51
|
Laera N, Malerba P, Vacanti G, Nardin S, Pagnesi M, Nardin M. Impact of Immunity on Coronary Artery Disease: An Updated Pathogenic Interplay and Potential Therapeutic Strategies. Life (Basel) 2023; 13:2128. [PMID: 38004268 PMCID: PMC10672143 DOI: 10.3390/life13112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. It is a result of the buildup of atherosclerosis within the coronary arteries. The role of the immune system in CAD is complex and multifaceted. The immune system responds to damage or injury to the arterial walls by initiating an inflammatory response. However, this inflammatory response can become chronic and lead to plaque formation. Neutrophiles, macrophages, B lymphocytes, T lymphocytes, and NKT cells play a key role in immunity response, both with proatherogenic and antiatherogenic signaling pathways. Recent findings provide new roles and activities referring to endothelial cells and vascular smooth muscle cells, which help to clarify the intricate signaling crosstalk between the involved actors. Research is ongoing to explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis. This review aims to summarize the pathogenic interplay between immunity and CAD and the potential therapeutic strategies, and explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis.
Collapse
Affiliation(s)
- Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Second Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Paolo Malerba
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Division of Medicine, Department of Medicine, ASST Spedali Civili di Montichiari, 25018 Montichiari, Italy
| | - Gaetano Vacanti
- Medical Clinic IV, Department of Cardiology, Municipal Hospital, 76133 Karlsruhe, Germany;
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Matteo Pagnesi
- Division of Cardiology, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy;
- Third Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
52
|
Fletcher EK, Ngwenyama N, Nguyen N, Turner SE, Covic L, Alcaide P, Kuliopulos A. Suppression of Heart Failure With PAR1 Pepducin Technology in a Pressure Overload Model in Mice. Circ Heart Fail 2023; 16:e010621. [PMID: 37477012 PMCID: PMC10592519 DOI: 10.1161/circheartfailure.123.010621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND PAR1 (protease-activated receptor-1) contributes to acute thrombosis, but it is not clear whether the receptor is involved in deleterious inflammatory and profibrotic processes in heart failure. Here, we employ the pepducin technology to determine the effects of targeting PAR1 in a mouse heart failure with reduced ejection fraction model. METHODS After undergoing transverse aortic constriction pressure overload or sham surgery, C57BL/6J mice were randomized to daily sc PZ-128 pepducin or vehicle, and cardiac function, inflammation, fibrosis, and molecular analyses conducted at 7 weeks RESULTS: After 7 weeks of transverse aortic constriction, vehicle mice had marked increases in macrophage/monocyte infiltration and fibrosis of the left ventricle as compared with Sham mice. PZ-128 treatment significantly suppressed the inflammatory cell infiltration and cardiac fibrosis. Despite no effect on myocyte cell hypertrophy, PZ-128 afforded a significant reduction in overall left ventricle weight and completely protected against the transverse aortic constriction-induced impairments in left ventricle ejection fraction. PZ-128 significantly suppressed transverse aortic constriction-induced increases in an array of genes involved in myocardial stress, fibrosis, and inflammation. CONCLUSIONS The PZ-128 pepducin is highly effective in protecting against cardiac inflammation, fibrosis, and loss of left ventricle function in a mouse model.
Collapse
Affiliation(s)
- Elizabeth K Fletcher
- Center for Hemostasis and Thrombosis Research, Department of Medicine, Division of Hematology-Oncology, Tufts Medical Center (E.K.F., N. Nguyen, S.E.T., L.C., A.K.)
| | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, MA (N. Ngwenyama, P.A.)
| | - Nga Nguyen
- Center for Hemostasis and Thrombosis Research, Department of Medicine, Division of Hematology-Oncology, Tufts Medical Center (E.K.F., N. Nguyen, S.E.T., L.C., A.K.)
| | - Susan E Turner
- Center for Hemostasis and Thrombosis Research, Department of Medicine, Division of Hematology-Oncology, Tufts Medical Center (E.K.F., N. Nguyen, S.E.T., L.C., A.K.)
| | - Lidija Covic
- Center for Hemostasis and Thrombosis Research, Department of Medicine, Division of Hematology-Oncology, Tufts Medical Center (E.K.F., N. Nguyen, S.E.T., L.C., A.K.)
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA (N. Ngwenyama, P.A.)
| | - Athan Kuliopulos
- Center for Hemostasis and Thrombosis Research, Department of Medicine, Division of Hematology-Oncology, Tufts Medical Center (E.K.F., N. Nguyen, S.E.T., L.C., A.K.)
| |
Collapse
|
53
|
Jiang H, Fang T, Cheng Z. Mechanism of heart failure after myocardial infarction. J Int Med Res 2023; 51:3000605231202573. [PMID: 37818767 PMCID: PMC10566288 DOI: 10.1177/03000605231202573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/14/2023] [Indexed: 10/13/2023] Open
Abstract
Despite the widespread use of early revascularization and drugs to regulate the neuroendocrine system, the impact of such measures on alleviating the development of heart failure (HF) after myocardial infarction (MI) remains limited. Therefore, it is important to discuss the development of new therapeutic strategies to prevent or reverse HF after MI. This requires a better understanding of the potential mechanisms involved. HF after MI is the result of complex pathophysiological processes, with adverse ventricular remodeling playing a major role. Adverse ventricular remodeling refers to the heart's adaptation in terms of changes in ventricular size, shape, and function under the influence of various regulatory factors, including the mechanical, neurohormonal, and cardiac inflammatory immune environments; ischemia/reperfusion injury; energy metabolism; and genetic correlation factors. Additionally, unique right ventricular dysfunction can occur secondary to ischemic shock in the surviving myocardium. HF after MI may also be influenced by other factors. This review summarizes the main pathophysiological mechanisms of HF after MI and highlights sex-related differences in the prognosis of patients with acute MI. These findings provide new insights for guiding the development of targeted treatments to delay the progression of HF after MI and offering incremental benefits to existing therapies.
Collapse
Affiliation(s)
- Huaiyu Jiang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Fang
- Department of Cardiology, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zeyi Cheng
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
54
|
Lavine KJ, Sultan D, Luehmann H, Detering L, Zhang X, Heo GS, Zhang X, Hoelscher M, Harrison K, Combadière C, Laforest R, Kreisel D, Woodard PK, Brody SL, Gropler RJ, Liu Y. CCR2 Imaging in Human ST-Segment Elevation Myocardial Infarction. NATURE CARDIOVASCULAR RESEARCH 2023; 2:874-880. [PMID: 38947883 PMCID: PMC11210834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Among the diverse populations of myeloid cells that reside within the healthy and diseased heart, C-C chemokine receptor 2 (CCR2) is specifically expressed on inflammatory populations of monocytes and macrophages that contribute to the development and progression of heart failure1-4. Here, we evaluated a peptide-based imaging probe (64Cu-DOTA-ECL1i) that specifically recognizes CCR2+ monocytes and macrophages for human cardiac imaging. Compared to healthy controls, 64Cu-DOTA-ECL1i heart uptake was increased in subjects following acute myocardial infarction, predominately localized within the infarct area, and was associated with impaired myocardial wall motion. These findings establish the feasibility of molecular imaging of CCR2 expression to visualize inflammatory monocytes and macrophages in the injured human heart.
Collapse
Affiliation(s)
- Kory J Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, MO USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO USA
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO USA
| | - Deborah Sultan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Lisa Detering
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Xiaohui Zhang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Gyu Seong Heo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Xiuli Zhang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Michelle Hoelscher
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Kitty Harrison
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Christophe Combadière
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, F-75013 Paris, France
| | - Richard Laforest
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Daniel Kreisel
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO USA
| | - Pamela K. Woodard
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Steven L. Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Robert J Gropler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
55
|
He D, Zeng L, Chen P. Research progress in pharmacological effects of Aralia elata. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:616-626. [PMID: 37916310 PMCID: PMC10630058 DOI: 10.3724/zdxbyxb-2023-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/24/2023] [Indexed: 10/08/2023]
Abstract
The traditional Chinese medicine Aralia elata (Miq.) Seem., also known as Aralia mandshurica, has the effect of "tonifying Qi and calming the mind, strengthening the essence and tonifying the kidneys, and dispelling wind and invigorating blood circulation". It is used in the treatment of neurasthenia, Yang deficiency and Qi deficiency, kidney Qi deficiency, spleen Yang deficiency, water-dampness stagnation, thirst, and bruises. Aralia elata saponins are the main components for the pharmacological effects. From the perspective of modern pharmacological science, Aralia elata has a wide range of effects, including anti-myocardial ischaemia and alleviation of secondary myocardium ischemic reperfusion injury by regulating ionic homeostasis, anti-tumor activity by inhibiting proliferation, promoting apoptosis and enhancing immunity, hypoglycemia and lipid lowering effects by regulating glucose and lipid metabolism, and hepato-protective, neuroprotective, anti-inflammatory/analgesic effects. The studies on pharmacological mechanisms of Aralia elata will be conducive to its development and application in the future. This article reviews the research progress of Aralia elata domestically and internationally in the last two decades and proposes new directions for further research.
Collapse
Affiliation(s)
- Dahong He
- School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| | - Peng Chen
- School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| |
Collapse
|
56
|
Gu J, Zhang LN, Gu X, Zhu Y. Identification of hub genes associated with oxidative stress in heart failure and their correlation with immune infiltration using bioinformatics analysis. PeerJ 2023; 11:e15893. [PMID: 37609434 PMCID: PMC10441528 DOI: 10.7717/peerj.15893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023] Open
Abstract
Both oxidative stress and the immune response are associated with heart failure (HF). In this study, our aim was to identify the hub genes associated with oxidative stress andimmune infiltration of HF by bioinformatics analysis and experimental verification. The expression profile of GSE36074 was obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were screened by GEO2R. The genes related to oxidative stress were extracted from GeneCards websites. Then, the functional enrichment analysis of oxidative stress-related DEGs (OSRDEGs) was performed using DAVID. In addition, we constructed a protein-protein interaction (PPI) network using the STRING database and screened for hub genes with Cytoscape software. We also used CIBERSORTx to analyze immune infiltration in mice heart tissues between the TAC and Sham groups and explored the correlation between immune cells and hub genes. Finally, the hub genes were carried out using reverse transcription quantitative PCR (RT-qPCR), immunohistochemistry (IHC) and western blot. A total of 136 OSRDEGs were found in GSE36074. Enrichment analysis revealed that these OSRDEGs were enriched in the mitochondrion, HIF-1, FoxO, MAPK and TNF signaling pathway. The five hub genes (Mapk14, Hif1a, Myc, Hsp90ab1, and Hsp90aa1) were screened by the cytoHubba plugin. The correlation analysis between immune cells and hub genes showed that Mapk14 was positively correlated with Th2 Cells, while Hif1a and Hsp90ab1exhibited a negative correlation with Th2 Cells; Myc exhibited a negative correlation with Monocytes; whereas, Hsp90aa1 was negatively correlated with NK Resting. Finally, five hub genes were validated by RT-qPCR, IHC and western blot. Mapk14, Hif1a, Myc, Hsp90ab1, and Hsp90aa1 are hub genes of HF and may play a critical role in the oxidative stress of HF. This study may provide new targets for the treatment of HF, and the potential immunotherapies are worthy of further study.
Collapse
Affiliation(s)
- Jianjun Gu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Li Na Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiang Gu
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Ye Zhu
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| |
Collapse
|
57
|
Wilson HM. Modulation of macrophages by biophysical cues in health and beyond. DISCOVERY IMMUNOLOGY 2023; 2:kyad013. [PMID: 38567062 PMCID: PMC10917218 DOI: 10.1093/discim/kyad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 08/09/2023] [Indexed: 04/04/2024]
Abstract
Macrophages play a key role in tissue development and homeostasis, innate immune defence against microbes or tumours, and restoring homeostasis through tissue regeneration following infection or injury. The ability to adopt such diverse functions is due to their heterogeneous nature, which is driven largely by their developmental origin and their response to signals they encounter from the microenvironment. The most well-characterized signals driving macrophage phenotype and function are biochemical and metabolic. However, the way macrophages sense and respond to their extracellular biophysical environment is becoming increasingly recognized in the field of mechano-immunology. These biophysical cues can be signals from tissue components, such as the composition and charge of extracellular matrix or topography, elasticity, and stiffness of the tissue surrounding cells; and mechanical forces such as shear stress or stretch. Macrophages are important in determining whether a disease resolves or becomes chronic. Ageing and diseases such as cancer or fibrotic disorders are associated with significant changes in the tissue biophysical environment, and this provides signals that integrate with those from biochemical and metabolic stimuli to ultimately dictate the overall function of macrophages. This review provides a brief overview of macrophage polarization, followed by a selection of commonly recognized physiological and applied biophysical stimuli impacting macrophage activity, and the potential signalling mechanisms driving downstream responses. The effects of biophysical cues on macrophages' function in homeostasis and disease and the associated clinical implications are also highlighted.
