51
|
Kale SD, Mehrkens BN, Stegman MM, Kastelberg B, Carnes H, McNeill RJ, Rizzo A, Karyala SV, Coutermarsh-Ott S, Fretz JA, Sun Y, Koff JL, Rajagopalan G. "Small" Intestinal Immunopathology Plays a "Big" Role in Lethal Cytokine Release Syndrome, and Its Modulation by Interferon-γ, IL-17A, and a Janus Kinase Inhibitor. Front Immunol 2020; 11:1311. [PMID: 32676080 PMCID: PMC7333770 DOI: 10.3389/fimmu.2020.01311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Chimeric antigen receptor T cell (CART) therapy, administration of certain T cell-agonistic antibodies, immune check point inhibitors, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) and Toxic shock syndrome (TSS) caused by streptococcal as well as staphylococcal superantigens share one common complication, that is T cell-driven cytokine release syndrome (CRS) accompanied by multiple organ dysfunction (MOD). It is not understood whether the failure of a particular organ contributes more significantly to the severity of CRS. Also not known is whether a specific cytokine or signaling pathway plays a more pathogenic role in precipitating MOD compared to others. As a result, there is no specific treatment available to date for CRS, and it is managed only symptomatically to support the deteriorating organ functions and maintain the blood pressure. Therefore, we used the superantigen-induced CRS model in HLA-DR3 transgenic mice, that closely mimics human CRS, to delineate the immunopathogenesis of CRS as well as to validate a novel treatment for CRS. Using this model, we demonstrate that (i) CRS is characterized by a rapid rise in systemic levels of several Th1/Th2/Th17/Th22 type cytokines within a few hours, followed by a quick decline. (ii) Even though multiple organs are affected, small intestinal immunopathology is the major contributor to mortality in CRS. (iii) IFN-γ deficiency significantly protected from lethal CRS by attenuating small bowel pathology, whereas IL-17A deficiency significantly increased mortality by augmenting small bowel pathology. (iv) RNA sequencing of small intestinal tissues indicated that IFN-γ-STAT1-driven inflammatory pathways combined with enhanced expression of pro-apoptotic molecules as well as extracellular matrix degradation contributed to small bowel pathology in CRS. These pathways were further enhanced by IL-17A deficiency and significantly down-regulated in mice lacking IFN-γ. (v) Ruxolitinib, a selective JAK-1/2 inhibitor, attenuated SAg-induced T cell activation, cytokine production, and small bowel pathology, thereby completely protecting from lethal CRS in both WT and IL-17A deficient HLA-DR3 mice. Overall, IFN-γ-JAK-STAT-driven pathways contribute to lethal small intestinal immunopathology in T cell-driven CRS.
Collapse
Affiliation(s)
- Shiv D Kale
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Brittney N Mehrkens
- The Discipline of Microbiology and Immunology, Edward via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Molly M Stegman
- College of Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bridget Kastelberg
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Henry Carnes
- The Discipline of Microbiology and Immunology, Edward via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Rachel J McNeill
- Research and Graduate Studies, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Amy Rizzo
- Office of the University Veterinarian, Virginia Tech, Blacksburg, VA, United States
| | - Saikumar V Karyala
- Genomics Sequencing Center, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jackie A Fretz
- Histology and Histomorphometry Laboratory, Department of Orthopedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| | - Ying Sun
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Jonathan L Koff
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Govindarajan Rajagopalan
- The Discipline of Microbiology and Immunology, Edward via College of Osteopathic Medicine, Blacksburg, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
52
|
Abstract
COVID-19, a novel infectious disease, caused by SARS-CoV-2, affected millions of people around the world with a high mortality rate. Although SARS-CoV-2 mainly causes lung infection, gastrointestinal symptoms described in COVID-19 patients and detection of the viral RNA in feces of infected patients drove attentions to a possible fecal-oral transmission route of SARS-CoV-2. However, not only the viral RNA but also the infectious viral particles are required for the viral infection and no proof has been demonstrated the transmission of the infectious virus particles via the fecal-oral route yet. Growing evidence indicates the crosstalk between gut microbiota and lung, that maintains host homeostasis and disease development with the association of immune system. This gut-lung interaction may influence the COVID-19 severity in patients with extrapulmonary conditions. Severity of COVID-19 has mostly associated with old ages and underlying medical conditions. Since the diversity in the gut microbiota decreases during aging, dysbiosis could be the reason for older adults being at high risk for severe illness from COVID-19. We believe that gut microbiota contributes to the course of COVID-19 due to its bidirectional relationship with immune system and lung. Dysbiosis in gut microbiota results in gut permeability leading to secondary infection and multiple organ failure. Conversely, disruption of the gut barrier integrity due to dysbiosis may lead to translocation of SARS-CoV-2 from the lung into the intestinal lumen via circulatory and lymphatic system. This review points out the role of dysbiosis of the gut microbiota involving in sepsis, on the severity of SARS-CoV-2 infection. Additionally, this review aims to clarify the ambiguity in fecal-oral transmission of SARS- CoV-2.
Collapse
Affiliation(s)
- Busra AKTAS
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, BurdurTurkey
| | - Belma ASLIM
- Department of Biology, Faculty of Science, Gazi University, AnkaraTurkey
| |
Collapse
|
53
|
|
54
|
Ferrara F, Zeisig V, Pietsch S, Rütten R, Dreyer AY, Pieper L, Schatzl AK, McLeod DD, Barthel H, Boltze J, Schrödl W, Nitzsche B. Hypothesis and Theory: A Pathophysiological Concept of Stroke-Induced Acute Phase Response and Increased Intestinal Permeability Leading to Secondary Brain Damage. Front Neurosci 2020; 14:272. [PMID: 32372897 PMCID: PMC7186394 DOI: 10.3389/fnins.2020.00272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Gut integrity impairment leading to increased intestinal permeability (IP) is hypothesized to be a trigger of critically illness. Approximately 15-20% of human ischemic stroke (IS) victims require intensive care, including patients with impaired level of consciousness or a high risk for developing life-threatening cerebral edema. Local and systemic inflammatory reactions are a major component of the IS pathophysiology and can significantly aggravate brain tissue damage. Intracerebral inflammatory processes following IS have been well studied. Until now, less is known about systemic inflammatory responses and IS consequences apart from a frequently observed post-IS immunosuppression. Here, we provide a hypothesis of a crosstalk between systemic acute phase response (APR), IP and potential secondary brain damage during acute and subacute IS stages supported by preliminary experimental data. Alterations of the acute phase proteins (APPs) C-reactive protein and lipopolysaccharide-binding protein and serum level changes of antibodies directed against Escherichia coli-cell extract antigen (IgA-, IgM-, and IgG-anti-E. coli) were investigated at 1, 2, and 7 days following IS in ten male sheep. We found an increase of both APPs as well as a decrease of all anti-E. coli antibodies within 48 h following IS. This may indicate an early systemic APR and increased IP, and underlines the importance of the increasingly recognized gut-brain axis and of intestinal antigen release for systemic immune responses in acute and subacute stroke stages.
Collapse
Affiliation(s)
- Fabienne Ferrara
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Vilia Zeisig
- Clinic and Policlinic for Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Sören Pietsch
- Klinik und Poliklinik für Kinder und Jugendmedizin, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Rita Rütten
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Antje Y Dreyer
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Laura Pieper
- Institut für Veterinär-Epidemiologie und Biometrie, Freie Universität Berlin, Berlin, Germany
| | - Ann-Kathrin Schatzl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Damian D McLeod
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital CG Carus, TU Dresden, HZDR, Dresden, Germany.,School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Henryk Barthel
- Clinic and Policlinic for Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Johannes Boltze
- School of Life Sciences, Faculty of Science, University of Warwick, Coventry, United Kingdom
| | - Wieland Schrödl
- Faculty of Veterinary Medicine, Institute of Bacteriology and Mycology, University of Leipzig, Leipzig, Germany
| | - Björn Nitzsche
- Clinic and Policlinic for Nuclear Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
55
|
Lan J, Dou X, Li J, Yang Y, Xue C, Wang C, Gao N, Shan A. l-Arginine Ameliorates Lipopolysaccharide-Induced Intestinal Inflammation through Inhibiting the TLR4/NF-κB and MAPK Pathways and Stimulating β-Defensin Expression in Vivo and in Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2648-2663. [PMID: 32064872 DOI: 10.1021/acs.jafc.9b07611] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nutritional regulation of endogenous antimicrobial peptide (AMP) expression is considered a promising nonantibiotic approach to suppressing intestinal infection of pathogen. The current study investigated the effects of l-arginine on LPS-induced intestinal inflammation and barrier dysfunction in vivo and in vitro. The results revealed that l-arginine attenuated LPS-induced inflammatory response, inhibited the downregulation of tight junction proteins (TJP) (p < 0.05) by LPS, and maintained intestinal integrity. In porcine intestinal epithelial cells (IPEC-J2), l-arginine obviously suppressed (p < 0.05) the levels of IL-6 (220.63 ± 2.82), IL-8 (333.95 ± 3.75), IL-1β (693.08 ± 2.38), and TNF-α (258.04 ± 4.14) induced by LPS. Furthermore, l-arginine diminished the LPS-induced expression of Toll-like receptor 4 (TLR4) and inhibited activation of TLR4-mediated nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Importantly, we proposed a new mechanism that l-arginine had the ability to stimulate the expression of porcine epithelial β-defensins through activating the mammalian target of the rapamycin (mTOR) pathway, which exerts anti-inflammatory influence. Moreover, pBD-1 gene overexpression decreased (p < 0.05) the TNF-α level stimulated by LPS in IPEC-J2 cells (4.22 ± 1.64). The present study indicated that l-arginine enhanced disease resistance through inhibiting the TLR4/NF-κB and MAPK pathways and partially, possibly through increasing the intestinal β-defensin expression.
Collapse
Affiliation(s)
- Jing Lan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiujing Dou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiawei Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yang Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Chenyu Xue
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Chenxi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
56
|
Ho J, Chan H, Liang Y, Liu X, Zhang L, Li Q, Zhang Y, Zeng J, Ugwu FN, Ho IHT, Hu W, Yau JCW, Wong SH, Wong WT, Ling L, Cho CH, Gallo RL, Gin T, Tse G, Yu J, Chan MTV, Leung CCH, Wu WKK. Cathelicidin preserves intestinal barrier function in polymicrobial sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:47. [PMID: 32041659 PMCID: PMC7011568 DOI: 10.1186/s13054-020-2754-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Objectives The intestinal epithelium compartmentalizes the sterile bloodstream and the commensal bacteria in the gut. Accumulating evidence suggests that this barrier is impaired in sepsis, aggravating systemic inflammation. Previous studies reported that cathelicidin is differentially expressed in various tissues in sepsis. However, its role in sepsis-induced intestinal barrier dysfunction has not been investigated. Design To examine the role of cathelicidin in polymicrobial sepsis, cathelicidin wild-(Cnlp+/+) and knockout (Cnlp−/−) mice underwent cecal-ligation and puncture (CLP) followed by the assessment of septic mortality and morbidity as well as histological, biochemical, immunological, and transcriptomic analyses in the ileal tissues. We also evaluated the prophylactic and therapeutic efficacies of vitamin D3 (an inducer of endogenous cathelicidin) in the CLP-induced murine polymicrobial sepsis model. Results The ileal expression of cathelicidin was increased by three-fold after CLP, peaking at 4 h. Knockout of Cnlp significantly increased 7-day mortality and was associated with a higher murine sepsis score. Alcian-blue staining revealed a reduced number of mucin-positive goblet cells, accompanied by reduced mucin expression. Increased number of apoptotic cells and cleavage of caspase-3 were observed. Cnlp deletion increased intestinal permeability to 4kD fluorescein-labeled dextran and reduced the expression of tight junction proteins claudin-1 and occludin. Notably, circulating bacterial DNA load increased more than two-fold. Transcriptome analysis revealed upregulation of cytokine/inflammatory pathway. Depletion of Cnlp induced more M1 macrophages and neutrophils compared with the wild-type mice after CLP. Mice pre-treated with cholecalciferol (an inactive form of vitamin D3) or treated with 1alpha, 25-dihydroxyvitamin D3 (an active form of VD3) had decreased 7-day mortality and significantly less severe symptoms. Intriguingly, the administration of cholecalciferol after CLP led to worsened 7-day mortality and the associated symptoms. Conclusions Endogenous cathelicidin promotes intestinal barrier integrity accompanied by modulating the infiltration of neutrophils and macrophages in polymicrobial sepsis. Our data suggested that 1alpha, 25-dihydroxyvitamin D3 but not cholecalciferol is a potential therapeutic agent for treating sepsis.
