51
|
Wu Z, Xie L, Guo D, Chen S, Liu X, Sun X, Wang J, Zhang Y, Liu L, Cui H, Zang D, Yang J. Triglyceride-glucose index in the prediction of adverse cardiovascular events in patients without diabetes mellitus after coronary artery bypass grafting: a multicenter retrospective cohort study. Cardiovasc Diabetol 2023; 22:230. [PMID: 37649025 PMCID: PMC10470170 DOI: 10.1186/s12933-023-01969-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The triglyceride-glucose (TyG) index has been evaluated as a reliable surrogate for insulin resistance (IR) and has been proven to be a predictor of poor outcomes in patients with cardiovascular diseases. However, data are lacking on the relationship of the TyG index with prognosis in nondiabetic patients who underwent coronary artery bypass grafting (CABG). Thus, the purpose of our current study was to investigate the potential value of the TyG index as a prognostic indicator in patients without diabetes mellitus (DM) after CABG. METHODS This multicenter, retrospective cohort study involving 830 nondiabetic patients after CABG from 3 tertiary public hospitals from 2014 to 2018. Kaplan-Meier survival curve analysis was conducted followed by the log-rank test. Cox proportional hazards regression models were used to explore the association between the TyG index and major adverse cardiovascular events (MACEs). The incremental predictive power of the TyG index was evaluated with C-statistics, continuous net reclassification improvement (NRI) and integrated discrimination improvement (IDI). RESULTS An incrementally higher TyG index was associated with an increasingly higher cumulative incidence of MACEs (log-rank test, p < 0.001). The hazard ratio (95% CI) of MACEs was 2.22 (1.46-3.38) in tertile 3 of the TyG index and 1.38 (1.18-1.62) per SD increase in the TyG index. The addition of the TyG index yielded a significant improvement in the global performance of the baseline model [C-statistic increased from 0.656 to 0.680, p < 0.001; continuous NRI (95% CI) 0.269 (0.100-0.438), p = 0.002; IDI (95% CI) 0.014 (0.003-0.025), p = 0.014]. CONCLUSIONS The TyG index may be an independent factor for predicting adverse cardiovascular events in nondiabetic patients after CABG.
Collapse
Affiliation(s)
- Zhenguo Wu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Xie
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Dachuan Guo
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Sha Chen
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyu Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangfei Sun
- Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Juan Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yerui Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Huiliang Cui
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Dejin Zang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
52
|
Barale C, Melchionda E, Tempesta G, Morotti A, Russo I. Impact of Physical Exercise on Platelets: Focus on Its Effects in Metabolic Chronic Diseases. Antioxidants (Basel) 2023; 12:1609. [PMID: 37627603 PMCID: PMC10451697 DOI: 10.3390/antiox12081609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic disorders are strongly linked to cardiovascular (CV) diseases, and it is unanimously accepted that regular exercise training is a key tool to improving CV risk factors, including diabetes, dyslipidemia, and obesity. Increased oxidative stress due to an imbalance between reactive oxygen species production and their scavenging by endogenous antioxidant capacity is the common ground among these metabolic disorders, and each of them affects platelet function. However, the correction of hyperglycemia in diabetes and lipid profile in dyslipidemia as well as the lowering of body weight in obesity all correlate with amelioration of platelet function. Habitual physical exercise triggers important mechanisms related to the exercise benefits for health improvement and protects against CV events. Platelets play an important role in many physiological and pathophysiological processes, including the development of arterial thrombosis, and physical (in)activity has been shown to interfere with platelet function. Although data reported by studies carried out on this topic show discrepancies, the current knowledge on platelet function affected by exercise mainly depends on the type of applied exercise intensity and whether acute or habitual, strenuous or moderate, thus suggesting that physical activity and exercise intensity may interfere with platelet function differently. Thus, this review is designed to cover the aspects of the relationship between physical exercise and vascular benefits, with an emphasis on the modulation of platelet function, especially in some metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Isabella Russo
- Department of Clinical and Biological Sciences of Turin University, Regione Gonzole, 10, Orbassano, I-10043 Turin, Italy; (C.B.); (E.M.); (G.T.); (A.M.)
| |
Collapse
|
53
|
Cabaro S, Agognon AL, Nigro C, Orso S, Prevenzano I, Leone A, Morelli C, Mormone F, Romano S, Miele C, Beguinot F, Formisano P, Oriente F. Resveratrol Improves Endothelial Function by A PREP1-Mediated Pathway in Mouse Aortic Endothelial Cells. Int J Mol Sci 2023; 24:11891. [PMID: 37569266 PMCID: PMC10419093 DOI: 10.3390/ijms241511891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
PREP1 is a homeodomain transcription factor that impairs metabolism and is involved in age-related aortic thickening. In this study, we evaluated the role of PREP1 on endothelial function. Mouse Aortic Endothelial Cells (MAECs) transiently transfected with a Prep1 cDNA showed a 1.5- and 1.6-fold increase in eNOSThr495 and PKCα phosphorylation, respectively. Proinflammatory cytokines Tnf-α and Il-6 increased by 3.5 and 2.3-fold, respectively, in the presence of Prep1, while the antioxidant genes Sod2 and Atf4 were significantly reduced. Bisindolylmaleimide reverted the effects induced by PREP1, suggesting PKCα to be a mediator of PREP1 action. Interestingly, resveratrol, a phenolic micronutrient compound, reduced the PREP1 levels, eNOSThr495, PKCα phosphorylation, and proinflammatory cytokines and increased Sod2 and Atf4 mRNA levels. The experiments performed on the aorta of 18-month-old Prep1 hypomorphic heterozygous mice (Prep1i/+) expressing low levels of this protein showed a 54 and 60% decrease in PKCα and eNOSThr495 phosphorylation and a 45% reduction in Tnf-α levels, with no change in Il-6, compared to same-age WT mice. However, a significant decrease in Sod2 and Atf4 was observed in Prep1i/+ old mice, indicating the lack of age-induced antioxidant response. These results suggest that Prep1 deficiency partially improved the endothelial function in aged mice and suggested PREP1 as a novel target of resveratrol.
Collapse
Affiliation(s)
- Serena Cabaro
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Ayewa L. Agognon
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Cecilia Nigro
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Sonia Orso
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Immacolata Prevenzano
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Alessia Leone
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Cristina Morelli
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Federica Mormone
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Serena Romano
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Claudia Miele
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Francesco Oriente
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
54
|
Macvanin MT, Gluvic Z, Bajic V, Isenovic ER. Novel insights regarding the role of noncoding RNAs in diabetes. World J Diabetes 2023; 14:958-976. [PMID: 37547582 PMCID: PMC10401459 DOI: 10.4239/wjd.v14.i7.958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17–25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
55
|
Inoue Y, Shue F, Bu G, Kanekiyo T. Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer's disease. Mol Neurodegener 2023; 18:46. [PMID: 37434208 PMCID: PMC10334598 DOI: 10.1186/s13024-023-00640-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is commonly caused by vascular injuries in cerebral large and small vessels and is a key driver of age-related cognitive decline. Severe VCID includes post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. While VCID is acknowledged as the second most common form of dementia after Alzheimer's disease (AD) accounting for 20% of dementia cases, VCID and AD frequently coexist. In VCID, cerebral small vessel disease (cSVD) often affects arterioles, capillaries, and venules, where arteriolosclerosis and cerebral amyloid angiopathy (CAA) are major pathologies. White matter hyperintensities, recent small subcortical infarcts, lacunes of presumed vascular origin, enlarged perivascular space, microbleeds, and brain atrophy are neuroimaging hallmarks of cSVD. The current primary approach to cSVD treatment is to control vascular risk factors such as hypertension, dyslipidemia, diabetes, and smoking. However, causal therapeutic strategies have not been established partly due to the heterogeneous pathogenesis of cSVD. In this review, we summarize the pathophysiology of cSVD and discuss the probable etiological pathways by focusing on hypoperfusion/hypoxia, blood-brain barriers (BBB) dysregulation, brain fluid drainage disturbances, and vascular inflammation to define potential diagnostic and therapeutic targets for cSVD.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD 20850 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
56
|
Jiang L, Wu X, Wang Y, Liu C, Wu Y, Wang J, Xu N, He Z, Wang S, Zhang H, Wang X, Lu X, Tan Q, Sun X. Photothermal Controlled-Release Immunomodulatory Nanoplatform for Restoring Nerve Structure and Mechanical Nociception in Infectious Diabetic Ulcers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300339. [PMID: 37148168 PMCID: PMC10369251 DOI: 10.1002/advs.202300339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Indexed: 05/08/2023]
Abstract
Infectious diabetic ulcers (IDU) require anti-infection, angiogenesis, and nerve regeneration therapy; however, the latter has received comparatively less research attention than the former two. In particular, there have been few reports on the recovery of mechanical nociception. In this study, a photothermal controlled-release immunomodulatory hydrogel nanoplatform is tailored for the treatment of IDU. Due to a thermal-sensitive interaction between polydopamine-reduced graphene oxide (pGO) and the antibiotic mupirocin, excellent antibacterial efficacy is achieved through customized release kinetics. In addition, Trem2+ macrophages recruited by pGO regulate collagen remodeling and restore skin adnexal structures to alter the fate of scar formation, promote angiogenesis, accompanied by the regeneration of neural networks, which ensures the recovery of mechanical nociception and may prevent the recurrence of IDU at the source. In all, a full-stage strategy from antibacterial, immune regulation, angiogenesis, and neurogenesis to the recovery of mechanical nociception, an indispensable neural function of skin, is introduced to IDU treatment, which opens up an effective and comprehensive therapy for refractory IDU.
Collapse
Affiliation(s)
- Le Jiang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Xiangyi Wu
- Department of Burns and Plastic SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNo. 321, Zhongshan RoadNanjingJiangsu210008China
| | - Yifan Wang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Chunlin Liu
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Yixian Wu
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Jingyun Wang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Nan Xu
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Zhijun He
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Shuqin Wang
- Department of Burns and Plastic SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNo. 321, Zhongshan RoadNanjingJiangsu210008China
| | - Hao Zhang
- Department of Burns and Plastic SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNo. 321, Zhongshan RoadNanjingJiangsu210008China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Xiong Lu
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Qian Tan
- Department of Burns and Plastic SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNo. 321, Zhongshan RoadNanjingJiangsu210008China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
57
|
Zhao X, Fu L, Zou H, He Y, Pan Y, Ye L, Huang Y, Fan W, Zhang J, Ma Y, Chen J, Zhu M, Zhang C, Cai Y, Mou X. Optogenetic engineered umbilical cord MSC-derived exosomes for remodeling of the immune microenvironment in diabetic wounds and the promotion of tissue repair. J Nanobiotechnology 2023; 21:176. [PMID: 37269014 DOI: 10.1186/s12951-023-01886-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/06/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Angiogenesis and tissue repair in chronic non-healing diabetic wounds remain critical clinical problems. Engineered MSC-derived exosomes have significant potential for the promotion of wound healing. Here, we discuss the effects and mechanisms of eNOS-rich umbilical cord MSC exosomes (UCMSC-exo/eNOS) modified by genetic engineering and optogenetic techniques on diabetic chronic wound repair. METHODS Umbilical cord mesenchymal stem cells were engineered to express two recombinant proteins. Large amounts of eNOS were loaded into UCMSC-exo using the EXPLOR system under blue light irradiation. The effects of UCMSC-exo/eNOS on the biological functions of fibroblasts and vascular endothelial cells in vitro were evaluated. Full-thickness skin wounds were constructed on the backs of diabetic mice to assess the role of UCMSC-exo/eNOS in vascular neogenesis and the immune microenvironment, and to explore the related molecular mechanisms. RESULTS eNOS was substantially enriched in UCMSCs-exo by endogenous cellular activities under blue light irradiation. UCMSC-exo/eNOS significantly improved the biological functions of cells after high-glucose treatment and reduced the expression of inflammatory factors and apoptosis induced by oxidative stress. In vivo, UCMSC-exo/eNOS significantly improved the rate of wound closure and enhanced vascular neogenesis and matrix remodeling in diabetic mice. UCMSC-exo/eNOS also improved the inflammatory profile at the wound site and modulated the associated immune microenvironment, thus significantly promoting tissue repair. CONCLUSION This study provides a novel therapeutic strategy based on engineered stem cell-derived exosomes for the promotion of angiogenesis and tissue repair in chronic diabetic wounds.
