51
|
Gianopoulos I, Daskalopoulou SS. Macrophage profiling in atherosclerosis: understanding the unstable plaque. Basic Res Cardiol 2024; 119:35-56. [PMID: 38244055 DOI: 10.1007/s00395-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 01/22/2024]
Abstract
The development and rupture of atherosclerotic plaques is a major contributor to myocardial infarctions and ischemic strokes. The dynamic evolution of the plaque is largely attributed to monocyte/macrophage functions, which respond to various stimuli in the plaque microenvironment. To this end, macrophages play a central role in atherosclerotic lesions through the uptake of oxidized low-density lipoprotein that gets trapped in the artery wall, and the induction of an inflammatory response that can differentially affect the stability of the plaque in men and women. In this environment, macrophages can polarize towards pro-inflammatory M1 or anti-inflammatory M2 phenotypes, which represent the extremes of the polarization spectrum that include Mhem, M(Hb), Mox, and M4 populations. However, this traditional macrophage model paradigm has been redefined to include numerous immune and nonimmune cell clusters based on in-depth unbiased single-cell approaches. The goal of this review is to highlight (1) the phenotypic and functional properties of monocyte subsets in the circulation, and macrophage populations in atherosclerotic plaques, as well as their contribution towards stable or unstable phenotypes in men and women, and (2) single-cell RNA sequencing studies that have advanced our knowledge of immune, particularly macrophage signatures present in the atherosclerotic niche. We discuss the importance of performing high-dimensional approaches to facilitate the development of novel sex-specific immunotherapies that aim to reduce the risk of cardiovascular events.
Collapse
Affiliation(s)
- Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada.
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University Health Centre, McGill University, Montreal, Canada.
- Department of Medicine, Research Institute of the McGill University Health Centre, Glen Site, 1001 Decarie Boulevard, EM1.2210, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
52
|
Schelemei P, Wagner E, Picard FSR, Winkels H. Macrophage mediators and mechanisms in cardiovascular disease. FASEB J 2024; 38:e23424. [PMID: 38275140 DOI: 10.1096/fj.202302001r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Macrophages are major players in myocardial infarction (MI) and atherosclerosis, two major cardiovascular diseases (CVD). Atherosclerosis is caused by the buildup of cholesterol-rich lipoproteins in blood vessels, causing inflammation, vascular injury, and plaque formation. Plaque rupture or erosion can cause thrombus formation resulting in inadequate blood flow to the heart muscle and MI. Inflammation, particularly driven by macrophages, plays a central role in both atherosclerosis and MI. Recent integrative approaches of single-cell analysis-based classifications in both murine and human atherosclerosis as well as experimental MI showed overlap in origin, diversity, and function of macrophages in the aorta and the heart. We here discuss differences and communalities between macrophages in the heart and aorta at steady state and in atherosclerosis or upon MI. We focus on markers, mediators, and functional states of macrophage subpopulations. Recent trials testing anti-inflammatory agents show a major benefit in reducing the inflammatory burden of CVD patients, but highlight a necessity for a broader understanding of immune cell ontogeny and heterogeneity in CVD. The novel insights into macrophage biology in CVD represent exciting opportunities for the development of novel treatment strategies against CVD.
Collapse
Affiliation(s)
- Patrik Schelemei
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elena Wagner
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
53
|
Alvarez-Arzola R, Oliver L, Messmer MM, Twum DYF, Lee KP, Muhitch JB, Mesa C, Abrams SI. A Bacterial and Ganglioside-based Nanoparticle Initiates Reprogramming of Macrophages and Promotes Antitumor Phenotypes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:475-486. [PMID: 38117752 DOI: 10.4049/jimmunol.2300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/19/2023] [Indexed: 12/22/2023]
Abstract
Macrophages represent the most abundant immune component of the tumor microenvironment and often exhibit protumorigenic (M2-like) phenotypes that contribute to disease progression. Despite their generally accepted protumorigenic role, macrophages can also display tumoricidal (or M1-like) behavior, revealing that macrophages can be functionally reprogrammed, depending on the cues received within the tumor microenvironment. Moreover, such plasticity may be achieved by pharmacologic or biologic interventions. To that end, we previously demonstrated that a novel immunomodulator termed the "very small size particle" (VSSP) facilitates maturation of dendritic cells and differentiation of myeloid-derived suppressor cells to APCs with reduced suppressive activity in cancer models. VSSP was further shown to act in the bone marrow to drive the differentiation of progenitors toward monocytes, macrophages, and dendritic cells during emergency myelopoiesis. However, the underlying mechanisms for VSSP-driven alterations in myeloid differentiation and function remained unclear. In this study, in mouse models, we focused on macrophages and tested the hypothesis that VSSP drives macrophages toward M1-like functional states via IRF8- and PU.1-dependent mechanisms. We further hypothesized that such VSSP-mediated actions would be accompanied by enhanced antitumor responses. Overall, we showed that (1) VSSP drives naive or M2-derived macrophages to M1-like states, (2) the M1-like state induced by VSSP occurs via IRF8- and PU.1-dependent mechanisms, and (3) single-agent VSSP induces an antitumor response that is accompanied by alterations in the intratumoral myeloid compartment. These results provide a deeper mechanistic underpinning of VSSP and strengthen its use to drive M1-like responses in host defense, including cancer.
Collapse
Affiliation(s)
- Rydell Alvarez-Arzola
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Liliana Oliver
- Department of Immunoregulation, Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Danielle Y F Twum
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Kelvin P Lee
- IU Simon Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jason B Muhitch
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Circe Mesa
- Innovative Immunotherapy Alliance S.A., Mariel, Artemisa, Cuba
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
54
|
Kim S, Chun SH, Cheon YH, Kim M, Kim HO, Lee H, Hong ST, Park SJ, Park MS, Suh YS, Lee SI. Peptoniphilus gorbachii alleviates collagen-induced arthritis in mice by improving intestinal homeostasis and immune regulation. Front Immunol 2024; 14:1286387. [PMID: 38239365 PMCID: PMC10794505 DOI: 10.3389/fimmu.2023.1286387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The intricate connection between gut microbiota and rheumatoid arthritis (RA) pathogenesis has gained prominence, although the specific microbial species contributing to RA development remain largely unknown. Recent studies have sought to comprehensively explore alterations in the human microbiome, focusing on identifying disease-related microbial species through blood analysis. Consequently, this study aimed to identify RA-associated microbial species using a serum microbial array system and to investigate the efficacy and underlying mechanisms of potential microbial species for RA treatment. Methods Serum immunoglobulin M levels against 384 intestinal microbial species were assessed using a microbial microarray in patients with RA and healthy individuals. We investigated the therapeutic potential of the identified microbial candidate regarding arthritis development, immune responses, gut barrier function, and gut microbiome using a collagen-induced arthritis (CIA) mouse model. Results Our findings revealed significant alterations in antibody levels against 36 microbial species in patients with RA compared to healthy individuals. Notably, the antibody levels against Peptoniphilus gorbachii (PG) were decreased in patients with RA and exhibited an inverse correlation with RA disease activity. In vitro experiments demonstrated that PG produced acetate and butyrate, while exhibiting anti-inflammatory properties. In CIA mice, PG administration suppressed arthritis symptoms, reduced the accumulation of inflammatory monocytes in the mesenteric lymph nodes, and downregulated gene expression of pro-inflammatory cytokines in the ileum. Additionally, PG supplementation restored intestinal barrier integrity and partially resolved gut microbial dysbiosis in CIA mice. The fecal microbiota in PG-treated mice corresponded to improved intestinal barrier integrity and reduced inflammatory responses. Conclusion This study highlights the potential of serum-based detection of anti-microbial antibodies to identify microbial targets at the species level for RA treatment. Moreover, our findings suggest that PG, identified through the microbial microarray analysis, holds therapeutic potential for RA by restoring intestinal barrier integrity and suppressing the immunologic response associated with RA.
Collapse
Affiliation(s)
- Suhee Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Sung Hak Chun
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Yun-Hong Cheon
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Mingyo Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Hyun-Ok Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Hanna Lee
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sang-Jun Park
- Research Center, BIFIDO Co, Ltd, Hongcheon, Kangwon, Republic of Korea
| | - Myeong Soo Park
- Research Center, BIFIDO Co, Ltd, Hongcheon, Kangwon, Republic of Korea
| | - Young Sun Suh
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Sang-Il Lee
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| |
Collapse
|
55
|
Chen HJ, Galley JD, Verosky BG, Yang FT, Rajasekera TA, Bailey MT, Gur TL. Fetal CCL2 signaling mediates offspring social behavior and recapitulates effects of prenatal stress. Brain Behav Immun 2024; 115:308-318. [PMID: 37914098 PMCID: PMC10872760 DOI: 10.1016/j.bbi.2023.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023] Open
Abstract
Maternal stress during pregnancy is prevalent and associated with increased risk of neurodevelopmental disorders in the offspring. Maternal and offspring immune dysfunction has been implicated as a potential mechanism by which prenatal stress shapes offspring neurodevelopment; however, the impact of prenatal stress on the developing immune system has yet to be elucidated. Furthermore, there is evidence that the chemokine C-C motif chemokine ligand 2 (CCL2) plays a key role in mediating the behavioral sequelae of prenatal stress. Here, we use an established model of prenatal restraint stress in mice to investigate alterations in the fetal immune system, with a focus on CCL2. In the placenta, stress led to a reduction in CCL2 and Ccr2 expression with a concomitant decrease in leukocyte number. However, the fetal liver exhibited an inflammatory phenotype, with upregulation of Ccl2, Il6, and Lbp expression, along with an increase in pro-inflammatory Ly6CHi monocytes. Prenatal stress also disrupted chemokine signaling and increased the number of monocytes and microglia in the fetal brain. Furthermore, stress increased Il1b expression by fetal brain CD11b+ microglia and monocytes. Finally, intra-amniotic injections of recombinant mouse CCL2 partially recapitulated the social behavioral deficits in the adult offspring previously observed in the prenatal restraint stress model. Altogether, these data suggest that prenatal stress led to fetal inflammation, and that fetal CCL2 plays a role in shaping offspring social behavior.
Collapse
Affiliation(s)
- Helen J Chen
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States
| | - Jeffrey D Galley
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Branden G Verosky
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States
| | - Felix T Yang
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States
| | - Therese A Rajasekera
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Michael T Bailey
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, Columbus, OH, United States; Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, United States; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Tamar L Gur
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States; Department of Obstetrics & Gynecology, The Ohio State University Wexner Medical Center, Columbus OH, United States.
| |
Collapse
|
56
|
Jin L, Xiao L, Manley BJ, Oh EG, Huang W, Zhang Y, Chi J, Shi W, Kerrigan JR, Sung SSJ, Kuan CY, Li X. CCR2 monocytes as therapeutic targets for acute disc herniation and radiculopathy in mouse models. Osteoarthritis Cartilage 2024; 32:52-65. [PMID: 37802464 PMCID: PMC10873076 DOI: 10.1016/j.joca.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Back pain and radiculopathy caused by disc herniation are major health issues worldwide. While macrophages are key players in disc herniation induced inflammation, their roles and origins in disease progression remain unclear. We aim to study the roles of monocytes and derivatives in a mouse model of disc herniation. METHODS Using a CCR2-CreER; R26R-EGFP (Ai6) transgenic mouse strain, we fate-mapped C-C chemokine receptor type 2 (CCR2) expressing monocytes and derivatives at disc herniation sites, and employed a CCR2RFP/RFP mouse strain and a CCR2-specific antagonist to study the effects of CCR2+ monocytes on local inflammatory responses, pain level, and disc degeneration by immunostaining, flow cytometry, and histology. RESULTS CCR2+ monocytes (GFP+) increased at the sites of disc hernia over postoperative day 4, 6, and 9 in CCR2-CreER; Ai6 mice. F4/80+ cells increased, and meanwhile, CD11b+ cells trended downward. Co-localization analysis revealed that both GFP+CD11b+ and GFP+F4/80+ constituted the majority of CD11b+ and F4/80+ cells at disc hernia sites. Fluorescence activated cell sorter purified GFP+ cells exhibited higher cytokine expressions than GFP- cells. Inhibition of CCR2 signaling reduced infiltration of monocytes and macrophages, alleviated pain, maintained disc height, and reduced osteoclast activity in adjacent cortical bone for up to 1 month. CONCLUSION Our findings suggest that circulating CCR2+ monocytes play important roles in initiating and promoting the local inflammatory responses, pain sensitization, and degenerative changes after disc herniation, and thus may serve as therapeutic targets for disc herniation induced back and leg pain.