Collapse
Affiliation(s)
- Jeffery Ho
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Hung Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Yonghao Liang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.,State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Qing Li
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Yuchen Zhang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Judeng Zeng
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Felix N Ugwu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Idy H T Ho
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Wei Hu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Johnny C W Yau
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Sunny H Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Shatin, China
| | - Wai Tat Wong
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Lowell Ling
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Chi H Cho
- Laboratory of Molecular Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Richard L Gallo
- Department of Dermatology, The University of California, San Diego, USA
| | - Tony Gin
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Gary Tse
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Shatin, China
| | - Jun Yu
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Shatin, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
| | - Czarina C H Leung
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
| | - William K K Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China. .,State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
57
|
The Prognostic Value of Endotoxemia and Intestinal Barrier Biomarker ZO-1 in Bacteremic Sepsis. Am J Med Sci 2020; 359:100-107. [DOI: 10.1016/j.amjms.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
|
58
|
Saia RS, Ribeiro AB, Giusti H. Cholecystokinin Modulates the Mucosal Inflammatory Response and Prevents the Lipopolysaccharide-Induced Intestinal Epithelial Barrier Dysfunction. Shock 2020; 53:242-251. [DOI: 10.1097/shk.0000000000001355] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
59
|
Amornphimoltham P, Yuen PST, Star RA, Leelahavanichkul A. Gut Leakage of Fungal-Derived Inflammatory Mediators: Part of a Gut-Liver-Kidney Axis in Bacterial Sepsis. Dig Dis Sci 2019; 64:2416-2428. [PMID: 30863955 DOI: 10.1007/s10620-019-05581-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/06/2019] [Indexed: 02/07/2023]
Abstract
Sepsis is a life-threatening response to systemic infection. In addition to frank gastrointestinal (GI) rupture/puncture, sepsis can also be exacerbated by translocation of pathogen-associated molecular patterns (PAMPs) from the GI tract to the systemic circulation (gut origin of sepsis). In the human gut, Gram-negative bacteria and Candida albicans are abundant, along with their major PAMP components, endotoxin (LPS) and (1 → 3)-β-D-glucan (BG). Whereas the influence of LPS in bacterial sepsis has been studied extensively, exploration of the role of BG in bacterial sepsis is limited. Post-translocation, PAMPs enter the circulation through lymphatics and the portal vein, and are detoxified and then excreted via the liver and the kidney. Sepsis-induced liver and kidney injury might therefore affect the kinetics and increase circulating PAMPs. In this article, we discuss the current knowledge of the impact of PAMPs from both gut mycobiota and microbiota, including epithelial barrier function and the "gut-liver-kidney axis," on bacterial sepsis severity.
Collapse
Affiliation(s)
| | - Peter S T Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Asada Leelahavanichkul
- Immunology Unit, Department of Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
60
|
Hanslin K, Sjölin J, Skorup P, Wilske F, Frithiof R, Larsson A, Castegren M, Tano E, Lipcsey M. The impact of the systemic inflammatory response on hepatic bacterial elimination in experimental abdominal sepsis. Intensive Care Med Exp 2019; 7:52. [PMID: 31456116 PMCID: PMC6712186 DOI: 10.1186/s40635-019-0266-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/19/2019] [Indexed: 01/29/2023] Open
Abstract
Background Bacterial translocation from the gut has been suggested to induce a systemic inflammatory response syndrome (SIRS) and organ dysfunction. The liver has a pivotal role in eliminating circulating bacteria entering from the gut. We investigated whether pre-existing inflammation affects hepatic bacterial elimination. Methods Fifteen anaesthetised piglets were infused with E. coli in the portal vein for 3 h. The naive group (n = 6) received the bacterial infusion without endotoxin exposure. SIRS (SIRS group, n = 6) was induced by endotoxin infusion 24 h before the bacterial infusion. For effects of anaesthesia, controls (n = 3) received saline instead of endotoxin for 24 h. Bacterial counts and endotoxin levels in the portal and hepatic veins were analysed during bacterial infusion. Results The bacterial killing rate was higher in the naive group compared with the SIRS group (p = 0.001). The ratio of hepatic to portal venous bacterial counts, i.e. the median bacterial influx from the splanchnic circulation, was 0.06 (IQR 0.01–0.11) in the naive group and 0.71 (0.03–1.77) in the SIRS group at 3 h, and a magnitude lower in the naive group during bacteraemia (p = 0.03). Similar results were seen for hepatic endotoxin elimination. Peak log tumour necrosis factor alpha was higher in the naive 4.84 (4.77–4.89) vs. the SIRS group 3.27 (3.26–3.32) mg/L (p < 0.001). Conclusions Our results suggest that hepatic bacterial and endotoxin elimination is impaired in pigs with pre-existing SIRS while the inflammatory response to bacterial infusion is diminished. If similar mechanisms operate in human critical illness, the hepatic elimination of bacteria from the gut could be impaired by SIRS. Electronic supplementary material The online version of this article (10.1186/s40635-019-0266-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katja Hanslin
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Sjölin
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Paul Skorup
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Frida Wilske
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- Hedenstierna Laboratory, CIRRUS, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Section of Clinical Chemistry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Castegren
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Perioperative Medicine and Intensive Care, Karolinska University Hospital and CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Eva Tano
- Section of Clinical Bacteriology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklos Lipcsey
- Hedenstierna Laboratory, CIRRUS, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
61
|
Iacob S, Iacob DG. Infectious Threats, the Intestinal Barrier, and Its Trojan Horse: Dysbiosis. Front Microbiol 2019; 10:1676. [PMID: 31447793 PMCID: PMC6692454 DOI: 10.3389/fmicb.2019.01676] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
The ecosystem of the gut microbiota consists of diverse intestinal species with multiple metabolic and immunologic activities and it is closely connected with the intestinal epithelia and mucosal immune response, with which it builds a complex barrier against intestinal pathogenic bacteria. The microbiota ensures the integrity of the gut barrier through multiple mechanisms, either by releasing antibacterial molecules (bacteriocins) and anti-inflammatory short-chain fatty acids or by activating essential cell receptors for the immune response. Experimental studies have confirmed the role of the intestinal microbiota in the epigenetic modulation of the gut barrier through posttranslational histone modifications and regulatory mechanisms induced by epithelial miRNA in the epithelial lumen. Any quantitative or functional changes of the intestinal microbiota, referred to as dysbiosis, alter the immune response, decrease epithelial permeability and destabilize intestinal homeostasis. Consequently, the overgrowth of pathobionts (Staphylococcus, Pseudomonas, and Escherichia coli) favors intestinal translocations with Gram negative bacteria or their endotoxins and could trigger sepsis, septic shock, secondary peritonitis, or various intestinal infections. Intestinal infections also induce epithelial lesions and perpetuate the risk of bacterial translocation and dysbiosis through epithelial ischemia and pro-inflammatory cytokines. Furthermore, the decline of protective anaerobic bacteria (Bifidobacterium and Lactobacillus) and inadequate release of immune modulators (such as butyrate) affects the release of antimicrobial peptides, de-represses microbial virulence factors and alters the innate immune response. As a result, intestinal germs modulate liver pathology and represent a common etiology of infections in HIV immunosuppressed patients. Antibiotic and antiretroviral treatments also promote intestinal dysbiosis, followed by the selection of resistant germs which could later become a source of infections. The current article addresses the strong correlations between the intestinal barrier and the microbiota and discusses the role of dysbiosis in destabilizing the intestinal barrier and promoting infectious diseases.
Collapse
Affiliation(s)
- Simona Iacob
- Infectious Diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,National Institute of Infectious Diseases "Prof. Dr. Matei Balş", Bucharest, Romania
| | - Diana Gabriela Iacob
- Infectious Diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
62
|
van Ruissen MCE, Bos LD, Dickson RP, Dondorp AM, Schultsz C, Schultz MJ. Manipulation of the microbiome in critical illness-probiotics as a preventive measure against ventilator-associated pneumonia. Intensive Care Med Exp 2019; 7:37. [PMID: 31346841 PMCID: PMC6658628 DOI: 10.1186/s40635-019-0238-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022] Open
Abstract
Objective To describe the possible modes of action of probiotics and provide a systematic review of the current evidence on the efficacy of probiotics to prevent ventilator-associated pneumonia (VAP) in critically ill patients. Methods We conducted an unrestricted search of the English language medical literature. For each individual study, the relative risk of VAP was calculated using the reported primary outcome data. Results The search identified a total of 72 articles. Eight articles enrolling a total of 1229 patients fulfilled the inclusion and exclusion criteria. In four trials, the investigators were blinded for the intervention, and two trials used an intention-to-treat analysis. Loss to follow-up with regard to the primary endpoint ranged from 0 to 14% in the intervention groups and from 0 to 16% in the control groups. The incidence of VAP expressed as the percentage of studied patients was reported in seven trials. The incidence of VAP ranged from 4 to 36% in the intervention groups and from 13 to 50% in the control groups. The relative risk for VAP ranged between 0.30 and 1.41. Three trials showed a significant difference in favor of probiotic therapy between the intervention and the control groups. Conclusions The incidence of VAP tended to be lower in patients treated with probiotics in most trials identified by the systematic search. Due to the heterogeneity of the studies and the low quality of evidence, it remains difficult to draw firm conclusions. The efficacy of preventive probiotics should be studied in more detail in future trials. Application of probiotics for the prevention of VAP seems to be safe with only few side effects reported in the selected trials. Electronic supplementary material The online version of this article (10.1186/s40635-019-0238-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marel C E van Ruissen
- Amsterdam Institute for Global Health and Development (AIGHD), Academic Medical Center, Amsterdam, The Netherlands
| | - Lieuwe D Bos
- Department of Pulmonology, Academic Medical Center, Amsterdam, The Netherlands. .,Department of Intensive Care, Academic Medical Center, C3-425, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Robert P Dickson
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arjen M Dondorp
- Department of Intensive Care, Academic Medical Center, C3-425, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Constance Schultsz
- Amsterdam Institute for Global Health and Development (AIGHD), Academic Medical Center, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Academic Medical Center, C3-425, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand.,Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
63
|
van de Groep K, Bos MP, Varkila MRJ, Savelkoul PHM, Ong DSY, Derde LPG, Juffermans NP, van der Poll T, Bonten MJM, Cremer OL. Moderate positive predictive value of a multiplex real-time PCR on whole blood for pathogen detection in critically ill patients with sepsis. Eur J Clin Microbiol Infect Dis 2019; 38:1829-1836. [PMID: 31243596 PMCID: PMC6778535 DOI: 10.1007/s10096-019-03616-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022]
Abstract
A novel multiplex real-time PCR for bloodstream infections (BSI-PCR) detects pathogens directly in blood. This study aimed at determining the positive predictive value (PPV) of BSI-PCR in critically ill patients with sepsis. We included consecutive patients with presumed sepsis upon admission to the intensive care unit (ICU). The multiplexed BSI-PCR included 17 individual PCRs for a broad panel of species- and genus-specific DNA targets. BSI-PCR results were compared with a reference diagnosis for which plausibility of infection and causative pathogen(s) had been prospectively assessed by trained observers, based on available clinical and microbiological evidence. PPV and false positive proportion (FPP) were calculated. Clinical plausibility of discordant positive results was adjudicated by an expert panel. Among 325 patients, infection likelihood was categorized as confirmed, uncertain, and ruled out in 210 (65%), 88 (27%), and 27 (8%) subjects, respectively. BSI-PCR identified one or more microorganisms in 169 (52%) patients, of whom 104 (61%) had at least one detection in accordance with the reference diagnosis. Discordant positive PCR results were observed in 95 patients, including 30 subjects categorized as having an "unknown" pathogen. Based on 5525 individual PCRs yielding 295 positive results, PPV was 167/295 (57%) and FPP was 128/5525 (2%). Expert adjudication of the 128 discordant PCR findings resulted in an adjusted PPV of 68% and FPP of 2%. BSI-PCR was all-negative in 156 patients, including 79 (51%) patients in whom infection was considered ruled out. BSI-PCR may complement conventional cultures and expedite the microbiological diagnosis of sepsis in ICU patients, but improvements in positive predictive value of the test are warranted before its implementation in clinical practice can be considered.