Collapse
Affiliation(s)
- Xin Zhao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014, China
| | - Luoqin Fu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Hai Zou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yichen He
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yi Pan
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Luyi Ye
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Yilin Huang
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Weijiao Fan
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jungang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yingyu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jinyang Chen
- Zhejiang Healthfuture Biomedicine Co., Ltd., Hangzhou, 310052, China
| | - Mingang Zhu
- Department of Dermatology, the First People's Hospital of Jiashan, Jiaxing, 314100, Zhejiang, China
| | - Chengwu Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014, China.
| | - Yu Cai
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014, China.
| | - Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014, China.
| |
Collapse
|
58
|
Impact of type 1 diabetes and its duration on wall-to-lumen ratio and blood flow in retinal arterioles. Microvasc Res 2023; 147:104499. [PMID: 36753823 DOI: 10.1016/j.mvr.2023.104499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Subclinical damage to both the small and large vessels may contribute to the development and progression of cardiovascular disease. Scanning laser Doppler flowmetry (SLDF), an established method used to measure retinal microcirculation, has been successfully applied in hypertensive and post-stroke patients. METHODS Retinal microcirculation was assessed in 158 patients with type 1 diabetes and 38 age-matched healthy controls. The diabetics were divided into 3 groups: group A with diabetes duration <12 months, group B with diabetes with 1-10 years, and group C >10 years of diabetes. Retinal capillary structure and perfusion were evaluated using a Heidelberg retina flowmeter and automatically analyzed with full-field perfusion imaging. RESULTS Age and BMI were comparable in all the diabetic patients and the controls (mean age 24.8 ± 4.7 years, mean BMI 22.9 ± 4.1). In the univariate analyses, RCF (retinal capillary flow) was significantly higher in group A (297 ± 121 arbitrary units [AU]) vs group B (236 ± 52 AU; p = 0.007) and group C (236 ± 70 AU; p = 0.008) and comparable to that of the controls (p = 0.46). Additionally, the WLR (Wall-to-Lumen Ratio) was highest in group C compared to the other diabetic subgroups and controls (p = 0.001). Multivariate regression analyses including age, BMI, sex, HbA1c, smoking, systolic blood pressure, and diabetes duration as covariates, showed, that only diabetes duration was significantly associated with WLR variations, whereas HbA1c was significantly linked to retinal capillary flow levels. CONCLUSIONS New-onset diabetes is associated with an increase in RCF, which then gradually decreased with the duration of the disease. Structural changes of the retinal arterioles estimated via WLR are evident later in the course of diabetes, especially when the disease duration exceeded 10 years.
Collapse
|
59
|
Zeng R, Zhang Y, Xu J, Kong Y, Tan J, Guo L, Zhang M. Relationship of Glycated Hemoglobin A1c with All-Cause and Cardiovascular Mortality among Patients with Hypertension. J Clin Med 2023; 12:jcm12072615. [PMID: 37048698 PMCID: PMC10095266 DOI: 10.3390/jcm12072615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Both low and high glycated hemoglobin A1c (HbA1c) levels are well-established causal risk factors for all-cause and cardiovascular mortality in the general population and diabetic patients. However, the relationship between HbA1c with all-cause and cardiovascular mortality among patients with hypertension is unclear. We used NHANES data from 1999 to 2014 as the basis for this population-based cohort study. Based on HbA1c levels (HbA1c > 5, HbA1c > 5.5, HbA1c > 6, HbA1c > 6.5, HbA1c > 7%), hypertensive patients were divided into five groups. An analysis of multivariable Cox proportional hazards was conducted based on hazard ratios (HRs) and respective 95% confidence intervals (CIs). The relationship between HbA1c and mortality was further explored using Kaplan–Meier survival curves, restricted cubic spline curves, and subgroup analyses. In addition, 13,508 patients with hypertension (average age 58.55 ± 15.56 years) were included in the present analysis, with 3760 (27.84%) all-cause deaths during a follow-up of 127.69 ± 57.9 months. A U-shaped relationship was found between HbA1c and all-cause and cardiovascular mortality (all p for likelihood ratio tests were 0.0001). The threshold value of HbA1c related to the lowest risk for all-cause and cardiovascular mortality was 5.3% and 5.7%, respectively. Below the threshold value, increased HbA1c levels reduced the risk of all-cause mortality (HR 0.68, 95% CI 0.51–0.90, p = 0.0078) and cardiovascular mortality (HR 0.77, 95% CI 0.57–1.05, p = 0.0969). Inversely, above the threshold value, increased HbA1c levels accelerated the risk of all-cause mortality (HR 1.14, 95% CI 1.11–1.18, p < 0.0001) and cardiovascular mortality (HR 1.22, 95% CI 1.16–1.29, p < 0.0001). In conclusion, A U-shape relationship was observed between HbA1c and all-cause and cardiovascular mortality among hypertensive patients.
Collapse
Affiliation(s)
- Ruixiang Zeng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (R.Z.)
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Yuzhuo Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (R.Z.)
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Junpeng Xu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (R.Z.)
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Yongjie Kong
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (R.Z.)
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Jiawei Tan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (R.Z.)
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Liheng Guo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (R.Z.)
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Minzhou Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (R.Z.)
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Correspondence: ; Tel.: +86-20-81887233
| |
Collapse
|
60
|
FU R, ZHAO YY, CUI KY, YANG JG, XU HY, YIN D, SONG WH, WANG HJ, ZHU CG, FENG L, WANG ZF, WANG QS, LU Y, DOU KF, YANG YJ. Triglyceride glucose index predicts in-hospital mortality in patients with ST-segment elevation myocardial infarction who underwent primary angiography. J Geriatr Cardiol 2023; 20:185-194. [PMID: 37091264 PMCID: PMC10114195 DOI: 10.26599/1671-5411.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
OBJECTIVES To assess the correlation between triglyceride glucose (TyG) index and in-hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI). METHODS A total of 2190 patients with STEMI who underwent primary angiography within 12 h from symptom onset were selected from the prospective, nationwide, multicenter CAMI registry. TyG index was calculated with the formula: Ln [fasting triglycerides (mmol/L) × fasting glucose (mmol/L)/2]. Patients were divided into three groups according to the tertiles of TyG index. The primary endpoint was in-hospital mortality. RESULTS Overall, 46 patients died during hospitalization, in-hospital mortality was 1.5%, 2.2%, 2.6% for tertile 1, tertile 2, and tertile 3, respectively. However, TyG index was not significantly correlated with in-hospital mortality in single-variable logistic regression analysis. Nonetheless, after adjusting for age and sex, TyG index was significantly associated with higher mortality when regarded as a continuous variable (adjusted OR = 1.75, 95% CI: 1.16-2.63) or categorical variable (tertile 3 vs. tertile 1: adjusted OR = 2.50, 95% CI: 1.14-5.49). Furthermore, TyG index, either as a continuous variable (adjusted OR = 2.54, 95% CI: 1.42-4.54) or categorical variable (tertile 3 vs. tertile 1: adjusted OR = 3.57, 95% CI: 1.24-10.29), was an independent predictor of in-hospital mortality after adjusting for multiple confounders in multivariable logistic regression analysis. In subgroup analysis, the prognostic effect of high TyG index was more significant in patients with body mass index < 18.5 kg/m2 (P interaction = 0.006). CONCLUSIONS This study showed that TyG index was positively correlated with in-hospital mortality in STEMI patients who underwent primary angiography, especially in underweight patients.
Collapse
Affiliation(s)
- Rui FU
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan-Yan ZHAO
- Medical Research & Biometrics Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kong-Yong CUI
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin-Gang YANG
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Yan XU
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong YIN
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Hua SONG
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Jian WANG
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng-Gang ZHU
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei FENG
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Fang WANG
- Department of Cardiology, Xinxiang Central Hospital, the Fourth Clinical College of Xinxiang Medical University, Henan Province, China
| | - Qing-Sheng WANG
- Department of Cardiology, Qinhuangdao First Hospital, Hebei Province, China
| | - Ye LU
- Medical Research & Biometrics Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke-Fei DOU
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- (DOU KF)
| | - Yue-Jin YANG
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- (YANG YJ)
| |
Collapse
|
61
|
Cathepsin S Knockdown Suppresses Endothelial Inflammation, Angiogenesis, and Complement Protein Activity under Hyperglycemic Conditions In Vitro by Inhibiting NF-κB Signaling. Int J Mol Sci 2023; 24:ijms24065428. [PMID: 36982499 PMCID: PMC10049538 DOI: 10.3390/ijms24065428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Hyperglycemia plays a key role in the development of microvascular complications, endothelial dysfunction (ED), and inflammation. It has been demonstrated that cathepsin S (CTSS) is activated in hyperglycemia and is involved in inducing the release of inflammatory cytokines. We hypothesized that blocking CTSS might alleviate the inflammatory responses and reduce the microvascular complications and angiogenesis in hyperglycemic conditions. In this study, we treated human umbilical vein endothelial cells (HUVECs) with high glucose (HG; 30 mM) to induce hyperglycemia and measured the expression of inflammatory cytokines. When treated with glucose, hyperosmolarity could be linked to cathepsin S expression; however, many have mentioned the high expression of CTSS. Thus, we made an effort to concentrate on the immunomodulatory role of the CTSS knockdown in high glucose conditions. We validated that the HG treatment upregulated the expression of inflammatory cytokines and CTSS in HUVEC. Further, siRNA treatment significantly downregulated CTSS expression along with inflammatory marker levels by inhibiting the nuclear factor-kappa B (NF-κB) mediated signaling pathway. In addition, CTSS silencing led to the decreased expression of vascular endothelial markers and downregulated angiogenic activity in HUVECs, which was confirmed by a tube formation experiment. Concurrently, siRNA treatment reduced the activation of complement proteins C3a and C5a in HUVECs under hyperglycemic conditions. These findings show that CTSS silencing significantly reduces hyperglycemia-induced vascular inflammation. Hence, CTSS may be a novel target for preventing diabetes-induced microvascular complications.
Collapse
|
62
|
Özkan U, Gürdoğan M. The Effect of SGLT2 Inhibitors on the Development of Contrast-Induced Nephropathy in Diabetic Patients with Non-ST Segment Elevation Myocardial Infarction. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:505. [PMID: 36984506 PMCID: PMC10057721 DOI: 10.3390/medicina59030505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Background and Objectives: Percutaneous procedures using contrast agents are modern diagnosis and treatment methods for cardiovascular diseases. Contrast use may cause nephropathy, especially in diabetic patients. SGLT2 inhibitors have strong cardioprotective and renal protective effects. In our study, we investigated the effectiveness of this drug group in preventing the development of Contrast-Induced Nephropathy (CIN). Materials and Methods: The results of 312 diabetic patients who underwent CAG were analyzed. The study group included 104 DM patients using SGLT2 and the control group did not use SGLT2. These groups were compared with each other in terms of clinical, demographic, and laboratory parameters. Results: The groups were similar characteristics. However, post-CAG creatinine values compared with before the procedure, the development of CIN was observed to be significantly less in the group using SGLT2 inhibitor (p = 0.03). When the results of the multivariate analysis were examined, it was seen that the use of SGLT2 inhibitors significantly reduced the risk of CIN (odds ratio (OR): 0.41, 95% confidence interval (CI): 0,142-0.966, p = 0.004). Conclusions: Our study showed that SGLT2 inhibitors may be protective against the development of CIN, especially in patients with comorbid conditions such as diabetes.