Collapse
Affiliation(s)
- Heather M Wilson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
58
|
Guo Y, You Y, Shang FF, Wang X, Huang B, Zhao B, Lv D, Yang S, Xie M, Kong L, Du D, Luo S, Tian X, Xia Y. iNOS aggravates pressure overload-induced cardiac dysfunction via activation of the cytosolic-mtDNA-mediated cGAS-STING pathway. Theranostics 2023; 13:4229-4246. [PMID: 37554263 PMCID: PMC10405855 DOI: 10.7150/thno.84049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
Background: Sterile inflammation contributes to the pathogenesis of cardiac dysfunction caused by various conditions including pressure overload in hypertension. Mitochondrial DNA (mtDNA) released from damaged mitochondria has been implicated in cardiac inflammation. However, the upstream mechanisms governing mtDNA release and how mtDNA activates sterile inflammation in pressure-overloaded hearts remain largely unknown. Here, we investigated the role of inducible NO synthase (iNOS) on pressure overload-induced cytosolic accumulation of mtDNA and whether mtDNA activated inflammation through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Methods: To investigate whether the cGAS-STING cascade was involved in sterile inflammation and cardiac dysfunction upon pressure overload, cardiomyocyte-specific STING depletion mice and mice injected with adeno-associated virus-9 (AAV-9) to suppress the cGAS-STING cascade in the heart were subjected to transverse aortic constriction (TAC). iNOS null mice were used to determine the role of iNOS in cGAS-STING pathway activation in pressure-stressed hearts. Results: iNOS knockout abrogated mtDNA release and alleviated cardiac sterile inflammation resulting in improved cardiac function. Conversely, activating the cGAS-STING pathway blunted the protective effects of iNOS knockout. Moreover, iNOS activated the cGAS-STING pathway in isolated myocytes and this was prevented by depleting cytosolic mtDNA. In addition, disruption of the cGAS-STING pathway suppressed inflammatory cytokine transcription and modulated M1/M2 macrophage polarization, and thus mitigated cardiac remodeling and improved heart function. Finally, increased iNOS expression along with cytosolic mtDNA accumulation and cGAS-STING activation were also seen in human hypertensive hearts. Conclusion: Our findings demonstrate that mtDNA is released into the cytosol and triggers sterile inflammation through the cGAS-STING pathway leading to cardiac dysfunction after pressure overload. iNOS controls mtDNA release and subsequent cGAS activation in pressure-stressed hearts.
Collapse
Affiliation(s)
- Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuehua You
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fei-Fei Shang
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bi Huang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Boying Zhao
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, China
| | - Dingyi Lv
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shenglan Yang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ming Xie
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, China
| | - Dingyuan Du
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yong Xia
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
- Davis Heart & Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University College of Medicine, OH 43210, USA
| |
Collapse
|
59
|
DeBerge M, Chaudhary R, Schroth S, Thorp EB. Immunometabolism at the Heart of Cardiovascular Disease. JACC Basic Transl Sci 2023; 8:884-904. [PMID: 37547069 PMCID: PMC10401297 DOI: 10.1016/j.jacbts.2022.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 08/08/2023]
Abstract
Immune cell function among the myocardium, now more than ever, is appreciated to regulate cardiac function and pathophysiology. This is the case for both innate immunity, which includes neutrophils, monocytes, dendritic cells, and macrophages, as well as adaptive immunity, which includes T cells and B cells. This function is fueled by cell-intrinsic shifts in metabolism, such as glycolysis and oxidative phosphorylation, as well as metabolite availability, which originates from the surrounding extracellular milieu and varies during ischemia and metabolic syndrome. Immune cell crosstalk with cardiac parenchymal cells, such as cardiomyocytes and fibroblasts, is also regulated by complex cellular metabolic circuits. Although our understanding of immunometabolism has advanced rapidly over the past decade, in part through valuable insights made in cultured cells, there remains much to learn about contributions of in vivo immunometabolism and directly within the myocardium. Insight into such fundamental cell and molecular mechanisms holds potential to inform interventions that shift the balance of immunometabolism from maladaptive to cardioprotective and potentially even regenerative. Herein, we review our current working understanding of immunometabolism, specifically in the settings of sterile ischemic cardiac injury or cardiometabolic disease, both of which contribute to the onset of heart failure. We also discuss current gaps in knowledge in this context and therapeutic implications.
Collapse
Affiliation(s)
| | | | - Samantha Schroth
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
60
|
Zhao Z, Cui X, Liao Z. Mechanism of fibroblast growth factor 21 in cardiac remodeling. Front Cardiovasc Med 2023; 10:1202730. [PMID: 37416922 PMCID: PMC10322220 DOI: 10.3389/fcvm.2023.1202730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Cardiac remodeling is a basic pathological process that enables the progression of multiple cardiac diseases to heart failure. Fibroblast growth factor 21 is considered a regulator in maintaining energy homeostasis and shows a positive role in preventing damage caused by cardiac diseases. This review mainly summarizes the effects and related mechanisms of fibroblast growth factor 21 on pathological processes associated with cardiac remodeling, based on a variety of cells of myocardial tissue. The possibility of Fibroblast growth factor 21 as a promising treatment for the cardiac remodeling process will also be discussed.
Collapse
Affiliation(s)
- Zeyu Zhao
- Queen Mary College, Nanchang University, Nanchang, China
| | - Xuemei Cui
- Fourth Clinical Medical College, Nanchang University, Nanchang, China
| | - Zhangping Liao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology School of Pharmaceutical Science, Nanchang University, Nanchang, China
| |
Collapse
|
61
|
Yap J, Irei J, Lozano-Gerona J, Vanapruks S, Bishop T, Boisvert WA. Macrophages in cardiac remodelling after myocardial infarction. Nat Rev Cardiol 2023; 20:373-385. [PMID: 36627513 DOI: 10.1038/s41569-022-00823-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
Myocardial infarction (MI), as a result of thrombosis or vascular occlusion, is the most prevalent cause of morbidity and mortality among all cardiovascular diseases. The devastating consequences of MI are compounded by the complexities of cellular functions involved in the initiation and resolution of early-onset inflammation and the longer-term effects related to scar formation. The resultant tissue damage can occur as early as 1 h after MI and activates inflammatory signalling pathways to elicit an immune response. Macrophages are one of the most active cell types during all stages after MI, including the cardioprotective, inflammatory and tissue repair phases. In this Review, we describe the phenotypes of cardiac macrophage involved in MI and their cardioprotective functions. A specific subset of macrophages called resident cardiac macrophages (RCMs) are derived from yolk sac progenitor cells and are maintained as a self-renewing population, although their numbers decrease with age. We explore sophisticated sequencing techniques that demonstrate the cardioprotective properties of this cardiac macrophage phenotype. Furthermore, we discuss the interactions between cardiac macrophages and other important cell types involved in the pathology and resolution of inflammation after MI. We summarize new and promising therapeutic approaches that target macrophage-mediated inflammation and the cardioprotective properties of RCMs after MI. Finally, we discuss future directions for the study of RCMs in MI and cardiovascular health in general.
Collapse
Affiliation(s)
- Jonathan Yap
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Javier Lozano-Gerona
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Selena Vanapruks
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Tianmai Bishop
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
62
|
Wang Z, Du K, Jin N, Tang B, Zhang W. Macrophage in liver Fibrosis: Identities and mechanisms. Int Immunopharmacol 2023; 120:110357. [PMID: 37224653 DOI: 10.1016/j.intimp.2023.110357] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Liver fibrosis is a chronic disease characterized by the deposition of extracellular matrix and continuous loss of tissues that perform liver functions. Macrophages are crucial modulators of innate immunity and play important roles in liver fibrogenesis. Macrophages comprise heterogeneous subpopulations that exhibit different cellular functions. Understanding the identity and function of these cells is essential for understanding the mechanisms of liver fibrogenesis. According to different definitions, liver macrophages are divided into M1/M2 macrophages or monocyte-derived macrophages/Kupffer cells. Classic M1/M2 phenotyping corresponds to pro- or anti-inflammatory effects, and, therefore, influences the degree of fibrosis in later phases. In contrast, the origin of the macrophages is closely associated with their replenishment and activation during liver fibrosis. These two classifications of macrophages depict the function and dynamics of liver-infiltrating macrophages. However, neither description properly elucidates the positive or negative role of macrophages in liver fibrosis. Critical tissue cells mediating liver fibrosis include hepatic stellate cells and hepatic fibroblasts, with hepatic stellate cells being of particular interest because of their close association with macrophages in liver fibrosis. However, the molecular biological descriptions of macrophages are inconsistent between mice and humans, warranting further investigations. In liver fibrosis, macrophages can secrete various pro-fibrotic cytokines, such as TGF-β, Galectin-3 and interleukins (ILs), and fibrosis-inhibiting cytokines, such as IL10. These different secretions may be associated with the specific identity and spatiotemporal characteristics of macrophages. Furthermore, during fibrosis dissipation, macrophages may degrade extracellular matrix by secreting matrix metalloproteinases (MMPs). Notably, using macrophages as therapeutic targets in liver fibrosis has been explored. The current therapeutic approaches for liver fibrosis can by categorized as follows: treatment with macrophage-related molecules and macrophage infusion therapy. Although there have been limited studies, macrophages have shown reliable potential for liver fibrosis treatment. In this review, we focu on the identity and function of macrophages and their relationship to the progression and regression of liver fibrosis.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Emergency Medicine Center, Jinhua Municipal Central Hospital, Zhejiang, China.
