51
|
Schiffers C, Lundblad LKA, Hristova M, Habibovic A, Dustin CM, Daphtary N, Aliyeva M, Seward DJ, Janssen-Heininger YMW, Wouters EFM, Reynaert NL, van der Vliet A. Downregulation of DUOX1 function contributes to aging-related impairment of innate airway injury responses and accelerated senile emphysema. Am J Physiol Lung Cell Mol Physiol 2021; 321:L144-L158. [PMID: 33951398 DOI: 10.1152/ajplung.00021.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aging is associated with a gradual loss of lung function due to increased cellular senescence, decreased regenerative capacity, and impaired innate host defense. One important aspect of innate airway epithelial host defense to nonmicrobial triggers is the secretion of alarmins such as IL-33 and activation of type 2 inflammation, which were previously found to depend on activation of the NADPH oxidase (NOX) homolog DUOX1, and redox-dependent signaling pathways that promote alarmin secretion. Here, we demonstrate that normal aging of C57BL/6J mice resulted in markedly decreased lung innate epithelial type 2 responses to exogenous triggers such as the airborne allergen Dermatophagoides pteronyssinus, which was associated with marked downregulation of DUOX1, as well as DUOX1-mediated redox-dependent signaling. DUOX1 deficiency was also found to accelerate age-related airspace enlargement and decline in lung function but did not consistently affect other features of lung aging such as senescence-associated inflammation. Intriguingly, observations of age-related DUOX1 downregulation and enhanced airspace enlargement due to DUOX1 deficiency in C57BL/6J mice, which lack a functional mitochondrial nicotinamide nucleotide transhydrogenase (NNT), were much less dramatic in C57BL/6NJ mice with normal NNT function, although the latter mice also displayed impaired innate epithelial injury responses with advancing age. Overall, our findings indicate a marked aging-dependent decline in (DUOX1-dependent) innate airway injury responses to external nonmicrobial triggers, but the impact of aging on DUOX1 downregulation and its significance for age-related senile emphysema development was variable between different C57BL6 substrains, possibly related to metabolic alterations due to differences in NNT function.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lennart K A Lundblad
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Nirav Daphtary
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Minara Aliyeva
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.,Ludwig Boltzman Institute for Lung Health, Vienna, Austria
| | - Niki L Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
52
|
Abstract
Acute kidney injury (AKI), defined as a rapid decrease in glomerular filtration rate, is a common and devastating pathologic condition. AKI is associated with significant morbidity and subsequent chronic kidney disease (CKD) development. Regardless of the initial insult, CKD progression after AKI involves multiple types of cells, including proximal tubular cells, fibroblasts, and immune cells. Although the mechanisms underlying this AKI to CKD progression have been investigated extensively over the past decade, therapeutic strategies still are lacking. One of the reasons for this stems from the fact that AKI and its progression toward CKD is multifactorial and variable because it is dependent on patient background. In this review, we describe the current understanding of AKI and its maladaptive repair with a focus on proximal tubules and resident fibroblasts. Subsequently, we discuss the unique pathophysiology of AKI in the elderly, highlighting our recent finding of age-dependent tertiary lymphoid tissues.
Collapse
Affiliation(s)
- Yuki Sato
- Medical Innovation Center, TMK Project, Kyoto University, Kyoto, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Takahashi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
53
|
Shimizu H, Yamada K, Suzumura A, Kataoka K, Takayama K, Sugimoto M, Terasaki H, Kaneko H. Caveolin-1 Promotes Cellular Senescence in Exchange for Blocking Subretinal Fibrosis in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 61:21. [PMID: 32926104 PMCID: PMC7490224 DOI: 10.1167/iovs.61.11.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose To determine whether caveolin-1 (i) prevents epithelial–mesenchymal transition in the RPE and laser-induced subretinal fibrosis and (ii) promotes or inhibits cellular senescence in the RPE. Methods We examined laser-induced subretinal fibrosis and RPE cell contraction in wild-type and Caveolin-1 knockout (Cav-1−/−) mice treated with or without cavtratin, a cell-permeable peptide of caveolin-1. The senescence marker p16INK4a was measured in RPE tissues from patients with geographic atrophy and aged mice, laser-induced subretinal fibrosis, and primary human RPE cells. Human RPE was examined by TUNEL staining, reactive oxygen species generation, cell viability, and senescence-associated β-galactosidase staining. Results The volume of subretinal fibrosis was significantly smaller in cavtratin-injected eyes from wild-type mice than in control eyes from wild-type, P = 0.0062, and Cav-1−/− mice, P = 0.0095. Cavtratin treatment produced significant improvements in primary RPE cell contraction in wild-type, P = 0.04, and Cav-1−/− mice, P = 0.01. p16INK4a expression in the RPE was higher in patients with than without geographic atrophy. p16INK4a was expressed in 18-month-old but not 2-month-old wild-type mouse eyes. p16INK4a and collagen type I antibodies showed co-localization in subretinal fibrosis. Cavtratin did not affect RPE cell apoptosis or reactive oxygen species generation, but decreased cell viability and increased senescence-associated β-galactosidase–positive cells. Conclusions Enhanced expression of caveolin-1 successfully blocked epithelial–mesenchymal transition of RPE and the reduction of subretinal fibrosis in mice. Nevertheless, in exchange for blocking subretinal fibrosis, caveolin-1 promotes RPE cellular senescence and might affect the progression of geographic atrophy in AMD.
Collapse
Affiliation(s)
- Hideyuki Shimizu
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhisa Yamada
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Kataoka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Takayama
- Department of Ophthalmology, National Defense Medical College, Japan
| | - Masataka Sugimoto
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
54
|
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol 2021; 9:645593. [PMID: 33855023 PMCID: PMC8039141 DOI: 10.3389/fcell.2021.645593] [Citation(s) in RCA: 737] [Impact Index Per Article: 184.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stimuli, as well as developmental signals. Senescence is considered to be a highly dynamic, multi-step process, during which the properties of senescent cells continuously evolve and diversify in a context dependent manner. It is associated with multiple cellular and molecular changes and distinct phenotypic alterations, including a stable proliferation arrest unresponsive to mitogenic stimuli. Senescent cells remain viable, have alterations in metabolic activity and undergo dramatic changes in gene expression and develop a complex senescence-associated secretory phenotype. Cellular senescence can compromise tissue repair and regeneration, thereby contributing toward aging. Removal of senescent cells can attenuate age-related tissue dysfunction and extend health span. Senescence can also act as a potent anti-tumor mechanism, by preventing proliferation of potentially cancerous cells. It is a cellular program which acts as a double-edged sword, with both beneficial and detrimental effects on the health of the organism, and considered to be an example of evolutionary antagonistic pleiotropy. Activation of the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor suppressor pathways play a central role in regulating senescence. Several other pathways have recently been implicated in mediating senescence and the senescent phenotype. Herein we review the molecular mechanisms that underlie cellular senescence and the senescence associated growth arrest with a particular focus on why cells stop dividing, the stability of the growth arrest, the hypersecretory phenotype and how the different pathways are all integrated.
Collapse
Affiliation(s)
- Ruchi Kumari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Parmjit Jat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
55
|
Sikora E, Bielak-Zmijewska A, Dudkowska M, Krzystyniak A, Mosieniak G, Wesierska M, Wlodarczyk J. Cellular Senescence in Brain Aging. Front Aging Neurosci 2021; 13:646924. [PMID: 33732142 PMCID: PMC7959760 DOI: 10.3389/fnagi.2021.646924] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.
Collapse
Affiliation(s)
- Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Anna Bielak-Zmijewska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Magdalena Dudkowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Adam Krzystyniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Grazyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Malgorzata Wesierska
- Laboratory of Neuropsychology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| |
Collapse
|
56
|
Hashimoto M, Goto A, Endo Y, Sugimoto M, Ueda J, Yamashita H. Effects of CREG1 on Age-Associated Metabolic Phenotypes and Renal Senescence in Mice. Int J Mol Sci 2021; 22:ijms22031276. [PMID: 33525404 PMCID: PMC7866020 DOI: 10.3390/ijms22031276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/25/2022] Open
Abstract
Cellular repressor of E1A-stimulated genes 1 (CREG1) is a secreted glycoprotein that accelerates p16-dependent cellular senescence in vitro. We recently reported the ability of CREG1 to stimulate brown adipogenesis using adipocyte P2-CREG1-transgenic (Tg) mice; however, little is known about the effect of CREG1 on aging-associated phenotypes. In this study, we investigated the effects of CREG1 on age-related obesity and renal dysfunction in Tg mice. Increased brown fat formation was detected in aged Tg mice, in which age-associated metabolic phenotypes such as body weight gain and increases in blood glucose were improved compared with those in wild-type (WT) mice. Blood CREG1 levels increased significantly in WT mice with age, whereas the age-related increase was suppressed, and its levels were reduced, in the livers and kidneys of Tg mice relative to those in WT mice at 25 months. Intriguingly, the mRNA levels of Ink4a, Arf, and senescence-associated secretory phenotype (SASP)-related genes and p38MAPK activity were significantly lowered in the aged kidneys of Tg mice, in which the morphological abnormalities of glomeruli as well as filtering function seen in WT kidneys were alleviated. These results suggest the involvement of CREG1 in kidney aging and its potential as a target for improving age-related renal dysfunction.
Collapse
Affiliation(s)
- Michihiro Hashimoto
- Division of Advanced Medical Science, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan;
- Correspondence: (M.H.); (H.Y.)
| | - Ayumi Goto
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Aichi, Japan; (A.G.); (Y.E.)
| | - Yuki Endo
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Aichi, Japan; (A.G.); (Y.E.)
| | - Masataka Sugimoto
- Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan;
| | - Jun Ueda
- Division of Advanced Medical Science, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan;
| | - Hitoshi Yamashita
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Aichi, Japan; (A.G.); (Y.E.)