Collapse
Affiliation(s)
- Uğur Özkan
- Department of Cardiology, School of Medicine, Trakya University, Edirne 22030, Turkey
| | | |
Collapse
|
63
|
Uchida T, Ueno H, Konagata A, Taniguchi N, Kogo F, Nagatomo Y, Shimizu K, Yamaguchi H, Shimoda K. Improving the Effects of Imeglimin on Endothelial Function: A Prospective, Single-Center, Observational Study. Diabetes Ther 2023; 14:569-579. [PMID: 36732433 PMCID: PMC9981829 DOI: 10.1007/s13300-023-01370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Endothelial dysfunction is a risk factor for cardiovascular disease in patients with diabetes. We hypothesized that imeglimin, a novel oral hypoglycemic agent, would improve endothelial function. METHODS In this study, imeglimin was administered to patients with type 2 diabetes and HbA1c ≥ 6.5% who were not receiving insulin therapy. A meal tolerance test (592 kcal, glucose 75.0 g, fat 28.5 g) was performed before and 3 months after administration, and endothelial function, blood glucose, insulin, glucagon, and triglycerides were evaluated. Endothelial function was assessed by flow-mediated dilation (FMD). RESULTS Twelve patients (50% male) with a median age of 55.5 years old (interquartile range [IQR] 51.3-66.0) were enrolled. Fasting FMD did not differ before or 3 months after imeglimin administration (from 6.1 [3.9-8.5] to 6.6 [3.9-9.0], p = 0.092), but 2 h postprandial FMD was significantly improved 3 months after imeglimin administration (from 2.3 [1.9-3.4] to 2.9 [2.4-4.7], p = 0.013). In terms of the glucose profile, imeglimin administration significantly improved HbA1c (from 7.2 ± 0.6% to 6.9 ± 0.6%, p = 0.007), fasting glucose (from 138 ± 19 mg/dL to 128 ± 20 mg/dL, p = 0.020), and 2 h postprandial glucose (from 251 ± 47 mg/dL to 215 ± 68 mg/dL, p = 0.035). The change in 2 h postprandial FMD between before and 3 months after imeglimin administration (Δ2 h postprandial FMD) was negatively correlated with Δ2 h postprandial glucose (r = - 0.653, p = 0.021) in a univariate correlation coefficient analysis. Both patients with and without decreased postprandial glucose 3 months after imeglimin administration had improved postprandial FMD. CONCLUSION In this small study, imeglimin administration improved 2 h postprandial FMD. Both glycemic control-dependent and -independent mechanisms might contribute to improved endothelial function. TRIAL REGISTRATION This research was registered in the University Hospital Medical Information Network (UMIN, UMIN000046311).
Collapse
Affiliation(s)
- Taisuke Uchida
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hiroaki Ueno
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| | - Ayaka Konagata
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Norifumi Taniguchi
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Fumiko Kogo
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yuma Nagatomo
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Koichiro Shimizu
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hideki Yamaguchi
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| |
Collapse
|
64
|
Lim LL, Chow E, Chan JCN. Cardiorenal diseases in type 2 diabetes mellitus: clinical trials and real-world practice. Nat Rev Endocrinol 2023; 19:151-163. [PMID: 36446898 DOI: 10.1038/s41574-022-00776-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/30/2022]
Abstract
Patients with type 2 diabetes mellitus (T2DM) can have multiple comorbidities and premature mortality due to atherosclerotic cardiovascular disease, hospitalization with heart failure and/or chronic kidney disease. Traditional drugs that lower glucose, such as metformin, or that treat high blood pressure and blood levels of lipids, such as renin-angiotensin-system inhibitors and statins, have organ-protective effects in patients with T2DM. Amongst patients with T2DM treated with these traditional drugs, randomized clinical trials have confirmed the additional cardiorenal benefits of sodium-glucose co-transporter 2 inhibitors (SGLT2i), glucagon-like peptide 1 receptor agonists (GLP1RA) and nonsteroidal mineralocorticoid receptor antagonists. The cardiorenal benefits of SGLT2i extended to patients with heart failure and/or chronic kidney disease without T2DM, whereas incretin-based therapy (such as GLP1RA) reduced cardiovascular events in patients with obesity and T2DM. However, considerable care gaps exist owing to insufficient detection, therapeutic inertia and poor adherence to these life-saving medications. In this Review, we discuss the complex interconnections of cardiorenal-metabolic diseases and strategies to implement evidence-based practice. Furthermore, we consider the need to conduct clinical trials combined with registers in specific patient segments to evaluate existing and emerging therapies to address unmet needs in T2DM.
Collapse
Affiliation(s)
- Lee-Ling Lim
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| |
Collapse
|
65
|
Agbaje AO, Zachariah JP, Bamsa O, Odili AN, Tuomainen TP. Cumulative insulin resistance and hyperglycemia with arterial stiffness and carotid IMT progression in 1,779 adolescents: a 9-yr longitudinal cohort study. Am J Physiol Endocrinol Metab 2023; 324:E268-E278. [PMID: 36753290 PMCID: PMC10010917 DOI: 10.1152/ajpendo.00008.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023]
Abstract
In pediatric population with diabetes and obesity, insulin resistance (HOMA-IR) has been associated with worsening vascular outcomes, however, the cumulative role of HOMA-IR, hyperglycemia, and hyperinsulinemia on repeatedly measured vascular outcomes in asymptomatic youth is unknown. We examined the longitudinal associations of fasting glucose, insulin, and HOMA-IR with carotid-femoral pulse wave velocity (cfPWV) and carotid intima-media thickness (cIMT). From the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort, UK 1,779, 15-yr-old participants were followed up for 9 yr. Glucose, insulin, and HOMA-IR assessed at 15, 17, and 24 yr and sex-specifically dichotomized as ≥75th percentile, indicating high category and <75th percentile as reference. cfPWV and cIMT were measured at ages 17 and 24 yr. Associations were examined using linear mixed-effect models adjusted for cardiometabolic and lifestyle covariates. Among 1,779 participants [49.9% female], glucose, insulin, and HOMA-IR had a J- or U-shaped increase from ages 15 through 24 yr. The cumulative exposures to hyperinsulinemia effect estimate -0.019 mU/L; [95% CI -0.019 to -0.002; P = 0.033] and high HOMA-IR: -0.021; [-0.039 to -0.004; P = 0.019] from 15 to 24 yr of age were negatively associated with the 7-yr cfPWV progression. Only cumulative hyperinsulinemia and high HOMA-IR from ages 15 to 17 yr but not from ages 17 to 24 yr was associated with decreased cfPWV progression. There were no associations between cumulative hyperglycemia and cfPWV or cIMT progression. Hyperinsulinemia and HOMA-IR were not associated with cIMT progression. In conclusion, late adolescence may be an optimal timing for intervention targeted at sustaining the protective effect of the decline of insulin and insulin resistance on arterial stiffness progression.NEW & NOTEWORTHY Fasting plasma glucose, insulin, and insulin resistance had a J- or U-shaped increase from 15 to 24 yr with the base of the curve at age 17 yr. Cumulative high insulin and high insulin resistance from 15 to 24 yr were negatively associated with arterial stiffness progression from ages 17 to 24 yr. Age 17 yr may be an optimal timing for intervention targeted at sustaining the protective effect of the decline of insulin and insulin resistance on arterial stiffness progression.
Collapse
Affiliation(s)
- Andrew O Agbaje
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Justin P Zachariah
- Section of Pediatric Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States
| | | | - Augustine N Odili
- Department of Epidemiology, Circulatory Health Research Laboratory, College of Health Sciences, University of Abuja, Abuja, Nigeria
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
66
|
Liu Y, Deng X, Zhu F, Zhu W, Wang Z. High fibrinogen and mixed proximal and distal thrombosis are associated with the risk of residual venous thrombosis in patients with posttraumatic deep vein thrombosis. Front Cardiovasc Med 2023; 10:1003197. [PMID: 36818330 PMCID: PMC9928750 DOI: 10.3389/fcvm.2023.1003197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Background The risk factors for residual venous thrombosis (RVT) in patients with post-trauma deep vein thrombosis (DVT) are unknown. Methods We evaluated 127 patients with DVT after trauma, all of whom were treated with conventional anticoagulation and assessed for the presence of RVT with venous compression ultrasound (CUS), using an internal diameter of the venous lumen ≥ 4 mm after compression as the criterion. Results RVT was present in 59 (46%) patients, and complete thrombus dissolution was present in 68 (54%) patients. Among them, mixed proximal and distal thrombosis (OR, 4.292; 95% CI, 1.253-14.707), diabetes (OR, 6.345; 95% CI, 1.125-35.786), fibrinogen > 4.145 g/L (OR, 2.858; 95% CI, 1.034-7.897), the time between detection of thrombus and initiation of antithrombotic therapy > 2.5 days (OR, 3.470; 95% CI, 1.085-11.094) was an independent risk factor for RVT in patients with posttraumatic DVT. Conclusion A mixed proximal and distal thrombosis, diabetes mellitus, late initiation of antithrombotic therapy, and high fibrinogen levels increase the risk of RVT in patients with posttraumatic DVT. Therefore, treatment regimens for patients with posttraumatic DVT can be adjusted according to the site of thrombosis, the presence of diabetes mellitus, and the level of fibrinogen, and antithrombotic therapy can be started as early as possible after the detection of thrombosis to prevent the development of RVT and its serious complications.
Collapse
Affiliation(s)
- Yating Liu
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,Central South University, Changsha, Hunan, China
| | - Xiaozhi Deng
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,Central South University, Changsha, Hunan, China
| | - Fang Zhu
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenhui Zhu
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Wenhui Zhu,
| | - Zheng Wang
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,Zheng Wang,
| |
Collapse
|
67
|
Lareyre F, Behrendt CA, Chaudhuri A, Lee R, Carrier M, Adam C, Lê CD, Raffort J. Applications of artificial intelligence for patients with peripheral artery disease. J Vasc Surg 2023; 77:650-658.e1. [PMID: 35921995 DOI: 10.1016/j.jvs.2022.07.160] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/06/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Applications of artificial intelligence (AI) have been reported in several cardiovascular diseases but its interest in patients with peripheral artery disease (PAD) has been so far less reported. The aim of this review was to summarize current knowledge on applications of AI in patients with PAD, to discuss current limits, and highlight perspectives in the field. METHODS We performed a narrative review based on studies reporting applications of AI in patients with PAD. The MEDLINE database was independently searched by two authors using a combination of keywords to identify studies published between January 1995 and December 2021. Three main fields of AI were investigated including natural language processing (NLP), computer vision and machine learning (ML). RESULTS NLP and ML brought new tools to improve the screening, the diagnosis and classification of the severity of PAD. ML was also used to develop predictive models to better assess the prognosis of patients and develop real-time prediction models to support clinical decision-making. Studies related to computer vision mainly aimed at creating automatic detection and characterization of arterial lesions based on Doppler ultrasound examination or computed tomography angiography. Such tools could help to improve screening programs, enhance diagnosis, facilitate presurgical planning, and improve clinical workflow. CONCLUSIONS AI offers various applications to support and likely improve the management of patients with PAD. Further research efforts are needed to validate such applications and investigate their accuracy and safety in large multinational cohorts before their implementation in daily clinical practice.