| | - Kailei Du
- Dongyang Peoples hospital, Zhejiang, China
| | - Nake Jin
- Ningbo Hangzhou Bay Hospital, Zhejiang, China
| | - Biao Tang
- Jinhua Municipal Central Hospital, Zhejiang, China
| | - Wenwu Zhang
- Department of Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
63
|
Jian Y, Zhou X, Shan W, Chen C, Ge W, Cui J, Yi W, Sun Y. Crosstalk between macrophages and cardiac cells after myocardial infarction. Cell Commun Signal 2023; 21:109. [PMID: 37170235 PMCID: PMC10173491 DOI: 10.1186/s12964-023-01105-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/18/2023] [Indexed: 05/13/2023] Open
Abstract
Cardiovascular diseases, such as myocardial infarction (MI), are a leading cause of death worldwide. Acute MI (AMI) inflicts massive injury to the coronary microcirculation, causing large-scale cardiomyocyte death due to ischemia and hypoxia. Inflammatory cells such as monocytes and macrophages migrate to the damaged area to clear away dead cells post-MI. Macrophages are pleiotropic cells of the innate immune system, which play an essential role in the initial inflammatory response that occurs following MI, inducing subsequent damage and facilitating recovery. Besides their recognized role within the immune response, macrophages participate in crosstalk with other cells (including cardiomyocytes, fibroblasts, immune cells, and vascular endothelial cells) to coordinate post-MI processes within cardiac tissue. Macrophage-secreted exosomes have recently attracted increasing attention, which has led to a more elaborate understanding of macrophage function. Currently, the functional roles of macrophages in the microenvironment of the infarcted heart, particularly with regard to their interaction with surrounding cells, remain unclear. Understanding the specific mechanisms that mediate this crosstalk is essential in treating MI. In this review, we discuss the origin of macrophages, changes in their distribution post-MI, phenotypic and functional plasticity, as well as the specific signaling pathways involved, with a focus on the crosstalk with other cells in the heart. Thus, we provide a new perspective on the treatment of MI. Further in-depth research is required to elucidate the mechanisms underlying crosstalk between macrophages and other cells within cardiac tissue for the identification of potential therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Yuhong Jian
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng Chen
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Ge
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
64
|
Li L, Cao J, Li S, Cui T, Ni J, Zhang H, Zhu Y, Mao J, Gao X, Midgley AC, Zhu M, Fan G. M2 Macrophage-Derived sEV Regulate Pro-Inflammatory CCR2 + Macrophage Subpopulations to Favor Post-AMI Cardiac Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202964. [PMID: 36950739 PMCID: PMC10190454 DOI: 10.1002/advs.202202964] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/21/2023] [Indexed: 05/18/2023]
Abstract
Tissue-resident cardiac macrophage subsets mediate cardiac tissue inflammation and repair after acute myocardial infarction (AMI). CC chemokine receptor 2 (CCR2)-expressing macrophages have phenotypical similarities to M1-polarized macrophages, are pro-inflammatory, and recruit CCR2+ circulating monocytes to infarcted myocardium. Small extracellular vesicles (sEV) from CCR2̶ macrophages, which phenotypically resemble M2-polarized macrophages, promote anti-inflammatory activity and cardiac repair. Here, the authors harvested M2 macrophage-derived sEV (M2EV ) from M2-polarized bone-marrow-derived macrophages for intramyocardial injection and recapitulation of sEV-mediated anti-inflammatory activity in ischemic-reperfusion (I/R) injured hearts. Rats and pigs received sham surgery; I/R without treatment; or I/R with autologous M2EV treatment. M2EV rescued cardiac function and attenuated injury markers, infarct size, and scar size. M2EV inhibited CCR2+ macrophage numbers, reduced monocyte-derived CCR2+ macrophage recruitment to infarct sites, induced M1-to-M2 macrophage switching and promoted neovascularization. Analysis of M2EV microRNA content revealed abundant miR-181b-5p, which regulated macrophage glucose uptake, glycolysis, and mitigated mitochondrial reactive oxygen species generation. Functional blockade of miR-181b-5p is detrimental to beneficial M2EV actions and resulted in failure to inhibit CCR2+ macrophage numbers and infarct size. Taken together, this investigation showed that M2EV rescued myocardial function, improved myocardial repair, and regulated CCR2+ macrophages via miR-181b-5p-dependent mechanisms, indicating an option for cell-free therapy for AMI.
Collapse
Affiliation(s)
- Lan Li
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive RegulationTianjin Central Hospital of Gynecology ObstetricsTianjin300052China
| | - Sheng Li
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Tianyi Cui
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Jingyu Ni
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Han Zhang
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Yan Zhu
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Meifeng Zhu
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Guanwei Fan
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| |
Collapse
|
65
|
Cohen CD, Rousseau ST, Bermea KC, Bhalodia A, Lovell JP, Dina Zita M, Čiháková D, Adamo L. Myocardial Immune Cells: The Basis of Cardiac Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1198-1207. [PMID: 37068299 PMCID: PMC10111214 DOI: 10.4049/jimmunol.2200924] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/14/2023] [Indexed: 04/19/2023]
Abstract
The mammalian heart is characterized by the presence of striated myocytes, which allow continuous rhythmic contraction from early embryonic development until the last moments of life. However, the myocardium contains a significant contingent of leukocytes from every major class. This leukocyte pool includes both resident and nonresident immune cells. Over recent decades, it has become increasingly apparent that the heart is intimately sensitive to immune signaling and that myocardial leukocytes exhibit an array of critical functions, both in homeostasis and in the context of cardiac adaptation to injury. Here, we systematically review current knowledge of all major leukocyte classes in the heart, discussing their functions in health and disease. We also highlight the connection between the myocardium, immune cells, lymphoid organs, and both local and systemic immune responses.
Collapse
Affiliation(s)
- Charles D. Cohen
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Sylvie T. Rousseau
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kevin C. Bermea
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Aashik Bhalodia
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jana P. Lovell
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Marcelle Dina Zita
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Luigi Adamo
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
66
|
Feng Y, Yuan Y, Xia H, Wang Z, Che Y, Hu Z, Deng J, Li F, Wu Q, Bian Z, Zhou H, Shen D, Tang Q. OSMR deficiency aggravates pressure overload-induced cardiac hypertrophy by modulating macrophages and OSM/LIFR/STAT3 signalling. J Transl Med 2023; 21:290. [PMID: 37120549 PMCID: PMC10149029 DOI: 10.1186/s12967-023-04163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/26/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Oncostatin M (OSM) is a secreted cytokine of the interleukin (IL)-6 family that induces biological effects by activating functional receptor complexes of the common signal transducing component glycoprotein 130 (gp130) and OSM receptor β (OSMR) or leukaemia inhibitory factor receptor (LIFR), which are mainly involved in chronic inflammatory and cardiovascular diseases. The effect and underlying mechanism of OSM/OSMR/LIFR on the development of cardiac hypertrophy remains unclear. METHODS AND RESULTS OSMR-knockout (OSMR-KO) mice were subjected to aortic banding (AB) surgery to establish a model of pressure overload-induced cardiac hypertrophy. Echocardiographic, histological, biochemical and immunological analyses of the myocardium and the adoptive transfer of bone marrow-derived macrophages (BMDMs) were conducted for in vivo studies. BMDMs were isolated and stimulated with lipopolysaccharide (LPS) for the in vitro study. OSMR deficiency aggravated cardiac hypertrophy, fibrotic remodelling and cardiac dysfunction after AB surgery in mice. Mechanistically, the loss of OSMR activated OSM/LIFR/STAT3 signalling and promoted a proresolving macrophage phenotype that exacerbated inflammation and impaired cardiac repair during remodelling. In addition, adoptive transfer of OSMR-KO BMDMs to WT mice after AB surgery resulted in a consistent hypertrophic phenotype. Moreover, knockdown of LIFR in myocardial tissue with Ad-shLIFR ameliorated the effects of OSMR deletion on the phenotype and STAT3 activation. CONCLUSIONS OSMR deficiency aggravated pressure overload-induced cardiac hypertrophy by modulating macrophages and OSM/LIFR/STAT3 signalling, which provided evidence that OSMR might be an attractive target for treating pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Yizhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Hongxia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Zhaopeng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Zhefu Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Jiangyang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Fangfang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Zhouyan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Difei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
67
|
Mouton AJ, do Carmo JM, da Silva AA, Omoto ACM, Hall JE. Targeting immunometabolism during cardiorenal injury: roles of conventional and alternative macrophage metabolic fuels. Front Physiol 2023; 14:1139296. [PMID: 37234412 PMCID: PMC10208225 DOI: 10.3389/fphys.2023.1139296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Macrophages play critical roles in mediating and resolving tissue injury as well as tissue remodeling during cardiorenal disease. Altered immunometabolism, particularly macrophage metabolism, is a critical underlying mechanism of immune dysfunction and inflammation, particularly in individuals with underlying metabolic abnormalities. In this review, we discuss the critical roles of macrophages in cardiac and renal injury and disease. We also highlight the roles of macrophage metabolism and discuss metabolic abnormalities, such as obesity and diabetes, which may impair normal macrophage metabolism and thus predispose individuals to cardiorenal inflammation and injury. As the roles of macrophage glucose and fatty acid metabolism have been extensively discussed elsewhere, we focus on the roles of alternative fuels, such as lactate and ketones, which play underappreciated roles during cardiac and renal injury and heavily influence macrophage phenotypes.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ana C. M. Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
68
|
Humes HD, Aaronson KD, Buffington DA, Sabbah HN, Westover AJ, Yessayan LT, Szamosfalvi B, Pagani FD. Translation of immunomodulatory therapy to treat chronic heart failure: Preclinical studies to first in human. PLoS One 2023; 18:e0273138. [PMID: 37023139 PMCID: PMC10079025 DOI: 10.1371/journal.pone.0273138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Inflammation has been associated with progression and complications of chronic heart failure (HF) but no effective therapy has yet been identified to treat this dysregulated immunologic state. The selective cytopheretic device (SCD) provides extracorporeal autologous cell processing to lessen the burden of inflammatory activity of circulating leukocytes of the innate immunologic system. AIM The objective of this study was to evaluate the effects of the SCD as an extracorporeal immunomodulatory device on the immune dysregulated state of HF. HF. METHODS AND RESULTS SCD treatment in a canine model of systolic HF or HF with reduced ejection fraction (HFrEF) diminished leukocyte inflammatory activity and enhanced cardiac performance as measured by left ventricular (LV) ejection fraction and stroke volume (SV) up to 4 weeks after treatment initiation. Translation of these observations in first in human, proof of concept clinical study was evaluated in a patient with severe HFrEFHFrEF ineligible for cardiac transplantation or LV LV assist device (LVAD) due to renal insufficiency and right ventricular dysfunction. Six hour SCD treatments over 6 consecutive days resulted in selective removal of inflammatory neutrophils and monocytes and reduction in key plasma cytokines, including tumor necrosis factor-alpha (TNF-α),), interleukin (IL)-6, IL-8, and monocyte chemoattractant protein (MCP)-1. These immunologic changes were associated with significant improvements in cardiac power output, right ventricular stroke work index, cardiac index and LVSV index…. Stabilization of renal function with progressive volume removal permitted successful LVAD implantation. CONCLUSION This translational research study demonstrates a promising immunomodulatory approach to improve cardiac performance in HFrEFHFrEF and supports the important role of inflammation in the progression of HFHF.
Collapse
Affiliation(s)
- H. David Humes
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Innovative Biotherapies, Ann Arbor, Michigan, United States of America
| | - Keith D. Aaronson
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Deborah A. Buffington
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hani N. Sabbah
- Department of Medicine, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Angela J. Westover
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Innovative Biotherapies, Ann Arbor, Michigan, United States of America
| | - Lenar T. Yessayan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Balazs Szamosfalvi
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Francis D. Pagani
- Department of Cardiovascular Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
69
|
Down-regulation miR-146a-5p in Schwann cell-derived exosomes induced macrophage M1 polarization by impairing the inhibition on TRAF6/NF-κB pathway after peripheral nerve injury. Exp Neurol 2023; 362:114295. [PMID: 36493861 DOI: 10.1016/j.expneurol.2022.114295] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Both Schwann cell-derived exosomes (SC-Exos) and macrophagic sub-phenotypes are closely related to the regeneration and repair after peripheral nerve injury (PNI). However, the crosstalk between them is less clear. OBJECTIVE We aim to investigate the roles and underlying mechanisms of exosomes from normoxia-condition Schwann cell (Nor-SC-Exos) and from post-injury oxygen-glucose-deprivation-condition Schwann cell in regulating macrophagic sub-phenotypes and peripheral nerve injury repair. METHOD Both Nor-SC-Exos and OGD-SC-Exos were extracted through ultracentrifugation, identified by transmission electron microscopy (TEM), Nanosight tracking analysis (NTA) and western blotting. High-throughput sequencing was performed to explore the differential expression of microRNAs in both SC-Exos. In vitro, RAW264.7 macrophage was treated with two types of SC-Exos, M1 macrophagic markers (IL-10, Arg-1, TGF-β1) and M2 macrophagic markers (IL-6, IL-1β, TNF-α) were detected by enzyme-linked Immunosorbent Assay (ELISA) or qRT-PCR, and the expression of CD206, iNOS were detected via cellular immunofluorescence (IF) to judge macrophage sub-phenotypes. Dorsal root ganglion neurons (DRGns) were co-cultured with RAW264.7 cells treated with Nor-SC-Exos and OGD-SC-Exos, respectively, to explore their effect on neuron growth. In vivo, we established a sciatic nerve crush injury rat model. Nor-SC-Exos and OGD-SC-Exos were locally injected into the injury site. The mRNA expression of M1 macrophagic markers (IL-10, Arg-1, TGF-β1) and M2 macrophagic markers (IL-6, IL-1β, TNF-α) were detected by qRT-PCR to determine the sub-phenotype of macrophages in the injury site. IF was used to detect the expression of MBP and NF200, reflecting the myelin sheath and axon regeneration, and sciatic nerve function index (SFI) was measured to evaluate function repair. RESULT In vitro, Nor-SC-Exos promoted macrophage M2 polarization, increased anti-inflammation factors secretion, and facilitated axon elongation of DRGns. OGD-SC-Exos promoted M1 polarization, increased pro-inflammation factors secretion, and restrained axon elongation of DRGns. High-throughput sequencing and qRT-PCR results found that compared with Nor-SC-Exos, a shift from anti-inflammatory (pro-M2) to pro-inflammatory (pro-M1) of OGD-SC-Exos was closely related to the down-regulation of miR-146a-5p and its decreasing inhibition on TRAF6/NF-κB pathway after OGD injury. In vivo, we found Nor-SC-Exos and miR-146a-5p mimic promoted regeneration of myelin sheath and axon, and facilitated sciatic function repair via targeting TRAF6, while OGD-SC-Exos and miR-146a-5p inhibitor restrained them. CONCLUSION Our study confirmed that miR-146a-5p was significantly decreased in SC-Exos under the ischemia-hypoxic microenvironment of the injury site after PNI, which mediated its shift from promoting macrophage M2 polarization (anti-inflammation) to promoting M1 polarization (pro-inflammation), thereby limiting axonal regeneration and functional recovery.
