51
|
Witzenrath M, Kuebler WM. The Lung-brain Axis in Ventilator-induced Brain Injury- Enter Interleukin-6. Am J Respir Cell Mol Biol 2021; 65:339-340. [PMID: 34153209 PMCID: PMC8525199 DOI: 10.1165/rcmb.2021-0233ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Martin Witzenrath
- Charite - Universitätsmedizin Berlin, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Berlin, Germany
| | | |
Collapse
|
52
|
Effect of Driving Pressure Change During Extracorporeal Membrane Oxygenation in Adults With Acute Respiratory Distress Syndrome: A Randomized Crossover Physiologic Study. Crit Care Med 2021; 48:1771-1778. [PMID: 33044283 DOI: 10.1097/ccm.0000000000004637] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Venovenous extracorporeal membrane oxygenation is an effective intervention to improve gas exchange in patients with severe acute respiratory distress syndrome. However, the mortality of patients with severe acute respiratory distress syndrome supported with venovenous extracorporeal membrane oxygenation remains high, and this may be due in part to a lack of standardized mechanical ventilation strategies aimed at further minimizing ventilator-induced lung injury. We tested whether a continuous positive airway pressure ventilation strategy mitigates ventilator-induced lung injury in patients with severe acute respiratory distress syndrome on venovenous extracorporeal membrane oxygenation, compared with current ventilation practice that employs tidal ventilation with limited driving pressure. We used plasma biomarkers as a surrogate outcome for ventilator-induced lung injury. DESIGN Randomized crossover physiologic study. SETTING Single-center ICU. PATIENTS Ten patients with severe acute respiratory distress syndrome supported on venovenous extracorporeal membrane oxygenation. INTERVENTIONS The study included four phases. After receiving pressure-controlled ventilation with driving pressure of 10 cm H2O for 1 hour (phase 1), patients were randomly assigned to receive first either pressure-controlled ventilation 20 cm H2O for 2 hours (phase 2) or continuous positive airway pressure for 2 hours (phase 3), and then crossover to the other phase for 2 hours; during phase 4 ventilation settings returned to baseline (pressure-controlled ventilation 10 cm H2O) for 4 hours. MEASUREMENTS AND MAIN RESULTS There was a linear relationship between the change in driving pressure and the plasma concentration of interleukin-6, soluble receptor for advanced glycation end products, interleukin-1ra, tumor necrosis factor alpha, surfactant protein D, and interleukin-10. CONCLUSIONS Ventilator-induced lung injury may occur in acute respiratory distress syndrome patients on venovenous extracorporeal membrane oxygenation despite the delivery of volume- and pressure-limited mechanical ventilation. Reducing driving pressure to zero may provide more protective mechanical ventilation in acute respiratory distress syndrome patients supported with venovenous extracorporeal membrane oxygenation. However, the risks versus benefits of such an approach need to be confirmed in studies that are designed to test patient centered outcomes.
Collapse
|
53
|
Will Not Breathing on Extracorporeal Membrane Oxygenation Help One Survive Acute Respiratory Distress Syndrome? Crit Care Med 2021; 48:1901-1904. [PMID: 33255109 DOI: 10.1097/ccm.0000000000004647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
54
|
Bobba CM, Fei Q, Shukla V, Lee H, Patel P, Putman RK, Spitzer C, Tsai M, Wewers MD, Lee RJ, Christman JW, Ballinger MN, Ghadiali SN, Englert JA. Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation. Nat Commun 2021; 12:289. [PMID: 33436554 PMCID: PMC7804938 DOI: 10.1038/s41467-020-20449-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Mechanical ventilation generates injurious forces that exacerbate lung injury. These forces disrupt lung barrier integrity, trigger proinflammatory mediator release, and differentially regulate genes and non-coding oligonucleotides including microRNAs. In this study, we identify miR-146a as a mechanosensitive microRNA in alveolar macrophages that has therapeutic potential to mitigate lung injury during mechanical ventilation. We use humanized in-vitro systems, mouse models, and biospecimens from patients to elucidate the expression dynamics of miR-146a needed to decrease lung injury during mechanical ventilation. We find that the endogenous increase in miR-146a following injurious ventilation is not sufficient to prevent lung injury. However, when miR-146a is highly overexpressed using a nanoparticle delivery platform it is sufficient to prevent injury. These data indicate that the endogenous increase in microRNA-146a during mechanical ventilation is a compensatory response that partially limits injury and that nanoparticle delivery of miR-146a is an effective strategy for mitigating lung injury during mechanical ventilation.
Collapse
Affiliation(s)
- Christopher M Bobba
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Qinqin Fei
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Vasudha Shukla
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Hyunwook Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Pragi Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Rachel K Putman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Carleen Spitzer
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - MuChun Tsai
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Mark D Wewers
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - John W Christman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Megan N Ballinger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Samir N Ghadiali
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA.
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA.
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
55
|
Bendib I, Beldi-Ferchiou A, Schlemmer F, Surenaud M, Maitre B, Plonquet A, Carteaux G, Razazi K, Godot V, Hüe S, Mekontso Dessap A, de Prost N. Alveolar compartmentalization of inflammatory and immune cell biomarkers in pneumonia-related ARDS. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:23. [PMID: 33422148 PMCID: PMC7794625 DOI: 10.1186/s13054-020-03427-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
Background Biomarkers of disease severity might help individualizing the management of patients with the acute respiratory distress syndrome (ARDS). Whether the alveolar compartmentalization of biomarkers has a clinical significance in patients with pneumonia-related ARDS is unknown. This study aimed at assessing the interrelation of ARDS/sepsis biomarkers in the alveolar and blood compartments and explored their association with clinical outcomes. Methods Immunocompetent patients with pneumonia-related ARDS admitted between 2014 and 2018 were included in a prospective monocentric study. Bronchoalveolar lavage (BAL) fluid and blood samples were obtained within 48 h of admission. Twenty-two biomarkers were quantified in BAL fluid and serum. HLA-DR+ monocytes and CD8+ PD-1+ lymphocytes were quantified using flow cytometry. The primary clinical endpoint of the study was hospital mortality. Patients undergoing a bronchoscopy as part of routine care were included as controls. Results Seventy ARDS patients were included. Hospital mortality was 21.4%. The BAL fluid-to-serum ratio of IL-8 was 20 times higher in ARDS patients than in controls (p < 0.0001). ARDS patients with shock had lower BAL fluid-to-serum ratio of IL-1Ra (p = 0.026), IL-6 (p = 0.002), IP-10/CXCL10 (p = 0.024) and IL-10 (p = 0.023) than others. The BAL fluid-to-serum ratio of IL-1Ra was more elevated in hospital survivors than decedents (p = 0.006), even after adjusting for SOFA and driving pressure (p = 0.036). There was no significant association between alveolar or alveolar/blood monocytic HLA-DR or CD8+ lymphocytes PD-1 expression and hospital mortality. Conclusions IL-8 was the most compartmentalized cytokine and lower BAL fluid-to-serum concentration ratios of IL-1Ra were associated with hospital mortality in patients with pneumonia-associated ARDS.
Collapse
Affiliation(s)
- Inès Bendib
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France.,Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, 94010, Créteil Cedex, France.,INSERM U955, Equipe 16, 94 000, Créteil, France
| | - Asma Beldi-Ferchiou
- Université Paris Est Créteil, INSERM, IMRB, 94010, Créteil, France.,Département d'Hématologie et d'Immunologie biologiques, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010, Créteil, France
| | - Frédéric Schlemmer
- Unité de Pneumologie, Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Cedex 94010, Créteil, France
| | - Mathieu Surenaud
- Université Paris Est Créteil, INSERM, IMRB, 94010, Créteil, France
| | - Bernard Maitre
- Unité de Pneumologie, Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Cedex 94010, Créteil, France
| | - Anne Plonquet
- Département d'Hématologie et d'Immunologie biologiques, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010, Créteil, France
| | - Guillaume Carteaux
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France.,Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, 94010, Créteil Cedex, France
| | - Keyvan Razazi
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France.,Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, 94010, Créteil Cedex, France
| | - Veronique Godot
- INSERM U955, Equipe 16, 94 000, Créteil, France.,Vaccine Research Institute, 94 000, Créteil, France.,Faculté de Médecine, Université Paris Est, 94 000, Créteil, France
| | - Sophie Hüe
- Université Paris Est Créteil, INSERM, IMRB, 94010, Créteil, France.,Département d'Hématologie et d'Immunologie biologiques, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010, Créteil, France
| | - Armand Mekontso Dessap
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France.,Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, 94010, Créteil Cedex, France.,INSERM U955, 94 000, Créteil, France
| | - Nicolas de Prost
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France. .,Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, 94010, Créteil Cedex, France.
| |
Collapse
|
56
|
Abstract
Bronchopulmonary dysplasia (BPD) is among the most severe complications of very premature birth. Clinical and laboratory studies indicate that lung immaturity, inflammatory lung injury, and disordered lung repair are the primary mechanisms responsible for the development of BPD. Caffeine, initiated within the first 10 days after birth, is one of few drug therapies shown to significantly decrease the risk of BPD in very low birth weight infants. This benefit is likely derived, at least in part, from reduced exposure to positive airway pressure and supplemental oxygen with caffeine therapy. Additional cardiorespiratory benefits of caffeine that may contribute to the lower risk of BPD include less frequent treatment for a PDA, improved pulmonary mechanics, and direct effects on pulmonary inflammation, alveolarization, and angiogenesis. Routine administration of caffeine is indicated in the vast majority of very low birth weight infants. However, current preventative strategies including widespread use of caffeine do not avert BPD in all cases. As such, there is continued need for novel methods to further reduce the risk of BPD in very low birth weight infants.
Collapse
Affiliation(s)
- Erik A Jensen
- Division of Neonatology and Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
57
|
Editorial: Lung and diaphragm-protective ventilation: setting new concepts in historical context. Curr Opin Crit Care 2020; 26:1-2. [PMID: 31789946 DOI: 10.1097/mcc.0000000000000689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
58
|
Abstract
Despite substantial advances in anesthesia safety within the past decades, perioperative mortality remains a prevalent problem and can be considered among the top causes of death worldwide. Acute organ failure is a major risk factor of morbidity and mortality in surgical patients and develops primarily as a consequence of a dysregulated inflammatory response and insufficient tissue perfusion. Neurological dysfunction, myocardial ischemia, acute kidney injury, respiratory failure, intestinal dysfunction, and hepatic impairment are among the most serious complications impacting patient outcome and recovery. Pre-, intra-, and postoperative arrangements, such as enhanced recovery after surgery programs, can contribute to lowering the occurrence of organ dysfunction, and mortality rates have improved with the advent of specialized intensive care units and advances in procedures relating to extracorporeal organ support. However, no specific pharmacological therapies have proven effective in the prevention or reversal of perioperative organ injury. Therefore, understanding the underlying mechanisms of organ dysfunction is essential to identify novel treatment strategies to improve perioperative care and outcomes for surgical patients. This review focuses on recent knowledge of pathophysiological and molecular pathways leading to perioperative organ injury. Additionally, we highlight potential therapeutic targets relevant to the network of events that occur in clinical settings with organ failure.
