models for schizophrenia suggest that pre-diagnostic pharmacotherapy and psychosocial or cognitive-behavioural interventions can delay or moderate the emergence of psychosis. Of particular interest are 'hybrid' strategies that both relieve presenting symptoms and reduce the risk of transition to schizophrenia or another psychiatric disorder. This Review aims to provide a broad-based consideration of the challenges and opportunities inherent in efforts to alter the course of schizophrenia.
Collapse
|
85
|
Laskaris LE, Di Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E, Cropley VL, Pantelis C. Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol 2016; 173:666-80. [PMID: 26455353 PMCID: PMC4742288 DOI: 10.1111/bph.13364] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/16/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a debilitating disorder that typically begins in adolescence and is characterized by perceptual abnormalities, delusions, cognitive and behavioural disturbances and functional impairments. While current treatments can be effective, they are often insufficient to alleviate the full range of symptoms. Schizophrenia is associated with structural brain abnormalities including grey and white matter volume loss and impaired connectivity. Recent findings suggest these abnormalities follow a neuroprogressive course in the earliest stages of the illness, which may be associated with episodes of acute relapse. Neuroinflammation has been proposed as a potential mechanism underlying these brain changes, with evidence of increased density and activation of microglia, immune cells resident in the brain, at various stages of the illness. We review evidence for microglial dysfunction in schizophrenia from both neuroimaging and neuropathological data, with a specific focus on studies examining microglial activation in relation to the pathology of grey and white matter. The studies available indicate that the link between microglial dysfunction and brain change in schizophrenia remains an intriguing hypothesis worthy of further examination. Future studies in schizophrenia should: (i) use multimodal imaging to clarify this association by mapping brain changes longitudinally across illness stages in relation to microglial activation; (ii) clarify the nature of microglial dysfunction with markers specific to activation states and phenotypes; (iii) examine the role of microglia and neurons with reference to their overlapping roles in neuroinflammatory pathways; and (iv) examine the impact of novel immunomodulatory treatments on brain structure in schizophrenia.
Collapse
Affiliation(s)
- L E Laskaris
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - M A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - I Everall
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| | - G Chana
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - A Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - E Skafidas
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| | - V L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
86
|
Monin A, Fournier M, Baumann PS, Cuénod M, Do KQ. Role of Redox Dysregulation in White Matter Anomalies Associated with Schizophrenia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-800981-9.00028-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
87
|
Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 2015; 59:140-154. [PMID: 26721665 DOI: 10.1016/j.neuro.2015.12.014] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/25/2022]
Abstract
Accumulating evidence from both human and animal studies show that brain is a target of air pollution. Multiple epidemiological studies have now linked components of air pollution to diagnosis of autism spectrum disorder (ASD), a linkage with plausibility based on the shared mechanisms of inflammation. Additional plausibility appears to be provided by findings from our studies in mice of exposures from postnatal day (PND) 4-7 and 10-13 (human 3rd trimester equivalent), to concentrated ambient ultrafine (UFP) particles, considered the most reactive component of air pollution, at levels consistent with high traffic areas of major U.S. cities and thus highly relevant to human exposures. These exposures, occurring during a period of marked neuro- and gliogenesis, unexpectedly produced a pattern of developmental neurotoxicity notably similar to multiple hypothesized mechanistic underpinnings of ASD, including its greater impact in males. UFP exposures induced inflammation/microglial activation, reductions in size of the corpus callosum (CC) and associated hypomyelination, aberrant white matter development and/or structural integrity with ventriculomegaly (VM), elevated glutamate and excitatory/inhibitory imbalance, increased amygdala astrocytic activation, and repetitive and impulsive behaviors. Collectively, these findings suggest the human 3rd trimester equivalent as a period of potential vulnerability to neurodevelopmental toxicity to UFP, particularly in males, and point to the possibility that UFP air pollution exposure during periods of rapid neuro- and gliogenesis may be a risk factor not only for ASD, but also for other neurodevelopmental disorders that share features with ASD, such as schizophrenia, attention deficit disorder, and periventricular leukomalacia.