- Correspondence: (M.H.); (H.Y.)
| |
Collapse
|
57
|
Ahmed R, Nakahata Y, Shinohara K, Bessho Y. Cellular Senescence Triggers Altered Circadian Clocks With a Prolonged Period and Delayed Phases. Front Neurosci 2021; 15:638122. [PMID: 33568972 PMCID: PMC7868379 DOI: 10.3389/fnins.2021.638122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Senescent cells, which show the permanent growth arrest in response to various forms of stress, accumulate in the body with the progression of age, and are associated with aging and age-associated diseases. Although the senescent cells are growth arrested, they still demonstrate high metabolic rate and altered gene expressions, indicating that senescent cells are still active. We recently showed that the circadian clock properties, namely phase and period of the cells, are altered with the establishment of replicative senescence. However, whether cellular senescence triggers the alteration of circadian clock properties in the cells is still unknown. In this study we show that the oxidative stress-induced premature senescence induces the alterations of the circadian clock, similar to the phenotypes of the replicative senescent cells. We found that the oxidative stress-induced premature senescent cells display the prolonged period and delayed phases. In addition, the magnitude of these changes intensified over time, indicating that cellular senescence changes the circadian clock properties. Our current results corroborate with our previous findings and further confirm that cellular senescence induces altered circadian clock properties, irrespective of the replicative senescence or the stress-induced premature senescence.
Collapse
Affiliation(s)
- Rezwana Ahmed
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.,Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Yasukazu Nakahata
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.,Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuyuki Shinohara
- Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
58
|
An antioxidant suppressed lung cellular senescence and enhanced pulmonary function in aged mice. Biochem Biophys Res Commun 2021; 541:43-49. [PMID: 33465741 DOI: 10.1016/j.bbrc.2020.12.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/23/2020] [Indexed: 01/12/2023]
Abstract
Oxidative stress is one of the major causes of cellular senescence in mammalian cells. The excess amount of reactive oxygen species generated by oxygen metabolism is pathogenic and facilitates tissue aging. Lung tissue is more susceptible to oxidative stress than other organs because it is directly exposed to environmental stresses. The aging of lung tissues increases the risk of chronic diseases. Senescent cells accumulate in tissues during aging and contribute to aging-associated morbidity; however, the roles of cellular senescence in lung aging and diseases have not yet been elucidated in detail. To clarify the physiological role of oxidative stress-induced cellular senescence in aging-associated declines in pulmonary function, we herein investigated the effects of the antioxidant N-acetyl-L-cysteine (NAC) on lung cellular senescence and aging in mice. The administration of NAC to 1-year-old mice reduced the expression of senescence-associated genes in lung tissue. Pulmonary function and lung morphology were partly restored in mice administered NAC. Collectively, these results suggest that oxidative stress is a major inducer of cellular senescence in vivo and that the control of oxidative stress may prevent lung aging and diseases.
Collapse
|
59
|
Du H, Wang Y, Liu X, Wang S, Wu S, Yuan Z, Zhu X. miRNA-146a-5p mitigates stress-induced premature senescence of D-galactose-induced primary thymic stromal cells. Cytokine 2021; 137:155314. [PMID: 33002743 DOI: 10.1016/j.cyto.2020.155314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Senescent thymic stromal cells (TSCs) producing senescence-associated secretory phenotype (SASP) may play a role at later phases of thymic involution. However, the etiology and mechanisms responsible for TSC senescence remain to be elucidated. In the present study, the effects of oxidative stress on TSCs and role of miRNA-146a-5p in stress-induced premature senescence (SIPS) were identified. D-galactose (D-gal) induced oxidative stress in primary TSCs and a limited cumulative oxidative stress induced premature senescence but not apoptosis of TSCs. miRNA-146a-5p overexpression can mitigate the SIPS by targeting tumor necrosis factor receptor-associated factor 6 (TRAF6) instead of increasing autophagy clearance. Furthermore, exogenous miRNA-146a-5p reversed the upregulation of chemokines including Cxcl5, pro-inflammatory cytokines, and antimicrobial peptides in TSCs with SIPS. In conclusion, the accumulated oxidative stress may be partially responsible for senescence in TSCs and modulation of miRNA-146a-5p may attenuate this process.
Collapse
Affiliation(s)
- Hongmei Du
- Research Center, Shengjing Hospital of China Medical University, 7 Mulan Road, Economic Development Zone, Benxi, China; Department of Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, China
| | - Yajun Wang
- Research Center, Shengjing Hospital of China Medical University, 7 Mulan Road, Economic Development Zone, Benxi, China
| | - Xue Liu
- Research Center, Shengjing Hospital of China Medical University, 7 Mulan Road, Economic Development Zone, Benxi, China
| | - Siliang Wang
- Department of Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, China
| | - Simeng Wu
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, China
| | - Zhe Yuan
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, China
| | - Xike Zhu
- Research Center, Shengjing Hospital of China Medical University, 7 Mulan Road, Economic Development Zone, Benxi, China.
| |
Collapse
|
60
|
Shachar SS, Deal AM, Reeder-Hayes KE, Nyrop KA, Mitin N, Anders CK, Carey LA, Dees EC, Jolly TA, Kimmick GG, Karuturi MS, Reinbolt RE, Speca JC, Muss HB. Effects of Breast Cancer Adjuvant Chemotherapy Regimens on Expression of the Aging Biomarker, p16INK4a. JNCI Cancer Spectr 2020; 4:pkaa082. [PMID: 33409457 PMCID: PMC7771421 DOI: 10.1093/jncics/pkaa082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/29/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although chemotherapy saves lives, increasing evidence shows that chemotherapy accelerates aging. We previously demonstrated that mRNA expression of p16INK4a , a biomarker of senescence and molecular aging, increased early and dramatically after beginning adjuvant anthracycline-based regimens in early stage breast cancer patients. Here, we determined if changes in p16INK4a expression vary by chemotherapy regimen among early stage breast cancer patients. METHODS We conducted a study of stage I-III breast cancer patients receiving adjuvant or neoadjuvant chemotherapy. p16INK4a expression was analyzed prechemotherapy and postchemotherapy (median 6.2 months after the last chemotherapy) in peripheral blood T lymphocytes. Chemotherapy-induced change in p16INK4a expression was compared among regimens. All statistical tests were 2-sided. RESULTS In 146 women, chemotherapy was associated with a statistically significant increase in p16INK4a expression (accelerated aging of 17 years; P < .001). Anthracycline-based regimens were associated with the largest increases (accelerated aging of 23 to 26 years; P ≤ .008). Nonanthracycline-based regimens demonstrated a much smaller increase (accelerated aging of 9 to 11 years; P ≤ .15). In addition to the type of chemotherapy regimen, baseline p16INK4a levels, but not chronologic age or race, were also associated with the magnitude of increases in p16INK4a . Patients with lower p16INK4a levels at baseline were more likely to experience larger increases. CONCLUSIONS Our findings suggest that the aging effects of chemotherapy may be influenced by both chemotherapy type and the patient's baseline p16INK4a level. Measurement of p16INK4a expression is not currently available in the clinic, but nonanthracycline regimens offering similar efficacy as anthracycline regimens might be favored.
Collapse
Affiliation(s)
| | - Allison M Deal
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katherine E Reeder-Hayes
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kirsten A Nyrop
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - E Claire Dees
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor A Jolly
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Raquel E Reinbolt
- Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | | | - Hyman B Muss
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
61
|
Huidobro C, Martín-Vicente P, López-Martínez C, Alonso-López I, Amado-Rodríguez L, Crespo I, M Albaiceta G. Cellular and molecular features of senescence in acute lung injury. Mech Ageing Dev 2020; 193:111410. [PMID: 33249191 DOI: 10.1016/j.mad.2020.111410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
A wide range of insults can trigger acute injury in the lungs, which eventually may lead to respiratory failure and death of patients. Current treatment relies mainly on supportive measures and mechanical ventilation. Even so, survivors frequently develop important sequels that compromise quality of life. In the search for new approaches to prevent and treat acute lung injury, many investigations have focused on molecular and cellular pathways which could exert a pathogenic role in this disease. Herein, we review recent findings in the literature suggesting that cellular senescence could be involved in lung injury and discuss the potential use of senotherapies to prevent disease progression.
Collapse
Affiliation(s)
- Covadonga Huidobro
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain.
| | - Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Calle Fernando Bongera s/n, 33006, Oviedo, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Calle Fernando Bongera s/n, 33006, Oviedo, Spain
| | - Inés Alonso-López
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Calle Fernando Bongera s/n, 33006, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Avenida de Roma s/n, 33011, Oviedo, Spain
| | - Irene Crespo
- Departamento de Biología Funcional. Universidad de Oviedo, C/ Julián Clavería s/n, 33006, Oviedo, Spain
| | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Calle Fernando Bongera s/n, 33006, Oviedo, Spain; Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Avenida de Roma s/n, 33011, Oviedo, Spain; Departamento de Biología Funcional. Universidad de Oviedo, C/ Julián Clavería s/n, 33006, Oviedo, Spain
| |
Collapse
|
62
|
Molecular Mechanisms to Target Cellular Senescence in Hepatocellular Carcinoma. Cells 2020; 9:cells9122540. [PMID: 33255630 PMCID: PMC7761055 DOI: 10.3390/cells9122540] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer-related death and is the most common type of liver cancer. Due to the current paucity of drugs for HCC therapy there is a pressing need to develop new therapeutic concepts. In recent years, the role of Serum Response Factor (SRF) and its coactivators, Myocardin-Related Transcription Factors A and B (MRTF-A and -B), in HCC formation and progression has received considerable attention. Targeting MRTFs results in HCC growth arrest provoked by oncogene-induced senescence. The induction of senescence acts as a tumor-suppressive mechanism and therefore gains consideration for pharmacological interventions in cancer therapy. In this article, we describe the key features and the functional role of senescence in light of the development of novel drug targets for HCC therapy with a focus on MRTFs.