Collapse
Affiliation(s)
- Catharina Conrad
- From the Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas.,Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Holger K Eltzschig
- From the Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| |
Collapse
|
59
|
Kirksey MA, Yang EI, Kuvadia M, Miller AO. Management Considerations for the COVID-19 Patient with Severe Disease: a Case Scenario and Literature Review. HSS J 2020; 16:153-159. [PMID: 33020700 PMCID: PMC7528450 DOI: 10.1007/s11420-020-09789-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Meghan A. Kirksey
- Department of Anesthesiology, Critical Care, and Pain Management, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065 USA
| | - Elaine I. Yang
- Department of Anesthesiology, Critical Care, and Pain Management, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065 USA
| | - Mausam Kuvadia
- Department of Anesthesiology, Critical Care, and Pain Management, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| | - Andy O. Miller
- Department of Medicine, Infectious Diseases, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| |
Collapse
|
60
|
Mittermaier M, Pickerodt P, Kurth F, de Jarcy LB, Uhrig A, Garcia C, Machleidt F, Pergantis P, Weber S, Li Y, Breitbart A, Bremer F, Knape P, Dewey M, Doellinger F, Weber-Carstens S, Slutsky AS, Kuebler WM, Suttorp N, Müller-Redetzky H. Evaluation of PEEP and prone positioning in early COVID-19 ARDS. EClinicalMedicine 2020; 28:100579. [PMID: 33073217 PMCID: PMC7547915 DOI: 10.1016/j.eclinm.2020.100579] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In face of the Coronavirus Disease (COVID)-19 pandemic, best practice for mechanical ventilation in COVID-19 associated Acute Respiratory Distress Syndrome (ARDS) is intensely debated. Specifically, the rationale for high positive end-expiratory pressure (PEEP) and prone positioning in early COVID-19 ARDS has been questioned. METHODS The first 23 consecutive patients with COVID-19 associated respiratory failure transferred to a single ICU were assessed. Eight were excluded: five were not invasively ventilated and three received veno-venous ECMO support. The remaining 15 were assessed over the first 15 days of mechanical ventilation. Best PEEP was defined by maximal oxygenation and was determined by structured decremental PEEP trials comprising the monitoring of oxygenation, airway pressures and trans-pulmonary pressures. In nine patients the impact of prone positioning on oxygenation was investigated. Additionally, the effects of high PEEP and prone positioning on pulmonary opacities in serial chest x-rays were determined by applying a semiquantitative scoring-system. This investigation is part of the prospective observational PA-COVID-19 study. FINDINGS Patients responded to initiation of invasive high PEEP ventilation with markedly improved oxygenation, which was accompanied by reduced pulmonary opacities within 6 h of mechanical ventilation. Decremental PEEP trials confirmed the need for high PEEP (17.9 (SD ± 3.9) mbar) for optimal oxygenation, while driving pressures remained low. Prone positioning substantially increased oxygenation (p<0.01). INTERPRETATION In early COVID-19 ARDS, substantial PEEP values were required for optimizing oxygenation. Pulmonary opacities resolved during mechanical ventilation with high PEEP suggesting recruitment of lung volume. FUNDING German Research Foundation, German Federal Ministry of Education and Research.
Collapse
Affiliation(s)
- Mirja Mittermaier
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Philipp Pickerodt
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Laure Bosquillon de Jarcy
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander Uhrig
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carmen Garcia
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Machleidt
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Panagiotis Pergantis
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Weber
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yaosi Li
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Astrid Breitbart
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Bremer
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp Knape
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marc Dewey
- Berlin Institute of Health, Berlin, Germany
- Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Doellinger
- Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arthur S. Slutsky
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Wolfgang M. Kuebler
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany
- Department of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger Müller-Redetzky
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Division of Pulmonary Inflammation, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Corresponding author at: Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
61
|
Abstract
Patients who develop severe COVID-19 disease can develop respiratory failure and subsequently Acute Respiratory Distress Syndrome (ARDS). However, it has to be noted that these patients may not follow the typical ARDS disease trajectory. The causes of this paradox are complex and not yet fully understood, with the result that varying pathophysiological hypotheses have been proposed. This article describes ARDS in COVID-19 patients and the use of the conscious and unconscious prone position as an intervention to improve oxygenation.
Collapse
|
62
|
Gisondo CM, Donn SM. <p>Bronchopulmonary Dysplasia: An Overview</p>. RESEARCH AND REPORTS IN NEONATOLOGY 2020. [DOI: 10.2147/rrn.s271255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
63
|
Lung-Protective Mechanical Ventilation Strategies in Pediatric Acute Respiratory Distress Syndrome. Pediatr Crit Care Med 2020; 21:720-728. [PMID: 32205663 DOI: 10.1097/pcc.0000000000002324] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Reduced morbidity and mortality associated with lung-protective mechanical ventilation is not proven in pediatric acute respiratory distress syndrome. This study aims to determine if a lung-protective mechanical ventilation protocol in pediatric acute respiratory distress syndrome is associated with improved clinical outcomes. DESIGN This pilot study over April 2016 to September 2019 adopts a before-and-after comparison design of a lung-protective mechanical ventilation protocol. All admissions to the PICU were screened daily for fulfillment of the Pediatric Acute Lung Injury Consensus Conference criteria and included. SETTING Multidisciplinary PICU. PATIENTS Patients with pediatric acute respiratory distress syndrome. INTERVENTIONS Lung-protective mechanical ventilation protocol with elements on peak pressures, tidal volumes, end-expiratory pressure to FIO2 combinations, permissive hypercapnia, and permissive hypoxemia. MEASUREMENTS AND MAIN RESULTS Ventilator and blood gas data were collected for the first 7 days of pediatric acute respiratory distress syndrome and compared between the protocol (n = 63) and nonprotocol groups (n = 69). After implementation of the protocol, median tidal volume (6.4 mL/kg [5.4-7.8 mL/kg] vs 6.0 mL/kg [4.8-7.3 mL/kg]; p = 0.005), PaO2 (78.1 mm Hg [67.0-94.6 mm Hg] vs 74.5 mm Hg [59.2-91.1 mm Hg]; p = 0.001), and oxygen saturation (97% [95-99%] vs 96% [94-98%]; p = 0.007) were lower, and end-expiratory pressure (8 cm H2O [7-9 cm H2O] vs 8 cm H2O [8-10 cm H2O]; p = 0.002] and PaCO2 (44.9 mm Hg [38.8-53.1 mm Hg] vs 46.4 mm Hg [39.4-56.7 mm Hg]; p = 0.033) were higher, in keeping with lung protective measures. There was no difference in mortality (10/63 [15.9%] vs 18/69 [26.1%]; p = 0.152), ventilator-free days (16.0 [2.0-23.0] vs 19.0 [0.0-23.0]; p = 0.697), and PICU-free days (13.0 [0.0-21.0] vs 16.0 [0.0-22.0]; p = 0.233) between the protocol and nonprotocol groups. After adjusting for severity of illness, organ dysfunction and oxygenation index, the lung-protective mechanical ventilation protocol was associated with decreased mortality (adjusted hazard ratio, 0.37; 95% CI, 0.16-0.88). CONCLUSIONS In pediatric acute respiratory distress syndrome, a lung-protective mechanical ventilation protocol improved adherence to lung-protective mechanical ventilation strategies and potentially mortality.
Collapse
|
64
|
Korupolu R, Stampas A, Uhlig-Reche H, Ciammaichella E, Mollett PJ, Achilike EC, Pedroza C. Comparing outcomes of mechanical ventilation with high vs. moderate tidal volumes in tracheostomized patients with spinal cord injury in acute inpatient rehabilitation setting: a retrospective cohort study. Spinal Cord 2020; 59:618-625. [PMID: 32647326 DOI: 10.1038/s41393-020-0517-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Retrospective cohort study. OBJECTIVES The primary objective of this study was to evaluate safety and efficacy of higher tidal volumes (HVt) compared to moderate Vt (MVt) in people with spinal cord injury (SCI) admitted to acute inpatient rehabilitation (AIR) facility on mechanical ventilation via tracheostomy. SETTING AIR facility in the United States. METHODS Eighty-four adults with SCI were divided into MVt group if maximum Vt received in AIR was <15 ml/kg predicted body weight (PBW) and HVt group if maximum Vt was >15 ml/kg PBW. Primary outcomes were incidence of pneumonia and composite pulmonary adverse events (pneumonia, weaning failure, or acute care transfers due to respiratory complications). Secondary outcomes were AIR preweaning days defined as time from AIR admission to beginning of weaning, weaning days defined as days from start to end of weaning, and AIR ventilator days calculated as days on ventilator from AIR admission to discharge. RESULTS MVt was utilized in 50 patients and HVt was utilized in 34 patients. The risk of pneumonia in HVt group was 4.3 times higher [95% confidence interval (CI): 1.5-12] compared to MVt group. Odds of pulmonary adverse events in HVt group was 5.4 times higher (CI: 1.8-17) compared to MVt group. There was no difference in preweaning days, weaning days, or AIR ventilator days between the two groups. CONCLUSIONS Our data suggest that HVt is associated with increased risk of pneumonia and higher odds of pulmonary adverse events in tracheostomized patients with SCI which warrants further investigation.
Collapse
Affiliation(s)
- Radha Korupolu
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA.
| | - Argyrios Stampas
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Hannah Uhlig-Reche
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Ellia Ciammaichella
- Division of Physical Medicine and Rehabilitation, University of Utah, Salt Lake, UT, USA
| | | | - Emmanuel Chigozie Achilike
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Claudia Pedroza
- Center for Clinical Research and Evidence Based Medicine (Biostatistician), The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
65
|
Lentz S, Roginski MA, Montrief T, Ramzy M, Gottlieb M, Long B. Initial emergency department mechanical ventilation strategies for COVID-19 hypoxemic respiratory failure and ARDS. Am J Emerg Med 2020; 38:2194-2202. [PMID: 33071092 PMCID: PMC7335247 DOI: 10.1016/j.ajem.2020.06.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging viral pathogen that causes the novel coronavirus disease of 2019 (COVID-19) and may result in hypoxemic respiratory failure necessitating invasive mechanical ventilation in the most severe cases. OBJECTIVE This narrative review provides evidence-based recommendations for the treatment of COVID-19 related respiratory failure requiring invasive mechanical ventilation. DISCUSSION In severe cases, COVID-19 leads to hypoxemic respiratory failure that may meet criteria for acute respiratory distress syndrome (ARDS). The mainstay of treatment for ARDS includes a lung protective ventilation strategy with low tidal volumes (4-8 mL/kg predicted body weight), adequate positive end-expiratory pressure (PEEP), and maintaining a plateau pressure of < 30 cm H2O. While further COVID-19 specific studies are needed, current management should focus on supportive care, preventing further lung injury from mechanical ventilation, and treating the underlying cause. CONCLUSIONS This review provides evidence-based recommendations for the treatment of COVID-19 related respiratory failure requiring invasive mechanical ventilation.