Collapse
Affiliation(s)
- Kirsten van de Groep
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. .,Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | | | - Meri R J Varkila
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Paul H M Savelkoul
- Microbiome, Amsterdam, The Netherlands.,Department of Medical Microbiology & Infection Control, Amsterdam University Medical Centers, VU, Amsterdam, The Netherlands.,Department of Medical Microbiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - David S Y Ong
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Medical Microbiology and Infection Control, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Lennie P G Derde
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht,, Utrecht University, Utrecht, The Netherlands
| | - Olaf L Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
64
|
Hu DJK, Jasper H. Epithelia: Understanding the Cell Biology of Intestinal Barrier Dysfunction. Curr Biol 2019; 27:R185-R187. [PMID: 28267974 DOI: 10.1016/j.cub.2017.01.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Barrier dysfunction in the intestine is a common characteristic of aging organisms. A recent study provides new insight into the cell biology of this phenomenon.
Collapse
Affiliation(s)
- Daniel J-K Hu
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
65
|
Preclinical evidence of sphingosine kinase 1 inhibition in alleviation of intestinal epithelial injury in polymicrobial sepsis. Inflamm Res 2019; 68:723-726. [PMID: 31154460 DOI: 10.1007/s00011-019-01255-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Intestinal epithelial injury in septic patients predicts subsequent development of multiple organ failure, but its regulation by host factors remains unclear. Sphingosine kinase 1 is an enzyme-regulating inflammatory response. METHODS Cecal ligation and puncture was used to induce sepsis in C57BL/6 mice with and without N,N-dimethylsphingosine, a SphK1 inhibitor. Symptom severity was monitored by murine sepsis severity score. The intestinal barrier function was determined using 4KDa fluorescein-dextran. Bacterial load in the bloodstream was determined by 16S rRNA gene amplification. RESULTS AND CONCLUSIONS Our preliminary experimental data showed that expression of sphingosine kinase 1 in ileum was increased by sixfold in septic mice. Pharmacological blockade of sphingosine kinase 1 alleviated septic symptoms. The intestinal permeability and bacterial load in the bloodstream were also reduced in these animals. We hypothesized that inhibition of sphingosine kinase 1 may reduce pro-inflammatory cytokine production, and alleviate intestinal epithelial injury during sepsis. Further mechanistic studies and clinical specimen analyses are warranted.
Collapse
|
66
|
Casella G, Ingravalle F, Abbate G, Monti C, Bonetti F, Bassotti G, Mansueto P, Villanacci V, Carroccio A. Pneumococcal vaccination in celiac disease. Expert Rev Gastroenterol Hepatol 2019; 13:541-546. [PMID: 30987472 DOI: 10.1080/17474124.2019.1607295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Celiac disease (CD) is an immune-mediated disorder associated with gluten exposure in genetically predisposed subjects. Areas covered: Infectious disease is one of the causes of morbidity and mortality in CD patients. Invasive streptococcus pneumoniae (pneumococcus) is a particularly dangerous morbid condition in both the general population and celiac patients. Pneumococcal vaccination is the most effective means for its prevention. Expert opinion: In CD, evaluation of spleen function should be useful to select patients who may benefit from vaccination to reduce the risk of pneumococcal disease. Different strategies could be employed: physicians could search for signs of hyposplenism on peripheral blood smear or abdominal ultrasound. However, the best strategy to identify which patients will benefit from pneumococcal vaccination has not yet been defined.
Collapse
Affiliation(s)
| | | | - Giorgio Abbate
- c Prevention and Vaccination Center , Corberi-Antonini Hospital - ASST Monza , Limbiate (Monza Brianza) , Italy
| | - Claudio Monti
- a ATS Lecco-Brianza , Limbiate (Monza Brianza) , Italy
| | | | - Gabrio Bassotti
- d Gastroenterology, Hepatology and Digestive Endoscopy Section, Department of Medicine , University of Perugia - Medicine , Perugia , Italy
| | - Pasquale Mansueto
- e Dipartimento Biomedico di Medicina Interna e Specialistica (DiBiMIS) , University of Palermo , Palermo , Italy
| | | | - Antonio Carroccio
- e Dipartimento Biomedico di Medicina Interna e Specialistica (DiBiMIS) , University of Palermo , Palermo , Italy.,g Internal Medicine , Giovanni Paolo II Hospital, Sciacca (ASP Agrigento) , Italy
| |
Collapse
|
67
|
Chan MXF, Buitinck S, Stooker W, Haak EAF, Wester JPJ, Bosman RJ, van der Voort PHJ. Clinical Effects of Perioperative Selective Decontamination of the Digestive Tract (SDD) in Cardiac Surgery: A Propensity Score Matched Cohort Analysis. J Cardiothorac Vasc Anesth 2019; 33:3001-3009. [PMID: 31101508 DOI: 10.1053/j.jvca.2019.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To determine the clinical effects of perioperative endotoxin reduction in the gut lumen in patients undergoing cardiac surgery with cardiopulmonary bypass. DESIGN Retrospective cohort analysis with propensity score matching according to treatment group. SETTING Tertiary center for cardiopulmonary diseases and intensive care medicine. PARTICIPANTS Included were patients who underwent cardiac surgery with cardiopulmonary bypass between 2008 and 2017. Excluded were readmitted patients. INTERVENTIONS Endotoxin reduction in the gut lumen by ingestion of oral tobramycin 80 mg and polymyxin B 100 mg 4 times daily (TP) as part of selective digestive tract decontamination, which contains amphotericin B 500 mg as well. MEASUREMENTS AND MAIN RESULTS A total of 6,394 patients were included, of whom 2,044 patients were in the intervention group. A total of 835 patients received both pre- and postoperative TP (Pre+/Post+), and 1,165 patients received TP only postoperatively (Pre-/Post+). The control group, not treated with TP at any moment, consisted of 4,350 patients (Pre-/Post-). After matching, 652 Pre+/Post+ patients were compared with an equal number of controls (Pre-/Post-). Pre+/Post+ group did not do better for any clinical outcome. A total of 682 Pre+/Post+ patients matched with an equal number of Pre-/Post+ patients. The latter group had a 0.3 points higher mean Sequential Organ Failure Assessment score and in the regression analysis a significantly higher intensive care unit mortality but not hospital mortality. A significant reduction in length of stay and length of mechanical ventilation for the Pre+/Post+ group was shown compared with Pre-/Post+, but these differences can be explained by unbalanced differences in the severity of illness. CONCLUSION Cardiosurgical patients who receive tobramycin and polymyxin orally preoperatively to reduce the gut endotoxin level do not expose convincing and relevant beneficial effects on clinical outcomes in this retrospective propensity score matching cohort study.
Collapse
Affiliation(s)
| | - Sophie Buitinck
- Department of Intensive Care, OLVG, Amsterdam, the Netherlands
| | - Wim Stooker
- Department of Cardio-thoracic Surgery, OLVG, Amsterdam, the Netherlands
| | - Eric A F Haak
- Department of Clinical Pharmacy, OLVG, Amsterdam, the Netherlands
| | - Jos P J Wester
- Department of Intensive Care, OLVG, Amsterdam, the Netherlands
| | - Rob J Bosman
- Department of Intensive Care, OLVG, Amsterdam, the Netherlands
| | - Peter H J van der Voort
- Department of Intensive Care, OLVG, Amsterdam, the Netherlands; TIAS School for Business and Society, Tilburg University, Tilburg, the Netherlands.
| |
Collapse
|
68
|
Hill TL. Gastrointestinal Tract Dysfunction With Critical Illness: Clinical Assessment and Management. Top Companion Anim Med 2019; 35:47-52. [PMID: 31122688 DOI: 10.1053/j.tcam.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/29/2022]
Abstract
The gut is the site of digestion and absorption as well as serving as an endocrine and immune organ. All of these functions may be affected by critical illness. This review will discuss secondary effects of critical illness on the gut in terms of gastrointestinal function that is clinically observable and discuss consequences of gut dysfunction with critical illness to patient outcome. Because there is little evidence-based medicine in the veterinary field, much of our understanding of gut dysfunction with critical illness comes from animal models or from the human medical field. We can extrapolate some of these conclusions and recommendations to companion animals, particularly in dogs, who have similar gastrointestinal physiology to people. Additionally, the evidence regarding gut dysfunction in veterinary patients will be explored. By recognizing signs of dysfunction early and taking preventative measures, we may be able to increase success with treatment of critical illnesses.
Collapse
Affiliation(s)
- Tracy L Hill
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
69
|
van Zanden JE, Jager NM, Daha MR, Erasmus ME, Leuvenink HGD, Seelen MA. Complement Therapeutics in the Multi-Organ Donor: Do or Don't? Front Immunol 2019; 10:329. [PMID: 30873176 PMCID: PMC6400964 DOI: 10.3389/fimmu.2019.00329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Over the last decade, striking progress has been made in the field of organ transplantation, such as better surgical expertise and preservation techniques. Therefore, organ transplantation is nowadays considered a successful treatment in end-stage diseases of various organs, e.g. the kidney, liver, intestine, heart, and lungs. However, there are still barriers which prevent a lifelong survival of the donor graft in the recipient. Activation of the immune system is an important limiting factor in the transplantation process. As part of this pro-inflammatory environment, the complement system is triggered. Complement activation plays a key role in the transplantation process, as highlighted by the amount of studies in ischemia-reperfusion injury (IRI) and rejection. However, new insight have shown that complement is not only activated in the later stages of transplantation, but already commences in the donor. In deceased donors, complement activation is associated with deteriorated quality of deceased donor organs. Of importance, since most donor organs are derived from either brain-dead donors or deceased after circulatory death donors. The exact mechanisms and the role of the complement system in the pathophysiology of the deceased donor have been underexposed. This review provides an overview of the current knowledge on complement activation in the (multi-)organ donor. Targeting the complement system might be a promising therapeutic strategy to improve the quality of various donor organs. Therefore, we will discuss the complement therapeutics that already have been tested in the donor. Finally, we question whether complement therapeutics should be translated to the clinics and if all organs share the same potential complement targets, considering the physiological differences of each organ.