Collapse
|
63
|
Venosa A. Senescence in Pulmonary Fibrosis: Between Aging and Exposure. Front Med (Lausanne) 2020; 7:606462. [PMID: 33282895 PMCID: PMC7689159 DOI: 10.3389/fmed.2020.606462] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
To date, chronic pulmonary pathologies represent the third leading cause of death in the elderly population. Evidence-based projections suggest that >65 (years old) individuals will account for approximately a quarter of the world population before the turn of the century. Genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, are described as the nine “hallmarks” that govern cellular fitness. Any deviation from the normal pattern initiates a complex cascade of events culminating to a disease state. This blueprint, originally employed to describe aberrant changes in cancer cells, can be also used to describe aging and fibrosis. Pulmonary fibrosis (PF) is the result of a progressive decline in injury resolution processes stemming from endogenous (physiological decline or somatic mutations) or exogenous stress. Environmental, dietary or occupational exposure accelerates the pathogenesis of a senescent phenotype based on (1) window of exposure; (2) dose, duration, recurrence; and (3) cells type being targeted. As the lung ages, the threshold to generate an irreversibly senescent phenotype is lowered. However, we do not have sufficient knowledge to make accurate predictions. In this review, we provide an assessment of the literature that interrogates lung epithelial, mesenchymal, and immune senescence at the intersection of aging, environmental exposure and pulmonary fibrosis.
Collapse
Affiliation(s)
- Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, UT, United States
| |
Collapse
|
64
|
Blokland K, Pouwels S, Schuliga M, Knight D, Burgess J. Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clin Sci (Lond) 2020; 134:2681-2706. [PMID: 33084883 PMCID: PMC7578566 DOI: 10.1042/cs20190893] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is a complex network of macromolecules surrounding cells providing structural support and stability to tissues. The understanding of the ECM and the diverse roles it plays in development, homoeostasis and injury have greatly advanced in the last three decades. The ECM is crucial for maintaining tissue homoeostasis but also many pathological conditions arise from aberrant matrix remodelling during ageing. Ageing is characterised as functional decline of tissue over time ultimately leading to tissue dysfunction, and is a risk factor in many diseases including cardiovascular disease, diabetes, cancer, dementia, glaucoma, chronic obstructive pulmonary disease (COPD) and fibrosis. ECM changes are recognised as a major driver of aberrant cell responses. Mesenchymal cells in aged tissue show signs of growth arrest and resistance to apoptosis, which are indicative of cellular senescence. It was recently postulated that cellular senescence contributes to the pathogenesis of chronic fibrotic diseases in the heart, kidney, liver and lung. Senescent cells negatively impact tissue regeneration while creating a pro-inflammatory environment as part of the senescence-associated secretory phenotype (SASP) favouring disease progression. In this review, we explore and summarise the current knowledge around how aberrant ECM potentially influences the senescent phenotype in chronic fibrotic diseases. Lastly, we will explore the possibility for interventions in the ECM-senescence regulatory pathways for therapeutic potential in chronic fibrotic diseases.
Collapse
Affiliation(s)
- Kaj E.C. Blokland
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
| | - Simon D. Pouwels
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- Department of Lung Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Michael Schuliga
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
| | - Darryl A. Knight
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Janette K. Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| |
Collapse
|
65
|
Schroth J, Thiemermann C, Henson SM. Senescence and the Aging Immune System as Major Drivers of Chronic Kidney Disease. Front Cell Dev Biol 2020; 8:564461. [PMID: 33163486 PMCID: PMC7581911 DOI: 10.3389/fcell.2020.564461] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) presents an ever-growing disease burden for the world's aging population. It is characterized by numerous changes to the kidney, including a decrease in renal mass, renal fibrosis, and a diminished glomerular filtration rate. The premature aging phenotype observed in CKD is associated with cellular senescence, particularly of renal tubular epithelial cells (TECs), which contributes to chronic inflammation through the production of a proinflammatory senescence associated secretory phenotype (SASP). When coupled with changes in immune system composition and progressive immune dysfunction, the accumulation of senescent kidney cells acts as a driver for the progression of CKD. The targeting of senescent cells may well present an attractive therapeutic avenue for the treatment of CKD. We propose that the targeting of senescent cells either by direct inhibition of pro-survival pathways (senolytics) or through the inhibition of their proinflammatory secretory profile (senomorphics) together with immunomodulation to enhance immune system surveillance of senescent cells could be of benefit to patients with CKD.
Collapse
Affiliation(s)
| | | | - Siân M. Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
66
|
Borghesan M, Hoogaars WMH, Varela-Eirin M, Talma N, Demaria M. A Senescence-Centric View of Aging: Implications for Longevity and Disease. Trends Cell Biol 2020; 30:777-791. [PMID: 32800659 DOI: 10.1016/j.tcb.2020.07.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable cell cycle arrest associated with macromolecular alterations and secretion of proinflammatory cytokines and molecules. From their initial discovery in the 1960s, senescent cells have been hypothesized as potential contributors to the age-associated loss of regenerative potential. Here, we discuss recent evidence that implicates cellular senescence as a central regulatory mechanism of the aging process. We provide a comprehensive overview of age-associated pathologies in which cellular senescence has been implicated. We describe mechanisms by which senescent cells drive aging and diseases, and we discuss updates on exploiting these mechanisms as therapeutic targets. Finally, we critically analyze the use of senotherapeutics and their translation to the clinic, highlighting limitations and suggesting ideas for future applications and developments.
Collapse
Affiliation(s)
- M Borghesan
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - W M H Hoogaars
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - M Varela-Eirin
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - N Talma
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - M Demaria
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands.
| |
Collapse
|
67
|
Kumar A, Bano D, Ehninger D. Cellular senescence in vivo: From cells to tissues to pathologies. Mech Ageing Dev 2020; 190:111308. [PMID: 32622996 DOI: 10.1016/j.mad.2020.111308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/22/2023]
Abstract
Senescent cells accumulate during aging in a variety of tissues. Although scarce, they could influence tissue function non-cell-autonomously via secretion of a range of factors in their neighborhood. Recent studies support a role of senescent cells in age-related morbidity, including neurodegenerative diseases, cardiovascular pathologies, cancers, aging-associated nephrological alterations, chronic pulmonary disease and osteoarthritis, indicating that senescent cells could represent an interesting target for therapeutic exploitation across a range of pathophysiological contexts. In this article, we review data available to indicate which cell types can undergo senescence within various mammalian tissue environments and how these processes may contribute to tissue-specific pathologies associated with old age. We also consider markers used to identify senescent cells in vitro and in vivo. The data discussed may serve as an important starting point for an extended definition of molecular and functional characteristics of senescent cells in different organs and may hence promote the development and refinement of targeting strategies aimed at removing senescent cells from aging tissues.
Collapse
Affiliation(s)
- Avadh Kumar
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
68
|
Docherty MH, Baird DP, Hughes J, Ferenbach DA. Cellular Senescence and Senotherapies in the Kidney: Current Evidence and Future Directions. Front Pharmacol 2020; 11:755. [PMID: 32528288 PMCID: PMC7264097 DOI: 10.3389/fphar.2020.00755] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/06/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence refers to a cellular phenotype characterized by an altered transcriptome, pro-inflammatory secretome, and generally irreversible growth arrest. Acutely senescent cells are widely recognized as performing key physiological functions in vivo promoting normal organogenesis, successful wound repair, and cancer defense. In contrast, the accumulation of chronically senescent cells in response to aging, cell stress, genotoxic damage, and other injurious stimuli is increasingly recognized as an important contributor to organ dysfunction, tissue fibrosis, and the more generalized aging phenotype. In this review, we summarize our current knowledge of the role of senescent cells in promoting progressive fibrosis and dysfunction with a particular focus on the kidney and reference to other organ systems. Specific differences between healthy and senescent cells are reviewed along with a summary of several experimental pharmacological approaches to deplete or manipulate senescent cells to preserve organ integrity and function with aging and after injury. Finally, key questions for future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Marie Helena Docherty
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David P Baird
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy Hughes
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David A Ferenbach
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
69
|
The CD153 vaccine is a senotherapeutic option for preventing the accumulation of senescent T cells in mice. Nat Commun 2020; 11:2482. [PMID: 32424156 PMCID: PMC7235045 DOI: 10.1038/s41467-020-16347-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Senotherapy targeting for senescent cells is designed to attenuate age-related dysfunction. Senescent T cells, defined as CD4+ CD44high CD62Llow PD-1+ CD153+ cells, accumulate in visceral adipose tissues (VAT) in obese individuals. Here, we show the long-lasting effect of using CD153 vaccination to remove senescent T cells from high-fat diet (HFD)-induced obese C57BL/6J mice. We administered a CD153 peptide-KLH (keyhole limpet hemocyanin) conjugate vaccine with Alhydrogel (CD153-Alum) or CpG oligodeoxynucleotide (ODN) 1585 (CD153-CpG) and confirmed an increase in anti-CD153 antibody levels that was sustained for several months. After being fed a HFD for 10–11 weeks, adipose senescent T cell accumulation was significantly reduced in the VAT of CD153-CpG-vaccinated mice, accompanied by glucose tolerance and insulin resistance. A complement-dependent cytotoxicity (CDC) assay indicated that the mouse IgG2 antibody produced in the CD153-CpG-vaccinated mice successfully reduced the number of senescent T cells. The CD153-CpG vaccine is an optional tool for senolytic therapy. Senotherapy, the removal of aged T cells, is an effective approach to attenuate age-related diseases. Here the authors report a CD153 targeting vaccine that prevents the accumulation of senescent adipose tissue T cells in mice on high-fat diet, which is associated with improved glucose tolerance.
Collapse
|
70
|
Ahmed R, Ashimori A, Iwamoto S, Matsui T, Nakahata Y, Bessho Y. Replicative senescent human cells possess altered circadian clocks with a prolonged period and delayed peak-time. Aging (Albany NY) 2020; 11:950-973. [PMID: 30738414 PMCID: PMC6382424 DOI: 10.18632/aging.101794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/24/2019] [Indexed: 01/16/2023]
Abstract
Over the last decade, a wide array of evidence has been accumulated that disruption of circadian clock is prone to cause age-related diseases and premature aging. On the other hand, aging has been identified as one of the risk factors linked to the alteration of circadian clock. These evidences suggest that the processes of aging and circadian clock feedback on each other at the animal level. However, at the cellular level, we recently revealed that the primary fibroblast cells derived from Bmal1-/- mouse embryo, in which circadian clock is completely disrupted, do not demonstrate the acceleration of cellular aging, i.e., cellular senescence. In addition, little is known about the impact of cellular senescence on circadian clock. In this study, we show for the first time that senescent cells possess a longer circadian period with delayed peak-time and that the variability in peak-time is wider in the senescent cells compared to their proliferative counterparts, indicating that senescent cells show alterations of circadian clock. We, furthermore, propose that investigation at cellular level is a powerful and useful approach to dissect molecular mechanisms of aging in the circadian clock.