Collapse
Affiliation(s)
- Fabien Lareyre
- Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, Antibes, France; Université Côte d'Azur, INSERM U1065, C3M, Nice, France.
| | - Christian-Alexander Behrendt
- Research Group GermanVasc, Department of Vascular Medicine, University Heart and Vascular Centre UKE Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Arindam Chaudhuri
- Bedfordshire-Milton Keynes Vascular Centre, Bedfordshire Hospitals NHS Foundation Trust, Bedford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Marion Carrier
- Laboratory of Applied Mathematics and Computer Science (MICS), CentraleSupélec, Université Paris-Saclay, Paris, France
| | - Cédric Adam
- Laboratory of Applied Mathematics and Computer Science (MICS), CentraleSupélec, Université Paris-Saclay, Paris, France
| | - Cong Duy Lê
- Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, Antibes, France; Université Côte d'Azur, INSERM U1065, C3M, Nice, France
| | - Juliette Raffort
- Université Côte d'Azur, INSERM U1065, C3M, Nice, France; Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France; AI Institute 3IA Côte d'Azur, Université Côte d'Azur, Côte d'Azur, France
| |
Collapse
|
68
|
Shati AA, Maarouf A, Dawood AF, Bayoumy NM, Alqahtani YA, A. Eid R, Alqahtani SM, Abd Ellatif M, Al-Ani B, Albawardi A. Lower Extremity Arterial Disease in Type 2 Diabetes Mellitus: Metformin Inhibits Femoral Artery Ultrastructural Alterations as well as Vascular Tissue Levels of AGEs/ET-1 Axis-Mediated Inflammation and Modulation of Vascular iNOS and eNOS Expression. Biomedicines 2023; 11:biomedicines11020361. [PMID: 36830898 PMCID: PMC9953164 DOI: 10.3390/biomedicines11020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Lower extremity arterial disease (LEAD) is a major risk factor for amputation in diabetic patients. The advanced glycation end products (AGEs)/endothelin-1 (ET-1)/nitric oxide synthase (NOS) axis-mediated femoral artery injury with and without metformin has not been previously investigated. Type 2 diabetes mellitus (T2DM) was established in rats, with another group of rats treated for two weeks with 200 mg/kg metformin, before being induced with T2DM. The latter cohort were continued on metformin until they were sacrificed at week 12. Femoral artery injury was established in the diabetic group as demonstrated by substantial alterations to the femoral artery ultrastructure, which importantly were ameliorated by metformin. In addition, diabetes caused a significant (p < 0.0001) upregulation of vascular tissue levels of AGEs, ET-1, and iNOS, as well as high blood levels of glycated haemoglobin, TNF-α, and dyslipidemia. All of these parameters were also significantly inhibited by metformin. Moreover, metformin treatment augmented arterial eNOS expression which had been inhibited by diabetes progression. Furthermore, a significant correlation was observed between femoral artery endothelial tissue damage and glycemia, AGEs, ET-1, TNF-α, and dyslipidemia. Thus, in a rat model of T2DM-induced LEAD, an association between femoral artery tissue damage and the AGEs/ET-1/inflammation/NOS/dyslipidemia axis was demonstrated, with metformin treatment demonstrating beneficial vascular protective effects.
Collapse
Affiliation(s)
- Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Amro Maarouf
- Department of Clinical Biochemistry, Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B9 5SS, UK
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nervana M. Bayoumy
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Saeed M. Alqahtani
- Department of Surgery, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohamed Abd Ellatif
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Department of Medical Biochemistry, College of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Alia Albawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
69
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
70
|
Mosenzon O, Cheng AYY, Rabinstein AA, Sacco S. Diabetes and Stroke: What Are the Connections? J Stroke 2023; 25:26-38. [PMID: 36592968 PMCID: PMC9911852 DOI: 10.5853/jos.2022.02306] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023] Open
Abstract
Stroke is a major cause of death and long-term disability worldwide. Diabetes is associated with an increased risk of cardiovascular complications, including stroke. People with diabetes have a 1.5-2 times higher risk of stroke compared with people without diabetes, with risk increasing with diabetes duration. These risks may also differ according to sex, with a greater risk observed among women versus men. Several mechanisms associated with diabetes lead to stroke, including large artery atherosclerosis, cerebral small vessel disease, and cardiac embolism. Hyperglycemia confers increased risk for worse outcomes in people presenting with acute ischemic stroke, compared with people with normal glycemia. Moreover, people with diabetes may have poorer post-stroke outcomes and higher risk of stroke recurrence than those without diabetes. Appropriate management of diabetes and other vascular risk factors may improve stroke outcomes and reduce the risk for recurrent stroke. Secondary stroke prevention guidelines recommend screening for diabetes following a stroke. The diabetes medications pioglitazone and glucagon-like peptide-1 receptor agonists have demonstrated protection against stroke in randomized controlled trials; this protective effect is believed to be independent of glycemic control. Neurologists are often involved in the management of modifiable risk factors for stroke (including hypertension, hyperlipidemia, and atrial fibrillation), but less often in the direct management of diabetes. This review provides an overview of the relationships between diabetes and stroke, including epidemiology, pathophysiology, post-stroke outcomes, and treatments for people with stroke and diabetes. This should aid neurologists in diabetes-related decision-making when treating people with acute or recurrent stroke.
Collapse
Affiliation(s)
- Ofri Mosenzon
- Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Medical Center, Jerusalem, Israel,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel,Correspondence: Ofri Mosenzon Diabetes Unit, Hadassah Medical Center, P.O.B 12000, Jerusalem 9112001, Israel Tel: +1-972-505172464 Fax: +1-972-26424514 E-mail:
| | - Alice YY Cheng
- Department of Medicine, Division of Endocrinology and Metabolism, University of Toronto, Toronto, ON, Canada
| | | | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
71
|
Wang AZ, Han H, Fang QQ, Tan CH. Structurally diverse polycyclic polyprenylated acylphloroglucinols with protective effect on human vein endothelial cells injured by high-glucose from Hypericum acmosepalum N. Robson. PHYTOCHEMISTRY 2023; 205:113482. [PMID: 36309111 DOI: 10.1016/j.phytochem.2022.113482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Hyperacmotone A, a polycyclic polyprenylated acylphloroglucinol (PPAP) with an unprecedented skeleton, along with five undescribed congeners and eleven reported ones, was isolated from Hypericum acmosepalum. Hyperacmotone A possesses a unique monocyclic ring skeleton based on a cyclopent-4-ene-1,3-dione acylphloroglucinol core. Their structures were elucidated by extensive analysis of HRESIMS, NMR, biogenetic pathway, and quantum-chemical calculations. In addition, hypercohone G exhibited significant protective effects on high-glucose-injured HUVECs.
Collapse
Affiliation(s)
- Ai-Zhu Wang
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hua Han
- School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Qiang-Qiang Fang
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chang-Heng Tan
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
72
|
Martín-Aragón Baudel M, Flores-Tamez VA, Hong J, Reddy GR, Maillard P, Burns AE, Man KNM, Sasse KC, Ward SM, Catterall WA, Bers DM, Hell JW, Nieves-Cintrón M, Navedo MF. Spatiotemporal Control of Vascular Ca V1.2 by α1 C S1928 Phosphorylation. Circ Res 2022; 131:1018-1033. [PMID: 36345826 PMCID: PMC9722584 DOI: 10.1161/circresaha.122.321479] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND L-type CaV1.2 channels undergo cooperative gating to regulate cell function, although mechanisms are unclear. This study tests the hypothesis that phosphorylation of the CaV1.2 pore-forming subunit α1C at S1928 mediates vascular CaV1.2 cooperativity during diabetic hyperglycemia. METHODS A multiscale approach including patch-clamp electrophysiology, super-resolution nanoscopy, proximity ligation assay, calcium imaging' pressure myography, and Laser Speckle imaging was implemented to examine CaV1.2 cooperativity, α1C clustering, myogenic tone, and blood flow in human and mouse arterial myocytes/vessels. RESULTS CaV1.2 activity and cooperative gating increase in arterial myocytes from patients with type 2 diabetes and type 1 diabetic mice, and in wild-type mouse arterial myocytes after elevating extracellular glucose. These changes were prevented in wild-type cells pre-exposed to a PKA inhibitor or cells from knock-in S1928A but not S1700A mice. In addition, α1C clustering at the surface membrane of wild-type, but not wild-type cells pre-exposed to PKA or P2Y11 inhibitors and S1928A arterial myocytes, was elevated upon hyperglycemia and diabetes. CaV1.2 spatial and gating remodeling correlated with enhanced arterial myocyte Ca2+ influx and contractility and in vivo reduction in arterial diameter and blood flow upon hyperglycemia and diabetes in wild-type but not S1928A cells/mice. CONCLUSIONS These results suggest that PKA-dependent S1928 phosphorylation promotes the spatial reorganization of vascular α1C into "superclusters" upon hyperglycemia and diabetes. This triggers CaV1.2 activity and cooperativity, directly impacting vascular reactivity. The results may lay the foundation for developing therapeutics to correct CaV1.2 and arterial function during diabetic hyperglycemia.
Collapse
Affiliation(s)
- Miguel Martín-Aragón Baudel
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Victor A. Flores-Tamez
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Junyoung Hong
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Gopyreddy R. Reddy
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Pauline Maillard
- Department of Neurology, University of California Davis, Davis, CA (P.M.)
| | - Abby E. Burns
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Kwun Nok Mimi Man
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | | | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada Reno, Reno, NV (S.M.W.)
| | | | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Johannes W. Hell
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA (M.M.-A.B., V.A.F.-T., J.H., G.R.R., A.E.B., K.N.M.M., D.M.B., J.W.H., M.N.-C., M.F.N.)
| |
Collapse
|
73
|
Li X, Lu L, Yuan Q, Yang L, Du L, Guo R. Validity of regional network systems on reperfusion therapy in diabetes mellitus and non-diabetes mellitus patients with ST-segment elevation myocardial infarction. Front Cardiovasc Med 2022; 9:991479. [PMID: 36505353 PMCID: PMC9732720 DOI: 10.3389/fcvm.2022.991479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Background Patients with ST-segment elevation myocardial infarction (STEMI) with diabetes mellitus (DM) had higher mortality and poorer prognosis than those without DM. Previous studies had demonstrated the effectiveness of regional network systems (RNS) for reperfusion therapy in patients with STEMI. However, the differences in nursing care with RNS in subgroups of patients with DM with STEMI were unclear. Our study aimed to evaluate the validity of RNS in reperfusion therapy in patients with STEMI with or without DM. Methods We retrospectively enrolled patients with STEMI who received reperfusion therapy at the chest pain center of the 920th Hospital in Kunming City, Yunnan Province from 2019 to 2021. Personal information and hospitalization information for patients with STEMI were collected through the chest pain center registration system. Univariate and multivariate logistic regression were used to analyze factors associated with outcomes in patients with STEMI who received RNS. Wilcoxon rank-sum test and chi-squared test were used to analyze the differences in reperfusion therapy times and clinical outcomes between RNS and non-RNS in patients with STEMI with or without DM. Results This study enrolled 1,054 patients with STEMI, including 148 patients with DM and 906 patients without DM. Logistic regression analysis indicated that DM was associated with patients with STEMI who received RNS [OR 1.590 95% CI (1.034-2.446), P = 0.035]. RNS may decrease the reperfusion therapy time in patients with STEMI and patients without DM with STEMI, including the first medical contact (FMC) to door, FMC to wire and FMC to catheterization laboratory activity (all P < 0.05). However, we found no significant difference in reperfusion therapy times with and without RNS in patients with DM (all P > 0.05). Conclusion Regional network systems may decrease the reperfusion therapy time in patients without DM with STEMI, but no decrease was found in patients with DM with STEMI.