Collapse
|
70
|
Boukenna M, Rougier JS, Aghagolzadeh P, Pradervand S, Guichard S, Hämmerli AF, Pedrazzini T, Abriel H. Multiomics uncover the proinflammatory role of Trpm4 deletion after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2023; 324:H504-H518. [PMID: 36800508 DOI: 10.1152/ajpheart.00671.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Upon myocardial infarction (MI), ischemia-induced cell death triggers an inflammatory response responsible for removing necrotic material and inducing tissue repair. TRPM4 is a Ca2+-activated ion channel permeable to monovalent cations. Although its role in cardiomyocyte-driven hypertrophy and arrhythmia post-MI has been established, no study has yet investigated its role in the inflammatory process orchestrated by endothelial cells, immune cells, and fibroblasts. This study aims to assess the role of TRPM4 in 1) survival and cardiac function, 2) inflammation, and 3) healing post-MI. We performed ligation of the left coronary artery or sham intervention on 154 Trpm4 WT or KO mice under isoflurane anesthesia. Survival and echocardiographic functions were monitored up to 5 wk. We collected serum during the acute post-MI phase to analyze proteomes and performed single-cell RNA sequencing on nonmyocytic cells of hearts after 24 and 72 h. Lastly, we assessed chronic fibrosis and angiogenesis. We observed no significant differences in survival or cardiac function, even though our proteomics data showed significantly decreased tissue injury markers (i.e., creatine kinase M and VE-cadherin) in KO serum after 12 h. On the other hand, inflammation, characterized by serum amyloid P component in the serum, higher number of recruited granulocytes, inflammatory monocytes, and macrophages, as well as expression of proinflammatory genes, was significantly higher in KO. This correlated with increased chronic cardiac fibrosis and angiogenesis. Since inflammation and fibrosis are closely linked to adverse remodeling, future therapeutic attempts at inhibiting TRPM4 will need to assess these parameters carefully before proceeding with translational studies.NEW & NOTEWORTHY Deletion of Trpm4 increases markers of cardiac and systemic inflammation within the first 24 h after MI, while inducing an earlier fibrotic transition at 72 h and more overall chronic fibrosis and angiogenesis at 5 wk. The descriptive, robust, and methodologically broad approach of this study sheds light on an important caveat that will need to be taken into account in all future therapeutic attempts to inhibit TRPM4 post-MI.
Collapse
Affiliation(s)
- Mey Boukenna
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jean-Sébastien Rougier
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Parisa Aghagolzadeh
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Sylvain Pradervand
- Centre d'Oncologie de Précision, Département d'Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sabrina Guichard
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Anne-Flore Hämmerli
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
71
|
Ong-Meang V, Blanzat M, Savchenko L, Perquis L, Guardia M, Pizzinat N, Poinsot V. Extracellular Vesicles Produced by the Cardiac Microenvironment Carry Functional Enzymes to Produce Lipid Mediators In Situ. Int J Mol Sci 2023; 24:ijms24065866. [PMID: 36982939 PMCID: PMC10056942 DOI: 10.3390/ijms24065866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
The impact of the polyunsaturated fatty acids (PUFAs) at physiological concentrations on the composition of eicosanoids transported within the extracellular vesicles (EVs) of rat bone marrow mesenchymal stem cells and cardiomyoblasts was reported by our group in 2020. The aim of this article was to extend this observation to cells from the cardiac microenvironment involved in the processes of inflammation, namely mouse J774 macrophages and rat heart mesenchymal stem cells cMSCs. Moreover, to enhance our capacity to understand the paracrine exchange between these orchestrators of cardiac inflammation, we investigated some machinery involved in the eicosanoid’s synthesis transported by the EVs produced by these cells (including the two formerly described cells: bone marrow mesenchymal stem cells BM-MSC and cardiomyoblasts H9c2). We analyzed the oxylipin and the enzymatic content of the EVs collected from cell cultures supplemented (or not) with PUFAs. We prove that large eicosanoid profiles are exported in the EVs by the cardiac microenvironment cells, but also that these EVs carry some critical and functional biosynthetic enzymes, allowing them to synthesize inflammation bioactive compounds by sensing their environment. Moreover, we demonstrate that these are functional. This observation reinforces the hypothesis that EVs are key factors in paracrine signaling, even in the absence of the parent cell. We also reveal a macrophage-specific behavior, as we observed a radical change in the lipid mediator profile when small EVs derived from J774 cells were exposed to PUFAs. To summarize, we prove that the EVs, due to the carried functional enzymes, can alone produce bioactive compounds, in the absence of the parent cell, by sensing their environment. This makes them potential circulating monitoring entities.
Collapse
Affiliation(s)
- Varravaddheay Ong-Meang
- Inserm, CNRS, Institut des Maladies Métaboliques et Cardiovasculaires U1964, Université Toulouse III—Paul Sabatier, BP 84225, CEDEX 4, F-31432 Toulouse, France
| | - Muriel Blanzat
- CNRS, Laboratoire IMRCP UMR 5623, Université Toulouse III—Paul Sabatier, CEDEX 9, F-31062 Toulouse, France
| | - Lesia Savchenko
- Inserm, CNRS, Institut des Maladies Métaboliques et Cardiovasculaires U1964, Université Toulouse III—Paul Sabatier, BP 84225, CEDEX 4, F-31432 Toulouse, France
| | - Lucie Perquis
- CNRS, Laboratoire IMRCP UMR 5623, Université Toulouse III—Paul Sabatier, CEDEX 9, F-31062 Toulouse, France
| | - Mégane Guardia
- Inserm, CNRS, Institut des Maladies Métaboliques et Cardiovasculaires U1964, Université Toulouse III—Paul Sabatier, BP 84225, CEDEX 4, F-31432 Toulouse, France
| | - Nathalie Pizzinat
- Inserm, CNRS, Institut des Maladies Métaboliques et Cardiovasculaires U1964, Université Toulouse III—Paul Sabatier, BP 84225, CEDEX 4, F-31432 Toulouse, France
| | - Verena Poinsot
- Inserm, CNRS, Institut des Maladies Métaboliques et Cardiovasculaires U1964, Université Toulouse III—Paul Sabatier, BP 84225, CEDEX 4, F-31432 Toulouse, France
- Correspondence:
| |
Collapse
|
72
|
Li Q, Mei A, Qian H, Min X, Yang H, Zhong J, Li C, Xu H, Chen J. The role of myeloid-derived immunosuppressive cells in cardiovascular disease. Int Immunopharmacol 2023; 117:109955. [PMID: 36878043 DOI: 10.1016/j.intimp.2023.109955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/13/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population found in the bone marrow, peripheral blood, and tumor tissue. Their role is mainly to inhibit the monitoring function of innate and adaptive immune cells, which leads to the escape of tumor cells and promotes tumor development and metastasis. Moreover, recent studies have found that MDSCs are therapeutic in several autoimmune disorders due to their strong immunosuppressive ability. Additionally, studies have found that MDSCs have an important role in the formation and progression of other cardiovascular diseases, such as atherosclerosis, acute coronary syndrome, and hypertension. In this review, we will discuss the role of MDSCs in the pathogenesis and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Qingmei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| |
Collapse
|
73
|
Wang A, Li Z, Sun Z, Liu Y, Zhang D, Ma X. Potential Mechanisms Between HF and COPD: New Insights From Bioinformatics. Curr Probl Cardiol 2023; 48:101539. [PMID: 36528207 DOI: 10.1016/j.cpcardiol.2022.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Heart failure (HF) and chronic obstructive pulmonary disease (COPD) are closely related in clinical practice. This study aimed to investigate the co-genetic characteristics and potential molecular mechanisms of HF and COPD. HF and COPD datasets were downloaded from gene expression omnibus database. After identifying common differentially expressed genes (DEGs), the functional analysis highlighted the critical role of extracellular matrix and ribosomal signaling pathways in both diseases. In addition, GeneMANIA's results suggested that the 2 diseases were related to immune infiltration, and CIBERSORT suggested the role of macrophages. We also discovered 4 TFs and 1408 miRNAs linked to both diseases, and salbutamol may positively affect them.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhendong Li
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Zhuo Sun
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Yicheng Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.
| |
Collapse
|
74
|
Sahoglu SG, Kazci YE, Karadogan B, Aydin MS, Nebol A, Turhan MU, Ozturk G, Cagavi E. High-resolution mapping of sensory fibers at the healthy and post-myocardial infarct whole transgenic hearts. J Neurosci Res 2023; 101:338-353. [PMID: 36517461 DOI: 10.1002/jnr.25150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/15/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
The sensory nervous system is critical to maintain cardiac function. As opposed to efferent innervation, less is known about cardiac afferents. For this, we mapped the VGLUT2-expressing cardiac afferent fibers of spinal and vagal origin by using the VGLUT2::tdTomato double transgenic mouse as an approach to visualize the whole hearts both at the dorsal and ventral sides. For comparison, we colabeled mixed-sex transgenic hearts with either TUJ1 protein for global cardiac innervation or tyrosine hydroxylase for the sympathetic network at the healthy state or following ischemic injury. Interestingly, the nerve density for global and VGLUT2-expressing afferents was found significantly higher on the dorsal side compared to the ventral side. From the global nerve innervation detected by TUJ1 immunoreactivity, VGLUT2 afferent innervation was detected to be 15-25% of the total network. The detailed characterization of both the atria and the ventricles revealed a remarkable diversity of spinal afferent nerve ending morphologies of flower sprays, intramuscular endings, and end-net branches that innervate distinct anatomical parts of the heart. Using this integrative approach in a chronic myocardial infarct model, we showed a significant increase in hyperinnervation in the form of axonal sprouts for cardiac afferents at the infarct border zone, as well as denervation at distal sites of the ischemic area. The functional and physiological consequences of the abnormal sensory innervation remodeling post-ischemic injury should be further evaluated in future studies regarding their potential contribution to cardiac dysfunction.
Collapse
Affiliation(s)
- Sevilay Goktas Sahoglu
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Neuroscience Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Yusuf Enes Kazci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Neuroscience Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Behnaz Karadogan
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Serif Aydin
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Aylin Nebol
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Medical Biology and Genetics Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Ugurcan Turhan
- Department of Cardiovascular Surgery, Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Gurkan Ozturk
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, İstanbul, Turkey
| | - Esra Cagavi
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Medical Biology and Genetics Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
75
|
Senders ML, Calcagno C, Tawakol A, Nahrendorf M, Mulder WJM, Fayad ZA. PET/MR imaging of inflammation in atherosclerosis. Nat Biomed Eng 2023; 7:202-220. [PMID: 36522465 DOI: 10.1038/s41551-022-00970-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
Myocardial infarction, stroke, mental disorders, neurodegenerative processes, autoimmune diseases, cancer and the human immunodeficiency virus impact the haematopoietic system, which through immunity and inflammation may aggravate pre-existing atherosclerosis. The interplay between the haematopoietic system and its modulation of atherosclerosis has been studied by imaging the cardiovascular system and the activation of haematopoietic organs via scanners integrating positron emission tomography and resonance imaging (PET/MRI). In this Perspective, we review the applicability of integrated whole-body PET/MRI for the study of immune-mediated phenomena associated with haematopoietic activity and cardiovascular disease, and discuss the translational opportunities and challenges of the technology.
