51
|
Wiedeman AE, Speake C, Long SA. The many faces of islet antigen-specific CD8 T cells: clues to clinical outcome in type 1 diabetes. Immunol Cell Biol 2021; 99:475-485. [PMID: 33483981 PMCID: PMC8248166 DOI: 10.1111/imcb.12437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 11/26/2022]
Abstract
Immune monitoring enables a better understanding of disease processes and response to therapy, but has been challenging in the setting of chronic autoimmunity because of unknown etiology, variable and protracted kinetics of the disease process, heterogeneity across patients and the complexity of immune interactions. To begin to parse this complexity, we focus here on type 1 diabetes (T1D) and CD8 T cells as a cell type that has features that are associated with different stages of disease, rates of progression and response to therapy. Specifically, we discuss the current understanding of the role of autoreactive CD8 T cells in disease outcome, which implicates particular CD8 functional subsets, rather than unique antigens or total number of autoreactive T cells. Next, we discuss how autoreactive CD8 T‐cell features can be reflected in measures of global CD8 T cells, and then pull these concepts together by highlighting immune therapies recently shown to modulate both CD8 T cells and disease progression. We end by discussing outstanding questions about the role of specific subsets of autoreactive CD8 T cells in disease progression and how they may be optimally modulated to treat and prevent T1D.
Collapse
Affiliation(s)
- Alice E Wiedeman
- Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Cate Speake
- Interventional Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Sarah Alice Long
- Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| |
Collapse
|
52
|
Wanjalla CN, McDonnell WJ, Ram R, Chopra A, Gangula R, Leary S, Mashayekhi M, Simmons JD, Warren CM, Bailin S, Gabriel CL, Guo L, Furch BD, Lima MC, Woodward BO, Hannah L, Pilkinton MA, Fuller DT, Kawai K, Virmani R, Finn AV, Hasty AH, Mallal SA, Kalams SA, Koethe JR. Single-cell analysis shows that adipose tissue of persons with both HIV and diabetes is enriched for clonal, cytotoxic, and CMV-specific CD4+ T cells. CELL REPORTS MEDICINE 2021; 2:100205. [PMID: 33665640 PMCID: PMC7897802 DOI: 10.1016/j.xcrm.2021.100205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 09/22/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Persons with HIV are at increased risk for diabetes mellitus compared with individuals without HIV. Adipose tissue is an important regulator of glucose and lipid metabolism, and adipose tissue T cells modulate local inflammatory responses and, by extension, adipocyte function. Persons with HIV and diabetes have a high proportion of CX3CR1+ GPR56+ CD57+ (C-G-C+) CD4+ T cells in adipose tissue, a subset of which are cytomegalovirus specific, whereas individuals with diabetes but without HIV have predominantly CD69+ CD4+ T cells. Adipose tissue CD69+ and C-G-C+ CD4+ T cell subsets demonstrate higher receptor clonality compared with the same cells in blood, potentially reflecting antigen-driven expansion, but C-G-C+ CD4+ T cells have a more inflammatory and cytotoxic RNA transcriptome. Future studies will explore whether viral antigens have a role in recruitment and proliferation of pro-inflammatory C-G-C+ CD4+ T cells in adipose tissue of persons with HIV.
Collapse
Affiliation(s)
- Celestine N Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wyatt J McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA.,10x Genomics, Pleasanton, CA, USA
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Rama Gangula
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua D Simmons
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian M Warren
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Bailin
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Curtis L Gabriel
- Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University, Nashville, TN, USA
| | - Liang Guo
- CVPath Institute, Gaithersburg, MD, USA
| | - Briana D Furch
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Morgan C Lima
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Beverly O Woodward
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - LaToya Hannah
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark A Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Simon A Mallal
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA.,VANTAGE, Vanderbilt University Medical Center, Nashville, TN, USA.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Spyros A Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John R Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
53
|
Ahmed R, Omidian Z, Giwa A, Donner T, Jie C, Hamad ARA. A reply to "TCR+/BCR+ dual-expressing cells and their associated public BCR clonotype are not enriched in type 1 diabetes". Cell 2021; 184:840-843. [PMID: 33545037 PMCID: PMC7935028 DOI: 10.1016/j.cell.2020.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/05/2020] [Accepted: 11/19/2020] [Indexed: 11/22/2022]
Abstract
We have recently identified a novel lymphocyte that is a dual expresser (DE) of TCRαβ and BCR. DEs in T1D patients are predominated by a public BCR clonotype (clone-x) that encodes a potent autoantigen that cross-activates insulin-reactive T cells. Betts and colleagues were able to detect DEs but alleged to not detect high DE frequency, clone-x, or similar clones in T1D patients. Unfortunately, the authors did not follow our methods and when they did, their flow cytometric data at two sites were conflicting. Moreover, contrary to their claim, we identified clones similar to clone-x in their data along with clones bearing the core motif (DTAMVYYFDYW). Additionally, their report of no increased usage of clone-x VH/DH genes by bulk B cells confirms rather than challenges our results. Finally, the authors failed to provide data verifying purity of their sorted DEs, making it difficult to draw reliable conclusion of their repertoire analysis. This Matters Arising Response paper addresses the Japp et al. (2021) Matters Arising paper, published concurrently in Cell.
Collapse
Affiliation(s)
- Rizwan Ahmed
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 664G, Baltimore, MD 21205, USA
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 664G, Baltimore, MD 21205, USA
| | - Adebola Giwa
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 664G, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 664G, Baltimore, MD 21205, USA
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 664G, Baltimore, MD 21205, USA
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Ave, Ryan Hall 230, Des Moines, IA 50266, USA
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 664G, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 664G, Baltimore, MD 21205, USA.
| |
Collapse
|
54
|
Gordin M, Philip H, Zilberberg A, Gidoni M, Margalit R, Clouser C, Adams K, Vigneault F, Cohen IR, Yaari G, Efroni S. Breast cancer is marked by specific, Public T-cell receptor CDR3 regions shared by mice and humans. PLoS Comput Biol 2021; 17:e1008486. [PMID: 33465095 PMCID: PMC7846026 DOI: 10.1371/journal.pcbi.1008486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 01/29/2021] [Accepted: 11/03/2020] [Indexed: 11/19/2022] Open
Abstract
The partial success of tumor immunotherapy induced by checkpoint blockade, which is not antigen-specific, suggests that the immune system of some patients contain antigen receptors able to specifically identify tumor cells. Here we focused on T-cell receptor (TCR) repertoires associated with spontaneous breast cancer. We studied the alpha and beta chain CDR3 domains of TCR repertoires of CD4 T cells using deep sequencing of cell populations in mice and applied the results to published TCR sequence data obtained from human patients. We screened peripheral blood T cells obtained monthly from individual mice spontaneously developing breast tumors by 5 months. We then looked at identical TCR sequences in published human studies; we used TCGA data from tumors and healthy tissues of 1,256 breast cancer resections and from 4 focused studies including sequences from tumors, lymph nodes, blood and healthy tissues, and from single cell dataset of 3 breast cancer subjects. We now report that mice spontaneously developing breast cancer manifest shared, Public CDR3 regions in both their alpha and beta and that a significant number of women with early breast cancer manifest identical CDR3 sequences. These findings suggest that the development of breast cancer is associated, across species, with biomarker, exclusive TCR repertoires.
Collapse
Affiliation(s)
- Miri Gordin
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Hagit Philip
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Alona Zilberberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Moriah Gidoni
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | | | | | - Kristofor Adams
- Juno Therapeutics, Seattle, Washington, United States of America
| | | | - Irun R. Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- * E-mail: (GY); (SE)
| | - Sol Efroni
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- * E-mail: (GY); (SE)
| |
Collapse
|
55
|
Shi R, Dai F, He Y, Sun L, Xu M, Deng D, Zhang Q. Comprehensive Analyses of Type 1 Diabetes Ketosis- or Ketoacidosis-Related Genes in Activated CD56 +CD16 + NK Cells. Front Endocrinol (Lausanne) 2021; 12:750135. [PMID: 34899600 PMCID: PMC8656236 DOI: 10.3389/fendo.2021.750135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Alterations in natural killer (NK) cells activity cause damage to pancreatic islets in type 1 diabetes mellitus (T1DM). The aim of this study is to identify T1DM ketosis- or ketoacidosis-related genes in activated CD56+CD16+ NK cells. METHODS Microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were analyzed using the GEO2R tool. Enrichment analyses were performed using Metascape online database and GSEA software. Cell-specific gene co-expression network was built using NetworkAnalyst tools. Cytoscape software was used to identify hub genes and construct co-expressed networks. Target miRNAs were predicted based on the DIANA-micro T, miRDB, and miRWalk online databases. RESULTS A total of 70 DEGs were identified between T1DM patients recovered from ketosis or ketoacidosis and healthy control blood samples in GSE44314. Among the DEGs, 10 hub genes were screened out. The mature NK cell-specific gene co-expression network for DEGs in T1DM was built using NetworkAnalyst tools. DEGs between activated CD56+CD16+ NK cells and CD56brightCD16- NK cells were identified from GSE1511. After intersection, 13 overlapping genes between GSE44314 and GSE1511 microarray datasets were screened out, in which 7 hub genes were identified. Additionally, 59 target miRNAs were predicted according to the 7 hub genes. After validating with the exosome miRNA expression profile dataset of GSE97123, seven differentially expressed miRNAs (DEmiRNAs) in plasma-derived exosome were selected. Finally, a mRNA-miRNA network was constructed, which was involved in the T1DM ketosis or ketoacidosis process. CONCLUSION This work identified seven hub genes in activated CD56+CD16+ NK cells and seven miRNAs in plasma-derived exosome as potential predictors of T1DM ketoacidosis, which provided a novel insight for the pathogenesis at the transcriptome level.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiu Zhang
- *Correspondence: Datong Deng, ; Qiu Zhang,
| |
Collapse
|
56
|
Kelkka T, Savola P, Bhattacharya D, Huuhtanen J, Lönnberg T, Kankainen M, Paalanen K, Tyster M, Lepistö M, Ellonen P, Smolander J, Eldfors S, Yadav B, Khan S, Koivuniemi R, Sjöwall C, Elo LL, Lähdesmäki H, Maeda Y, Nishikawa H, Leirisalo-Repo M, Sokka-Isler T, Mustjoki S. Adult-Onset Anti-Citrullinated Peptide Antibody-Negative Destructive Rheumatoid Arthritis Is Characterized by a Disease-Specific CD8+ T Lymphocyte Signature. Front Immunol 2020; 11:578848. [PMID: 33329548 PMCID: PMC7732449 DOI: 10.3389/fimmu.2020.578848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disease targeting synovial joints. Traditionally, RA is divided into seropositive (SP) and seronegative (SN) disease forms, the latter consisting of an array of unrelated diseases with joint involvement. Recently, we described a severe form of SN-RA that associates with characteristic joint destruction. Here, we sought biological characteristics to differentiate this rare but aggressive anti-citrullinated peptide antibody-negative destructive RA (CND-RA) from early seropositive (SP-RA) and seronegative rheumatoid arthritis (SN-RA). We also aimed to study cytotoxic CD8+ lymphocytes in autoimmune arthritis. CND-RA, SP-RA and SN-RA were compared to healthy controls to reveal differences in T-cell receptor beta (TCRβ) repertoire, cytokine levels and autoantibody repertoires. Whole-exome sequencing (WES) followed by single-cell RNA-sequencing (sc-RNA-seq) was performed to study somatic mutations in a clonally expanded CD8+ lymphocyte population in an index patient. A unique TCRβ signature was detected in CND-RA patients. In addition, CND-RA patients expressed higher levels of the bone destruction-associated TNFSF14 cytokine. Blood IgG repertoire from CND-RA patients recognized fewer endogenous proteins than SP-RA patients’ repertoires. Using WES, we detected a stable mutation profile in the clonally expanded CD8+ T-cell population characterized by cytotoxic gene expression signature discovered by sc-RNA-sequencing. Our results identify CND-RA as an independent RA subset and reveal a CND-RA specific TCR signature in the CD8+ lymphocytes. Improved classification of seronegative RA patients underlines the heterogeneity of RA and also, facilitates development of improved therapeutic options for the treatment resistant patients.
