51
|
Hashambhoy YL, Winslow RL, Greenstein JL. CaMKII-dependent activation of late INa contributes to cellular arrhythmia in a model of the cardiac myocyte. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:4665-8. [PMID: 22255378 DOI: 10.1109/iembs.2011.6091155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardiac voltage-gated Na(+) channels underlie membrane depolarization during the upstroke of the action potential (AP). These channels also exhibit a late, slowly-inactivating component of current (late I(Na)) that may be enhanced under pathological conditions such as heart failure, and may therefore promote AP prolongation and increase the likelihood of arrhythmia. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) functionally modifies Na(+) channels, however it remains unclear if the CaMKII-dependent changes in late I(Na) are a major contributor to cellular arrhythmias such as early after depolarizations (EADs). In this study we develop a model of I(Na), including CaMKII-dependent effects, based on experimental measurements. The Na(+) channel model is incorporated into a computational model of the whole myocyte which describes excitation-contraction coupling via stochastic simulation of individual Ca(2+) release sites. Simulations suggest that relatively small augmentation of late I(Na) is sufficient to significantly prolong APs and lead to the appearance of EADs.
Collapse
Affiliation(s)
- Yasmin L Hashambhoy
- Department of Biomedical Engineering, Institute for Computational Medicine, TheJohns Hopkins University, Baltimore, MD 21218, USA. du
| | | | | |
Collapse
|
52
|
Ashpole NM, Herren AW, Ginsburg KS, Brogan JD, Johnson DE, Cummins TR, Bers DM, Hudmon A. Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates cardiac sodium channel NaV1.5 gating by multiple phosphorylation sites. J Biol Chem 2012; 287:19856-69. [PMID: 22514276 DOI: 10.1074/jbc.m111.322537] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The cardiac Na(+) channel Na(V)1.5 current (I(Na)) is critical to cardiac excitability, and altered I(Na) gating has been implicated in genetic and acquired arrhythmias. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is up-regulated in heart failure and has been shown to cause I(Na) gating changes that mimic those induced by a point mutation in humans that is associated with combined long QT and Brugada syndromes. We sought to identify the site(s) on Na(V)1.5 that mediate(s) the CaMKII-induced alterations in I(Na) gating. We analyzed both CaMKII binding and CaMKII-dependent phosphorylation of the intracellularly accessible regions of Na(V)1.5 using a series of GST fusion constructs, immobilized peptide arrays, and soluble peptides. A stable interaction between δ(C)-CaMKII and the intracellular loop between domains 1 and 2 of Na(V)1.5 was observed. This region was also phosphorylated by δ(C)-CaMKII, specifically at the Ser-516 and Thr-594 sites. Wild-type (WT) and phosphomutant hNa(V)1.5 were co-expressed with GFP-δ(C)-CaMKII in HEK293 cells, and I(Na) was recorded. As observed in myocytes, CaMKII shifted WT I(Na) availability to a more negative membrane potential and enhanced accumulation of I(Na) into an intermediate inactivated state, but these effects were abolished by mutating either of these sites to non-phosphorylatable Ala residues. Mutation of these sites to phosphomimetic Glu residues negatively shifted I(Na) availability without the need for CaMKII. CaMKII-dependent phosphorylation of Na(V)1.5 at multiple sites (including Thr-594 and Ser-516) appears to be required to evoke loss-of-function changes in gating that could contribute to acquired Brugada syndrome-like effects in heart failure.
Collapse
Affiliation(s)
- Nicole M Ashpole
- Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
Voltage-gated sodium channels underlie the rapid regenerative upstroke of action potentials and are modulated by cytoplasmic calcium ions through a poorly understood mechanism. We describe the 1.35 Å crystal structure of Ca(2+)-bound calmodulin (Ca(2+)/CaM) in complex with the inactivation gate (DIII-IV linker) of the cardiac sodium channel (Na(V)1.5). The complex harbors the positions of five disease mutations involved with long Q-T type 3 and Brugada syndromes. In conjunction with isothermal titration calorimetry, we identify unique inactivation-gate mutations that enhance or diminish Ca(2+)/CaM binding, which, in turn, sensitize or abolish Ca(2+) regulation of full-length channels in electrophysiological experiments. Additional biochemical experiments support a model whereby a single Ca(2+)/CaM bridges the C-terminal IQ motif to the DIII-IV linker via individual N and C lobes, respectively. The data suggest that Ca(2+)/CaM destabilizes binding of the inactivation gate to its receptor, thus biasing inactivation toward more depolarized potentials.
Collapse
|
54
|
Maier LS. Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII) in the Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:685-702. [DOI: 10.1007/978-94-007-2888-2_30] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
55
|
Liang R, Liu X, Wei L, Wang W, Zheng P, Yan X, Zhao Y, Liu L, Cao X. The modulation of the excitability of primary sensory neurons by Ca2+–CaM–CaMKII pathway. Neurol Sci 2011; 33:1083-93. [DOI: 10.1007/s10072-011-0907-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/14/2011] [Indexed: 01/19/2023]
|
56
|
Rook MB, Evers MM, Vos MA, Bierhuizen MFA. Biology of cardiac sodium channel Nav1.5 expression. Cardiovasc Res 2011; 93:12-23. [PMID: 21937582 DOI: 10.1093/cvr/cvr252] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Na(v)1.5, the pore forming α-subunit of the voltage-dependent cardiac Na(+) channel, is an integral membrane protein involved in the initiation and conduction of action potentials. Mutations in the gene-encoding Na(v)1.5, SCN5A, have been associated with a variety of arrhythmic disorders, including long QT, Brugada, and sick sinus syndromes as well as progressive cardiac conduction defect and atrial standstill. Moreover, alterations in the Na(v)1.5 expression level and/or sodium current density have been frequently noticed in acquired cardiac disorders, such as heart failure. The molecular mechanisms underlying these alterations are poorly understood, but are considered essential for conception of arrhythmogenesis and the development of therapeutic strategies for prevention or treatment of arrhythmias. The unravelling of such mechanisms requires critical molecular insight into the biology of Na(v)1.5 expression and function. Therefore, the aim of this review is to provide an up-to-date account of molecular determinants of normal Na(v)1.5 expression and function. The parts of the Na(v)1.5 life cycle that are discussed include (i) regulatory aspects of the SCN5A gene and transcript structure, (ii) the nature, molecular determinants, and functional consequences of Na(v)1.5 post-translational modifications, and (iii) the role of Na(v)1.5 interacting proteins in cellular trafficking. The reviewed studies have provided valuable information on how the Na(v)1.5 expression level, localization, and biophysical properties are regulated, but also revealed that our understanding of the underlying mechanisms is still limited.
Collapse
Affiliation(s)
- Martin B Rook
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, The Netherlands
| | | | | | | |
Collapse
|
57
|
Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel. Biochem Biophys Res Commun 2011; 411:329-34. [DOI: 10.1016/j.bbrc.2011.06.142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 11/30/2022]
|
58
|
Firth AL, Remillard CV, Platoshyn O, Fantozzi I, Ko EA, Yuan JXJ. Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels. Pulm Circ 2011; 1:48-71. [PMID: 21927714 PMCID: PMC3173772 DOI: 10.4103/2045-8932.78103] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The activity of voltage-gated ion channels is critical for the maintenance of cellular membrane potential and generation of action potentials. In turn, membrane potential regulates cellular ion homeostasis, triggering the opening and closing of ion channels in the plasma membrane and, thus, enabling ion transport across the membrane. Such transmembrane ion fluxes are important for excitation–contraction coupling in pulmonary artery smooth muscle cells (PASMC). Families of voltage-dependent cation channels known to be present in PASMC include voltage-gated K+ (Kv) channels, voltage-dependent Ca2+-activated K+ (Kca) channels, L- and T- type voltage-dependent Ca2+ channels, voltage-gated Na+ channels and voltage-gated proton channels. When cells are dialyzed with Ca2+-free K+- solutions, depolarization elicits four components of 4-aminopyridine (4-AP)-sensitive Kvcurrents based on the kinetics of current activation and inactivation. In cell-attached membrane patches, depolarization elicits a wide range of single-channel K+ currents, with conductances ranging between 6 and 290 pS. Macroscopic 4-AP-sensitive Kv currents and iberiotoxin-sensitive Kca currents are also observed. Transcripts of (a) two Na+ channel α-subunit genes (SCN5A and SCN6A), (b) six Ca2+ channel α–subunit genes (α1A, α1B, α1X, α1D, α1Eand α1G) and many regulatory subunits (α2δ1, β1-4, and γ6), (c) 22 Kv channel α–subunit genes (Kv1.1 - Kv1.7, Kv1.10, Kv2.1, Kv3.1, Kv3.3, Kv3.4, Kv4.1, Kv4.2, Kv5.1, Kv 6.1-Kv6.3, Kv9.1, Kv9.3, Kv10.1 and Kv11.1) and three Kv channel β-subunit genes (Kvβ1-3) and (d) four Kca channel α–subunit genes (Sloα1 and SK2-SK4) and four Kca channel β-subunit genes (Kcaβ1-4) have been detected in PASMC. Tetrodotoxin-sensitive and rapidly inactivating Na+ currents have been recorded with properties similar to those in cardiac myocytes. In the presence of 20 mM external Ca2+, membrane depolarization from a holding potential of -100 mV elicits a rapidly inactivating T-type Ca2+ current, while depolarization from a holding potential of -70 mV elicits a slowly inactivating dihydropyridine-sensitive L-type Ca2+ current. This review will focus on describing the electrophysiological properties and molecular identities of these voltage-dependent cation channels in PASMC and their contribution to the regulation of pulmonary vascular function and its potential role in the pathogenesis of pulmonary vascular disease.