Collapse
Affiliation(s)
- Xicong Li
- Department of Cardiology, Kunming Medical University, The 920th Hospital, Kunming, Yunnan, China
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Yuan
- Department of Cardiology, Kunming Medical University, The 920th Hospital, Kunming, Yunnan, China
| | - Lixia Yang
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, People’s Liberation Army of China (PLA), Kunming, Yunnan, China
| | - Liping Du
- Proctology Department of Traditional Chinese Medicine, First People’s Hospital of Yunnan Province, Kunming, China
| | - Ruiwei Guo
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, People’s Liberation Army of China (PLA), Kunming, Yunnan, China,*Correspondence: Ruiwei Guo, , orcid.org/0000-0002-3617-6169
| |
Collapse
|
74
|
Rıfkı Çora A, Çelik E. Relationship between peripheral arterial disease severity determined by the Glass classification and triglyceride-glucose index; novel association and novel classification system. INVESTIGACIÓN CLÍNICA 2022. [DOI: 10.54817/ic.v63n4a04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peripheral arterial disease is a serious clinical manifestation caused by atherosclerosis. It is one common cause of morbidity and mortality worldwide. It is commonly seen in males, and its (prevelance) increases with age. It is most prevalent with smoking, hypertension, diabetes mellitus and hyperlip-idemia. Novel studies investigate the relationship between triglyceride-glucose index (TyG) and cardiovascular diseases. Studies investigating the association of this index and peripheral arterial disease and disease severity are generally done by using The Trans-Atlantic Inter-Society Consensus (TASC) classification. We aimed to study this association by using the new Global Limb Anatomic Staging System (GLASS) classification. Two hundred patients between 25 to 90 years old diagnosed with peripheral arterial disease and admitted to the hospital for peripheral arterial angiography between July 2021 and December 2021, were evaluated retrospectively with blood parameters and angiographic images. Patients were divided into two groups: moderate (group 1; n=58) and severe (group 2; n=142) according to the GLASS classification. No statistical differences were observed for comorbidities and repeated interventional pro-cedure rates (p=0.164). Triglyceride values were found to be statistically dif-ferent between groups (p=0.040). TyG was found higher in group 2 (p= 0.04). According to the binary logistic regression model, only TyG was found to have a significant effect as a diagnostic factor (p=0.011). TyG was also significantly correlated with the Rutherford (p=0.012) and GLASS classification severity (p<0.001). Peripheral arterial disease and disease severity could be easily moni-tored with simple calculable TyG. In this way, precautions could be taken, and morbidities could be prevented.
Collapse
Affiliation(s)
- Ahmet Rıfkı Çora
- Cardiovascular Surgery Department, Isparta City Hospital, Isparta; Turkey
| | - Ersin Çelik
- Cardiovascular Surgery Department, Isparta City Hospital, Isparta; Turkey
| |
Collapse
|
75
|
Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13:951381. [PMID: 36405687 PMCID: PMC9666770 DOI: 10.3389/fimmu.2022.951381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
76
|
Gupta A, Immanuel J, Ho V, Dalal R, Symons P, Simmons D. Placental abnormalities in type 1 and type 2 diabetes mellitus: a systematic review and metaanalysis of shear wave elastography. Am J Obstet Gynecol MFM 2022; 4:100736. [PMID: 36049626 DOI: 10.1016/j.ajogmf.2022.100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study aimed to describe the placental changes occurring in women with preexisting diabetes mellitus and to determine if elastography can detect placental changes in vivo. DATA SOURCES PubMed, Embase, Medline, and Cochrane were searched to identify English language studies published until July 2020. STUDY ELIGIBILITY CRITERIA 1) For key question 1, studies that described histopathologic changes in placentas from women with known diabetes mellitus and 2) for key question 2, those that described structural-placental changes detectable by elastography in high-risk pregnancies (eg, those complicated by preeclampsia and/or fetal growth restriction), were included. METHODS For key question 1, we grouped placental pathologies using the Amsterdam International Consensus Group definitions. For key question 2, we conducted a metaanalysis including all data from studies reporting placental stiffness in meters per second (m/s) or kilopascals (kPa). The mean difference (95% confidence interval) was calculated using a random effects model. RESULTS Data were extracted from 14 studies of placental histopathology in women with known diabetes. In this group, a wide variety of placental histopathologic changes are described, though none are considered pathognomonic. The histopathologic changes including maternal vascular malperfusion, fetal vascular malperfusion, and/or infectious/inflammatory/other changes were divided into 3 broad categories on the basis of presumed etiology. A total of 15 studies reported the placental stiffness scores in women with a high-risk pregnancy vs those with a normal pregnancy. Only 1 reported stiffness scores for placentas in women with preexisting diabetes mellitus (N<10 women). Pooled analysis of 14 studies with available data included 478 "high-risk pregnancies" and 828 control or healthy pregnancies. Maternal-derived pathologies resulted in higher placental stiffness (mean difference 4.5 kPa [95% confidence interval, 3.16-5.87]) compared with control or healthy pregnancies. Fetal-derived pathologies also resulted in higher placental stiffness (mean difference of 6.5 kPa [95% confidence interval, 1.08-11.86]) compared with control or healthy pregnancies. CONCLUSION Shear wave elastography may provide an in vivo approximation of placental histopathology in women with certain kinds of high-risk pregnancies. A high-risk pregnancy may involve maternal- and fetal-derived pathologies. Further studies, particularly in women with preexisting diabetes, are needed to confirm this observation.
Collapse
Affiliation(s)
- Akhil Gupta
- Macarthur Clinical School of Medicine, Western Sydney University, New South Wales, Australia (Drs Gupta, Immanuel, Ho, Dalal, and Simmons); Department of Medicine, Campbelltown Hospital, Sydney, New South Wales, Australia (Drs Gupta, Ho, and Simmons); Department of Diabetes and Endocrinology, Blacktown Hospital, Sydney, New South Wales, Australia (Dr Gupta).
| | - Jincy Immanuel
- Macarthur Clinical School of Medicine, Western Sydney University, New South Wales, Australia (Drs Gupta, Immanuel, Ho, Dalal, and Simmons)
| | - Vincent Ho
- Macarthur Clinical School of Medicine, Western Sydney University, New South Wales, Australia (Drs Gupta, Immanuel, Ho, Dalal, and Simmons)
| | - Raiyomand Dalal
- Macarthur Clinical School of Medicine, Western Sydney University, New South Wales, Australia (Drs Gupta, Immanuel, Ho, Dalal, and Simmons)
| | - Patricia Symons
- South Western Sydney Clinical School, UNSW Medicine, Warwick Farm, Australia (Dr Symons)
| | - David Simmons
- Macarthur Clinical School of Medicine, Western Sydney University, New South Wales, Australia (Drs Gupta, Immanuel, Ho, Dalal, and Simmons); Department of Medicine, Campbelltown Hospital, Sydney, New South Wales, Australia (Drs Gupta, Ho, and Simmons); Department of Anatomical Pathology, Liverpool Hospital, Sydney, New South Wales, Australia (Dr Symons).
| |
Collapse
|
77
|
Nibali L, Gkranias N, Mainas G, Di Pino A. Periodontitis and implant complications in diabetes. Periodontol 2000 2022; 90:88-105. [PMID: 35913467 DOI: 10.1111/prd.12451] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epidemiologic evidence indicates that periodontitis is more frequent in patients with uncontrolled diabetes mellitus than in healthy controls, suggesting that it could be considered the "sixth complication" of diabetes. Actually, diabetes mellitus and periodontitis are two extraordinarily prevalent chronic diseases that share a number of comorbidities all converging toward an increased risk of cardiovascular disease. Periodontal treatment has recently been shown to have the potential to improve the metabolic control of diabetes, although long-term studies are lacking. Uncontrolled diabetes also seems to affect the response to periodontal treatment, as well as the risk to develop peri-implant diseases. Mechanisms of associations between diabetes mellitus and periodontal disease include the release of advanced glycation end products as a result of hyperglycemia and a range of shared predisposing factors of genetic, microbial, and lifestyle nature. This review discusses the evidence for the risk of periodontal and peri-implant disease in diabetic patients and the potential role of the dental professional in the diabetes-periodontal interface.
Collapse
Affiliation(s)
- Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Nikolaos Gkranias
- Centre for Immunobiology and Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary University London (QMUL), London, UK
| | - Giuseppe Mainas
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
78
|
Yang J, Jing J, Chen S, Liu X, Tang Y, Pan C, Tang Z. Changes in Cerebral Blood Flow and Diffusion-Weighted Imaging Lesions After Intracerebral Hemorrhage. Transl Stroke Res 2022; 13:686-706. [PMID: 35305264 DOI: 10.1007/s12975-022-00998-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common subtype of stroke and places a great burden on the family and society with a high mortality and disability rate and a poor prognosis. Many findings from imaging and pathologic studies have suggested that cerebral ischemic lesions visualized on diffusion-weighted imaging (DWI) in patients with ICH are not rare and are generally considered to be associated with poor outcome, increased risk of recurrent (ischemic and hemorrhagic) stroke, cognitive impairment, and death. In this review, we describe the changes in cerebral blood flow (CBF) and DWI lesions after ICH and discuss the risk factors and possible mechanisms related to the occurrence of DWI lesions, such as cerebral microangiopathy, cerebral atherosclerosis, aggressive early blood pressure lowering, hyperglycemia, and inflammatory response. We also point out that a better understanding of cerebral DWI lesions will be a key step toward potential therapeutic interventions to improve long-term recovery for patients with ICH.
Collapse
Affiliation(s)
- Jingfei Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Jie Jing
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Xia Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China.
| |
Collapse
|
79
|
Sela Y, Grinberg K, Cukierman-Yaffe T, Natovich R. Relationship between cognitive function in individuals with diabetic foot ulcer and mortality. Diabetol Metab Syndr 2022; 14:133. [PMID: 36123752 PMCID: PMC9487125 DOI: 10.1186/s13098-022-00901-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is a common diabetes mellitus (DM) complication. Individuals with DM and a DFU achieved significantly lower scores in cognitive tests than those without a DFU. We investigated whether baseline cognitive function in individuals with a DFU is a determinant of mortality. METHODS A prospective study using data collected during a case-control study conducted in 2010-2012 whereby 90 participants with a DFU (mean age at baseline 58.28 ± 6.95 years, 75.6% male) took the paper and pencil and the NeuroTrax battery of cognitive tests. Depression was assessed, and the DFU status was evaluated. In 2020, information pertaining to participants' vital status (dead/alive) was collected and the relationship between baseline cognitive status and vital status was assessed. RESULTS During a median follow-up of 6.8 years (range 0.2-9.5), 39 participants died (43.3%). Individuals alive vs. those who had died during follow-up had a higher global cognitive score at baseline (92.16 ± 10.95 vs. 87.18 ± 12.24, p = 0.045), but increased risk was not found. Individuals who were alive vs. those who had died during follow-up had statistically significantly higher baseline executive function, reaction time and digit symbol substitution test results. However, after adjustment for glycosylated hemoglobin (HbA1c), microvascular and macrovascular complications, no relationship between cognitive tests and mortality remained significant. CONCLUSIONS The higher mortality rate among people with type 2 DM and a DFU was not significant after adjustment for HbA1c, micro- and macrovascular complications. There may be common pathophysiological pathways to both DM complications and cognitive impairment, which may contribute to increased mortality. Further studies are warranted.