Collapse
Affiliation(s)
- Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Brock J Manley
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Eunha G Oh
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Wendy Huang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Yi Zhang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Jialun Chi
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Weibin Shi
- Department of Radiology and Medical Imaging, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, Charlottesville, VA 22908, USA
| | - Jason R Kerrigan
- Department of Mechanical and Aerospace Engineering, Center of Applied Biomechanics, University of Virginia, Charlottesville, VA 22904, USA
| | - Sun-Sang J Sung
- Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Chia-Yi Kuan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA 22908, USA
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
57
|
Jeon KB, Park HM, Kim S, Kim NY, Lee TE, Oh DK, Yoon DY. Phorbal-12-mysristate-13-acetate-induced inflammation is restored by protectin DX through PPARγ in human promonocytic U937 cells. Life Sci 2024; 336:122288. [PMID: 38007146 DOI: 10.1016/j.lfs.2023.122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
AIMS Protectin DX (PDX), a specialized pro-resolving mediator, is an important pharmaceutical compound with potential antioxidant and inflammation-resolving effects. However, the fundamental mechanism by which PDX's ameliorate chronic inflammatory diseases has not yet been elucidated. This study aims to evaluate the anti-inflammatory properties and PPARγ-mediated mechanisms of PDX in phorbal-12-mysristate-13-acetate (PMA)-stimulated human promonocytic U937 cells. MAIN METHODS We confirmed the effects of PDX on expressions of pro-inflammatory cytokines, mediators, and CD14 using conventional PCR, RT-qPCR, ELISA, and flow cytometry. Using western blotting, immunofluorescence, and reactive oxygen species (ROS) determination, we observed that PDX regulated PMA-induced signaling cascades. Molecular docking analysis and a cellular thermal shift assay were conducted to verify the interaction between PDX and the proliferator-activated receptor-γ (PPARγ) ligand binding domain. Western blotting was then employed to explore the alterations in PPARγ expression levels and validate PDX as a PPARγ full agonist. KEY FINDINGS PDX attenuated protein and mRNA expression levels of interleukin-6, tumor necrosis factor-α, and cyclooxygenase-2 in PMA-treated U937 cells. PDX acts as a PPARγ agonist, exerting a modulating effect on the ROS/JNK/c-Fos signaling pathways. Furthermore, PDX reduced human monocyte differentiation antigen CD14 expression levels. SIGNIFICANCE PPARγ exhibits pro-resolving effects to regulate the excessive inflammation. These results suggest that PDX demonstrates the resolution of inflammation, indicating the potential for therapeutic targeting of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kyeong-Bae Jeon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seonhwa Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Na-Yeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tae-Eui Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
58
|
Shao M, Jin X, Chen S, Yang N, Feng G. Plant-derived extracellular vesicles -a novel clinical anti-inflammatory drug carrier worthy of investigation. Biomed Pharmacother 2023; 169:115904. [PMID: 37984307 DOI: 10.1016/j.biopha.2023.115904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Plant-derived extracellular vesicles (PDEVs) have shown remarkable potential as sustainable, green, and efficient drug delivery nanocarriers. As natural nanoparticles containing lipids, protein, nucleic acids and secondary metabolites, they have received widespread attention as a replacement for mammalian exosomes in recent years. In this review, the advances in isolation, identification, composition, therapeutic effect, and clinical application prospect were comprehensively reviewed, respectively. In addition, the specific modification strategies have been listed focusing on the inherent drawbacks of the raw PDEVs like low targeting efficiency and poor homogeneity. With emphasis on their biology mechanism in terms of immune regulation, regulating oxidative stress and promoting regeneration in the anti-inflammatory field and application value demonstrated by citing some typical examples, this review about PDEVs would provide a broad and fundamental vision for the in-depth exploration and development of plant-derived extracellular vesicles in the in-vivo anti-inflammation and even other biomedical applications.
Collapse
Affiliation(s)
- Mingyue Shao
- Department of Respiratory Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210011, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiao Jin
- Department of Respiratory Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210011, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Sixi Chen
- Department of Respiratory Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210011, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Ning Yang
- Department of Respiratory Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210011, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Ganzhu Feng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China.
| |
Collapse
|
59
|
Veyssiere M, Sadat Aghamiri S, Hernandez Cervantes A, Henry T, Soumelis V. A mathematical model of Familial Mediterranean Fever predicts mechanisms controlling inflammation. Clin Immunol 2023; 257:109839. [PMID: 37952562 DOI: 10.1016/j.clim.2023.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Familial Mediterranean Fever (FMF) is a monogenic disease caused by gain-of-function mutations in the MEditerranean FeVer (MEFV) gene. The molecular dysregulations induced by these mutations and the associated causal mechanisms are complex and intricate. OBJECTIVE We sought to provide a computational model capturing the mechanistic details of biological pathways involved in FMF physiopathology and enabling the study of the patient's immune cell dynamics. METHODS We carried out a literature survey to identify experimental studies published from January 2000 to December 2020, and integrated its results into a molecular map and a mathematical model. Then, we studied the network of molecular interactions and the dynamic of monocytes to identify key players for inflammation phenotype in FMF patients. RESULTS We built a molecular map of FMF integrating in a structured manner the current knowledge regarding pathophysiological processes participating in the triggering and perpetuation of the disease flares. The mathematical model derived from the map reproduced patient's monocyte behavior, in particular its proinflammatory role via the Pyrin inflammasome activation. Network analysis and in silico experiments identified NF-κB and JAK1/TYK2 as critical to modulate IL-1β- and IL-18-mediated inflammation. CONCLUSION The in silico model of FMF monocyte proved its ability to reproduce in vitro observations. Considering the difficulties related to experimental settings and financial investments to test combinations of stimuli/perturbation in vitro, this model could be used to test complex hypotheses in silico, thus narrowing down the number of in vitro and ex vivo experiments to perform.
Collapse
Affiliation(s)
| | - Sara Sadat Aghamiri
- Université Paris Cité, INSERM U976, Paris, France; University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon F-69007, France
| | - Vassili Soumelis
- Université Paris Cité, INSERM U976, Paris, France; Owkin, 14 boulevard Poissonniere, Paris 75009, France.
| |
Collapse
|
60
|
Bańkosz M, Urbaniak MM, Szwed A, Rudnicka K, Włodarczyk M, Drabczyk A, Kudłacik-Kramarczyk S, Tyliszczak B, Sobczak-Kupiec A. Physicochemical and biological analysis of composite biomaterials containing hydroxyapatite for biological applications. J Biomed Mater Res B Appl Biomater 2023; 111:2077-2088. [PMID: 37596849 DOI: 10.1002/jbm.b.35309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/11/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
Bone tissue regeneration is one of the main areas of tissue engineering. A particularly important aspect is the development of new innovative composite materials intended for bone tissue engineering and/or bone substitution. In this article, the synthesis and characterization of ceramic-polymer composites based on polyvinylpyrrolidone, poly(vinyl alcohol) and hydroxyapatite (HAp) have been presented. The first part of the work deals with the synthesis and characterization of the ceramic phase. It was demonstrated that the obtained calcium phosphate is characterized by a heterogeneity and porosity indicating simultaneously its large specific surface area. Additionally, in the wound healing test, it was shown that the obtained powder supports the regeneration of L929 cells. Next, HAp-containing composite materials were obtained in the waste-free photopolymerization process and characterized in detail. It was proved that the obtained composites were characterized by sorption properties and stability during 12-day incubation in simulated physiological liquids. Importantly, the obtained composites showed no cytotoxic effect against the L929 murine fibroblasts - the cell viability was 94.5%. Then, confocal microscopy allowed to observe that murine fibroblasts effectively colonized the surface of the obtained polymer-ceramic composites, covering the entire surface of the biomaterial. Thus, the obtained results confirm the high potential of the obtained composites in the application of bone tissue regenerative medicine.
Collapse
Affiliation(s)
- Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Aleksandra Szwed
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Marcin Włodarczyk
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| |
Collapse
|
61
|
Bai M, Sun R, Cao B, Feng J, Wang J. Monocyte-related cytokines/chemokines in cerebral ischemic stroke. CNS Neurosci Ther 2023; 29:3693-3712. [PMID: 37452512 PMCID: PMC10651979 DOI: 10.1111/cns.14368] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
AIMS Ischemic stroke is one of the leading causes of death worldwide and the most common cause of disability in Western countries. Multiple mechanisms contribute to the development and progression of ischemic stroke, and inflammation is one of the most important mechanisms. DISCUSSION Ischemia induces the release of adenosine triphosphate/reactive oxygen species, which activates immune cells to produce many proinflammatory cytokines that activate downstream inflammatory cascades to induce fatal immune responses. Research has confirmed that peripheral blood immune cells play a vital role in the immunological cascade after ischemic stroke. The role of monocytes has received much attention among numerous peripheral blood immune cells. Monocytes induce their effects by secreting cytokines or chemokines, including CCL2/CCR2, CCR4, CCR5, CD36, CX3CL1/CX3CR1, CXCL12(SDF-1), LFA-1/ICAM-1, Ly6C, MMP-2/9, NR4A1, P2X4R, P-selectin, CD40L, TLR2/4, and VCAM-1/VLA-4. Those factors play important roles in the process of monocyte recruitment, migration, and differentiation. CONCLUSION This review focuses on the function and mechanism of the cytokines secreted by monocytes in the process of ischemic stroke and provides novel targets for treating cerebral ischemic stroke.
Collapse
Affiliation(s)
- Meiling Bai
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruize Sun
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Cao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
62
|
Srivastava P, Nishiyama S, Zhou F, Lin SH, Srivastava A, Su C, Xu Y, Peng W, Levy M, Schwarzschild M, Chen X. Peripheral MC1R Activation Modulates Immune Responses and is Neuroprotective in a Mouse Model of Parkinson's Disease. J Neuroimmune Pharmacol 2023; 18:704-717. [PMID: 38110615 PMCID: PMC10769915 DOI: 10.1007/s11481-023-10094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/17/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Melanocortin 1 receptor (MC1R) is a key pigmentation gene, and loss-of-function of MC1R variants that produce red hair may be associated with Parkinson's disease (PD). We previously reported compromised dopaminergic neuron survival in Mc1r mutant mice and dopaminergic neuroprotective effects of local injection of a MC1R agonist to the brain or a systemically administered MC1R agonist with appreciable central nervous system (CNS) permeability. Beyond melanocytes and dopaminergic neurons, MC1R is expressed in other peripheral tissues and cell types, including immune cells. The present study investigates the impact of NDP-MSH, a synthetic melanocortin receptor (MCR) agonist that does not cross BBB, on the immune system and the nigrostriatal dopaminergic system in mouse model of PD. METHODS C57BL/6 mice were treated systemically with MPTP.HCl (20 mg/kg) and LPS (1 mg/kg) from day 1 to day 4 and NDP-MSH (400 µg/kg) or vehicle from day 1 to day 12 following which the mice were sacrificed. Peripheral and CNS immune cells were phenotyped and inflammatory markers were measured. The nigrostriatal dopaminergic system was assessed behaviorally, chemically, immunologically, and pathologically. To understand the role of regulatory T cells (Tregs) in this model, CD25 monoclonal antibody was used to deplete CD25 + Tregs. RESULTS Systemic NDP-MSH administration significantly attenuated striatal dopamine depletion and nigral dopaminergic neuron loss induced by MPTP + LPS. It improved the behavioral outcomes in the pole test. Mc1r mutant mice injected with NDP-MSH in the MPTP and LPS paradigm showed no changes in striatal dopamine levels suggesting that the NDP-MSH acts through the MC1R pathway. Although no NDP-MSH was detected in the brain, peripheral, NDP-MSH attenuated neuroinflammation as observed by diminished microglial activation in the nigral region, along with reduced TNF-α and IL1β levels in the ventral midbrain. Depletion of Tregs was associated with diminished neuroprotective effects of NDP-MSH. CONCLUSIONS Our study demonstrates that peripherally acting NDP-MSH confers protection on dopaminergic nigrostriatal neurons and reduces hyperactivated microglia. NDP-MSH modulates peripheral immune responses, and Tregs may be involved in the neuroprotective effect of NDP-MSH.