Collapse
Affiliation(s)
- Tiina Kelkka
- Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland.,Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Paula Savola
- Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland.,Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Dipabarna Bhattacharya
- Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland.,Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland.,Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland.,Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Kirsi Paalanen
- Rheumatology, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Mikko Tyster
- Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland.,Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Maija Lepistö
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Johannes Smolander
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Samuli Eldfors
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Bhagwan Yadav
- Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland.,Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Sofia Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riitta Koivuniemi
- Rheumatology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University School of Science, Espoo, Finland
| | - Yuka Maeda
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | | | - Tuulikki Sokka-Isler
- Rheumatology, Jyväskylä Central Hospital, Jyväskylä, Finland.,University of Eastern Finland, Faculty of Health Sciences, Kuopio, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland.,Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
57
|
Abstract
T cells are an integral component of the adaptive immune response via the recognition of peptides by the cell surface-expressed T cell receptor (TCR). Rearrangement of the TCR genes results in a highly polymorphic repertoire on the T cells within a given individual. Although the diverse repertoire is beneficial for immune responses to foreign pathogens, recognition of self-peptides by T cells can contribute to the development of autoimmune disorders. Increasing evidence supports a pathogenic role for T cells in autoimmune pathology, and it is of interest to determine the TCR repertoires involved in autoimmune disease development. In this review, we summarize methodologies and advancements in the TCR sequencing field and discuss recent studies focused on TCR sequencing in a variety of autoimmune conditions. The rapidly evolving methodology of TCR sequencing has the potential to allow for a better understanding of autoimmune disease pathogenesis, identify disease-specific biomarkers, and aid in developing therapies to prevent and treat a number of these disorders.
Collapse
Affiliation(s)
- Angela M Mitchell
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA, 80045
| | - Aaron W Michels
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA, 80045
| |
Collapse
|
58
|
Brusko MA, Stewart JM, Posgai AL, Wasserfall CH, Atkinson MA, Brusko TM, Keselowsky BG. Immunomodulatory Dual-Sized Microparticle System Conditions Human Antigen Presenting Cells Into a Tolerogenic Phenotype In Vitro and Inhibits Type 1 Diabetes-Specific Autoreactive T Cell Responses. Front Immunol 2020; 11:574447. [PMID: 33193362 PMCID: PMC7649824 DOI: 10.3389/fimmu.2020.574447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Current monotherapeutic agents fail to restore tolerance to self-antigens in autoimmune individuals without systemic immunosuppression. We hypothesized that a combinatorial drug formulation delivered by a poly-lactic-co-glycolic acid (PLGA) dual-sized microparticle (dMP) system would facilitate tunable drug delivery to elicit immune tolerance. Specifically, we utilized 30 µm MPs to provide local sustained release of granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor β1 (TGF-β1) along with 1 µm MPs to facilitate phagocytic uptake of encapsulated antigen and 1α,25(OH)2 Vitamin D3 (VD3) followed by tolerogenic antigen presentation. We previously demonstrated the dMP system ameliorated type 1 diabetes (T1D) and experimental autoimmune encephalomyelitis (EAE) in murine models. Here, we investigated the system's capacity to impact human cell activity in vitro to advance clinical translation. dMP treatment directly reduced T cell proliferation and inflammatory cytokine production. dMP delivery to monocytes and monocyte-derived dendritic cells (DCs) increased their expression of surface and intracellular anti-inflammatory mediators. In co-culture, dMP-treated DCs (dMP-DCs) reduced allogeneic T cell receptor (TCR) signaling and proliferation, while increasing PD-1 expression, IL-10 production, and regulatory T cell (Treg) frequency. To model antigen-specific activation and downstream function, we co-cultured TCR-engineered autoreactive T cell "avatars," with dMP-DCs or control DCs followed by β-cell line (ßlox5) target cells. For G6PC2-specific CD8+ avatars (clone 32), dMP-DC exposure reduced Granzyme B and dampened cytotoxicity. GAD65-reactive CD4+ avatars (clone 4.13) exhibited an anergic/exhausted phenotype with dMP-DC presence. Collectively, these data suggest this dMP formulation conditions human antigen presenting cells toward a tolerogenic phenotype, inducing regulatory and suppressive T cell responses.
Collapse
Affiliation(s)
- Maigan A. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Joshua M. Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Clive H. Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Benjamin G. Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
59
|
Atkinson MA, Campbell-Thompson M, Kusmartseva I, Kaestner KH. Organisation of the human pancreas in health and in diabetes. Diabetologia 2020; 63:1966-1973. [PMID: 32894306 PMCID: PMC7565096 DOI: 10.1007/s00125-020-05203-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
For much of the last century, our knowledge regarding the pancreas in type 1 and type 2 diabetes was largely derived from autopsy studies of individuals with these disorders or investigations utilising rodent models of either disease. While many important insights emanated from these efforts, the mode for investigation has increasingly seen change due to the availability of transplant-quality organ-donor tissues, improvements in pancreatic imaging, advances in metabolic assessments of living patients, genetic analyses, technological advances for laboratory investigation and more. As a result, many long-standing notions regarding the role for and the changes that occur in the pancreas in individuals with these disorders have come under question, while, at the same time, new issues (e.g., beta cell persistence, disease heterogeneity, exocrine contributions) have arisen. In this article, we will consider the vital role of the pancreas in human health and physiology, including discussion of its anatomical features and dual (exocrine and endocrine) functions. Specifically, we convey changes that occur in the pancreas of those with either type 1 or type 2 diabetes, with careful attention to the facets that may contribute to the pathogenesis of either disorder. Finally, we discuss the emerging unknowns with the belief that understanding the role of the pancreas in type 1 and type 2 diabetes will lead to improvements in disease diagnosis, understanding of disease heterogeneity and optimisation of treatments at a personalised level. Graphical abstract.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Box 100275, 1275 Center Dr., BMSB J593, Gainesville, FL, 32610, USA.
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Box 100275, 1275 Center Dr., BMSB J593, Gainesville, FL, 32610, USA
- Department of Biomedical Engineering, University of Florida College of Engineering, Gainesville, FL, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Box 100275, 1275 Center Dr., BMSB J593, Gainesville, FL, 32610, USA
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
60
|
Ogongo P, Steyn AJ, Karim F, Dullabh KJ, Awala I, Madansein R, Leslie A, Behar SM. Differential skewing of donor-unrestricted and γδ T cell repertoires in tuberculosis-infected human lungs. J Clin Invest 2020; 130:214-230. [PMID: 31763997 PMCID: PMC6934215 DOI: 10.1172/jci130711] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Unconventional T cells that recognize mycobacterial antigens are of great interest as potential vaccine targets against tuberculosis (TB). This includes donor-unrestricted T cells (DURTs), such as mucosa-associated invariant T cells (MAITs), CD1-restricted T cells, and γδ T cells. We exploited the distinctive nature of DURTs and γδ T cell receptors (TCRs) to investigate the involvement of these T cells during TB in the human lung by global TCR sequencing. Making use of surgical lung resections, we investigated the distribution, frequency, and characteristics of TCRs in lung tissue and matched blood from individuals infected with TB. Despite depletion of MAITs and certain CD1-restricted T cells from the blood, we found that the DURT repertoire was well preserved in the lungs, irrespective of disease status or HIV coinfection. The TCRδ repertoire, in contrast, was highly skewed in the lungs, where it was dominated by Vδ1 and distinguished by highly localized clonal expansions, consistent with the nonrecirculating lung-resident γδ T cell population. These data show that repertoire sequencing is a powerful tool for tracking T cell subsets during disease.