Collapse
Affiliation(s)
- Skyler Lentz
- Division of Emergency Medicine, Department of Surgery, The University of Vermont Larner College of Medicine, USA
| | - Matthew A Roginski
- Divisions of Emergency Medicine and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, USA
| | - Tim Montrief
- Department of Emergency Medicine, Jackson Memorial Health System, USA
| | - Mark Ramzy
- Department of Emergency Medicine, Maimonides Medical Center, USA
| | - Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, USA
| | - Brit Long
- SAUSHEC, Emergency Medicine, Brooke Army Medical Center, USA.
| |
Collapse
|
66
|
Vashisht R, Duggal A. Acute kidney injury in acute respiratory distress syndrome: why ventilator settings matter. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:573. [PMID: 32566600 PMCID: PMC7290557 DOI: 10.21037/atm-20-2163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rishik Vashisht
- Respiratory Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Abhijit Duggal
- Respiratory Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
67
|
Gattinoni L, Marini JJ, Quintel M. Recruiting the Acutely Injured Lung: How and Why? Am J Respir Crit Care Med 2020; 201:130-132. [PMID: 31661307 PMCID: PMC6961753 DOI: 10.1164/rccm.201910-2005ed] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Luciano Gattinoni
- Department of Anesthesiology, Emergency and Intensive Care MedicineUniversity of GöttingenGöttingen, Germanyand
| | - John J Marini
- Regions Hospital and University of MinnesotaSt. Paul, Minnesota
| | - Michael Quintel
- Department of Anesthesiology, Emergency and Intensive Care MedicineUniversity of GöttingenGöttingen, Germanyand
| |
Collapse
|
68
|
Abstract
Ventilation-induced lung injury results from mechanical stress and strain that occur during tidal ventilation in the susceptible lung. Classical descriptions of ventilation-induced lung injury have focused on harm from positive pressure ventilation. However, injurious forces also can be generated by patient effort and patient–ventilator interactions. While the role of global mechanics has long been recognized, regional mechanical heterogeneity within the lungs also appears to be an important factor propagating clinically significant lung injury. The resulting clinical phenotype includes worsening lung injury and a systemic inflammatory response that drives extrapulmonary organ failures. Bedside recognition of ventilation-induced lung injury requires a high degree of clinical acuity given its indistinct presentation and lack of definitive diagnostics. Yet the clinical importance of ventilation-induced lung injury is clear. Preventing such biophysical injury remains the most effective management strategy to decrease morbidity and mortality in patients with acute respiratory distress syndrome and likely benefits others at risk.
Collapse
Affiliation(s)
- Purnema Madahar
- Center for Acute Respiratory Failure, Columbia University College of Physicians and Surgeons, New York City, NY, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York City, NY, USA.,Department of Medicine, New York-Presbyterian Hospital, New York City, NY, USA
| | - Jeremy R Beitler
- Center for Acute Respiratory Failure, Columbia University College of Physicians and Surgeons, New York City, NY, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York City, NY, USA.,Department of Medicine, New York-Presbyterian Hospital, New York City, NY, USA
| |
Collapse
|
69
|
Kollisch-Singule M, Satalin J, Blair SJ, Andrews PL, Gatto LA, Nieman GF, Habashi NM. Mechanical Ventilation Lessons Learned From Alveolar Micromechanics. Front Physiol 2020; 11:233. [PMID: 32265735 PMCID: PMC7105828 DOI: 10.3389/fphys.2020.00233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/28/2020] [Indexed: 01/05/2023] Open
Abstract
Morbidity and mortality associated with lung injury remains disappointingly unchanged over the last two decades, in part due to the current reliance on lung macro-parameters set on the ventilator instead of considering the micro-environment and the response of the alveoli and alveolar ducts to ventilator adjustments. The response of alveoli and alveolar ducts to mechanical ventilation modes cannot be predicted with current bedside methods of assessment including lung compliance, oxygenation, and pressure-volume curves. Alveolar tidal volumes (Vt) are less determined by the Vt set on the mechanical ventilator and more dependent on the number of recruited alveoli available to accommodate that Vt and their heterogeneous mechanical properties, such that high lung Vt can lead to a low alveolar Vt and low Vt can lead to high alveolar Vt. The degree of alveolar heterogeneity that exists cannot be predicted based on lung calculations that average the individual alveolar Vt and compliance. Finally, the importance of time in promoting alveolar stability, specifically the inspiratory and expiratory times set on the ventilator, are currently under-appreciated. In order to improve outcomes related to lung injury, the respiratory physiology of the individual patient, specifically at the level of the alveolus, must be targeted. With experimental data, this review highlights some of the known mechanical ventilation adjustments that are helpful or harmful at the level of the alveolus.
Collapse
Affiliation(s)
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sarah J. Blair
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Penny L. Andrews
- Department of Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, United States
| | - Louis A. Gatto
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, United States
| | - Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Nader M. Habashi
- Department of Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, United States
| |
Collapse
|
70
|
Bedside respiratory physiology to detect risk of lung injury in acute respiratory distress syndrome. Curr Opin Crit Care 2020; 25:3-11. [PMID: 30531534 DOI: 10.1097/mcc.0000000000000579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The most effective strategies for treating the patient with acute respiratory distress syndrome center on minimizing ventilation-induced lung injury (VILI). Yet, current standard-of-care does little to modify mechanical ventilation to patient-specific risk. This review focuses on evaluation of bedside respiratory mechanics, which when interpreted in patient-specific context, affords opportunity to individualize lung-protective ventilation in patients with acute respiratory distress syndrome. RECENT FINDINGS Four biophysical mechanisms of VILI are widely accepted: volutrauma, barotrauma, atelectrauma, and stress concentration. Resulting biotrauma, that is, local and systemic inflammation and endothelial activation, may be thought of as the final common pathway that propagates VILI-mediated multiorgan failure. Conventional, widely utilized techniques to assess VILI risk rely on airway pressure, flow, and volume changes, and remain essential tools for determining overdistension of aerated lung regions, particularly when interpreted cognizant of their limitations. Emerging bedside tools identify regional differences in mechanics, but further study is required to identify how they might best be incorporated into clinical practice. SUMMARY Quantifying patient-specific risk of VILI requires understanding each patient's pulmonary mechanics in context of biological predisposition. Tailoring support at bedside according to these factors affords the greatest opportunity to date for mitigating VILI and alleviating associated morbidity.
Collapse
|
71
|
Sahetya SK. Searching for the optimal positive end-expiratory pressure for lung protective ventilation. Curr Opin Crit Care 2020; 26:53-58. [DOI: 10.1097/mcc.0000000000000685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
72
|
Yen S, Preissner M, Bennett E, Dubsky S, Carnibella R, Murrie R, Fouras A, Dargaville PA, Zosky GR. Interaction between regional lung volumes and ventilator-induced lung injury in the normal and endotoxemic lung. Am J Physiol Lung Cell Mol Physiol 2020; 318:L494-L499. [PMID: 31940217 DOI: 10.1152/ajplung.00492.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Both overdistension and atelectasis contribute to lung injury and mortality during mechanical ventilation. It has been proposed that combinations of tidal volume and end-expiratory lung volume exist that minimize lung injury linked to mechanical ventilation. The aim of this study was to examine this at the regional level in the healthy and endotoxemic lung. Adult female BALB/c mice were injected intraperitoneally with 10 mg/kg lipopolysaccharide (LPS) in saline or with saline alone. Four hours later, mice were mechanically ventilated for 2 h. Regional specific end-expiratory volume (sEEV) and tidal volume (sVt) were measured at baseline and after 2 h of ventilation using dynamic high-resolution four-dimensional computed tomography images. The regional expression of inflammatory genes was quantified by quantitative PCR. There was a heterogenous response in regional sEEV whereby endotoxemia increased gas trapping at end-expiration in some lung regions. Within the healthy group, there was a relationship between sEEV, sVt, and the expression of Tnfa, where high Vt in combination with high EEV or very low EEV was associated with an increase in gene expression. In endotoxemia there was an association between low sEEV, particularly when this was combined with moderate sVt, and high expression of IL6. Our data suggest that preexisting systemic inflammation modifies the relationship between regional lung volumes and inflammation and that although optimum EEV-Vt combinations to minimize injury exist, further studies are required to identify the critical inflammatory mediators to assess and the effect of different injury types on the response.
Collapse
Affiliation(s)
- Seiha Yen
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Melissa Preissner
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | - Ellen Bennett
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Stephen Dubsky
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | | | - Rhiannon Murrie
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | | | - Peter A Dargaville
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Graeme R Zosky
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.,Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
73
|
D'Angelo E, Koutsoukou A, Della Valle P, Gentile G, Pecchiari M. The development of various forms of lung injury with increasing tidal volume in normal rats. Respir Physiol Neurobiol 2020; 274:103369. [PMID: 31911202 DOI: 10.1016/j.resp.2020.103369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
Sixty-three, open-chest normal rats were subjected to mechanical ventilation (MV) with tidal volumes (VT) ranging from 7.5-39.5ml kg-1 and PEEP 2.3 cmH2O. Arterial blood gasses and pressure, and lung mechanics were measured during baseline ventilation (VT = 7.5ml kg-1) before and after test ventilation, when cytokine, von Willebrand factor (vWF), and albumin concentration in serum and broncho-alveolar lavage fluid (BALF), wet-to-dry weight ratio (W/D), and histologic injury scores were assessed. Elevation of W/D and serum vWF and cytokine concentration occurred with VT > 25ml kg-1. With VT > 30ml kg-1 cytokine and albumin concentration increased also in BALF, arterial oxygen tension decreased, lung mechanics and histology deteriorated, while W/D and vWF and cytokine concentration increased further. Hence, the initial manifestation of injurious MV consists of damage of extra-alveolar vessels leading to interstitial edema, as shown by elevated vWF and cytokine levels in serum but not in BALF. Failure of the endothelial-epithelial barrier occurs at higher stress-strain levels, with alveolar edema, small airway injury, and mechanical alterations.
Collapse
Affiliation(s)
- Edgardo D'Angelo
- Department of Physiopathology and Transplantations, Università di Milano, Milan, Italy.
| | | | - Patrizia Della Valle
- Coagulation Service and Thrombosis Research Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Guendalina Gentile
- Department of Biomedical Sciences for Health, Università di Milano, Milan, Italy
| | - Matteo Pecchiari
- Department of Physiopathology and Transplantations, Università di Milano, Milan, Italy
| |
Collapse
|
74
|
Allison BJ, Youn H, Malhotra A, McDonald CA, Castillo-Melendez M, Pham Y, Sutherland AE, Jenkin G, Polglase GR, Miller SL. Is Umbilical Cord Blood Therapy an Effective Treatment for Early Lung Injury in Growth Restriction? Front Endocrinol (Lausanne) 2020; 11:86. [PMID: 32194502 PMCID: PMC7063054 DOI: 10.3389/fendo.2020.00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/11/2020] [Indexed: 11/22/2022] Open
Abstract
Fetal growth restriction (FGR) and prematurity are often co-morbidities, and both are risk factors for lung disease. Despite advances in early delivery combined with supportive ventilation, rates of ventilation-induced lung injury (VILI) remain high. There are currently no protective treatments or interventions available that target lung morbidities associated with FGR preterm infants. Stem cell therapy, such as umbilical cord blood (UCB) cell administration, demonstrates an ability to attenuate inflammation and injury associated with VILI in preterm appropriately grown animals. However, no studies have looked at the effects of stem cell therapy in growth restricted newborns. We aimed to determine if UCB treatment could attenuate acute inflammation in the first 24 h of ventilation, comparing effects in lambs born preterm following FGR with those born preterm but appropriately grown (AG). Placental insufficiency (FGR) was induced by single umbilical artery ligation in twin-bearing ewes at 88 days gestation, with twins used as control (appropriately grown, AG). Lambs were delivered preterm at ~126 days gestation (term is 150 days) and randomized to either immediate euthanasia (unventilated controls, AGUVC and FGRUVC) or commenced on 24 h of gentle supportive ventilation (AGV and FGRV) with additional cohorts receiving UCB treatment at 1 h (AGCELLS, FGRCELLS). Lungs were collected at post-mortem for histological and biochemical examination. Ventilation caused lung injury in AG lambs, as indicated by decreased septal crests and elastin density, as well as increased inflammation. Lung injury in AG lambs was attenuated with UCB therapy. Ventilated FGR lambs also sustained lung injury, albeit with different indices compared to AG lambs; in FGR, ventilation reduced septal crest density, reduced alpha smooth muscle actin density and reduced cell proliferation. UCB treatment in ventilated FGR lambs further decreased septal crest density and increased collagen deposition, however, it increased angiogenesis as evidenced by increased vascular endothelial growth factor (VEGF) expression and vessel density. This is the first time that a cell therapy has been investigated in the lungs of growth restricted animals. We show that the uterine environment can alter the response to both secondary stress (ventilation) and therapy (UCB). This study highlights the need for further research on the potential impact of novel therapies on a growth restricted offspring.