Collapse
Affiliation(s)
- Pranay Srivastava
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Shuhei Nishiyama
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Fang Zhou
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sonia H Lin
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Akriti Srivastava
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Chienwen Su
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Yuehang Xu
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Weiyi Peng
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Michael Levy
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Michael Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Xiqun Chen
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
63
|
Frauenlob T, Neuper T, Regl C, Schaepertoens V, Unger MS, Oswald AL, Dang HH, Huber CG, Aberger F, Wessler S, Horejs-Hoeck J. Helicobacter pylori induces a novel form of innate immune memory via accumulation of NF-кB proteins. Front Immunol 2023; 14:1290833. [PMID: 38053995 PMCID: PMC10694194 DOI: 10.3389/fimmu.2023.1290833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Helicobacter pylori is a widespread Gram-negative pathogen involved in a variety of gastrointestinal diseases, including gastritis, ulceration, mucosa-associated lymphoid tissue (MALT) lymphoma and gastric cancer. Immune responses aimed at eradication of H. pylori often prove futile, and paradoxically play a crucial role in the degeneration of epithelial integrity and disease progression. We have previously shown that H. pylori infection of primary human monocytes increases their potential to respond to subsequent bacterial stimuli - a process that may be involved in the generation of exaggerated, yet ineffective immune responses directed against the pathogen. In this study, we show that H. pylori-induced monocyte priming is not a common feature of Gram-negative bacteria, as Acinetobacter lwoffii induces tolerance to subsequent Escherichia coli lipopolysaccharide (LPS) challenge. Although the increased reactivity of H. pylori-infected monocytes seems to be specific to H. pylori, it appears to be independent of its virulence factors Cag pathogenicity island (CagPAI), cytotoxin associated gene A (CagA), vacuolating toxin A (VacA) and γ-glutamyl transferase (γ-GT). Utilizing whole-cell proteomics complemented with biochemical signaling studies, we show that H. pylori infection of monocytes induces a unique proteomic signature compared to other pro-inflammatory priming stimuli, namely LPS and the pathobiont A. lwoffii. Contrary to these tolerance-inducing stimuli, H. pylori priming leads to accumulation of NF-кB proteins, including p65/RelA, and thus to the acquisition of a monocyte phenotype more responsive to subsequent LPS challenge. The plasticity of pro-inflammatory responses based on abundance and availability of intracellular signaling molecules may be a heretofore underappreciated form of regulating innate immune memory as well as a novel facet of the pathobiology induced by H. pylori.
Collapse
Affiliation(s)
- Tobias Frauenlob
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Christof Regl
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Veronika Schaepertoens
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Michael S. Unger
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Anna-Lena Oswald
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Silja Wessler
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, Austria
| |
Collapse
|
64
|
Kratofil RM. Working up an appetite to promote repair. Science 2023; 382:780. [PMID: 37972169 DOI: 10.1126/science.adl4292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Immune-derived hunger hormones restore tissue after infection.
Collapse
Affiliation(s)
- Rachel M Kratofil
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
65
|
Sayaf K, Zanotto I, Gabbia D, Alberti D, Pasqual G, Zaramella A, Fantin A, De Martin S, Russo FP. Sex Drives Functional Changes in the Progression and Regression of Liver Fibrosis. Int J Mol Sci 2023; 24:16452. [PMID: 38003640 PMCID: PMC10671597 DOI: 10.3390/ijms242216452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Liver fibrosis is a common and reversible feature of liver damage associated with many chronic liver diseases, and its onset is influenced by sex. In this study, we investigated the mechanisms of liver fibrosis and regeneration, focusing on understanding the mechanistic gaps between females and males. We injected increasing doses of carbon tetrachloride into female and male mice and maintained them for a washout period of eight weeks to allow for liver regeneration. We found that male mice were more prone to developing severe liver fibrosis as a consequence of early chronic liver damage, supported by the recruitment of a large number of Ly6Chigh MoMφs and neutrophils. Although prolonged liver damage exacerbated the fibrosis in mice of both sexes, activated HSCs and Ly6Chigh MoMφs were more numerous and active in the livers of female mice than those of male mice. After eight weeks of washout, only fibrotic females reported no activated HSCs, and a phenotype switching of Ly6Chigh MoMφs to anti-fibrogenic Ly6Clow MoMφs. The early stages of liver fibrosis mostly affected males rather than females, while long-term chronic liver damage was not influenced by sex, at least for liver fibrosis. Liver repair and regeneration were more efficient in females than in males.
Collapse
Affiliation(s)
- Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy (D.G.); (S.D.M.)
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy (D.G.); (S.D.M.)
| | - Dafne Alberti
- Laboratory of Synthetic Immunology, Department of Surgery Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy (G.P.)
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Department of Surgery Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy (G.P.)
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, University of Padova, 35128 Padova, Italy;
| | - Alberto Fantin
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, University of Padova, 35128 Padova, Italy;
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy (D.G.); (S.D.M.)
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| |
Collapse
|
66
|
Wu Y, Zhang P, Fan H, Zhang C, Yu P, Liang X, Chen Y. GPR35 acts a dual role and therapeutic target in inflammation. Front Immunol 2023; 14:1254446. [PMID: 38035084 PMCID: PMC10687457 DOI: 10.3389/fimmu.2023.1254446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
GPR35 is a G protein-coupled receptor with notable involvement in modulating inflammatory responses. Although the precise role of GPR35 in inflammation is not yet fully understood, studies have suggested that it may have both pro- and anti-inflammatory effects depending on the specific cellular environment. Some studies have shown that GPR35 activation can stimulate the production of pro-inflammatory cytokines and facilitate the movement of immune cells towards inflammatory tissues or infected areas. Conversely, other investigations have suggested that GPR35 may possess anti-inflammatory properties in the gastrointestinal tract, liver and certain other tissues by curbing the generation of inflammatory mediators and endorsing the differentiation of regulatory T cells. The intricate role of GPR35 in inflammation underscores the requirement for more in-depth research to thoroughly comprehend its functional mechanisms and its potential significance as a therapeutic target for inflammatory diseases. The purpose of this review is to concurrently investigate the pro-inflammatory and anti-inflammatory roles of GPR35, thus illuminating both facets of this complex issue.
Collapse
Affiliation(s)
- Yetian Wu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Pei Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Hongjie Fan
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Caiying Zhang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Pengfei Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
67
|
Li Q, Lin X, Bo X, Li F, Chen S, Miao X, Zhao D, Liu J, Fan Q. Monocyte to high-density lipoprotein cholesterol ratio predicts poor outcomes in ischaemic heart failure patients combined with diabetes: a retrospective study. Eur J Med Res 2023; 28:493. [PMID: 37941037 PMCID: PMC10631131 DOI: 10.1186/s40001-023-01451-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The prevalence of ischaemic heart failure (HF) continues to increase. Diabetes mellitus (DM) concomitant with ischaemic HF increases the risk of major adverse cardiovascular events (MACEs). As a promising predictor for cardiovascular diseases, the predictive value of the monocyte to high-density lipoprotein cholesterol ratio (MHR) for MACE in the ischaemic HF with DM cohort has never been investigated before. OBJECTIVE We aimed to investigate the MHR as a predictor for MACE in ischaemic HF patients with DM who underwent percutaneous coronary intervention (PCI). METHODS This observational study enrolled 1049 patients with ischaemic HF and DM undergoing PCI from June 2017 to June 2019. The baseline data were collected. MACEs, including all-cause mortality, nonfatal myocardial infarction, and any revascularization, were recorded within the 36-month follow-up. The characteristics and incidence of MACE were analysed in four groups stratified by the quartiles of MHR. The hazard ratio for MACE was analysed with Cox regression models. The incidence of MACE in the four groups was evaluated by Kaplan‒Meier survival analysis. Restricted cubic spline analysis was performed to determine the nonlinear correlation between the MHR and MACE. RESULTS After the 36-month follow-up, 407 patients (38.8%) experienced MACEs. The incidence of MACE was significantly higher among patients in the upper MHR quartile than among those in the lower MHR quartiles (23.4% vs. 36.0% vs. 41.4% and 54.6%; P < 0.001, respectively), which was consistent with the Kaplan‒Meier survival analyses (P < 0.0001). A multivariate Cox regression model showed that the MHR was an independent risk factor for MACE after variables were adjusted (adjusted HR: 2.11; 95% CI 1.47-3.03; P < 0.001). Its predictive effects on MACE showed no interaction with hypercholesterolemia (P > 0.05). CONCLUSION The MHR was a significant and independent predictor of MACEs in ischaemic HF patients with DM undergoing PCI.
Collapse
Affiliation(s)
- Qiuyu Li
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Xiaolong Lin
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Xiaowen Bo
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Fanqi Li
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Siyuan Chen
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Xuguang Miao
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Donghui Zhao
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Jinghua Liu
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Qian Fan
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|
68
|
Sim J, O'Guin E, Monahan K, Sugimoto C, McLean SA, Albertorio-Sáez L, Zhao Y, Laumet S, Dagenais A, Bernard MP, Folger JK, Robison AJ, Linnstaedt SD, Laumet G. Interleukin-10-producing monocytes contribute to sex differences in pain resolution in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565129. [PMID: 37961295 PMCID: PMC10635095 DOI: 10.1101/2023.11.03.565129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain is closely associated with the immune system, which exhibits sexual dimorphism. For these reasons, neuro-immune interactions are suggested to drive sex differences in pain pathophysiology. However, our understanding of peripheral neuro-immune interactions on sex differences in pain resolution remains limited. Here, we have shown, in both a mouse model of inflammatory pain and in humans following traumatic pain, that males had higher levels of interleukin (IL)-10 than females, which were correlated with faster pain resolution. Following injury, we identified monocytes (CD11b+ Ly6C+ Ly6G-F4/80 mid ) as the primary source of IL-10, with IL-10-producing monocytes being more abundant in males than females. In a mouse model, neutralizing IL-10 signaling through antibodies, genetically ablating IL-10R1 in sensory neurons, or depleting monocytes with clodronate all impaired the resolution of pain hypersensitivity in both sexes. Furthermore, manipulating androgen levels in mice reversed the sexual dimorphism of pain resolution and the levels of IL-10-producing monocytes. These results highlight a novel role for androgen-driven peripheral IL-10-producing monocytes in the sexual dimorphism of pain resolution. These findings add to the growing concept that immune cells play a critical role in resolving pain and preventing the transition into chronic pain. Graphical abstract
Collapse
|
69
|
Zhang Y, Jin Y, Wang H, He L, Zhang Y, Liu Q, Xin Y, Li X. Identification of Genes Associated with Decreasing Abundance of Monocytes in Long-Term Peritoneal Dialysis Patients. Int J Gen Med 2023; 16:5017-5030. [PMID: 37942472 PMCID: PMC10629397 DOI: 10.2147/ijgm.s435041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Purpose Chronic kidney disease (CKD) will become an end-stage renal disease (ESRD) at stage 5. Peritoneal dialysis (PD) is required for renal replacement therapy. This study aims to identify monocytes-related genes in peritoneal cells from long-term PD (LPD) patients and short-term PD (SPD) patients. Methods Bulk RNA-seq data (GSE125498 dataset) and ScRNA-seq data (GSE130888) were downloaded to identify differentially expressed genes, monocytes-related genes, and monocytes marker genes in LPD patients. Immune infiltration was analyzed in the GSE125498 dataset. Core genes associated with monocytes changes were screened out, followed by functional analysis and expression validation using RT-PCR. Results Monocytes are the most abundant immune cell in PD. The number of monocytes was remarkably decreased in LPD compared with SPD. A total of 16 up-regulated core genes negatively correlated with the abundance of monocytes were obtained in LPD. The expression of 16 core genes was lower in monocyte clusters than that in other cell clusters. In addition, LCK, CD3G, CD3E, CD3D, and LAT were involved in the signaling pathways of Th1 and Th2 cell differentiation, T cell receptor signaling pathway, and Th17 cell differentiation. CD2 was involved in hematopoietic cell lineage signaling pathway. Conclusion Identification of monocytes related-genes and related signaling pathways could be helpful in understanding the molecular mechanism of monocytes changes during PD.