Collapse
Affiliation(s)
- Judith E. van Zanden
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Neeltina M. Jager
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Mohamed R. Daha
- Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Michiel E. Erasmus
- Department of Thoracic Surgery, University Medical Center Groningen, Groningen, Netherlands
| | | | - Marc A. Seelen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
70
|
Georas S, Ransom N, Hillman S, Eliseeva S, Veazey J, Smyth T, Le K, Meddings J. The leaky lung test: a pilot study using inhaled mannitol to measure airway barrier function in asthma. J Asthma 2018; 56:1257-1265. [PMID: 30444143 DOI: 10.1080/02770903.2018.1536145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objective: Airway epithelial barrier dysfunction is emerging as an important feature of asthma pathogenesis, but this is difficult to measure in individual subjects. We aimed to develop a noninvasive way to measure airway permeability in asthma. Methods: Healthy controls and subjects with mild asthma inhaled dry powder mannitol in a dose-escalating manner on two separate occasions, stopping at 155 mg or 315 mg. Serum mannitol levels were measured at baseline and then 30, 90, and 150 min after mannitol inhalation. Mannitol absorption was compared with measurements of airflow obstruction (FEV1) and airway inflammation (FeNO). Results: Serum mannitol levels increased in a time- and dose-dependent manner in both healthy control and subjects with asthma. There were no significant differences in mannitol absorption when comparing healthy controls and subjects with asthma. Mannitol absorption did not correlate with markers of airway obstruction or inflammation. Conclusions: Measuring serum concentrations of mannitol after inhalation challenge can potentially provide insights into airway barrier function in asthma.
Collapse
Affiliation(s)
- Steve Georas
- Department of Medicine, University of Rochester Medical Center , Rochester, NY , USA.,Department of Microbiology & Immunology, University of Rochester Medical Center , Rochester, NY , USA.,Department of Environmental Health Sciences, University of Rochester Medical Center , Rochester, NY , USA
| | - Nicole Ransom
- Department of Medicine, University of Rochester Medical Center , Rochester, NY , USA
| | - Sara Hillman
- Department of Medicine, University of Rochester Medical Center , Rochester, NY , USA
| | - Sophia Eliseeva
- Department of Medicine, University of Rochester Medical Center , Rochester, NY , USA
| | - Janelle Veazey
- Department of Microbiology & Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | - Timothy Smyth
- Department of Environmental Health Sciences, University of Rochester Medical Center , Rochester, NY , USA
| | - Kim Le
- Cumming School of Medicine, University of Calgary , Calgary , Alberta
| | - Jon Meddings
- Cumming School of Medicine, University of Calgary , Calgary , Alberta
| |
Collapse
|
71
|
Zhang D, Li Y, Ding L, Fu Y, Dong X, Li H. Prevalence and outcome of acute gastrointestinal injury in critically ill patients: A systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e12970. [PMID: 30412121 PMCID: PMC6221717 DOI: 10.1097/md.0000000000012970] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of the study was to investigate the prevalence and impact of acute gastrointestinal injury (AGI) on clinical outcomes in critically ill patients. METHODS The PubMed, Cochrane, and Embase databases were searched to identify trials that assessed gastrointestinal injury in critically ill patients. Outcome measures were prevalence of AGI among critically ill patients; incidence of mortality among critically ill patients with AGI, and incidence of mortality stratified by severity of AGI. RESULTS The meta-analysis included 14 studies. The prevalence of AGI in critically ill patients was 40% [95% confidence interval (CI), 27%-54%]; the incidence of mortality among critically ill patients with AGI was 33% (95% CI, 26%-41%). There was a higher risk of mortality in critically ill patients with AGI compared to those without AGI [risk ratio (RR) = 2.01; 95% CI 1.20-3.37, P = .008). Subgroup analyses of studies that defined AGI according to European Society of Intensive Care Medicine (ESICM) criteria confirmed these findings and showed that the risk of mortality was higher in critically ill patients with more severe AGI (ESICM grade III and IV vs grade II) [RR of 1.86 (95% CI 1.48-2.34), P < .00001]. CONCLUSION AGI is common in critically ill patients, mortality in critically ill patients with AGI is high, and severity of AGI is associated with mortality. The widespread clinical use of standard criteria with a severity gradation will facilitate the diagnosis and management of AGI in critically ill patients.
Collapse
|
72
|
Davison JM, Wischmeyer PE. Probiotic and synbiotic therapy in the critically ill: State of the art. Nutrition 2018; 59:29-36. [PMID: 30415160 DOI: 10.1016/j.nut.2018.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
Abstract
Recent medical history has largely viewed our bacterial symbionts as pathogens to be eradicated rather than as essential partners in optimal health. However, one of the most exciting scientific advances in recent years has been the realization that commensal microorganisms (our microbiome) play vital roles in human physiology in nutrition, vitamin synthesis, drug metabolism, protection against infection, and recovery from illness. Recent data show that loss of "health-promoting" microbes and overgrowth of pathogenic bacteria (dysbiosis) in patients in the intensive care unit (ICU) appears to contribute to nosocomial infections, sepsis, and poor outcomes. Dysbiosis results from many factors, including ubiquitous antibiotic use and altered nutrition delivery in illness. Despite modern antibiotic therapy, infections and mortality from often multidrug-resistant organisms are increasing. This raises the question of whether restoration of a healthy microbiome via probiotics or synbiotics (probiotic and prebiotic combinations) to intervene on ubiquitous ICU dysbiosis would be an optimal intervention in critical illness to prevent infection and to improve recovery. This review will discuss recent innovative experimental data illuminating mechanistic pathways by which probiotics and synbiotics may provide clinical benefit. Furthermore, a review of recent clinical data demonstrating that probiotics and synbiotics can reduce complications in ICU and other populations will be undertaken. Overall, growing data for probiotic and symbiotic therapy reveal a need for definitive clinical trials of these therapies, as recently performed in healthy neonates. Future studies should target administration of probiotics and synbiotics with known mechanistic benefits to improve patient outcomes. Optimally, future probiotic and symbiotic studies will be conducted using microbiome signatures to characterize actual ICU dysbiosis and determine, and perhaps even personalize, ideal probiotic and symbiotic therapies.
Collapse
Affiliation(s)
- James M Davison
- Department of Anesthesiology and Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - Paul E Wischmeyer
- Department of Anesthesiology and Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
73
|
Gut-origin sepsis in the critically ill patient: pathophysiology and treatment. Infection 2018; 46:751-760. [PMID: 30003491 DOI: 10.1007/s15010-018-1178-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Gut permeability is increased in critically ill patients, and associated with the development of the systemic inflammatory response syndrome and multiple organ dysfunction syndrome (MODS). The pathogenetic link(s) and potential therapies are an area of intense research over the last decades. METHODS We thoroughly reviewed the literature on gut-origin sepsis and MODS in critically ill patients, with emphasis on the implicated pathophysiological mechanisms and therapeutic interventions. FINDINGS Intestinal barrier failure leading to systemic bacterial translocation associated with MODS was the predominant pathophysiological theory for several years. However, clinical studies with critically ill patients failed to provide the evidence of systemic spread of gut-derived bacteria and/or their products as a cause of MODS. Newer experimental data highlight the role of the mesenteric lymph as a carrier of gut-derived danger-associated molecular patterns (DAMPs) to the lung and the systemic circulation. These substances are recognized by pattern recognition receptor-bearing cells in diverse tissues and promote proinflammatory pathways and the development MODS. Therefore, the gut becomes a pivotal proinflammatory organ, driving the systemic inflammatory response through DAMPs release in mesenteric lymph, without the need for systemic bacterial translocation. CONCLUSIONS There is an emerging need for application of sensitive non-invasive and easily measured biomarkers of early intestinal injury (e.g., citrulline, intestinal fatty acid protein, and zonulin) in our everyday clinical practice, guiding the early pharmacological intervention in critically ill patients to restore or prevent intestinal injury and improve their outcomes.
Collapse
|
74
|
Cheng Y, Zan J, Song Y, Yang G, Shang H, Zhao W. Evaluation of intestinal injury, inflammatory response and oxidative stress following intracerebral hemorrhage in mice. Int J Mol Med 2018; 42:2120-2128. [PMID: 30015849 DOI: 10.3892/ijmm.2018.3755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/08/2017] [Indexed: 11/06/2022] Open
Abstract
Intestinal injury is a common complication following intracerebral hemorrhage (ICH), which leads to malnutrition, impaired immunity and unsatisfactory prognosis. Previous studies have revealed the pathogenesis of intestinal injury following traumatic brain injury using ischemic stroke models. However, the effects of ICH on intestinal injury remain unknown. The present study aimed to investigate the pathological alterations and molecular mechanism, as well as the time course of intestinal injury following ICH in mice. Male C57BL/6 mice were randomly divided into the following seven groups (n=6 mice/group): Control group, which underwent a sham operation, and six ICH groups (2, 6, 12 and 24 h, and days 3 and 7). The ICH model was induced by stereotactically injecting autologous blood in two stages into the brain. Subsequently, intestinal tissue was stained with hematoxylin and eosin for histopathological examination. Small intestinal motility was measured by charcoal meal test, and gut barrier dysfunction was evaluated by detecting the plasma levels of endotoxin. Quantitative polymerase chain reaction (qPCR), immunohistochemistry and ELISA analysis were performed to evaluate the mRNA and protein expression levels of inflammatory cytokines [interleukin (IL)‑1β, IL‑6, tumor necrosis factor‑α, intercellular adhesion molecule 1, monocyte chemotactic protein 1 and chemokine (C‑C motif) ligand‑5] in intestinal tissue and serum. Furthermore, intestinal leukocyte infiltration was detected by measuring myeloperoxidase activity. Oxidative stress was indirectly detected by measuring reactive oxygen species‑associated markers (malondialdehyde content and superoxide dismutase activity assays) and the mRNA and protein expression levels of antioxidant genes [nuclear factor (erythroid‑derived 2)‑like 2, manganese superoxide dismutase and heme oxygenase 1] by qPCR and western blot analysis. The results demonstrated that significant destruction of the gut mucosa, delayed small intestinal motility, intestinal barrier dysfunction, and increased inflammatory responses and oxidative stress occurred rapidly in response to ICH. These symptoms occurred as early as 2 h after ICH and persisted for 7 days. These findings suggested that ICH may induce immediate and persistent damage to gut structure and barrier function, which may be associated with upregulation of inflammation and oxidative stress markers.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jieyu Zan
- Department of Pediatrics, Nantong First People's Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Yaying Song
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Guoyuan Yang
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Hanbing Shang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Weiguo Zhao
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
75
|
Electroacupuncture Improves Intestinal Dysfunction in Septic Patients: A Randomised Controlled Trial. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8293594. [PMID: 30046610 PMCID: PMC6038666 DOI: 10.1155/2018/8293594] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/19/2018] [Accepted: 06/03/2018] [Indexed: 01/30/2023]
Abstract
Objective To investigate the effects of electroacupuncture (EA) at “Zusanli” (ST36) and “Shangjuxu”(ST37) on reducing inflammatory reaction and improving intestinal dysfunction in patients with sepsis-induced intestinal dysfunction with syndrome of obstruction of the bowels Qi. Methods A total of 71 patients with sepsis-induced intestinal dysfunction with syndrome of obstruction of the bowels Qi were randomly assigned to control group (n=36) and treatment group (n=35). Patients in control group were given conventional therapies including fluid resuscitation, anti-infection, vasoactive agents, mechanical ventilation, supply of enteral nutrition, and glutamine as soon as possible. In addition to conventional therapies, patients in treatment group underwent 20 minutes of EA at ST36-ST37 twice a day for five days. At baseline, day 1, day 3, and day 7 after treatment, the plasma levels of procalcitonin (PCT), tumor necrosis factor-α (TNF-α), intestinal fatty acid-binding proteins (I-FABP), D-lactate, citrulline, and TCM quantitative score of intestinal dysfunction were measured and recorded, respectively. And days on mechanical ventilation (MV), length of stay in intensive care unit (ICU), and 28d mortality were recorded. Results During treatment, the plasma levels of PCT, TNF-α, I-FABP, D-lactate, and TCM quantitative score of intestinal dysfunction were declining in both groups, while the treatment group showed a significant decline (P<0.05). Plasma levels of citrulline were increasing in both groups, while the treatment group showed a significant increase (P<0.05). However, there were no significant differences in the days on MV, length of stay in ICU, and 28d mortality between two groups (P>0.05). Conclusions EA at ST36-ST37 can reduce inflammatory reaction and has protective effects on intestinal function in patients with sepsis-induced intestinal dysfunction with syndrome of obstruction of the bowels Qi. Trial Registration This trial was registered at http://www.chictr.org.cn/(ChiCTR-IOR-17010910).