Collapse
Affiliation(s)
- Paul Ogongo
- Africa Health Research Institute and.,School of Laboratory Medicine, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | | | | | - Kaylesh J Dullabh
- Department of Cardiothoracic Surgery, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Ismael Awala
- Department of Cardiothoracic Surgery, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Rajhmun Madansein
- Department of Cardiothoracic Surgery, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute and.,Department of Infection and Immunity, University College London, London, United Kingdom
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
61
|
Sethna Z, Elhanati Y, Callan CG, Walczak AM, Mora T. OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs. Bioinformatics 2020; 35:2974-2981. [PMID: 30657870 PMCID: PMC6735909 DOI: 10.1093/bioinformatics/btz035] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/10/2018] [Accepted: 01/13/2019] [Indexed: 01/08/2023] Open
Abstract
MOTIVATION High-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination of T- and B-cell receptors of any specific nucleotide sequence. These generation probabilities are very non-homogeneous, ranging over 20 orders of magnitude in real repertoires. Since the function of a receptor really depends on its protein sequence, it is important to be able to predict this probability of generation at the amino acid level. However, brute-force summation over all the nucleotide sequences with the correct amino acid translation is computationally intractable. The purpose of this paper is to present a solution to this problem. RESULTS We use dynamic programming to construct an efficient and flexible algorithm, called OLGA (Optimized Likelihood estimate of immunoGlobulin Amino-acid sequences), for calculating the probability of generating a given CDR3 amino acid sequence or motif, with or without V/J restriction, as a result of V(D)J recombination in B or T cells. We apply it to databases of epitope-specific T-cell receptors to evaluate the probability that a typical human subject will possess T cells responsive to specific disease-associated epitopes. The model prediction shows an excellent agreement with published data. We suggest that OLGA may be a useful tool to guide vaccine design. AVAILABILITY AND IMPLEMENTATION Source code is available at https://github.com/zsethna/OLGA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zachary Sethna
- Joseph Henry Laboratories, Princeton University, Princeton, NJ, USA
| | - Yuval Elhanati
- Joseph Henry Laboratories, Princeton University, Princeton, NJ, USA
| | - Curtis G Callan
- Joseph Henry Laboratories, Princeton University, Princeton, NJ, USA.,Laboratoire de physique de l'Ecole normale supérieure (PSL University), Centre national de la recherche scientifique, Sorbonne University, University Paris-Diderot, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'Ecole normale supérieure (PSL University), Centre national de la recherche scientifique, Sorbonne University, University Paris-Diderot, Paris, France
| | - Thierry Mora
- Laboratoire de physique de l'Ecole normale supérieure (PSL University), Centre national de la recherche scientifique, Sorbonne University, University Paris-Diderot, Paris, France
| |
Collapse
|
62
|
Motwani K, Peters LD, Vliegen WH, El-sayed AG, Seay HR, Lopez MC, Baker HV, Posgai AL, Brusko MA, Perry DJ, Bacher R, Larkin J, Haller MJ, Brusko TM. Human Regulatory T Cells From Umbilical Cord Blood Display Increased Repertoire Diversity and Lineage Stability Relative to Adult Peripheral Blood. Front Immunol 2020; 11:611. [PMID: 32351504 PMCID: PMC7174770 DOI: 10.3389/fimmu.2020.00611] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
The human T lymphocyte compartment is highly dynamic over the course of a lifetime. Of the many changes, perhaps most notable is the transition from a predominantly naïve T cell state at birth to the acquisition of antigen-experienced memory and effector subsets following environmental exposures. These phenotypic changes, including the induction of T cell exhaustion and senescence, have the potential to negatively impact efficacy of adoptive T cell therapies (ACT). When considering ACT with CD4+CD25+CD127-/lo regulatory T cells (Tregs) for the induction of immune tolerance, we previously reported ex vivo expanded umbilical cord blood (CB) Tregs remained more naïve, suppressed responder T cells equivalently, and exhibited a more diverse T cell receptor (TCR) repertoire compared to expanded adult peripheral blood (APB) Tregs. Herein, we hypothesized that upon further characterization, we would observe increased lineage heterogeneity and phenotypic diversity in APB Tregs that might negatively impact lineage stability, engraftment capacity, and the potential for Tregs to home to sites of tissue inflammation following ACT. We compared the phenotypic profiles of human Tregs isolated from CB versus the more traditional source, APB. We conducted analysis of fresh and ex vivo expanded Treg subsets at both the single cell (scRNA-seq and flow cytometry) and bulk (microarray and cytokine profiling) levels. Single cell transcriptional profiles of pre-expansion APB Tregs highlighted a cluster of cells that showed increased expression of genes associated with effector and pro-inflammatory phenotypes (CCL5, GZMK, CXCR3, LYAR, and NKG7) with low expression of Treg markers (FOXP3 and IKZF2). CB Tregs were more diverse in TCR repertoire and homogenous in phenotype, and contained fewer effector-like cells in contrast with APB Tregs. Interestingly, expression of canonical Treg markers, such as FOXP3, TIGIT, and IKZF2, were increased in CB CD4+CD127+ conventional T cells (Tconv) compared to APB Tconv, post-expansion, implying perinatal T cells may adopt a default regulatory program. Collectively, these data identify surface markers (namely CXCR3) that could be depleted to improve purity and stability of APB Tregs, and support the use of expanded CB Tregs as a potentially optimal ACT modality for the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Keshav Motwani
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Willem H. Vliegen
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Ahmed Gomaa El-sayed
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Howard R. Seay
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - M. Cecilia Lopez
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Henry V. Baker
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Maigan A. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daniel J. Perry
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Michael J. Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
63
|
Amoriello R, Greiff V, Aldinucci A, Bonechi E, Carnasciali A, Peruzzi B, Repice AM, Mariottini A, Saccardi R, Mazzanti B, Massacesi L, Ballerini C. The TCR Repertoire Reconstitution in Multiple Sclerosis: Comparing One-Shot and Continuous Immunosuppressive Therapies. Front Immunol 2020; 11:559. [PMID: 32328061 PMCID: PMC7160336 DOI: 10.3389/fimmu.2020.00559] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
Natalizumab (NTZ) and autologous hematopoietic stem cell transplantation (AHSCT) are two successful treatments for relapsing-remitting multiple sclerosis (RRMS), an autoimmune T-cell-driven disorder affecting the central nervous system that is characterized by relapses interspersed with periods of complete or partial recovery. Both RRMS treatments have been documented to impact T-cell subpopulations and the T-cell receptor (TCR) repertoire in terms of clone frequency, but, so far, the link between T-cell naive and memory populations, autoimmunity, and treatment outcome has not yet been established hindering insight into the post-treatment TCR landscape of MS patients. To address this important knowledge gap, we tracked peripheral T-cell subpopulations (naïve and memory CD4+ and CD8+) across 15 RRMS patients before and after two years of continuous treatment (NTZ) and a single treatment course (AHSCT) by high-throughput TCRß sequencing. We found that the two MS treatments left treatment-specific multidimensional traces in patient TCRß repertoire dynamics with respect to clonal expansion, clonal diversity and repertoire architecture. Comparing MS TCR sequences with published datasets suggested that the majority of public TCRs belonged to virus-associated sequences. In summary, applying multi-dimensional computational immunology to a TCRß dataset of treated MS patients, we show that qualitative changes of TCRß repertoires encode treatment-specific information that may be relevant for future clinical trials monitoring and personalized MS follow-up, diagnosis and treatment regimes. Natalizumab (NTZ) and autologous hematopoietic stem cell transplantation (AHSCT) are two successful treatments for relapsing-remitting multiple sclerosis (RRMS), an autoimmune T-cell-driven disorder affecting the central nervous system that is characterized by relapses interspersed with periods of complete or partial recovery. Both RRMS treatments have been documented to impact T-cell subpopulations and the T-cell receptor (TCR) repertoire in terms of clone frequency, but, so far, the link between T-cell naive and memory populations, autoimmunity, and treatment outcome has not yet been established hindering insight into the posttreatment TCR landscape of MS patients. To address this important knowledge gap, we tracked peripheral T-cell subpopulations (naive and memory CD4+ and CD8+) across 15 RRMS patients before and after 2 years of continuous treatment (NTZ) and a single treatment course (AHSCT) by high-throughput TCRβ sequencing. We found that the two MS treatments left treatment-specific multidimensional traces in patient TCRβ repertoire dynamics with respect to clonal expansion, clonal diversity, and repertoire architecture. Comparing MS TCR sequences with published datasets suggested that the majority of public TCRs belonged to virus-associated sequences. In summary, applying multidimensional computational immunology to a TCRβ dataset of treated MS patients, we show that qualitative changes of TCRβ repertoires encode treatment-specific information that may be relevant for future clinical trials monitoring and personalized MS follow-up, diagnosis, and treatment regimens.
Collapse
Affiliation(s)
- Roberta Amoriello
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Florence, Italy
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Alessandra Aldinucci
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Florence, Italy
| | - Elena Bonechi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Florence, Italy
| | - Alberto Carnasciali
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Florence, Italy
| | - Benedetta Peruzzi
- Centro Diagnostico di Citofluorimetria e Immunoterapia, Careggi University Hospital, Florence, Italy
| | - Anna Maria Repice
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Florence, Italy
| | - Alice Mariottini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Florence, Italy
| | - Riccardo Saccardi
- SODc Terapie Cellulari e Medicina Trasfusionale, Careggi University Hospital, Florence, Italy
| | - Benedetta Mazzanti
- Dipartimento di Medicina Sperimentale e Clinica (DMSC), University of Florence, Florence, Italy
| | - Luca Massacesi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Florence, Italy
| | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica (DMSC), University of Florence, Florence, Italy
| |
Collapse
|
64
|
Ihantola EL, Ilmonen H, Kailaanmäki A, Rytkönen-Nissinen M, Azam A, Maillère B, Lindestam Arlehamn CS, Sette A, Motwani K, Seay HR, Brusko TM, Knip M, Veijola R, Toppari J, Ilonen J, Kinnunen T. Characterization of Proinsulin T Cell Epitopes Restricted by Type 1 Diabetes-Associated HLA Class II Molecules. THE JOURNAL OF IMMUNOLOGY 2020; 204:2349-2359. [PMID: 32229538 DOI: 10.4049/jimmunol.1901079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which the insulin-producing β cells within the pancreas are destroyed. Identification of target Ags and epitopes of the β cell-reactive T cells is important both for understanding T1D pathogenesis and for the rational development of Ag-specific immunotherapies for the disease. Several studies suggest that proinsulin is an early and integral target autoantigen in T1D. However, proinsulin epitopes recognized by human CD4+ T cells have not been comprehensively characterized. Using a dye dilution-based T cell cloning method, we generated and characterized 24 unique proinsulin-specific CD4+ T cell clones from the peripheral blood of 17 individuals who carry the high-risk DR3-DQ2 and/or DR4-DQ8 HLA class II haplotypes. Some of the clones recognized previously reported DR4-restricted epitopes within the C-peptide (C25-35) or A-chain (A1-15) of proinsulin. However, we also characterized DR3-restricted epitopes within both the B-chain (B16-27 and B22-C3) and C-peptide (C25-35). Moreover, we identified DQ2-restricted epitopes within the B-chain and several DQ2- or DQ8-restricted epitopes within the C-terminal region of C-peptide that partially overlap with previously reported DQ-restricted epitopes. Two of the DQ2-restricted epitopes, B18-26 and C22-33, were shown to be naturally processed from whole human proinsulin. Finally, we observed a higher frequency of CDR3 sequences matching the TCR sequences of the proinsulin-specific T cell clones in pancreatic lymph node samples compared with spleen samples. In conclusion, we confirmed several previously reported epitopes but also identified novel (to our knowledge) epitopes within proinsulin, which are presented by HLA class II molecules associated with T1D risk.