Collapse
|
88
|
van Tilborg E, Heijnen CJ, Benders MJ, van Bel F, Fleiss B, Gressens P, Nijboer CH. Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Prog Neurobiol 2015; 136:28-49. [PMID: 26655283 DOI: 10.1016/j.pneurobio.2015.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Preterm birth is an evolving challenge in neonatal health care. Despite declining mortality rates among extremely premature neonates, morbidity rates remain very high. Currently, perinatal diffuse white matter injury (WMI) is the most commonly observed type of brain injury in preterm infants and has become an important research area. Diffuse WMI is associated with impaired cognitive, sensory and psychological functioning and is increasingly being recognized as a risk factor for autism-spectrum disorders, ADHD, and other psychological disturbances. No treatment options are currently available for diffuse WMI and the underlying pathophysiological mechanisms are far from being completely understood. Preterm birth is associated with maternal inflammation, perinatal infections and disrupted oxygen supply which can affect the cerebral microenvironment by causing activation of microglia, astrogliosis, excitotoxicity, and oxidative stress. This intricate interplay of events negatively influences oligodendrocyte development, causing arrested oligodendrocyte maturation or oligodendrocyte cell death, which ultimately results in myelination failure in the developing white matter. This review discusses the current state in perinatal WMI research, ranging from a clinical perspective to basic molecular pathophysiology. The complex regulation of oligodendrocyte development in healthy and pathological conditions is described, with a specific focus on signaling cascades that may play a role in WMI. Furthermore, emerging concepts in the field of WMI and issues regarding currently available animal models are put forward. Novel insights into the molecular mechanisms underlying impeded oligodendrocyte maturation in diffuse WMI may aid the development of novel treatment options which are desperately needed to improve the quality-of-life of preterm neonates.
Collapse
Affiliation(s)
- Erik van Tilborg
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manon J Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bobbi Fleiss
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Pierre Gressens
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
89
|
Saia-Cereda VM, Cassoli JS, Schmitt A, Falkai P, Nascimento JM, Martins-de-Souza D. Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains. Eur Arch Psychiatry Clin Neurosci 2015; 265:601-12. [PMID: 26232077 DOI: 10.1007/s00406-015-0621-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022]
Abstract
Schizophrenia is an incurable and debilitating mental disorder that may affect up to 1% of the world population. Morphological, electrophysiological, and neurophysiological studies suggest that the corpus callosum (CC), which is the largest portion of white matter in the human brain and responsible for inter-hemispheric communication, is altered in schizophrenia patients. Here, we employed mass spectrometry-based proteomics to investigate the molecular underpinnings of schizophrenia. Brain tissue samples were collected postmortem from nine schizophrenia patients and seven controls at the University of Heidelberg, Germany. Because the CC has a signaling role, we collected cytoplasmic (soluble) proteins and submitted them to nano-liquid chromatography-mass spectrometry (nano LC-MS/MS). Proteomes were quantified by label-free spectral counting. We identified 5678 unique peptides that corresponded to 1636 proteins belonging to 1512 protein families. Of those proteins, 65 differed significantly in expression: 28 were upregulated and 37 downregulated. Our data increased significantly the knowledge derived from an earlier proteomic study of the CC. Among the differentially expressed proteins are those associated with cell growth and maintenance, such as neurofilaments and tubulins; cell communication and signaling, such as 14-3-3 proteins; and oligodendrocyte function, such as myelin basic protein and myelin-oligodendrocyte glycoprotein. Additionally, 30 of the differentially expressed proteins were found previously in other proteomic studies in postmortem brains; this overlap in findings validates the present study and indicates that these proteins may be markers consistently associated with schizophrenia. Our findings increase the understanding of schizophrenia pathophysiology and may serve as a foundation for further treatment strategies.
Collapse
Affiliation(s)
- Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Andrea Schmitt
- Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Universidade de São Paulo, São Paulo, Brazil.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil. .,Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Universidade de São Paulo, São Paulo, Brazil. .,UNICAMP's Neurobiology Center, Campinas, Brazil.
| |
Collapse
|
90
|
Cassoli JS, Guest PC, Malchow B, Schmitt A, Falkai P, Martins-de-Souza D. Disturbed macro-connectivity in schizophrenia linked to oligodendrocyte dysfunction: from structural findings to molecules. NPJ SCHIZOPHRENIA 2015; 1:15034. [PMID: 27336040 PMCID: PMC4849457 DOI: 10.1038/npjschz.2015.34] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/10/2015] [Accepted: 08/19/2015] [Indexed: 01/20/2023]
Abstract
Schizophrenia is a severe psychiatric disorder with multi-factorial characteristics. A number of findings have shown disrupted synaptic connectivity in schizophrenia patients and emerging evidence suggests that this results from dysfunctional oligodendrocytes, the cells responsible for myelinating axons in white matter to promote neuronal conduction. The exact cause of this is not known, although recent imaging and molecular profiling studies of schizophrenia patients have identified changes in white matter tracts connecting multiple brain regions with effects on protein signaling networks involved in the myelination process. Further understanding of oligodendrocyte dysfunction in schizophrenia could lead to identification of novel drug targets for this devastating disease.