Collapse
Affiliation(s)
- Max L Senders
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Tawakol
- Cardiology Division and Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Willem J M Mulder
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
76
|
Vasanthan V, Shim HB, Teng G, Belke D, Svystonyuk D, Deniset JF, Fedak PWM. Acellular biomaterial modulates myocardial inflammation and promotes endogenous mechanisms of postinfarct cardiac repair. J Thorac Cardiovasc Surg 2023; 165:e122-e140. [PMID: 35058062 DOI: 10.1016/j.jtcvs.2021.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE After myocardial infarction, we previously showed that epicardial implantation of porcine small intestinal submucosal extracellular matrix (SIS-ECM) improves postinfarct cardiac function through fibroblast-mediated angiogenic and antifibrotic pathways. Herein, we characterize how SIS-ECM also coordinates a reparative cardiac inflammatory response. METHODS RNA sequencing and multiplex characterized modulation of fibroblast transcriptional and paracrine activity by SIS-ECM. Inhibitors of fibroblast growth factor 2 and toll-like receptor 9 elucidated mechanism. Mice received coronary ligation (infarction) and either SIS-ECM implantation (treatment) or sham surgery (control). Flow cytometry of SIS-ECM and the murine myocardium quantified monocytes, neutrophils, and proangiogenic subtypes. Microscopy tracked fibroblasts and immune cells, and characterized myocardial angiogenesis. RESULTS SIS-ECM increased fibroblast transcription of inflammatory pathways and production of angiogenic vascular endothelial growth factor and inflammatory cytokines via fibroblast growth factor 2 and toll-like receptor 9-dependent pathways. Two-photon microscopy showed that SIS-ECM became engrafted by native fibroblasts and leukocytes, subsequently increasing release of inflammatory cytokines and angiogenic vascular endothelial growth factor. On flow cytometry, SIS-ECM implantation increased day-7 myocardial counts of neutrophils, inflammatory monocytes, and proangiogenic vascular endothelial growth factor recptor 1 subtypes. SIS-ECM has a higher proportion of proangiogenic leukocytes compared with the myocardium. Resonant confocal microscopy showed neovascularization near SIS-ECM. CONCLUSIONS SIS-ECM promotes engraftment by native fibroblasts and leukocytes, and modulates fibroblast activity via fibroblast growth factor 2 and toll-like receptor 9 to potentiate a proangiogenic inflammatory response. Subsequently, the material increases myocardial counts of reparative proangiogenic leukocytes that can induce neovascularization. This reparative inflammatory response may explain previously reported functional improvements. Fibroblast growth factor 2 and toll-like receptor 9 mechanisms can be leveraged to design next-generation materials for postinfarct cardiac repair.
Collapse
Affiliation(s)
- Vishnu Vasanthan
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hanjoo B Shim
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Guoqi Teng
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Darrell Belke
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniyil Svystonyuk
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin F Deniset
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
77
|
Zhang RYK, Cochran BJ, Thomas SR, Rye KA. Impact of Reperfusion on Temporal Immune Cell Dynamics After Myocardial Infarction. J Am Heart Assoc 2023; 12:e027600. [PMID: 36789837 PMCID: PMC10111498 DOI: 10.1161/jaha.122.027600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Excessive inflammation and impaired healing of cardiac tissue following a myocardial infarction (MI) can drive the development of heart failure. Cardiac repair begins immediately after the onset of MI and continues for months. The repair process can be divided into the following 3 overlapping phases, each having distinct functions and sequelae: the inflammatory phase, the proliferative phase, and the maturation phase. Macrophages, neutrophils, and lymphocytes are present in the myocardium throughout the repair process and govern the duration and function of each of these phases. However, changes in the functions of these cell types across each phase are poorly characterized. Numerous immunomodulatory therapies that specifically target inflammation have been developed for promoting cardiac repair and preventing heart failure after MI. However, these treatments have been largely unsuccessful in large-scale clinical randomized controlled trials. A potential explanation for this failure is the lack of a thorough understanding of the time-dependent evolution of the functions of immune cells after a major cardiovascular event. Failure to account for this temporal plasticity in cell function may reduce the efficacy of immunomodulatory approaches that target cardiac repair. This review is concerned with how the functions of different immune cells change with time following an MI. Improved understanding of the temporal changes in immune cell function is important for the future development of effective and targeted treatments for preventing heart failure after MI.
Collapse
Affiliation(s)
| | - Blake J Cochran
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Shane R Thomas
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Kerry-Anne Rye
- School of Medical Sciences University of New South Wales Sydney New South Wales
| |
Collapse
|
78
|
Liu H, Huang Y, Zhao Y, Kang GJ, Feng F, Wang X, Liu M, Shi G, Revelo X, Bernlohr D, Dudley SC. Inflammatory Macrophage Interleukin-1β Mediates High-Fat Diet-Induced Heart Failure With Preserved Ejection Fraction. JACC Basic Transl Sci 2023; 8:174-185. [PMID: 36908663 PMCID: PMC9998610 DOI: 10.1016/j.jacbts.2022.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022]
Abstract
Diabetes mellitus (DM) is a main risk factor for diastolic dysfunction (DD) and heart failure with preserved ejection fraction. High-fat diet (HFD) mice presented with diabetes mellitus, DD, higher cardiac interleukin (IL)-1β levels, and proinflammatory cardiac macrophage accumulation. DD was significantly ameliorated by suppressing IL-1β signaling or depleting macrophages. Mice with macrophages unable to adopt a proinflammatory phenotype were low in cardiac IL-1β levels and were resistant to HFD-induced DD. IL-1β enhanced mitochondrial reactive oxygen species (mitoROS) in cardiomyocytes, and scavenging mitoROS improved HFD-induced DD. In conclusion, macrophage-mediated inflammation contributed to HFD-associated DD through IL-1β and mitoROS production.
Collapse
Key Words
- CCR2, C-C motif chemokine receptor 2
- CM, cardiomyocyte
- DD, diastolic dysfunction
- DM, diabetes mellitus
- EF, ejection fraction
- FABP4, fatty acid binding protein 4
- HF, heart failure
- HFD, high-fat diet
- HFpEF
- HFpEF, heart failure with preserved ejection fraction
- IL, interleukin
- IL-1β
- IL1RA, interleukin 1 receptor antagonist
- KO, knockout
- MCP, monocyte chemoattractant protein
- MyBP-C, myosin binding protein C
- TGF, transforming growth factor
- TNF, tumor necrosis factor
- Timd4, T cell immunoglobulin and mucin domain containing 4
- WT, wild-type
- diabetes
- diastolic dysfunction
- inflammation
- macrophage
- mitoROS, mitochondrial reactive oxygen species
- mitochondria
Collapse
Affiliation(s)
- Hong Liu
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yimao Huang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yang Zhao
- Division of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, China
| | - Gyeoung-Jin Kang
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Feng Feng
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaodan Wang
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Man Liu
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Guangbin Shi
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Xavier Revelo
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Samuel C. Dudley
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
79
|
Dynamic changes of monocytes subsets predict major adverse cardiovascular events and left ventricular function after STEMI. Sci Rep 2023; 13:48. [PMID: 36593308 PMCID: PMC9807564 DOI: 10.1038/s41598-022-26688-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
We explored how dynamic changes in monocyte subset counts (as opposed to static values to specific time points), and their phagocytic and NFκB activity relate to major adverse cardiovascular events (MACE) and left ventricular ejection fraction (LVEF) in patients with ST-elevation myocardial infarction (STEMI). Changes in counts, phagocytic activity and intracellular levels of inhibitory κB kinase β (IKKβ) (a marker of NFκB activity) of monocyte subsets (CD14++CD16-CCR2+ [Mon1], CD14++CD16+CCR2+ [Mon2] and CD14+CD16++CCR2- [Mon3]) were measured by flow cytometry in patients with STEMI at baseline, and again after one week, two weeks, and one month. LVEF was measured by echocardiography at baseline and six months after STEMI. Baseline data included 245 patients (mean ± SD age 60 ± 12 years; 22% female), who were followed for a median of 46 (19-61) months. Multivariate Cox regression demonstrated that more prominent dynamic reduction in Mon2 by week 1 (n = 37) was independently associated with fewer MACE (HR 0.06, 95% CI 0.01-0.55, p = 0.01). Also, less prominent reduction in Mon2 at month 1 (n = 24) was independently predictive of 6-month LVEF. None of the other dynamic changes in monocyte subsets were associated with changes in survival from MACE. Neither phagocytic activity nor IKKβ were associated with survival for each monocyte subset. We showed how distinct pattern of dynamic changes in Mon2 are related to both MACE risk and recovery of cardiac contractility. Further research is needed to understand the mechanism of the monocyte effect and possibilities of their pharmacological manipulation.
Collapse
|
80
|
Jin X, Wang X, Sun J, Tan W, Zhang G, Han J, Xie M, Zhou L, Yu Z, Xu T, Wang C, Wang Y, Zhou X, Jiang H. Subthreshold splenic nerve stimulation prevents myocardial Ischemia-Reperfusion injury via neuroimmunomodulation of proinflammatory factor levels. Int Immunopharmacol 2023; 114:109522. [PMID: 36502595 DOI: 10.1016/j.intimp.2022.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Clinical outcomes following myocardial ischemia-reperfusion (I/R) injury are strongly related to the intensity and duration of inflammation. The splenic nerve (SpN) is indispensable for the anti-inflammatory reflex. This study aimed to investigate whether splenic nerve stimulation (SpNS) plays a cardioprotective role in myocardial I/R injury and the potential underlying mechanism. METHODS Sprague-Dawley rats were randomly divided into four groups: sham group, I/R group, SpNS group, and I/R plus SpNS group. The highest SpNS intensity that did not influence heart rate was identified, and SpNS at this intensity was used as the subthreshold stimulus. Continuous subthreshold SpNS was applied for 1 h before ligation of the left coronary artery for 45 min. After 72 h of reperfusion, samples were collected for analysis. RESULTS SpN activity and splenic concentrations of cholinergic anti-inflammatory pathway (CAP)-related neurotransmitters were significantly increased by SpNS. The infarct size, oxidative stress, sympathetic tone, and the levels of proinflammatory cytokines, including TNF-α, IL-1β, and IL-6, were significantly reduced in rats subjected to subthreshold SpNS after myocardial I/R injury compared with those subjected to I/R injury alone. CONCLUSIONS Subthreshold SpNS ameliorates myocardial damage, the inflammatory response, and cardiac remodelling induced by myocardial I/R injury via neuroimmunomodulation of proinflammatory factor levels. SpNS is a potential therapeutic strategy for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaoxing Jin
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Xiaofei Wang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Ji Sun
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Guocheng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Jiapeng Han
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Mengjie Xie
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Zhiyao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Tianyou Xu
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Changyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| |
Collapse
|
81
|
Humeres C, Venugopal H, Frangogiannis NG. The Role of Mechanosensitive Signaling Cascades in Repair and Fibrotic Remodeling of the Infarcted Heart. CARDIAC AND VASCULAR BIOLOGY 2023:61-100. [DOI: 10.1007/978-3-031-23965-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
82
|
Isidoro CA, Deniset JF. The role of macrophage subsets in and around the heart in modulating cardiac homeostasis and pathophysiology. Front Immunol 2023; 14:1111819. [PMID: 36926341 PMCID: PMC10011174 DOI: 10.3389/fimmu.2023.1111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Cardiac and pericardial macrophages contribute to both homeostatic and pathophysiological processes. Recent advances have identified a vast repertoire of these macrophage populations in and around the heart - broadly categorized into a CCR2+/CCR2- dichotomy. While these unique populations can be further distinguished by origin, localization, and other cell surface markers, further exploration into the role of cardiac and pericardial macrophage subpopulations in disease contributes an additional layer of complexity. As such, novel transgenic models and exogenous targeting techniques have been employed to evaluate these macrophages. In this review, we highlight known cardiac and pericardial macrophage populations, their functions, and the experimental tools used to bolster our knowledge of these cells in the cardiac context.