Collapse
Affiliation(s)
- Beth J. Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
- *Correspondence: Beth J. Allison
| | - Hannah Youn
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash Newborn, Monash Medical Centre, Clayton, VIC, Australia
| | - Courtney A. McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| | - Amy E. Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| | - Graeme R. Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| |
Collapse
|
75
|
Yen S, Preissner M, Bennett E, Dubsky S, Carnibella R, O'Toole R, Roddam L, Jones H, Dargaville PA, Fouras A, Zosky GR. The Link between Regional Tidal Stretch and Lung Injury during Mechanical Ventilation. Am J Respir Cell Mol Biol 2019; 60:569-577. [PMID: 30428271 DOI: 10.1165/rcmb.2018-0143oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to assess the association between regional tidal volume (Vt), regional functional residual capacity (FRC), and the expression of genes linked with ventilator-induced lung injury. Two groups of BALB/c mice (n = 8 per group) were ventilated for 2 hours using a protective or injurious ventilation strategy, with free-breathing mice used as control animals. Regional Vt and FRC of the ventilated mice was determined by analysis of high-resolution four-dimensional computed tomographic images taken at baseline and after 2 hours of ventilation and corrected for the volume of the region (i.e., specific [s]Vt and specific [s]FRC). RNA concentrations of 21 genes in 10 different lung regions were quantified using a quantitative PCR array. sFRC at baseline varied regionally, independent of ventilation strategy, whereas sVt varied regionally depending on ventilation strategy. The expression of IL-6 (P = 0.04), Ccl2 (P < 0.01), and Ang-2 (P < 0.05) was associated with sVt but not sFRC. The expression of seven other genes varied regionally (IL-1β and RAGE [receptor for advanced glycation end products]) or depended on ventilation strategy (Nfe2l2 [nuclear factor erythroid-derived 2 factor 2], c-fos, and Wnt1) or both (TNF-α and Cxcl2), but it was not associated with regional sFRC or sVt. These observations suggest that regional inflammatory responses to mechanical ventilation are driven primarily by tidal stretch.
Collapse
Affiliation(s)
| | - Melissa Preissner
- 2 Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | | | - Stephen Dubsky
- 2 Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | | | | | | | - Heather Jones
- 4 Biomedical Imaging Research Institute.,5 Department of Medicine, and.,6 Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Peter A Dargaville
- 7 Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Graeme R Zosky
- 1 School of Medicine and.,7 Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
76
|
Grazioli S, Dunn-Siegrist I, Pauchard LA, Blot M, Charles PE, Pugin J. Mitochondrial alarmins are tissue mediators of ventilator-induced lung injury and ARDS. PLoS One 2019; 14:e0225468. [PMID: 31756204 PMCID: PMC6874419 DOI: 10.1371/journal.pone.0225468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Rationale Endogenous tissue mediators inducing lung inflammation in the context of ventilator-induced lung injury (VILI) and acute respiratory distress syndrome (ARDS) are ill-defined. Objectives To test whether mitochondrial alarmins are released during VILI, and are associated with lung inflammation. Methods Release of mitochondrial DNA, adenosine triphosphate (ATP), and formyl-Met-Leu-Phe (fMLP) peptide-dependent neutrophil chemotaxis were measured in conditioned supernatants from human alveolar type II-like (A549) epithelial cells submitted to cyclic stretch in vitro. Similar measurements were performed in bronchoalveolar lavage fluids from rabbits submitted to an injurious ventilatory regimen, and from patients with ARDS. Measurements and main results Mitochondrial DNA was released by A549 cells during cell stretching, and was found elevated in BAL fluids from rabbits during VILI, and from ARDS patients. Cyclic stretch-induced interleukin-8 (IL-8) of A549 cells could be inhibited by Toll-like receptor 9 (TLR9) blockade. ATP concentrations were increased in conditioned supernatants from A549 cells, and in rabbit BAL fluids during VILI. Neutrophil chemotaxis induced by A549 cells conditioned supernatants was essentially dependent on fMLP rather than IL-8. A synergy between cyclic stretch-induced alarmins and lipopolysaccharide (LPS) was found in monocyte-derived macrophages in the production of IL-1ß. Conclusions Mitochondrial alarmins are released during cyclic stretch of human epithelial cells, as well as in BAL fluids from rabbits ventilated with an injurious ventilatory regimen, and found in BAL fluids from ARDS patients, particularly in those with high alveolar inflammation. These alarmins are likely to represent the proximal endogenous mediators of VILI and ARDS, released by injured pulmonary cells.
Collapse
Affiliation(s)
- Serge Grazioli
- Intensive Care Laboratory, Department of Microbiology and Molecular Medicine, University Hospitals of Geneva & Faculty of Medicine, Genève, Switzerland
- Department of Pediatrics, Division of Neonatal and Pediatric Intensive Care, University Hospital of Geneva, Genève, Switzerland
- * E-mail:
| | - Irène Dunn-Siegrist
- Intensive Care Laboratory, Department of Microbiology and Molecular Medicine, University Hospitals of Geneva & Faculty of Medicine, Genève, Switzerland
| | - Laure-Anne Pauchard
- Intensive Care Unit, University Hospital of Dijon, Dijon, France
- U.M.R. 1231, I.N.S.E.R.M, Burgundy University, Dijon, France
| | - Mathieu Blot
- Department of Infectious Diseases, University Hospital of Dijon, Dijon, France
| | - Pierre-Emmanuel Charles
- Intensive Care Unit, University Hospital of Dijon, Dijon, France
- U.M.R. 1231, I.N.S.E.R.M, Burgundy University, Dijon, France
| | - Jérôme Pugin
- Intensive Care Laboratory, Department of Microbiology and Molecular Medicine, University Hospitals of Geneva & Faculty of Medicine, Genève, Switzerland
| |
Collapse
|
77
|
Fu MH, Chen IC, Lee CH, Wu CW, Lee YC, Kung YC, Hung CY, Wu KLH. Anti-neuroinflammation ameliorates systemic inflammation-induced mitochondrial DNA impairment in the nucleus of the solitary tract and cardiovascular reflex dysfunction. J Neuroinflammation 2019; 16:224. [PMID: 31729994 PMCID: PMC6858639 DOI: 10.1186/s12974-019-1623-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Decreased heart rate variability (HRV) leads to cardiovascular diseases and increased mortality in clinical studies. However, the underlying mechanisms are still inconclusive. Systemic inflammation-induced neuroinflammation is known to impair the autonomic center of cardiovascular regulation. The dynamic stability of blood pressure and heart rate (HR) is regulated by modulation of the reciprocal responses of sympathetic and parasympathetic tone by the baroreflex, which is controlled by the nucleus of the solitary tract (NTS). METHODS Systemic inflammation was induced by E. coli lipopolysaccharide (LPS, 1.2 mg/kg/day, 7 days) peritoneal infusion via an osmotic minipump in normotensive Sprague-Dawley rats. Systolic blood pressure (SBP) and HR were measured by femoral artery cannulation and recorded on a polygraph under anesthesia. The low-frequency (LF; 0.25-0.8 Hz) and high-frequency (HF; 0.8-2.4 Hz) components of SBP were adopted as the indices for sympathetic vasomotor tone and parasympathetic vasomotor tone, while the baroreflex effectiveness index (BEI) was adopted from the analysis of SBP and pulse interval (PI). The plasma levels of proinflammatory cytokines and mitochondrial DNA (mtDNA) oxidative damage were analyzed by ELISA. Protein expression was evaluated by Western blot. The distribution of oxidative mtDNA was probed by immunofluorescence. Pharmacological agents were delivered via infusion into the cisterna magna with an osmotic minipump. RESULTS The suppression of baroreflex sensitivity was concurrent with increased SBP and decreased HR. Neuroinflammatory factors, including TNF-α, CD11b, and Iba-1, were detected in the NTS of the LPS group. Moreover, indices of mtDNA damage, including 8-OHdG and γ-H2AX, were significantly increased in neuronal mitochondria. Pentoxifylline or minocycline intracisternal (IC) infusion effectively prevented mtDNA damage, suggesting that cytokine and microglial activation contributed to mtDNA damage. Synchronically, baroreflex sensitivity was effectively protected, and the elevated blood pressure was significantly relieved. In addition, the mtDNA repair mechanism was significantly enhanced by pentoxifylline or minocycline. CONCLUSION These results suggest that neuronal mtDNA damage in the NTS induced by neuroinflammation could be the core factor in deteriorating baroreflex desensitization and subsequent cardiovascular dysfunction. Therefore, the enhancement of base excision repair (BER) signaling in mitochondria could be a potential therapeutic strategy for cardiovascular reflex dysregulation.
Collapse
Affiliation(s)
- Mu-Hui Fu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan Republic of China
| | - I-Chun Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Chou-Hwei Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Chih-Wei Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Yu-Chi Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Yu Chih Kung
- Master of Science Program in Health Care, Department of Nursing, Meiho University, Neipu Township, Republic of China
- Department of Nursing, Meiho University, Neipu Township, Taiwan, Republic of China
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Kay L. H. Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
- Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, 700 Taiwan Republic of China
| |
Collapse
|
78
|
|
79
|
De Winter FHR, 's Jongers B, Bielen K, Mancuso D, Timbermont L, Lammens C, Van Averbeke V, Boddaert J, Ali O, Kluytmans J, Ruzin A, Malhotra-Kumar S, Jorens PG, Goossens H, Kumar-Singh S. Mechanical Ventilation Impairs IL-17 Cytokine Family Expression in Ventilator-Associated Pneumonia. Int J Mol Sci 2019; 20:ijms20205072. [PMID: 31614857 PMCID: PMC6829394 DOI: 10.3390/ijms20205072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Mechanical ventilation (MV) is the primary risk factor for the development of ventilator-associated pneumonia (VAP). Besides inducing a pro-inflammatory T-helper (Th)-1 cytokine response, MV also induces an anti-inflammatory Th2 cytokine response, marked by increased IL-4 secretion and reduced bacterial phagocytic capacity of rodent lung macrophages. Since IL-4 is known to downregulate both Th1 and Th17 cytokines, the latter is important in mediating mucosal immunity and combating bacterial and fungal growth, we studied and showed here in a rat model of MV that Th17 cytokines (IL-17A, IL-17F, and IL-22) were significantly upregulated in the lung as a response to different MV strategies currently utilized in clinic. To study whether the increased IL-4 levels are associated with downregulation of the anti-bacterial Th17 cytokines, we subsequently challenged mechanically ventilated rats with an intratracheal inoculation of Pseudomonas aeruginosa (VAP model) and showed a dramatic downregulation of IL-17A, IL-17F, and IL-22, compared to animals receiving the same bacterial burden without MV. For the studied Th1 cytokines (IFNγ, TNFα, IL-6, and IL-1β), only IFNγ showed a significant decrease as a consequence of bacterial infection in mechanically ventilated rats. We further studied IL-17A, the most studied IL-17 family member, in intensive care unit (ICU) pneumonia patients and showed that VAP patients had significantly lower levels of IL-17A in the endotracheal aspirate compared to patients entering ICU with pre-existing pneumonia. These translational data, obtained both in animal models and in humans, suggest that a deficient anti-bacterial Th17 response in the lung during MV is associated with VAP development.