Collapse
Affiliation(s)
- Yael Sela
- Nursing Department, Faculty of Social and Community Sciences, Ruppin Academic Center, Emeq-Hefer, Israel.
| | - Keren Grinberg
- Nursing Department, Faculty of Social and Community Sciences, Ruppin Academic Center, Emeq-Hefer, Israel
| | - Tali Cukierman-Yaffe
- Endocrinology Division, The Center for Successful Aging with Diabetes, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Ramat Gan, Israel
- Epidemiology Department, Sackler Faculty of Medicine, The Herczeg Institute on Aging, Tel-Aviv University, Tel Aviv, Israel
| | - Rachel Natovich
- Endocrinology Division, The Center for Successful Aging with Diabetes, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Ramat Gan, Israel
- The Rehabilitation Hospital, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
80
|
Regan-Smith S, Fritzen R, Hierons SJ, Ajjan RA, Blindauer CA, Stewart AJ. Strategies for Therapeutic Amelioration of Aberrant Plasma Zn2+ Handling in Thrombotic Disease: Targeting Fatty Acid/Serum Albumin-Mediated Effects. Int J Mol Sci 2022; 23:ijms231810302. [PMID: 36142215 PMCID: PMC9499645 DOI: 10.3390/ijms231810302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
The initiation, maintenance and regulation of blood coagulation is inexorably linked to the actions of Zn2+ in blood plasma. Zn2+ interacts with a variety of haemostatic proteins in the bloodstream including fibrinogen, histidine-rich glycoprotein (HRG) and high molecular weight kininogen (HMWK) to regulate haemostasis. The availability of Zn2+ to bind such proteins is controlled by human serum albumin (HSA), which binds 70–85% of plasma Zn2+ under basal conditions. HSA also binds and transports non-esterified fatty acids (NEFAs). Upon NEFA binding, there is a change in the structure of HSA which leads to a reduction in its affinity for Zn2+. This enables other plasma proteins to better compete for binding of Zn2+. In diseases where elevated plasma NEFA concentrations are a feature, such as obesity and diabetes, there is a concurrent increase in hypercoagulability. Evidence indicates that NEFA-induced perturbation of Zn2+-binding by HSA may contribute to the thrombotic complications frequently observed in these pathophysiological conditions. This review highlights potential interventions, both pharmaceutical and non-pharmaceutical that may be employed to combat this dysregulation. Lifestyle and dietary changes have been shown to reduce plasma NEFA concentrations. Furthermore, drugs that influence NEFA levels such as statins and fibrates may be useful in this context. In severely obese patients, more invasive therapies such as bariatric surgery may be useful. Finally, other potential treatments such as chelation therapies, use of cholesteryl transfer protein (CETP) inhibitors, lipase inhibitors, fatty acid inhibitors and other treatments are highlighted, which with additional research and appropriate clinical trials, could prove useful in the treatment and management of thrombotic disease through amelioration of plasma Zn2+ dysregulation in high-risk individuals.
Collapse
Affiliation(s)
| | - Remi Fritzen
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | | - Ramzi A. Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- Correspondence: ; Tel.: +44-(0)1334-463546
| |
Collapse
|
81
|
Atherosclerosis Burdens in Diabetes Mellitus: Assessment by PET Imaging. Int J Mol Sci 2022; 23:ijms231810268. [PMID: 36142181 PMCID: PMC9499611 DOI: 10.3390/ijms231810268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/14/2023] Open
Abstract
Arteriosclerosis and its sequelae are the most common cause of death in diabetic patients and one of the reasons why diabetes has entered the top 10 causes of death worldwide, fatalities having doubled since 2000. The literature in the field claims almost unanimously that arteriosclerosis is more frequent or develops more rapidly in diabetic than non-diabetic subjects, and that the disease is caused by arterial inflammation, the control of which should therefore be the goal of therapeutic efforts. These views are mostly based on indirect methodologies, including studies of artery wall thickness or stiffness, or on conventional CT-based imaging used to demonstrate tissue changes occurring late in the disease process. In contrast, imaging with positron emission tomography and computed tomography (PET/CT) applying the tracers 18F-fluorodeoxyglucose (FDG) or 18F-sodium fluoride (NaF) mirrors arterial wall inflammation and microcalcification, respectively, early in the course of the disease, potentially enabling in vivo insight into molecular processes. The present review provides an overview of the literature from the more than 20 and 10 years, respectively, that these two tracers have been used for the study of atherosclerosis, with emphasis on what new information they have provided in relation to diabetes and which questions remain insufficiently elucidated.
Collapse
|
82
|
Impact of type 2 diabetes mellitus on hemodynamic and morphology of foot arteries: A duplex ultrasound evaluation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
83
|
Canagliflozin Inhibits Human Endothelial Cell Inflammation through the Induction of Heme Oxygenase-1. Int J Mol Sci 2022; 23:ijms23158777. [PMID: 35955910 PMCID: PMC9369341 DOI: 10.3390/ijms23158777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in patients with type 2 diabetes mellitus (T2DM). Studies have also shown that canagliflozin directly acts on endothelial cells (ECs). Since heme oxygenase-1 (HO-1) is an established modulator of EC function, we investigated if canagliflozin regulates the endothelial expression of HO-1, and if this enzyme influences the biological actions of canagliflozin in these cells. Treatment of human ECs with canagliflozin stimulated a concentration- and time-dependent increase in HO-1 that was associated with a significant increase in HO activity. Canagliflozin also evoked a concentration-dependent blockade of EC proliferation, DNA synthesis, and migration that was unaffected by inhibition of HO-1 activity and/or expression. Exposure of ECs to a diabetic environment increased the adhesion of monocytes to ECs, and this was attenuated by canagliflozin. Knockdown of HO-1 reduced the anti-inflammatory effect of canagliflozin which was restored by bilirubin but not carbon monoxide. In conclusion, this study identified canagliflozin as a novel inducer of HO-1 in human ECs. It also found that HO-1-derived bilirubin contributed to the anti-inflammatory action of canagliflozin, but not the anti-proliferative and antimigratory effects of the drug. The ability of canagliflozin to regulate HO-1 expression and EC function may contribute to the clinical profile of the drug.
Collapse
|
84
|
Su YJ, Leong PY, Wang YH, Wei JCC. Sjögren syndrome is a hidden contributor of macrovascular and microvascular complications in patients with type 2 diabetes. Int J Rheum Dis 2022; 25:1176-1185. [PMID: 35916331 DOI: 10.1111/1756-185x.14400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate cardiovascular risk among diabetic patients with Sjögren syndrome. METHODS This study was a nationwide population-based case-control study from 1997 to 2013, in which the association between autoimmune diseases and diabetes was investigated. The study population consisted of individuals with newly diagnosed type 2 diabetes with macrovascular or microvascular complications with at least two outpatient visits or one hospitalization as the outcome variables, and the exposure variables included traditional risk factors, medications, and autoimmune diseases. The odds ratio of cardiovascular events among each prevalent autoimmune disease and hydroxychloroquine's effect on cardiovascular risk were analyzed. RESULTS The study included a total of 7026 individuals with diabetes with microvascular and macrovascular complications and the same number of patients in the control group. Sjögren syndrome was significantly higher in the diabetes complication group than in the non-complication group (0.8% vs 0.5%, P = 0.036). By using multivariate analysis, we found hypertension, hyperlipidemia, and Sjögren syndrome to be three independent risk factors for diabetes vascular complications (odds ratio [OR] 1.96, 95% confidence interval [CI] 1.82-2.10; OR 1.53, 95% CI 1.42-1.64; and OR 1.67, 95% CI 1.06-2.65; respectively, all P < 0.05). Treatment with traditional statins and aspirin might be able to overcome the increased risk of developing cardiovascular events while comparing between diabetes patients with and without Sjögren syndrome. CONCLUSION Sjögren syndrome is an unrecognized independent risk factor for cardiovascular events among diabetes patients, which indicates that patients with diabetes combined with Sjögren syndrome require closer follow up regarding cardiovascular complications in clinical settings. Treatment with hydroxychloroquine might not be enough to lower the cardiovascular risk significantly in diabetes patients with Sjögren syndrome.
Collapse
Affiliation(s)
- Yu-Jih Su
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Mitochondrial Research and Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Pui-Ying Leong
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsun Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
85
|
Yeung CK, Yan Y, Yan L, Duan Y, Li E, Huang B, Lu K, Li K, Zhou M, Zhang L, Wu Y, Luo KQ, Ji W, Xu RH, Si W. Preclinical safety evaluation and tracing of human mesenchymal stromal cell spheroids following intravenous injection into cynomolgus monkeys. Biomaterials 2022; 289:121759. [DOI: 10.1016/j.biomaterials.2022.121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
|
86
|
Diabesity in Elderly Cardiovascular Disease Patients: Mechanisms and Regulators. Int J Mol Sci 2022; 23:ijms23147886. [PMID: 35887234 PMCID: PMC9318065 DOI: 10.3390/ijms23147886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world. In 2019, 550 million people were suffering from CVD and 18 million of them died as a result. Most of them had associated risk factors such as high fasting glucose, which caused 134 million deaths, and obesity, which accounted for 5.02 million deaths. Diabesity, a combination of type 2 diabetes and obesity, contributes to cardiac, metabolic, inflammation and neurohumoral changes that determine cardiac dysfunction (diabesity-related cardiomyopathy). Epicardial adipose tissue (EAT) is distributed around the myocardium, promoting myocardial inflammation and fibrosis, and is associated with an increased risk of heart failure, particularly with preserved systolic function, atrial fibrillation and coronary atherosclerosis. In fact, several hypoglycaemic drugs have demonstrated a volume reduction of EAT and effects on its metabolic and inflammation profile. However, it is necessary to improve knowledge of the diabesity pathophysiologic mechanisms involved in the development and progression of cardiovascular diseases for comprehensive patient management including drugs to optimize glucometabolic control. This review presents the mechanisms of diabesity associated with cardiovascular disease and their therapeutic implications.
Collapse
|
87
|
Nicolas J, Pivato CA, Chiarito M, Beerkens F, Cao D, Mehran R. Evolution of drug-eluting coronary stents: a back-and-forth journey from the bench-to-bedside. Cardiovasc Res 2022; 119:631-646. [PMID: 35788828 DOI: 10.1093/cvr/cvac105] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Coronary stents have revolutionized the treatment of coronary artery disease. Compared with balloon angioplasty, bare-metal stents effectively prevented abrupt vessel closure but were limited by in-stent restenosis due to smooth muscle cell proliferation and neointimal hyperplasia. The first-generation drug-eluting stent (DES), with its antiproliferative drug coating, offered substantial advantages over bare-metal stents as it mitigated the risk of in-stent restenosis. Nonetheless, they had several design limitations that increased the risk of late stent thrombosis. Significant advances in stent design, including thinner struts, enhanced polymers' formulation, and more potent antiproliferative agents, have led to the introduction of new-generation DES with a superior safety profile. Cardiologists have over 20 different DES types to choose from, each with its unique features and characteristics. This review highlights the evolution of stent design and summarizes the clinical data on the different stent types. We conclude by discussing the clinical implications of stent design in high-risk subsets of patients.
Collapse
Affiliation(s)
- Johny Nicolas
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlo Andrea Pivato
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy.,IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Mauro Chiarito
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy.,IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Frans Beerkens
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Davide Cao
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Cardiovascular Department, Humanitas Gavazzeni, Bergamo, Italy
| | - Roxana Mehran
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
88
|
Hansen KN, Noori M, Christiansen EH, Kristiansen EB, Maeng M, Zwisler ADO, Borregaard B, Søgaard R, Veien KT, Junker A, Jensen LO. Impact of diabetes on long-term all-cause re-hospitalization after revascularization with percutaneous coronary intervention. Diab Vasc Dis Res 2022; 19:14791641221113788. [PMID: 35861372 PMCID: PMC9310244 DOI: 10.1177/14791641221113788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The purpose of the study was to investigate the incidence, cause and probability of re-hospitalization within 30 and 365 days after percutaneous coronary intervention (PCI) in patients with diabetes. METHOD Between January 2010 and September 2014, 2763 patients with diabetes were treated with PCI at two Hospitals in Western Denmark. Reasons for readmission within 30 and 365 days were identified. RESULTS Readmission risks for patients with diabetes were 58% within 365 days and 18% within 30 days. Reason for readmission was ischemic heart disease (IHD) in 725 patients (27%), and non-IHD-related reasons in 826 patients (31%). IHD-related readmission within 365 days was associated with female gender (OR 1.3, 95% CI: 1.1-1.5), and non-ST-segment elevation myocardial infarction, compared to stable angina at the index hospitalization (OR 1.3, 95% CI: 1.1-1.6). Among patients with diabetes, increased risk of readmission due to other reasons were age (OR 1.3, 95% CI: 1.2-1.5) and higher scores of modified Charlson Comorbidity index (CCI): CCI ≥3 (OR 3.6, 95% CI: 2.8-4.6). CONCLUSION More than half of the patients with diabetes mellitus undergoing PCI were readmitted within 1 year. Comorbidities were the strongest predictor for non-IHD-related readmission, but did not increase the risk for IHD-related readmissions.