Collapse
Affiliation(s)
- Rezwana Ahmed
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Atsushige Ashimori
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Satoshi Iwamoto
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Takaaki Matsui
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Yasukazu Nakahata
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| |
Collapse
|
71
|
Brandsma C, Van den Berge M, Hackett T, Brusselle G, Timens W. Recent advances in chronic obstructive pulmonary disease pathogenesis: from disease mechanisms to precision medicine. J Pathol 2020; 250:624-635. [PMID: 31691283 PMCID: PMC7216938 DOI: 10.1002/path.5364] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating lung disease with a high personal and societal burden. Exposure to toxic particles and gases, including cigarette smoke, is the main risk factor for COPD. Together with smoking cessation, current treatment strategies of COPD aim to improve symptoms and prevent exacerbations, but there is no disease-modifying treatment. The biggest drawback of today's COPD treatment regimen is the 'one size fits all' pharmacological intervention, mainly based on disease severity and symptoms and not the individual's disease pathology. To halt the worrying increase in the burden of COPD, disease management needs to be advanced with a focus on personalized treatment. The main pathological feature of COPD includes a chronic and abnormal inflammatory response within the lungs, which results in airway and alveolar changes in the lung as reflected by (small) airways disease and emphysema. Here we discuss recent developments related to the abnormal inflammatory response, ECM and age-related changes, structural changes in the small airways and the role of sex-related differences, which are all relevant to explain the individual differences in the disease pathology of COPD and improve disease endotyping. Furthermore, we will discuss the most recent developments of new treatment strategies using biologicals to target specific pathological features or disease endotypes of COPD. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Corry‐Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - Maarten Van den Berge
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary DiseasesGroningenThe Netherlands
| | - Tillie‐Louise Hackett
- Centre for Heart Lung InnovationUnive rsity of British ColumbiaVancouverCanada
- Department of Anesthesiology, Pharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Guy Brusselle
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
- Department of Epidemiology and Respiratory MedicineErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| |
Collapse
|
72
|
Mikawa R, Sato T, Suzuki Y, Baskoro H, Kawaguchi K, Sugimoto M. p19 Arf Exacerbates Cigarette Smoke-Induced Pulmonary Dysfunction. Biomolecules 2020; 10:biom10030462. [PMID: 32192082 PMCID: PMC7175375 DOI: 10.3390/biom10030462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Senescent cells accumulate in tissues during aging or pathological settings. The semi-genetic or pharmacological targeting of senescent cells revealed that cellular senescence underlies many aspects of the aging-associated phenotype and diseases. We previously reported that cellular senescence contributes to aging- and disease-associated pulmonary dysfunction. We herein report that the elimination of Arf-expressing cells ameliorates cigarette smoke-induced lung pathologies in mice. Cigarette smoke induced the expression of Ink4a and Arf in lung tissue with concomitant increases in lung tissue compliance and alveolar airspace. The elimination of Arf-expressing cells prior to cigarette smoke exposure protected against these changes. Furthermore, the administration of cigarette smoke extract lead to pulmonary dysfunction, which was ameliorated by subsequent senescent cell elimination. Collectively, these results suggest that senescent cells are a potential therapeutic target for cigarette smoking-associated lung disease.
Collapse
Affiliation(s)
- Ryuta Mikawa
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Tadashi Sato
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yohei Suzuki
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hario Baskoro
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Koichiro Kawaguchi
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Masataka Sugimoto
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
- Department of Molecular Aging Research, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| |
Collapse
|
73
|
Clement M, Luo L. Organismal Aging and Oxidants beyond Macromolecules Damage. Proteomics 2020; 20:e1800400. [DOI: 10.1002/pmic.201800400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/20/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Marie‐Veronique Clement
- Department of BiochemistryYong Loo Lin School of MedicineNational University of Singapore Singapore 117596 Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering Singapore 117456 Singapore
| | - Le Luo
- Department of BiochemistryYong Loo Lin School of MedicineNational University of Singapore Singapore 117596 Singapore
| |
Collapse
|
74
|
Parikh P, Britt RD, Manlove LJ, Wicher SA, Roesler A, Ravix J, Teske J, Thompson MA, Sieck GC, Kirkland JL, LeBrasseur N, Tschumperlin DJ, Pabelick CM, Prakash YS. Hyperoxia-induced Cellular Senescence in Fetal Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2020; 61:51-60. [PMID: 30508396 DOI: 10.1165/rcmb.2018-0176oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Supplemental O2 (hyperoxia; 30-90% O2) is a necessary intervention for premature infants, but it contributes to development of neonatal and pediatric asthma, necessitating better understanding of contributory mechanisms in hyperoxia-induced changes to airway structure and function. In adults, environmental stressors promote formation of senescent cells that secrete factors (senescence-associated secretory phenotype), which can be inflammatory and have paracrine effects that enhance chronic lung diseases. Hyperoxia-induced changes in airway structure and function are mediated in part by effects on airway smooth muscle (ASM). In the present study, using human fetal ASM cells as a model of prematurity, we ascertained the effects of clinically relevant moderate hyperoxia (40% O2) on cellular senescence. Fetal ASM exposed to 40% O2 for 7 days exhibited elevated concentrations of senescence-associated markers, including β-galactosidase; cell cycle checkpoint proteins p16, p21, and p-p53; and the DNA damage marker p-γH2A.X (phosphorylated γ-histone family member X). The combination of dasatinib and quercetin, compounds known to eliminate senescent cells (senolytics), reduced the number of hyperoxia-exposed β-galactosidase-, p21-, p16-, and p-γH2A.X-positive ASM cells. The senescence-associated secretory phenotype profile of hyperoxia-exposed cells included both profibrotic and proinflammatory mediators. Naive ASM exposed to media from hyperoxia-exposed senescent cells exhibited increased collagen and fibronectin and higher contractility. Our data show that induction of cellular senescence by hyperoxia leads to secretion of inflammatory factors and has a functional effect on naive ASM. Cellular senescence in the airway may thus contribute to pediatric airway disease in the context of sequelae of preterm birth.
Collapse
Affiliation(s)
- Pavan Parikh
- 1 Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology
| | - Rodney D Britt
- 2 Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,3 Department of Pediatrics, Ohio State University, Columbus, Ohio
| | | | - Sarah A Wicher
- 4 Department of Anesthesiology and Perioperative Medicine
| | - Anne Roesler
- 4 Department of Anesthesiology and Perioperative Medicine
| | - Jovanka Ravix
- 4 Department of Anesthesiology and Perioperative Medicine
| | - Jacob Teske
- 4 Department of Anesthesiology and Perioperative Medicine
| | | | - Gary C Sieck
- 5 Department of Physiology and Biomedical Engineering.,6 Department of Physical Medicine and Rehabilitation, and
| | - James L Kirkland
- 5 Department of Physiology and Biomedical Engineering.,7 Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Nathan LeBrasseur
- 5 Department of Physiology and Biomedical Engineering.,6 Department of Physical Medicine and Rehabilitation, and.,7 Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Christina M Pabelick
- 4 Department of Anesthesiology and Perioperative Medicine.,5 Department of Physiology and Biomedical Engineering
| | - Y S Prakash
- 4 Department of Anesthesiology and Perioperative Medicine.,5 Department of Physiology and Biomedical Engineering
| |
Collapse
|
75
|
Hamsanathan S, Alder JK, Sellares J, Rojas M, Gurkar AU, Mora AL. Cellular Senescence: The Trojan Horse in Chronic Lung Diseases. Am J Respir Cell Mol Biol 2020; 61:21-30. [PMID: 30965013 DOI: 10.1165/rcmb.2018-0410tr] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Senescence is a cell fate decision characterized by irreversible arrest of proliferation accompanied by a senescence-associated secretory phenotype. Traditionally, cellular senescence has been recognized as a beneficial physiological mechanism during development and wound healing and in tumor suppression. However, in recent years, evidence of negative consequences of cellular senescence has emerged, illuminating its role in several chronic pathologies. In this context, senescent cells persist or accumulate and have detrimental consequences. In this review, we discuss the possibility that in chronic obstructive pulmonary disease, persistent senescence impairs wound healing in the lung caused by secretion of proinflammatory senescence-associated secretory phenotype factors and exhaustion of progenitor cells. In contrast, in idiopathic pulmonary fibrosis, chronic senescence in alveolar epithelial cells exacerbates the accumulation of senescent fibroblasts together with production of extracellular matrix. We review how cellular senescence may contribute to lung disease pathology.