Collapse
Affiliation(s)
- Fien H. R. De Winter
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Bart 's Jongers
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Kenny Bielen
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Domenico Mancuso
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Leen Timbermont
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Vincent Van Averbeke
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Omar Ali
- Microbial Sciences, R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, MD 20877, USA
| | - Jan Kluytmans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, HP Stratenum 6.131, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Alexey Ruzin
- Microbial Sciences, R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, MD 20877, USA
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Philippe G Jorens
- Department of Critical Care Medicine, Antwerp University Hospital and University of Antwerp, LEMP, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| |
Collapse
|
80
|
Bielen K, 's Jongers B, Boddaert J, Lammens C, Jorens PG, Malhotra-Kumar S, Goossens H, Kumar-Singh S. Mechanical Ventilation Induces Interleukin 4 Secretion in Lungs and Reduces the Phagocytic Capacity of Lung Macrophages. J Infect Dis 2019; 217:1645-1655. [PMID: 29140452 DOI: 10.1093/infdis/jix573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/06/2017] [Indexed: 12/24/2022] Open
Abstract
Patients receiving mechanical ventilation are at risk of developing ventilator-associated pneumonia. Here, we show that clinically utilized ventilation protocols in rats with 5 mL/kg or 8 mL/kg tidal volumes cause increased interleukin 4 (IL-4) expression, lowered ratio of TH1:TH2 transcriptional factors (Tbet:Gata3), and increased arginase 1-positive (Arg1+) macrophages and eosinophils in lungs. Macrophages from ventilated lungs had reduced ex vivo capacity toward phagocytosing bacteria. Ventilated animals, when further challenged with bacterial pneumonia, continued to show persistence of Arg1+ M2 macrophages as well as an increased bacterial burden compared with spontaneously breathing animals receiving the same bacterial dose. Increased IL-4 expression also occurred in a mouse ventilation model, and abrogation of IL-4 signaling restored lung bacterial burden in an IL-4Rα-/- ventilator-associated pneumonia model. Our data suggest that mechanical ventilation induces an immunosuppressive state in lungs, providing new insight in the development of ventilator-associated pneumonia.
Collapse
Affiliation(s)
- Kenny Bielen
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp Wilrijk Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Bart 's Jongers
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp Wilrijk Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp Wilrijk Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Philippe G Jorens
- Department of Critical Care Medicine, Antwerp University Hospital and University of Antwerp, Laboratory of Experimental Medicine and Pediatrics (LEMP), Edegem, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp Wilrijk Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk Belgium
| |
Collapse
|
81
|
Maiolo G, Collino F, Vasques F, Rapetti F, Tonetti T, Romitti F, Cressoni M, Chiumello D, Moerer O, Herrmann P, Friede T, Quintel M, Gattinoni L. Reclassifying Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2019; 197:1586-1595. [PMID: 29345967 DOI: 10.1164/rccm.201709-1804oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RATIONALE The ratio of PaO2 to FiO2 (P/F) defines acute respiratory distress syndrome (ARDS) severity and suggests appropriate therapies. OBJECTIVES We investigated 1) whether a 150-mm-Hg P/F threshold within the range of moderate ARDS (100-200 mm Hg) would define two subgroups that were more homogeneous; and 2) which criteria led the clinicians to apply extracorporeal membrane oxygenation (ECMO) in severe ARDS. METHODS At the 150-mm-Hg P/F threshold, moderate patients were split into mild-moderate (n = 50) and moderate-severe (n = 55) groups. Patients with severe ARDS (FiO2 not available in three patients) were split into higher (n = 63) and lower (n = 18) FiO2 groups at an 80% FiO2 threshold. MEASUREMENTS AND MAIN RESULTS Compared with mild-moderate ARDS, patients with moderate-severe ARDS had higher peak pressures, PaCO2, and pH. They also had heavier lungs, greater inhomogeneity, more noninflated tissue, and greater lung recruitability. Within 84 patients with severe ARDS (P/F < 100 mm Hg), 75% belonged to the higher FiO2 subgroup. They differed from the patients with severe ARDS with lower FiO2 only in PaCO2 and lung weight. Forty-one of 46 patients treated with ECMO belonged to the higher FiO2 group. Within this group, the patients receiving ECMO had higher PaCO2 than the 22 non-ECMO patients. The inhomogeneity ratio, total lung weight, and noninflated tissue were also significantly higher. CONCLUSIONS Using the 150-mm-Hg P/F threshold gave a more homogeneous distribution of patients with ARDS across the severity subgroups and identified two populations that differed in their anatomical and physiological characteristics. The patients treated with ECMO belonged to the severe ARDS group, and almost 90% of them belonged to the higher FiO2 subgroup.
Collapse
Affiliation(s)
- Giorgia Maiolo
- 1 Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Francesca Collino
- 1 Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Francesco Vasques
- 1 Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Francesca Rapetti
- 1 Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Tommaso Tonetti
- 1 Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Federica Romitti
- 1 Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Massimo Cressoni
- 2 Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Davide Chiumello
- 2 Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,3 Struttura Complessa Anestesia e Rianimazione, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy; and
| | - Onnen Moerer
- 1 Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Peter Herrmann
- 1 Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Tim Friede
- 4 Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Quintel
- 1 Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Luciano Gattinoni
- 1 Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| |
Collapse
|
82
|
Effects of Prone Positioning on Transpulmonary Pressures and End-expiratory Volumes in Patients without Lung Disease. Anesthesiology 2019. [PMID: 29521672 DOI: 10.1097/aln.0000000000002159] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The effects of prone positioning on esophageal pressures have not been investigated in mechanically ventilated patients. Our objective was to characterize effects of prone positioning on esophageal pressures, transpulmonary pressure, and lung volume, thereby assessing the potential utility of esophageal pressure measurements in setting positive end-expiratory pressure (PEEP) in prone patients. METHODS We studied 16 patients undergoing spine surgery during general anesthesia and neuromuscular blockade. We measured airway pressure, esophageal pressures, airflow, and volume, and calculated the expiratory reserve volume and the elastances of the lung and chest wall in supine and prone positions. RESULTS Esophageal pressures at end expiration with 0 cm H2O PEEP decreased from supine to prone by 5.64 cm H2O (95% CI, 3.37 to 7.90; P < 0.0001). Expiratory reserve volume measured at relaxation volume increased from supine to prone by 0.15 l (interquartile range, 0.25, 0.10; P = 0.003). Chest wall elastance increased from supine to prone by 7.32 (95% CI, 4.77 to 9.87) cm H2O/l at PEEP 0 (P < 0.0001) and 6.66 cm H2O/l (95% CI, 3.91 to 9.41) at PEEP 7 (P = 0.0002). Median driving pressure, the change in airway pressure from end expiration to end-inspiratory plateau, increased in the prone position at PEEP 0 (3.70 cm H2O; 95% CI, 1.74 to 5.66; P = 0.001) and PEEP 7 (3.90 cm H2O; 95% CI, 2.72 to 5.09; P < 0.0001). CONCLUSIONS End-expiratory esophageal pressure decreases, and end-expiratory transpulmonary pressure and expiratory reserve volume increase, when patients are moved from supine to prone position. Mean respiratory system driving pressure increases in the prone position due to increased chest wall elastance. The increase in end-expiratory transpulmonary pressure and expiratory reserve volume may be one mechanism for the observed clinical benefit with prone positioning.
Collapse
|
83
|
Huang T, Zhang Y, Wang C, Gao J. Propofol reduces acute lung injury by up-regulating gamma-aminobutyric acid type a receptors. Exp Mol Pathol 2019; 110:104295. [PMID: 31419406 DOI: 10.1016/j.yexmp.2019.104295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/11/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND We used a two-hit lung injury rat model that involves mechanical ventilation (MV) following lipopolysaccharide exposure to investigate the effects of propofol on the expression of GABAA receptors (GABAAR) and cytokine responses, and we then determined the specific effects of GABA on cytokine responses in vitro in alveolar epithelial cells (AECs). METHODS Forty-eight adult male Wister rats were equally and randomly divided into the following 4 groups (n = 12) using a random number table: sham group, sham+propofol group, lipopolysaccharide (LPS) + VILI group, and LPS + VILI + propofol group. All animals were anesthetized, and the animals received a 3.75 mg/kg intratracheal instillation of endotoxins or phosphate-buffered saline (PBS) as the control, as described previously. After 30 min, rats were ventilated for 5 h in a volume-controlled ventilation mode. In the LPS + VILI group, animals were ventilated with a tidal volume (Vt) of 22 ml/kg and zero positive end-expiratory pressure (PEEP) at a respiratory rate of 16-18 breaths/min, whereas control (sham) rats were ventilated with a Vt of 6 ml/kg and PEEP of 5 cmH2O at a rate of 45-55 breaths/min. The FiO2 remained constant as 0.4, propofol was administered intravenously in the LPS + VILI + propofol and sham + propofol groups at a rate of 10 mg·kg-1·h-1 while normal saline at the same rate was intravenously administered in the LPS + VILI and sham groups during the entire mechanical ventilation period. Five hours after mechanical ventilation, the rats were killed. Survival rates, histopathology, concentrations of inflammatory mediators in bronchoalveolar lavage fluid (BALF), wet weight/dry weight (W/D) ratio of the lung, myeloperoxidase (MPO) activity in lung tissues, and expression of GAD and GABAAR by immunohistochemical detection and Western blotting were assessed. Then, human type II-like alveolar epithelial cells (A549 cells) were cultured to full confluence and incubated with GABA (100 nM) alone, picrotoxin alone, a GABAAR antagonist (PTX, 50 nM), or GABA + PTX for 10 min, followed by stimulation with LPS (control) at 100 ng/ml for 4 h. The concentrations of IL-1β, IL-2, IL-8, and IL-10 were then measured. RESULTS Administration of propofol in a two-hit lung injury rat model can increase survival rates and the expression of GAD and GABAAR (P < .05). The administration of propofol can attenuate the release of pro-inflammatory cytokines both in vivo and in vitro, and the administration of propofol can attenuate histopathological changes, the W/D ratio, and MPO activity (P < .05). CONCLUSIONS In this study, we found that the administration of propofol improved lung function, alleviated lung injury, and up-regulated the GAD and GABAAR expressions in a two-hit model of acute lung injury (ALI) characterized by intratracheal instillation of an endotoxin and prolonged MV. Therefore, the protective effects of propofol may be associated with the up-regulation of GABAA receptors in AECs.