Collapse
Affiliation(s)
- Kirstine N Hansen
- Department of Cardiology, Odense University Hospital, Odense, Denmark
- Kirstine N Hansen, Department of Cardiology, Odense University Hospital, Sdr. Boulevard 29, Odense 5000, Denmark.
| | - Manijeh Noori
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | | | | | - Michael Maeng
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Britt Borregaard
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Rikke Søgaard
- Department of Clinical Medicine, University of Southern Denmark, Odense, Denmark
| | - Karsten T Veien
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Anders Junker
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
89
|
Wong AYW, Ong BSY, Lee ARYB, Mai AS, Selvarajan S, Lakshminarasappa SR, Tay SM. Topical Biological Agents as Adjuncts to Improve Wound Healing in Chronic Diabetic Wounds: A Systematic Review of Clinical Evidence and Future Directions. Cureus 2022; 14:e27180. [PMID: 36035037 PMCID: PMC9398533 DOI: 10.7759/cureus.27180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetes is a leading chronic illness in the modern world and 19-34% develop chronic diabetic foot ulcers (DFUs) in their lifetime, often necessitating amputation. The reduction in tissue growth factors and resulting imbalance between proteolytic enzymes and their inhibitors, along with systemic factors impairing healing appear particularly important in chronic wounds. Growth factors applied topically have thus been suggested to be a non-invasive, safe, and cost-effective adjunct to improve wound healing and prevent complications. Comprehensive database searches of MEDLINE via PubMed, EMBASE, Cochrane, and ClinicalTrials.gov were performed to identify clinical evidence and ongoing trials. The risk of bias analysis included randomized controlled trials (RCTs) was performed using the Cochrane Risk of Bias 2.0 tool. We included randomized controlled trials that compared the use of a topical biologic growth factor-containing regimen to any other regimen. Primary outcomes of interest were time to wound closure, healing rate, and time. Secondary outcomes included the incidence of adverse events such as infection. A total of 41 trials from 1992-2020 were included in this review, with a total recorded 3,112 patients. Platelet-derived growth factors (PDGF) in the form of becaplermin gel are likely to reduce the time of closure, increase the incidence of wound closure, and complete wound healing. Human umbilical cord-related treatments, dehydrated human amnion and chorion allograft (dHACA), and hypothermically stored amniotic membrane (HSAM), consistently increased the rates and incidence of complete ulcer healing while reducing ulcer size and time to complete ulcer healing. Fibroblast growth factor-1 (FGF1) showed only a slight benefit in multiple studies regarding increasing complete ulcer healing rates and incidence while reducing ulcer size and time to complete ulcer healing, with a few studies showing no statistical difference from placebo. Platelet-rich fibrin (PRF) is consistent in reducing the time to complete ulcer healing and increasing wound healing rate but may not reduce ulcer size or increase the incidence of complete ulcer healing. Targeting the wound healing pathway via the extrinsic administration of growth factors is a promising option to augment wound healing in diabetic patients. Growth factors have also shown promise in specific subgroups of patients who are at risk of significantly impaired wound healing such as those with a history of secondary infection and vasculopathy. As diabetes impairs multiple stages of wound healing, combining growth factors in diabetic wound care may prove to be an area of interest. Evidence from this systematic literature review suggests that topical adjuncts probably reduce time to wound closure, reduce healing time, and increase the healing rate in patients with chronic DFUs.
Collapse
Affiliation(s)
- Andrew Yew Wei Wong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, SGP
| | | | | | - Aaron Shengting Mai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, SGP
| | | | | | - Sook Muay Tay
- Surgical Intensive Care, Singapore General Hospital, Singapore, SGP
| |
Collapse
|
90
|
Katoh H, Ohya M, Kadota K. Impact of Periprocedural Myocardial Infarction on 10-Year Mortality After Coronary Stent Implantation in Patients With Diabetes Mellitus. Am J Cardiol 2022; 178:3-10. [DOI: 10.1016/j.amjcard.2022.04.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
|
91
|
Zanelli S, Ammi M, Hallab M, El Yacoubi MA. Diabetes Detection and Management through Photoplethysmographic and Electrocardiographic Signals Analysis: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:4890. [PMID: 35808386 PMCID: PMC9269150 DOI: 10.3390/s22134890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
(1) Background: Diabetes mellitus (DM) is a chronic, metabolic disease characterized by elevated levels of blood glucose. Recently, some studies approached the diabetes care domain through the analysis of the modifications of cardiovascular system parameters. In fact, cardiovascular diseases are the first leading cause of death in diabetic subjects. Thanks to their cost effectiveness and their ease of use, electrocardiographic (ECG) and photoplethysmographic (PPG) signals have recently been used in diabetes detection, blood glucose estimation and diabetes-related complication detection. This review's aim is to provide a detailed overview of all the published methods, from the traditional (non machine learning) to the deep learning approaches, to detect and manage diabetes using PPG and ECG signals. This review will allow researchers to compare and understand the differences, in terms of results, amount of data and complexity that each type of approach provides and requires. (2) Method: We performed a systematic review based on articles that focus on the use of ECG and PPG signals in diabetes care. The search was focused on keywords related to the topic, such as "Diabetes", "ECG", "PPG", "Machine Learning", etc. This was performed using databases, such as PubMed, Google Scholar, Semantic Scholar and IEEE Xplore. This review's aim is to provide a detailed overview of all the published methods, from the traditional (non machine learning) to the deep learning approaches, to detect and manage diabetes using PPG and ECG signals. This review will allow researchers to compare and understand the differences, in terms of results, amount of data and complexity that each type of approach provides and requires. (3) Results: A total of 78 studies were included. The majority of the selected studies focused on blood glucose estimation (41) and diabetes detection (31). Only 7 studies focused on diabetes complications detection. We present these studies by approach: traditional, machine learning and deep learning approaches. (4) Conclusions: ECG and PPG analysis in diabetes care showed to be very promising. Clinical validation and data processing standardization need to be improved in order to employ these techniques in a clinical environment.
Collapse
Affiliation(s)
- Serena Zanelli
- University of Paris 8, LAGA, CNRS, Institut Galilée, 93200 Saint Denis, France;
- SAMOVAR Telecom SudParis, CNRS, Institut Polytechnique de Paris, 91764 Paris, France;
| | - Mehdi Ammi
- University of Paris 8, LAGA, CNRS, Institut Galilée, 93200 Saint Denis, France;
| | | | - Mounim A. El Yacoubi
- SAMOVAR Telecom SudParis, CNRS, Institut Polytechnique de Paris, 91764 Paris, France;
| |
Collapse
|
92
|
Chen FR, Quan T, Manzi JE, Gu A, Wei C, Tabaie S, Chodos M, Chapman CB, Pryor KO, Liu J. Evaluating the Association between Anesthesia Type and Postoperative Complications for Patients Receiving Total Ankle Arthroplasty. THE IOWA ORTHOPAEDIC JOURNAL 2022; 42:113-119. [PMID: 35821927 PMCID: PMC9210406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Total ankle arthroplasty (TAA) is performed for ankle arthritis and there has been interest investigating which anesthetic method is the best choice in order to optimize perioperative outcomes. In this study, we compared postoperative complications after TAA for patients receiving either 1) general anesthesia alone or 2) general anesthesia plus regional anesthesia. METHODS Patients undergoing primary TAA from 2007 to 2018 were identified in a national database. Patients were stratified into 2 cohorts: general anesthesia and general anesthesia combined with regional anesthesia. In this analysis, 30-day wound, cardiac, pulmonary, renal, thromboembolic, and sepsis complications, as well mortality, postoperative transfusion, urinary tract infection, extended length of stay, and reoperation were assessed. Bivariate analyses and multivariable logistical regression were performed. RESULTS Of 1,084 total patients undergoing TAA, 878 patients (81.0%) had general anesthesia and 206 (19.0%) had general anesthesia combined with regional anesthesia. Following adjustment, there were no increased risk of postoperative complications in the combined general and regional anesthesia group compared to those who only underwent general anesthesia. CONCLUSION Compared to general anesthesia alone, the addition of regional anesthesia to general anesthesia for TAA is not associated with increased risk of complications in the perioperative period. Level of Evidence: III.
Collapse
Affiliation(s)
- Frank R. Chen
- Department of Anesthesiology, Hospital of the University of Pennsylvania, Philadelphia, Pennysylvania, USA
| | - Theodore Quan
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Alex Gu
- Department of Orthopaedic Surgery, The George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Chapman Wei
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Sean Tabaie
- Department of Orthopaedic Surgery, Children’s National Health System, Washington, DC, USA
| | - Marc Chodos
- Department of Orthopaedic Surgery, The George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Cary B. Chapman
- Miami Orthopedics & Sports Medicine Institute, Coral Gables, Florida, USA
| | - Kane O. Pryor
- Department of Anesthesiology, New York-Presbyterian Hospital/ Weill Cornell Medical Center, New York, New York, USA
| | - Jiabin Liu
- Department of Anesthesiology, New York-Presbyterian Hospital/ Weill Cornell Medical Center, New York, New York, USA
- Department of Regional Anesthesia and Acute Pain Management, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
93
|
Yoshihara E. Adapting Physiology in Functional Human Islet Organogenesis. Front Cell Dev Biol 2022; 10:854604. [PMID: 35557947 PMCID: PMC9086403 DOI: 10.3389/fcell.2022.854604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023] Open
Abstract
Generation of three-dimensional (3D)-structured functional human islets is expected to be an alternative cell source for cadaveric human islet transplantation for the treatment of insulin-dependent diabetes. Human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer infinite resources for newly synthesized human islets. Recent advancements in hPSCs technology have enabled direct differentiation to human islet-like clusters, which can sense glucose and secrete insulin, and those islet clusters can ameliorate diabetes when transplanted into rodents or non-human primates (NHPs). However, the generated hPSC-derived human islet-like clusters are functionally immature compared with primary human islets. There remains a challenge to establish a technology to create fully functional human islets in vitro, which are functionally and transcriptionally indistinguishable from cadaveric human islets. Understanding the complex differentiation and maturation pathway is necessary to generate fully functional human islets for a tremendous supply of high-quality human islets with less batch-to-batch difference for millions of patients. In this review, I summarized the current progress in the generation of 3D-structured human islets from pluripotent stem cells and discussed the importance of adapting physiology for in vitro functional human islet organogenesis and possible improvements with environmental cues.