Collapse
Affiliation(s)
- Yinghui Zhang
- Department of Nephrology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, People’s Republic of China
| | - Yanhua Jin
- Department of Nephrology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, People’s Republic of China
| | - Huan Wang
- Department of Nephrology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, People’s Republic of China
| | - Long He
- Organ Transplant Center, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, People’s Republic of China
| | - Yanning Zhang
- Department of Nephrology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, People’s Republic of China
| | - Qi Liu
- Department of Nephrology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, People’s Republic of China
| | - Yu Xin
- Department of Nephrology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, People’s Republic of China
| | - Xueyu Li
- Nursing Department, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, People’s Republic of China
| |
Collapse
|
70
|
Jang Y, Park TS, Park BC, Lee YM, Heo TH, Jun HS. Aberrant glucose metabolism underlies impaired macrophage differentiation in glycogen storage disease type Ib. FASEB J 2023; 37:e23216. [PMID: 37779422 DOI: 10.1096/fj.202300592rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Glycogen storage disease type Ib (GSD-Ib) is an autosomal recessive disorder caused by a deficiency in the glucose-6-phosphate (G6P) transporter (G6PT) that is responsible for transporting G6P into the endoplasmic reticulum. GSD-Ib is characterized by disturbances in glucose homeostasis, neutropenia, and neutrophil dysfunction. Although some studies have explored neutrophils abnormalities in GSD-Ib, investigations regarding monocytes/macrophages remain limited so far. In this study, we examined the impact of G6PT deficiency on monocyte-to-macrophage differentiation using bone marrow-derived monocytes from G6pt-/- mice as well as G6PT-deficient human THP-1 monocytes. Our findings revealed that G6PT-deficient monocytes exhibited immature differentiation into macrophages. Notably, the impaired differentiation observed in G6PT-deficient monocytes seemed to be associated with abnormal glucose metabolism, characterized by enhanced glucose consumption through glycolysis, even under quiescent conditions with oxidative phosphorylation. Furthermore, we observed a reduced secretion of inflammatory cytokines in G6PT-deficient THP-1 monocytes during the inflammatory response, despite their elevated glucose consumption. In conclusion, this study sheds light on the significance of G6PT in monocyte-to-macrophage differentiation and underscores its importance in maintaining glucose homeostasis and supporting immune response in GSD-Ib. These findings may contribute to a better understanding of the pathogenesis of GSD-Ib and potentially pave the way for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Yuyeon Jang
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Young Mok Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| |
Collapse
|
71
|
Deprez J, Verbeke R, Meulewaeter S, Aernout I, Dewitte H, Decruy T, Coudenys J, Van Duyse J, Van Isterdael G, Peer D, van der Meel R, De Smedt SC, Jacques P, Elewaut D, Lentacker I. Transport by circulating myeloid cells drives liposomal accumulation in inflamed synovium. NATURE NANOTECHNOLOGY 2023; 18:1341-1350. [PMID: 37430039 DOI: 10.1038/s41565-023-01444-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
The therapeutic potential of liposomes to deliver drugs into inflamed tissue is well documented. Liposomes are believed to largely transport drugs into inflamed joints by selective extravasation through endothelial gaps at the inflammatory sites, known as the enhanced permeation and retention effect. However, the potential of blood-circulating myeloid cells for the uptake and delivery of liposomes has been largely overlooked. Here we show that myeloid cells can transport liposomes to inflammatory sites in a collagen-induced arthritis model. It is shown that the selective depletion of the circulating myeloid cells reduces the accumulation of liposomes up to 50-60%, suggesting that myeloid-cell-mediated transport accounts for more than half of liposomal accumulation in inflamed regions. Although it is widely believed that PEGylation inhibits premature liposome clearance by the mononuclear phagocytic system, our data show that the long blood circulation times of PEGylated liposomes rather favours uptake by myeloid cells. This challenges the prevailing theory that synovial liposomal accumulation is primarily due to the enhanced permeation and retention effect and highlights the potential for other pathways of delivery in inflammatory diseases.
Collapse
Affiliation(s)
- Joke Deprez
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Rein Verbeke
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sofie Meulewaeter
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ilke Aernout
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Heleen Dewitte
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tine Decruy
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Julie Coudenys
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Julie Van Duyse
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Peggy Jacques
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Dirk Elewaut
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
72
|
Sankar P, Mishra BB. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front Immunol 2023; 14:1260859. [PMID: 37965344 PMCID: PMC10641450 DOI: 10.3389/fimmu.2023.1260859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, claiming the lives of up to 1.5 million individuals annually. TB is caused by the human pathogen Mycobacterium tuberculosis (Mtb), which primarily infects innate immune cells in the lungs. These immune cells play a critical role in the host defense against Mtb infection, influencing the inflammatory environment in the lungs, and facilitating the development of adaptive immunity. However, Mtb exploits and manipulates innate immune cells, using them as favorable niche for replication. Unfortunately, our understanding of the early interactions between Mtb and innate effector cells remains limited. This review underscores the interactions between Mtb and various innate immune cells, such as macrophages, dendritic cells, granulocytes, NK cells, innate lymphocytes-iNKT and ILCs. In addition, the contribution of alveolar epithelial cell and endothelial cells that constitutes the mucosal barrier in TB immunity will be discussed. Gaining insights into the early cellular basis of immune reactions to Mtb infection is crucial for our understanding of Mtb resistance and disease tolerance mechanisms. We argue that a better understanding of the early host-pathogen interactions could inform on future vaccination approaches and devise intervention strategies.
Collapse
Affiliation(s)
| | - Bibhuti Bhusan Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
73
|
Bamgbose TT, Schilke RM, Igiehon OO, Nkadi EH, Custis D, Bharrhan S, Schwarz B, Bohrnsen E, Bosio CM, Scott RS, Yurdagul A, Finck BN, Woolard MD. Lipin-1 restrains macrophage lipid synthesis to promote inflammation resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563587. [PMID: 37961352 PMCID: PMC10634750 DOI: 10.1101/2023.10.23.563587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Macrophages are critical to maintaining and restoring tissue homeostasis during inflammation. The lipid metabolic state of macrophages influences their function, but a deeper understanding of how lipid metabolism is regulated in pro-resolving macrophage responses is needed. Lipin-1 is a phosphatidic acid phosphatase with a transcriptional coregulatory activity (TC) that regulates lipid metabolism. We previously demonstrated that lipin-1 supports pro-resolving macrophage responses, and here, myeloid-associated lipin-1 is required for inflammation resolution, yet how lipin-1-regulated cellular mechanisms promote macrophage pro-resolution responses is unknown. We demonstrated that the loss of lipin-1 in macrophages led to increased free fatty acid, neutral lipid, and ceramide content and increased phosphorylation of acetyl-CoA carboxylase. The inhibition of the first step of lipid synthesis and transport of citrate from the mitochondria in macrophages reduced lipid content and restored efferocytosis and inflammation resolution in lipin-1mKO macrophages and mice. Our findings suggest macrophage-associated lipin-1 restrains lipid synthesis, promoting pro-resolving macrophage function in response to pro-resolving stimuli.
Collapse
Affiliation(s)
- Temitayo T. Bamgbose
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Robert M. Schilke
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Oluwakemi O. Igiehon
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ebubechukwu H. Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - David Custis
- Research Core Facility, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Sushma Bharrhan
- Center for Applied Immunology and Pathological Processes (CAIPP), Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Benjamin Schwarz
- Proteins & Chemistry Section, Research and Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Eric Bohrnsen
- Proteins & Chemistry Section, Research and Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Applied Immunology and Pathological Processes (CAIPP), Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Brian N. Finck
- Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Matthew D. Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Applied Immunology and Pathological Processes (CAIPP), Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
74
|
Geng S, Lu R, Zhang Y, Wu Y, Xie L, Caldwell B, Pradhan K, Yi Z, Hou J, Xu F, Chen X, Li L. Monocytes reprogrammed by 4-PBA potently contribute to the resolution of inflammation and atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563200. [PMID: 37961551 PMCID: PMC10634693 DOI: 10.1101/2023.10.19.563200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Chronic inflammation initiated by inflammatory monocytes underlies the pathogenesis of atherosclerosis. However, approaches that can effectively resolve chronic low-grade inflammation targeting monocytes are not readily available. The small chemical compound 4-phenylbutyric acid (4-PBA) exhibits broad anti-inflammatory effects in reducing atherosclerosis. Selective delivery of 4-PBA reprogrammed monocytes may hold novel potential in providing targeted and precision therapeutics for the treatment of atherosclerosis. Methods Systems analyses integrating single-cell RNA-sequencing and complementary immunological approaches characterized key resolving characteristics as well as defining markers of reprogrammed monocytes trained by 4-PBA. Molecular mechanisms responsible for monocyte reprogramming was assessed by integrated biochemical and genetic approaches. The inter-cellular propagation of homeostasis resolution was evaluated by co-culture assays with donor monocytes trained by 4-PBA and recipient naïve monocytes. The in vivo effects of monocyte resolution and atherosclerosis prevention by 4-PBA were assessed with the high fat diet-fed ApoE -/- mouse model with i.p. 4-PBA administration. Furthermore, the selective efficacy of 4-PBA trained monocytes were examined by i.v. transfusion of ex vivo trained monocytes by 4-PBA into recipient high fat diet-fed ApoE -/- mice. Results In this study, we found that monocytes can be potently reprogrammed by 4-PBA into an immune-resolving state characterized by reduced adhesion and enhanced expression of anti-inflammatory mediator CD24. Mechanistically, 4-PBA reduced the expression of ICAM-1 via reducing peroxisome stress and attenuating SYK-mTOR signaling. Concurrently, 4-PBA enhanced the expression of resolving mediator CD24 through promoting PPARγ neddylation mediated by TOLLIP. 4-PBA trained monocytes can effectively propagate anti-inflammation activity to neighboring monocytes through CD24. Our data further demonstrated that 4-PBA trained monocytes effectively reduce atherosclerosis pathogenesis when administered in vivo . Conclusion Our study describes a robust and effective approach to generate resolving monocytes, characterizes novel mechanisms for targeted monocyte reprogramming, and offers a precision-therapeutics for atherosclerosis based on delivering reprogrammed resolving monocytes.
Collapse
|
75
|
Droho S, Voigt AP, Sterling JK, Rajesh A, Chan KS, Cuda CM, Perlman H, Lavine JA. NR4A1 deletion promotes pro-angiogenic polarization of macrophages derived from classical monocytes in a mouse model of neovascular age-related macular degeneration. J Neuroinflammation 2023; 20:238. [PMID: 37858232 PMCID: PMC10588116 DOI: 10.1186/s12974-023-02928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Neovascular age-related macular degeneration causes vision loss from destructive angiogenesis, termed choroidal neovascularization (CNV). Cx3cr1-/- mice display alterations in non-classical monocytes and microglia with increased CNV size, suggesting that non-classical monocytes may inhibit CNV formation. NR4A1 is a transcription factor that is necessary for maturation of non-classical monocytes from classical monocytes. While Nr4a1-/- mice are deficient in non-classical monocytes, results are confounded by macrophage hyper-activation. Nr4a1se2/se2 mice lack a transcriptional activator, resulting in non-classical monocyte loss without macrophage hyper-activation. MAIN BODY We subjected Nr4a1-/- and Nr4a1se2/se2 mice to the laser-induced CNV model and performed multi-parameter flow cytometry. We found that both models lack non-classical monocytes, but only Nr4a1-/- mice displayed increased CNV area. Additionally, CD11c+ macrophages were increased in Nr4a1-/- mice. Single-cell transcriptomic analysis uncovered that CD11c+ macrophages were enriched from Nr4a1-/- mice and expressed a pro-angiogenic transcriptomic profile that was disparate from prior reports of macrophage hyper-activation. CONCLUSIONS These results suggest that non-classical monocytes are dispensable during CNV, and NR4A1 deficiency results in increased recruitment of pro-angiogenic macrophages.