Collapse
Affiliation(s)
| | - Jonathan K Alder
- 2 Division of Pulmonary Allergy and Critical Care Medicine, and.,3 Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases
| | - Jacobo Sellares
- 4 Interstitial Lung Disease Program, Servei de Pneumologia, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,5 Centro de Investigaciones Biomedicas en Red-Enfermedades Respiratorias (CibeRes CB06/06/0028), Instituto de Salud Carlos III, Barcelona, Spain; and
| | - Mauricio Rojas
- 2 Division of Pulmonary Allergy and Critical Care Medicine, and.,3 Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases.,6 McGowan Institute of Regenerative Medicine, and
| | - Aditi U Gurkar
- 1 Aging Institute.,7 Division of Geriatric Medicine, Department of Medicine.,8 Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Ana L Mora
- 1 Aging Institute.,2 Division of Pulmonary Allergy and Critical Care Medicine, and.,9 Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
76
|
Chen H, Chen H, Liang J, Gu X, Zhou J, Xie C, Lv X, Wang R, Li Q, Mao Z, Sun H, Zuo G, Miao D, Jin J. TGF-β1/IL-11/MEK/ERK signaling mediates senescence-associated pulmonary fibrosis in a stress-induced premature senescence model of Bmi-1 deficiency. Exp Mol Med 2020; 52:130-151. [PMID: 31959867 PMCID: PMC7000795 DOI: 10.1038/s12276-019-0371-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 01/22/2023] Open
Abstract
To study whether TGF-β1/IL-11/MEK/ERK (TIME) signaling mediates senescence-associated pulmonary fibrosis (SAPF) in Bmi-1-deficient (Bmi-1-/-) mice and determines the major downstream mediator of Bmi-1 and crosstalk between p16INK4a and reactive oxygen species that regulates SAPF, phenotypes were compared among 7-week-old p16INK4a and Bmi-1 double-knockout, N-acetylcysteine (NAC)-treated Bmi-1-/-, Bmi-1-/-, and wild-type mice. Pulmonary fibroblasts and alveolar type II epithelial (AT2) cells were used for experiments. Human pulmonary tissues were tested for type Ι collagen, α-smooth muscle actin (α-SMA), p16INK4a, p53, p21, and TIME signaling by using enzyme-linked immunosorbent assay (ELISA). Our results demonstrated that Bmi-1 deficiency resulted in a shortened lifespan, ventilatory resistance, poor ventilatory compliance, and SAPF, including cell senescence, DNA damage, a senescence-associated secretory phenotype and collagen overdeposition that was mediated by the upregulation of TIME signaling. The signaling stimulated cell senescence, senescence-related secretion of TGF-β1 and IL-11 and production of collagen 1 by pulmonary fibroblasts and the epithelial-to-mesenchymal transition of AT2 cells. These processes were inhibited by anti-IL-11 or the MEK inhibitor PD98059. NAC treatment prolonged the lifespan and ameliorated pulmonary dysfunction and SAPF by downregulating TIME signaling more than p16INK4a deletion by inhibiting oxidative stress and DNA damage and promoting ubiquitin-proteasome degradation of p16INK4a and p53. Cytoplasmic p16INK4a accumulation upregulated MEK/ERK signaling by inhibiting the translocation of pERK1/2 (Thr202/Tyr204) from the cytoplasm to the nucleus in senescent fibroblasts. The accumulation of collagen 1 and α-SMA in human lungs accompanied by cell senescence may be mediated by TIME signaling. Thus, this signaling in aging fibroblasts or AT2 cells could be a therapeutic target for preventing SAPF.
Collapse
Affiliation(s)
- Haiyun Chen
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Anti-aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hongjie Chen
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jialong Liang
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xin Gu
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jiawen Zhou
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xianhui Lv
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Rong Wang
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Qing Li
- Department of Science and Technology, Jiangsu Jiankang Vocational College, Nanjing, Jiangsu, 210029, China
| | - Zhiyuan Mao
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Haijian Sun
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Guoping Zuo
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Dengshun Miao
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianliang Jin
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
77
|
Hohmann MS, Habiel DM, Coelho AL, Verri WA, Hogaboam CM. Quercetin Enhances Ligand-induced Apoptosis in Senescent Idiopathic Pulmonary Fibrosis Fibroblasts and Reduces Lung Fibrosis In Vivo. Am J Respir Cell Mol Biol 2019; 60:28-40. [PMID: 30109946 DOI: 10.1165/rcmb.2017-0289oc] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although cellular senescence may be a protective mechanism in modulating proliferative capacity, fibroblast senescence is now recognized as a key pathogenic mechanism in idiopathic pulmonary fibrosis (IPF). In aged mice, abundance and persistence of apoptosis-resistant senescent fibroblasts play a central role in nonresolving lung fibrosis after bleomycin challenge. Therefore, we investigated whether quercetin can restore the susceptibility of senescent IPF fibroblasts to proapoptotic stimuli and mitigate bleomycin-induced pulmonary fibrosis in aged mice. Unlike senescent normal lung fibroblasts, IPF lung fibroblasts from patients with stable and rapidly progressing disease were highly resistant to Fas ligand (FasL)-induced and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Senescent IPF fibroblasts exhibited decreased expression of FasL and TRAIL receptors and caveolin-1, as well as increased AKT activation, compared with senescent normal lung fibroblasts. Although quercetin alone was not proapoptotic, it abolished the resistance to FasL- or TRAIL-induced apoptosis in IPF fibroblasts. Mechanistically, quercetin upregulated FasL receptor and caveolin-1 expression and modulated AKT activation. In vivo quercetin reversed bleomycin-induced pulmonary fibrosis and attenuated lethality, weight loss, and the expression of pulmonary senescence markers p21 and p19-ARF and senescence-associated secretory phenotype in aged mice. Collectively, these data indicate that quercetin reverses the resistance to death ligand-induced apoptosis by promoting FasL receptor and caveolin-1 expression and inhibiting AKT activation, thus mitigating the progression of established pulmonary fibrosis in aged mice. Therefore, quercetin may be a viable therapeutic option for IPF and other age-related diseases that progress with the accumulation of senescent fibroblasts.
Collapse
Affiliation(s)
- Miriam S Hohmann
- 1 Departmento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brasil; and
| | - David M Habiel
- 2 Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ana L Coelho
- 2 Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Waldiceu A Verri
- 1 Departmento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brasil; and
| | - Cory M Hogaboam
- 2 Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
78
|
Targeting normal and cancer senescent cells as a strategy of senotherapy. Ageing Res Rev 2019; 55:100941. [PMID: 31408714 DOI: 10.1016/j.arr.2019.100941] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/04/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
Senotherapy is an antiageing strategy. It refers to selective killing of senescent cells by senolytic agents, strengthening the activity of immune cells that eliminate senescent cells or alleviating the secretory phenotype (SASP) of senescent cells. As senescent cells accumulate with age and are considered to be at the root of age-related disorders, senotherapy seems to be very promising in improving healthspan. Genetic approaches, which allowed to selectively induce death of senescent cells in transgenic mice, provided proof-of-concept evidence that elimination of senescent cells can be a therapeutic approach for treating many age-related diseases. Translating these results into humans is based on searching for synthetic and natural compounds, which are able to exert such beneficial effects. The major challenge in the field is to show efficacy, safety and tolerability of senotherapy in humans. The question is how these therapeutics can influence senescence of non-dividing post-mitotic cells. Another issue concerns senescence of cancer cells induced during therapy as there is a risk of resumption of senescent cell division that could terminate in cancer renewal. Thus, development of an effective senotherapeutic strategy is also an urgent issue in cancer treatment. Different aspects, both beneficial and potentially detrimental, will be discussed in this review.
Collapse
|
79
|
Ohtani N. Deciphering the mechanism for induction of senescence-associated secretory phenotype (SASP) and its role in ageing and cancer development. J Biochem 2019; 166:289-295. [PMID: 31297533 DOI: 10.1093/jb/mvz055] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2023] Open
Abstract
Cellular senescence is an irreversible form of cell cycle arrest that can be induced by persistent DNA damage, and is well known to function as an important tumour suppression mechanism. Cellular senescence is detected in aged organisms; thus, it is also recognized as a hallmark of organismal ageing. Unlike apoptotic cells, senescent cells can survive for long periods of time. Recently, it has been shown that the late stage of senescent cells are capable of expressing a variety of secreted proteins such as cytokines, chemokines and proteases, and this condition is now known as senescence-associated secretory phenotype (SASP). These secreted factors are involved in myriad of physiological functions including tissue repair and clearance of damaged cells. Alternatively, these factors may promote detrimental effects, such as chronic inflammation or cancer progression, should the SASP persist. Recent scientific advances have indicated that innate immune responses, particularly involving the cGAS-STING pathway, trigger SASP induction. Therefore, developing a strategy to regulate SASP may provide scientific insights for the management of age-associated diseases and the implementation of healthy ageing in the future.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, Japan
| |
Collapse
|
80
|
Abstract
Immunosenescence involves a series of ageing-induced alterations in the immune system and is characterized by two opposing hallmarks: defective immune responses and increased systemic inflammation. The immune system is modulated by intrinsic and extrinsic factors and undergoes profound changes in response to the ageing process. Immune responses are therefore highly age-dependent. Emerging data show that immunosenescence underlies common mechanisms responsible for several age-related diseases and is a plastic state that can be modified and accelerated by non-heritable environmental factors and pharmacological intervention. In the kidney, resident macrophages and fibroblasts are continuously exposed to components of the external environment, and the effects of cellular reprogramming induced by local immune responses, which accumulate with age, might have a role in the increased susceptibility to kidney disease among elderly individuals. Additionally, because chronic kidney disease, especially end-stage renal disease, is often accompanied by immunosenescence, which affects these patients independently of age, and many kidney diseases are strongly age-associated, treatment approaches that target immunosenescence might be particularly clinically relevant.
Collapse
|
81
|
Mehdipour M, Etienne J, Chen CC, Gathwala R, Rehman M, Kato C, Liu C, Liu Y, Zuo Y, Conboy MJ, Conboy IM. Rejuvenation of brain, liver and muscle by simultaneous pharmacological modulation of two signaling determinants, that change in opposite directions with age. Aging (Albany NY) 2019; 11:5628-5645. [PMID: 31422380 PMCID: PMC6710051 DOI: 10.18632/aging.102148] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
We hypothesize that altered intensities of a few morphogenic pathways account for most/all the phenotypes of aging. Investigating this has revealed a novel approach to rejuvenate multiple mammalian tissues by defined pharmacology. Specifically, we pursued the simultaneous youthful in vivo calibration of two determinants: TGF-beta which activates ALK5/pSmad 2,3 and goes up with age, and oxytocin (OT) which activates MAPK and diminishes with age. The dose of Alk5 inhibitor (Alk5i) was reduced by 10-fold and the duration of treatment was shortened (to minimize overt skewing of cell-signaling pathways), yet the positive outcomes were broadened, as compared with our previous studies. Alk5i plus OT quickly and robustly enhanced neurogenesis, reduced neuro-inflammation, improved cognitive performance, and rejuvenated livers and muscle in old mice. Interestingly, the combination also diminished the numbers of cells that express the CDK inhibitor and marker of senescence p16 in vivo. Summarily, simultaneously re-normalizing two pathways that change with age in opposite ways (up vs. down) synergistically reverses multiple symptoms of aging.