Collapse
Affiliation(s)
- Carmina Albertine Isidoro
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Cumming School of Medicine, Calgary, AB, Canada
| | - Justin F Deniset
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Cumming School of Medicine, Calgary, AB, Canada.,Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
83
|
Cho KW, Bae S, Yoon YS. The role of paracrine crosstalk between myeloid and endothelial cells in myocardial angiogenesis and infarcted heart repair. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:1. [PMID: 36544808 PMCID: PMC9762688 DOI: 10.20517/jca.2022.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kyu-Won Cho
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seongho Bae
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Young-sup Yoon
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
84
|
Huang K, Mei K, Duan J, Wang R, Yang C, Wang B, Gu R, Yang L. Identification and validation of ferroptosis-related genes and immune infiltration in ischemic cardiomyopathy. Front Cardiovasc Med 2023; 10:1078290. [PMID: 36895830 PMCID: PMC9989975 DOI: 10.3389/fcvm.2023.1078290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Background Cardiomyocyte death is an important pathophysiological basis for ischemic cardiomyopathy (ICM). Many studies have suggested that ferroptosis is a key link in the development of ICM. We performed bioinformatics analysis and experiment validation to explore the potential ferroptosis-related genes and immune infiltration of ICM. Methods We downloaded the datasets of ICM from the Gene Expression Omnibus database and analyzed the ferroptosis-related differentially expressed genes (DEGs). Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and protein-protein interaction network were performed to analyze ferroptosis-related DEGs. Gene Set Enrichment Analysis was used to evaluate the gene enrichment signaling pathway of ferroptosis-related genes in ICM. Then, we explored the immune landscape of patients with ICM. Finally, the RNA expression of the top five ferroptosis-related DEGs was validated in blood samples from patients with ICM and healthy controls using qRT-PCR. Results Overall, 42 ferroptosis-related DEGs (17 upregulated and 25 downregulated genes) were identified. Functional enrichment analysis indicated several enriched terms related to ferroptosis and the immune pathway. Immunological analysis suggested that the immune microenvironment in patients with ICM is altered. The immune checkpoint-related genes (PDCD1LG2, LAG3, and TIGIT) were overexpressed in ICM. The qRT-PCR results showed that the expression levels of IL6, JUN, STAT3, and ATM in patients with ICM and healthy controls were consistent with the bioinformatics analysis results from the mRNA microarray. Conclusion Our study showed significant differences in ferroptosis-related genes and functional pathway between ICM patients and healthy controls. We also provided insight into the landscape of immune cells and the expression of immune checkpoints in patients with ICM. This study provides a new road for future investigation of the pathogenesis and treatment of ICM.
Collapse
Affiliation(s)
- Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Kun Mei
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ruting Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Renjun Gu
- Nanjing University of Chinese Medicine, Nanjing, China.,School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
85
|
Chang X, Liu R, Li R, Peng Y, Zhu P, Zhou H. Molecular Mechanisms of Mitochondrial Quality Control in Ischemic Cardiomyopathy. Int J Biol Sci 2023; 19:426-448. [PMID: 36632466 PMCID: PMC9830521 DOI: 10.7150/ijbs.76223] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 12/23/2022] Open
Abstract
Ischemic cardiomyopathy (ICM) is a special type of coronary heart disease or an advanced stage of the disease, which is related to the pathological mechanism of primary dilated cardiomyopathy. Ischemic cardiomyopathy mainly occurs in the long-term myocardial ischemia, resulting in diffuse myocardial fibrosis. This in turn affects the cardiac ejection function, resulting in a significant impact on myocardial systolic and diastolic function, resulting in a decrease in the cardiac ejection fraction. The pathogenesis of ICM is closely related to coronary heart disease. Mainly due to coronary atherosclerosis caused by coronary stenosis or vascular occlusion, causing vascular inflammatory lesions and thrombosis. As the disease progresses, it leads to long-term myocardial ischemia and eventually ICM. The pathological mechanism is mainly related to the mechanisms of inflammation, myocardial hypertrophy, fibrosis and vascular remodeling. Mitochondria are organelles with a double-membrane structure, so the composition of the mitochondrial outer compartment is basically similar to that of the cytoplasm. When ischemia-reperfusion induces a large influx of calcium into the cell, the concentration of calcium ions in the mitochondrial outer compartment also increases. The subsequent opening of the membrane permeability transition pore in the inner mitochondrial membrane and the resulting calcium overload induces the homeostasis of cardiomyocytes and activates the mitochondrial pathway of apoptosis. Mitochondrial Quality Control (MQC), as an important mechanism for regulating mitochondrial function in cardiomyocytes, affects the morphological structure/function and lifespan of mitochondria. In this review, we discuss the role of MQC (including mitophagy, mitochondrial dynamics, and mitochondrial biosynthesis) in the pathogenesis of ICM and provide important evidence for targeting MQC for ICM.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruxiu Liu
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,✉ Corresponding authors: Hao Zhou, Senior Department of Cardiology, The Sixth Medical Centre of People's Liberation Army General Hospital, Beijing, China; E-mail: . Pingjun Zhu, Department of Respiratory and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; . Ruxiu Liu, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China; E-mail:
| | - Ruibing Li
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Youyou Peng
- Montverde Future Academy Shanghai, 88 Jianhao Road, Pudong New District, Shanghai, China
| | - Pingjun Zhu
- Department of Respiratory and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,✉ Corresponding authors: Hao Zhou, Senior Department of Cardiology, The Sixth Medical Centre of People's Liberation Army General Hospital, Beijing, China; E-mail: . Pingjun Zhu, Department of Respiratory and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; . Ruxiu Liu, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China; E-mail:
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Centre of People's Liberation Army General Hospital, Beijing, China.,✉ Corresponding authors: Hao Zhou, Senior Department of Cardiology, The Sixth Medical Centre of People's Liberation Army General Hospital, Beijing, China; E-mail: . Pingjun Zhu, Department of Respiratory and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; . Ruxiu Liu, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China; E-mail:
| |
Collapse
|
86
|
Moggio A, Schunkert H, Kessler T, Sager HB. Quo Vadis? Immunodynamics of Myeloid Cells after Myocardial Infarction. Int J Mol Sci 2022; 23:15814. [PMID: 36555456 PMCID: PMC9779515 DOI: 10.3390/ijms232415814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI), a major contributor to worldwide morbidity and mortality, is caused by a lack of blood flow to the heart. Affected heart tissue becomes ischemic due to deficiency of blood perfusion and oxygen delivery. In case sufficient blood flow cannot be timely restored, cardiac injury with necrosis occurs. The ischemic/necrotic area induces a systemic inflammatory response and hundreds of thousands of leukocytes are recruited from the blood to the injured heart. The blood pool of leukocytes is rapidly depleted and urgent re-supply of these cells is needed. Myeloid cells are generated in the bone marrow (BM) and spleen, released into the blood, travel to sites of need, extravasate and accumulate inside tissues to accomplish various functions. In this review we focus on the "leukocyte supply chain" and will separately evaluate different myeloid cell compartments (BM, spleen, blood, heart) in steady state and after MI. Moreover, we highlight the local and systemic kinetics of extracellular factors, chemokines and danger signals involved in the regulation of production/generation, release, transportation, uptake, and activation of myeloid cells during the inflammatory phase of MI.
Collapse
Affiliation(s)
- Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
87
|
Yang K, Liu J, Gong Y, Li Y, Liu Q. Bioinformatics and systems biology approaches to identify molecular targeting mechanism influenced by COVID-19 on heart failure. Front Immunol 2022; 13:1052850. [DOI: 10.3389/fimmu.2022.1052850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a contemporary hazard to people. It has been known that COVID-19 can both induce heart failure (HF) and raise the risk of patient mortality. However, the mechanism underlying the association between COVID-19 and HF remains unclear. The common molecular pathways between COVID-19 and HF were identified using bioinformatic and systems biology techniques. Transcriptome analysis was performed to identify differentially expressed genes (DEGs). To identify gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways, common DEGs were used for enrichment analysis. The results showed that COVID-19 and HF have several common immune mechanisms, including differentiation of T helper (Th) 1, Th 2, Th 17 cells; activation of lymphocytes; and binding of major histocompatibility complex class I and II protein complexes. Furthermore, a protein-protein interaction network was constructed to identify hub genes, and immune cell infiltration analysis was performed. Six hub genes (FCGR3A, CD69, IFNG, CCR7, CCL5, and CCL4) were closely associated with COVID-19 and HF. These targets were associated with immune cells (central memory CD8 T cells, T follicular helper cells, regulatory T cells, myeloid-derived suppressor cells, plasmacytoid dendritic cells, macrophages, eosinophils, and neutrophils). Additionally, transcription factors, microRNAs, drugs, and chemicals that are closely associated with COVID-19 and HF were identified through the interaction network.
Collapse
|
88
|
Kubota A, Frangogiannis NG. Macrophages in myocardial infarction. Am J Physiol Cell Physiol 2022; 323:C1304-C1324. [PMID: 36094436 PMCID: PMC9576166 DOI: 10.1152/ajpcell.00230.2022] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
The heart contains a population of resident macrophages that markedly expands following injury through recruitment of monocytes and through proliferation of macrophages. In myocardial infarction, macrophages have been implicated in both injurious and reparative responses. In coronary atherosclerotic lesions, macrophages have been implicated in disease progression and in the pathogenesis of plaque rupture. Following myocardial infarction, resident macrophages contribute to initiation and regulation of the inflammatory response. Phagocytosis and efferocytosis are major functions of macrophages during the inflammatory phase of infarct healing, and mediate phenotypic changes, leading to acquisition of an anti-inflammatory macrophage phenotype. Infarct macrophages respond to changes in the cytokine content and extracellular matrix composition of their environment and secrete fibrogenic and angiogenic mediators, playing a central role in repair of the infarcted heart. Macrophages may also play a role in scar maturation and may contribute to chronic adverse remodeling of noninfarcted segments. Single cell studies have revealed a remarkable heterogeneity of macrophage populations in infarcted hearts; however, the relations between transcriptomic profiles and functional properties remain poorly defined. This review manuscript discusses the fate, mechanisms of expansion and activation, and role of macrophages in the infarcted heart. Considering their critical role in injury, repair, and remodeling, macrophages are important, but challenging, targets for therapeutic interventions in myocardial infarction.
Collapse
Affiliation(s)
- Akihiko Kubota
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York
| |
Collapse
|
89
|
Picchio V, Floris E, Derevyanchuk Y, Cozzolino C, Messina E, Pagano F, Chimenti I, Gaetani R. Multicellular 3D Models for the Study of Cardiac Fibrosis. Int J Mol Sci 2022; 23:ijms231911642. [PMID: 36232943 PMCID: PMC9569892 DOI: 10.3390/ijms231911642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Ex vivo modelling systems for cardiovascular research are becoming increasingly important in reducing lab animal use and boosting personalized medicine approaches. Integrating multiple cell types in complex setups adds a higher level of significance to the models, simulating the intricate intercellular communication of the microenvironment in vivo. Cardiac fibrosis represents a key pathogenetic step in multiple cardiovascular diseases, such as ischemic and diabetic cardiomyopathies. Indeed, allowing inter-cellular interactions between cardiac stromal cells, endothelial cells, cardiomyocytes, and/or immune cells in dedicated systems could make ex vivo models of cardiac fibrosis even more relevant. Moreover, culture systems with 3D architectures further enrich the physiological significance of such in vitro models. In this review, we provide a summary of the multicellular 3D models for the study of cardiac fibrosis described in the literature, such as spontaneous microtissues, bioprinted constructs, engineered tissues, and organs-on-chip, discussing their advantages and limitations. Important discoveries on the physiopathology of cardiac fibrosis, as well as the screening of novel potential therapeutic molecules, have been reported thanks to these systems. Future developments will certainly increase their translational impact for understanding and modulating mechanisms of cardiac fibrosis even further.