Collapse
Affiliation(s)
- Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrew P Voigt
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jacob K Sterling
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Amrita Rajesh
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kyle S Chan
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
76
|
Wu X, Liu J, Li W, Khan MF, Dai H, Tian J, Priya R, Tian DJ, Wu W, Yaacoub A, Gu J, Syed F, Yu CH, Gao X, Yu Q, Xu XM, Brutkiewicz RR. CD1d-dependent neuroinflammation impairs tissue repair and functional recovery following a spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562047. [PMID: 37905092 PMCID: PMC10614755 DOI: 10.1101/2023.10.13.562047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tissue damage resulting from a spinal cord injury (SCI) is primarily driven by a robust neuroimmune/neuroinflammatory response. This intricate process is mainly governed by a multitude of cytokines and cell surface proteins in the central nervous system (CNS). However, the critical components of the neuroimmune/neuroinflammatory response during SCI are still not well-defined. In this study, we investigated the impact of CD1d, an MHC class I-like molecule mostly known for presenting lipid antigens to natural killer T (NKT) cells and regulating immune/inflammatory responses, on neuroimmune/neuroinflammatory responses induced by SCI. We observed an increased expression of CD1d on various cell types within the spinal cord, including microglia/macrophages, oligodendrocytes (ODCs), and endothelial cells (DCs), but not on neurons or astrocytes post-SCI. In comparison to wildtype (WT) mice, a T10 contusive SCI in CD1d knockout (CD1dKO or Cd1d -/- ) mice resulted in markedly reduced proinflammatory cytokine release, microglia/macrophage activation and proliferation. Following SCI, the levels of inflammatory cytokines and activation/proliferation of microglia/macrophages were dramatically reduced, while anti-inflammatory cytokines such as IL-4 and growth factors like VEGF were substantially increased in the spinal cord tissues of CD1dKO mice when compared to WT mice. In the post-acute phase of SCI (day 7 post-SCI), CD1dKO mice had a significantly higher frequency of tissue-repairing macrophages, but not other types of immune cells, in the injured spinal cord tissues compared to WT mice. Moreover, CD1d-deficiency protected spinal cord neuronal cells and tissue, promoting functional recovery after a SCI. However, the neuroinflammation in WT mouse spinal cords was independent of the canonical CD1d/NKT cell axis. Finally, treatment of injured mice with a CD1d-specific monoclonal antibody significantly enhanced neuroprotection and improved functional recovery. Therefore, CD1d promotes the proinflammatory response following a SCI and represents a potential therapeutic target for spinal cord repair. Significance Statement The cell surface molecule, CD1d, is known to be recognized by cells of the immune system. To our knowledge, this is the first observation that the CD1d molecule significantly contributes to neuroinflammation following a spinal cord injury (SCI) in a manner independent of the CD1d/NKT cell axis. This is important, because this work reveals CD1d as a potential therapeutic target following an acute SCI for which there are currently no effective treatments.
Collapse
|
77
|
Jeyamogan S, Leventhal JR, Mathew JM, Zhang ZJ. CD4 +CD25 +FOXP3 + regulatory T cells: a potential "armor" to shield "transplanted allografts" in the war against ischemia reperfusion injury. Front Immunol 2023; 14:1270300. [PMID: 37868962 PMCID: PMC10587564 DOI: 10.3389/fimmu.2023.1270300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Despite the advances in therapeutic interventions, solid organ transplantation (SOT) remains the "gold standard" treatment for patients with end-stage organ failure. Recently, vascularized composite allotransplantation (VCA) has reemerged as a feasible treatment option for patients with complex composite tissue defects. In both SOT and VCA, ischemia reperfusion injury (IRI) is inevitable and is a predominant factor that can adversely affect transplant outcome by potentiating early graft dysfunction and/or graft rejection. Restoration of oxygenated blood supply to an organ which was previously hypoxic or ischemic for a period of time triggers cellular oxidative stress, production of both, pro-inflammatory cytokines and chemokines, infiltration of innate immune cells and amplifies adaptive alloimmune responses in the affected allograft. Currently, Food and Drug Administration (FDA) approved drugs for the treatment of IRI are unavailable, therefore an efficacious therapeutic modality to prevent, reduce and/or alleviate allograft damages caused by IRI induced inflammation is warranted to achieve the best-possible transplant outcome among recipients. The tolerogenic capacity of CD4+CD25+FOXP3+ regulatory T cells (Tregs), have been extensively studied in the context of transplant rejection, autoimmunity, and cancer. It was not until recently that Tregs have been recognized as a potential cell therapeutic candidate to be exploited for the prevention and/or treatment of IRI, owing to their immunomodulatory potential. Tregs can mitigate cellular oxidative stress, produce anti-inflammatory cytokines, promote wound healing, and tissue repair and prevent the infiltration of pro-inflammatory immune cells in injured tissues. By using strategic approaches to increase the number of Tregs and to promote targeted delivery, the outcome of SOT and VCA can be improved. This review focuses on two sections: (a) the therapeutic potential of Tregs in preventing and mitigating IRI in the context of SOT and VCA and (b) novel strategies on how Tregs could be utilized for the prevention and/or treatment of IRI.
Collapse
Affiliation(s)
- Shareni Jeyamogan
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joseph R. Leventhal
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James M. Mathew
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Zheng Jenny Zhang
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Microsurgery and Pre-Clinical Research Core, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
78
|
Mazzarino M, Cetin E, Bartosova M, Marinovic I, Ipseiz N, Hughes TR, Schmitt CP, Ramji DP, Labéta MO, Raby AC. Therapeutic targeting of chronic kidney disease-associated DAMPs differentially contributing to vascular pathology. Front Immunol 2023; 14:1240679. [PMID: 37849759 PMCID: PMC10577224 DOI: 10.3389/fimmu.2023.1240679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
Chronic Kidney Disease (CKD) is associated with markedly increased cardiovascular (CV) morbidity and mortality. Chronic inflammation, a hallmark of both CKD and CV diseases (CVD), is believed to drive this association. Pro-inflammatory endogenous TLR agonists, Damage-Associated Molecular Patterns (DAMPs), have been found elevated in CKD patients' plasma and suggested to promote CVD, however, confirmation of their involvement, the underlying mechanism(s), the extent to which individual DAMPs contribute to vascular pathology in CKD and the evaluation of potential therapeutic strategies, have remained largely undescribed. A multi-TLR inhibitor, soluble TLR2, abrogated chronic vascular inflammatory responses and the increased aortic atherosclerosis-associated gene expression observed in nephropathic mice, without compromising infection clearance. Mechanistically, we confirmed elevation of 4 TLR DAMPs in CKD patients' plasma, namely Hsp70, Hyaluronic acid, HMGB-1 and Calprotectin, which displayed different abilities to promote key cellular responses associated with vascular inflammation and progression of atherosclerosis in a TLR-dependent manner. These included loss of trans-endothelial resistance, enhanced monocyte migration, increased cytokine production, and foam cell formation by macrophages, the latter via cholesterol efflux inhibition. Calprotectin and Hsp70 most consistently affected these functions. Calprotectin was further elevated in CVD-diagnosed CKD patients and strongly correlated with the predictor of CV events CRP. In nephropathic mice, Calprotectin blockade robustly reduced vascular chronic inflammatory responses and pro-atherosclerotic gene expression in the blood and aorta. Taken together, these findings demonstrated the critical extent to which the DAMP-TLR pathway contributes to vascular inflammatory and atherogenic responses in CKD, revealed the mechanistic contribution of specific DAMPs and described two alternatives therapeutic approaches to reduce chronic vascular inflammation and lower CV pathology in CKD.
Collapse
Affiliation(s)
- Morgane Mazzarino
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
- Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Esra Cetin
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
- Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Maria Bartosova
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Iva Marinovic
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Natacha Ipseiz
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Timothy R. Hughes
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Claus Peter Schmitt
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Dipak P. Ramji
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Mario O. Labéta
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
- Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anne-Catherine Raby
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
- Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
79
|
Erden E, Turk AC, Fidan N, Erden E. Relationship Between Blood Monocyte-HDL Ratio and Carotid Intima Media Thickness in with Postmenopausal Women. J Clin Densitom 2023; 26:101428. [PMID: 37549600 DOI: 10.1016/j.jocd.2023.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION/BACKGROUND The monocyte-to-high-density lipoprotein (HDL) ratio (MHR) and carotid intima media thickness may be used as a marker of inflammation and oxidative stres. This study is aimed to investigate the role of MHR in etiopathogenesis and to determine the association between MHR and carotid intima media thickness, fracture risk, and quality of life (QoL) in postmenopausal osteoporosis patients without comorbidities. METHODOLOGY Sixty osteoporosis, sixty osteopenia and sixty control groups were included in the prospective study evaluating postmenapausal women. The monocyte, HDL, and MHR values of all patients were evaluated. The bone mineral density of the participants was determined using the dual energy X-ray absorptiometry device. The fracture risk was assessed using the Turkish model of the Fracture Risk Assessment Tool. The QoL was determined using the Quality of Life Questionnaire of the European Foundation for Osteoporosis (QUALEFFO-41) scale, and carotid intima media thickness ultrasonography was used. RESULTS The age, body mass index, duration of menopause, monocyte, HDL, and MHR were similar in all three groups. carotid intima media thickness was higher in the osteoporosis group than in the normal group (p=0.015). A positive correlation was found between L1-4 total T score and monocytes, major osteoporotic fracture risk and physical function from QUALEFFO-41 sub-headings, MHR and QUALEFFO-41 total score (p<0.05). When all participants were evaluated, a positive correlation was found between femoral neck T score and MHR, L1-4 total T score and monocytes, while a negative correlation was found between L1-4 total T score and CIMT (p<0.05). CONCLUSION Among postmenopausal women without comorbidities, MHR in the osteoporosis group was similar to that of the osteopenia and normal groups. Monocyte and MHR correlate with femoral neck T score and L1-4 total T score. CIMT was associated with a decreased L1-4 total T-score and an increased fracture risk, but not with MHR.
Collapse
Affiliation(s)
- Ender Erden
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Hitit University, Corum 19200, Turkey.
| | - Ayla Cagliyan Turk
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Hitit University, Corum 19200, Turkey
| | - Nurdan Fidan
- Faculty of Medicine, Department of Radiology, Hitit University Faculty of Medicine, Hitit University, Corum, Turkey
| | - Ebru Erden
- Department of Physical Medicine and Rehabilitation, Hitit University Erol Olçok Education and Research Hospital, Corum, Turkey
| |
Collapse
|
80
|
Stergioti EM, Manolakou T, Sentis G, Samiotaki M, Kapsala N, Fanouriakis A, Boumpas DT, Banos A. Transcriptomic and proteomic profiling reveals distinct pathogenic features of peripheral non-classical monocytes in systemic lupus erythematosus. Clin Immunol 2023; 255:109765. [PMID: 37678715 DOI: 10.1016/j.clim.2023.109765] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Peripheral blood monocytes propagate inflammation in systemic lupus erythematosus (SLE). Three major populations of monocytes have been recognized namely classical (CM), intermediate (IM) and non-classical monocytes (NCM). Herein, we performed a comprehensive transcriptomic, proteomic and functional characterization of the three peripheral monocytic subsets from active SLE patients and healthy individuals. Our data demonstrate extensive molecular disruptions in circulating SLE NCM, characterized by enhanced inflammatory features such as deregulated DNA repair, cell cycle and heightened IFN signaling combined with differentiation and developmental cues. Enhanced DNA damage, elevated expression of p53, G0 arrest of cell cycle and increased autophagy stress the differentiation potential of NCM in SLE. This immunogenic profile is associated with an activated macrophage phenotype of NCM exhibiting M1 characteristics in the circulation, fueling the inflammatory response. Together, these findings identify circulating SLE NCM as a pathogenic cell type in the disease that could represent an additional therapeutic target.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece; 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens 124 62, Greece.
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece
| | - George Sentis
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Vari, Athens 166 72, Greece
| | - Noemin Kapsala
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens 124 62, Greece
| | - Antonis Fanouriakis
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens 124 62, Greece
| | - Dimitrios T Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece.