Collapse
|
76
|
Sprooten RT, Lenaerts K, Braeken DC, Grimbergen I, Rutten EP, Wouters EF, Rohde GG. Increased Small Intestinal Permeability during Severe Acute Exacerbations of COPD. Respiration 2018; 95:334-342. [PMID: 29393240 PMCID: PMC5985742 DOI: 10.1159/000485935] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Disturbances of intestinal integrity, manifested by increased gastro-intestinal (GI) permeability, have been found in chronic obstructive pulmonary disease (COPD) patients during physical activity, often associated with intermittent hypoxic periods. Evidence about extrapulmonary organ disturbances, especially of the GI tract, during hospitalised acute exacerbation of COPD (AE-COPD) with hypoxaemic respiratory failure (RF) is lacking. OBJECTIVE The aim was to assess changes in GI permeability in patients with AE-COPD and during recovery 4 weeks later. METHODS All patients admitted to our hospital with AE-COPD accompanied by hypoxaemia at admission (PaO2 <8.7 kPa or O2 saturation <93%) were screened between October 2013 and February 2014. Patients with a history of GI or renal disease, chronic heart failure, or use of non-steroidal anti-inflammatory drugs in the 48 h before the test were excluded. GI permeability was assessed by evaluating urinary excretion ratios of the orally ingested sugars lactulose/L-rhamnose (L/R ratio), sucrose/L-rhamnose (Su/R ratio) and sucralose/erythritol (S/E ratio). RESULTS Seventeen patients with severe to very severe COPD completed the study. L/R ratio (×103) at admission of AE-COPD was significantly higher than in the recovery condition (40.9 [29.4-49.6] vs. 27.3 [19.5-47.7], p = 0.039), indicating increased small intestinal permeability. There were no significant differences in the individual sugar levels in urine nor in the 0- to 5-h urinary S/E and Su/R ratios between the 2 visits. CONCLUSION This is the first study showing increased GI permeability during hospitalised AE-COPD accompanied by hypoxaemic RF. Therefore, GI integrity in COPD patients is an attractive target for future research and for the development of interventions to alleviate the consequences of AE-COPD.
Collapse
Affiliation(s)
- Roy T.M. Sprooten
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Kaatje Lenaerts
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Dionne C.W. Braeken
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Ciro, Horn, the Netherlands
| | - Ilvy Grimbergen
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Emiel F.M. Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Ciro, Horn, the Netherlands
| | - Gernot G.U. Rohde
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Respiratory Medicine, Medical Clinic I, J.W. Goethe University Hospital, Frankfurt/Main, Germany
| |
Collapse
|
77
|
Intra-abdominal infection combined with intra-abdominal hypertension aggravates the intestinal mucosal barrier dysfunction. Biosci Rep 2018; 38:BSR20170931. [PMID: 29196339 PMCID: PMC6435463 DOI: 10.1042/bsr20170931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023] Open
Abstract
Some patients with intra-abdominal infection (IAI) may develop intra-abdominal hypertension (IAH) during treatment. The present study investigated the impact of IAI combined with IAH on the intestinal mucosal barrier in a rabbit model. Forty-eight New Zealand white rabbits were randomly divided into four groups: (i) IAI and IAH; (ii) IAI alone; (iii) IAH alone; and (iv) Control group. IAI model: cecal ligation and puncture for 48 h; IAH model: raised intra-abdominal pressure (IAP) of 20 mmHg for 4 h. Pathological changes in intestinal mucosa were confirmed by light and scanning electron microscopy. FITC-conjugated dextran (FITC-dextran) by gavage was used to measure intestinal mucosal permeability in plasma. Endotoxin, d-Lactate, and diamine oxidase (DAO) in plasma were measured to determine intestinal mucosal damage. Malonaldehyde (MDA), superoxide dismutase (SOD), and GSH in ileum tissues were measured to evaluate intestinal mucosal oxidation and reducing state. Histopathologic scores were significantly higher in the IAI and IAH group, followed by IAI alone, IAH alone, and the control group. FITC-dextran, d-Lactate, DAO, and endotoxin in plasma and MDA in ileum tissues had similar trends. GSH and SOD were significantly lowest the in IAI and IAH group. Occludin levels were lowest in the ileums of the IAI and IAH group. All differences were statistically significant (P-values <0.001). IAI combined with IAH aggravates damage of the intestinal mucosal barrier in a rabbit model. The combined effects were significantly more severe compared with a single factor. IAI combined with IAH should be prevented and treated effectively.
Collapse
|
78
|
Ma EL, Smith AD, Desai N, Cheung L, Hanscom M, Stoica BA, Loane DJ, Shea-Donohue T, Faden AI. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain Behav Immun 2017; 66:56-69. [PMID: 28676351 PMCID: PMC5909811 DOI: 10.1016/j.bbi.2017.06.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/02/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric pathogen Citrobacter rodentium (Cr) on both gut and brain after injury. METHODS Moderate-level TBI was induced in C57BL/6mice by controlled cortical impact (CCI). Mucosal barrier function was assessed by transepithelial resistance, fluorescent-labelled dextran flux, and quantification of tight junction proteins. Enteric glial cell number and activation were measured by Sox10 expression and GFAP reactivity, respectively. Separate groups of mice were challenged with Cr infection during the chronic phase of TBI, and host immune response, barrier integrity, enteric glial cell reactivity, and progression of brain injury and inflammation were assessed. RESULTS Chronic CCI induced changes in colon morphology, including increased mucosal depth and smooth muscle thickening. At day 28 post-CCI, increased paracellular permeability and decreased claudin-1 mRNA and protein expression were observed in the absence of inflammation in the colon. Colonic glial cell GFAP and Sox10 expression were significantly increased 28days after brain injury. Clearance of Cr and upregulation of Th1/Th17 cytokines in the colon were unaffected by CCI; however, colonic paracellular flux and enteric glial cell GFAP expression were significantly increased. Importantly, Cr infection in chronically-injured mice worsened the brain lesion injury and increased astrocyte- and microglial-mediated inflammation. CONCLUSION These experimental studies demonstrate chronic and bidirectional brain-gut interactions after TBI, which may negatively impact late outcomes after brain injury.
Collapse
Affiliation(s)
- Elise L Ma
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allen D Smith
- Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, United States Department of Agriculture (USDA), Beltsville, MD, USA
| | - Neemesh Desai
- Department of Radiation Oncology and Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lumei Cheung
- Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, United States Department of Agriculture (USDA), Beltsville, MD, USA
| | - Marie Hanscom
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Terez Shea-Donohue
- Department of Radiation Oncology and Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
79
|
Immune and Inflammatory Responses of the Intestinal Mucosa following Extended Liver Radiofrequency Ablation. Gastroenterol Res Pract 2017; 2017:3450635. [PMID: 29209365 PMCID: PMC5676442 DOI: 10.1155/2017/3450635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/30/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023] Open
Abstract
Background and Aim Extended liver radiofrequency ablation (RFA) has been shown to disrupt gut barrier integrity with subsequent bacterial translocation. The aim of the present project was to study the immune and inflammatory responses of the intestinal mucosa after extended RFA of the liver. Methods Twelve Wistar rats were either subjected to RFA of the left lateral hepatic lobe (approximately 30% of the liver mass) after midline laparotomy (group RFA, n = 6) or sham operation (group Sham, n = 6). Forty-eight hours later, ileal tissue specimens were excised for immunohistochemical assessment of CD68+ macrophages, CD4+ T-lymphocytes, CD8+ T-lymphocytes, mucosal addressin cell adhesion molecule-1 (MAdCAM-1), tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), and nuclear factor-κB (NFκB) expression. Results Immune response biomarkers were upregulated in the RFA group. Expression of CD4+ and CD8+ T-lymphocytes was moderate, while that of CD68+ macrophages and MAdCAM-1 was high. Inflammatory response biomarkers were also upregulated in the RFA group. TNFα, IL-6, and NFκB expression was low, moderate, and high, respectively. Conclusions Extended liver RFA evokes both immune and inflammatory responses of the gut mucosa.
Collapse
|
80
|
Lautenschläger I, Wong YL, Sarau J, Goldmann T, Zitta K, Albrecht M, Frerichs I, Weiler N, Uhlig S. Signalling mechanisms in PAF-induced intestinal failure. Sci Rep 2017; 7:13382. [PMID: 29042668 PMCID: PMC5645457 DOI: 10.1038/s41598-017-13850-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
Capillary leakage syndrome, vasomotor disturbances and gut atony are common clinical problems in intensive care medicine. Various inflammatory mediators and signalling pathways are involved in these pathophysiological alterations among them platelet-activating factor (PAF). The related signalling mechanisms of the PAF-induced dysfunctions are only poorly understood. Here we used the model of the isolated perfused rat small intestine to analyse the role of calcium (using calcium deprivation, IP-receptor blockade (2-APB)), cAMP (PDE-inhibition plus AC activator), myosin light chain kinase (inhibitor ML-7) and Rho-kinase (inhibitor Y27632) in the following PAF-induced malfunctions: vasoconstriction, capillary and mucosal leakage, oedema formation, malabsorption and atony. Among these, the PAF-induced vasoconstriction and hyperpermeability appear to be governed by similar mechanisms that involve IP3 receptors, extracellular calcium and the Rho-kinase. Our findings further suggest that cAMP-elevating treatments - while effective against hypertension and oedema - bear the risk of dysmotility and reduced nutrient uptake. Agents such as 2-APB or Y27632, on the other hand, showed no negative side effects and improved most of the PAF-induced malfunctions suggesting that their therapeutic usefulness should be explored.
Collapse
Affiliation(s)
- Ingmar Lautenschläger
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Yuk Lung Wong
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jürgen Sarau
- Division of Mucosal Immunology and Diagnostic, Research Centre Borstel, Leibniz-Centre for Medicine and Biosciences, Borstel, Germany
| | - Torsten Goldmann
- Division of Clinical and Experimental Pathology, Research Centre Borstel, Leibniz-Centre for Medicine and Biosciences, Borstel, Germany
| | - Karina Zitta
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin Albrecht
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inéz Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Norbert Weiler
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
81
|
Dorshow RB, Hall-Moore C, Shaikh N, Talcott MR, Faubion WA, Rogers TE, Shieh JJ, Debreczeny MP, Johnson JR, Dyer RB, Singh RJ, Tarr PI. Measurement of gut permeability using fluorescent tracer agent technology. Sci Rep 2017; 7:10888. [PMID: 28883476 PMCID: PMC5589723 DOI: 10.1038/s41598-017-09971-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
The healthy gut restricts macromolecular and bacterial movement across tight junctions, while increased intestinal permeability accompanies many intestinal disorders. Dual sugar absorption tests, which measure intestinal permeability in humans, present challenges. Therefore, we asked if enterally administered fluorescent tracers could ascertain mucosal integrity, because transcutaneous measurement of differentially absorbed molecules could enable specimen-free evaluation of permeability. We induced small bowel injury in rats using high- (15 mg/kg), intermediate- (10 mg/kg), and low- (5 mg/kg) dose indomethacin. Then, we compared urinary ratios of enterally administered fluorescent tracers MB-402 and MB-301 to urinary ratios of sugar tracers lactulose and rhamnose. We also tested the ability of transcutaneous sensors to measure the ratios of absorbed fluorophores. Urinary fluorophore and sugar ratios reflect gut injury in an indomethacin dose dependent manner. The fluorophores generated smooth curvilinear ratio trajectories with wide dynamic ranges. The more chaotic sugar ratios had narrower dynamic ranges. Fluorophore ratios measured through the skin distinguished indomethacin-challenged from same day control rats. Enterally administered fluorophores can identify intestinal injury in a rat model. Fluorophore ratios are measureable through the skin, obviating drawbacks of dual sugar absorption tests. Pending validation, this technology should be considered for human use.
