51
|
Farshbafnadi M, Ghannadzadeh Kermani Pour R, Sattarzadeh Badkoubeh R, Geraiely B, Mehrpooya M, Larti F. Kidney transplantation in the presence of pulmonary hypertension: A clinical dilemma. Heliyon 2024; 10:e39074. [PMID: 39640609 PMCID: PMC11620137 DOI: 10.1016/j.heliyon.2024.e39074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
End-stage renal disease (ESRD) is a progressive chronic condition that is strongly associated with cardiovascular mortality. ESRD patients usually benefit significantly from kidney transplantation. Pulmonary hypertension (PH) is a common finding in ESRD patients that adversely affects their survival. It has also been associated with adverse increased mortality and morbidity following kidney transplantation. However, PH has also been thought to improve following kidney transplantation. The exact underlying pathophysiology of PH in ESRD patients is unknown. However, it has been believed to be multifactorial, involving endothelial dysfunction, volume overload, and arteriovenous fistula. Management of PH in kidney transplant candidates and ESRD patients is remarkably understudied. Several treatment options are available for the treatment of PH. However, studies conducted on treating PH in ESRD patients are scarce. There is an increased need for studies on ESRD patients with PH.
Collapse
Affiliation(s)
| | | | - Roya Sattarzadeh Badkoubeh
- Department of Cardiology, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Geraiely
- Department of Cardiology, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mehrpooya
- Department of Cardiology, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Larti
- Department of Cardiology, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
52
|
Campos I, Richter B, Thomas SM, Czaya B, Yanucil C, Kentrup D, Fajol A, Li Q, Secor SM, Faul C. FGFR4 Is Required for Concentric Growth of Cardiac Myocytes during Physiologic Cardiac Hypertrophy. J Cardiovasc Dev Dis 2024; 11:320. [PMID: 39452290 PMCID: PMC11508992 DOI: 10.3390/jcdd11100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Fibroblast growth factor (FGF) 23 is a bone-derived hormone that promotes renal phosphate excretion. Serum FGF23 is increased in chronic kidney disease (CKD) and contributes to pathologic cardiac hypertrophy by activating FGF receptor (FGFR) 4 on cardiac myocytes, which might lead to the high cardiovascular mortality in CKD patients. Increases in serum FGF23 levels have also been observed following endurance exercise and in pregnancy, which are scenarios of physiologic cardiac hypertrophy as an adaptive response of the heart to increased demand. To determine whether FGF23/FGFR4 contributes to physiologic cardiac hypertrophy, we studied FGFR4 knockout mice (FGFR4-/-) during late pregnancy. In comparison to virgin littermates, pregnant wild-type and FGFR4-/- mice showed increases in serum FGF23 levels and heart weight; however, the elevation in myocyte area observed in pregnant wild-type mice was abrogated in pregnant FGFR4-/- mice. This outcome was supported by treatments of cultured cardiac myocytes with serum from fed Burmese pythons, another model of physiologic hypertrophy, where the co-treatment with an FGFR4-specific inhibitor abrogated the serum-induced increase in cell area. Interestingly, we found that in pregnant mice, the heart, and not the bone, shows elevated FGF23 expression, and that increases in serum FGF23 are not accompanied by changes in phosphate metabolism. Our study suggests that in physiologic cardiac hypertrophy, the heart produces FGF23 that contributes to hypertrophic growth of cardiac myocytes in a paracrine and FGFR4-dependent manner, and that the kidney does not respond to heart-derived FGF23.
Collapse
Affiliation(s)
- Isaac Campos
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Beatrice Richter
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Sarah Madison Thomas
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Brian Czaya
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Christopher Yanucil
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Dominik Kentrup
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Abul Fajol
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Qing Li
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Stephen M. Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Christian Faul
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| |
Collapse
|
53
|
Brinker EJ, Hardcastle MR, Dittmer KE, Graff EC. Endocrine fibroblast growth factors in domestic animals. Domest Anim Endocrinol 2024; 89:106872. [PMID: 39059301 DOI: 10.1016/j.domaniend.2024.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Fibroblast growth factors (FGFs) are a group of structurally homologous yet functionally pleiotropic proteins. Canonical and intracellular FGFs have primarily autocrine or paracrine effects. However, the FGF19 subfamily, composed of FGF15/19, FGF21, and FGF23, act as endocrine hormones that regulate bile acid, metabolic, and phosphorus homeostasis, respectively. Current research in human and rodent models demonstrates the potential of these endocrine FGFs to target various diseases, including disorders of inherited hypophosphatemia, chronic liver disease, obesity, and insulin resistance. Many diseases targeted for therapeutic use in humans have pathophysiological overlaps in domestic animals. Despite the potential clinical and economic impact, little is known about endocrine FGFs and their signaling pathways in major domestic animal species compared with humans and laboratory animals. This review aims to describe the physiology of these endocrine FGFs, discuss their current therapeutic use, and summarize the contemporary literature regarding endocrine FGFs in domestic animals, focusing on potential future directions.