Collapse
Affiliation(s)
- Amy L Firth
- The Salk Institute for Biological Studies, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
59
|
Zhang XH, Jin MW, Sun HY, Zhang S, Li GR. The calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide directly blocks human ether à-go-go-related gene potassium channels stably expressed in human embryonic kidney 293 cells. Br J Pharmacol 2010; 161:872-84. [PMID: 20860665 DOI: 10.1111/j.1476-5381.2010.00916.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide (W-7) is a well-known calmodulin inhibitor used to study calmodulin regulation of intracellular Ca(2+) signalling-related process. Here, we have determined whether W-7 would inhibit human ether gene (hERG or K(v) 11.1) potassium channels, hK(v) 1.5 channels or hK(IR) 2.1 channels expressed in human embryonic kidney (HEK) 293 cells. EXPERIMENTAL APPROACH The hERG channel current, hK(v) 1.5 channel current or hK(IR) 2.1 channel current was recorded with a whole-cell patch clamp technique. KEY RESULTS It was found that the calmodulin inhibitor W-7 blocked hERG, hK(v) 1.5 and hK(IR) 2.1 channels. W-7 decreased the hERG current (I(hERG) ) in a concentration-dependent manner (IC(50) : 3.5 µM), and the inhibition was more significant at depolarization potentials between +10 and +60 mV. The hERG mutations in the S6 region Y652A and F656V, and in the pore helix S631A, had the IC(50) s of 5.5, 9.8 and 25.4 µM respectively. In addition, the compound inhibited hK(v) 1.5 and hK(IR) 2.1 channels with IC(50) s of 6.5 and 13.4 µM respectively. CONCLUSION AND IMPLICATIONS These results indicate that the calmodulin inhibitor W-7 exerts a direct channel-blocking effect on hERG, hK(v) 1.5 and hK(IR) 2.1 channels stably expressed in HEK 293 cells. Caution should be taken in the interpretation of calmodulin regulation of ion channels with W-7.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
60
|
Dib-Hajj SD, Waxman SG. Isoform-specific and pan-channel partners regulate trafficking and plasma membrane stability; and alter sodium channel gating properties. Neurosci Lett 2010; 486:84-91. [DOI: 10.1016/j.neulet.2010.08.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 12/19/2022]
|
61
|
Maier LS. CaMKII regulation of voltage-gated sodium channels and cell excitability. Heart Rhythm 2010; 8:474-7. [PMID: 20887805 DOI: 10.1016/j.hrthm.2010.09.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 09/22/2010] [Indexed: 12/19/2022]
Affiliation(s)
- Lars S Maier
- Department of Cardiology & Pneumology/Heart Center, Georg-August-University Göttingen, Germany.
| |
Collapse
|
62
|
Abstract
Calcium/calmodulin-dependent kinase II (CaMKII) is a multifunctional serine/threonine kinase expressed abundantly in the heart. CaMKII targets numerous proteins involved in excitation-contraction coupling and excitability, and its activation may simultaneously contribute to heart failure and cardiac arrhythmias. In this review, we summarize the modulatory effects of CaMKII on cardiac ion channel function and expression and illustrate potential implications in the onset of arrhythmias via a computer model.
Collapse
|
63
|
Regulation of the spontaneous augmentation of Na(V)1.9 in mouse dorsal root ganglion neurons: effect of PKA and PKC pathways. Mar Drugs 2010; 8:728-40. [PMID: 20411123 PMCID: PMC2857352 DOI: 10.3390/md8030728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/08/2010] [Accepted: 03/18/2010] [Indexed: 11/18/2022] Open
Abstract
Sensory neurons in the dorsal root ganglion express two kinds of tetrodotoxin resistant (TTX-R) isoforms of voltage-gated sodium channels, NaV1.8 and NaV1.9. These isoforms play key roles in the pathophysiology of chronic pain. Of special interest is NaV1.9: our previous studies revealed a unique property of the NaV1.9 current, i.e., the NaV1.9 current shows a gradual and notable up-regulation of the peak amplitude during recording (“spontaneous augmentation of NaV1.9”). However, the mechanism underlying the spontaneous augmentation of NaV1.9 is still unclear. In this study, we examined the effects of protein kinases A and C (PKA and PKC), on the spontaneous augmentation of NaV1.9. The spontaneous augmentation of the NaV1.9 current was significantly suppressed by activation of PKA, whereas activation of PKA did not affect the voltage dependence of inactivation for the NaV1.9 current. On the contrary, the finding that activation of PKC can affect the voltage dependence of inactivation for NaV1.9 in the perforated patch recordings, where the augmentation does not occur, suggests that the effects of PMA are independent of the augmentation process. These results indicate that the spontaneous augmentation of NaV1.9 was regulated directly by PKA, and indirectly by PKC.
Collapse
|
64
|
Nguyen HM, Goldin AL. Sodium channel carboxyl-terminal residue regulates fast inactivation. J Biol Chem 2010; 285:9077-89. [PMID: 20089854 DOI: 10.1074/jbc.m109.054940] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Na(v)1.2 and Na(v)1.3 voltage-gated sodium channel isoforms demonstrate distinct differences in their kinetics and voltage dependence of fast inactivation when expressed in Xenopus oocytes. Co-expression of the auxiliary beta1 subunit accelerated inactivation of both the Na(v)1.2 and Na(v)1.3 isoforms, but it did not eliminate the differences, demonstrating that this property is inherent in the alpha subunit. By constructing chimeric channels between Na(v)1.2 and Na(v)1.3, we demonstrate that the carboxyl terminus is responsible for the differences. The Na(v)1.2 carboxyl terminus caused faster inactivation in the Na(v)1.3 backbone, and the Na(v)1.3 carboxyl terminus caused slower inactivation in the Na(v)1.2 channel. Through analysis of truncated channels, we identified a homologous 60-amino acid region within the carboxyl terminus of the Na(v)1.2 and the Na(v)1.3 channels that is responsible for this modulation of fast inactivation. Site-directed replacement of Na(v)1.3 lysine 1826 in this region to its Na(v)1.2 analogue glutamic acid 1880 (K1826E) shifted the voltage dependence of inactivation toward that of Na(v)1.2. The K1826E mutation also accelerated the inactivation kinetics to a level comparable with that of Na(v)1.2. The reverse Na(v)1.2 E1880K mutation exhibited much slower inactivation kinetics and depolarized inactivation voltage dependence. A complementary mutation located within the inactivation linker of Na(v)1.3 (K1453E) caused inactivation changes mirroring those caused by the K1826E mutation in Na(v)1.3. Therefore, we have identified a homologous carboxyl-terminal residue that regulates the kinetics and voltage dependence of fast inactivation in sodium channels, possibly via a charge-dependent interaction with the inactivation linker.
Collapse
Affiliation(s)
- Hai M Nguyen
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-4025, USA
| | | |
Collapse
|
65
|
Xiong LW, Kleerekoper QK, Wang X, Putkey JA. Intra- and interdomain effects due to mutation of calcium-binding sites in calmodulin. J Biol Chem 2010; 285:8094-103. [PMID: 20048169 DOI: 10.1074/jbc.m109.065243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The IQ-motif protein PEP-19, binds to the C-domain of calmodulin (CaM) with significantly different k(on) and k(off) rates in the presence and absence of Ca(2+), which could play a role in defining the levels of free CaM during Ca(2+) transients. The initial goal of the current study was to determine whether Ca(2+) binding to sites III or IV in the C-domain of CaM was responsible for affecting the kinetics of binding PEP-19. EF-hand Ca(2+)-binding sites were selectively inactivated by the common strategy of changing Asp to Ala at the X-coordination position. Although Ca(2+) binding to both sites III and IV appeared necessary for native-like interactions with PEP-19, the data also indicated that the mutations caused undesirable structural alterations as evidenced by significant changes in amide chemical shifts for apoCaM. Mutations in the C-domain also affected chemical shifts in the unmodified N-domain, and altered the Ca(2+) binding properties of the N-domain. Conversion of Asp(93) to Ala caused the greatest structural perturbations, possibly due to the loss of stabilizing hydrogen bonds between the side chain of Asp(93) and backbone amides in apo loop III. Thus, although these mutations inhibit binding of Ca(2+), the mutated CaM may not be able to support potentially important native-like activity of the apoprotein. This should be taken into account when designing CaM mutants for expression in cell culture.
Collapse
Affiliation(s)
- Liang-Wen Xiong
- Department of Biochemistry and Molecular Biology and the Structural Biology Center, University of Texas, Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
66
|
Sarhan MF, Van Petegem F, Ahern CA. A double tyrosine motif in the cardiac sodium channel domain III-IV linker couples calcium-dependent calmodulin binding to inactivation gating. J Biol Chem 2009; 284:33265-74. [PMID: 19808664 DOI: 10.1074/jbc.m109.052910] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Voltage-gated sodium channels maintain the electrical cadence and stability of neurons and muscle cells by selectively controlling the transmembrane passage of their namesake ion. The degree to which these channels contribute to cellular excitability can be managed therapeutically or fine-tuned by endogenous ligands. Intracellular calcium, for instance, modulates sodium channel inactivation, the process by which sodium conductance is negatively regulated. We explored the molecular basis for this effect by investigating the interaction between the ubiquitous calcium binding protein calmodulin (CaM) and the putative sodium channel inactivation gate composed of the cytosolic linker between homologous channel domains III and IV (DIII-IV). Experiments using isothermal titration calorimetry show that CaM binds to a novel double tyrosine motif in the center of the DIII-IV linker in a calcium-dependent manner, N-terminal to a region previously reported to be a CaM binding site. An alanine scan of aromatic residues in recombinant DIII-DIV linker peptides shows that whereas multiple side chains contribute to CaM binding, two tyrosines (Tyr(1494) and Tyr(1495)) play a crucial role in binding the CaM C-lobe. The functional relevance of these observations was then ascertained through electrophysiological measurement of sodium channel inactivation gating in the presence and absence of calcium. Experiments on patch-clamped transfected tsA201 cells show that only the Y1494A mutation of the five sites tested renders sodium channel steady-state inactivation insensitive to cytosolic calcium. The results demonstrate that calcium-dependent calmodulin binding to the sodium channel inactivation gate double tyrosine motif is required for calcium regulation of the cardiac sodium channel.