Collapse
Affiliation(s)
| | - Carla Hall-Moore
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Nurmohammad Shaikh
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Michael R Talcott
- Division of Comparative Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Roy B Dyer
- Immunochemical Core Laboratory, Mayo Clinic, Rochester, MN, USA
| | | | - Phillip I Tarr
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
82
|
Chen Q, Hou H, Wang S, Zhao X, Li B. Effects of early enteral nutrition supplemented with collagen peptides on post-burn inflammatory responses in a mouse model. Food Funct 2017; 8:1933-1941. [PMID: 28451684 DOI: 10.1039/c7fo00181a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The effect of early enteral nutrition (EN) supplemented with Alaska pollock skin-derived collagen peptides (CPs) on post-burn inflammatory responses was investigated in a mouse model. Male blab/c mice were randomly assigned to four groups: a sham burn (SB) group, a control group (burn + EN + glycine, BE), a positive control group (burn + EN + glutamine, BEG) and a treatment group (burn + EN + CPs, BEC). Burn-induced increases of serum endotoxin level, and systemic and intestinal concentration of TNF-α and IL-6 were attenuated in BEG and BEC at post-burn day (PBD) 1, 3 and 7 (p < 0.05 vs. BE). Notably, BEC revealed a prominent decrease of the serum endotoxin level, TNF-α and IL-6 as compared to BEG at PBD 7 (p < 0.05). Furthermore, EN supplemented with CPs diminished the phosphorylation of intestinal NF-κB p65 and simultaneously down-regulated the mRNA expression of TNF-α and IL-6 in small intestine (p < 0.05 vs. BE). Also, it demonstrated a comparable effect with glutamine in ameliorating post-burn inflammatory responses in mice with burns. Therefore, CPs could be considered as a potential immunonutrient supplement in EN to improve post-burn outcomes in burn patients.
Collapse
Affiliation(s)
- Qianru Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | | | | | | | | |
Collapse
|
83
|
Cen C, McGinn J, Aziz M, Yang WL, Cagliani J, Nicastro JM, Coppa GF, Wang P. Deficiency in cold-inducible RNA-binding protein attenuates acute respiratory distress syndrome induced by intestinal ischemia-reperfusion. Surgery 2017; 162:917-927. [PMID: 28709648 DOI: 10.1016/j.surg.2017.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intestinal ischemia-reperfusion can occur in shock and mesenteric occlusive diseases, causing significant morbidity and mortality. Aside from local injury, intestinal ischemia-reperfusion can result in remote organ damage, particularly in the lungs. Cold-inducible RNA-binding protein (CIRP) was identified as a novel inflammatory mediator. We hypothesized that a deficiency in CIRP would protect the lungs during intestinal ischemia-reperfusion injury. METHODS Intestinal ischemia was induced in adult male C57BL/6 wild-type and CIRP knock-out (CIRP-/-) mice via clamping of the superior mesenteric artery for 60 minutes. Reperfusion was allowed for 4 hours or 20 hours, and blood, gut, and lung tissues were harvested for various analyses. RESULTS After intestinal ischemia-reperfusion, the elevated levels of serum lactate dehydrogenase and inflammatory cytokine interleukin-6 were reduced by 68% and 98%, respectively, at 20 hours after ischemia-reperfusion in CIRP-/- mice compared with the wild-type mice. In the gut, mRNA levels of inflammatory cytokine interleukin-6 were reduced by 67% at 4 hours after ischemia-reperfusion in CIRP-/- mice. In the lungs, inflammatory cytokine interleukin-6 protein and myeloperoxidase activity were reduced by 78% and 26% at 20 hours and 4 hours after ischemia-reperfusion, respectively, in CIRP-/- mice. Finally, the elevated lung caspase-3 was significantly decreased by 55%, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells decreased by 91%, and lung injury score decreased by 37% in CIRP-/- mice at 20 hours after ischemia-reperfusion. CONCLUSION Increased levels of proinflammatory cytokines, myeloperoxidase, and apoptosis are the hallmarks of acute respiratory distress syndrome. We noticed after intestinal ischemia-reperfusion the proinflammatory milieu in lungs was elevated significantly, while the CIRP-/- mice had significantly decreased levels of proinflammatory cytokine, myeloperoxidase, and apoptotic cells leading to decreased lung injury. These findings strongly established a causal link between CIRP and acute respiratory distress syndrome during intestinal ischemia-reperfusion injuries. Targeting CIRP may therefore be beneficial for treatment of intestinal ischemia-reperfusion-associated acute respiratory distress syndrome acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Cindy Cen
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY
| | - Joseph McGinn
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Weng-Lang Yang
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY; Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Joaquin Cagliani
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Jeffrey M Nicastro
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY
| | - Gene F Coppa
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY
| | - Ping Wang
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY; Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY.
| |
Collapse
|
84
|
Liu Y, Bao Z, Xu X, Chao H, Lin C, Li Z, Liu Y, Wang X, You Y, Liu N, Ji J. Extracellular Signal-Regulated Kinase/Nuclear Factor-Erythroid2-like2/Heme Oxygenase-1 Pathway-Mediated Mitophagy Alleviates Traumatic Brain Injury-Induced Intestinal Mucosa Damage and Epithelial Barrier Dysfunction. J Neurotrauma 2017; 34:2119-2131. [PMID: 28093052 DOI: 10.1089/neu.2016.4764] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Yinlong Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhongyuan Bao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiupeng Xu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Honglu Chao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chao Lin
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zheng Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoming Wang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yongping You
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ning Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jing Ji
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
85
|
Cohen ME, Hathway JM, Salmasian H, Liu J, Terry M, Abrams JA, Freedberg DE. Prophylaxis for Stress Ulcers With Proton Pump Inhibitors Is Not Associated With Increased Risk of Bloodstream Infections in the Intensive Care Unit. Clin Gastroenterol Hepatol 2017; 15:1030-1036.e1. [PMID: 28110095 PMCID: PMC5474142 DOI: 10.1016/j.cgh.2016.12.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Proton pump inhibitors (PPIs) have been associated with increased risk of infection, likely because of changes in intestinal epithelial permeability and the gastrointestinal microbiome. PPIs are frequently given to patients in the intensive care unit (ICU) to prevent stress ulcers. These patients are at risk for bloodstream infections (BSIs), so we investigated the relationship between PPI use and BSIs among patients in the ICU. METHODS We performed a retrospective cohort study of adults (≥18 years) admitted to 1 of 14 ICUs within a hospital network of 3 large hospitals from 2008 through 2014. The primary exposure was PPI use for stress ulcer prophylaxis in the ICU. The primary outcome was BSI, confirmed by culture analysis, arising 48 hours or more after admission to the ICU. Subjects were followed for 30 days after ICU admission or until death, discharge, or BSI. Multivariable Cox proportional hazards modeling was used to test the association between PPIs and BSI after controlling for patient comorbidities and other clinical factors. RESULTS We analyzed data from 24,774 patients in the ICU, including 756 patients (3.1%) who developed BSIs while in the ICU. The cumulative incidence of BSI was 3.7% in patients with PPI exposure compared with 2.2% in patients without PPI exposure (log-rank test, P < .01). After adjusting for potential confounders, PPI exposure was not associated with increased risk of BSI while in the ICU (adjusted hazard ratio, 1.08; 95% confidence interval, 0.91-1.29). Comorbidities, antibiotic use, and mechanical ventilation were all independently associated with increased risk for BSIs. CONCLUSIONS In a retrospective study of patients in the ICU, administration of PPIs to prevent bleeding was not associated with increased risk of BSI. These findings indicate that concern for BSI should not affect decisions regarding use of PPIs in the ICU.
Collapse
Affiliation(s)
- Margot E. Cohen
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Joanne M. Hathway
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Hojjat Salmasian
- Biomedical Informatics, New York-Presbyterian Hospital, New York, NY
| | - Jianfang Liu
- School of Nursing, Columbia University, New York, NY
| | - Melissa Terry
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Julian A. Abrams
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Daniel E. Freedberg
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
86
|
Exogenous S-nitrosoglutathione attenuates inflammatory response and intestinal epithelial barrier injury in endotoxemic rats. J Trauma Acute Care Surg 2017; 80:977-84. [PMID: 26891162 DOI: 10.1097/ta.0000000000001008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Gut barrier injury in sepsis is a major contributor to distant organ dysfunction and bad clinical outcomes. Enteric glia-derived S-nitrosoglutathione (GSNO) has been recognized as a novel modulator of gut barrier integrity. In this study, we tested the potential therapeutic effect and mechanism of exogenous GSNO on endotoxin-induced inflammatory response and intestinal barrier injury in a rat model of endotoxemia. METHODS Male Sprague-Dawley rats were randomly assigned to four groups as follows: control (saline only), GSNO, lipopolysaccharide (LPS), and LPS + GSNO. Femoral venous injection of LPS (10 mg/kg) or saline was followed by GSNO (1 mg/kg) or saline injection 15 minutes later. Distal ileum tissues and blood were harvested after 3 hours of LPS/saline injection. The intestinal barrier function was measured histologically and by intestinal permeability to fluorescein isothiocyanate dextran. The ultrastructural change of the epithelial tight junction was observed using transmission electron microscope, and the expression level of tight junction protein ZO-1 was analyzed using immunofluorescence and Western blot. Systemic and intestinal inflammation was measured by analyzing the tumor necrosis factor and interleukin 1β levels in plasma and distal ileum tissue, respectively. The levels of nuclear factor κB (NF-κB) and myosin light-chain kinase in the distal ileum were measured by Western blot. RESULTS Compared with the endotoxemic rats, the addition of GSNO reduced the intestinal injury observed in histologic sections, decreased permeability to fluorescein isothiocyanate dextran, attenuated damage of the junction between epithelia, and protected against the LPS-induced expression decrease of ZO-1. Furthermore, addition of GSNO reduced plasma and intestinal tumor necrosis factor and interleukin 1β levels as well as inhibited the LPS-induced up-regulation of myosin light-chain kinase expression and NF-κB p65 level in the intestine. CONCLUSION The data indicate that GSNO protects against the LPS-induced systemic inflammatory response and attenuated intestinal inflammation and epithelial barrier injury in rats, possibly through the inhibition of the NF-κB pathway.