Collapse
Affiliation(s)
- Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
94
|
Janjindamai P, Hongsakul K, Sungsiri J, Bannangkoon K, Liabsuetrakul T. The related factors to the re-thrombosis of hemodialysis arteriovenous graft after endovascular salvage. Semin Dial 2022; 36:208-213. [PMID: 35503025 DOI: 10.1111/sdi.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/19/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Only a few issues of the related factors to hemodialysis access dysfunction have been evaluated, and the effects of antiplatelets to improve the patency of hemodialysis access remained controversial. Hence, this study aimed to determine the related factors to the re-thrombosis of arteriovenous grafts (AVGs) after endovascular treatment. METHODS This retrospective study was conducted at a university-affiliated teaching hospital in Southern Thailand. All patients who underwent hemodialysis with thrombosed AVG, who had pharmacomechanical thrombolysis from January 2016 to December 2018, were enrolled. Post-intervention primary patency was analyzed by the Kaplan-Meier method, and the related factors to the re-thrombosis of AVG were evaluated using logistic regression. RESULTS A total of 157 patients with thrombosed hemodialysis AVG were enrolled. The most common graft location and configuration was a forearm loop graft (65%). Post-intervention primary patency rate at 1, 3, and 6 months were 79.0%, 67.1%, and 54.0%, respectively. Diabetes mellitus (DM) was a significant related factor for re-thrombosis (hazard ratio [HR], 1.89; 95% confidence interval [CI], 1.20-2.98; p = 0.006). A single antiplatelet after the procedure was a protective factor for re-thrombosis (HR, 0.58; 95% CI, 0.38-0.89; p = 0.013). The median post-intervention primary patency was 15.7 months in the group of single antiplatelet usage, which was better than that of the non-antiplatelet group (p = 0.012). CONCLUSION DM and antiplatelet usage were significant related factors to the re-thrombosis of hemodialysis AVG after endovascular salvage.
Collapse
Affiliation(s)
- Phurich Janjindamai
- Division of Interventional Radiology, Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Keerati Hongsakul
- Division of Interventional Radiology, Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jitpreedee Sungsiri
- Division of Interventional Radiology, Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kittipitch Bannangkoon
- Division of Interventional Radiology, Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Tippawan Liabsuetrakul
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
95
|
Sara JDS, Toya T, Ahmad A, Clark MM, Gilliam WP, Lerman LO, Lerman A. Mental Stress and Its Effects on Vascular Health. Mayo Clin Proc 2022; 97:951-990. [PMID: 35512885 PMCID: PMC9058928 DOI: 10.1016/j.mayocp.2022.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 01/13/2023]
Abstract
Coronary artery disease continues to be a major cause of morbidity and mortality despite significant advances in risk stratification and management. This has prompted the search for alternative nonconventional risk factors that may provide novel therapeutic targets. Psychosocial stress, or mental stress, has emerged as an important risk factor implicated in a higher incidence of cardiovascular events, and although our understanding of this far ranging and interesting phenomenon has developed greatly over recent times, there is still much to be learned regarding how to measure mental stress and how it may impact physical health. With the current coronavirus disease 2019 global pandemic and its incumbent lockdowns and social distancing, understanding the potentially harmful biological effects of stress related to life-changing events and social isolation has become even more important. In the current review our multidisciplinary team discusses stress from a psychosocial perspective and aims to define psychological stress as rigorously as possible; discuss the pathophysiologic mechanisms by which stress may mediate cardiovascular disease, with a particular focus to its effects on vascular health; outline existing methods and approaches to quantify stress by means of a vascular biomarker; outline the mechanisms whereby psychosocial stressors may have their pathologic effects ultimately transduced to the vasculature through the neuroendocrine immunologic axis; highlight areas for improvement to refine existing approaches in clinical research when studying the consequences of psychological stress on cardiovascular health; and discuss evidence-based therapies directed at reducing the deleterious effects of mental stress including those that target endothelial dysfunction. To this end we searched PubMed and Google Scholar to identify studies evaluating the relationship between mental or psychosocial stress and cardiovascular disease with a particular focus on vascular health. Search terms included "myocardial ischemia," "coronary artery disease," "mental stress," "psychological stress," "mental∗ stress∗," "psychologic∗ stress∗," and "cardiovascular disease∗." The search was limited to studies published in English in peer-reviewed journals between 1990 and the present day. To identify potential studies not captured by our database search strategy, we also searched studies listed in the bibliography of relevant publications and reviews.
Collapse
Key Words
- cad, coronary artery disease
- cbt, cognitive behavioral therapy
- cvd, cardiovascular disease
- fmd, flow-mediated dilatation
- il, interleukin
- mi, myocardial infarction
- ms, mental stress
- msimi, mental stress induced myocardial ischemia
- pat, peripheral arterial tonometry
- ped, peripheral endothelial dysfunction
- pet, positron emission tomography
- rh, reactive hyperemia
- ses, socioeconomic status
- tnf, tumor necrosis factor
- vsmc, vascular smooth muscle cells
Collapse
Affiliation(s)
| | - Takumi Toya
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Ali Ahmad
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Matthew M Clark
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Wesley P Gilliam
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Lliach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
96
|
Landreth S, Teague AM, Jensen ME, Gulati S, Tryggestad JB. Impact of maternal diabetes exposure on soluble adhesion molecules in the offspring. Nutr Metab Cardiovasc Dis 2022; 32:1253-1258. [PMID: 35256229 PMCID: PMC9018574 DOI: 10.1016/j.numecd.2022.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS Soluble adhesion molecules are associated with cardiovascular disease and increased in individuals with diabetes. This study assesses the impact of diabetes exposure in utero on the abundance of circulating adhesion molecules in cord serum and soluble adhesion molecules released from human umbilical vein endothelial cells (HUVEC) exposed to high glucose concentrations. METHODS AND RESULTS Women with and without diabetes were recruited. DM was diagnosed based on the American Diabetes Association criteria. Primary cultures of HUVEC were cultured in 5 mM and 25 mM glucose with 25 mM mannitol osmotic control. The soluble adhesion molecules, intracellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM) and E-selectin were measured by ELISA in the cord blood serum and conditioned HUVEC media. The mothers with DM were older with higher BMI (p = 0.027 and 0.008, respectively). In a fully adjusted model, VCAM was significantly increased in the cord serum of infants born to mothers with diabetes (p = 0.046), but ICAM and E-selectin were not different. ICAM was also significantly correlated with maternal HbA1c (r2 = 0.16, p = 0.004) and cord serum non-esterified fatty acids (r2 = 0.08, p = 0.013). From the HUVEC media, the abundance of adhesion molecules was not different based on DM or high glucose exposure; however, VCAM abundance in the HUVEC supernatant was significantly correlated with ICAM (r2 = 0.27, p = 0.010) and cord serum c-peptide (R2 = 0.19, p = 0.043). CONCLUSIONS Alterations in soluble adhesion molecule abundance in infants exposed to the diabetic milieu of pregnancy may reflect early alterations in vascular function predicting future cardiovascular disease.
Collapse
Affiliation(s)
- Samantha Landreth
- Department of Pediatrics, Section of Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - April M Teague
- Department of Pediatrics, Section of Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mary E Jensen
- Department of Pediatrics, Section of Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shelly Gulati
- Department of Pediatrics, Section of Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jeanie B Tryggestad
- Department of Pediatrics, Section of Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
97
|
Sagar RC, Ajjan RA, Naseem KM. Non-Traditional Pathways for Platelet Pathophysiology in Diabetes: Implications for Future Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23094973. [PMID: 35563363 PMCID: PMC9104718 DOI: 10.3390/ijms23094973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular complications remain the leading cause of morbidity and mortality in individuals with diabetes, driven by interlinked metabolic, inflammatory, and thrombotic changes. Hyperglycaemia, insulin resistance/deficiency, dyslipidaemia, and associated oxidative stress have been linked to abnormal platelet function leading to hyperactivity, and thus increasing vascular thrombotic risk. However, emerging evidence suggests platelets also contribute to low-grade inflammation and additionally possess the ability to interact with circulating immune cells, further driving vascular thrombo-inflammatory pathways. This narrative review highlights the role of platelets in inflammatory and immune processes beyond typical thrombotic effects and the impact these mechanisms have on cardiovascular disease in diabetes. We discuss pathways for platelet-induced inflammation and how platelet reprogramming in diabetes contributes to the high cardiovascular risk that characterises this population. Fully understanding the mechanistic pathways for platelet-induced vascular pathology will allow for the development of more effective management strategies that deal with the causes rather than the consequences of platelet function abnormalities in diabetes.
Collapse
|
98
|
Qiu Y, Chao CY, Jiang L, Zhang J, Niu QQ, Guo YQ, Song YT, Li P, Zhu ML, Yin YL. Citronellal alleviate macro- and micro-vascular damage in high fat diet / streptozotocin - Induced diabetic rats via a S1P/S1P1 dependent signaling pathway. Eur J Pharmacol 2022; 920:174796. [PMID: 35151650 DOI: 10.1016/j.ejphar.2022.174796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
Citronellal (CT) is an acyclic monoterpene aldehyde isolated from lemon citronella, which could ameliorate vascular endothelial dysfunction in atherosclerosis in our previous study, however, whether CT can alleviate vascular endothelial dysfunction related with type 2 diabetes (T2DM) is still unknown. So, we investigated the role of CT in vascular dysfunction related to T2DM and the mechanism involved. T2DM rat model was induced by a single intraperitoneal injection of low-dose streptozotocin (STZ) (60 mg/kg) to rats fed with high-fat diet (HFD) (4 weeks). After treated with CT (150 mg/kg/d), both the thoracic aorta injury and micro-vascular pathological injury in T2DM rats ex vivo were alleviated, and the oxidative stress in T2DM rats treated with CT were attenuated, manifested as increased content of endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD), and decreased content of malondialdehyde (MDA). Furthermore, CT (15 μg/L) increased the migration capacity of human umbilical vein endothelial cells (HUVECs) under high glucose circumstance (30 mM), and increased the endothelial-dependent relaxation in thoracic aorta isolated from T2DM rats in vitro. Finally, all of these effects of CT were blocked by fingolimod (FTY720), a sphingosine-1-phosphate receptor agonist, and the expression of sphingosine-1-phosphate receptor 1 (S1P1) was increased by CT. In conclusion, CT improved vascular function through S1P/S1P1 signaling pathway.
Collapse
Affiliation(s)
- Yue Qiu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chun-Yan Chao
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China; Huang Huai University, Zhumadian, 463000, China
| | - Li Jiang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China; School of Nursing, Xinxiang University, Xinxiang, 453003, China
| | - Jie Zhang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Qian-Qian Niu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ya-Qi Guo
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yu-Ting Song
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Peng Li
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Mo-Li Zhu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Ya-Ling Yin
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
99
|
Liu J, Qu M, Wang C, Xue Y, Huang H, Chen Q, Sun W, Zhou X, Xu G, Jiang X. A Dual-Cross-Linked Hydrogel Patch for Promoting Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106172. [PMID: 35319815 DOI: 10.1002/smll.202106172] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Diabetic wound treatment faces significant challenges in clinical settings. Alternative treatment approaches are needed. Continuous bleeding, disordered inflammatory regulation, obstruction of cell proliferation, and disturbance of tissue remodeling are the main characteristics of diabetic wound healing. Hydrogels made of either naturally derived or synthetic materials can potentially be designed with a variety of functions for managing the healing process of chronic wounds. Here, a hemostatic and anti-inflammatory hydrogel patch is designed for promoting diabetic wound healing. The hydrogel patch is derived from dual-cross-linked methacryloyl-substituted Bletilla Striata polysaccharide (B) and gelatin (G) via ultraviolet (UV) light. It is demonstrated that the B-G hydrogel can effectively regulate the M1/M2 phenotype of macrophages, significantly promote the proliferation and migration of fibroblasts in vitro, and accelerate angiogenesis. It can boost wound closure by normalizing epidermal tissue regeneration and depositing collagen appropriately in vivo without exogenous cytokine supplementation. Overall, the B-G bioactive hydrogel can promote diabetic wound healing in a simple, economical, effective, and safe manner.
Collapse
Affiliation(s)
- Jing Liu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Moyuan Qu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Canran Wang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Huang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Wujin Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Guihua Xu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xing Jiang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
100
|
Dittman JM, Amendola MF, Lavingia KS. Medical Optimization of the PAD Patient. Semin Vasc Surg 2022; 35:113-123. [DOI: 10.1053/j.semvascsurg.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/11/2022]
|