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece.
| |
Collapse
|
81
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
82
|
Cheng Y, Chen H, Duan P, Zhang H, Yu Y, Yu J, Yu Z, Zheng L, Ye X, Pan Z. Early depletion of M1 macrophages retards the progression of glucocorticoid-associated osteonecrosis of the femoral head. Int Immunopharmacol 2023; 122:110639. [PMID: 37481850 DOI: 10.1016/j.intimp.2023.110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Inflammation stands as a pivotal factor in the pathogenesis of glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH). However, the vital role played by M1 macrophages, the principal constituents of the inflammatory process, remains largely underexplored. In this study, we employed reverse transcription-quantitative polymerase chain Reaction (RT-PCR), western blot, and flow cytometry to assess the impact of M1-conditioned medium on cultures of mouse bone marrow-derived mesenchymal stem cells (BMSCs) and Murine Long bone Osteocyte-Y4 (MLO-Y4) in vitro. Moreover, we quantified the levels of inflammatory cytokines in the M1-conditioned medium through the employment of an enzyme-linked immunosorbent assay (ELISA). For in vivo analysis, we examined M1 macrophages and investigated the NF-kB signaling pathway in specimens obtained from the femoral heads of animals and humans. We found that the number of M1 macrophages in the femoral head of GA-ONFH patients grew significantly, and in the mice remarkably increase, maintaining high levels in the intramedullary. In vitro, the M1 macrophage-conditioned medium elicited apoptosis in BMSCs and MLO-Y4 cells, shedding light on the intricate interplay between macrophages and these cell types. The presence of TNF-α within the M1-conditioned medium activated the NF-κB pathway, providing mechanistic insight into the apoptotic induction. Moreover, employing a robust rat macrophage clearance model and GA-ONFH model, we demonstrated a remarkable attenuation in TNF-α expression and NF-kB signaling subsequent to macrophage clearance. This pronounced reduction engenders diminished cellular apoptosis and engenders a decelerated trajectory of GA-ONFH progression. In conclusion, our study reveals the crucial involvement of M1 macrophages in the pathogenesis of GA-ONFH, highlighting their indispensable role in disease progression. Furthermore, early clearance emerges as a promising strategy for impeding the development of GA-ONFH.
Collapse
Affiliation(s)
- Yannan Cheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Hui Chen
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Hao Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Yongle Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Jiadong Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Zirui Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Lin Zheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Xin Ye
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Zhenyu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| |
Collapse
|
83
|
He S, Liu J, Xue Y, Fu T, Li Z. Sympathetic Nerves Coordinate Corneal Epithelial Wound Healing by Controlling the Mobilization of Ly6Chi Monocytes From the Spleen to the Injured Cornea. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 37682569 PMCID: PMC10500368 DOI: 10.1167/iovs.64.12.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023] Open
Abstract
Purpose This study aims to investigate the potential involvement of spleen-derived monocytes in the repair process following corneal epithelial abrasion. Methods A corneal epithelial abrasion model was established in male C57BL/6J mice, and the dynamic changes of monocyte subpopulations in the injured cornea were analyzed using flow cytometry. The effects of Ly6Chi monocyte depletion and local adoptive transfer of purified Ly6Chi monocytes on wound closure and neutrophil recruitment to the injured cornea were observed. The effect of sympathetic nerves on the recruitment of spleen-derived Ly6Chi monocytes to the injured cornea was also investigated using multiple methods. The emigration of fluorescence-labeled monocytes to the injured cornea was validated through intravital microscopy. Finally, differential genes between different groups were identified through high-throughput RNA sequencing and analyzed for functional enrichment, followed by verification by quantitative PCR. Results Ly6Chi monocytes were present in large numbers in the injured cornea prior to neutrophil recruitment. Predepletion of Ly6Chi monocytes significantly inhibited neutrophil recruitment to the injured cornea. Furthermore, surgical removal of the spleen significantly reduced the number of Ly6Chi monocytes in the injured cornea. Further observations revealed that sympathetic blockade significantly reduced the number of Ly6Chi monocytes recruited to the injured cornea. In contrast, administration of the β2-adrenergic receptor agonist significantly increased the number of Ly6Chi monocytes recruited to the injured cornea in animals treated with sympathectomy and catecholamine synthesis inhibition. Conclusions Our results suggest that spleen-derived Ly6Chi monocytes, under the control of the sympathetic nervous system, play a critical role in the inflammatory response following corneal injury.
Collapse
Affiliation(s)
- Siyu He
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Zhijie Li
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| |
Collapse
|
84
|
Bailin SS, Kropski JA, Gangula RD, Hannah L, Simmons JD, Mashayekhi M, Ye F, Fan R, Mallal S, Warren CM, Kalams SA, Gabriel CL, Wanjalla CN, Koethe JR. Changes in subcutaneous white adipose tissue cellular composition and molecular programs underlie glucose intolerance in persons with HIV. Front Immunol 2023; 14:1152003. [PMID: 37711619 PMCID: PMC10499182 DOI: 10.3389/fimmu.2023.1152003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Subcutaneous adipose tissue (SAT) is a critical regulator of systemic metabolic homeostasis. Persons with HIV (PWH) have an increased risk of metabolic diseases and significant alterations in the SAT immune environment compared with the general population. Methods We generated a comprehensive single-cell multi-omic SAT atlas to characterize cellular compositional and transcriptional changes in 59 PWH across a spectrum of metabolic health. Results Glucose intolerance was associated with increased lipid-associated macrophages, CD4+ and CD8+ T effector memory cells, and decreased perivascular macrophages. We observed a coordinated intercellular regulatory program which enriched for genes related to inflammation and lipid-processing across multiple cell types as glucose intolerance increased. Increased CD4+ effector memory tissue-resident cells most strongly associated with altered expression of adipocyte genes critical for lipid metabolism and cellular regulation. Intercellular communication analysis demonstrated enhanced pro-inflammatory and pro-fibrotic signaling between immune cells and stromal cells in PWH with glucose intolerance compared with non-diabetic PWH. Lastly, while cell type-specific gene expression among PWH with diabetes was globally similar to HIV-negative individuals with diabetes, we observed substantially divergent intercellular communication pathways. Discussion These findings suggest a central role of tissue-resident immune cells in regulating SAT inflammation among PWH with metabolic disease, and underscore unique mechanisms that may converge to promote metabolic disease.
Collapse
Affiliation(s)
- Samuel S. Bailin
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan A. Kropski
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
- Deparment of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Rama D. Gangula
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - LaToya Hannah
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joshua D. Simmons
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fei Ye
- Department of Biostatics, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Run Fan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Simon Mallal
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
- Insitute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christian M. Warren
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Spyros A. Kalams
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Curtis L. Gabriel
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Nashville, TN, United States
| | - Celestine N. Wanjalla
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John R. Koethe
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
85
|
Zhao X, Liang Q, Li H, Jing Z, Pei D. Single-cell RNA sequencing and multiple bioinformatics methods to identify the immunity and ferroptosis-related biomarkers of SARS-CoV-2 infections to ischemic stroke. Aging (Albany NY) 2023; 15:8237-8257. [PMID: 37606960 PMCID: PMC10497002 DOI: 10.18632/aging.204966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Since December 2019, Coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant morbidity and mortality worldwide. There is an increased risk of ischemic stroke (IS) associated with COVID-19. However, few studies have been reported to explain the potential correlation between COVID-19 and IS. METHODS We investigated the relationship and relevant mechanisms between COVID-19 and IS using single-cell RNA sequencing and multiple bioinformatics approaches. RESULTS By intersecting differentially expressed genes and WGCNA critical module genes, we obtained 73 COVID-19-related IS genes. According to the KEGG pathway analysis, the COVID-19-related IS disease genes were significantly enriched in the hematopoietic cell lineage pathway, ribosome pathway, COVID-19 pathway and primary immunodeficiency pathway. Finally, three genes associated with immunity (B4GALT5, CRISPLD2, F5) and two genes associated with ferroptosis (ACSL1, CREB5) were identified up-regulated in COVID-19-related IS. Significantly, it was found that all five genes were highly expressed in monocytes by single cell RNA sequencing. CONCLUSION We believe these genes (B4GALT5, CRISPLD2, F5, ACSL1, CREB5) may regulate the immune response and ferroptosis of multiple immune cells, mainly including monocytes, which may contribute to the development of COVID-19-related IS. In addition, these genes may be potential targets for the treatment of COVID-19-related IS.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Qingyu Liang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Hao Li
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Dongmei Pei
- Department of Family Medicine, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
86
|
Todd BP, Luo Z, Gilkes N, Chimenti MS, Peterson Z, Mix MR, Harty JT, Nickl-Jockschat T, Ferguson PJ, Bassuk AG, Newell EA. Selective neuroimmune modulation by type I interferon drives neuropathology and neurologic dysfunction following traumatic brain injury. Acta Neuropathol Commun 2023; 11:134. [PMID: 37596685 PMCID: PMC10436463 DOI: 10.1186/s40478-023-01635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023] Open
Abstract
Accumulating evidence suggests that type I interferon (IFN-I) signaling is a key contributor to immune cell-mediated neuropathology in neurodegenerative diseases. Recently, we demonstrated a robust upregulation of type I interferon-stimulated genes in microglia and astrocytes following experimental traumatic brain injury (TBI). The specific molecular and cellular mechanisms by which IFN-I signaling impacts the neuroimmune response and neuropathology following TBI remains unknown. Using the lateral fluid percussion injury model (FPI) in adult male mice, we demonstrated that IFN α/β receptor (IFNAR) deficiency resulted in selective and sustained blockade of type I interferon-stimulated genes following TBI as well as decreased microgliosis and monocyte infiltration. Molecular alteration of reactive microglia also occurred with diminished expression of genes needed for MHC class I antigen processing and presentation following TBI. This was associated with decreased accumulation of cytotoxic T cells in the brain. The IFNAR-dependent modulation of the neuroimmune response was accompanied by protection from secondary neuronal death, white matter disruption, and neurobehavioral dysfunction. These data support further efforts to leverage the IFN-I pathway for novel, targeted therapy of TBI.
Collapse
Affiliation(s)
- Brittany P Todd
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, USA
| | - Zili Luo
- Department of Pediatrics, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Noah Gilkes
- Department of Pediatrics, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Michael S Chimenti
- Bioinformatics Division, Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Zeru Peterson
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Madison R Mix
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
- Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Thomas Nickl-Jockschat
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Polly J Ferguson
- Department of Pediatrics, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Elizabeth A Newell
- Department of Pediatrics, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
| |
Collapse
|
87
|
Qiu C, Liu S, Li X, Li W, Hu G, Liu F. Prognostic value of monocyte-to-lymphocyte ratio for 90-day all-cause mortality in type 2 diabetes mellitus patients with chronic kidney disease. Sci Rep 2023; 13:13136. [PMID: 37573470 PMCID: PMC10423199 DOI: 10.1038/s41598-023-40429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023] Open
Abstract
The role of inflammation and the correlation between inflammatory markers and type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) have been studied. In clinical work, a large number of T2DM patients complicated with CKD, but the cause of CKD was not clear. Our study aimed to evaluate the relationship between monocyte-to-lymphocyte ratio (MLR) and mortality in T2DM patients with CKD. The data from Medical Information Mart for Intensive Care III was analyzed. The primary outcome was 90-day all-cause mortality; the secondary outcomes were the length of ICU stay, hospital mortality and 30-day all-cause mortality. Cox regression was used to evaluate the association between MLR and 90-day mortality. We performed subgroup analyses to determine the consistency of this association, and used Kaplan-Meier survival curve to analysis the survival of different levels of MLR. A total of 1830 patients were included in study retrospectively. The length of ICU stay, 30-day all-cause mortality, and 90-day all-cause mortality in the MLR > 0.71 group were significantly higher than those in the MLR < 0.28 and 0.28 ≤ MLR ≤ 0.71 group. In Cox regression analysis, high MLR level was significantly associated with increased greater risk of 90-day all-cause mortality. The adjusted HR (95%CIs) for the model 1, model 2, and model 3 were 2.429 (1.905-3.098), 2.070 (1.619-2.647), and 1.898 (1.478-2.437), respectively. Subgroup analyses also showed the consistency of association between MLR and 90-day all-cause mortality. The Kaplan-Meier survival curve analysis revealed that MLR > 0.71 had worst prognosis. In T2DM patients with CKD in the intensive care unit, high MLR was significantly associated with increased risk 90-day all-cause mortality.