Collapse
Affiliation(s)
- Melod Mehdipour
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jessy Etienne
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chia-Chien Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ranveer Gathwala
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maryam Rehman
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cameron Kato
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chao Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yutong Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
82
|
He Y, Thummuri D, Zheng G, Okunieff P, Citrin DE, Vujaskovic Z, Zhou D. Cellular senescence and radiation-induced pulmonary fibrosis. Transl Res 2019; 209:14-21. [PMID: 30981698 PMCID: PMC6857805 DOI: 10.1016/j.trsl.2019.03.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a serious treatment complication that affects about 9%-30% cancer patients receiving radiotherapy for thoracic tumors. RIPF is characterized by progressive and irreversible destruction of lung tissues and deterioration of lung function, which can compromise quality of life and eventually lead to respiratory failure and death. Unfortunately, the mechanisms by which radiation causes RIPF have not been well established nor has an effective treatment for RIPF been developed. Recently, an increasing body of evidence suggests that induction of senescence by radiation may play an important role in RIPF and clearance of senescent cells (SnCs) with a senolytic agent, small molecule that can selectively kill SnCs, has the potential to be developed as a novel therapeutic strategy for RIPF. This review discusses some of these new findings to promote further study on the role of cellular senescence in RIPF and the development of senolytic therapeutics for RIPF.
Collapse
Affiliation(s)
- Yonghan He
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Dinesh Thummuri
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Paul Okunieff
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, Florida
| | - Deborah E Citrin
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, College of Medicine, University of Maryland, Baltimore, Maryland
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
83
|
Chapman J, Fielder E, Passos JF. Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett 2019; 593:1566-1579. [PMID: 31211858 DOI: 10.1002/1873-3468.13498] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/31/2022]
Abstract
Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate relationship between the two. In the context of ageing, it is now well regarded that cellular senescence is a key driver in both ageing and the onset of a number of age-related pathologies. Emerging evidence has pinpointed mitochondria as one of the key modulators in the development of the senescence phenotype, particularly the pro-inflammatory senescence associated secretory phenotype (SASP). This review focuses on the contribution of homeostatic mechanisms, as well as of reactive oxygen species and mitochondrial metabolites in the senescence programme. Furthermore, we discuss emerging pathways and mitochondrial-mediated mechanisms that may be influencing the SASP and, subsequently, explore how these may be exploited to open up new therapeutic avenues.
Collapse
Affiliation(s)
- James Chapman
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Edward Fielder
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - João F Passos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK.,Department of Physiology and Biochemical Engineering, Mayo Clinic, Rochester, NY, USA
| |
Collapse
|
84
|
Parikh P, Wicher S, Khandalavala K, Pabelick CM, Britt RD, Prakash YS. Cellular senescence in the lung across the age spectrum. Am J Physiol Lung Cell Mol Physiol 2019; 316:L826-L842. [PMID: 30785345 PMCID: PMC6589594 DOI: 10.1152/ajplung.00424.2018] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence results in cell cycle arrest with secretion of cytokines, chemokines, growth factors, and remodeling proteins (senescence-associated secretory phenotype; SASP) that have autocrine and paracrine effects on the tissue microenvironment. SASP can promote remodeling, inflammation, infectious susceptibility, angiogenesis, and proliferation, while hindering tissue repair and regeneration. While the role of senescence and the contributions of senescent cells are increasingly recognized in the context of aging and a variety of disease states, relatively less is known regarding the portfolio and influences of senescent cells in normal lung growth and aging per se or in the induction or progression of lung diseases across the age spectrum such as bronchopulmonary dysplasia, asthma, chronic obstructive pulmonary disease, or pulmonary fibrosis. In this review, we introduce concepts of cellular senescence, the mechanisms involved in the induction of senescence, and the SASP portfolio that are relevant to lung cells, presenting the potential contribution of senescent cells and SASP to inflammation, hypercontractility, and remodeling/fibrosis: aspects critical to a range of lung diseases. The potential to blunt lung disease by targeting senescent cells using a novel class of drugs (senolytics) is discussed. Potential areas for future research on cellular senescence in the lung are identified.
Collapse
Affiliation(s)
- Pavan Parikh
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sarah Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Karl Khandalavala
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Rodney D. Britt
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Y. S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
85
|
Murtha LA, Morten M, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, Ngo DT, Sverdlov AL, Knight DA, Boyle AJ. The Role of Pathological Aging in Cardiac and Pulmonary Fibrosis. Aging Dis 2019; 10:419-428. [PMID: 31011486 PMCID: PMC6457057 DOI: 10.14336/ad.2018.0601] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Aging promotes a range of degenerative pathologies characterized by progressive losses of tissue and/or cellular function. Fibrosis is the hardening, overgrowth and scarring of various tissues characterized by the accumulation of extracellular matrix components. Aging is an important predisposing factor common for fibrotic heart and respiratory disease. Age-related processes such as senescence, inflammaging, autophagy and mitochondrial dysfunction are interconnected biological processes that diminish the regenerative capacity of the aged heart and lung and have been shown to play a crucial role in cardiac fibrosis and idiopathic pulmonary fibrosis. This review focuses on these four processes of aging in relation to their role in fibrosis. It has long been established that the heart and lung are linked both functionally and anatomically when it comes to health and disease, with an ever-expanding aging population, the incidence of fibrotic disease and therefore the number of fibrosis-related deaths will continue to rise. There are currently no feasible therapies to treat the effects of chronic fibrosis therefore highlighting the importance of exploring the processes of aging and its role in inducing and exacerbating fibrosis of each organ. The focus of this review may help to highlight potential avenues of therapeutic exploration
Collapse
Affiliation(s)
- Lucy A Murtha
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew Morten
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michael J Schuliga
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nishani S Mabotuwana
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Sean A Hardy
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - David W Waters
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Janette K Burgess
- 4University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen and W. J. Kolff Research Institute, The Netherlands.,5Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia.,6Discipline of Pharmacology, The University of Sydney, NSW 2006, Australia
| | - Doan Tm Ngo
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Aaron L Sverdlov
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Darryl A Knight
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,7Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada.,8Adjunct Professor, Department of Medicine, University of Western Australia, Australia.,9Research and Innovation Conjoint, Hunter New England Health District, Australia
| | - Andrew J Boyle
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
86
|
Short S, Fielder E, Miwa S, von Zglinicki T. Senolytics and senostatics as adjuvant tumour therapy. EBioMedicine 2019; 41:683-692. [PMID: 30737084 PMCID: PMC6441870 DOI: 10.1016/j.ebiom.2019.01.056] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
Cell senescence is a driver of ageing, frailty, age-associated disease and functional decline. In oncology, tumour cell senescence may contribute to the effect of adjuvant therapies, as it blocks tumour growth. However, this is frequently incomplete, and tumour cells that recover from senescence may gain a more stem-like state with increased proliferative potential. This might be exaggerated by the induction of senescence in the surrounding niche cells. Finally, senescence will spread through bystander effects, possibly overwhelming the capacity of the immune system to ablate senescent cells. This induces a persistent system-wide senescent cell accumulation, which we hypothesize is the cause for the premature frailty, multi-morbidity and increased mortality in cancer survivors. Senolytics, drugs that selectively kill senescent cells, have been developed recently and have been proposed as second-line adjuvant tumour therapy. Similarly, by blocking accelerated senescence following therapy, senolytics might prevent and potentially even revert premature frailty in cancer survivors. Adjuvant senostatic interventions, which suppress senescence-associated bystander signalling, might also have therapeutic potential. This becomes pertinent because treatments that are senostatic in vitro (e.g. dietary restriction mimetics) persistently reduce numbers of senescent cells in vivo, i.e. act as net senolytics in immunocompetent hosts.
Collapse
Affiliation(s)
- Susan Short
- Leeds Institute of Cancer and Pathology, Wellcome Trust Brenner Building, St James's University Hospital, Beckett St, Leeds LS9 7TF, UK
| | - Edward Fielder
- Newcastle University Institute for Ageing, Institute for Cell and Molecular Biology, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Satomi Miwa
- Newcastle University Institute for Ageing, Institute for Cell and Molecular Biology, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Thomas von Zglinicki
- Newcastle University Institute for Ageing, Institute for Cell and Molecular Biology, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
87
|
Yoon YS, Jin M, Sin DD. Accelerated lung aging and chronic obstructive pulmonary disease. Expert Rev Respir Med 2019; 13:369-380. [PMID: 30735057 DOI: 10.1080/17476348.2019.1580576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The prevalence of chronic obstructive pulmonary disease (COPD) increases exponentially with aging. Its pathogenesis, however, is not well known and aside from smoking cessation, there are no disease-modifying treatments for this disease. Areas covered: COPD is associated with accelerating aging and aging-related diseases. In this review, we will discuss the hallmarks of aging including genomic instability, telomere attrition, epigenetic alteration, loss of proteostasis, mitochondrial dysfunction, deregulated nutrient sensing, cellular senescence, stem cell exhaustion, and altered intercellular communication, which may be involved in COPD pathogenesis. Expert commentary: COPD and the aging process share similar molecular and cellular changes. Aging-related molecular pathways may represent novel therapeutic targets and biomarkers for COPD.