Collapse
Affiliation(s)
- Emmi-Leena Ihantola
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Henna Ilmonen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Anssi Kailaanmäki
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Marja Rytkönen-Nissinen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Aurélien Azam
- Commissariat à l'Energie Atomique et aux Energies Alternatives-Saclay, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif Sur Yvette, France
| | - Bernard Maillère
- Commissariat à l'Energie Atomique et aux Energies Alternatives-Saclay, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif Sur Yvette, France
| | | | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, CA 92037.,Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Keshav Motwani
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610.,Department of Pediatrics, University of Florida, College of Medicine Gainesville, FL 32610
| | - Mikael Knip
- Tampere Center for Child Health Research, Tampere University Hospital, FI-33520 Tampere, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland.,Folkhälsan Research Center, FI-00290 Helsinki, Finland
| | - Riitta Veijola
- PEDEGO Research Unit, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, FI-90014 Oulu, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, FI-20521 Turku, Finland.,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland.,Clinical Microbiology, Turku University Hospital, FI-20521 Turku, Finland; and
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland; .,Eastern Finland Laboratory Centre (ISLAB), FI-70210 Kuopio, Finland
| |
Collapse
|
65
|
Everything in its right place: resident memory CD8+ T cell immunosurveillance of HIV infection. Curr Opin HIV AIDS 2020; 14:93-99. [PMID: 30520744 DOI: 10.1097/coh.0000000000000523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW To introduce emerging concepts in tissue resident CD8 T cell immunosurveillance and their relevance to control HIV infection. RECENT FINDINGS It is well appreciated that HIV preferentially infects and persists in CD4 T cells located in gut and in lymphoid tissue, yet the majority of known immunological correlates of HIV control are derived from peripheral blood. Instead, tissue-based immunological surveillance likely dictates the course of infection. Recent studies have established that nonrecirculating resident memory CD4 and CD8 T cells can be found in virtually every human tissue. These cells bear a transcriptional profile of tissue retention and immediate effector function, suggesting a pivotal role in protective immunity. Resident memory CD8 T cells specific for HIV have been found in higher numbers in sites of HIV persistence (gut and lymph nodes), and are inversely associated with HIV viral titers. These findings, along with previous studies on tissue-derived cells now known to include resident memory cells, shed new light on the compartmentalization of the immune response against HIV and its correlates of protection. SUMMARY Resident memory CD8 T cells represent a critical unexplored component of immune surveillance in the setting of HIV infection. Understanding the induction, dynamics, and functional properties of HIV-specific resident memory T cells in relevant tissues will better inform efforts in the treatment, control, and potential cure of HIV infection.
Collapse
|
66
|
Ahmed R, Omidian Z, Giwa A, Cornwell B, Majety N, Bell DR, Lee S, Zhang H, Michels A, Desiderio S, Sadegh-Nasseri S, Rabb H, Gritsch S, Suva ML, Cahan P, Zhou R, Jie C, Donner T, Hamad ARA. A Public BCR Present in a Unique Dual-Receptor-Expressing Lymphocyte from Type 1 Diabetes Patients Encodes a Potent T Cell Autoantigen. Cell 2020; 177:1583-1599.e16. [PMID: 31150624 DOI: 10.1016/j.cell.2019.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
T and B cells are the two known lineages of adaptive immune cells. Here, we describe a previously unknown lymphocyte that is a dual expresser (DE) of TCR and BCR and key lineage markers of both B and T cells. In type 1 diabetes (T1D), DEs are predominated by one clonotype that encodes a potent CD4 T cell autoantigen in its antigen binding site. Molecular dynamics simulations revealed that this peptide has an optimal binding register for diabetogenic HLA-DQ8. In concordance, a synthetic version of the peptide forms stable DQ8 complexes and potently stimulates autoreactive CD4 T cells from T1D patients, but not healthy controls. Moreover, mAbs bearing this clonotype are autoreactive against CD4 T cells and inhibit insulin tetramer binding to CD4 T cells. Thus, compartmentalization of adaptive immune cells into T and B cells is not absolute, and violators of this paradigm are likely key drivers of autoimmune diseases.
Collapse
Affiliation(s)
- Rizwan Ahmed
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adebola Giwa
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin Cornwell
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neha Majety
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David R Bell
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Sangyun Lee
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Aaron Michels
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Stephen Desiderio
- Department of Molecular Biology and Genetics and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Hamid Rabb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Simon Gritsch
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Patrick Cahan
- Department of Molecular Biology and Genetics and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA.
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, IA 50312, USA
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
67
|
Gliwiński M, Iwaszkiewicz-Grześ D, Wołoszyn-Durkiewicz A, Tarnowska M, Żalińska M, Hennig M, Zielińska H, Dukat-Mazurek A, Zielkowska-Dębska J, Zieliński M, Jaźwińska-Curyłło A, Owczuk R, Jarosz-Chobot P, Bossowski A, Szadkowska A, Młynarski W, Marek-Trzonkowska N, Moszkowska G, Siebert J, Myśliwiec M, Trzonkowski P. Proinsulin-specific T regulatory cells may control immune responses in type 1 diabetes: implications for adoptive therapy. BMJ Open Diabetes Res Care 2020; 8:8/1/e000873. [PMID: 32098895 PMCID: PMC7206972 DOI: 10.1136/bmjdrc-2019-000873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/12/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Here we looked for possible mechanisms regulating the progression of type 1 diabetes mellitus (T1DM). In this disease, autoaggressive T cells (T conventional cells, Tconvs) not properly controlled by T regulatory cells (Tregs) destroy pancreatic islets. RESEARCH DESIGN AND METHODS We compared the T-cell compartment of patients with newly diagnosed T1DM (NDT1DM) with long-duration T1DM (LDT1DM) ones. The third group consisted of patients with LDT1DM treated previously with polyclonal Tregs (LDT1DM with Tregs). We have also looked if the differences might be dependent on the antigen specificity of Tregs expanded for clinical use and autologous sentinel Tconvs. RESULTS Patients with LDT1DM were characterized by T-cell immunosenescence-like changes and expansion of similar vβ/T-cell receptor (TCR) clones in Tconvs and Tregs. The treatment with Tregs was associated with some inhibition of these effects. Patients with LDT1DM possessed an increased percentage of various proinsulin-specific T cells but not GAD65-specific ones. The percentages of all antigen-specific subsets were higher in the expansion cultures than in the peripheral blood. The proliferation was more intense in proinsulin-specific Tconvs than in specific Tregs but the levels of some proinsulin-specific Tregs were exceptionally high at baseline and remained higher in the expanded clinical product than the levels of respective Tconvs in sentinel cultures. CONCLUSIONS T1DM is associated with immunosenescence-like changes and reduced diversity of T-cell clones. Preferential expansion of the same TCR families in both Tconvs and Tregs suggests a common trigger/autoantigen responsible. Interestingly, the therapy with polyclonal Tregs was associated with some inhibition of these effects. Proinsulin-specific Tregs appeared to be dominant in the immune responses in patients with T1DM and probably associated with better control over respective autoimmune Tconvs. TRIAL REGISTRATION NUMBER EudraCT 2014-004319-35.
Collapse
Affiliation(s)
- Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Anna Wołoszyn-Durkiewicz
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - Monika Tarnowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Magdalena Żalińska
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - Matylda Hennig
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - Hanna Zielińska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Dukat-Mazurek
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Radosław Owczuk
- Department of Anaesthesiology and Critical Care, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Artur Bossowski
- Department of Peadiatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Białystok, Białystok, Poland
| | - Agnieszka Szadkowska
- Department of Paediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Łódź, Łódź, Poland
| | - Wojciech Młynarski
- Department of Paediatrics, Oncology, and Haematology, Medical University of Łódź, Łódź, Poland
| | - Natalia Marek-Trzonkowska
- Department of Family Medicine, Laboratory of Immunoregulation and Cellular Therapies, Medical University of Gdańsk, Gdańsk, Poland
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Poltreg S.A, Gdańsk, Poland
| | - Grażyna Moszkowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Janusz Siebert
- Department of Family Medicine, Laboratory of Immunoregulation and Cellular Therapies, Medical University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Myśliwiec
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
- Poltreg S.A, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
- Poltreg S.A, Gdańsk, Poland
| |
Collapse
|
68
|
Ferreira LMR, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov 2019; 18:749-769. [PMID: 31541224 PMCID: PMC7773144 DOI: 10.1038/s41573-019-0041-4] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Regulatory T cells (Treg cells) are a small subset of immune cells that are dedicated to curbing excessive immune activation and maintaining immune homeostasis. Accordingly, deficiencies in Treg cell development or function result in uncontrolled immune responses and tissue destruction and can lead to inflammatory disorders such as graft-versus-host disease, transplant rejection and autoimmune diseases. As Treg cells deploy more than a dozen molecular mechanisms to suppress immune responses, they have potential as multifaceted adaptable smart therapeutics for treating inflammatory disorders. Indeed, early-phase clinical trials of Treg cell therapy have shown feasibility, tolerability and potential efficacy in these disease settings. In the meantime, progress in the development of chimeric antigen receptors and in genome editing (including the application of CRISPR-Cas9) over the past two decades has facilitated the genetic optimization of primary T cell therapy for cancer. These technologies are now being used to enhance the specificity and functionality of Treg cells. In this Review, we describe the key advances and prospects in designing and implementing Treg cell-based therapy in autoimmunity and transplantation.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, USA
| | - Yannick D Muller
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, USA.
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
69
|
Peters L, Posgai A, Brusko TM. Islet-immune interactions in type 1 diabetes: the nexus of beta cell destruction. Clin Exp Immunol 2019; 198:326-340. [PMID: 31309537 DOI: 10.1111/cei.13349] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies in Type 1 Diabetes (T1D) support an emerging model of disease pathogenesis that involves intrinsic β-cell fragility combined with defects in both innate and adaptive immune cell regulation. This combination of defects induces systematic changes leading to organ-level atrophy and dysfunction of both the endocrine and exocrine portions of the pancreas, ultimately culminating in insulin deficiency and β-cell destruction. In this review, we discuss the animal model data and human tissue studies that have informed our current understanding of the cross-talk that occurs between β-cells, the resident stroma, and immune cells that potentiate T1D. Specifically, we will review the cellular and molecular signatures emerging from studies on tissues derived from organ procurement programs, focusing on in situ defects occurring within the T1D islet microenvironment, many of which are not yet detectable by standard peripheral blood biomarkers. In addition to improved access to organ donor tissues, various methodological advances, including immune receptor repertoire sequencing and single-cell molecular profiling, are poised to improve our understanding of antigen-specific autoimmunity during disease development. Collectively, the knowledge gains from these studies at the islet-immune interface are enhancing our understanding of T1D heterogeneity, likely to be an essential component for instructing future efforts to develop targeted interventions to restore immune tolerance and preserve β-cell mass and function.