Collapse
Affiliation(s)
- Maen F Sarhan
- Department of Anesthesiology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
67
|
Aiba T, Hesketh GG, Liu T, Carlisle R, Villa-Abrille MC, O'Rourke B, Akar FG, Tomaselli GF. Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes. Cardiovasc Res 2009; 85:454-63. [PMID: 19797425 DOI: 10.1093/cvr/cvp324] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Calmodulin (CaM) regulates Na+ channel gating through binding to an IQ-like motif in the C-terminus. Ca2+/CaM-dependent protein kinase II (CaMKII) regulates Ca2+ handling, and chronic overactivity of CaMKII is associated with left ventricular hypertrophy and dysfunction and lethal arrhythmias. However, the acute effects of Ca2+/CaM and CaMKII on cardiac Na+ channels are not fully understood. METHODS AND RESULTS Purified Na(V)1.5-glutathione-S-transferase fusion peptides were phosphorylated in vitro by CaMKII predominantly on the I-II linker. Whole-cell voltage-clamp was used to measure Na+ current (I(Na)) in isolated guinea-pig ventricular myocytes in the absence or presence of CaM or CaMKII in the pipette solution. CaMKII shifted the voltage dependence of Na+ channel availability by approximately +5 mV, hastened recovery from inactivation, decreased entry into intermediate or slow inactivation, and increased persistent (late) current, but did not change I(Na) decay. These CaMKII-induced changes of Na+ channel gating were completely abolished by a specific CaMKII inhibitor, autocamtide-2-related inhibitory peptide (AIP). Ca2+/CaM alone reproduced the CaMKII-induced changes of I(Na) availability and the fraction of channels undergoing slow inactivation, but did not alter recovery from inactivation or the magnitude of the late current. Furthermore, the CaM-induced changes were also completely abolished by AIP. On the other hand, cAMP-dependent protein kinase A inhibitors did not abolish the CaM/CaMKII-induced alterations of I(Na) function. CONCLUSION Ca2+/CaM and CaMKII have distinct effects on the inactivation phenotype of cardiac Na+ channels. The differences are consistent with CaM-independent effects of CaMKII on cardiac Na+ channel gating.
Collapse
Affiliation(s)
- Takeshi Aiba
- Division of Cardiology, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 844, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Abriel H. Cardiac sodium channel Na(v)1.5 and interacting proteins: Physiology and pathophysiology. J Mol Cell Cardiol 2009; 48:2-11. [PMID: 19744495 DOI: 10.1016/j.yjmcc.2009.08.025] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/12/2009] [Accepted: 08/31/2009] [Indexed: 12/19/2022]
Abstract
The cardiac voltage-gated Na(+) channel Na(v)1.5 generates the cardiac Na(+) current (INa). Mutations in SCN5A, the gene encoding Na(v)1.5, have been linked to many cardiac phenotypes, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. The mutations in SCN5A define a sub-group of Na(v)1.5/SCN5A-related phenotypes among cardiac genetic channelopathies. Several research groups have proposed that Na(v)1.5 may be part of multi-protein complexes composed of Na(v)1.5-interacting proteins which regulate channel expression and function. The genes encoding these regulatory proteins have also been found to be mutated in patients with inherited forms of cardiac arrhythmias. The proteins that associate with Na(v)1.5 may be classified as (1) anchoring/adaptor proteins, (2) enzymes interacting with and modifying the channel, and (3) proteins modulating the biophysical properties of Na(v)1.5 upon binding. The aim of this article is to review these Na(v)1.5 partner proteins and to discuss how they may regulate the channel's biology and function. These recent investigations have revealed that the expression level, cellular localization, and activity of Na(v)1.5 are finely regulated by complex molecular and cellular mechanisms that we are only beginning to understand.
Collapse
Affiliation(s)
- Hugues Abriel
- Department of Clinical Research, University of Bern, Murtenstrasse, 35, 3010 Bern, Switzerland.
| |
Collapse
|
69
|
Constitutive CaMKII activity regulates Na+ channel in rat ventricular myocytes. J Mol Cell Cardiol 2009; 47:475-84. [PMID: 19591836 DOI: 10.1016/j.yjmcc.2009.06.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 06/10/2009] [Accepted: 06/29/2009] [Indexed: 11/23/2022]
Abstract
The cardiac voltage-gated Na(+) channel controls the upstroke of action potential and membrane excitability. The Na(+) channel associates with Ca(2+)/CaM-dependent protein kinase (CaMKII), but the role of CaMKII on Na(+) channel activity in the resting state is not clear. In this report, we investigated whether CaMKII constitutively regulates Na(+) currents (I(Na)), independent of Ca(2+) influx in rat ventricular myocytes using patch clamp technique. CaMKII inhibition (by KN93 or autocamtide-related inhibitory peptide) caused a negative shift in I(Na) steady-state inactivation and delayed recovery from slow inactivation, limiting channel availability. The reduction of I(Na) was 29.47+/-3.01% at a holding potential (V(h)) of -120 mV and it increased to 77.70+/-7.92% when V(h) was -70 mV, suggesting that near the resting membrane potential, three-quarters of I(Na) depends on CaMKII action. CaMKII inhibition also enhanced intermediate inactivation, as well as delayed recovery from fast inactivation, and decreased late I(Na). KN92, an inactive analog of KN93, had no effect on I(Na). Using an antibody against phosphorylated (activated) CaMKII, we found that constitutively active CaMKII co-immunoprecipitated with Na(+) channels under resting conditions. CaMKII inhibitors reduced the level of phosphorylated CaMKII, which correlated with the degree of reduction in channel availability. These data suggest that CaMKII in an active form contributes to regulating I(Na). Finally, we observed a drastic reduction in the upstroke velocity of action potentials upon CaMKII inhibition. In conclusion, CaMKII constitutively regulates cardiac Na(+) channel and this regulatory mechanism is important for the maintenance of Na(+) channel characteristics under physiological conditions.
Collapse
|
70
|
Protein–protein interactions involving voltage-gated sodium channels: Post-translational regulation, intracellular trafficking and functional expression. Int J Biochem Cell Biol 2009; 41:1471-81. [DOI: 10.1016/j.biocel.2009.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/23/2009] [Accepted: 01/26/2009] [Indexed: 01/06/2023]
|
71
|
Filatov GN, Pinter MJ, Rich MM. Role of Ca(2+) in injury-induced changes in sodium current in rat skeletal muscle. Am J Physiol Cell Physiol 2009; 297:C352-9. [PMID: 19494240 DOI: 10.1152/ajpcell.00021.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Characteristics of voltage-dependent sodium current recorded from adult rat muscle fibers in loose patch mode were rapidly altered following nearby impalement with a microelectrode. Hyperpolarized shifts in the voltage dependence of activation and fast inactivation occurred within minutes. In addition, the amplitude of the maximal sodium current decreased within 30 min of impalement. Impalement triggered a sustained elevation of intracellular Ca(2+). However, buffering Ca(2+) by loading fibers with AM-BAPTA did not affect the hyperpolarized shifts in activation and inactivation, although it did prevent the reduction in current amplitude. Surprisingly, the rise in intracellular Ca(2+) occurred even in the absence of extracellular Ca(2+). This result indicated that the injury-induced Ca(2+) increase came from an intracellular source, but it was not blocked by an inhibitor of release from the sarcoplasmic reticulum, which suggested involvement of mitochondria. Ca(2+) release from mitochondria triggered by carbonyl cyanide 3-chlorophenylhydrazone was sufficient to cause a reduction in sodium current amplitude but had little effect of the voltage dependence of activation and fast inactivation. Our data suggest the effects of muscle injury can be separated into a Ca(2+)-dependent reduction in amplitude and a largely Ca(2+)-independent shift in activation and fast inactivation. Together, the impalement-induced changes in sodium current reduce the number of sodium channels available to open at the resting potential and may limit further depolarization and thus promote survival of muscle fibers following injury.
Collapse
Affiliation(s)
- Gregory N Filatov
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA, USA
| | | | | |
Collapse
|
72
|
Biswas S, DiSilvestre D, Tian Y, Halperin VL, Tomaselli GF. Calcium-mediated dual-mode regulation of cardiac sodium channel gating. Circ Res 2009; 104:870-8. [PMID: 19265034 DOI: 10.1161/circresaha.108.193565] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intracellular Ca(2+) ([Ca(2+)](i)) can trigger dual-mode regulation of the voltage gated cardiac sodium channel (Na(V)1.5). The channel components of the Ca(2+) regulatory system are the calmodulin (CaM)-binding IQ motif and the Ca(2+) sensing EF hand-like (EFL) motif in the carboxyl terminus of the channel. Mutations in either motif have been associated with arrhythmogenic changes in expressed Na(V)1.5 currents. Increases in [Ca(2+)](i) shift the steady-state inactivation of Na(V)1.5 in the depolarizing direction and slow entry into inactivated states. Mutation of the EFL (Na(V)1.5(4X)) shifts inactivation in the hyperpolarizing direction compared with the wild-type channel and eliminates the Ca(2+) sensitivity of inactivation gating. Modulation of the steady-state availability of Na(V)1.5 by [Ca(2+)](i) is more pronounced after the truncation of the carboxyl terminus proximal to the IQ motif (Na(V)1.5(Delta1885)), which retains the EFL. Mutating the EFL (Na(V)1.5(4X)) unmasks CaM-mediated regulation of the kinetics and voltage dependence of inactivation. This latent CaM modulation of inactivation is eliminated by mutation of the IQ motif (Na(V)1.5(4X-IQ/AA)). The LQT3 EFL mutant channel Na(V)1.5(D1790G) exhibits Ca(2+) insensitivity and unmasking of CaM regulation of inactivation gating. The enhanced effect of CaM on Na(V)1.5(4X) gating is associated with significantly greater fluorescence resonance energy transfer between enhanced cyan fluorescent protein-CaM and Na(V)1.5(4X) channels than is observed with wild-type Na(V)1.5. Unlike other isoforms of the Na channel, the IQ-CaM interaction in the carboxyl terminus of Na(V)1.5 is latent under physiological conditions but may become manifest in the presence of disease causing mutations in the CT of Na(V)1.5 (particularly in the EFL), contributing to the production of potentially lethal ventricular arrhythmias.