Collapse
Affiliation(s)
- Young Soon Yoon
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada.,b Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine , Dongguk University Ilsan Hospital , Goyang , South Korea
| | - Minhee Jin
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada
| | - Don D Sin
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada.,c Division of Respiratory Medicine (Department of Medicine) , University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|
88
|
Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, Prata L, Masternak MM, Kritchevsky SB, Musi N, Kirkland JL. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine 2019; 40:554-563. [PMID: 30616998 PMCID: PMC6412088 DOI: 10.1016/j.ebiom.2018.12.052] [Citation(s) in RCA: 743] [Impact Index Per Article: 123.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 01/19/2023] Open
Abstract
Background Cellular senescence is a key mechanism that drives age-related diseases, but has yet to be targeted therapeutically in humans. Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal cellular senescence-associated disease. Selectively ablating senescent cells using dasatinib plus quercetin (DQ) alleviates IPF-related dysfunction in bleomycin-administered mice. Methods A two-center, open-label study of intermittent DQ (D:100 mg/day, Q:1250 mg/day, three-days/week over three-weeks) was conducted in participants with IPF (n = 14) to evaluate feasibility of implementing a senolytic intervention. The primary endpoints were retention rates and completion rates for planned clinical assessments. Secondary endpoints were safety and change in functional and reported health measures. Associations with the senescence-associated secretory phenotype (SASP) were explored. Findings Fourteen patients with stable IPF were recruited. The retention rate was 100% with no DQ discontinuation; planned clinical assessments were complete in 13/14 participants. One serious adverse event was reported. Non-serious events were primarily mild-moderate, with respiratory symptoms (n = 16 total events), skin irritation/bruising (n = 14), and gastrointestinal discomfort (n = 12) being most frequent. Physical function evaluated as 6-min walk distance, 4-m gait speed, and chair-stands time was significantly and clinically-meaningfully improved (p < .05). Pulmonary function, clinical chemistries, frailty index (FI-LAB), and reported health were unchanged. DQ effects on circulat.ing SASP factors were inconclusive, but correlations were observed between change in function and change in SASP-related matrix-remodeling proteins, microRNAs, and pro-inflammatory cytokines (23/48 markers r ≥ 0.50). Interpretation Our first-in-humans open-label pilot supports study feasibility and provides initial evidence that senolytics may alleviate physical dysfunction in IPF, warranting evaluation of DQ in larger randomized controlled trials for senescence-related diseases. ClinicalTrials.gov identifier: NCT02874989 (posted 2016–2018).
Collapse
Affiliation(s)
- Jamie N Justice
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine (WFSM), 1 Medical Center Blvd, Winston-Salem, NC 27157, United States.
| | - Anoop M Nambiar
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, University of Texas Health Sciences Center at San Antonio (UTHSCSA) and South Texas Veterans Health Care System, San Antonio, TX 78229, United States.
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States.
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States.
| | - Rodolfo Pascual
- Internal Medicine - Pulmonary, Critical Care, Allergy, Immunologic Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157, United States.
| | - Shahrukh K Hashmi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States.
| | - Larissa Prata
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States.
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32827, United States.
| | - Stephen B Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine (WFSM), 1 Medical Center Blvd, Winston-Salem, NC 27157, United States.
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, Center for Healthy Aging, University of Texas Health Sciences Center at San Antonio and South Texas Veterans Health Care System, San Antonio, TX 78229, United States; San Antonio Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, United States.
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
89
|
Abstract
Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis are regarded as a diseases of accelerated lung ageing and show all of the hallmarks of ageing, including telomere shortening, cellular senescence, activation of PI3 kinase-mTOR signaling, impaired autophagy, mitochondrial dysfunction, stem cell exhaustion, epigenetic changes, abnormal microRNA profiles, immunosenescence and a low grade chronic inflammation due to senescence-associated secretory phenotype (SASP). Many of these ageing mechanisms are driven by exogenous and endogenous oxidative stress. There is also a reduction in anti-ageing molecules, such as sirtuins and Klotho, which further accelerate the ageing process. Understanding these molecular mechanisms has identified several novel therapeutic targets and several drugs and dietary interventions are now in development to treat chronic lung disease.
Collapse
Affiliation(s)
- Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
90
|
Sandbo N. Mechanisms of Fibrosis in IPF. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
91
|
Prata LGPL, Ovsyannikova IG, Tchkonia T, Kirkland JL. Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin Immunol 2018; 40:101275. [PMID: 31088710 PMCID: PMC7061456 DOI: 10.1016/j.smim.2019.04.003] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/01/2018] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
Senescent cells (SCs) arise from normal cells in multiple organs due to inflammatory, metabolic, DNA damage, or tissue damage signals. SCs are non-proliferating but metabolically active cells that can secrete a range of pro-inflammatory and proteolytic factors as part of the senescence-associated secretory phenotype (SASP). Senescent cell anti-apoptotic pathways (SCAPs) protect SCs from their own pro-apoptotic SASP. SCs can chemo-attract immune cells and are usually cleared by these immune cells. During aging and in multiple chronic diseases, SCs can accumulate in dysfunctional tissues. SCs can impede innate and adaptive immune responses. Whether immune system loss of capacity to clear SCs promotes immune system dysfunction, or conversely whether immune dysfunction permits SC accumulation, are important issues that are not yet fully resolved. SCs may be able to assume distinct states that interact differentially with immune cells, thereby promoting or inhibiting SC clearance, establishing a chronically pro-senescent and pro-inflammatory environment, leading to modulation of the SASP by the immune cells recruited and activated by the SASP. Therapies that enhance immune cell-mediated clearance of SCs could provide a lever for reducing SC burden. Such therapies could include vaccines, small molecule immunomodulators, or other approaches. Senolytics, drugs that selectively eliminate SCs by transiently disabling their SCAPs, may prove to alleviate immune dysfunction in older individuals and thereby accelerate immune-mediated clearance of SCs. The more that can be understood about the interplay between SCs and the immune system, the faster new interventions may be developed to delay, prevent, or treat age-related dysfunction and the multiple senescence-associated chronic diseases and disorders.
Collapse
Affiliation(s)
- Larissa G P Langhi Prata
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| |
Collapse
|
92
|
Mikawa R, Suzuki Y, Baskoro H, Kanayama K, Sugimoto K, Sato T, Sugimoto M. Elimination of p19 ARF -expressing cells protects against pulmonary emphysema in mice. Aging Cell 2018; 17:e12827. [PMID: 30058137 PMCID: PMC6156494 DOI: 10.1111/acel.12827] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/23/2018] [Indexed: 11/29/2022] Open
Abstract
Senescent cells accumulate in tissues during aging and are considered to underlie several aging‐associated phenotypes and diseases. We recently reported that the elimination of p19ARF‐expressing senescent cells from lung tissue restored tissue function and gene expression in middle‐aged (12‐month‐old) mice. The aging of lung tissue increases the risk of pulmonary diseases such as emphysema, and cellular senescence is accelerated in emphysema patients. However, there is currently no direct evidence to show that cellular senescence promotes the pathology of emphysema, and the involvement of senescence in the development of this disease has yet to be clarified. We herein demonstrated that p19ARF facilitated the development of pulmonary emphysema in mice. The elimination of p19ARF‐expressing cells prevented lung tissue from elastase‐induced lung dysfunction. These effects appeared to depend on reduced pulmonary inflammation, which is enhanced after elastase stimulation. Furthermore, the administration of a senolytic drug that selectively kills senescent cells attenuated emphysema‐associated pathologies. These results strongly suggest the potential of senescent cells as therapeutic/preventive targets for pulmonary emphysema.
Collapse
Affiliation(s)
- Ryuta Mikawa
- Research Institute; National Center for Geriatrics and Gerontology; Obu Japan
| | - Yohei Suzuki
- Department of Respiratory Medicine; Juntendo University School of Medicine; Tokyo Japan
| | - Hario Baskoro
- Department of Respiratory Medicine; Juntendo University School of Medicine; Tokyo Japan
| | - Kazuki Kanayama
- Department of Clinical Nutrition; Suzuka University of Medical Science; Suzuka Japan
| | - Kazushi Sugimoto
- Department of Molecular and Laboratory Medicine, Department of Gastroenterology; Mie University Graduate School of Medicine; Tsu Japan
| | - Tadashi Sato
- Department of Respiratory Medicine; Juntendo University School of Medicine; Tokyo Japan
| | - Masataka Sugimoto
- Research Institute; National Center for Geriatrics and Gerontology; Obu Japan
- Department of Aging Research; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
93
|
Sato Y, Yanagita M. Immune cells and inflammation in AKI to CKD progression. Am J Physiol Renal Physiol 2018; 315:F1501-F1512. [PMID: 30156114 DOI: 10.1152/ajprenal.00195.2018] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical state resulting from pathogenic conditions such as ischemic and toxic insults. The pathophysiology of AKI shares common pathogenic denominators including cell death/injury, inflammation, and fibrosis, regardless of the initiating insults. Recent clinical studies have shown that a single episode of AKI can lead to subsequent chronic kidney disease (CKD). Although the involvement of multiple types of cells in the pathophysiology of AKI is becoming increasingly clear, the precise mechanisms for this "AKI to CKD progression" are still unknown, and no drug has been shown to halt this progression. An increasing number of epidemiological studies have also revealed that the presence of aging greatly increases the risk of AKI to CKD progression, and chronic inflammation is increasingly recognized as an important determinant factor for this progression. In this review article, we first describe the current understanding of the pathophysiology of AKI to CKD progression based on multiple types of cells. In particular, we will highlight the recent findings in regard to the mechanisms for chronic inflammation after AKI. Subsequently, we will focus on the mechanisms responsible for the increased risk of AKI to CKD progression in the elderly. Finally, we highlight our recent finding of age-dependent tertiary lymphoid tissue formation and its roles in AKI to CKD progression and speculate on the potential therapeutic opportunities that come from targeting aberrant inflammation after AKI.
Collapse
Affiliation(s)
- Yuki Sato
- Medical Innovation Center TMK Project, Graduate School of Medicine, Kyoto University , Kyoto , Japan.,Department of Nephrology, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| |
Collapse
|
94
|
Sundar IK, Rashid K, Gerloff J, Li D, Rahman I. Genetic Ablation of p16 INK4a Does Not Protect against Cellular Senescence in Mouse Models of Chronic Obstructive Pulmonary Disease/Emphysema. Am J Respir Cell Mol Biol 2018; 59:189-199. [PMID: 29447461 PMCID: PMC6096345 DOI: 10.1165/rcmb.2017-0390oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/14/2018] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoke (CS) affects DNA damage and cellular senescence signaling pathways in the pathogenesis of chronic obstructive pulmonary disease (COPD). p16INK4a (p16: a cyclin-dependent kinase inhibitor) is a key marker of cellular senescence, which is induced by CS in lung cells. It is thought that removal of p16 attenuates premature aging by removing senesced cells. However, the role of p16 in CS-induced stress-induced premature senescence (SIPS) and senescence-associated secretory phenotype (SASP) during the development of COPD/emphysema is not known. We hypothesize that p16 regulates cellular senescence and DNA damage/repair molecular signaling targets during chronic CS-induced inflammation and airspace enlargement in mouse models of COPD. We used p16 global knockout (KO) and p16 lung epithelial cell-specific KO (p16CreCC10) mice to determine whether p16 removal in lung epithelium augments or protects against cellular senescence (SIPS and SASP) in chronic CS- and elastase-induced development of COPD/emphysema in mice. p16 KO mice exposed to chronic CS and p16 lung epithelial cell-specific KO mice exposed to elastase did not show attenuation of lung inflammation, altered lung function, or airspace enlargement. p16 KO and p16CreCC10 exposed to CS and elastase showed increases in lung senescence-associated β-galactosidase activity. Thus, removal of p16-positive cells did not protect against airspace enlargement and decline in lung function induced in COPD mouse models. Our findings suggest that p16 is not the only key player associated with CS-induced cellular senescence phenotypes (SIPS and SASP), decline in lung function, and airspace enlargement in COPD/emphysema.