Collapse
Affiliation(s)
- Tianfeng Huang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Yang Zhang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Cunjin Wang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Ju Gao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province, PR China.
| |
Collapse
|
84
|
Bitker L, Costes N, Le Bars D, Lavenne F, Orkisz M, Hernandez Hoyos M, Benzerdjeb N, Devouassoux M, Richard JC. Noninvasive quantification of macrophagic lung recruitment during experimental ventilation-induced lung injury. J Appl Physiol (1985) 2019; 127:546-558. [PMID: 31169472 DOI: 10.1152/japplphysiol.00825.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophagic lung infiltration is pivotal in the development of lung biotrauma because of ventilation-induced lung injury (VILI). We assessed the performance of [11C](R)-PK11195, a positron emission tomography (PET) radiotracer binding the translocator protein, to quantify macrophage lung recruitment during experimental VILI. Pigs (n = 6) were mechanically ventilated under general anesthesia, using protective ventilation settings (baseline). Experimental VILI was performed by titrating tidal volume to reach a transpulmonary end-inspiratory pressure (∆PL) of 35-40 cmH2O. We acquired PET/computed tomography (CT) lung images at baseline and after 4 h of VILI. Lung macrophages were quantified in vivo by the standardized uptake value (SUV) of [11C](R)-PK11195 measured in PET on the whole lung and in six lung regions and ex vivo on lung pathology at the end of experiment. Lung mechanics were extracted from CT images to assess their association with the PET signal. ∆PL increased from 9 ± 1 cmH2O under protective ventilation, to 36 ± 6 cmH2O during experimental VILI. Compared with baseline, whole-lung [11C](R)-PK11195 SUV significantly increased from 1.8 ± 0.5 to 2.9 ± 0.5 after experimental VILI. Regional [11C](R)-PK11195 SUV was positively associated with the magnitude of macrophage recruitment in pathology (P = 0.03). Compared with baseline, whole-lung CT-derived dynamic strain and tidal hyperinflation increased significantly after experimental VILI, from 0.6 ± 0 to 2.0 ± 0.4, and 1 ± 1 to 43 ± 19%, respectively. On multivariate analysis, both were significantly associated with regional [11C](R)-PK11195 SUV. [11C](R)-PK11195 lung uptake (a proxy of lung inflammation) was increased by experimental VILI and was associated with the magnitude of dynamic strain and tidal hyperinflation.NEW & NOTEWORTHY We assessed the performance of [11C](R)-PK11195, a translocator protein-specific positron emission tomography (PET) radiotracer, to quantify macrophage lung recruitment during experimental ventilation-induced lung injury (VILI). In this proof-of-concept study, we showed that the in vivo quantification of [11C](R)-PK11195 lung uptake in PET reflected the magnitude of macrophage lung recruitment after VILI. Furthermore, increased [11C](R)-PK11195 lung uptake was associated with harmful levels of dynamic strain and tidal hyperinflation applied to the lungs.
Collapse
Affiliation(s)
- Laurent Bitker
- Service de Médecine Intensive et Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France.,Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CREATIS Unité Mixte de Recherche 5220, U1206, Villeurbanne, France.,Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France
| | | | - Didier Le Bars
- Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France.,CERMEP - Imagerie du Vivant, Bron, France
| | | | - Maciej Orkisz
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CREATIS Unité Mixte de Recherche 5220, U1206, Villeurbanne, France.,Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France
| | - Marcela Hernandez Hoyos
- Systems and Computing Engineering Department, School of Engineering, Universidad de los Andes, Bogota, Colombia
| | - Nazim Benzerdjeb
- Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France.,Centre d'Anatomie et Cytologie Pathologique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Mojgan Devouassoux
- Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France.,Centre d'Anatomie et Cytologie Pathologique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Jean-Christophe Richard
- Service de Médecine Intensive et Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France.,Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CREATIS Unité Mixte de Recherche 5220, U1206, Villeurbanne, France.,Université Lyon 1 Claude Bernard, Université de Lyon, Lyon, France
| |
Collapse
|
85
|
Phage Therapy of Pneumonia Is Not Associated with an Overstimulation of the Inflammatory Response Compared to Antibiotic Treatment in Mice. Antimicrob Agents Chemother 2019; 63:AAC.00379-19. [PMID: 31182526 DOI: 10.1128/aac.00379-19] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/02/2019] [Indexed: 12/12/2022] Open
Abstract
Supported by years of clinical use in some countries and more recently by literature on experimental models, as well as its compassionate use in Europe and in the United States, bacteriophage (phage) therapy is providing a solution for difficult-to-treat bacterial infections. However, studies of the impact of such treatments on the host remain scarce. Murine acute pneumonia initiated by intranasal instillation of two pathogenic strains of Escherichia coli (536 and LM33) was treated by two specific bacteriophages (536_P1 and LM33_P1; intranasal) or antibiotics (ceftriaxone, cefoxitin, or imipenem-cilastatin; intraperitoneal). Healthy mice also received phages alone. The severity of pulmonary edema, acute inflammatory cytokine concentration (blood and lung homogenates), complete blood counts, and bacterial and bacteriophage counts were determined at early (≤12 h) and late (≥20 h) time points. The efficacy of bacteriophage to decrease bacterial load was faster than with antibiotics, but the two displayed similar endpoints. Bacteriophage treatment was not associated with overinflammation but in contrast tended to lower inflammation and provided a faster correction of blood cell count abnormalities than did antibiotics. In the absence of bacterial infection, bacteriophage 536_P1 promoted a weak increase in the production of antiviral cytokines (gamma interferon [IFN-γ] and interleukin-12 [IL-12]) and chemokines in the lungs but not in the blood. However, such variations were no longer observed when bacteriophage 536_P1 was administered to treat infected animals. The rapid lysis of bacteria by bacteriophages in vivo does not increase the innate inflammatory response compared to that with antibiotic treatment.
Collapse
|
86
|
Grune J, Tabuchi A, Kuebler WM. Alveolar dynamics during mechanical ventilation in the healthy and injured lung. Intensive Care Med Exp 2019; 7:34. [PMID: 31346797 PMCID: PMC6658629 DOI: 10.1186/s40635-019-0226-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 02/12/2023] Open
Abstract
Mechanical ventilation is a life-saving therapy in patients with acute respiratory distress syndrome (ARDS). However, mechanical ventilation itself causes severe co-morbidities in that it can trigger ventilator-associated lung injury (VALI) in humans or ventilator-induced lung injury (VILI) in experimental animal models. Therefore, optimization of ventilation strategies is paramount for the effective therapy of critical care patients. A major problem in the stratification of critical care patients for personalized ventilation settings, but even more so for our overall understanding of VILI, lies in our limited insight into the effects of mechanical ventilation at the actual site of injury, i.e., the alveolar unit. Unfortunately, global lung mechanics provide for a poor surrogate of alveolar dynamics and methods for the in-depth analysis of alveolar dynamics on the level of individual alveoli are sparse and afflicted by important limitations. With alveolar dynamics in the intact lung remaining largely a "black box," our insight into the mechanisms of VALI and VILI and the effectiveness of optimized ventilation strategies is confined to indirect parameters and endpoints of lung injury and mortality.In the present review, we discuss emerging concepts of alveolar dynamics including alveolar expansion/contraction, stability/instability, and opening/collapse. Many of these concepts remain still controversial, in part due to limitations of the different methodologies applied. We therefore preface our review with an overview of existing technologies and approaches for the analysis of alveolar dynamics, highlighting their individual strengths and limitations which may provide for a better appreciation of the sometimes diverging findings and interpretations. Joint efforts combining key technologies in identical models to overcome the limitations inherent to individual methodologies are needed not only to provide conclusive insights into lung physiology and alveolar dynamics, but ultimately to guide critical care patient therapy.
Collapse
Affiliation(s)
- Jana Grune
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10117 Berlin, Germany
| | - Arata Tabuchi
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10117 Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael’s, Toronto, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
87
|
Albert RK, Smith B, Perlman CE, Schwartz DA. Is Progression of Pulmonary Fibrosis due to Ventilation-induced Lung Injury? Am J Respir Crit Care Med 2019; 200:140-151. [PMID: 31022350 PMCID: PMC6635778 DOI: 10.1164/rccm.201903-0497pp] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Bradford Smith
- Department of Bioengineering, University of Colorado, Aurora, Colorado; and
| | - Carrie E. Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | | |
Collapse
|
88
|
Burge K, Gunasekaran A, Eckert J, Chaaban H. Curcumin and Intestinal Inflammatory Diseases: Molecular Mechanisms of Protection. Int J Mol Sci 2019; 20:ijms20081912. [PMID: 31003422 PMCID: PMC6514688 DOI: 10.3390/ijms20081912] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal inflammatory diseases, such as Crohn’s disease, ulcerative colitis, and necrotizing enterocolitis, are becoming increasingly prevalent. While knowledge of the pathogenesis of these related diseases is currently incomplete, each of these conditions is thought to involve a dysfunctional, or overstated, host immunological response to both bacteria and dietary antigens, resulting in unchecked intestinal inflammation and, often, alterations in the intestinal microbiome. This inflammation can result in an impaired intestinal barrier allowing for bacterial translocation, potentially resulting in systemic inflammation and, in severe cases, sepsis. Chronic inflammation of this nature, in the case of inflammatory bowel disease, can even spur cancer growth in the longer-term. Recent research has indicated certain natural products with anti-inflammatory properties, such as curcumin, can help tame the inflammation involved in intestinal inflammatory diseases, thus improving intestinal barrier function, and potentially, clinical outcomes. In this review, we explore the potential therapeutic properties of curcumin on intestinal inflammatory diseases, including its antimicrobial and immunomodulatory properties, as well as its potential to alter the intestinal microbiome. Curcumin may play a significant role in intestinal inflammatory disease treatment in the future, particularly as an adjuvant therapy.
Collapse
Affiliation(s)
- Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| |
Collapse
|
89
|
Kollisch-Singule M, Andrews P, Satalin J, Gatto LA, Nieman GF, Habashi NM. The time-controlled adaptive ventilation protocol: mechanistic approach to reducing ventilator-induced lung injury. Eur Respir Rev 2019; 28:28/152/180126. [PMID: 30996041 DOI: 10.1183/16000617.0126-2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/16/2019] [Indexed: 11/05/2022] Open
Abstract
Airway pressure release ventilation (APRV) is a ventilator mode that has previously been considered a rescue mode, but has gained acceptance as a primary mode of ventilation. In clinical series and experimental animal models of extrapulmonary acute respiratory distress syndrome (ARDS), the early application of APRV was able to prevent the development of ARDS. Recent experimental evidence has suggested mechanisms by which APRV, using the time-controlled adaptive ventilation (TCAV) protocol, may reduce lung injury, including: 1) an improvement in alveolar recruitment and homogeneity; 2) reduction in alveolar and alveolar duct micro-strain and stress-risers; 3) reduction in alveolar tidal volumes; and 4) recruitment of the chest wall by combating increased intra-abdominal pressure. This review examines these studies and discusses our current understanding of the pleiotropic mechanisms by which TCAV protects the lung. APRV set according to the TCAV protocol has been misunderstood and this review serves to highlight the various protective physiological and mechanical effects it has on the lung, so that its clinical application may be broadened.