Collapse
Affiliation(s)
- Subrata Biswas
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, Md. 21205, USA
| | | | | | | | | |
Collapse
|
73
|
Aman TK, Grieco-Calub TM, Chen C, Rusconi R, Slat EA, Isom LL, Raman IM. Regulation of persistent Na current by interactions between beta subunits of voltage-gated Na channels. J Neurosci 2009; 29:2027-42. [PMID: 19228957 PMCID: PMC2667244 DOI: 10.1523/jneurosci.4531-08.2009] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 12/30/2008] [Accepted: 01/06/2009] [Indexed: 11/21/2022] Open
Abstract
The beta subunits of voltage-gated Na channels (Scnxb) regulate the gating of pore-forming alpha subunits, as well as their trafficking and localization. In heterologous expression systems, beta1, beta2, and beta3 subunits influence inactivation and persistent current in different ways. To test how the beta4 protein regulates Na channel gating, we transfected beta4 into HEK (human embryonic kidney) cells stably expressing Na(V)1.1. Unlike a free peptide with a sequence from the beta4 cytoplasmic domain, the full-length beta4 protein did not block open channels. Instead, beta4 expression favored open states by shifting activation curves negative, decreasing the slope of the inactivation curve, and increasing the percentage of noninactivating current. Consequently, persistent current tripled in amplitude. Expression of beta1 or chimeric subunits including the beta1 extracellular domain, however, favored inactivation. Coexpressing Na(V)1.1 and beta4 with beta1 produced tiny persistent currents, indicating that beta1 overcomes the effects of beta4 in heterotrimeric channels. In contrast, beta1(C121W), which contains an extracellular epilepsy-associated mutation, did not counteract the destabilization of inactivation by beta4 and also required unusually large depolarizations for channel opening. In cultured hippocampal neurons transfected with beta4, persistent current was slightly but significantly increased. Moreover, in beta4-expressing neurons from Scn1b and Scn1b/Scn2b null mice, entry into inactivated states was slowed. These data suggest that beta1 and beta4 have antagonistic roles, the former favoring inactivation, and the latter favoring activation. Because increased Na channel availability may facilitate action potential firing, these results suggest a mechanism for seizure susceptibility of both mice and humans with disrupted beta1 subunits.
Collapse
Affiliation(s)
| | | | - Chunling Chen
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Raffaella Rusconi
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Emily A. Slat
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Indira M. Raman
- Interdepartmental Neuroscience Program and
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, and
| |
Collapse
|
74
|
Potet F, Chagot B, Anghelescu M, Viswanathan PC, Stepanovic SZ, Kupershmidt S, Chazin WJ, Balser JR. Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin. J Biol Chem 2009; 284:8846-54. [PMID: 19171938 DOI: 10.1074/jbc.m806871200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca(2+) ([Ca(2+)](i)). Two regions of Na(V)1.5 have been identified previously as [Ca(2+)](i)-sensitive modulators of channel inactivation. These include a C-terminal IQ motif that binds calmodulin (CaM) in different modes depending on Ca(2+) levels, and an immediately adjacent C-terminal EF-hand domain that directly binds Ca(2+). Here we show that a mutation of the IQ domain (A1924T; Brugada Syndrome) that reduces CaM binding stabilizes Na(V)1.5 inactivation, similarly and more extensively than even reducing [Ca(2+)](i). Because the DIII-DIV linker is an essential structure in Na(V)1.5 inactivation, we evaluated this domain for a potential CaM binding interaction. We identified a novel CaM binding site within the linker, validated its interaction with CaM by NMR spectroscopy, and revealed its micromolar affinity by isothermal titration calorimetry. Mutation of three consecutive hydrophobic residues (Phe(1520)-Ile(1521)-Phe(1522)) to alanines in this CaM-binding domain recapitulated the electrophysiology phenotype observed with mutation of the C-terminal IQ domain: Na(V)1.5 inactivation was stabilized; moreover, mutations of either CaM-binding domain abolish the well described stabilization of inactivation by lidocaine. The direct physical interaction of CaM with the C-terminal IQ domain and the DIII-DIV linker, combined with the similarity in phenotypes when CaM-binding sites in either domain are mutated, suggests these cytoplasmic structures could be functionally coupled through the action of CaM. These findings have bearing upon Na(+) channel function in genetically altered channels and under pathophysiologic conditions where [Ca(2+)](i) impacts cardiac conduction.
Collapse
Affiliation(s)
- Franck Potet
- Departments of Anesthesiology, Pharmacology, Medicine, Biochemistry, and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Makiyama T, Akao M, Shizuta S, Doi T, Nishiyama K, Oka Y, Ohno S, Nishio Y, Tsuji K, Itoh H, Kimura T, Kita T, Horie M. A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation. J Am Coll Cardiol 2008; 52:1326-34. [PMID: 18929244 DOI: 10.1016/j.jacc.2008.07.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 07/07/2008] [Accepted: 07/10/2008] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study describes a novel heterozygous gain-of-function mutation in the cardiac sodium (Na+) channel gene, SCN5A, identified in a Japanese family with lone atrial fibrillation (AF). BACKGROUND SCN5A mutations have been associated with a variety of inherited arrhythmias, but the gain-of-function type modulation in SCN5A is associated with only 1 phenotype, long-QT syndrome type 3 (LQTS3). METHODS We studied a Japanese family with autosomal dominant hereditary AF, multiple members of which showed an onset of AF or frequent premature atrial contractions at a young age. RESULTS The 31-year-old proband received radiofrequency catheter ablation, during which time numerous ectopic firings and increased excitability throughout the right atrium were documented. Mutational analysis identified a novel missense mutation, M1875T, in SCN5A. Further investigations revealed the familial aggregation of this mutation in all of the affected individuals. Functional assays of the M1875T Na(+) channels using a whole-cell patch-clamp demonstrated a distinct gain-of-function type modulation; a pronounced depolarized shift (+16.4 mV) in V(1/2) of the voltage dependence of steady-state inactivation; and no persistent Na+ current, which is a defining mechanism of LQTS3. These biophysical features of the mutant channels are potentially associated with increased atrial excitability and normal QT interval in all of the affected individuals. CONCLUSIONS We identified a novel SCN5A mutation associated with familial AF. The mutant channels displayed a gain-of-function type modulation of cardiac Na+ channels, which is a novel mechanism predisposing to increased atrial excitability and familial AF. This is a new phenotype resulting from the SCN5A gain-of-function mutations and is distinct from LQTS3.
Collapse
Affiliation(s)
- Takeru Makiyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Undrovinas A, Maltsev VA. Late sodium current is a new therapeutic target to improve contractility and rhythm in failing heart. Cardiovasc Hematol Agents Med Chem 2008; 6:348-59. [PMID: 18855648 PMCID: PMC2575131 DOI: 10.2174/187152508785909447] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most cardiac Na+ channels open transiently within milliseconds upon membrane depolarization and are responsible for the excitation propagation. However, some channels remain active during hundreds of milliseconds, carrying the so-called persistent or late Na+ current (I(NaL)) throughout the action potential plateau. I(NaL) is produced by special gating modes of the cardiac-specific Na+ channel isoform. Experimental data accumulated over the past decade show the emerging importance of this late current component for the function of both normal and especially failing myocardium, where I(NaL) is reportedly increased. Na+ channels represent a multi-protein complex and its activity is determined not only by the pore-forming alpha subunit but also by its auxiliary beta subunits, cytoskeleton, and by Ca2+ signaling and trafficking proteins. Remodeling of this protein complex and intracellular signaling pathways may lead to alterations of I(NaL) in pathological conditions. Increased I(NaL) and the corresponding Na+ influx in failing myocardium contribute to abnormal repolarization and an increased cell Ca2+ load. Interventions designed to correct I(NaL) rescue normal repolarization and improve Ca2+ handling and contractility of the failing cardiomyocytes. New therapeutic strategies to target both arrhythmias and deficient contractility in HF may not be limited to the selective inhibition of I(NaL) but also include multiple indirect, modulatory (e.g. Ca(2+)- or cytoskeleton- dependent) mechanisms of I(NaL) function.
Collapse
Affiliation(s)
- Albertas Undrovinas
- Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202-2689, USA.
| | | |
Collapse
|
77
|
Maltsev VA, Reznikov V, Undrovinas NA, Sabbah HN, Undrovinas A. Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: similarities and differences. Am J Physiol Heart Circ Physiol 2008; 294:H1597-608. [PMID: 18203851 PMCID: PMC2376056 DOI: 10.1152/ajpheart.00484.2007] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Augmented and slowed late Na(+) current (I(NaL)) is implicated in action potential duration variability, early afterdepolarizations, and abnormal Ca(2+) handling in human and canine failing myocardium. Our objective was to study I(NaL) modulation by cytosolic Ca(2+) concentration ([Ca(2+)](i)) in normal and failing ventricular myocytes. Chronic heart failure was produced in 10 dogs by multiple sequential coronary artery microembolizations; 6 normal dogs served as a control. I(NaL) fine structure was measured by whole cell patch clamp in ventricular myocytes and approximated by a sum of fast and slow exponentials produced by burst and late scattered modes of Na(+) channel gating, respectively. I(NaL) greatly enhanced as [Ca(2+)](i) increased from "Ca(2+) free" to 1 microM: its maximum density increased, decay of both exponentials slowed, and the steady-state inactivation (SSI) curve shifted toward more positive potentials. Testing the inhibition of CaMKII and CaM revealed similarities and differences of I(NaL) modulation in failing vs. normal myocytes. Similarities include the following: 1) CaMKII slows I(NaL) decay and decreases the amplitude of fast exponentials, and 2) Ca(2+) shifts SSI rightward. Differences include the following: 1) slowing of I(NaL) by CaMKII is greater, 2) CaM shifts SSI leftward, and 3) Ca(2+) increases the amplitude of slow exponentials. We conclude that Ca(2+)/CaM/CaMKII signaling increases I(NaL) and Na(+) influx in both normal and failing myocytes by slowing inactivation kinetics and shifting SSI. This Na(+) influx provides a novel Ca(2+) positive feedback mechanism (via Na(+)/Ca(2+) exchanger), enhancing contractions at higher beating rates but worsening cardiomyocyte contractile and electrical performance in conditions of poor Ca(2+) handling in heart failure.