Collapse
Affiliation(s)
- L Peters
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - A Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - T M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
70
|
Kaestner KH, Powers AC, Naji A, Atkinson MA. NIH Initiative to Improve Understanding of the Pancreas, Islet, and Autoimmunity in Type 1 Diabetes: The Human Pancreas Analysis Program (HPAP). Diabetes 2019; 68:1394-1402. [PMID: 31127054 PMCID: PMC6609987 DOI: 10.2337/db19-0058] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes risk can reliably be predicted by markers of autoimmunity, but approaches to prevent or modify the underlying disease process are needed. We posit this void fundamentally results from a limited understanding of immune-islet cell interactions within the pancreas and relevant immune organs, contributions of β-cells to their own demise, and epigenetic predispositions affecting both immune and islet cells. Because biopsy of the human pancreas and pancreatic lymph nodes carries risk and the pancreas begins to autodigest soon after death, detailed cellular and molecular phenotyping of the human type 1 diabetes pancreas is lacking, limiting our understanding of the mechanisms of β-cell loss. To address these challenges, the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases established the Human Pancreas Analysis Program (HPAP) to procure human type 1 diabetes pancreata for an extensive array of tissue-based, cellular, and epigenetic assays aimed at critical knowledge gaps in our understanding of the local immune attack and loss of β-cells. In this Methodology Review, we describe how HPAP is performing detailed islet and immune cell phenotyping and creating publicly available data sets with the goals of an improved understanding of type 1 diabetes and the development of more effective treatments to prevent or reverse the disease.
Collapse
Affiliation(s)
- Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville, TN
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
| |
Collapse
|
71
|
Ahmed S, Cerosaletti K, James E, Long SA, Mannering S, Speake C, Nakayama M, Tree T, Roep BO, Herold KC, Brusko TM. Standardizing T-Cell Biomarkers in Type 1 Diabetes: Challenges and Recent Advances. Diabetes 2019; 68:1366-1379. [PMID: 31221801 PMCID: PMC6609980 DOI: 10.2337/db19-0119] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/20/2019] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes (T1D) results from the progressive destruction of pancreatic β-cells in a process mediated primarily by T lymphocytes. The T1D research community has made dramatic progress in understanding the genetic basis of the disease as well as in the development of standardized autoantibody assays that inform both disease risk and progression. Despite these advances, there remains a paucity of robust and accepted biomarkers that can effectively inform on the activity of T cells during the natural history of the disease or in response to treatment. In this article, we discuss biomarker development and validation efforts for evaluation of T-cell responses in patients with and at risk for T1D as well as emerging technologies. It is expected that with systematic planning and execution of a well-conceived biomarker development pipeline, T-cell-related biomarkers would rapidly accelerate disease progression monitoring efforts and the evaluation of intervention therapies in T1D.
Collapse
Affiliation(s)
- Simi Ahmed
- Immunotherapies Program, Research, JDRF, New York, NY
| | | | - Eddie James
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - S Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | | | - Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Maki Nakayama
- Departments of Pediatrics and Integrated Immunology, Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Timothy Tree
- Department of Immunobiology, King's College London, London, U.K
| | - Bart O Roep
- Department of Diabetes Immunobiology, City of Hope Diabetes & Metabolism Research Institute, Duarte, CA
| | - Kevan C Herold
- Departments of Immunobiology and Medicine, Yale School of Medicine, New Haven, CT
| | - Todd M Brusko
- Department of Pathology, University of Florida Diabetes Institute, Gainesville, FL
| |
Collapse
|
72
|
Chu ND, Bi HS, Emerson RO, Sherwood AM, Birnbaum ME, Robins HS, Alm EJ. Longitudinal immunosequencing in healthy people reveals persistent T cell receptors rich in highly public receptors. BMC Immunol 2019; 20:19. [PMID: 31226930 PMCID: PMC6588944 DOI: 10.1186/s12865-019-0300-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/06/2019] [Indexed: 11/18/2022] Open
Abstract
Background The adaptive immune system maintains a diversity of T cells capable of recognizing a broad array of antigens. Each T cell’s specificity for antigens is determined by its T cell receptors (TCRs), which together across all T cells form a repertoire of millions of unique receptors in each individual. Although many studies have examined how TCR repertoires change in response to disease or drugs, few have explored the temporal dynamics of the TCR repertoire in healthy individuals. Results Here we report immunosequencing of TCR β chains (TCRβ) from the blood of three healthy individuals at eight time points over one year. TCRβ repertoires of all peripheral-blood T cells and sorted memory T cells clustered clearly by individual, systematically demonstrating that TCRβ repertoires are specific to individuals across time. This individuality was absent from TCRβs from naive T cells, suggesting that the differences resulted from an individual’s antigen exposure history, not genetic background. Many characteristics of the TCRβ repertoire (e.g., diversity, clonality) were stable across time, although we found evidence of T cell expansion dynamics even within healthy individuals. We further identified a subset of “persistent” TCRβs present across all time points. These receptors were rich in clonal and highly public receptors and may play a key role in immune system maintenance. Conclusions Our results highlight the importance of longitudinal sampling of the immune system, providing a much-needed baseline for TCRβ dynamics in healthy individuals. Such a baseline will improve interpretation of changes in the TCRβ repertoire during disease or treatment. Electronic supplementary material The online version of this article (10.1186/s12865-019-0300-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathaniel D Chu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haixin Sarah Bi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Michael E Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harlan S Robins
- Adaptive Biotechnologies, Seattle, WA, USA.,Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Broad Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
73
|
Purcell AW, Sechi S, DiLorenzo TP. The Evolving Landscape of Autoantigen Discovery and Characterization in Type 1 Diabetes. Diabetes 2019; 68:879-886. [PMID: 31010879 PMCID: PMC6477901 DOI: 10.2337/dbi18-0066] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is caused, in part, by T cell-mediated destruction of insulin-producing β-cells. High risk for disease, in those with genetic susceptibility, is predicted by the presence of two or more autoantibodies against insulin, the 65-kDa form of glutamic acid decarboxylase (GAD65), insulinoma-associated protein 2 (IA-2), and zinc transporter 8 (ZnT8). Despite this knowledge, we still do not know what leads to the breakdown of tolerance to these autoantigens, and we have an incomplete understanding of T1D etiology and pathophysiology. Several new autoantibodies have recently been discovered using innovative technologies, but neither their potential utility in monitoring disease development and treatment nor their role in the pathophysiology and etiology of T1D has been explored. Moreover, neoantigen generation (through posttranslational modification, the formation of hybrid peptides containing two distinct regions of an antigen or antigens, alternative open reading frame usage, and translation of RNA splicing variants) has been reported, and autoreactive T cells that target these neoantigens have been identified. Collectively, these new studies provide a conceptual framework to understand the breakdown of self-tolerance, if such modifications occur in a tissue- or disease-specific context. A recent workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases brought together investigators who are using new methods and technologies to identify autoantigens and characterize immune responses toward these proteins. Researchers with diverse expertise shared ideas and identified resources to accelerate antigen discovery and the detection of autoimmune responses in T1D. The application of this knowledge will direct strategies for the identification of improved biomarkers for disease progression and treatment response monitoring and, ultimately, will form the foundation for novel antigen-specific therapeutics. This Perspective highlights the key issues that were addressed at the workshop and identifies areas for future investigation.
Collapse
Affiliation(s)
- Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Salvatore Sechi
- Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
74
|
Khosravi-Maharlooei M, Obradovic A, Misra A, Motwani K, Holzl M, Seay HR, DeWolf S, Nauman G, Danzl N, Li H, Ho SH, Winchester R, Shen Y, Brusko TM, Sykes M. Crossreactive public TCR sequences undergo positive selection in the human thymic repertoire. J Clin Invest 2019; 129:2446-2462. [PMID: 30920391 DOI: 10.1172/jci124358] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated human T-cell repertoire formation using high throughput TCRβ CDR3 sequencing in immunodeficient mice receiving human hematopoietic stem cells (HSCs) and human thymus grafts. Replicate humanized mice generated diverse and highly divergent repertoires. Repertoire narrowing and increased CDR3β sharing was observed during thymocyte selection. While hydrophobicity analysis implicated self-peptides in positive selection of the overall repertoire, positive selection favored shorter shared sequences that had reduced hydrophobicity at positions 6 and 7 of CDR3βs, suggesting weaker interactions with self-peptides than unshared sequences, possibly allowing escape from negative selection. Sharing was similar between autologous and allogeneic thymi and occurred between different cell subsets. Shared sequences were enriched for allo-crossreactive CDR3βs and for Type 1 diabetes-associated autoreactive CDR3βs. Single-cell TCR-sequencing showed increased sharing of CDR3αs compared to CDR3βs between mice. Our data collectively implicate preferential positive selection for shared human CDR3βs that are highly cross-reactive. While previous studies suggested a role for recombination bias in producing "public" sequences in mice, our study is the first to demonstrate a role for thymic selection. Our results implicate positive selection for promiscuous TCRβ sequences that likely evade negative selection, due to their low affinity for self-ligands, in the abundance of "public" human TCRβ sequences.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Aditya Misra
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Keshav Motwani
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Markus Holzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Susan DeWolf
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Grace Nauman
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Haowei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | | | - Yufeng Shen
- Center for Computational Biology and Bioinformatics, and
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, New York, USA.,Department of Surgery, Columbia University Medical Center, Columbia University, New York, New York, USA
| |
Collapse
|
75
|
Mannering SI, Di Carluccio AR, Elso CM. Neoepitopes: a new take on beta cell autoimmunity in type 1 diabetes. Diabetologia 2019; 62:351-356. [PMID: 30402774 DOI: 10.1007/s00125-018-4760-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/08/2018] [Indexed: 01/13/2023]
Abstract
Type 1 diabetes is an autoimmune disease caused by T cell-mediated destruction of pancreatic insulin-producing beta cells. The epitopes recognised by pathogenic T cells in human type 1 diabetes are poorly defined; however, a growing body of evidence suggests that T cell responses against neoepitopes contribute to beta cell destruction in type 1 diabetes. Neoepitopes are formed when self-proteins undergo post-translational modification to create a new epitope that is recognised by T- or B cells. Here we review the role of human T cell responses against neoepitopes in the immune pathogenesis of type 1 diabetes. Specifically, we review the different approaches to identifying neoepitopes relevant to human type 1 diabetes and outline several advances in this field that have occurred over the past few years. We also discuss the application of neoepitopes to the development of antigen-specific therapies for type 1 diabetes and the unresolved challenges that need to be overcome before the full repertoire of neoepitopes recognised by pathogenic human T cells in type 1 diabetes can be determined. This information may then be used to develop antigen-specific therapies for type 1 diabetes and assays to monitor changes in pathogenic, beta cell-specific T cell responses.