Collapse
Affiliation(s)
| | - Penny Andrews
- Dept of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Satalin
- Dept of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Louis A Gatto
- Dept of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA.,Dept of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| | - Gary F Nieman
- Dept of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Nader M Habashi
- Dept of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
90
|
Kiss T, Wittenstein J, Becker C, Birr K, Cinnella G, Cohen E, El Tahan MR, Falcão LF, Gregoretti C, Granell M, Hachenberg T, Hollmann MW, Jankovic R, Karzai W, Krassler J, Loop T, Licker MJ, Marczin N, Mills GH, Murrell MT, Neskovic V, Nisnevitch-Savarese Z, Pelosi P, Rossaint R, Schultz MJ, Serpa Neto A, Severgnini P, Szegedi L, Vegh T, Voyagis G, Zhong J, Gama de Abreu M, Senturk M, the Research Workgroup PROtective VEntilation Network (PROVEnet) of the European Society of Anaesthesiology (ESA). Protective ventilation with high versus low positive end-expiratory pressure during one-lung ventilation for thoracic surgery (PROTHOR): study protocol for a randomized controlled trial. Trials 2019; 20:213. [PMID: 30975217 PMCID: PMC6460685 DOI: 10.1186/s13063-019-3208-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Postoperative pulmonary complications (PPC) may result in longer duration of in-hospital stay and even mortality. Both thoracic surgery and intraoperative mechanical ventilation settings add considerably to the risk of PPC. It is unclear if one-lung ventilation (OLV) for thoracic surgery with a strategy of intraoperative high positive end-expiratory pressure (PEEP) and recruitment maneuvers (RM) reduces PPC, compared to low PEEP without RM. METHODS PROTHOR is an international, multicenter, randomized, controlled, assessor-blinded, two-arm trial initiated by investigators of the PROtective VEntilation NETwork. In total, 2378 patients will be randomly assigned to one of two different intraoperative mechanical ventilation strategies. Investigators screen patients aged 18 years or older, scheduled for open thoracic or video-assisted thoracoscopic surgery under general anesthesia requiring OLV, with a maximal body mass index of 35 kg/m2, and a planned duration of surgery of more than 60 min. Further, the expected duration of OLV shall be longer than two-lung ventilation, and lung separation is planned with a double lumen tube. Patients will be randomly assigned to PEEP of 10 cmH2O with lung RM, or PEEP of 5 cmH2O without RM. During two-lung ventilation tidal volume is set at 7 mL/kg predicted body weight and, during OLV, it will be decreased to 5 mL/kg. The occurrence of PPC will be recorded as a collapsed composite of single adverse pulmonary events and represents the primary endpoint. DISCUSSION PROTHOR is the first randomized controlled trial in patients undergoing thoracic surgery with OLV that is adequately powered to compare the effects of intraoperative high PEEP with RM versus low PEEP without RM on PPC. The results of the PROTHOR trial will support anesthesiologists in their decision to set intraoperative PEEP during protective ventilation for OLV in thoracic surgery. TRIAL REGISTRATION The trial was registered in clinicaltrials.gov ( NCT02963025 ) on 15 November 2016.
Collapse
Affiliation(s)
- T. Kiss
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - J. Wittenstein
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - C. Becker
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - K. Birr
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - G. Cinnella
- Department of Anesthesia and Intensive Care, OO Riuniti Hospital, University of Foggia, Foggia, Italy
| | - E. Cohen
- Department of Anesthesiology, The Mount Sinai Hospital, New York, USA
| | - M. R. El Tahan
- Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - L. F. Falcão
- Federal University of São Paulo, Sao Paulo, Brazil
| | - C. Gregoretti
- UOC Anestesia e Rianimazione A.O.Universitaria “P. Giaccone”, Dipartimento Di.Chir.On.S., Università degli Studi di Palermo, Palermo, Italy
| | - M. Granell
- Hospital General Universitario de Valencia, Valencia, Spain
| | | | - M. W. Hollmann
- Department of Anesthesiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - R. Jankovic
- Clinic for Anesthesia and Intensive Therapy, Clinical Center Nis, School of Medicine, University of Nis, Nis, Serbia
| | - W. Karzai
- Zentralklinik Bad Berka, Bad Berka, Germany
| | | | - T. Loop
- Department of Anesthesiology and Intensive Care Medicine Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - N. Marczin
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Department of Anaesthesia, Royal Brompton and Harefield NHS Foundation Trust, Harefield Hospital, Harefield, Middlesex, UK
- Centre of Anaesthesia and Intensive Care, Semmelweis University, Budapest, Hungary
| | - G. H. Mills
- Department of Anaesthesia and Intensive Care Medicine, Sheffield Teaching Hospitals, Sheffield University, Sheffield, UK
| | - M. T. Murrell
- Department of Anesthesiology, Weill Cornell Medicine, New York, USA
| | | | | | - P. Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- IRCCS San Martino Policlinico Hospital, Genoa, Italy
| | - R. Rossaint
- Department of Anaesthesiology, University Hospital Aachen, Aachen, Germany
| | - M. J. Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - A. Serpa Neto
- Department of Critical Care, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - P. Severgnini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy
| | - L. Szegedi
- Department of Anesthesiology, Centre Hospitalier Universitaire de Charleroi, Charleroi, Belgium
| | - T. Vegh
- Department of Anesthesiology and Intensive Care, University of Debrecen, Debrecen, Hungary
- Outcomes Research Consortium, Cleveland, USA
| | - G. Voyagis
- Department of Anaesthesia, Postoperative ICU, Pain Relief & Palliative Care Clinic, “Sotiria” Chest Diseases Hospital, Athens, Greece
- Department of Anaesthesiology and Critical Care Medicine, University of Patras, Patra, Greece
| | - J. Zhong
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - M. Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - M. Senturk
- Department of Anaesthesiology and Intensive Care, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - the Research Workgroup PROtective VEntilation Network (PROVEnet) of the European Society of Anaesthesiology (ESA)
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Anesthesia and Intensive Care, OO Riuniti Hospital, University of Foggia, Foggia, Italy
- Department of Anesthesiology, The Mount Sinai Hospital, New York, USA
- Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Federal University of São Paulo, Sao Paulo, Brazil
- UOC Anestesia e Rianimazione A.O.Universitaria “P. Giaccone”, Dipartimento Di.Chir.On.S., Università degli Studi di Palermo, Palermo, Italy
- Hospital General Universitario de Valencia, Valencia, Spain
- University Hospital Magdeburg, Magdeburg, Germany
- Department of Anesthesiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
- Clinic for Anesthesia and Intensive Therapy, Clinical Center Nis, School of Medicine, University of Nis, Nis, Serbia
- Zentralklinik Bad Berka, Bad Berka, Germany
- Thoracic Center Coswig, Coswig, Germany
- Department of Anesthesiology and Intensive Care Medicine Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- University Hospital Geneva, Geneva, Switzerland
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Department of Anaesthesia, Royal Brompton and Harefield NHS Foundation Trust, Harefield Hospital, Harefield, Middlesex, UK
- Centre of Anaesthesia and Intensive Care, Semmelweis University, Budapest, Hungary
- Department of Anaesthesia and Intensive Care Medicine, Sheffield Teaching Hospitals, Sheffield University, Sheffield, UK
- Department of Anesthesiology, Weill Cornell Medicine, New York, USA
- Military Medical Academy, Belgrade, Serbia
- Penn State Hershey Anesthesiology & Perioperative Medicine, Hershey, USA
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- IRCCS San Martino Policlinico Hospital, Genoa, Italy
- Department of Anaesthesiology, University Hospital Aachen, Aachen, Germany
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Department of Critical Care, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy
- Department of Anesthesiology, Centre Hospitalier Universitaire de Charleroi, Charleroi, Belgium
- Department of Anesthesiology and Intensive Care, University of Debrecen, Debrecen, Hungary
- Outcomes Research Consortium, Cleveland, USA
- Department of Anaesthesia, Postoperative ICU, Pain Relief & Palliative Care Clinic, “Sotiria” Chest Diseases Hospital, Athens, Greece
- Department of Anaesthesiology and Critical Care Medicine, University of Patras, Patra, Greece
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Anaesthesiology and Intensive Care, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| |
Collapse
|
91
|
Ke Y, Karki P, Zhang C, Li Y, Nguyen T, Birukov KG, Birukova AA. Mechanosensitive Rap1 activation promotes barrier function of lung vascular endothelium under cyclic stretch. Mol Biol Cell 2019; 30:959-974. [PMID: 30759056 PMCID: PMC6589902 DOI: 10.1091/mbc.e18-07-0422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mechanical ventilation remains an imperative treatment for the patients with acute respiratory distress syndrome, but can also exacerbate lung injury. We have previously described a key role of RhoA GTPase in high cyclic stretch (CS)-induced endothelial cell (EC) barrier dysfunction. However, cellular mechanotransduction complexes remain to be characterized. This study tested a hypothesis that recovery of a vascular EC barrier after pathologic mechanical stress may be accelerated by cell exposure to physiologic CS levels and involves Rap1-dependent rearrangement of endothelial cell junctions. Using biochemical, molecular, and imaging approaches we found that EC pre- or postconditioning at physiologically relevant low-magnitude CS promotes resealing of cell junctions disrupted by pathologic, high-magnitude CS. Cytoskeletal remodeling induced by low CS was dependent on small GTPase Rap1. Protective effects of EC preconditioning at low CS were abolished by pharmacological or molecular inhibition of Rap1 activity. In vivo, using mice exposed to mechanical ventilation, we found that the protective effect of low tidal volume ventilation against lung injury caused by lipopolysaccharides and ventilation at high tidal volume was suppressed in Rap1 knockout mice. Taken together, our results demonstrate a prominent role of Rap1-mediated signaling mechanisms activated by low CS in acceleration of lung vascular EC barrier restoration.
Collapse
Affiliation(s)
- Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Chenou Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yue Li
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Trang Nguyen
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Anna A. Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201,*Address correspondence to: Anna A. Birukova ()
| |
Collapse
|
92
|
Liu Q, Dwyer GK, Zhao Y, Li H, Mathews LR, Chakka AB, Chandran UR, Demetris JA, Alcorn JF, Robinson KM, Ortiz LA, Pitt BR, Thomson AW, Fan MH, Billiar TR, Turnquist HR. IL-33-mediated IL-13 secretion by ST2+ Tregs controls inflammation after lung injury. JCI Insight 2019; 4:123919. [PMID: 30779711 DOI: 10.1172/jci.insight.123919] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/12/2019] [Indexed: 12/24/2022] Open
Abstract
Acute respiratory distress syndrome is an often fatal disease that develops after acute lung injury and trauma. How released tissue damage signals, or alarmins, orchestrate early inflammatory events is poorly understood. Herein we reveal that IL-33, an alarmin sequestered in the lung epithelium, is required to limit inflammation after injury due to an unappreciated capacity to mediate Foxp3+ Treg control of local cytokines and myeloid populations. Specifically, Il33-/- mice are more susceptible to lung damage-associated morbidity and mortality that is typified by augmented levels of the proinflammatory cytokines and Ly6Chi monocytes in the bronchoalveolar lavage fluid. Local delivery of IL-33 at the time of injury is protective but requires the presence of Treg cells. IL-33 stimulates both mouse and human Tregs to secrete IL-13. Using Foxp3Cre × Il4/Il13fl/fl mice, we show that Treg expression of IL-13 is required to prevent mortality after acute lung injury by controlling local levels of G-CSF, IL-6, and MCP-1 and inhibiting accumulation of Ly6Chi monocytes. Our study identifies a regulatory mechanism involving IL-33 and Treg secretion of IL-13 in response to tissue damage that is instrumental in limiting local inflammatory responses and may shape the myeloid compartment after lung injury.