Collapse
Affiliation(s)
- Victor A Maltsev
- Henry Ford Hosp., Cardiovascular Research, Education & Research, Detroit, MI 48202-2689, USA
| | | | | | | | | |
Collapse
|
78
|
Biswas S, Deschênes I, Disilvestre D, Tian Y, Halperin VL, Tomaselli GF. Calmodulin regulation of Nav1.4 current: role of binding to the carboxyl terminus. ACTA ACUST UNITED AC 2008; 131:197-209. [PMID: 18270170 PMCID: PMC2248716 DOI: 10.1085/jgp.200709863] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calmodulin (CaM) regulates steady-state inactivation of sodium currents (NaV1.4) in skeletal muscle. Defects in Na current inactivation are associated with pathological muscle conditions such as myotonia and paralysis. The mechanisms of CaM modulation of expression and function of the Na channel are incompletely understood. A physical association between CaM and the intact C terminus of NaV1.4 has not previously been demonstrated. FRET reveals channel conformation-independent association of CaM with the C terminus of NaV1.4 (CT-NaV1.4) in mammalian cells. Mutation of the NaV1.4 CaM-binding IQ motif (NaV1.4IQ/AA) reduces cell surface expression of NaV1.4 channels and eliminates CaM modulation of gating. Truncations of the CT that include the IQ region abolish Na current. NaV1.4 channels with one CaM fused to the CT by variable length glycine linkers exhibit CaM modulation of gating only with linker lengths that allowed CaM to reach IQ region. Thus one CaM is sufficient to modulate Na current, and CaM acts as an ancillary subunit of NaV1.4 channels that binds to the CT in a conformation-independent fashion, modulating the voltage dependence of inactivation and facilitating trafficking to the surface membrane.
Collapse
Affiliation(s)
- Subrata Biswas
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
79
|
Maltsev VA, Undrovinas A. Late sodium current in failing heart: friend or foe? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 96:421-51. [PMID: 17854868 PMCID: PMC2267741 DOI: 10.1016/j.pbiomolbio.2007.07.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most cardiac Na+ channels open transiently upon membrane depolarization and then are quickly inactivated. However, some channels remain active, carrying the so-called persistent or late Na+ current (INaL) throughout the action potential (AP) plateau. Experimental data and the results of numerical modeling accumulated over the past decade show the emerging importance of this late current component for the function of both normal and failing myocardium. INaL is produced by special gating modes of the cardiac-specific Na+ channel isoform. Heart failure (HF) slows channel gating and increases INaL, but HF-specific Na+ channel isoform underlying these changes has not been found. Na+ channels represent a multi-protein complex and its activity is determined not only by the pore-forming alpha subunit but also by its auxiliary beta subunits, cytoskeleton, calmodulin, regulatory kinases and phosphatases, and trafficking proteins. Disruption of the integrity of this protein complex may lead to alterations of INaL in pathological conditions. Increased INaL and the corresponding Na+ flux in failing myocardium contribute to abnormal repolarization and an increased cell Ca2+ load. Interventions designed to correct INaL rescue normal repolarization and improve Ca2+ handling and contractility of the failing cardiomyocytes. This review considers (1) quantitative integration of INaL into the established electrophysiological and Ca2+ regulatory mechanisms in normal and failing cardiomyocytes and (2) a new therapeutic strategy utilizing a selective inhibition of INaL to target both arrhythmias and impaired contractility in HF.
Collapse
Affiliation(s)
- Victor A Maltsev
- Gerontology Research Center, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
80
|
Xu T, Nie L, Zhang Y, Mo J, Feng W, Wei D, Petrov E, Calisto LE, Kachar B, Beisel KW, Vazquez AE, Yamoah EN. Roles of Alternative Splicing in the Functional Properties of Inner Ear-specific KCNQ4 Channels. J Biol Chem 2007; 282:23899-909. [PMID: 17561493 DOI: 10.1074/jbc.m702108200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the KCNQ4 channel in the auditory setting is crucial to hearing, underpinned by the finding that mutations of the channel result in an autosomal dominant form of nonsyndromic progressive high frequency hearing loss. The precise function of KCNQ4 in the inner ear has not been established. However, recently we demonstrated that there is differential expression among four splice variants of KCNQ4 (KCNQ4_v1-v4) along the tonotopic axis of the cochlea. Alternative splicing specifies the outcome of functional channels by modifying the amino acid sequences within the C terminus at a site designated as the membrane proximal region. We show that variations within the C terminus of splice variants produce profound differences in the voltage-dependent phenotype and functional expression of the channel. KCNQ4_v4 lacks exons 9-11, resulting in deletion of 54 amino acid residues adjacent to the S6 domain compared with KCNQ4_v1. Consequently, the voltage-dependent activation of KCNQ4_v4 is shifted leftward by approximately 20 mV, and the number of functional channels is increased severalfold compared with KCNQ4_v1. The properties of KCNQ4_v2 and KCNQ4_v3 fall between KCNQ4_v1 and KCNQ4_v4. Because of variations in the calmodulin binding domains of the splice variants, the channels are differentially modulated by calmodulin. Co-expression of these splice variants yielded current magnitudes suggesting that the channels are composed of heterotetramers. Indeed, a dominant negative mutant of KCNQ4_v1 cripples the currents of the entire KCNQ4 channel family. Furthermore, the dominant negative KCNQ4 mutant stifles the activity of KCNQ2-5, raising the possibility of a global disruption of KCNQ channel activity and the ensuing auditory phenotype.
Collapse
Affiliation(s)
- Tonghui Xu
- Center for Neuroscience and Communication Science Program, University of California, Davis, California 95618, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Triggered activity in cardiac muscle and intracellular Ca2+ have been linked in the past. However, today not only are there a number of cellular proteins that show clear Ca2+ dependence but also there are a number of arrhythmias whose mechanism appears to be linked to Ca2+-dependent processes. Thus we present a systematic review of the mechanisms of Ca2+ transport (forward excitation-contraction coupling) in the ventricular cell as well as what is known for other cardiac cell types. Second, we review the molecular nature of the proteins that are involved in this process as well as the functional consequences of both normal and abnormal Ca2+ cycling (e.g., Ca2+ waves). Finally, we review what we understand to be the role of Ca2+ cycling in various forms of arrhythmias, that is, those associated with inherited mutations and those that are acquired and resulting from reentrant excitation and/or abnormal impulse generation (e.g., triggered activity). Further solving the nature of these intricate and dynamic interactions promises to be an important area of research for a better recognition and understanding of the nature of Ca2+ and arrhythmias. Our solutions will provide a more complete understanding of the molecular basis for the targeted control of cellular calcium in the treatment and prevention of such.
Collapse
Affiliation(s)
- Henk E D J Ter Keurs
- Department of Medicine, Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | |
Collapse
|
82
|
Pitt GS. Calmodulin and CaMKII as molecular switches for cardiac ion channels: Fig. 1. Cardiovasc Res 2007; 73:641-7. [PMID: 17137569 DOI: 10.1016/j.cardiores.2006.10.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 10/20/2006] [Accepted: 10/25/2006] [Indexed: 10/23/2022] Open
Abstract
Because changes in intracellular Ca(2+) concentration are the final signals of electrical activity in excitable cells, many mechanisms have evolved to regulate Ca(2+) influx. Among the most important are those pathways that directly regulate the ion channels responsible for regulating and generating the Ca(2+) influx signal. Recent work has demonstrated that the Ca(2+) binding protein calmodulin (CaM) and the Ca(2+)/CaM-sensitive kinase CaMKII are important modulators of cardiac ion channels. Thus, Ca(2+) participates in feedback modulation to control electrical activity. This review highlights various mechanisms by which CaM and CaMKII regulate cardiovascular ion channel activity and presents a novel model for CaMKII regulation of Ca(V)1.2 Ca(2+) channel function.
Collapse
Affiliation(s)
- Geoffrey S Pitt
- Department of Medicine, Division of Cardiology, College of Physicians and Surgeons of Columbia University, 630 W 168th St, PH 7W 318, New York, NY 10032, USA.
| |
Collapse
|
83
|
Maier LS, Bers DM. Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation–contraction coupling in the heart. Cardiovasc Res 2007; 73:631-40. [PMID: 17157285 DOI: 10.1016/j.cardiores.2006.11.005] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 11/27/2022] Open
Abstract
Calcium (Ca(2+)) is the central second messenger in the translation of electrical signals into mechanical activity of the heart. This highly coordinated process, termed excitation-contraction coupling or ECC, is based on Ca(2+)-induced Ca(2+) release from the sarcoplasmic reticulum (SR). In recent years it has become increasingly clear that several Ca(2+)-dependent proteins contribute to the fine tuning of ECC. One of these is the Ca(2+)/calmodulin-dependent protein kinase (CaMK) of which CaMKII is the predominant cardiac isoform. During ECC CaMKII phosphorylates several Ca(2+) handling proteins with multiple functional consequences. CaMKII may also be co-localized to distinct target proteins. CaMKII expression as well as activity are reported to be increased in heart failure and CaMKII overexpression can exert distinct and novel effects on ECC in the heart and in isolated myocytes of animals. In the present review we summarize important aspects of the role of CaMKII in ECC with an emphasis on recent novel findings.