Collapse
Affiliation(s)
- Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia.
- Department of Medicine, University of Melbourne, Fitzroy, Melbourne, VIC, Australia.
| | - Anthony R Di Carluccio
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Colleen M Elso
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, University of Melbourne, Fitzroy, Melbourne, VIC, Australia
| |
Collapse
|
76
|
Atkinson MA, Roep BO, Posgai A, Wheeler DCS, Peakman M. The challenge of modulating β-cell autoimmunity in type 1 diabetes. Lancet Diabetes Endocrinol 2019; 7:52-64. [PMID: 30528099 PMCID: PMC7322790 DOI: 10.1016/s2213-8587(18)30112-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
Abstract
With the conceptual advance about four decades ago that type 1 diabetes represents an autoimmune disease, hope arose that immune-based therapies would soon emerge to prevent and reverse the disorder. However, despite dozens of clinical trials seeking to achieve these goals, the promise remains unfulfilled, at least in a pragmatic form. With the benefit of hindsight, several important reasons are likely to account for this disappointing outcome, including failure to appreciate disease heterogeneity, inappropriate use of rodent models of disease, inadequacies in addressing the immunological and metabolic contributions to the disease, suboptimal trial designs, and lack of a clear understanding of the pathogenesis of type 1 diabetes. In this Series paper, we convey how recent knowledge gains in these areas, combined with efforts related to disease staging and emerging mechanistic data from clinical trials, provide cautious optimism that immune-based approaches to prevent the loss of β cells in type 1 diabetes will emerge into clinical practice.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| | - Bart O Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA; Department of Immunohaematology & Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Amanda Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | | | - Mark Peakman
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK; King's Health Partners Institute of Diabetes, Obesity and Endocrinology, London, UK
| |
Collapse
|
77
|
Matthis J, King V, Reijonen H. Production of Antigen-Specific Human CD4 + T Cell Lines and Clones. Methods Mol Biol 2019; 1988:387-402. [PMID: 31147954 DOI: 10.1007/978-1-4939-9450-2_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Methodologies to generate single antigen-specific T cells are based on the T cell specificity, activation, or other subsequent functional measures. One of the most powerful tools to isolate human CD4+ T cell clones is utilization of MHC Class II tetramers. Flow cytometer-based tetramer technology mimics the recognition of the specific antigenic peptide in the context of HLA class II (tetramer) by the T cell receptor. MHC class II tetramers, which can be exogenously loaded to contain any peptide of interest that binds to them (T cell epitopes), provide a valuable tool for detection of T cells in the peripheral blood or the tissue that are specific for antigens from different viruses, tumors, or self-proteins (autoimmunity). Generation of T cell clones with a defined antigen specificity allows for a deeper characterization and functional assessment at single cell level. This is important for determination of the epitope specificity and functional phenotype of the disease associated T cells. Single cell cloning can be utilized in the direct sequencing of the T cell receptor alpha/beta pairs that are prevalent in the disease and therefore provides a platform for T cell receptor engineering, which has applications in the immunotherapy.
Collapse
Affiliation(s)
| | - Victoria King
- City of Hope Medical Center, Beckman Research Institute, Duarte, CA, USA
| | - Helena Reijonen
- City of Hope Medical Center, Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|
78
|
Jia X, Wang B, Zhai T, Yao Q, Li Q, Zhang JA. WITHDRAWN: T cell receptor revision and immune repertoire changes in autoimmune diseases. Clin Immunol 2018:S1521-6616(18)30724-1. [PMID: 30543918 DOI: 10.1016/j.clim.2018.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Bing Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Tianyu Zhai
- Department of Endocrinology, Zhongshan Hospital of Fudan University, Shanghai 201508, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
79
|
de Jong A, Jabbari A, Dai Z, Xing L, Lee D, Li MM, Duvic M, Hordinsky M, Norris DA, Price V, Mackay-Wiggan J, Clynes R, Christiano AM. High-throughput T cell receptor sequencing identifies clonally expanded CD8+ T cell populations in alopecia areata. JCI Insight 2018; 3:121949. [PMID: 30282836 DOI: 10.1172/jci.insight.121949] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/29/2018] [Indexed: 01/04/2023] Open
Abstract
Alopecia areata (AA) is an autoimmune disease in which cytotoxic T cells specifically target growing hair follicles. We used high-throughput TCR sequencing in the C3H/HeJ mouse model of AA and in human AA patients to gain insight into pathogenic T cell populations and their dynamics, which revealed clonal CD8+ T cell expansions in lesional skin. In the C3H/HeJ model, we observed interindividual sharing of TCRβ chain protein sequences, which strongly supports a model of antigenic drive in AA. The overlap between the lesional TCR repertoire and a population of CD8+NKG2D+ T cells in skin-draining lymph nodes identified this subset as pathogenic effectors. In AA patients, treatment with the oral JAK inhibitor tofacitinib resulted in a decrease in clonally expanded CD8+ T cells in the scalp but also revealed that many expanded lesional T cell clones do not completely disappear from either skin or blood during treatment with tofacitinib, which may explain in part the relapse of disease after stopping treatment.
Collapse
Affiliation(s)
| | | | | | - Luzhou Xing
- Department of Pathology, Columbia University, New York, New York, USA
| | | | | | - Madeleine Duvic
- Department of Dermatology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Maria Hordinsky
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota, USA
| | - David A Norris
- Department of Dermatology, University of Colorado, Denver, Colorado, USA
| | - Vera Price
- Department of Dermatology, UCSF, San Francisco, California, USA
| | | | | | - Angela M Christiano
- Department of Dermatology and.,Department of Genetics and Development, Columbia University, New York, New York, USA
| |
Collapse
|
80
|
Abstract
PURPOSE OF REVIEW The immunosuppressive agent cyclosporine was first reported to lower daily insulin dose and improve glycemic control in patients with new-onset type 1 diabetes (T1D) in 1984. While renal toxicity limited cyclosporine's extended use, this observation ignited collaborative efforts to identify immunotherapeutic agents capable of safely preserving β cells in patients with or at risk for T1D. RECENT FINDINGS Advances in T1D prediction and early diagnosis, together with expanded knowledge of the disease mechanisms, have facilitated trials targeting specific immune cell subsets, autoantigens, and pathways. In addition, clinical responder and non-responder subsets have been defined through the use of metabolic and immunological readouts. Herein, we review emerging T1D biomarkers within the context of recent and ongoing T1D immunotherapy trials. We also discuss responder/non-responder analyses in an effort to identify therapeutic mechanisms, define actionable pathways, and guide subject selection, drug dosing, and tailored combination drug therapy for future T1D trials.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Brittney N Newby
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA.
| |
Collapse
|
81
|
Chung BK, Henriksen EKK, Jørgensen KK, Karlsen TH, Hirschfield GM, Liaskou E. Gut and Liver B Cells of Common Clonal Origin in Primary Sclerosing Cholangitis-Inflammatory Bowel Disease. Hepatol Commun 2018; 2:956-967. [PMID: 30094406 PMCID: PMC6078219 DOI: 10.1002/hep4.1200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022] Open
Abstract
B cells express an antigen‐specific B‐cell receptor (BCR) and may contribute to liver inflammation by recognizing shared antigens in the gut and liver. Herein, we used high‐throughput BCR sequencing of the immunoglobulin heavy chain, specifically the complementarity‐determining region 3 (CDR3), to characterize the B‐cell repertoire of freshly‐frozen paired gut and liver tissue samples from patients with primary sclerosing cholangitis (PSC) and concurrent inflammatory bowel disease (IBD) (PSC‐IBD, n = 10) and paired formalin‐fixed paraffin‐embedded (FFPE) tumor‐adjacent normal colon and liver tissue from patients with colorectal liver metastases (controls, n = 10). We observed significantly greater numbers of B cells (P < 0.01) and unique B‐cell clonotypes (P < 0.05) in gut samples compared to liver samples of patients with PSC‐IBD, whereas BCR sequences in FFPE normal gut and liver samples were nearly absent (14 ± 5 clonotypes; mean ± SD; n = 20). In PSC‐IBD, an average of 8.3% (range, 1.6%‐18.0%) of B‐cell clonotypes were found to overlap paired gut and liver samples following the exclusion of memory clonotypes reported in the blood of healthy controls. Overlapping gut and liver clonotypes showed stronger evidence of antigen‐driven activation compared to non‐overlapping clonotypes, including shorter CDR3 lengths and higher counts of somatic hypermutation (P < 0.0001). Conclusion: A proportion of gut and liver B cells originate from a common clonal origin (i.e., likely to recognize the same antigen) in patients with PSC which suggests B‐cell antigens are shared across the gut–liver axis. (Hepatology Communications 2018; 00:000‐000)
Collapse
Affiliation(s)
- Brian K Chung
- Centre for Liver Research and National Institute for Health Research Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy University of Birmingham Birmingham United Kingdom.,Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine, and Transplantation Oslo University Hospital Rikshospitalet Oslo Norway.,Institute of Clinical Medicine, Faculty of Medicine University of Oslo Oslo Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine, and Transplantation Oslo University Hospital Rikshospitalet Oslo Norway
| | - Eva Kristine Klemsdal Henriksen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine, and Transplantation Oslo University Hospital Rikshospitalet Oslo Norway.,Institute of Clinical Medicine, Faculty of Medicine University of Oslo Oslo Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine, and Transplantation Oslo University Hospital Rikshospitalet Oslo Norway.,K.G. Jebsen Inflammation Research Center, Institute of Clinical Medicine, Faculty of Medicine University of Oslo Oslo Norway
| | - Kristin Kaasen Jørgensen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine, and Transplantation Oslo University Hospital Rikshospitalet Oslo Norway.,Department of Gastroenterology Akershus University Hospital Lørenskog Norway
| | - Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine, and Transplantation Oslo University Hospital Rikshospitalet Oslo Norway.,Institute of Clinical Medicine, Faculty of Medicine University of Oslo Oslo Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine, and Transplantation Oslo University Hospital Rikshospitalet Oslo Norway.,K.G. Jebsen Inflammation Research Center, Institute of Clinical Medicine, Faculty of Medicine University of Oslo Oslo Norway
| | - Gideon M Hirschfield
- Centre for Liver Research and National Institute for Health Research Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy University of Birmingham Birmingham United Kingdom.,Centre for Rare Diseases, Institute of Translational Medicine, Birmingham Health Partners University Hospitals Birmingham Birmingham United Kingdom
| | - Evaggelia Liaskou
- Centre for Liver Research and National Institute for Health Research Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy University of Birmingham Birmingham United Kingdom
| |
Collapse
|
82
|
Elhanati Y, Sethna Z, Callan CG, Mora T, Walczak AM. Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination. Immunol Rev 2018; 284:167-179. [PMID: 29944757 PMCID: PMC6033145 DOI: 10.1111/imr.12665] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite the extreme diversity of T-cell repertoires, many identical T-cell receptor (TCR) sequences are found in a large number of individual mice and humans. These widely shared sequences, often referred to as "public," have been suggested to be over-represented due to their potential immune functionality or their ease of generation by V(D)J recombination. Here, we show that even for large cohorts, the observed degree of sharing of TCR sequences between individuals is well predicted by a model accounting for the known quantitative statistical biases in the generation process, together with a simple model of thymic selection. Whether a sequence is shared by many individuals is predicted to depend on the number of queried individuals and the sampling depth, as well as on the sequence itself, in agreement with the data. We introduce the degree of publicness conditional on the queried cohort size and the size of the sampled repertoires. Based on these observations, we propose a public/private sequence classifier, "PUBLIC" (Public Universal Binary Likelihood Inference Classifier), based on the generation probability, which performs very well even for small cohort sizes.