Collapse
Affiliation(s)
- Quan Liu
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Gaelen K Dwyer
- Thomas E. Starzl Transplantation Institute.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yifei Zhao
- Thomas E. Starzl Transplantation Institute.,Tsinghua University School of Medicine, Beijing, China
| | - Huihua Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | | | | | - Jake A Demetris
- Thomas E. Starzl Transplantation Institute.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John F Alcorn
- Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Luis A Ortiz
- Department of Environmental and Occupational Heath, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Bruce R Pitt
- Department of Environmental and Occupational Heath, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Angus W Thomson
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ming-Hui Fan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hēth R Turnquist
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
93
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
94
|
Goligher EC, Brochard LJ, Reid WD, Fan E, Saarela O, Slutsky AS, Kavanagh BP, Rubenfeld GD, Ferguson ND. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. THE LANCET RESPIRATORY MEDICINE 2019; 7:90-98. [DOI: 10.1016/s2213-2600(18)30366-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/04/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022]
|
95
|
Abstract
The acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in critically ill patients and is defined by the acute onset of noncardiogenic pulmonary oedema, hypoxaemia and the need for mechanical ventilation. ARDS occurs most often in the setting of pneumonia, sepsis, aspiration of gastric contents or severe trauma and is present in ~10% of all patients in intensive care units worldwide. Despite some improvements, mortality remains high at 30-40% in most studies. Pathological specimens from patients with ARDS frequently reveal diffuse alveolar damage, and laboratory studies have demonstrated both alveolar epithelial and lung endothelial injury, resulting in accumulation of protein-rich inflammatory oedematous fluid in the alveolar space. Diagnosis is based on consensus syndromic criteria, with modifications for under-resourced settings and in paediatric patients. Treatment focuses on lung-protective ventilation; no specific pharmacotherapies have been identified. Long-term outcomes of patients with ARDS are increasingly recognized as important research targets, as many patients survive ARDS only to have ongoing functional and/or psychological sequelae. Future directions include efforts to facilitate earlier recognition of ARDS, identifying responsive subsets of patients and ongoing efforts to understand fundamental mechanisms of lung injury to design specific treatments.
Collapse
|
96
|
Abstract
Ventilator-induced lung injury develops from interactions between the lung parenchyma and applied mechanical power. In acute respiratory distress syndrome, the lung is smaller size with an inhomogeneous structure. The same mechanical force applied on a reduced parenchyma would produce volutrauma; the concentration of mechanical forces at inhomogeneous interfaces produces atelectrauma. Higher positive end-expiratory pressures favor volutrauma and reduce atelectrauma; lower values do the opposite. Volutrauma and atelectrauma harms and benefits, however, seem to be equivalent at 5 to 15 cm H2O. At values greater than 15 cm H2O, the risk of damage outweighs the benefits of major atelectrauma prevention.
Collapse
|
97
|
Gattinoni L, Quintel M, Marini JJ. Volutrauma and atelectrauma: which is worse? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:264. [PMID: 30360756 PMCID: PMC6203268 DOI: 10.1186/s13054-018-2199-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Luciano Gattinoni
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - Michael Quintel
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - John J Marini
- Department of Pulmonary and Critical Care Medicine, Regions Hospital and University of Minnesota, Minneapolis/St. Paul, Minnesota, USA
| |
Collapse
|
98
|
Driving-pressure-independent protective effects of open lung approach against experimental acute respiratory distress syndrome. Crit Care 2018; 22:228. [PMID: 30243301 PMCID: PMC6151188 DOI: 10.1186/s13054-018-2154-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022] Open
Abstract
Background The open lung approach (OLA) reportedly has lung-protective effects against acute respiratory distress syndrome (ARDS). Recently, lowering of the driving pressure (ΔP), rather than improvement in lung aeration per se, has come to be considered as the primary lung-protective mechanism of OLA. However, the driving pressure-independent protective effects of OLA have never been evaluated in experimental studies. We here evaluated whether OLA shows protective effects against experimental ARDS even when the ΔP is not lowered. Methods Lipopolysaccharide was intratracheally administered to rats to establish experimental ARDS. After 24 h, rats were mechanically ventilated and randomly allocated to the OLA or control group. In the OLA group, 5 cmH2O positive end-expiratory pressure (PEEP) and recruitment maneuver (RM) were applied. Neither PEEP nor RM was applied to the rats in the control group. Dynamic ΔP was kept at 15 cmH2O in both groups. After 6 h of mechanical ventilation, rats in both groups received RM to inflate reversible atelectasis of the lungs. Arterial blood gas analysis, lung computed tomography, histological evaluation, and comprehensive biochemical analysis were performed. Results OLA significantly improved lung aeration, arterial oxygenation, and gas exchange. Even after RM in both groups, the differences in these parameters between the two groups persisted, indicating that the atelectasis-induced respiratory dysfunction observed in the control group is not an easily reversible functional problem. Lung histological damage was severe in the dorsal dependent area in both groups, but was attenuated by OLA. White blood cell counts, protein concentrations, and tissue injury markers in the broncho-alveolar lavage fluid (BALF) were higher in the control than in the OLA group. Furthermore, levels of CXCL-7, a platelet-derived chemokine, were higher in the BALF from the control group, indicating that OLA protects the lungs by suppressing platelet activation. Conclusions OLA shows protective effects against experimental ARDS, even when the ΔP is not decreased. In addition to reducing ΔP, maintaining lung aeration seems to be important for lung protection in ARDS. Electronic supplementary material The online version of this article (10.1186/s13054-018-2154-2) contains supplementary material, which is available to authorized users.
Collapse
|
99
|
Schwarz P, Custódio G, Rheinheimer J, Crispim D, Leitão CB, Rech TH. Brain Death-Induced Inflammatory Activity is Similar to Sepsis-Induced Cytokine Release. Cell Transplant 2018; 27:1417-1424. [PMID: 30235942 PMCID: PMC6180721 DOI: 10.1177/0963689718785629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Brain death (BD) is associated with a systemic inflammation leading to worse graft outcomes. This study aimed to compare plasma cytokine values between brain-dead and critically ill patients, including septic and non-septic controls, and evaluate cytokine release kinetics in BD. Sixteen brain-dead and 32 control patients (16 with and 16 without sepsis) were included. Plasma cytokines were measured by magnetic bead assay after the first clinical exam consistent with BD and every 6 hours thereafter, and at the time of study entry in the control group. The values for IL-8 and IFN-γ were higher in brain-dead and septic patients than in non-septic patients [IL-8: 80.3 (18.7–169.6) vs. 68.2 (22.4–359.4) vs. 16.4 (9.2–42.7) pg/mL; P = 0.006; IFN-γ: 2.8 (1.6-6.1) vs. 3.4 (1.2–9.0) vs. 0.5 (0.5–1.8) pg/mL; P = 0.012]. TNF showed a clear tendency to increase in brain-dead patients [2.7 (1.0–4.8) vs. 1.0 (1.0–5.6) vs. 1.0 (1.0–1.0) pg/mL; P = 0.051], and IL-6 values were higher in brain-dead patients than in non-septic controls [174.5 (104.9–692.5) vs. 13.2 (7.3–38.6) pg/mL; P = 0.002]. These differences remained even after excluding brain-dead patients who also had sepsis (n = 3). IL-1β and IL-10 values increased from baseline to time point 2 (∼6 hours later) [IL-1β: 5.39 (1.93–16.89) vs. 7.11 (1.93–29.13) pg/mL; P = 0.012; IL-10: 8.78 (3.62–16.49) vs. 15.73 (5.49–23.98) pg/mL; P = 0.009]. BD-induced and sepsis-induced plasma cytokine values were similarly high, and both were higher than the observed in non-septic critically ill patients.
Collapse
Affiliation(s)
- Patrícia Schwarz
- 1 Graduate Program in Medical Sciences, Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,2 Intensive Care Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Geisiane Custódio
- 1 Graduate Program in Medical Sciences, Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jakeline Rheinheimer
- 3 Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- 1 Graduate Program in Medical Sciences, Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,3 Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Cristiane B Leitão
- 1 Graduate Program in Medical Sciences, Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,3 Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tatiana H Rech
- 1 Graduate Program in Medical Sciences, Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,2 Intensive Care Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
100
|
Dolinay T, Aonbangkhen C, Zacharias W, Cantu E, Pogoriler J, Stablow A, Lawrence GG, Suzuki Y, Chenoweth DM, Morrisey E, Christie JD, Beers MF, Margulies SS. Protein kinase R-like endoplasmatic reticulum kinase is a mediator of stretch in ventilator-induced lung injury. Respir Res 2018; 19:157. [PMID: 30134920 PMCID: PMC6106739 DOI: 10.1186/s12931-018-0856-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/06/2018] [Indexed: 12/22/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a severe form of lung injury characterized by damage to the epithelial barrier with subsequent pulmonary edema and hypoxic respiratory failure. ARDS is a significant medical problem in intensive care units with associated high care costs. There are many potential causes of ARDS; however, alveolar injury associated with mechanical ventilation, termed ventilator-induced lung injury (VILI), remains a well-recognized contributor. It is thus critical to understand the mechanism of VILI. Based on our published preliminary data, we hypothesized that the endoplasmic reticulum (ER) stress response molecule Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK) plays a role in transmitting mechanosensory signals the alveolar epithelium. Methods ER stress signal responses to mechanical stretch were studied in ex-vivo ventilated pig lungs. To explore the effect of PERK inhibition on VILI, we ventilated live rats and compared lung injury parameters to non-ventilated controls. The effect of stretch-induced epithelial ER Ca2+ signaling on PERK was studied in stretched alveolar epithelial monolayers. To confirm the activation of PERK in human disease, ER stress signaling was compared between ARDS and non-ARDS lungs. Results Our studies revealed increased PERK-specific ER stress signaling in response to overstretch. PERK inhibition resulted in dose-dependent improvement of alveolar inflammation and permeability. Our data indicate that stretch-induced epithelial ER Ca2+ release is an activator of PERK. Experiments with human lung tissue confirmed PERK activation by ARDS. Conclusion Our study provides evidences that PERK is a mediator stretch signals in the alveolar epithelium.
Collapse
Affiliation(s)
- Tamás Dolinay
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.,Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Chanat Aonbangkhen
- Department of Chemistry University of Pennsylvania, 231 S 34th St, Philadelphia, PA, 19104, USA
| | - William Zacharias
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Jennifer Pogoriler
- Department of Pathology, Children's Hospital of Philadelphia, 3400 S 34th St, Philadelphia, PA, 19104, USA
| | - Alec Stablow
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd St, Suite 240 Skirkanich Hall Philadelphia, Philadelphia, PA, 19104, USA
| | - Gladys G Lawrence
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd St, Suite 240 Skirkanich Hall Philadelphia, Philadelphia, PA, 19104, USA
| | - Yoshikazu Suzuki
- Department of Surgery, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - David M Chenoweth
- Department of Chemistry University of Pennsylvania, 231 S 34th St, Philadelphia, PA, 19104, USA
| | - Edward Morrisey
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Jason D Christie
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Michael F Beers
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Susan S Margulies
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd St, Suite 240 Skirkanich Hall Philadelphia, Philadelphia, PA, 19104, USA. .,Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, University School of Medicine, U.A. Whitaker Building, 313 Ferst Drive, Suite 2116, Atlanta, GA, 30332-0535, USA.
| |
Collapse
|