Collapse
Affiliation(s)
- Chuangye Qiu
- Department of Nephrology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong, China
| | - Shizhen Liu
- Department of Nephrology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong, China.
| | - Xingai Li
- Department of Nephrology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong, China
| | - Wenxia Li
- Department of Endocrinology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong, China
| | - Guoqiang Hu
- Department of Nephrology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong, China.
| | - Fanna Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
88
|
Gu T, Huang Y, Zhang X, Yu P, Teng L. Prediction of the Postoperative Bone Regeneration Rate After Mandibular Reduction: From the Perspective of Preoperative Inflammatory and Immune Status. Aesthetic Plast Surg 2023; 47:1480-1487. [PMID: 36879171 DOI: 10.1007/s00266-023-03305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Following mandibular reduction, bone regeneration in the angle region is a problem that can affect facial aesthetics and lead to revision surgery. The bone regeneration rate (BRR) varies between individuals and is difficult to predict. However, studies focusing on preoperative patient-related factors are lacking. As bone regeneration is closely related to the inflammatory and immune status of the organism, according to in vitro and in vivo evidence, preoperative inflammatory indicators were included in this study as potential predictors. METHODS Demographic and preoperative laboratory data were included as independent variables. The BRR calculated from computed tomography data was included as the dependent variable. Univariate analysis and multiple linear regression analysis were used to determine the key factors influencing the BRR. The ROC curves were used to analyse the corresponding predictive efficacy. RESULTS 23 patients (46 mandibular angles) fulfilled the inclusion criteria. The mean bilateral BRR was 23.82 ± 9.90%. Preoperative monocyte count (M) was an independent positive factor for BRR, and age was a negative factor. Only M had a good predictive ability, and its optimal cut-off point to distinguish patients with BRR greater than 30% was 0.305 × 109/L. Other parameters were not significantly correlated with BRR. CONCLUSIONS Patient age and preoperative M may influence BRR, with M having a positive effect and age having a negative effect. According to the preoperative blood routine tests that are readily available, using the diagnostic threshold (M [Formula: see text] 0.305 × 109/L) derived from this study, surgeons can better predict BRR and identify patients whose BRR is greater than the mean level. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Tianyi Gu
- The Second Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Ba-Da-Chu Road, Shi-Jing-Shan District, Beijing, 100144, China
| | - Yuanliang Huang
- The Second Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Ba-Da-Chu Road, Shi-Jing-Shan District, Beijing, 100144, China
| | - Xiaoyu Zhang
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Ba-Da-Chu Road, Shi-Jing-Shan District, Beijing, 100144, China
| | - Panxi Yu
- The Second Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Ba-Da-Chu Road, Shi-Jing-Shan District, Beijing, 100144, China
| | - Li Teng
- The Second Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Ba-Da-Chu Road, Shi-Jing-Shan District, Beijing, 100144, China.
| |
Collapse
|
89
|
Ahn SS, Pyo JY, Song JJ, Park YB, Lee SW. A prognostic immune nutritional index can predict all-cause mortality in patients with antineutrophil cytoplasmic antibody-associated vasculitis. Ther Adv Musculoskelet Dis 2023; 15:1759720X231188818. [PMID: 37529333 PMCID: PMC10387778 DOI: 10.1177/1759720x231188818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
Background Studies have proposed that nutritional and immune-related markers are relevant with patient outcomes of various medical conditions and could be a useful indicator of patient prognostication. Objectives This study investigated whether a prognostic immune nutritional index (PINI) at diagnosis could predict adverse clinical outcomes in patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV). Design A retrospective, single-centre observational cohort analysis of patients with AAV. Methods All-cause mortality and end-stage renal disease (ESRD) were investigated outcomes during the observation period. PINI was calculated by serum albumin (g/mL) × 0.9 - monocyte count (/mm3) × 0.0007, and the optimal cut-off of PINI was obtained using a Youden index-based bootstrapping method. Cox hazard analyses were performed to identify independent predictors of patient outcomes. Results Of the 250 eligible patients, the median age of patients was 60.0 years, and 34.0% were men. During the disease course, 33 (13.2%) died and 42 (16.8%) developed ESRD, respectively. The ideal PINI cut-offs for all-cause mortality and ESRD were set as ⩽2.47 and ⩽3.12 (sensitivity and specificity of 75.1% and 60.6% for mortality and 46.2% and 78.6% for ESRD). AAV patients with PINI ⩽2.47 and those with PINI ⩽3.12 exhibited significantly higher rates for all-cause mortality and ESRD compared to those with PINI >2.47 and >3.12. In the multivariable Cox analysis, PINI ⩽2.47 (hazard ratio [HR]: 3.173, 95% confidence interval [CI]: 1.129, 8.916, p = 0.029) was independently associated with all-cause patient mortality; however, PINI ⩽3.12 was not independently associated with ESRD (HR: 1.097, 95% CI: 0.419, 2.870, p = 0.850). Conclusion Findings from this study demonstrated PINI could predict all-cause patient mortality in AAV, and a higher clinical attention is warranted in those with PINI ⩽2.47 at initial diagnosis.
Collapse
Affiliation(s)
- Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Yoon Pyo
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
90
|
Hemmati J, Azizi M, Asghari B, Arabestani MR. Multidrug-Resistant Pathogens in Burn Wound, Prevention, Diagnosis, and Therapeutic Approaches (Conventional Antimicrobials and Nanoparticles). THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:8854311. [PMID: 37521436 PMCID: PMC10386904 DOI: 10.1155/2023/8854311] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Multidrug-resistant pathogens are one of the common causes of death in burn patients and have a high risk of nosocomial infections, especially pneumonia, urinary tract infections, and cellulitis. The role of prolonged hospitalization and empirical antibiotics administration in developing multidrug-resistant pathogens is undeniable. In the early days of admitting burn patients, Gram-positive bacteria were the dominant isolates with a more sensitive antibiotic pattern. However, the emergence of Gram-negative bacteria that are more resistant later occurs. Trustworthy guideline administration in burn wards is one of the strategies to prevent multidrug-resistant pathogens. Also, a multidisciplinary therapeutic approach is an effective way to avoid antibiotic resistance that involves infectious disease specialists, pharmacists, and burn surgeons. However, the emerging resistance to conventional antimicrobial approaches (such as systemic antibiotic exposure, traditional wound dressing, and topical antibiotic ointments) among burn patients has challenged the treatment of multidrug-resistant infections, and using nanoparticles is a suitable alternative. In this review article, we will discuss different aspects of multidrug-resistant pathogens in burn wounds, emphasizing the full role of these pathogens in burn wounds and discussing the application of nanotechnology in dealing with them. Also, some advances in various types of nanomaterials, including metallic nanoparticles, liposomes, hydrogels, carbon quantum dots, and solid lipid nanoparticles in burn wound healing, will be explained.
Collapse
Affiliation(s)
- Jaber Hemmati
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Babak Asghari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
91
|
Teh YC, Chooi MY, Chong SZ. Behind the monocyte's mystique: uncovering their developmental trajectories and fates. DISCOVERY IMMUNOLOGY 2023; 2:kyad008. [PMID: 38567063 PMCID: PMC10917229 DOI: 10.1093/discim/kyad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 04/04/2024]
Abstract
Monocytes are circulating myeloid cells that are derived from dedicated progenitors in the bone marrow. Originally thought of as mere precursors for the replacement of tissue macrophages, it is increasingly clear that monocytes execute distinct effector functions and may give rise to monocyte-derived cells with unique properties from tissue-resident macrophages. Recently, the advent of novel experimental approaches such as single-cell analysis and fate-mapping tools has uncovered an astonishing display of monocyte plasticity and heterogeneity, which we believe has emerged as a key theme in the field of monocyte biology in the last decade. Monocyte heterogeneity is now recognized to develop as early as the progenitor stage through specific imprinting mechanisms, giving rise to specialized effector cells in the tissue. At the same time, monocytes must overcome their susceptibility towards cellular death to persist as monocyte-derived cells in the tissues. Environmental signals that preserve their heterogenic phenotypes and govern their eventual fates remain incompletely understood. In this review, we will summarize recent advances on the developmental trajectory of monocytes and discuss emerging concepts that contributes to the burgeoning field of monocyte plasticity and heterogeneity.
Collapse
Affiliation(s)
- Ye Chean Teh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ming Yao Chooi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
92
|
Medrano-Bosch M, Simón-Codina B, Jiménez W, Edelman ER, Melgar-Lesmes P. Monocyte-endothelial cell interactions in vascular and tissue remodeling. Front Immunol 2023; 14:1196033. [PMID: 37483594 PMCID: PMC10360188 DOI: 10.3389/fimmu.2023.1196033] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Monocytes are circulating leukocytes of innate immunity derived from the bone marrow that interact with endothelial cells under physiological or pathophysiological conditions to orchestrate inflammation, angiogenesis, or tissue remodeling. Monocytes are attracted by chemokines and specific receptors to precise areas in vessels or tissues and transdifferentiate into macrophages with tissue damage or infection. Adherent monocytes and infiltrated monocyte-derived macrophages locally release a myriad of cytokines, vasoactive agents, matrix metalloproteinases, and growth factors to induce vascular and tissue remodeling or for propagation of inflammatory responses. Infiltrated macrophages cooperate with tissue-resident macrophages during all the phases of tissue injury, repair, and regeneration. Substances released by infiltrated and resident macrophages serve not only to coordinate vessel and tissue growth but cellular interactions as well by attracting more circulating monocytes (e.g. MCP-1) and stimulating nearby endothelial cells (e.g. TNF-α) to expose monocyte adhesion molecules. Prolonged tissue accumulation and activation of infiltrated monocytes may result in alterations in extracellular matrix turnover, tissue functions, and vascular leakage. In this review, we highlight the link between interactions of infiltrating monocytes and endothelial cells to regulate vascular and tissue remodeling with a special focus on how these interactions contribute to pathophysiological conditions such as cardiovascular and chronic liver diseases.
Collapse
Affiliation(s)
- Mireia Medrano-Bosch
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Blanca Simón-Codina
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pedro Melgar-Lesmes
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
93
|
Wang X, Fu S, Yu J, Ma F, Zhang L, Wang J, Wang L, Tan Y, Yi H, Wu H, Xu Z. Renal interferon-inducible protein 16 expression is associated with disease activity and prognosis in lupus nephritis. Arthritis Res Ther 2023; 25:112. [PMID: 37393341 PMCID: PMC10314472 DOI: 10.1186/s13075-023-03094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is one of the most severe complications of systemic lupus erythematosus (SLE). However, the current management of LN remains unsatisfactory due to sneaky symptoms during early stages and lack of reliable predictors of disease progression. METHODS Bioinformatics and machine learning algorithms were initially used to explore the potential biomarkers for LN development. Identified biomarker expression was evaluated by immunohistochemistry (IHC) and multiplex immunofluorescence (IF) in 104 LN patients, 12 diabetic kidney disease (DKD) patients, 12 minimal change disease (MCD) patients, 12 IgA nephropathy (IgAN) patients and 14 normal controls (NC). The association of biomarker expression with clinicopathologic indices and prognosis was analyzed. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were utilized to explore potential mechanisms. RESULTS Interferon-inducible protein 16 (IFI16) was identified as a potential biomarker for LN. IFI16 was highly expressed in the kidneys of LN patients compared to those with MCD, DKD, IgAN or NC. IFI16 co-localized with certain renal and inflammatory cells. Glomerular IFI16 expression was correlated with pathological activity indices of LN, while tubulointerstitial IFI16 expression was correlated with pathological chronicity indices. Renal IFI16 expression was positively associated with systemic lupus erythematosus disease activity index (SLEDAI) and serum creatinine while negatively related to baseline eGFR and serum complement C3. Additionally, higher IFI16 expression was closely related to poorer prognosis of LN patients. GSEA and GSVA suggested that IFI16 expression was involved in adaptive immune-related processes of LN. CONCLUSION Renal IFI16 expression is a potential biomarker for disease activity and clinical prognosis in LN patients. Renal IFI16 levels may be used to shed light on predicting the renal response and develop precise therapy for LN.
Collapse
Affiliation(s)
- Xueyao Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Shaojie Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Jinyu Yu
- Department of Renal Pathology, The First Hospital of Jilin University, Changchun, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lihong Zhang
- Department of Pathology, Basic Medical College of Jilin University, Changchun, China
| | - Jiahui Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Luyu Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yue Tan
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China.