Collapse
|
87
|
Peters JH, Wierdsma NJ, Beishuizen A, Teerlink T, van Bodegraven AA. Intravenous citrulline generation test to assess intestinal function in intensive care unit patients. Clin Exp Gastroenterol 2017; 10:75-81. [PMID: 28496350 PMCID: PMC5417678 DOI: 10.2147/ceg.s121100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Assessment of a quantifiable small intestinal function test is cumbersome. Fasting citrulline concentrations have been proposed as a measure of enterocyte function and elaborated into a citrulline generation test (CGT), which is applicable only when glutamine is administered orally. CGT is an oral test, limiting its use, for example, in critically ill patients. Objective Assessment of normative values and feasibility of an intravenously performed CGT in intensive care unit (ICU) patients with presumed gastrointestinal motility disturbances, especially when performed intravenously. Design CGT reference values were determined in 16 stable ICU patients using two different CGT methods, namely following either enteral or intravenous glutamine administration and both with simultaneous arterial and venous plasma citrulline sampling at six time-points. Plasma amino acid analysis was performed using reverse-phase high-performance liquid chromatography. Results The median total generation of citrulline in 90 min (CGT iAUCT90) was markedly higher with arterial citrulline sampling compared with venous citrulline sampling, being 724±585 and 556±418 µmol/L/min for enteral glutamine, respectively (p=0.02) and 977±283 and 769±231 µmol/L/min for intravenous glutamine, respectively (p=0.0004). The median slope (time-dependent increase) for plasma arterial and venous citrulline during the CGT was 0.20±0.16 and 0.18±0.12 µmol/L/min for enteral glutamine, respectively (p=0.004) and 0.22±0.16 and 0.19±0.05 µmol/L/min for intravenous glutamine, respectively (p=0.02). Conclusion Intravenous glutamine administration combined with arterial plasma citrulline sampling yielded the least variation in CGT characteristics in stable ICU patients. A 2-point measurement test had comparable test characteristics as a 6-point measurement CGT and seems promising.
Collapse
Affiliation(s)
- Job Hc Peters
- Department of Gastroenterology and Hepatology, Red Cross Hospital, Beverwijk
| | - Nicolette J Wierdsma
- Department of Nutrition and Dietetics, VU University Medical Center, Amsterdam.,Department of Gastroenterology, Small Bowel Disease Unit, VU University Medical Center, Amsterdam
| | - Albertus Beishuizen
- Department of Intensive Care, VU University Medical Center, Amsterdam.,Department of Intensive Care, Intensive Care Center, Medisch Spectrum Twente, Enschede
| | - Tom Teerlink
- Department of Clinical Chemistry, Metabolic Laboratory, VU University Medical Center, Amsterdam
| | - Ad A van Bodegraven
- Department of Gastroenterology, Small Bowel Disease Unit, VU University Medical Center, Amsterdam.,Department of Gastroenterology, Geriatrics, Intensive Care and Internal Medicin (Co-MIK), Zuyderland MC, Heerlen-Sittard-Geleen, the Netherlands
| |
Collapse
|
88
|
Association between acute gastrointestinal injury and biomarkers of intestinal barrier function in critically ill patients. BMC Gastroenterol 2017; 17:45. [PMID: 28356059 PMCID: PMC5372314 DOI: 10.1186/s12876-017-0603-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/24/2017] [Indexed: 01/10/2023] Open
Abstract
Background To assess the associations of biomarkers of intestinal barrier function and other clinical variables with acute gastrointestinal injury (AGI) grade, and of these clinical variables with mortality in critically ill patients. Methods This was a single-center, observational, prospective study. Patients were included if they were diagnosed with AGI and underwent tests for the measurement of plasma levels of intestinal fatty acid–binding protein (i-FABP), d-lactate (d-la), and lipopolysaccharide. General characteristics, AGI grades, Acute Physiology and Chronic Health Evaluation (APACHE) II scores, Sepsis-related Organ Failure Assessment (SOFA) scores, intra-abdominal pressure (IAP), and 28-day mortality were recorded and compared among patients with different AGI grades. Results Among the 90 included patients, the APACHE II score, IAP, and LPS and D-la levels significantly differed between the four AGI grades. Multinomial logistic regression analysis with grade I as the reference for grades II, III, and IV revealed that high APACHE II scores increased the odds of AGI grade III (odds ratio [OR], 1.754; 95% confidence interval [CI], 1.225–2.511) and grade IV (OR, 1.493; 95% CI, 1.079–2.066). Similarly, IAP increased the odds of AGI grade III (OR, 1.622; 95% CI, 1.111–2.369) and grade IV (OR, 1.518; 95% CI, 1.066–2.162). Elevated D-la increased the odds of AGI grades II (OR, 1.059; 95% CI, 1.005–1.117), III (OR, 1.155; 95% CI, 1.052–2.268), and IV (OR, 1.088; 95% CI, 1.013–1.168). In contrast, i-FABP and LPS did not increase the odds of any AGI grade. SOFA scores could independently predict the odds of death in AGI patients (OR, 1.223; 95% CI, 1.007–1.485). Conclusion AGI patients exhibit loss of gastrointestinal barrier function, and d-la could serve as a better marker of AGI grade than i-FABP or lipopolysaccharide.
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW The current review summarizes different aspects of assessment of gastrointestinal function and provides a practical approach to management of adult patients with gastrointestinal dysfunction in the ICU. RECENT FINDINGS Different ways to define gastrointestinal failure have been used in the past. Recently, the term 'acute gastrointestinal injury (AGI)' has been proposed to specifically describe gastrointestinal dysfunction as a part of multiple organ dysfunction syndrome. Possible pathophysiological mechanisms and different aspects in assessment of gastrointestinal function in adult ICU patients are presented. Currently, there is no single marker that could reliably describe gastrointestinal dysfunction. Therefore, monitoring and management is still based on complex assessment of different gastrointestinal symptoms and feeding intolerance, even though this approach includes a large amount of subjectivity. The possible role of biomarkers (citrulline, enterohormones, etc.) and additional parameters like intra-abdominal pressure remains to be clarified. SUMMARY Defining gastrointestinal failure remains challenging but broad consensus needs to be reached and disseminated soon to allow conduct of interventional studies. A systematic approach to management of gastrointestinal problems is recommended.
Collapse
|
90
|
Abstract
PURPOSE OF REVIEW Gut barrier failure is associated with bacterial translocation, systemic inflammation, and is presumed to be associated with the development of multiple organ dysfunction syndrome. As the gut barrier function is carried out by a monolayer of enterocytes, a minimum requirement is the integrity of the enterocytes, and controlled paracellular permeability between adjacent enterocytes. Many factors can cause critically ill patients to lose gut barrier function by a mechanism of enterocyte damage; for example, small bowel ischemia or hypoxia, sepsis, systemic inflammatory response syndrome, or absence of enteral feeding. RECENT FINDINGS Two enterocyte biomarkers may help the intensivist to identify enterocyte damage and dysfunction, namely plasma citrulline, a biomarker of functional enterocyte mass, and plasma or urinary intestinal fatty acid-binding protein, a marker of enterocyte damage. This review focuses on results obtained with these biomarkers in the context of critical care, in particular: prevalence of enterocyte biomarker abnormalities; mechanisms associated with enterocyte damage and dysfunction; link with systemic inflammation, bacterial translocation, and clinical intestinal dysfunction; prognostic value of enterocyte biomarkers. Lastly, we also review the limits of these biomarkers. SUMMARY Enterocyte biomarkers may help the intensivist to identify patients presenting with intestinal damage, and who are at risk of bacterial translocation and systemic inflammatory response syndrome, as well as those with decreased enterocyte function, at risk of malabsorption. Enterocyte biomarkers should be interpreted with caution in the critically ill and should be interpreted within the overall clinical context of the patient.
Collapse
|
91
|
Cheng Y, Wei Y, Yang W, Cai Y, Chen B, Yang G, Shang H, Zhao W. Ghrelin Attenuates Intestinal Barrier Dysfunction Following Intracerebral Hemorrhage in Mice. Int J Mol Sci 2016; 17:ijms17122032. [PMID: 27929421 PMCID: PMC5187832 DOI: 10.3390/ijms17122032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023] Open
Abstract
Intestinal barrier dysfunction remains a critical problem in patients with intracerebral hemorrhage (ICH) and is associated with poor prognosis. Ghrelin, a brain-gut peptide, has been shown to exert protection in animal models of gastrointestinal injury. However, the effect of ghrelin on intestinal barrier dysfunction post-ICH and its possible underlying mechanisms are still unknown. This study was designed to investigate whether ghrelin administration attenuates intestinal barrier dysfunction in experimental ICH using an intrastriatal autologous blood infusion mouse model. Our data showed that treatment with ghrelin markedly attenuated intestinal mucosal injury at both histomorphometric and ultrastructural levels post-ICH. Ghrelin reduced ICH-induced intestinal permeability according to fluorescein isothiocyanate conjugated-dextran (FITC-D) and Evans blue extravasation assays. Concomitantly, the intestinal tight junction-related protein markers, Zonula occludens-1 (ZO-1) and claudin-5 were upregulated by ghrelin post-ICH. Additionally, ghrelin reduced intestinal intercellular adhesion molecule-1 (ICAM-1) expression at the mRNA and protein levels following ICH. Furthermore, ghrelin suppressed the translocation of intestinal endotoxin post-ICH. These changes were accompanied by improved survival rates and an attenuation of body weight loss post-ICH. In conclusion, our results suggest that ghrelin reduced intestinal barrier dysfunction, thereby reducing mortality and weight loss, indicating that ghrelin is a potential therapeutic agent in ICH-induced intestinal barrier dysfunction therapy.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yongxu Wei
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Wenlei Yang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yu Cai
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Bin Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Guoyuan Yang
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Hanbing Shang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Weiguo Zhao
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
92
|
Abstract
Traumatic brain injury (TBI) is a complex disorder that affects millions of people worldwide. The complexity of TBI partly stems from the fact that injuries to the brain instigate non-neurological injuries to other organs such as the intestine. Additionally, genetic variation is thought to play a large role in determining the nature and severity of non-neurological injuries. We recently reported that TBI in flies, as in humans, increases permeability of the intestinal epithelial barrier resulting in hyperglycemia and a higher risk of death. Furthermore, we demonstrated that genetic variation in flies is also pertinent to the complexity of non-neurological injuries following TBI. The goals of this review are to place our findings in the context of what is known about TBI-induced intestinal permeability from studies of TBI patients and rodent TBI models and to draw attention to how studies of the fly TBI model can provide unique insights that may facilitate diagnosis and treatment of TBI.
Collapse
Affiliation(s)
| | - Barry Ganetzky
- a Laboratory of Genetics; University of Wisconsin-Madison ; Madison , WI USA
| | - David A Wassarman
- a Laboratory of Genetics; University of Wisconsin-Madison ; Madison , WI USA
| |
Collapse
|
93
|
Muscedere J, Maslove D, Boyd JG, O'Callaghan N, Lamontagne F, Reynolds S, Albert M, Hall R, McGolrick D, Jiang X, Day AG. Prevention of nosocomial infections in critically ill patients with lactoferrin (PREVAIL study): study protocol for a randomized controlled trial. Trials 2016; 17:474. [PMID: 27681799 PMCID: PMC5041570 DOI: 10.1186/s13063-016-1590-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/02/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Nosocomial infections remain an important source of morbidity, mortality, and increased health care costs in hospitalized patients. This is particularly problematic in intensive care units (ICUs) because of increased patient vulnerability due to the underlying severity of illness and increased susceptibility from utilization of invasive therapeutic and monitoring devices. Lactoferrin (LF) and the products of its breakdown have multiple biological effects, which make its utilization of interest for the prevention of nosocomial infections in the critically ill. METHODS/DESIGN This is a phase II randomized, multicenter, double-blinded trial to determine the effect of LF on antibiotic-free days in mechanically ventilated, critically ill, adult patients in the ICU. Eligible, consenting patients will be randomized to receive either LF or placebo. The treating clinician will remain blinded to allocation during the study; blinding will be maintained by using opaque syringes and containers. The primary outcome will be antibiotic-free days, defined as the number of days alive and free of antibiotics 28 days after randomization. Secondary outcomes will include: antibiotic utilization, adjudicated diagnosis of nosocomial infection (longer than 72 h of admission to ICU), hospital and ICU length of stay, change in organ function after randomization, hospital and 90-day mortality, incidence of tracheal colonization, changes in gastrointestinal permeability, and immune function. Outcomes to inform the conduct of a larger definitive trial will also be evaluated, including feasibility as determined by recruitment rates and protocol adherence. DISCUSSION The results from this study are expected to provide insight into a potential novel therapeutic use for LF in critically ill adult patients. Further, analysis of study outcomes will inform a future, large-scale phase III randomized controlled trial powered on clinically important outcomes related to the use of LF. TRIAL REGISTRATION The trial was registered at www.ClinicalTrials.gov on 18 November 2013. TRIAL REGISTRATION NUMBER NCT01996579 .