Collapse
Affiliation(s)
- Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy
| | - Yuriy Derevyanchuk
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| | - Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy
| | - Elisa Messina
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), 00015 Monterotondo, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Napoli, Italy
- Correspondence: ; Tel.: +39-077-3175-7234
| | - Roberto Gaetani
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy
| |
Collapse
|
90
|
Chen G, Jiang H, Yao Y, Tao Z, Chen W, Huang F, Chen X. Macrophage, a potential targeted therapeutic immune cell for cardiomyopathy. Front Cell Dev Biol 2022; 10:908790. [PMID: 36247005 PMCID: PMC9561843 DOI: 10.3389/fcell.2022.908790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiomyopathy is a major cause of heart failure, leading to systolic and diastolic dysfunction and promoting adverse cardiac remodeling. Macrophages, as key immune cells of the heart, play a crucial role in inflammation and fibrosis. Moreover, exogenous and cardiac resident macrophages are functionally and phenotypically different during cardiac injury. Although experimental evidence has shown that macrophage-targeted therapy is promising in cardiomyopathy, clinical translation remains challenging. In this article, the molecular mechanism of macrophages in cardiomyopathy has been discussed in detail based on existing literature. The issues and considerations of clinical treatment strategies for myocardial fibrosis has also been analyzed.
Collapse
Affiliation(s)
- Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongwei Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhonghao Tao
- Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fuhua Huang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
91
|
Wang YM, Zhang JJ, Wu BW, Cao XY, Li H, Chen TQ, Huang YR, Shen XY, Li J, You Y, Shi HM. IL-37 improves mice myocardial infarction via inhibiting YAP-NLRP3 signaling mediated macrophage programming. Eur J Pharmacol 2022; 934:175293. [PMID: 36167152 DOI: 10.1016/j.ejphar.2022.175293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Myocardial infarction is the highest cause of cardiovascular death. Previous studies found that patients with myocardial infarction have elevated serum IL-37 and IL-37 treatment significantly alleviates adverse remodeling in myocardial infarction mice. However, the underlying mechanism of IL-37 in myocardial infarction is still unknown. Here we explored the underlying mechanism of IL-37 in attenuating myocardial infarction. METHODS The myocardial infarction mice model was constructed by left anterior descending ligation and then submitted to recombinant IL-37 administration. The histology and cardiac function were detected by HE & Masson staining and echocardiography, respectively. The macrophage phenotypes were analyzed by flow cytometry and real-time PCR. The cytokines in serum and cell culture supernatant were determined by ELISA. In addition, THP-1 cells were used in vitro to investigate the underlying mechanisms. RESULTS Infarcted mice showed increased inflammatory cell infiltration and impaired cardiac function. IL-37 treatment alleviated pro-inflammatory macrophage infiltration, tissue injury, and collagen deposition in hearts on day 3 and 7 after infarction in mice. In addition, IL-37 application modulated the balance between M1 and M2 macrophages in infarcted hearts. In vitro, THP-1 cell line polarization was also regulated by IL-37, companied by YAP phosphorylation and NLRP3 inactivation. Verteporfin, a YAP inhibitor, could abolish IL-37-induced NLRP3 inhibition and M2 macrophage polarization. CONCLUSION Our results demonstrated that IL-37 achieves a favorable therapeutical function on myocardial infarction by modulating YAP-NLRP3 mediated macrophage programming, providing a promising drug for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Yi-Ming Wang
- Department of Cardiology, Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin-Jin Zhang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bang-Wei Wu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Yue Cao
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China
| | - Hui Li
- School of Kinesiology, Shanghai University of Sport, No. 188, Hengren Road, Yangpu Aera, Shanghai, 200438, China
| | - Tong-Qing Chen
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China
| | - Yu-Ran Huang
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China
| | - Xiao-Yan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China
| | - Jian Li
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China.
| | - Hai-Ming Shi
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
92
|
Assessment of Myocardial Diastolic Dysfunction as a Result of Myocardial Infarction and Extracellular Matrix Regulation Disorders in the Context of Mesenchymal Stem Cell Therapy. J Clin Med 2022; 11:jcm11185430. [PMID: 36143077 PMCID: PMC9502668 DOI: 10.3390/jcm11185430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The decline in cardiac contractility due to damage or loss of cardiomyocytes is intensified by changes in the extracellular matrix leading to heart remodeling. An excessive matrix response in the ischemic cardiomyopathy may contribute to the elevated fibrotic compartment and diastolic dysfunction. Fibroproliferation is a defense response aimed at quickly closing the damaged area and maintaining tissue integrity. Balance in this process is of paramount importance, as the reduced post-infarction response causes scar thinning and more pronounced left ventricular remodeling, while excessive fibrosis leads to impairment of heart function. Under normal conditions, migration of progenitor cells to the lesion site occurs. These cells have the potential to differentiate into myocytes in vitro, but the changed micro-environment in the heart after infarction does not allow such differentiation. Stem cell transplantation affects the extracellular matrix remodeling and thus may facilitate the improvement of left ventricular function. Studies show that mesenchymal stem cell therapy after infarct reduces fibrosis. However, the authors did not specify whether they meant the reduction of scarring as a result of regeneration or changes in the matrix. Research is also necessary to rule out long-term negative effects of post-acute infarct stem cell therapy.
Collapse
|
93
|
Resident cardiac macrophages: Heterogeneity and function in health and disease. Immunity 2022; 55:1549-1563. [PMID: 36103852 DOI: 10.1016/j.immuni.2022.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/20/2022]
Abstract
Understanding tissue macrophage biology has become challenging in recent years due the ever-increasing complexity in macrophage-subset identification and functional characterization. This is particularly important within the myocardium, as we have come to understand that macrophages play multifaceted roles in cardiac health and disease, and heart disease remains the leading cause of death worldwide. Here, we review recent progress in the field, focusing on resident cardiac macrophage heterogeneity, origins, and functions at steady state and after injury. We stratify resident cardiac macrophage functions by the ability of macrophages to either directly influence cardiac physiology or indirectly influence cardiac physiology through orchestrating multi-cellular communication with cardiomyocytes and stromal and immune populations.
Collapse
|
94
|
Chen L, Yu D, Ling S, Xu JW. Mechanism of tonifying-kidney Chinese herbal medicine in the treatment of chronic heart failure. Front Cardiovasc Med 2022; 9:988360. [PMID: 36172573 PMCID: PMC9510640 DOI: 10.3389/fcvm.2022.988360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
According to traditional Chinese medicine (TCM), chronic heart failure has the basic pathological characteristics of “heart-kidney yang deficiency.” Chronic heart failure with heart- and kidney-Yang deficiency has good overlap with New York Heart Association (NYHA) classes III and IV. Traditional Chinese medicine classical prescriptions for the treatment of chronic heart failure often take “warming and tonifying kidney-Yang” as the core, supplemented by herbal compositions with functions of “promoting blood circulation and dispersing blood stasis.” Nowadays, there are still many classical and folk prescriptions for chronic heart failure treatment, such as Zhenwu decoction, Bushen Huoxue decoction, Shenfu decoction, Sini decoction, as well as Qili Qiangxin capsule. This review focuses on classical formulations and their active constituents that play a key role in preventing chronic heart failure by suppressing inflammation and modulating immune and neurohumoral factors. In addition, given that mitochondrial metabolic reprogramming has intimate relation with inflammation, cardiac hypertrophy, and fibrosis, the regulatory role of classical prescriptions and their active components in metabolic reprogramming, including glycolysis and lipid β-oxidation, is also presented. Although the exact mechanism is unknown, the classical TCM prescriptions still have good clinical effects in treating chronic heart failure. This review will provide a modern pharmacological explanation for its mechanism and offer evidence for clinical medication by combining TCM syndrome differentiation with chronic heart failure clinical stages.
Collapse
|
95
|
Sinha A, Sitlani CM, Doyle MF, Fohner AE, Buzkova P, Floyd JS, Huber SA, Olson NC, Njoroge JN, Kizer JR, Delaney JA, Shah SS, Tracy RP, Psaty B, Feinstein M. Association of immune cell subsets with incident heart failure in two population-based cohorts. ESC Heart Fail 2022; 9:4177-4188. [PMID: 36097332 PMCID: PMC9773780 DOI: 10.1002/ehf2.14140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
AIMS Circulating inflammatory markers are associated with incident heart failure (HF), but prospective data on associations of immune cell subsets with incident HF are lacking. We determined the associations of immune cell subsets with incident HF as well as HF subtypes [with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF)]. METHODS AND RESULTS Peripheral blood immune cell subsets were measured in adults from the Multi-Ethnic Study of Atherosclerosis (MESA) and Cardiovascular Health Study (CHS). Cox proportional hazard models adjusted for demographics, HF risk factors, and cytomegalovirus serostatus were used to evaluate the association of the immune cell subsets with incident HF. The average age of the MESA cohort at the time of immune cell measurements was 63.0 ± 10.4 years with 51% women, and in the CHS cohort, it was 79.6 ± 4.4 years with 62% women. In the meta-analysis of CHS and MESA, a higher proportion of CD4+ T helper (Th) 1 cells (per one standard deviation) was associated with a lower risk of incident HF [hazard ratio (HR) 0.91, (95% CI 0.83-0.99), P = 0.03]. Specifically, higher proportion of CD4+ Th1 cells was significantly associated with a lower risk of HFrEF [HR 0.73, (95% CI 0.62-0.85), <0.001] after correction for multiple testing. No association was observed with HFpEF. No other cell subsets were associated with incident HF. CONCLUSIONS We observed that higher proportions of CD4+ Th1 cells were associated with a lower risk of incident HFrEF in two distinct population-based cohorts, with similar effect sizes in both cohorts demonstrating replicability. Although unexpected, the consistency of this finding across cohorts merits further investigation.
Collapse
Affiliation(s)
- Arjun Sinha
- Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA,Department of Preventive Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Colleen M. Sitlani
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Margaret F. Doyle
- Department of Pathology and Laboratory MedicineUniversity of VermontBurlingtonVTUSA
| | | | - Petra Buzkova
- Department of BiostatisticsUniversity of WashingtonSeattleWAUSA
| | - James S. Floyd
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA,Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
| | - Sally A. Huber
- Department of Pathology and Laboratory MedicineUniversity of VermontBurlingtonVTUSA
| | - Nels C. Olson
- Department of Pathology and Laboratory MedicineUniversity of VermontBurlingtonVTUSA
| | - Joyce N. Njoroge
- Department of MedicineUniversity of California at San FranciscoSan FranciscoCAUSA
| | - Jorge R. Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System and Departments of Medicine, Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCAUSA
| | - Joseph A. Delaney
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA,College of PharmacyUniversity of ManitobaWinnipegManitobaCanada
| | - Sanjiv S. Shah
- Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Russell P. Tracy
- Department of Pathology and Laboratory MedicineUniversity of VermontBurlingtonVTUSA,Department of Biochemistry, Robert Larner M.D. College of MedicineUniversity of VermontBurlingtonVTUSA
| | - Bruce Psaty
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWAUSA,Department of EpidemiologyUniversity of WashingtonSeattleWAUSA,Department of Health Systems and Population HealthUniversity of WashingtonSeattleWAUSA
| | - Matthew Feinstein
- Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA,Department of Preventive Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| |
Collapse
|
96
|
Chen J, Fu CY, Shen G, Wang J, Xu L, Li H, Cao X, Zheng MZ, Shen YL, Zhong J, Chen YY, Wang LL. Macrophages induce cardiomyocyte ferroptosis via mitochondrial transfer. Free Radic Biol Med 2022; 190:1-14. [PMID: 35933052 DOI: 10.1016/j.freeradbiomed.2022.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Mitochondrial transfer is a new cell-to-cell communication manner. Whether the mitochondrial transfer is also involved in the macrophage infiltration-induced cardiac injury is unclear. OBJECTIVES This study aimed to determine whether macrophage mitochondria can be transferred to cardiomyocytes, and to investigate its possible role and mechanism. METHODS Mitochondrial transfer between macrophages and cardiomyocytes was detected using immunofluorescence staining and flow cytometry. Cellular metabolites were analyzed using LC-MS technique. Differentially expressed mRNAs were identified using RNA-seq technique. RESULTS (1) After cardiomyocytes were cultured with macrophage-conditioned medium (COND + group), macrophage-derived mitochondria have been found in cardiomyocytes, which could be blocked by dynasore (an inhibitor of clathrin-mediated endocytosis). (2) Compared with control (CM) group, there were 545 altered metabolites found in COND + group, most of which were lipids and lipid-like molecules. The altered metabolites were mainly enriched in the β-oxidation of fatty acids and glutathione metabolism. And there were 4824 differentially expressed mRNAs, which were highly enriched in processes like lipid metabolism-associated pathway. (3) Both RNA-seq and qRT-PCR results found that ferroptosis-related mRNAs such as Ptgs2 and Acsl4 increased, and Gpx4 mRNA decreased in COND + group (P < 0.05 vs CM group). (4) The levels of cellular free Fe2+ and mitochondrial lipid peroxidation were increased; while GSH/GSSG ratio, mitochondrial aspect ratio, mitochondrial membrane potential, and ATP production were decreased in cardiomyocytes of COND + group (P < 0.05 vs CM group). All the above phenomena could be blocked by a ferroptosis inhibitor ferrostatin-1 (P < 0.05). CONCLUSION Macrophages could transfer mitochondria to cardiomyocytes. Macrophage-derived mitochondria were internalized into cardiomyocytes through clathrin- and/or lipid raft-mediated endocytosis. Uptake of exogenous macrophage mitochondria induced cardiomyocyte injury via triggering ferroptosis.