Collapse
Affiliation(s)
| | | | | | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
95
|
Sapieha P, Mallette FA. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest. Trends Cell Biol 2018; 28:595-607. [DOI: 10.1016/j.tcb.2018.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
|
96
|
|
97
|
Rashid K, Sundar IK, Gerloff J, Li D, Rahman I. Lung cellular senescence is independent of aging in a mouse model of COPD/emphysema. Sci Rep 2018; 8:9023. [PMID: 29899396 PMCID: PMC5998122 DOI: 10.1038/s41598-018-27209-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Cigarette smoke (CS) induces lung cellular senescence that plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). How aging influences cellular senescence and other molecular hallmarks, and increases the risk of CS-induced damage remains unknown. We hypothesized that aging-associated changes in lungs worsen the COPD/emphysema by CS exposure. Younger and older groups of C57BL/6J mice were exposed to chronic CS for 6 months with respective age-matched air-exposed controls. CS caused a decline in lung function and affected the lung structure of both groups of mice. No alterations were observed in the induction of inflammatory mediators between the air-exposed younger and older controls, but aging increased the severity of CS-induced lung inflammation. Aging per se increased lung cellular senescence and significant changes in damage-associated molecular patterns marker S100A8. Gene transcript analysis using the nanoString nCounter showed a significant upregulation of key pro-senescence targets by CS (Mmp12, Ccl2, Cdkn2a, Tert, Wrn, and Bub1b). Aging independently influenced lung function and structure, as well as increased susceptibility to CS-induced inflammation in emphysema, but had a negligible effect on cellular senescence. Thus, aging solely does not contribute to the induction of cellular senescence by CS in a mouse model of COPD/emphysema.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Janice Gerloff
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
98
|
Sakamoto A, Matsuda T, Kawaguchi K, Takaoka A, Maruyama M. Involvement of Zizimin2/3 in the age-related defect of peritoneal B-1a cells as a source of anti-bacterial IgM. Int Immunol 2018; 29:431-438. [PMID: 29099971 DOI: 10.1093/intimm/dxx054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 10/05/2017] [Indexed: 12/18/2022] Open
Abstract
Zizimin2 (Ziz2), also known as dedicator of cytokinesis 11 (DOCK11), is a guanine nucleotide exchange factor that is predominantly expressed in lymphoid tissues. Recent findings demonstrated that Ziz2 is involved in the development of B cells, including germinal centre B cells and marginal zone B cells. However, limited information is currently available on the roles of Ziz2 in B-1 cells, a B-cell subset that resides in body cavities and contributes to protection against foreign pathogens in a T-cell-independent manner. We herein show that Ziz2 and its widely expressed isoform Ziz3 (also known as DOCK10) may be involved in defective production of anti-bacterial IgM by aged B-1a cells, a CD5+ subset of B-1 cells. Natural IgM against typical bacterial epitopes was defectively produced by peritoneal B-1a cells from aged mice. The down-regulation of Ziz2/3 in B-1a cells appeared to be responsible for this defective IgM production, as demonstrated by Ziz2/3 double-knockout mice. Mechanistically, lower levels of basal AKT phosphorylation did not allow for the differentiation of Ziz2/3-deficient B-1a cells into plasma cells. Defective production of anti-bacterial IgM was not fully rescued by immunization, resulting in slightly weaker protection in Ziz2/3-deficient mice. Thus, the down-regulation of Ziz2/3 in B-1a cells may at least partly account for defective protection in aged mice.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan
| | - Takenori Matsuda
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan
| | - Koichiro Kawaguchi
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Mitsuo Maruyama
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan
| |
Collapse
|
99
|
Boyer L, Bastuji-Garin S, Chouaid C, Housset B, Le Corvoisier P, Derumeaux G, Boczkowski J, Maitre B, Adnot S, Audureau E. Are Systemic Manifestations Ascribable to COPD in Smokers? A Structural Equation Modeling Approach. Sci Rep 2018; 8:8569. [PMID: 29872127 PMCID: PMC5988713 DOI: 10.1038/s41598-018-26766-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/18/2018] [Indexed: 01/21/2023] Open
Abstract
Whether the systemic manifestations observed in Chronic Obstructive Pulmonary Disease (COPD) are ascribable to lung dysfunction or direct effects of smoking is in debate. Structural Equations Modeling (SEM), a causal-oriented statistical approach, could help unraveling the pathways involved, by enabling estimation of direct and indirect associations between variables. The objectives of the study was to investigate the relative impact of smoking and COPD on systemic manifestations, inflammation and telomere length. In 292 individuals (103 women; 97 smokers with COPD, 96 smokers without COPD, 99 non-smokers), we used SEM to explore the pathways between smoking (pack-years), lung disease (FEV1, KCO), and the following parameters: arterial stiffness (aortic pulse wave velocity, PWV), bone mineral density (BMD), appendicular skeletal muscle mass (ASMM), grip strength, insulin resistance (HOMA-IR), creatinine clearance (eGFR), blood leukocyte telomere length and inflammatory markers (Luminex assay). All models were adjusted on age and gender. Latent variables were created for systemic inflammation (inflammatory markers) and musculoskeletal parameters (ASMM, grip strength, BMD). SEM showed that most effects of smoking were indirectly mediated by lung dysfunction: e.g. via FEV1 on musculoskeletal factor, eGFR, HOMA-IR, PWV, telomere length, CRP, white blood cells count (WBC) and inflammation factor, and via KCO on musculoskeletal factor, eGFR and PWV. Direct effects of smoking were limited to CRP and WBC. Models had excellent fit. In conclusion, SEM highlighted the major role of COPD in the occurrence of systemic manifestations while smoking effects were mostly mediated by lung function.
Collapse
Affiliation(s)
- Laurent Boyer
- APHP, Hôpital Henri Mondor, Département de Physiologie-Explorations Fonctionnelles, DHU A-TVB, F-94010, Créteil, France.,INSERM U955 and Université Paris Est (UPEC), UMR U955, Faculté de médecine, Créteil, F-94010, France
| | - Sylvie Bastuji-Garin
- APHP, Hôpital Henri Mondor, Département de Santé Publique, F-94010, Créteil, France.,Université Paris Est (UPEC), Faculté de médecine, CEpiA, EA7376, Créteil, F-94010, France
| | - Christos Chouaid
- Centre Hospitalier Intercommunal, Département de Pneumologie et Pathologie Professionnelle, Créteil, F-94000, France
| | - Bruno Housset
- Centre Hospitalier Intercommunal, Département de Pneumologie et Pathologie Professionnelle, Créteil, F-94000, France
| | - Philippe Le Corvoisier
- Inserm, Centre d'Investigation Clinique 1430, and APHP, Hôpital Henri Mondor, F-94010, Créteil, France
| | - Geneviève Derumeaux
- APHP, Hôpital Henri Mondor, Département de Physiologie-Explorations Fonctionnelles, DHU A-TVB, F-94010, Créteil, France.,INSERM U955 and Université Paris Est (UPEC), UMR U955, Faculté de médecine, Créteil, F-94010, France
| | - Jorge Boczkowski
- INSERM U955 and Université Paris Est (UPEC), UMR U955, Faculté de médecine, Créteil, F-94010, France
| | - Bernard Maitre
- Centre Hospitalier Intercommunal, Département de Pneumologie et Pathologie Professionnelle, Créteil, F-94000, France
| | - Serge Adnot
- APHP, Hôpital Henri Mondor, Département de Physiologie-Explorations Fonctionnelles, DHU A-TVB, F-94010, Créteil, France.,INSERM U955 and Université Paris Est (UPEC), UMR U955, Faculté de médecine, Créteil, F-94010, France
| | - Etienne Audureau
- APHP, Hôpital Henri Mondor, Département de Santé Publique, F-94010, Créteil, France. .,Université Paris Est (UPEC), Faculté de médecine, CEpiA, EA7376, Créteil, F-94010, France.
| |
Collapse
|
100
|
Li M, You L, Xue J, Lu Y. Ionizing Radiation-Induced Cellular Senescence in Normal, Non-transformed Cells and the Involved DNA Damage Response: A Mini Review. Front Pharmacol 2018; 9:522. [PMID: 29872395 PMCID: PMC5972185 DOI: 10.3389/fphar.2018.00522] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/30/2018] [Indexed: 02/05/2023] Open
Abstract
Cellular senescence is identified by a living cell in irreversible and persistent cell cycle arrest in response to various cellular stresses. Senescent cells secrete senescence-associated secretory phenotype factors that can amplify cellular senescence and alter the microenvironments. Radiotherapy, via ionizing radiation, serves as an effective treatment for local tumor control with side effects on normal cells, which can induce inflammation and fibrosis in irradiated and nearby regions. Research has revealed that senescent phenotype is observable in irradiated organs. This process starts with DNA damage mediated by radiation, after which a G2 arrest occurs in virtually all eukaryotic cells and a mitotic bypass is possibly necessary to ultimately establish cellular senescence. Within this complex DNA damage response signaling network, ataxia telangiectasia-mutated protein, p53, and p21 stand out as the crucial mediators. Senolytic agents, a class of small molecules that can selectively kill senescent cells, hold great potential to substantially reduce the side effects caused by radiotherapy while reasonably steer clear of carcinogenesis.
Collapse
Affiliation(s)
- Mengqian Li
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Liting You
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|