Collapse
Affiliation(s)
- John Muscedere
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada. .,Kingston General Hospital, Room 5-411, Angada 4, 76 Stuart Street, Kingston, ON, K7L 2 V3, Canada.
| | - David Maslove
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
| | - John Gordon Boyd
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
| | - Nicole O'Callaghan
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
| | - Francois Lamontagne
- Centre de recherché du CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Steven Reynolds
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Martin Albert
- Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Division of Critical Care Medicine, Critical Care and Medicine Departments, Université de Montréal, Montréal, QC, Canada
| | - Rick Hall
- Department of Critical Care Medicine, Dalhousie University and the Nova Scotia Health Authority, Halifax, NS, Canada
| | - Danielle McGolrick
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
| | - Xuran Jiang
- Kingston General Hospital, Room 5-411, Angada 4, 76 Stuart Street, Kingston, ON, K7L 2 V3, Canada
| | - Andrew G Day
- Kingston General Hospital, Room 5-411, Angada 4, 76 Stuart Street, Kingston, ON, K7L 2 V3, Canada
| |
Collapse
|
94
|
Julio-Pieper M, Bravo JA. Intestinal Barrier and Behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:127-141. [PMID: 27793215 DOI: 10.1016/bs.irn.2016.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intestinal barrier function contributes to gut homeostasis by modulating absorption of water, electrolytes, and nutrients from the lumen into the circulation while restricting the passage of noxious luminal substances and microorganisms. Chronic conditions such as rheumatoid arthritis, inflammatory bowel disease, and celiac disease are associated to intestinal barrier dysfunction. Here, the hypothesis is that a leaky intestinal wall allowing for indiscriminate passage of intraluminal compounds to the vascular compartment could in turn lead to systemic inflammation. An increasing number of studies are now investigating the association between gut permeability and CNS disorders, under the premise that translocation of intestinal luminal contents could affect CNS function, either directly or indirectly. Still, it is unknown whether disruption of intestinal barrier is a causative agent or a consequence in these situations. Here, we discuss the latest evidence pointing to an association between increased gut permeability and disrupted behavioral responses.
Collapse
Affiliation(s)
- M Julio-Pieper
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de, Valparaíso, Chile.
| | - J A Bravo
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de, Valparaíso, Chile.
| |
Collapse
|
95
|
Davison G, Marchbank T, March DS, Thatcher R, Playford RJ. Zinc carnosine works with bovine colostrum in truncating heavy exercise-induced increase in gut permeability in healthy volunteers. Am J Clin Nutr 2016; 104:526-36. [PMID: 27357095 DOI: 10.3945/ajcn.116.134403] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Heavy exercise causes gut symptoms and, in extreme cases, heat stroke that is due to the increased intestinal permeability of luminal toxins. OBJECTIVE We examined whether zinc carnosine (ZnC), a health-food product taken alone or in combination with bovine colostrum (a natural source of growth factors), would moderate such effects. DESIGN Eight volunteers completed a 4-arm, double-blind, placebo-controlled crossover protocol (14 d of placebo, ZnC, colostrum, or ZnC plus colostrum) before undertaking standardized exercise 2 and 14 d after the start of treatment. Changes in epithelial resistance, apoptosis signaling molecules, and tight junction (TJ) protein phosphorylation in response to a 2°C rise in body temperature were determined with the use of Caco-2 and HT29 intestinal cells. RESULTS Body temperature increased 2°C, and gut permeability (5-h urinary lactulose:rhamnose ratios) increased 3-fold after exercise (from 0.32 ± 0.016 baseline to 1.0 ± 0.017 at 14 d; P < 0.01). ZnC or colostrum truncated the rise by 70% after 14 d of treatment. The combination treatment gave an additional benefit, and truncated exercise induced increase at 2 d (30% reduction; P < 0.01). A 2°C temperature rise in in vitro studies caused the doubling of apoptosis and reduced epithelial resistance 3-4-fold. ZnC or colostrum truncated these effects (35-50%) with the greatest response seen with the combination treatment (all P < 0.01). Mechanisms of action included increasing heat shock protein 70 and truncating temperature-induced changes in B cell leukemia/lymphoma-2 associated X protein α and B cell lymphoma 2. ZnC also increased total occludin and reduced phosphorylated tyrosine claudin, phosphorylated tyrosine occludin, and phosphorylated serine occludin, thereby enhancing the TJ formation and stabilization. CONCLUSION ZnC, taken alone or with colostrum, increased epithelial resistance and the TJ structure and may have value for athletes and in the prevention of heat stroke in military personnel. This trial was registered at www.isrctn.com as ISRCTN51159138.
Collapse
Affiliation(s)
- Glen Davison
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Kent, United Kingdom
| | - Tania Marchbank
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom; Centre for Immunobiology, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine, Queen Mary, University of London, London, United Kingdom
| | - Daniel S March
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; and
| | - Rhys Thatcher
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Raymond J Playford
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom;
| |
Collapse
|
96
|
Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ, Huffnagle GB. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol 2016; 1:16113. [PMID: 27670109 DOI: 10.1038/nmicrobiol.2016.113] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022]
Abstract
Sepsis and the acute respiratory distress syndrome (ARDS) are major causes of mortality without targeted therapies. Although many experimental and clinical observations have implicated gut microbiota in the pathogenesis of these diseases, culture-based studies have failed to demonstrate translocation of bacteria to the lungs in critically ill patients. Here, we report culture-independent evidence that the lung microbiome is enriched with gut bacteria both in a murine model of sepsis and in humans with established ARDS. Following experimental sepsis, lung communities were dominated by viable gut-associated bacteria. Ecological analysis identified the lower gastrointestinal tract, rather than the upper respiratory tract, as the likely source community of post-sepsis lung bacteria. In bronchoalveolar lavage fluid from humans with ARDS, gut-specific bacteria (Bacteroides spp.) were common and abundant, undetected by culture and correlated with the intensity of systemic inflammation. Alveolar TNF-α, a key mediator of alveolar inflammation in ARDS, was significantly correlated with altered lung microbiota. Our results demonstrate that the lung microbiome is enriched with gut-associated bacteria in sepsis and ARDS, potentially representing a shared mechanism of pathogenesis in these common and lethal diseases.
Collapse
Affiliation(s)
- Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Benjamin H Singer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Michael W Newstead
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Nicole R Falkowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - John R Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Gary B Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
97
|
Do Wound Cultures Give Information About the Microbiology of Blood Cultures in Severe Burn Patients? Ann Plast Surg 2016; 76:34-9. [DOI: 10.1097/sap.0000000000000622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
98
|
Dickson RP. The microbiome and critical illness. THE LANCET. RESPIRATORY MEDICINE 2016; 4:59-72. [PMID: 26700442 PMCID: PMC4752077 DOI: 10.1016/s2213-2600(15)00427-0] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
The central role of the microbiome in critical illness is supported by a half century of experimental and clinical study. The physiological effects of critical illness and the clinical interventions of intensive care substantially alter the microbiome. In turn, the microbiome predicts patients' susceptibility to disease, and manipulation of the microbiome has prevented or modulated critical illness in animal models and clinical trials. This Review surveys the microbial ecology of critically ill patients, presents the facts and unanswered questions surrounding gut-derived sepsis, and explores the radically altered ecosystem of the injured alveolus. The revolution in culture-independent microbiology has provided the tools needed to target the microbiome rationally for the prevention and treatment of critical illness, holding great promise to improve the acute and chronic outcomes of the critically ill.
Collapse
Affiliation(s)
- Robert P Dickson
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
99
|
Nagatomo Y, Tang WHW. Intersections Between Microbiome and Heart Failure: Revisiting the Gut Hypothesis. J Card Fail 2015; 21:973-80. [PMID: 26435097 DOI: 10.1016/j.cardfail.2015.09.017] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/14/2015] [Accepted: 09/25/2015] [Indexed: 02/07/2023]
Abstract
Microbes play an important role in human health and disease. In the setting of heart failure (HF), substantial hemodynamic changes, such as hypoperfusion and congestion in the intestines, can alter gut morphology, permeability, function, and possibly the growth and composition of gut microbiota. These changes can disrupt the barrier function of the intestines and exacerbate systemic inflammation via microbial or endotoxin translocation into systemic circulation. Furthermore, cardiorenal alterations via metabolites derived from gut microbiota can potentially mediate or modulate HF pathophysiology. Recently, trimethylamine N-oxide (TMAO) has emerged as a key mediator that provides a mechanistic link between gut microbiota and multiple cardiovascular diseases, including HF. Potential intervention strategies which may target this microbiota-driven pathology include dietary modification, prebiotics/probiotics, and selective binders of microbial enzymes or molecules, but further investigations into their safety and efficacy are warranted.
Collapse
Affiliation(s)
- Yuji Nagatomo
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
100
|
Idrovo JP, Yang WL, Jacob A, Aziz M, Nicastro J, Coppa GF, Wang P. AICAR attenuates organ injury and inflammatory response after intestinal ischemia and reperfusion. Mol Med 2015; 20:676-83. [PMID: 25611433 DOI: 10.2119/molmed.2014.00134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022] Open
Abstract
Intestinal ischemia and reperfusion (I/R) is encountered in various clinical conditions and contributes to multiorgan failure and mortality as high as 60% to 80%. Intestinal I/R not only injures the intestine, but affects remote organs such as the lung leading to acute lung injury. The development of novel and effective therapies for intestinal I/R are critical for the improvement of patient outcome. AICAR (5-aminoimidazole-4-carboxyamide ribonucleoside) is a cell-permeable compound that has been shown to possess antiinflammatory effects. The objective is to determine that treatment with AICAR attenuates intestinal I/R injury and subsequent acute lung injury (ALI). Male Sprague Dawley rats (275 to 325 g) underwent intestinal I/R injury with blockage of the superior mesenteric artery for 90 min and subsequent reperfusion. At the initiation of reperfusion, vehicle or AICAR (30 mg/kg BW) was given intravenously (IV) for 30 min. At 4 h after reperfusion, blood and tissues were collected for further analyses. Treatment with AICAR significantly decreased the gut damage score and the water content, indicating improvement in histological integrity. The treatment also attenuated tissue injury and proinflammatory cytokines, and reduced bacterial translocation to the gut. AICAR administration after intestinal I/R maintained lung integrity, attenuated neutrophil chemotaxis and infiltration to the lungs and decreased lung levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6. Inflammatory mediators, lung-inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins, were decreased in the lungs and lung apoptosis was significantly reduced after AICAR treatment. These data indicate that AICAR could be developed as an effective and novel therapeutic for intestinal I/R and subsequent ALI.
Collapse
Affiliation(s)
- Juan-Pablo Idrovo
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - Weng-Lang Yang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America.,Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Asha Jacob
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America.,Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Monowar Aziz
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America.,Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jeffrey Nicastro
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - Gene F Coppa
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - Ping Wang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America.,Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|