Collapse
Affiliation(s)
- Juliana Silva Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP) , Campinas, Brazil
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP) , Campinas, Brazil
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU) , Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU), Munich, Germany; Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo (USP), São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU) , Munich, Germany
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil; Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo (USP), São Paulo, Brazil; UNICAMP's Neurobiology Center, Campinas, Brazil
| |
Collapse
|
91
|
Fukushima S, Nishikawa K, Furube E, Muneoka S, Ono K, Takebayashi H, Miyata S. Oligodendrogenesis in the fornix of adult mouse brain; the effect of LPS-induced inflammatory stimulation. Brain Res 2015; 1627:52-69. [PMID: 26385416 DOI: 10.1016/j.brainres.2015.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 08/11/2015] [Accepted: 09/08/2015] [Indexed: 01/27/2023]
Abstract
Evidence have been accumulated that continuous oligodendrogenesis occurs in the adult mammalian brain. The fornix, projection and commissure pathway of hippocampal neurons, carries signals from the hippocampus to other parts of the brain and has critical role in memory and learning. However, basic characterization of adult oligodendrogenesis in this brain region is not well understood. In the present study, therefore, we aimed to examine the proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) and the effect of acute inflammatory stimulation on oligodendrogenesis in the fornix of adult mouse. We demonstrated the proliferation of OPCs and a new generation of mature oligodendrocytes by using bromodeoxyuridine and Ki67 immunohistochemistry. Oligodendrogenesis of adult fornix was also demonstrated by using oligodendrocyte transcription factor 2 transgenic mouse. A single systemic administration of lipopolysaccharide (LPS) attenuated proliferation of OPCs in the fornix together with reduced proliferation of hippocampal neural stem/progenitor cells. Time course analysis showed that a single administration of LPS attenuated the proliferation of OPCs during 24-48 h. On the other hand, consecutive administration of LPS did not suppress proliferation of OPCs. The treatment of LPS did not affect differentiation of OPCs into mature oligodendrocytes. Treatment of a microglia inhibitor minocycline significantly attenuated basal proliferation of OPCs under normal condition. In conclusion, the present study indicates that continuous oligodendrogenesis occurs and a single administration of LPS transiently attenuates proliferation of OPCs without changing differentiation in the fornix of the adult mouse brains.
Collapse
Affiliation(s)
- Shohei Fukushima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kazunori Nishikawa
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eriko Furube
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shiori Muneoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Katsuhiko Ono
- Department of Biology, Kyoto Prefectural University of Medicine, Shimogamohangicho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
92
|
Intact speed of processing in a community-based sample of adults with high schizotypy: A marker of reduced psychosis risk? Psychiatry Res 2015; 228:531-7. [PMID: 26117248 DOI: 10.1016/j.psychres.2015.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/23/2015] [Accepted: 06/04/2015] [Indexed: 11/22/2022]
Abstract
Speed of processing is impaired in schizophrenia but intact in schizotypal college students. In view of this disparity, we investigated whether deficient processing speed was associated with schizotypy in adults from the general community. Data were drawn from the Western Australian Family Study of Schizophrenia, including 216 (non-clinical) adults from the general community, and a reference group with schizophrenia spectrum disorder (N=224). Schizotypal traits were assessed with the Schizotypal Personality Questionnaire, whilst processing speed was assessed with a digit-symbol coding task. Community controls had significantly higher digit symbol coding scores than patients with psychosis. However, both correlational and hierarchical regression analysis indicated a lack of association between Cognitive-perceptual, Interpersonal or Disorganized schizotypy traits and digit symbol coding performance. Relative to Australian norms there was also no evidence of a non-linear decline in coding in high schizotypes in young, mature or senior age groups. The results show that speed of information processing is unimpaired in high schizotypes from the general community. The possibility that intact processing speed in at-risk groups confers protection to psychosis onset is discussed. Assessing the trajectory of processing speed throughout development may provide a useful clinical screening tool to distinguish those at heightened risk of developing psychosis.