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
94
|
Haidar Z, Traboulsi H, Eidelman DH, Baglole CJ. Differential inflammatory profile in the lungs of mice exposed to cannabis smoke with varying THC:CBD ratio. Arch Toxicol 2023; 97:1963-1978. [PMID: 37179517 PMCID: PMC10183104 DOI: 10.1007/s00204-023-03514-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Cannabis contains cannabinoids including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC causes the psychoactive effects of cannabis, and both THC and CBD are thought to be anti-inflammatory. Cannabis is typically consumed by inhaling smoke that contains thousands of combustion products that may damage the lungs. However, the relationship between cannabis smoke exposure and alterations in respiratory health is poorly defined. To address this gap in knowledge, we first developed a mouse model of cannabis smoke exposure using a nose-only rodent inhalation exposure system. We then tested the acute effects of two dried cannabis products that differ substantially in their THC-CBD ratio: Indica-THC dominant (I-THC; 16-22% THC) and Sativa-CBD dominant (S-CBD; 13-19% CBD). We demonstrate that this smoke exposure regime not only delivers physiologically relevant levels of THC to the bloodstream, but that acute inhalation of cannabis smoke modulates the pulmonary immune response. Cannabis smoke decreased the percentage of lung alveolar macrophages but increased lung interstitial macrophages (IMs). There was also a decrease in lung dendritic cells as well as Ly6Cintermediate and Ly6Clow monocytes, but an increase in lung neutrophils and CD8+ T cells. These immune cell changes were paralleled with changes in several immune mediators. These immunological modifications were more pronounced when mice were exposed to S-CBD compared to the I-THC variety. Thus, we show that acute cannabis smoke differentially affects lung immunity based on the THC:CBD ratio, thereby providing a foundation to further explore the effect of chronic cannabis smoke exposures on pulmonary health.
Collapse
Affiliation(s)
- Zahraa Haidar
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd (EM22248), Montreal, QC, H4A3J1, Canada
- Meakins-Christie Laboratories, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd (EM22248), Montreal, QC, H4A3J1, Canada
- Meakins-Christie Laboratories, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd (EM22248), Montreal, QC, H4A3J1, Canada
- Meakins-Christie Laboratories, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd (EM22248), Montreal, QC, H4A3J1, Canada.
- Meakins-Christie Laboratories, Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
95
|
Erden E, Turk AC, Erden E. Can the monocyte-to-HDL ratio be used as an inflammation marker in patients with fibromyalgia syndrome? Niger J Clin Pract 2023; 26:998-1004. [PMID: 37635586 DOI: 10.4103/njcp.njcp_875_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Background and Aim The monocyte-to-high-density lipoprotein (HDL) ratio (MHR) may be used as a marker of inflammation and oxidative stress. This study aimed to evaluate the use of MHR and platelet markers in patients with fibromyalgia syndrome (FMS) and demonstrate MHR's relationship with inflammation, the Fibromyalgia Impact Questionnaire (FIQ), and quality of life. Materials and Methods Ninety FMS patients and 90 healthy controls, whose clinical and laboratory evaluations were performed simultaneously, were included in the study. The monocyte, platelet, HDL, MHR, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), mean platelet volume (MPV), and platelet distribution width (PDW) values of all patients were evaluated. The quality of life of the participants was assessed using the FIQ and their general health using the health assessment questionnaire (HAQ). Results Age, body mass index (BMI), and marital status distribution were similar in both groups. The FMS patients had a mean disease duration of 11.29 ± 2.62 months. The median monocyte, platelet, MPV, visual analog scale (VAS), FIQ, and HAQ values and the mean MHR of the FMS patients were significantly higher than the control group, while the mean HDL level was significantly lower (P < 0.05). There was a weak negative correlation between the MPV and HAQ score and the PDW and HAQ score (rs = -0.225, P = 0.042 and rs = -0.249, P = 0.024, respectively), whereas no correlation was detected between the MHR and the FIQ and HAQ scores in FMS patients. According to the receiver operating characteristic curve analysis, MHR had prediction of FMS (P = 0.002; sensitivity = 0.63, specificity = 0.50, cut-off point ≥8.4). Conclusions Our results suggest that the monocyte, platelet, HDL, MHR, and MPV parameters can be used in the evaluation of inflammation in FMS patients.
Collapse
Affiliation(s)
- E Erden
- Department of Physical Medicine and Rehabilitation, Hitit University, Faculty of Medicine, Çorum, Turkey
| | - A C Turk
- Department of Physical Medicine and Rehabilitation, Hitit University, Faculty of Medicine, Çorum, Turkey
| | - E Erden
- Department of Physical Medicine and Rehabilitation, Hitit University Erol Olçok Education and Research Hospital Çorum, Turkey
| |
Collapse
|
96
|
Peh ZH, Dihoum A, Hutton D, Arthur JSC, Rena G, Khan F, Lang CC, Mordi IR. Inflammation as a therapeutic target in heart failure with preserved ejection fraction. Front Cardiovasc Med 2023; 10:1125687. [PMID: 37456816 PMCID: PMC10339321 DOI: 10.3389/fcvm.2023.1125687] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for around half of all cases of heart failure and may become the dominant type of heart failure in the near future. Unlike HF with reduced ejection fraction there are few evidence-based treatment strategies available. There is a significant unmet need for new strategies to improve clinical outcomes in HFpEF patients. Inflammation is widely thought to play a key role in HFpEF pathophysiology and may represent a viable treatment target. In this review focusing predominantly on clinical studies, we will summarise the role of inflammation in HFpEF and discuss potential therapeutic strategies targeting inflammation.
Collapse
Affiliation(s)
- Zhen Hui Peh
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - Adel Dihoum
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Dana Hutton
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Graham Rena
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Faisel Khan
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Chim C. Lang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Ify R. Mordi
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
97
|
Yang J, Zhang L, Peng X, Zhang S, Sun S, Ding Q, Ding C, Liu W. Polymer-Based Wound Dressings Loaded with Ginsenoside Rg3. Molecules 2023; 28:5066. [PMID: 37446725 DOI: 10.3390/molecules28135066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The skin, the largest organ in the human body, mainly plays a protective role. Once damaged, it can lead to acute or chronic wounds. Wound healing involves a series of complex physiological processes that require ideal wound dressings to promote it. The current wound dressings have characteristics such as high porosity and moderate water vapor permeability, but they are limited in antibacterial properties and cannot protect wounds from microbial infections, which can delay wound healing. In addition, several dressings contain antibiotics, which may have bad impacts on patients. Natural active substances have good biocompatibility; for example, ginsenoside Rg3 has anti-inflammatory, antibacterial, antioxidant, and other biological activities, which can effectively promote wound healing. Some researchers have developed various polymer wound dressings loaded with ginsenoside Rg3 that have good biocompatibility and can effectively promote wound healing and reduce scar formation. This article will focus on the application and mechanism of ginsenoside Rg3-loaded dressings in wounds.
Collapse
Affiliation(s)
- Jiali Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lifeng Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaojuan Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| |
Collapse
|
98
|
Britt RD, Ruwanpathirana A, Ford ML, Lewis BW. Macrophages Orchestrate Airway Inflammation, Remodeling, and Resolution in Asthma. Int J Mol Sci 2023; 24:10451. [PMID: 37445635 PMCID: PMC10341920 DOI: 10.3390/ijms241310451] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a heterogenous chronic inflammatory lung disease with endotypes that manifest different immune system profiles, severity, and responses to current therapies. Regardless of endotype, asthma features increased immune cell infiltration, inflammatory cytokine release, and airway remodeling. Lung macrophages are also heterogenous in that there are separate subsets and, depending on the environment, different effector functions. Lung macrophages are important in recruitment of immune cells such as eosinophils, neutrophils, and monocytes that enhance allergic inflammation and initiate T helper cell responses. Persistent lung remodeling including mucus hypersecretion, increased airway smooth muscle mass, and airway fibrosis contributes to progressive lung function decline that is insensitive to current asthma treatments. Macrophages secrete inflammatory mediators that induce airway inflammation and remodeling. Additionally, lung macrophages are instrumental in protecting against pathogens and play a critical role in resolution of inflammation and return to homeostasis. This review summarizes current literature detailing the roles and existing knowledge gaps for macrophages as key inflammatory orchestrators in asthma pathogenesis. We also raise the idea that modulating inflammatory responses in lung macrophages is important for alleviating asthma.
Collapse
Affiliation(s)
- Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Anushka Ruwanpathirana
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Maria L Ford
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Brandon W Lewis
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| |
Collapse
|
99
|
Srivastava P, Nishiyama S, Lin SH, Srivastava A, Su C, Peng W, Levy M, Schwarzschild M, Xu Y, Chen X. Peripheral MC1R activation modulates immune responses and is neuroprotective in a mouse model of Parkinson's disease. RESEARCH SQUARE 2023:rs.3.rs-3042571. [PMID: 37398302 PMCID: PMC10312952 DOI: 10.21203/rs.3.rs-3042571/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background Melanocortin 1 receptor (MC1R) is a key pigmentation gene, and loss-of-function of MC1R variants that produce red hair may be associated with Parkinson's disease (PD). We previously reported compromised dopaminergic neuron survival in Mc1r mutant mice and dopaminergic neuroprotective effects of local injection of a MC1R agonist to the brain or a systemically administered MC1R agonist with appreciable CNS permeability. Beyond melanocytes and dopaminergic neurons, MC1R is expressed in other peripheral tissues and cell types, including immune cells. The present study investigates the impact of NDP-MSH, a synthetic melanocortin receptor (MCR) agonist that does not cross BBB, on the immune system and the nigrostriatal dopaminergic system in mouse model of PD. Methods C57BL/6 mice were treated systemically with MPTP.HCl (20 mg/kg) and LPS (1 mg/kg) from day 1 to day 4 and NDP-MSH (400 μg/kg) or vehicle from day 1 to day 12 following which the mice were sacrificed. Peripheral and CNS immune cells were phenotyped and inflammatory markers were measured. The nigrostriatal dopaminergic system was assessed behaviorally, chemically, immunologically, and pathologically. To understand the role of regulatory T cells (Tregs) in this model, CD25 monoclonal antibody was used to deplete CD25+ Tregs. Results Systemic NDP-MSH administration significantly attenuated striatal dopamine depletion and nigral dopaminergic neuron loss induced by MPTP+LPS. It improved the behavioral outcomes in the pole test. Mc1r mutant mice injected with NDP-MSH in the MPTP and LPS paradigm showed no changes in striatal dopamine levels suggesting that the NDP-MSH acts through the MC1R pathway. Although no NDP-MSH was detected in the brain, peripheral, NDP-MSH attenuated neuroinflammation as observed by diminished microglial activation in the nigral region, along with reduced TNF-α and IL1β levels in the ventral midbrain. Depletion of Tregs limited the neuroprotective effects of NDP-MSH. Conclusions Our study demonstrates that peripherally acting NDP-MSH confers protection on dopaminergic nigrostriatal neurons and reduces hyperactivated microglia. NDP-MSH modulates peripheral immune responses, and Tregs may be involved in the neuroprotective effect of NDP-MSH.
Collapse
Affiliation(s)
- Pranay Srivastava
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Shuhei Nishiyama
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Sonia H Lin
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Akriti Srivastava
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Chienwen Su
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston
| | - Michael Levy
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Michael Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Yuehang Xu
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Xiqun Chen
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
100
|
Todd BP, Luo Z, Gilkes N, Chimenti MS, Peterson Z, Mix M, Harty JT, Nickl-Jockschat T, Ferguson PJ, Bassuk AG, Newell EA. Selective neuroimmune modulation by type I interferon drives neuropathology and neurologic dysfunction following traumatic brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543774. [PMID: 37333385 PMCID: PMC10274693 DOI: 10.1101/2023.06.06.543774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Accumulating evidence suggests that type I interferon (IFN-I) signaling is a key contributor to immune cell-mediated neuropathology in neurodegenerative diseases. Recently, we demonstrated a robust upregulation of type I interferon-stimulated genes in microglia and astrocytes following experimental traumatic brain injury (TBI). The specific molecular and cellular mechanisms by which IFN-I signaling impacts the neuroimmune response and neuropathology following TBI remains unknown. Using the lateral fluid percussion injury model (FPI) in adult male mice, we demonstrated that IFN α/β receptor (IFNAR) deficiency resulted in selective and sustained blockade of type I interferon-stimulated genes following TBI as well as decreased microgliosis and monocyte infiltration. Phenotypic alteration of reactive microglia also occurred with diminished expression of molecules needed for MHC class I antigen processing and presentation following TBI. This was associated with decreased accumulation of cytotoxic T cells in the brain. The IFNAR-dependent modulation of the neuroimmune response was accompanied by protection from secondary neuronal death, white matter disruption, and neurobehavioral dysfunction. These data support further efforts to leverage the IFN-I pathway for novel, targeted therapy of TBI.
Collapse
|