Collapse
Affiliation(s)
- Lars S Maier
- Abt. Kardiologie & Pneumologie / Herzzentrum, Georg-August-Universität Göttingen, 37075 Göttingen, Germany.
| | | |
Collapse
|
84
|
Liu Z, Xu JG, Zhang H, Fang YJ, Mei YA. C6-ceramide inhibited Na+ currents by intracellular Ca2+ release in rat myoblasts. J Cell Physiol 2007; 213:151-60. [PMID: 17458889 DOI: 10.1002/jcp.21106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ceramides are novel second messengers that may mediate signaling leading to apoptosis and the regulation of cell cycle progression. Moreover, ceramide analogs have been reported to directly modulate K(+) and Ca(2+) channels in different cell types. In this report, the effect of C(6)-ceramide on the voltage-gated inward Na(+) currents (I(Na)) in cultured rat myoblasts was investigated using whole-cell current recording and a fluorescent Ca(2+) imaging experiment. At concentrations of 1-100 microM, ceramide produced a dose-independent and reversible inhibition of I(Na). Ceramide also significantly shifted the steady-state inactivation curve of I(Na) by 16 mV toward the hyperpolarizing potential, but did not alter the steady-state activation properties. C(2)-ceramide caused a similar inhibitory effect on I(Na) amplitude. However, dihydro-C(6)-ceramide, the inactive analog of ceramide, failed to modulate I(Na). The effect of C(6)-ceramide on I(Na) was abolished by intracellular infusion of the Ca(2+)-chelating agent BAPTA, but was mimicked by application of caffeine. Blocking the release of Ca(2+) from the sarcoplasmic reticulum with xestospongin C or heparin, an inositol 1,4,5-trisphosphate (IP(3)) receptor blocker, induced a gradual increase in I(Na) amplitude and eliminated the effect of ceramide on I(Na). In contrast, ruthenium red, which is a blocker of the ryanodine-sensitive Ca(2+) receptor did not affect the action of C(6)-ceramide on I(Na). Intracellular application of the G-protein agonist GTPgammaS also induced a gradual decrease in I(Na) amplitude, while the G-protein antagonist GDPbetaS eliminated the effect of C(6)-ceramide on I(Na). Calcium imaging showed that C(6)-ceramide could give rise to a significant elevation of intracellular calcium. Our data show that increased calcium release through the IP(3)-sensitive Ca(2+) receptor, which probably occurred through the G-protein and phospholipase C pathway, may be responsible for C(6)-ceramide-induced inhibition of the I(Na) of rat myoblasts.
Collapse
Affiliation(s)
- Zheng Liu
- School of Life Sciences, Institute of Brain Science, State Key Laboratory of Medical Neurobiology Fudan University, Shanghai, P.R. China
| | | | | | | | | |
Collapse
|
85
|
Wagner S, Dybkova N, Rasenack EC, Jacobshagen C, Fabritz L, Kirchhof P, Maier SK, Zhang T, Hasenfuss G, Brown JH, Bers DM, Maier LS. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 2006; 116:3127-38. [PMID: 17124532 PMCID: PMC1654201 DOI: 10.1172/jci26620] [Citation(s) in RCA: 407] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 10/03/2006] [Indexed: 01/01/2023] Open
Abstract
In heart failure (HF), Ca(2+)/calmodulin kinase II (CaMKII) expression is increased. Altered Na(+) channel gating is linked to and may promote ventricular tachyarrhythmias (VTs) in HF. Calmodulin regulates Na(+) channel gating, in part perhaps via CaMKII. We investigated effects of adenovirus-mediated (acute) and Tg (chronic) overexpression of cytosolic CaMKIIdelta(C) on Na(+) current (I(Na)) in rabbit and mouse ventricular myocytes, respectively (in whole-cell patch clamp). Both acute and chronic CaMKIIdelta(C) overexpression shifted voltage dependence of Na(+) channel availability by -6 mV (P < 0.05), and the shift was Ca(2+) dependent. CaMKII also enhanced intermediate inactivation and slowed recovery from inactivation (prevented by CaMKII inhibitors autocamtide 2-related inhibitory peptide [AIP] or KN93). CaMKIIdelta(C) markedly increased persistent (late) inward I(Na) and intracellular Na(+) concentration (as measured by the Na(+) indicator sodium-binding benzofuran isophthalate [SBFI]), which was prevented by CaMKII inhibition in the case of acute CaMKIIdelta(C) overexpression. CaMKII coimmunoprecipitates with and phosphorylates Na(+) channels. In vivo, transgenic CaMKIIdelta(C) overexpression prolonged QRS duration and repolarization (QT intervals), decreased effective refractory periods, and increased the propensity to develop VT. We conclude that CaMKII associates with and phosphorylates cardiac Na(+) channels. This alters I(Na) gating to reduce availability at high heart rate, while enhancing late I(Na) (which could prolong action potential duration). In mice, enhanced CaMKIIdelta(C) activity predisposed to VT. Thus, CaMKII-dependent regulation of Na(+) channel function may contribute to arrhythmogenesis in HF.
Collapse
Affiliation(s)
- Stefan Wagner
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany.
Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
Department of Medicine I, Division of Cardiology, University of Würzburg, Würzburg, Germany.
Department of Pharmacology, UCSD, La Jolla, California, USA.
Department of Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Nataliya Dybkova
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany.
Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
Department of Medicine I, Division of Cardiology, University of Würzburg, Würzburg, Germany.
Department of Pharmacology, UCSD, La Jolla, California, USA.
Department of Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Eva C.L. Rasenack
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany.
Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
Department of Medicine I, Division of Cardiology, University of Würzburg, Würzburg, Germany.
Department of Pharmacology, UCSD, La Jolla, California, USA.
Department of Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Claudius Jacobshagen
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany.
Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
Department of Medicine I, Division of Cardiology, University of Würzburg, Würzburg, Germany.
Department of Pharmacology, UCSD, La Jolla, California, USA.
Department of Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Larissa Fabritz
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany.
Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
Department of Medicine I, Division of Cardiology, University of Würzburg, Würzburg, Germany.
Department of Pharmacology, UCSD, La Jolla, California, USA.
Department of Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Paulus Kirchhof
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany.
Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
Department of Medicine I, Division of Cardiology, University of Würzburg, Würzburg, Germany.
Department of Pharmacology, UCSD, La Jolla, California, USA.
Department of Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Sebastian K.G. Maier
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany.
Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
Department of Medicine I, Division of Cardiology, University of Würzburg, Würzburg, Germany.
Department of Pharmacology, UCSD, La Jolla, California, USA.
Department of Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Tong Zhang
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany.
Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
Department of Medicine I, Division of Cardiology, University of Würzburg, Würzburg, Germany.
Department of Pharmacology, UCSD, La Jolla, California, USA.
Department of Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany.
Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
Department of Medicine I, Division of Cardiology, University of Würzburg, Würzburg, Germany.
Department of Pharmacology, UCSD, La Jolla, California, USA.
Department of Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Joan Heller Brown
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany.
Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
Department of Medicine I, Division of Cardiology, University of Würzburg, Würzburg, Germany.
Department of Pharmacology, UCSD, La Jolla, California, USA.
Department of Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Donald M. Bers
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany.
Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
Department of Medicine I, Division of Cardiology, University of Würzburg, Würzburg, Germany.
Department of Pharmacology, UCSD, La Jolla, California, USA.
Department of Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Lars S. Maier
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany.
Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
Department of Medicine I, Division of Cardiology, University of Würzburg, Würzburg, Germany.
Department of Pharmacology, UCSD, La Jolla, California, USA.
Department of Physiology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
86
|
Abstract
Sarcolemmal sodium (Na) and calcium (Ca) currents are fundamentally involved in shaping the cardiac action potential. Alterations in Na or Ca currents can change action potential characteristics and therefore might result in cardiac arrhythmias. Also, these ions contribute to excitation-contraction coupling and therefore are important in myocyte shortening and contractility of the heart. This review article summarizes how sarcolemmal Na and Ca channels are regulated with an emphasis on the novel role of Ca-dependent proteins Calmodulin (CaM) and especially Ca/CaM-dependent protein kinase II (CaMKII) to modulate sarcolemmal Na and Ca channels in the heart.
Collapse
Affiliation(s)
- Stefan Wagner
- Department of Cardiology and Pneumology/Heart Center Göttingen, Georg-August-University Göttingen, Germany
| | | |
Collapse
|
87
|
Jespersen T, Gavillet B, van Bemmelen MX, Cordonier S, Thomas MA, Staub O, Abriel H. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1. Biochem Biophys Res Commun 2006; 348:1455-62. [PMID: 16930557 DOI: 10.1016/j.bbrc.2006.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull-down experiments confirmed the interaction, and indicated that it depends on the PDZ-domain binding motif of Na(v)1.5. Co-expression experiments in HEK293 cells showed that PTPH1 shifts the Na(v)1.5 availability relationship toward hyperpolarized potentials, whereas an inactive PTPH1 or the tyrosine kinase Fyn does the opposite. The results of this study suggest that tyrosine phosphorylation destabilizes the inactivated state of Na(v)1.5.
Collapse
Affiliation(s)
- Thomas Jespersen
- Department of Pharmacology and Toxicology, University of Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
88
|
Choi JS, Hudmon A, Waxman SG, Dib-Hajj SD. Calmodulin Regulates Current Density and Frequency-Dependent Inhibition of Sodium Channel Nav1.8 in DRG Neurons. J Neurophysiol 2006; 96:97-108. [PMID: 16598065 DOI: 10.1152/jn.00854.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sodium channel Nav1.8 produces a slowly inactivating, tetrodotoxin-resistant current, characterized by recovery from inactivation with fast and slow components, and contributes a substantial fraction of the current underlying the depolarizing phase of the action potential of dorsal root ganglion (DRG) neurons. Nav1.8 C-terminus carries a conserved calmodulin-binding isoleucine–glutamine (IQ) motif. We show here that calmodulin coimmunoprecipitates with endogenous Nav1.8 channels from native DRG, suggesting that the two proteins can interact in vivo. Treatment of native DRG neurons with a calmodulin-binding peptide (CBP) reduced the current density of Nav1.8 by nearly 65%, without changing voltage dependency of activation or steady-state inactivation. To investigate the functional role of CaM binding to the IQ motif in the Nav1.8 C-terminus, the IQ dipeptide was substituted by DE; we show that this impairs the binding of CaM to the IQ motif. Mutant Nav1.8IQ/DE channels produce currents with roughly 50% amplitude, but with unchanged voltage dependency of activation and inactivation when expressed in DRG neurons from Nav1.8-null mice. We also show that blocking the interaction of CaM and Nav1.8 using CBP or the IQ/DE substitution causes a buildup of inactivated channels and, in the case of the IQ/DE mutation, stimulation even at a low frequency of 0.1 Hz significantly enhances the frequency-dependent inhibition of the Nav1.8 current. This study presents, for the first time, evidence that calmodulin associates with a sodium channel, Nav1.8, in native neurons, and demonstrates a regulation of Nav1.8 currents that can significantly affect electrogenesis of DRG neurons in which Nav1.8 is normally expressed.