Collapse
|
93
|
Do KQ, Cuenod M, Hensch TK. Targeting Oxidative Stress and Aberrant Critical Period Plasticity in the Developmental Trajectory to Schizophrenia. Schizophr Bull 2015; 41:835-46. [PMID: 26032508 PMCID: PMC4466197 DOI: 10.1093/schbul/sbv065] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder reflecting a convergence of genetic risk and early life stress. The slow progression to first psychotic episode represents both a window of vulnerability as well as opportunity for therapeutic intervention. Here, we consider recent neurobiological insight into the cellular and molecular components of developmental critical periods and their vulnerability to redox dysregulation. In particular, the consistent loss of parvalbumin-positive interneuron (PVI) function and their surrounding perineuronal nets (PNNs) as well as myelination in patient brains is consistent with a delayed or extended period of circuit instability. This linkage to critical period triggers (PVI) and brakes (PNN, myelin) implicates mistimed trajectories of brain development in mental illness. Strategically introduced antioxidant treatment or later reinforcement of molecular brakes may then offer a novel prophylactic psychiatry.
Collapse
Affiliation(s)
- Kim Q. Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Takao K. Hensch
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA,*To whom correspondence should be addressed; Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, US; tel: +1-617-384-5882; fax: +1-617-495-4038; e-mail:
| |
Collapse
|
94
|
Vreeker A, van Bergen AH, Kahn RS. Cognitive enhancing agents in schizophrenia and bipolar disorder. Eur Neuropsychopharmacol 2015; 25:969-1002. [PMID: 25957798 DOI: 10.1016/j.euroneuro.2015.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/10/2015] [Indexed: 12/20/2022]
Abstract
Cognitive dysfunction is a core feature of schizophrenia and is also present in bipolar disorder (BD). Whereas decreased intelligence precedes the onset of psychosis in schizophrenia and remains relatively stable thereafter; high intelligence is a risk factor for bipolar illness but cognitive function decreases after onset of symptoms. While in schizophrenia, many studies have been conducted on the development of cognitive enhancing agents; in BD such studies are almost non-existent. This review focuses on the pharmacological agents with putative effects on cognition in both schizophrenia and bipolar illness; specifically agents targeting the dopaminergic, cholinergic and glutamatergic neurotransmitter pathways in schizophrenia and the cognitive effects of lithium, anticonvulsants and antipsychotics in BD. In the final analysis we conclude that cognitive enhancing agents have not yet been produced convincingly for schizophrenia and have hardly been studied in BD. Importantly, studies should focus on other phases of the illness. To be able to treat cognitive deficits effectively in schizophrenia, patients in the very early stages of the illness, or even before - in the ultra-high risk stages - should be targeted. In contrast, cognitive deficits occur later in BD, and therefore drugs should be tested in BD after the onset of illness. Hopefully, we will then find effective drugs for the incapacitating effects of cognitive deficits in these patients.
Collapse
Affiliation(s)
- Annabel Vreeker
- University Medical Center Utrecht, Department of Psychiatry, Brain Center Rudolf Magnus, The Netherlands
| | - Annet H van Bergen
- University Medical Center Utrecht, Department of Psychiatry, Brain Center Rudolf Magnus, The Netherlands
| | - René S Kahn
- University Medical Center Utrecht, Department of Psychiatry, Brain Center Rudolf Magnus, The Netherlands.
| |
Collapse
|
95
|
Bigler ED. Neuroimaging as a biomarker in symptom validity and performance validity testing. Brain Imaging Behav 2015; 9:421-44. [DOI: 10.1007/s11682-015-9409-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
96
|
Morton PD, Ishibashi N, Jonas RA, Gallo V. Congenital cardiac anomalies and white matter injury. Trends Neurosci 2015; 38:353-63. [PMID: 25939892 PMCID: PMC4461528 DOI: 10.1016/j.tins.2015.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/17/2022]
Abstract
Cardiac abnormalities are the most common birth defects. Derangement of circulatory flow affects many vital organs; without proper supply of oxygenated blood, the brain is particularly vulnerable. Although surgical interventions have greatly reduced mortality rates, patients often suffer an array of neurological deficits throughout life. Neuroimaging provides a macroscopic assessment of brain injury and has shown that white matter (WM) is at risk. Oligodendrocytes and myelinated axons have been identified as major targets of WM injury, but still little is known about how congenital heart anomalies affect the brain at the cellular level. Further integration of animal model studies and clinical research will define novel therapeutic targets and new standards of care to prevent developmental delay associated with cardiac abnormalities.