Collapse
Affiliation(s)
- Yuval Elhanati
- Joseph Henry LaboratoriesPrinceton UniversityPrincetonNJUSA
| | - Zachary Sethna
- Joseph Henry LaboratoriesPrinceton UniversityPrincetonNJUSA
| | | | - Thierry Mora
- Laboratoire de physique statistiqueCNRSSorbonne UniversitéUniversité Paris‐Diderot, and École Normale Supérieure (PSL University)ParisFrance
| | - Aleksandra M. Walczak
- Laboratoire de physique théoriqueCNRSSorbonne Université, and École Normale Supérieure (PSL University)ParisFrance
| |
Collapse
|
83
|
James EA, Pietropaolo M, Mamula MJ. Immune Recognition of β-Cells: Neoepitopes as Key Players in the Loss of Tolerance. Diabetes 2018; 67:1035-1042. [PMID: 29784651 PMCID: PMC5961411 DOI: 10.2337/dbi17-0030] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/27/2018] [Indexed: 12/13/2022]
Abstract
Prior to the onset of type 1 diabetes, there is progressive loss of immune self-tolerance, evidenced by the accumulation of islet autoantibodies and emergence of autoreactive T cells. Continued autoimmune activity leads to the destruction of pancreatic β-cells and loss of insulin secretion. Studies of samples from patients with type 1 diabetes and of murine disease models have generated important insights about genetic and environmental factors that contribute to susceptibility and immune pathways that are important for pathogenesis. However, important unanswered questions remain regarding the events that surround the initial loss of tolerance and subsequent failure of regulatory mechanisms to arrest autoimmunity and preserve functional β-cells. In this Perspective, we discuss various processes that lead to the generation of neoepitopes in pancreatic β-cells, their recognition by autoreactive T cells and antibodies, and potential roles for such responses in the pathology of disease. Emerging evidence supports the relevance of neoepitopes generated through processes that are mechanistically linked with β-cell stress. Together, these observations support a paradigm in which neoepitope generation leads to the activation of pathogenic immune cells that initiate a feed-forward loop that can amplify the antigenic repertoire toward pancreatic β-cell proteins.
Collapse
Affiliation(s)
- Eddie A James
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Massimo Pietropaolo
- Diabetes Research Center, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Mark J Mamula
- Section of Rheumatology, Department of Medicine, Yale School of Medicine, New Haven, CT
| |
Collapse
|
84
|
Chaara W, Gonzalez-Tort A, Florez LM, Klatzmann D, Mariotti-Ferrandiz E, Six A. RepSeq Data Representativeness and Robustness Assessment by Shannon Entropy. Front Immunol 2018; 9:1038. [PMID: 29868003 PMCID: PMC5962720 DOI: 10.3389/fimmu.2018.01038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/25/2018] [Indexed: 12/30/2022] Open
Abstract
High-throughput sequencing (HTS) has the potential to decipher the diversity of T cell repertoires and their dynamics during immune responses. Applied to T cell subsets such as T effector and T regulatory cells, it should help identify novel biomarkers of diseases. However, given the extreme diversity of TCR repertoires, understanding how the sequencing conditions, including cell numbers, biological and technical sampling and sequencing depth, impact the experimental outcome is critical to proper use of these data. Here, we assessed the representativeness and robustness of TCR repertoire diversity assessment according to experimental conditions. By comparative analyses of experimental datasets and computer simulations, we found that (i) for small samples, the number of clonotypes recovered is often higher than the number of cells per sample, even after removing the singletons; (ii) high-sequencing depth for small samples alters the clonotype distributions, which can be corrected by filtering the datasets using Shannon entropy as a threshold; and (iii) a single sequencing run at high depth does not ensure a good coverage of the clonotype richness in highly polyclonal populations, which can be better covered using multiple sequencing. Altogether, our results warrant better understanding and awareness of the limitation of TCR diversity analyses by HTS and justify the development of novel computational tools for improved modeling of the highly complex nature of TCR repertoires.
Collapse
Affiliation(s)
- Wahiba Chaara
- Sorbonne Université, INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Ariadna Gonzalez-Tort
- Sorbonne Université, INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Laura-Maria Florez
- Sorbonne Université, INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - David Klatzmann
- Sorbonne Université, INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Encarnita Mariotti-Ferrandiz
- Sorbonne Université, INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Adrien Six
- Sorbonne Université, INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| |
Collapse
|
85
|
Pogorelyy MV, Minervina AA, Chudakov DM, Mamedov IZ, Lebedev YB, Mora T, Walczak AM. Method for identification of condition-associated public antigen receptor sequences. eLife 2018. [PMID: 29533178 PMCID: PMC5873893 DOI: 10.7554/elife.33050] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diverse repertoires of hypervariable immunoglobulin receptors (TCR and BCR) recognize antigens in the adaptive immune system. The development of immunoglobulin receptor repertoire sequencing methods makes it possible to perform repertoire-wide disease association studies of antigen receptor sequences. We developed a statistical framework for associating receptors to disease from only a small cohort of patients, with no need for a control cohort. Our method successfully identifies previously validated Cytomegalovirus and type one diabetes responsive TCRβ sequences .
Collapse
Affiliation(s)
- Mikhail V Pogorelyy
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasia A Minervina
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitriy M Chudakov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Central European Institute of Technology, Brno, Czech republic
| | - Ilgar Z Mamedov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Yuri B Lebedev
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Biological Faculty, Moscow State University, Moscow, Russia
| | - Thierry Mora
- Laboratoire de Physique Statistique, CNRS, Sorbonne University, Paris-Diderot University, École Normale Supérieure, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de Physique Theorique, CNRS, Sorbonne University, École Normale Supérieure, Paris, France
| |
Collapse
|
86
|
Mora T. [IGoR: a tool for learning and simulating the random generation of antigen receptors]. Biol Aujourdhui 2018; 211:229-231. [PMID: 29412133 DOI: 10.1051/jbio/2017033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Indexed: 06/08/2023]
Abstract
Antigen receptors, which form the base of the adaptive immune system, are created stochastically by a DNA editing process called V(D)J recombination. As high-throughput sequencing enables to study the repertoire of these receptors, it is now possible to learn the probabilistic laws of this random process, and to use them to analyse receptors of interest, generate synthetic repertoires to create controls, or aid the identification of receptors that are specific to diseases, with possible applications for medical diagnostics. This article describes how these tasks can be performed using the IGoR software, which can learn statistical models from data, annotate existing sequences, or generate new synthetic ones with the same laws as the recombination process.
Collapse
Affiliation(s)
- Thierry Mora
- Laboratoire de physique statistique, École Normale Supérieure, CNRS, UPMC et UPD, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
87
|
Manto M, Hampe CS. Endocrine disorders and the cerebellum: from neurodevelopmental injury to late-onset ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2018; 155:353-368. [PMID: 29891071 DOI: 10.1016/b978-0-444-64189-2.00023-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hormonal disorders are a source of cerebellar ataxia in both children and adults. Normal development of the cerebellum is critically dependent on thyroid hormone, which crosses both the blood-brain barrier and the blood-cerebrospinal fluid barrier thanks to specific transporters, including monocarboxylate transporter 8 and the organic anion-transporting polypeptide 1C1. In particular, growth and dendritic arborization of Purkinje neurons, synaptogenesis, and myelination are dependent on thyroid hormone. Disturbances of thyroid hormone may also impact on cerebellar ataxias of other origin, decompensating or aggravating the pre-existing ataxia manifesting with motor ataxia, oculomotor ataxia, and/or Schmahmann syndrome. Parathyroid disorders are associated with a genuine cerebellar syndrome, but symptoms may be subtle. The main conditions combining diabetes and cerebellar ataxia are Friedreich ataxia, ataxia associated with anti-GAD antibodies, autoimmune polyglandular syndromes, aceruloplasminemia, and cerebellar ataxia associated with hypogonadism (especially Holmes ataxia/Boucher-Neuhäuser syndrome). The general workup of cerebellar disorders should include the evaluation of hormonal status, including thyroid-stimulating hormone and free thyroxine levels, and hormonal replacement should be considered depending on the laboratory results. Cerebellar deficits may be reversible in some cases.