Collapse
Affiliation(s)
- Jin-Sung Choi
- Department of Neurology, Yale University School of Medicine, New Heaven, CT, USA
| | | | | | | |
Collapse
|
89
|
Sheets PL, Gerner P, Wang CF, Wang SY, Wang GK, Cummins TR. Inhibition of Nav1.7 and Nav1.4 sodium channels by trifluoperazine involves the local anesthetic receptor. J Neurophysiol 2006; 96:1848-59. [PMID: 16807347 DOI: 10.1152/jn.00354.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The calmodulin (CaM) inhibitor trifluoperazine (TFP) can produce analgesia when given intrathecally to rats; however, the mechanism is not known. We asked whether TFP could modulate the Na(v)1.7 sodium channel, which is highly expressed in the peripheral nervous system and plays an important role in nociception. We show that 500 nM and 2 muM TFP induce major decreases in Na(v)1.7 and Na(v)1.4 current amplitudes and that 2 muM TFP causes hyperpolarizing shifts in the steady-state inactivation of Na(v)1.7 and Na(v)1.4. CaM can bind to the C-termini of voltage-gated sodium channels and modulate their functional properties; therefore we investigated if TFP modulation of sodium channels was due to CaM inhibition. However, the TFP inhibition was not replicated by whole cell dialysis of a calmodulin inhibitory peptide, indicating that major effects of TFP do not involve a disruption of CaM-channel interactions. Rather, our data show that TFP inhibition is state dependent and that the majority of the TFP inhibition depends on specific amino-acid residues in the local anesthetic receptor site in sodium channels. TFP was also effective in vivo in causing motor and sensory blockade after subfascial injection to the rat sciatic nerve. The state-dependent block of Na(v)1.7 channels with nanomolar concentrations of TFP raises the possibility that TFP, or TFP analogues, might be useful for regional anesthesia and pain management and could be more potent than traditional local anesthetics.
Collapse
Affiliation(s)
- Patrick L Sheets
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
90
|
Abstract
Identified in 2000, short QT syndrome is an electrical disease of the heart characterised as a channelopathy. At first considered extremely rare, families with this disease have been found in Brazil, Finland, Germany, Spain, the Netherlands, France, Turkey, Italy and the US. The focus of the paper is to present a current review of short QT syndrome, as well as providing an overview upon the potential molecular target-based strategies for management of this very deadly disease. Abnormalities in three different potassium channels have been recognised as the cause of the disease and targets for therapy will be discussed for each potassium channel individually. In addition to pharmacological strategies, gene therapy with transfer of genes coding for specific ion channel subunits or regulatory proteins are discussed.
Collapse
Affiliation(s)
- Preben Bjerregaard
- Division of Cardiology, Saint Louis University Hospital, Saint Louis, MO 63110, USA.
| | | | | |
Collapse
|
91
|
Camacho JA, Hensellek S, Rougier JS, Blechschmidt S, Abriel H, Benndorf K, Zimmer T. Modulation of Nav1.5 Channel Function by an Alternatively Spliced Sequence in the DII/DIII Linker Region. J Biol Chem 2006; 281:9498-506. [PMID: 16469732 DOI: 10.1074/jbc.m509716200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we identified a novel splice variant of the human cardiac Na(+) channel Na(v)1.5 (Na(v)1.5d), in which a 40-amino acid sequence of the DII/DIII intracellular linker is missing due to a partial deletion of exon 17. Expression of Na(v)1.5d occurred in embryonic and adult hearts of either sex, indicating that the respective alternative splicing is neither age-dependent nor gender-specific. In contrast, Na(v)1.5d was not detected in the mouse heart, indicating that alternative splicing of Na(v)1.5 is species-dependent. In HEK293 cells, splice variant Na(v)1.5d generated voltage-dependent Na(+) currents that were markedly reduced compared with wild-type Na(v)1.5. Experiments with mexiletine and 8-bromo-cyclic AMP suggested that the trafficking of Na(v)1.5d channels was not impaired. However, single-channel recordings showed that the whole-cell current reduction was largely due to a significantly reduced open probability. Additionally, steady-state activation and inactivation were shifted to depolarized potentials by 15.9 and 5.1 mV, respectively. Systematic mutagenesis analysis of the spliced region provided evidence that a short amphiphilic region in the DII/DIII linker resembling an S4 voltage sensor of voltage-gated ion channels is an important determinant of Na(v)1.5 channel gating. Moreover, the present study identified novel short sequence motifs within this amphiphilic region that specifically affect the voltage dependence of steady-state activation and inactivation and current amplitude of human Na(v)1.5.
Collapse
Affiliation(s)
- Juan A Camacho
- Institute of Physiology II, Friedrich Schiller University, 07740 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
92
|
Mantegazza M, Yu FH, Powell AJ, Clare JJ, Catterall WA, Scheuer T. Molecular determinants for modulation of persistent sodium current by G-protein betagamma subunits. J Neurosci 2006; 25:3341-9. [PMID: 15800189 PMCID: PMC6724911 DOI: 10.1523/jneurosci.0104-05.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels are responsible for the upstroke of the action potential in most excitable cells, and their fast inactivation is essential for controlling electrical signaling. In addition, a noninactivating, persistent component of sodium current, I(NaP), has been implicated in integrative functions of neurons including threshold for firing, neuronal bursting, and signal integration. G-protein betagamma subunits increase I(NaP), but the sodium channel subtypes that conduct I(NaP) and the target site(s) on the sodium channel molecule required for modulation by Gbetagamma are poorly defined. Here, we show that I(NaP) conducted by Na(v)1.1 and Na(v)1.2 channels (Na(v)1.1 > Na(v)1.2) is modulated by Gbetagamma; Na(v)1.4 and Na(v)1.5 channels produce smaller I(NaP) that is not regulated by Gbetagamma. These qualitative differences in modulation by Gbetagamma are determined by the transmembrane body of the sodium channels rather than their cytoplasmic C-terminal domains, which have been implicated previously in modulation by Gbetagamma. However, the C-terminal domains determine the quantitative extent of modulation of Na(v)1.2 channels by Gbetagamma. Studies of chimeric and truncated Na(v)1.2 channels identify molecular determinants that affect modulation of I(NaP) located between amino acid residue 1890 and the C terminus at residue 2005. The last 28 amino acid residues of the C terminus are sufficient to support modulation by Gbetagamma when attached to the proximal C-terminal domain. Our results further define the sodium channel subtypes that generate I(NaP) and identify crucial molecular determinants in the C-terminal domain required for modulation by Gbetagamma when attached to the transmembrane body of a responsive sodium channel.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7280, USA
| | | | | | | | | | | |
Collapse
|
93
|
Shah VN, Wingo TL, Weiss KL, Williams CK, Balser JR, Chazin WJ. Calcium-dependent regulation of the voltage-gated sodium channel hH1: intrinsic and extrinsic sensors use a common molecular switch. Proc Natl Acad Sci U S A 2006; 103:3592-7. [PMID: 16505387 PMCID: PMC1450128 DOI: 10.1073/pnas.0507397103] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The function of the human cardiac voltage-gated sodium channel Na(V)1.5 (hH1) is regulated in part by binding of calcium to an EF hand in the C-terminal cytoplasmic domain. hH1 is also regulated via an extrinsic calcium-sensing pathway mediated by calmodulin (CaM) via binding to an IQ motif immediately adjacent to the EF-hand domain. The intrinsic EF-hand domain is shown here to interact with the IQ motif, which controls calcium affinity. Remarkably, mutation of the IQ residues has only a minor effect on CaM affinity but drastically reduces calcium affinity of the EF-hand domain, whereas the Brugada mutation A1924T significantly reduces CaM affinity but has no effect on calcium affinity of the EF-hand domain. Moreover, the differences in the biochemical effects of the mutations directly correlate with contrasting effects on channel electrophysiology. A comprehensive model is proposed in which the hH1 IQ motif serves as a molecular switch, coupling the intrinsic and extrinsic calcium sensors.
Collapse
Affiliation(s)
- Vikas N. Shah
- *Biochemistry
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
| | | | - Kevin L. Weiss
- *Biochemistry
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
| | - Christina K. Williams
- *Biochemistry
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
| | | | - Walter J. Chazin
- *Biochemistry
- Physics, and
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
94
|
Van Petegem F, Chatelain FC, Minor DL. Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain-Ca2+/calmodulin complex. Nat Struct Mol Biol 2005; 12:1108-15. [PMID: 16299511 PMCID: PMC3020901 DOI: 10.1038/nsmb1027] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 10/26/2005] [Indexed: 11/09/2022]
Abstract
Changes in activity-dependent calcium flux through voltage-gated calcium channels (Ca(V)s) drive two self-regulatory calcium-dependent feedback processes that require interaction between Ca(2+)/calmodulin (Ca(2+)/CaM) and a Ca(V) channel consensus isoleucine-glutamine (IQ) motif: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). Here, we report the high-resolution structure of the Ca(2+)/CaM-Ca(V)1.2 IQ domain complex. The IQ domain engages hydrophobic pockets in the N-terminal and C-terminal Ca(2+)/CaM lobes through sets of conserved 'aromatic anchors.' Ca(2+)/N lobe adopts two conformations that suggest inherent conformational plasticity at the Ca(2+)/N lobe-IQ domain interface. Titration calorimetry experiments reveal competition between the lobes for IQ domain sites. Electrophysiological examination of Ca(2+)/N lobe aromatic anchors uncovers their role in Ca(V)1.2 CDF. Together, our data suggest that Ca(V) subtype differences in CDI and CDF are tuned by changes in IQ domain anchoring positions and establish a framework for understanding CaM lobe-specific regulation of Ca(V)s.