Collapse
Affiliation(s)
- Jun Chen
- Department of Basic Medicine Sciences, And Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chun-Yan Fu
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Gerong Shen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jingyu Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lintao Xu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Heyangzi Li
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xi Cao
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ming-Zhi Zheng
- School of Basic Medical Sciences & Forensic Medicine of Hangzhou Medical College, Hangzhou, 310053, China
| | - Yue-Liang Shen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jinjie Zhong
- Department of Basic Medicine Sciences, And Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Ying-Ying Chen
- Department of Basic Medicine Sciences, And Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, And Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
97
|
Sepe JJ, Gardner RT, Blake MR, Brooks DM, Staffenson MA, Betts CB, Sivagnanam S, Larson W, Kumar S, Bayles RG, Jin H, Cohen MS, Coussens LM, Habecker BA. Therapeutics That Promote Sympathetic Reinnervation Modulate the Inflammatory Response After Myocardial Infarction. JACC Basic Transl Sci 2022; 7:915-930. [PMID: 36317132 PMCID: PMC9617125 DOI: 10.1016/j.jacbts.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023]
Abstract
Myocardial infarction (MI) triggers an inflammatory response that transitions from pro-inflammatory to reparative over time. Restoring sympathetic nerves in the heart after MI prevents arrhythmias. This study investigated if reinnervation altered the immune response after MI. This study used quantitative multiplex immunohistochemistry to identify the immune cells present in the heart 2 weeks after ischemia-reperfusion. Two therapeutics stimulated reinnervation, preventing arrhythmias and shifting the immune response from inflammatory to reparative, with fewer pro-inflammatory macrophages and more regulatory T cells and reparative macrophages. Treatments did not alter macrophage phenotype in vitro, which suggested reinnervation contributed to the altered immune response.
Collapse
Key Words
- ACh, acetylcholine
- IP, intraperitoneal
- ISP, intracellular sigma peptide
- MI, myocardial infarction
- NE, norepinephrine
- PBS, phosphate-buffered saline
- TH, tyrosine hydroxylase
- Tregs, regulatory T cells
- VEH, vehicle
- inflammation
- mIHC, multiplex immunohistochemistry
- macrophages
- multiplex IHC
- myocardial infarction
- sympathetic nervous system
- β1-AR, adrenergic receptor
Collapse
Affiliation(s)
- Joseph J. Sepe
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Ryan T. Gardner
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew R. Blake
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Deja M. Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Melanie A. Staffenson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Courtney B. Betts
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Sam Sivagnanam
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - William Larson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Sushil Kumar
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Richard G. Bayles
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Haihong Jin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Michael S. Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Lisa M. Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Beth A. Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
98
|
Kopecky BJ, Dun H, Amrute JM, Lin CY, Bredemeyer AL, Terada Y, Bayguinov PO, Koenig AL, Frye CC, Fitzpatrick JAJ, Kreisel D, Lavine KJ. Donor Macrophages Modulate Rejection After Heart Transplantation. Circulation 2022; 146:623-638. [PMID: 35880523 PMCID: PMC9398940 DOI: 10.1161/circulationaha.121.057400] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/07/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Cellular rejection after heart transplantation imparts significant morbidity and mortality. Current immunosuppressive strategies are imperfect, target recipient T cells, and have adverse effects. The innate immune response plays an essential role in the recruitment and activation of T cells. Targeting the donor innate immune response would represent the earliest interventional opportunity within the immune response cascade. There is limited knowledge about donor immune cell types and functions in the setting of cardiac transplantation, and no current therapeutics exist for targeting these cell populations. METHODS Using genetic lineage tracing, cell ablation, and conditional gene deletion, we examined donor mononuclear phagocyte diversity and macrophage function during acute cellular rejection of transplanted hearts in mice. We performed single-cell RNA sequencing on donor and recipient macrophages and monocytes at multiple time points after transplantation. On the basis of our imaging and single-cell RNA sequencing data, we evaluated the functional relevance of donor CCR2+ (C-C chemokine receptor 2) and CCR2- macrophages using selective cell ablation strategies in donor grafts before transplant. Last, we performed functional validation that donor macrophages signal through MYD88 (myeloid differentiation primary response protein 88) to facilitate cellular rejection. RESULTS Donor macrophages persisted in the rejecting transplanted heart and coexisted with recipient monocyte-derived macrophages. Single-cell RNA sequencing identified donor CCR2+ and CCR2- macrophage populations and revealed remarkable diversity among recipient monocytes, macrophages, and dendritic cells. Temporal analysis demonstrated that donor CCR2+ and CCR2- macrophages were transcriptionally distinct, underwent significant morphologic changes, and displayed unique activation signatures after transplantation. Although selective depletion of donor CCR2- macrophages reduced allograft survival, depletion of donor CCR2+ macrophages prolonged allograft survival. Pathway analysis revealed that donor CCR2+ macrophages are activated through MYD88/nuclear factor kappa light chain enhancer of activated B cells signaling. Deletion of MYD88 in donor macrophages resulted in reduced antigen-presenting cell recruitment, reduced ability of antigen-presenting cells to present antigen to T cells, decreased emergence of allograft-reactive T cells, and extended allograft survival. CONCLUSIONS Distinct populations of donor and recipient macrophages coexist within the transplanted heart. Donor CCR2+ macrophages are key mediators of allograft rejection, and deletion of MYD88 signaling in donor macrophages is sufficient to suppress rejection and extend allograft survival. This highlights the therapeutic potential of donor heart-based interventions.
Collapse
Affiliation(s)
- Benjamin J Kopecky
- Cardiovascular Division, Department of Medicine, Washington
University School of Medicine, St. Louis, Missouri, USA
| | - Hao Dun
- Department of Surgery, Washington University School of
Medicine, Saint Louis, Missouri, USA
| | - Junedh M Amrute
- Cardiovascular Division, Department of Medicine, Washington
University School of Medicine, St. Louis, Missouri, USA
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington
University School of Medicine, Saint Louis, Missouri, USA
| | - Andrea L Bredemeyer
- Cardiovascular Division, Department of Medicine, Washington
University School of Medicine, St. Louis, Missouri, USA
| | - Yuriko Terada
- Department of Surgery, Washington University School of
Medicine, Saint Louis, Missouri, USA
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging,
Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew L Koenig
- Cardiovascular Division, Department of Medicine, Washington
University School of Medicine, St. Louis, Missouri, USA
| | - Christian C Frye
- Department of Surgery, Washington University School of
Medicine, Saint Louis, Missouri, USA
| | - James AJ Fitzpatrick
- Washington University Center for Cellular Imaging,
Washington University School of Medicine, St. Louis, Missouri, USA
- Departments of Neuroscience and Cell Biology &
Physiology, Washington University School of Medicine, Saint Louis, Missouri,
USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of
Medicine, Saint Louis, Missouri, USA
- Department of Pathology and Immunology, Washington
University School of Medicine, Saint Louis, Missouri, USA
| | - Kory J Lavine
- Cardiovascular Division, Department of Medicine, Washington
University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington
University School of Medicine, Saint Louis, Missouri, USA
- Department of Developmental Biology, Washington University
School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
99
|
He YY, Zhou HF, Chen L, Wang YT, Xie WL, Xu ZZ, Xiong Y, Feng YQ, Liu GY, Li X, Liu J, Wu QP. The Fra-1: Novel role in regulating extensive immune cell states and affecting inflammatory diseases. Front Immunol 2022; 13:954744. [PMID: 36032067 PMCID: PMC9404335 DOI: 10.3389/fimmu.2022.954744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fra-1(Fos-related antigen1), a member of transcription factor activator protein (AP-1), plays an important role in cell proliferation, apoptosis, differentiation, inflammation, oncogenesis and tumor metastasis. Accumulating evidence suggest that the malignancy and invasive ability of tumors can be significantly changed by directly targeting Fra-1. Besides, the effects of Fra-1 are gradually revealed in immune and inflammatory settings, such as arthritis, pneumonia, psoriasis and cardiovascular disease. These regulatory mechanisms that orchestrate immune and non-immune cells underlie Fra-1 as a potential therapeutic target for a variety of human diseases. In this review, we focus on the current knowledge of Fra-1 in immune system, highlighting its unique importance in regulating tissue homeostasis. In addition, we also discuss the possible critical intervention strategy in diseases, which also outline future research and development avenues.
Collapse
|
100
|
Xu H, Guan J, Jin Z, Yin C, Wu S, Sun W, Zhang H, Yan B. Mechanical force modulates macrophage proliferation via Piezo1-AKT-Cyclin D1 axis. FASEB J 2022; 36:e22423. [PMID: 35775626 DOI: 10.1096/fj.202200314r] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/23/2022]
Abstract
Orthodontic tooth movement (OTM) is induced by biomechanical stimuli and facilitated by periodontal tissue remodeling, where multiple immune cells participate in this progression. It has been demonstrated that macrophage is essential for mechanical force-induced tissue remodeling. In this study, we first found that mechanical force significantly induced macrophage proliferation in human periodontal samples and murine OTM models. Yet, how macrophages perceive mechanical stimuli and thereby modulate their biological behaviors remain elusive. To illustrate the mechanisms of mechanical force-induced macrophage proliferation, we subsequently identified Piezo1, a novel mechanosensory ion channel, to modulate macrophage response subjected to mechanical stimuli. Mechanical force upregulates Piezo1 expression in periodontal tissues and cultured bone-marrow-derived macrophages (BMDMs). Remarkably, suppressing Piezo1 with GsMTx4 retarded OTM through reduced macrophage proliferation. Moreover, knockdown of Piezo1 effectively inhibited mechanical force-induced BMDMs proliferation. RNA sequencing was further performed to dissect the underlying mechanisms of Piezo1-mediated mechanotransduction utilizing mechanical stretch system. We revealed that Piezo1-activated AKT/GSK3β signaling was closely associated with macrophage proliferation upon mechanical stimuli. Importantly, Cyclin D1 (Ccnd1) was authenticated as a critical downstream factor of Piezo1 that facilitated proliferation by enhancing Rb phosphorylation. We generated genetically modified mice in which Ccnd1 could be deleted in macrophages in an inducible manner. Conditional ablation of Ccnd1 inhibited periodontal macrophage proliferation and therefore delayed OTM. Overall, our findings highlight that proliferation driven by mechanical force is a key process by which macrophages infiltrate in periodontal tissue during OTM, where Piezo1-AKT-Ccnd1 axis plays a pivotal role.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jiani Guan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zhichun Jin
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Cheng Yin
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shengnan Wu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hanwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|