Collapse
Affiliation(s)
- Mario Manto
- Neurology Service, CHU-Charleroi, Charleroi, Belgium; Neuroscience Service, Université de Mons, Mons, Belgium.
| | - Christiane S Hampe
- Department of Medicine, University of Washington, Seattle, United States
| |
Collapse
|
88
|
Gomez-Tourino I, Kamra Y, Baptista R, Lorenc A, Peakman M. T cell receptor β-chains display abnormal shortening and repertoire sharing in type 1 diabetes. Nat Commun 2017; 8:1792. [PMID: 29176645 PMCID: PMC5702608 DOI: 10.1038/s41467-017-01925-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/25/2017] [Indexed: 01/10/2023] Open
Abstract
Defects in T cell receptor (TCR) repertoire are proposed to predispose to autoimmunity. Here we show, by analyzing >2 × 108TCRB sequences of circulating naive, central memory, regulatory and stem cell-like memory CD4+ T cell subsets from patients with type 1 diabetes and healthy donors, that patients have shorter TCRB complementarity-determining region 3s (CDR3), in all cell subsets, introduced by increased deletions/reduced insertions during VDJ rearrangement. High frequency of short CDR3s is also observed in unproductive TCRB sequences, which are not subjected to thymic culling, suggesting that the shorter CDR3s arise independently of positive/negative selection. Moreover, TCRB CDR3 clonotypes expressed by autoantigen-specific CD4+ T cells are shorter compared with anti-viral T cells, and with those from healthy donors. Thus, early events in thymic T cell development and repertoire generation are abnormal in type 1 diabetes, which suggest that short CDR3s increase the potential for self-recognition, conferring heightened risk of autoimmune disease. T cell receptors are generated by somatic gene recombination, and are normally selected against autoreactivity. Here the authors show that CD4 T cells from patients with autoimmune type 1 diabetes have shorter TCRβ sequences, broader repertoire diversity, and more repertoire sharing than those from healthy individuals.
Collapse
Affiliation(s)
- Iria Gomez-Tourino
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK.,National Institute for Health Research, Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, Guy's Hospital, London, SE1 9RT, UK.,Immunology Laboratory, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia, University of Vigo, Campus Universitario de Vigo, Pontevedra, 36310, Spain
| | - Yogesh Kamra
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Roman Baptista
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK.,National Institute for Health Research, Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Anna Lorenc
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK. .,National Institute for Health Research, Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
89
|
Yeh WI, Seay HR, Newby B, Posgai AL, Moniz FB, Michels A, Mathews CE, Bluestone JA, Brusko TM. Avidity and Bystander Suppressive Capacity of Human Regulatory T Cells Expressing De Novo Autoreactive T-Cell Receptors in Type 1 Diabetes. Front Immunol 2017; 8:1313. [PMID: 29123516 PMCID: PMC5662552 DOI: 10.3389/fimmu.2017.01313] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022] Open
Abstract
The ability to alter antigen specificity by T-cell receptor (TCR) or chimeric antigen receptor (CAR) gene transfer has facilitated personalized cellular immune therapies in cancer. Inversely, this approach can be harnessed in autoimmune settings to attenuate inflammation by redirecting the specificity of regulatory T cells (Tregs). Herein, we demonstrate efficient protocols for lentiviral gene transfer of TCRs that recognize type 1 diabetes-related autoantigens with the goal of tissue-targeted induction of antigen-specific tolerance to halt β-cell destruction. We generated human Tregs expressing a high-affinity GAD555–567-reactive TCR (clone R164), as well as the lower affinity clone 4.13 specific for the same peptide. We demonstrated that de novo Treg avatars potently suppress antigen-specific and bystander responder T-cell (Tresp) proliferation in vitro in a process that requires Treg activation (P < 0.001 versus unactivated Tregs). When Tresp were also glutamic acid decarboxylase (GAD)-reactive, the high-affinity R164 Tregs exhibited increased suppression (P < 0.01) with lower Tresp-division index (P < 0.01) than the lower affinity 4.13 Tregs. These data demonstrate the feasibility of rapid expansion of antigen-specific Tregs for applications in attenuating β-cell autoimmunity and emphasize further opportunities for engineering cellular specificities, affinities, and phenotypes to tailor Treg activity in adoptive cell therapies for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Wen-I Yeh
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Howard R Seay
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Brittney Newby
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Filipa Botelho Moniz
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Aaron Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Jeffrey A Bluestone
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
90
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
91
|
Lu J, Zhang C, Li L, Xue W, Zhang C, Zhang X. Unique Features of Pancreatic-Resident Regulatory T Cells in Autoimmune Type 1 Diabetes. Front Immunol 2017; 8:1235. [PMID: 29033948 PMCID: PMC5626883 DOI: 10.3389/fimmu.2017.01235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022] Open
Abstract
Recent progress in regulatory T cells (Tregs) biology emphasizes the importance of understanding tissue-resident Tregs in response to tissue-specific environment. Now, emerging evidence suggests that pancreatic-resident forkhead box P3+ Tregs have distinguishable effects on the suppression of over-exuberant immune responses in autoimmune type 1 diabetes (T1D). Thus, there is growing interest in elucidating the role of pancreatic-resident Tregs that function and evolve in the local environment. In this review, we discuss the phenotype and function of Tregs residing in pancreatic tissues and pancreatic lymph nodes, with emphasis on the unique subpopulations of Tregs that control the disease progression in the context of T1D. Specifically, we discuss known and possible modulators that influence the survival, migration, and maintenance of pancreatic Tregs.
Collapse
Affiliation(s)
- Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
92
|
Kent SC, Mannering SI, Michels AW, Babon JAB. Deciphering the Pathogenesis of Human Type 1 Diabetes (T1D) by Interrogating T Cells from the "Scene of the Crime". Curr Diab Rep 2017; 17:95. [PMID: 28864875 PMCID: PMC5600889 DOI: 10.1007/s11892-017-0915-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Autoimmune-mediated destruction of insulin-producing β-cells within the pancreas results in type 1 diabetes (T1D), which is not yet preventable or curable. Previously, our understanding of the β-cell specific T cell repertoire was based on studies of autoreactive T cell responses in the peripheral blood of patients at risk for, or with, T1D; more recently, investigations have included immunohistochemical analysis of some T cell specificities in the pancreas from organ donors with T1D. Now, we are able to examine live, islet-infiltrating T cells from donors with T1D. RECENT FINDINGS Analysis of the T cell repertoire isolated directly from the pancreatic islets of donors with T1D revealed pro-inflammatory T cells with targets of known autoantigens, including proinsulin and glutamic acid decarboxylase, as well as modified autoantigens. We have assayed the islet-infiltrating T cell repertoire for autoreactivity and function directly from the inflamed islets of T1D organ donors. Design of durable treatments for prevention of or therapy for T1D requires understanding this repertoire.
Collapse
Affiliation(s)
- Sally C Kent
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, ASC7-2041, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria, 3065, Australia
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, 3065, Australia
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jenny Aurielle B Babon
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, ASC7-2041, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
93
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that causes severe loss of pancreatic β cells. Autoreactive T cells are key mediators of β cell destruction. Studies of organ donors with T1D that have examined T cells in pancreas, the diabetogenic insulitis lesion, and lymphoid tissues have revealed a broad repertoire of target antigens and T cell receptor (TCR) usage, with initial evidence of public TCR sequences that are shared by individuals with T1D. Neoepitopes derived from post-translational modifications of native antigens are emerging as novel targets that are more likely to evade self-tolerance. Further studies will determine whether T cell responses to neoepitopes are major disease drivers that could impact prediction, prevention, and therapy. This Review provides an overview of recent progress in our knowledge of autoreactive T cells that has emerged from experimental and clinical research as well as pathology investigations.
Collapse
|
94
|
Bettini ML, Bettini M. Understanding Autoimmune Diabetes through the Prism of the Tri-Molecular Complex. Front Endocrinol (Lausanne) 2017; 8:351. [PMID: 29312143 PMCID: PMC5735072 DOI: 10.3389/fendo.2017.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
The strongest susceptibility allele for Type 1 Diabetes (T1D) is human leukocyte antigen (HLA), which supports a central role for T cells as the drivers of autoimmunity. However, the precise mechanisms that allow thymic escape and peripheral activation of beta cell antigen-specific T cells are still largely unknown. Studies performed with the non-obese diabetic (NOD) mouse have challenged several immunological dogmas, and have made the NOD mouse a key experimental system to study the steps of immunodysregulation that lead to autoimmune diabetes. The structural similarities between the NOD I-Ag7 and HLA-DQ8 have revealed the stability of the T cell receptor (TCR)/HLA/peptide tri-molecular complex as an important parameter in the development of autoimmune T cells, as well as afforded insights into the key antigens targeted in T1D. In this review, we will provide a summary of the current understanding with regard to autoimmune T cell development, the significance of the antigens targeted in T1D, and the relationship between TCR affinity and immune regulation.
Collapse
Affiliation(s)
- Matthew L. Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| | - Maria Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| |
Collapse
|
95
|
Wallet MA, Santostefano KE, Terada N, Brusko TM. Isogenic Cellular Systems Model the Impact of Genetic Risk Variants in the Pathogenesis of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:276. [PMID: 29093700 PMCID: PMC5651267 DOI: 10.3389/fendo.2017.00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
At least 57 independent loci within the human genome confer varying degrees of risk for the development of type 1 diabetes (T1D). The majority of these variants are thought to contribute to overall genetic risk by modulating host innate and adaptive immune responses, ultimately resulting in a loss of immunological tolerance to β cell antigens. Early efforts to link specific risk variants with functional alterations in host immune responses have employed animal models or genotype-selected individuals from clinical bioresource banks. While some notable genotype:phenotype associations have been described, there remains an urgent need to accelerate the discovery of causal variants and elucidate the molecular mechanisms by which susceptible alleles alter immune functions. One significant limitation has been the inability to study human T1D risk loci on an isogenic background. The advent of induced pluripotent stem cells (iPSCs) and genome-editing technologies have made it possible to address a number of these outstanding questions. Specifically, the ability to drive multiple cell fates from iPSC under isogenic conditions now facilitates the analysis of causal variants in multiple cellular lineages. Bioinformatic analyses have revealed that T1D risk genes cluster within a limited number of immune signaling pathways, yet the relevant immune cell subsets and cellular activation states in which candidate risk genes impact cellular activities remain largely unknown. In this review, we summarize the functional impact of several candidate risk variants on host immunity in T1D and present an isogenic disease-in-a-dish model system for interrogating risk variants, with the goal of expediting precision therapeutics in T1D.
Collapse
Affiliation(s)
- Mark A. Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
| | - Katherine E. Santostefano
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
| | - Naohiro Terada
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
- *Correspondence: Todd M. Brusko,
| |
Collapse
|