Collapse
Affiliation(s)
- Filip Van Petegem
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, California Institute for Quantitative Biomedical Research, University of California, San Francisco, 1700 4th St., Box 2532, San Francisco, California 94143-2532, USA
| | | | | |
Collapse
|
95
|
Chahine M, Ziane R, Vijayaragavan K, Okamura Y. Regulation of Na v channels in sensory neurons. Trends Pharmacol Sci 2005; 26:496-502. [PMID: 16125256 DOI: 10.1016/j.tips.2005.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 07/11/2005] [Accepted: 08/11/2005] [Indexed: 12/22/2022]
Abstract
Voltage-gated Na(+) channels have an essential role in the biophysical properties of nociceptive neurons. Factors that regulate Na(+) channel function are of interest from both pathophysiological and therapeutic perspectives. Increasing evidence indicates that changes in expression or inappropriate modulation of these channels leads to electrical instability of the cell membrane and the inappropriate spontaneous activity that is observed following nerve injury, and that this might contribute to neuropathic pain. The role of Na(v) channels in nociception depends on modulation by factors such as auxiliary beta-subunits, cytoskeletal proteins and the phosphorylation state of neurons. In this review we describe the modulation of Na(v) channels on sensory neurons by auxiliary beta-subunits, protein kinases and cytoskeletal proteins.
Collapse
Affiliation(s)
- Mohamed Chahine
- Laval Hospital, Research Centre, Sainte-Foy, Quebec G1V 4G5, Canada.
| | | | | | | |
Collapse
|
96
|
Khoo MSC, Kannankeril PJ, Li J, Zhang R, Kupershmidt S, Zhang W, Atkinson JB, Colbran RJ, Roden DM, Anderson ME. Calmodulin kinase II activity is required for normal atrioventricular nodal conduction. Heart Rhythm 2005; 2:634-40. [PMID: 15922273 DOI: 10.1016/j.hrthm.2005.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is abundant in myocardium. CaMKII activity is augmented by catecholamine stimulation, which enhances AV nodal conduction, suggesting the hypothesis that CaMKII also contributes to AV nodal conduction properties. OBJECTIVES The purpose of this study was to test the potential role of CaMKII in regulating AV nodal conduction in heart. METHODS We developed a novel mouse with genetic CaMKII inhibition by cardiac-specific expression of autocamtide 3 inhibitory peptide (AC3-I) mimicking a conserved sequence of the CaMKII regulatory domain. We also engineered a control transgenic mouse with cardiac expression of an inactive, scrambled version of AC3-I (autocamtide 3 control peptide [AC3-C]) and performed electrophysiologic measurements in vivo and in Langendorff-perfused isolated hearts. RESULTS AC3-I and AC3-C were abundantly expressed in AV nodal cells. AC3-I mice with implanted ECG telemeters showed enhanced Wenckebach-type AV conduction block after isoproterenol (present in 9/9 mice) compared with AC3-C mice (present in 1/5 mice, P = .005). Intracardiac recordings showed significant PR and AH interval prolongation in AC3-I mice at baseline and after isoproterenol compared with AC3-C mice. HV durations were not different. Langendorff-perfused AC3-I hearts had significantly prolonged Wenckebach cycle lengths and AV nodal effective refractory periods compared with AC3-C hearts, whereas sinus node recovery time and left ventricular effective refractory times were similar between these genotypes. CONCLUSIONS These studies define CaMKII as a critical determinant of normal and catecholamine-stimulated AV nodal conduction responses.
Collapse
Affiliation(s)
- Michelle S C Khoo
- Department of Internal Medicine, Vanderbilt University Medical School, Nashville, Tennessee 37232-6300, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Liu C, Cummins TR, Tyrrell L, Black JA, Waxman SG, Dib-Hajj SD. CAP-1A is a novel linker that binds clathrin and the voltage-gated sodium channel Na(v)1.8. Mol Cell Neurosci 2005; 28:636-49. [PMID: 15797711 DOI: 10.1016/j.mcn.2004.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 11/10/2004] [Accepted: 11/15/2004] [Indexed: 12/23/2022] Open
Abstract
The voltage-gated sodium channel Na(v)1.8 produces a tetrodotoxin-resistant current and plays a key role in nociception. Annexin II/p11 binds to Na(v)1.8 and facilitates insertion of the channel within the cell membrane. However, the mechanisms responsible for removal of specific channels from the cell membrane have not been studied. We have identified a novel protein, clathrin-associated protein-1A (CAP-1A), which contains distinct domains that bind Na(v)1.8 and clathrin. CAP-1A is abundantly expressed in DRG neurons and colocalizes with Na(v)1.8 and can form a multiprotein complex with Na(v)1.8 and clathrin. Coexpression of CAP-1A and Na(v)1.8 in DRG neurons reduces Na(v)1.8 current density by approximately 50% without affecting the endogenous or recombinant tetrodotoxin-sensitive currents. This effect of CAP-1A is blocked by bafilomycin A1 treatment of transfected DRG neurons. CAP-1A thus is the first example of an adapter protein that links clathrin and a sodium channel and may regulate Na(v)1.8 channel density at the cell surface.
Collapse
Affiliation(s)
- Chuanju Liu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
Calmodulin (CaM) has been shown to modulate different ion channels, including voltage-gated sodium channels (NaChs). Using the yeast two-hybrid assay, we found an interaction between CaM and the C-terminal domains of adult skeletal (NaV1.4) and cardiac (NaV1.5) muscle NaChs. Effects of CaM were studied using sodium channels transiently expressed in CHO cells. Wild type CaM (CaM(WT)) caused a hyperpolarizing shift in the voltage dependence of activation and inactivation for NaV1.4 and activation for NaV1.5. Intracellular application of CaM caused hyperpolarizing shifts equivalent to those seen with CaM(WT) coexpression with NaV1.4. Elevated Ca2+ and CaM-binding peptides caused depolarizing shifts in the inactivation curves seen with CaM(WT) coexpression with NaV1.4. KN93, a CaM-kinase II inhibitor, had no effect on NaV1.4, suggesting that CaM acts directly on NaV1.4 and not through activation of CaM-kinase II. Coexpression of hemi-mutant CaMs showed that an intact N-terminal lobe of CaM is required for effects of CaM upon NaV1.4. Mutations in the sodium channel IQ domain disrupted the effects of CaM on NaV1.4: the I1727E mutation completely blocked all calmodulin effects, while the L1736R mutation disrupted the effects of Ca2+-calmodulin on inactivation. Chimeric channels of NaV1.4 and NaV1.5 also indicated that the C-terminal domain is largely responsible for CaM effects on inactivation. CaM had little effect on NaV1.4 expressed in HEK cells, possibly due to large differences in the endogenous expression of beta-subunits between CHO and HEK cells. These results in heterologous cells suggest that Ca2+ released during muscle contraction rapidly modulates NaCh availability via CaM.
Collapse
Affiliation(s)
- Katharine A Young
- Campus Box 8315, Dept. of Cell/Devel Biology and the Neuroscience Program, UCHSC, PO Box 6511, Aurora, CO 80045, USA
| | | |
Collapse
|
99
|
Wittmack EK, Rush AM, Craner MJ, Goldfarb M, Waxman SG, Dib-Hajj SD. Fibroblast growth factor homologous factor 2B: association with Nav1.6 and selective colocalization at nodes of Ranvier of dorsal root axons. J Neurosci 2005; 24:6765-75. [PMID: 15282281 PMCID: PMC6729706 DOI: 10.1523/jneurosci.1628-04.2004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels interact with cytosolic proteins that regulate channel trafficking and/or modulate the biophysical properties of the channels. Na(v)1.6 is heavily expressed at the nodes of Ranvier along adult CNS and PNS axons and along unmyelinated fibers in the PNS. In an initial yeast two-hybrid screen using the C terminus of Na(v)1.6 as a bait, we identified FHF2B, a member of the FGF homologous factor (FHF) subfamily, as an interacting partner of Na(v)1.6. Members of the FHF subfamily share approximately 70% sequence identity, and individual members demonstrate a cell- and tissue-specific expression pattern. FHF2 is abundantly expressed in the hippocampus and DRG neurons and colocalizes with Na(v)1.6 at mature nodes of Ranvier in myelinated sensory fibers in the dorsal root of the sciatic nerve. However, retinal ganglion cells and spinal ventral horn motor neurons show very low levels of FHF2 expression, and their axons exhibit no nodal FHF2 staining within the optic nerve and ventral root, respectively. Thus, FHF2 is selectively localized at nodes of dorsal root sensory but not ventral root motor axons. The coexpression of FHF2B and Na(v)1.6 in the DRG-derived cell line ND7/23 significantly increases the peak current amplitude and causes a 4 mV depolarizing shift of voltage-dependent inactivation of the channel. The preferential expression of FHF2B in sensory neurons may provide a basis for physiological differences in sodium currents that have been reported at the nodes of Ranvier in sensory versus motor axons.
Collapse
Affiliation(s)
- Ellen K Wittmack
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|
100
|
Abstract
Na(v)1.5, the major cardiac voltage-gated Na(+) channel, plays a central role in the generation of the cardiac action potential and in the propagation of electrical impulses in the heart. Its importance for normal heart function has been recently exemplified by reports of numerous mutations found in the gene SCN5A--which encodes Na(v)1.5--in patients with various pathologic cardiac phenotypes, indicating that even subtle alterations of Na(v)1.5 cell biology and function may underlie human diseases. Similar to other ion channels, Na(v)1.5 is most likely part of dynamic multiprotein complexes located in the different cellular compartments. This review focuses on five intracellular proteins that have been recently reported to directly bind to and contribute to the regulation of Na(v)1.5: ankyrin proteins, fibroblast growth factor homologous factor 1B, calmodulin, Nedd4-like ubiquitin-protein ligases, and syntrophin proteins.
Collapse
Affiliation(s)
- Hugues Abriel
- Department of Pharmacology and Toxicology, Service of Cardiology, University of Lausanne, Bugnon, 27, 1005 Lausanne, Switzerland.
| | | |
Collapse
|