Collapse
Affiliation(s)
- Paul D Morton
- Center for Neuroscience Research and Children's National Heart Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Nobuyuki Ishibashi
- Center for Neuroscience Research and Children's National Heart Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Richard A Jonas
- Center for Neuroscience Research and Children's National Heart Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Vittorio Gallo
- Center for Neuroscience Research and Children's National Heart Institute, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
97
|
A. Kato T, Hyodo F, Yamato M, Utsumi H, Kanba S. Redox and Microglia in the Pathophysiology of Schizophrenia. YAKUGAKU ZASSHI 2015; 135:739-43. [DOI: 10.1248/yakushi.14-00235-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takahiro A. Kato
- Innovation Center for Medical Redox Navigation, Kyushu University
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University
| | - Fuminori Hyodo
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Mayumi Yamato
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Hideo Utsumi
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
98
|
Miller SC, Whitehead CR, Otte CN, Wells TS, Webb TS, Gore RK, Maynard C. Risk for broad-spectrum neuropsychiatric disorders after mild traumatic brain injury in a cohort of US Air Force personnel. Occup Environ Med 2015; 72:560-6. [DOI: 10.1136/oemed-2014-102646] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/27/2015] [Indexed: 01/27/2023]
|
99
|
Wischhof L, Irrsack E, Osorio C, Koch M. Prenatal LPS-exposure--a neurodevelopmental rat model of schizophrenia--differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:17-30. [PMID: 25455585 DOI: 10.1016/j.pnpbp.2014.10.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023]
Abstract
Maternal infection during pregnancy increases the risk for the offspring to develop schizophrenia. Gender differences can be seen in various features of the illness and sex steroid hormones (e.g. estrogen) have strongly been implicated in the disease pathology. In the present study, we evaluated sex differences in the effects of prenatal exposure to a bacterial endotoxin (lipopolysaccharide, LPS) in rats. Pregnant dams received LPS-injections (100 μg/kg) at gestational day 15 and 16. The offspring was then tested for prepulse inhibition (PPI), locomotor activity, anxiety-like behavior and object recognition memory at various developmental time points. At postnatal day (PD) 33 and 60, prenatally LPS-exposed rats showed locomotor hyperactivity which was similar in male and female offspring. Moreover, prenatal LPS-treatment caused PPI deficits in pubertal (PD45) and adult (PD90) males while PPI impairments were found only at PD45 in prenatally LPS-treated females. Following prenatal LPS-administration, recognition memory for objects was impaired in both sexes with males being more severely affected. Additionally, we assessed prenatal infection-induced alterations of parvalbumin (Parv) expression and myelin fiber density. Male offspring born to LPS-challenged mothers showed decreased myelination in cortical and limbic brain regions as well as reduced numbers of Parv-expressing cells in the medial prefrontal cortex (mPFC), hippocampus and entorhinal cortex. In contrast, LPS-exposed female rats showed only a modest decrease in myelination and Parv immunoreactivity. Collectively, our data indicate that some of the prenatal immune activation effects are sex dependent and further strengthen the importance of taking into account gender differences in animal models of schizophrenia.
Collapse
Affiliation(s)
- Lena Wischhof
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany.
| | - Ellen Irrsack
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Carmen Osorio
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Michael Koch
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| |
Collapse
|
100
|
Kedracka-Krok S, Swiderska B, Jankowska U, Skupien-Rabian B, Solich J, Buczak K, Dziedzicka-Wasylewska M. Clozapine influences cytoskeleton structure and calcium homeostasis in rat cerebral cortex and has a different proteomic profile than risperidone. J Neurochem 2015; 132:657-76. [DOI: 10.1111/jnc.13007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Sylwia Kedracka-Krok
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Bianka Swiderska
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Urszula Jankowska
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Bozena Skupien-Rabian
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Joanna Solich
- Institute of Pharmacology; Polish Academy of Sciences; Krakow Poland
| | - Katarzyna Buczak
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Institute of Pharmacology; Polish Academy of Sciences; Krakow Poland
| |
Collapse
|