Collapse
Affiliation(s)
- Emily J Brinker
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, USA 01536
| | - Michael R Hardcastle
- IDEXX Laboratories Pty. Ltd., 20A Maui Street, Pukete, Hamilton 3200, New Zealand
| | - Keren E Dittmer
- School of Veterinary Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Scott-Ritchey Research Center, College of Veterinary Medicine, Dr. Auburn University, 1265 HC Morgan, AL, USA 36849.
| |
Collapse
|
54
|
Ahlmann C, Stronach L, Waters K, Walker K, Oh J, Schmitt CP, Ranchin B, Shroff R. Hemodiafiltration for children with stage 5 chronic kidney disease: technical aspects and outcomes. Pediatr Nephrol 2024; 39:2611-2626. [PMID: 38347283 PMCID: PMC11272808 DOI: 10.1007/s00467-024-06285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 07/26/2024]
Abstract
Despite significant medical and technical improvements in the field of dialysis, the morbidity and mortality among patients with chronic kidney disease (CKD) stage 5 on dialysis remains extremely high. Hemodiafiltration (HDF), a dialysis method that combines the two main principles of hemodialysis (HD) and hemofiltration-diffusion and convection-has had a positive impact on survival when delivered with a high convective dose. Improved outcomes with HDF have been attributed to the following factors: HDF removes middle molecular weight uremic toxins including inflammatory cytokines, increases hemodynamic stability, and reduces inflammation and oxidative stress compared to conventional HD. Two randomized trials in adults have shown improved survival with HDF compared to high-flux HD. A large prospective cohort study in children has shown that HDF attenuated the progression of cardiovascular disease, improved bone turnover and growth, reduced inflammation, and improved blood pressure control compared to conventional HD. Importantly, children on HDF reported fewer headaches, dizziness, and cramps; had increased physical activity; and improved school attendance compared to those on HD. In this educational review, we discuss the technical aspects of HDF and results from pediatric studies, comparing outcomes on HDF vs. conventional HD. Convective volume, the cornerstone of treatment with HDF and a key determinant of outcomes in adult randomized trials, is discussed in detail, including the practical aspects of achieving an optimal convective volume.
Collapse
Affiliation(s)
- Charlotte Ahlmann
- University College London Great Ormond Street Hospital and Institute of Child Health, London, WC1N 3JH, UK
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lynsey Stronach
- University College London Great Ormond Street Hospital and Institute of Child Health, London, WC1N 3JH, UK
| | - Kathryn Waters
- University College London Great Ormond Street Hospital and Institute of Child Health, London, WC1N 3JH, UK
| | - Kate Walker
- University College London Great Ormond Street Hospital and Institute of Child Health, London, WC1N 3JH, UK
| | - Jun Oh
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Bruno Ranchin
- Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - Rukshana Shroff
- University College London Great Ormond Street Hospital and Institute of Child Health, London, WC1N 3JH, UK.
| |
Collapse
|
55
|
Wang F, Colonnello E, Zhang H, Sansone A, Wang C, Dolci S, Guo J, Jannini EA. Comparing Western and traditional Chinese medicine for male sexual dysfunction: can Klotho represent a silk road? Andrology 2024; 12:1215-1223. [PMID: 38155398 DOI: 10.1111/andr.13580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Traditional Chinese medicine (TCM) and Western Medicine both have shown efficacy in treating male sexual dysfunction (MSD). The aim of this perspective paper is to discuss a possible link between Western medicine and TCM in the MSD field as represented by the entity of Klotho. Klotho is a recently discovered protein, mainly expressed in the kidney, encoded by the anti-aging gene klotho. Not only is Klotho significantly correlated with the development and progression of kidney diseases and their complications, but increasing evidence indicates that it is also closely related to MSD. A comprehensive search within PubMed database was performed to retrieve available evidence on Klotho's roles, particularly in kidney and in MSD. Indeed, in the TCM theory, the concept of the "kidney" is entirely different from the Western medicine: it is closely related to metabolism and to the reproductive, nervous, endocrine systems, being more than just a urinary organ. According to the "Kidney storing essence (jīng) and governing reproduction" (KSEGR) theory, a cornerstone in TCM, the treatment of MSD mainly consists of restoring the kidney's function. Signs of decreasing kidney essence show a consistent similarity to deficiencies of Klotho, also for what regards the male sexual function. Based on the current evidence, Klotho may represent a potential biological indicator for sexual desire and sexual function and a kind of new scientific Silk Road between TCM and Western medicine for MSD; nevertheless, there is a need to conduct further high-quality research to prove this hypothesis.
Collapse
Affiliation(s)
- Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Elena Colonnello
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Hui Zhang
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Chunlin Wang
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Susanna Dolci
- Chair of Anatomy, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Emmanuele A Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
56
|
Narasaki Y, Siu MK, Nguyen M, Kalantar-Zadeh K, Rhee CM. Personalized nutritional management in the transition from non-dialysis dependent chronic kidney disease to dialysis. Kidney Res Clin Pract 2024; 43:575-585. [PMID: 38738275 PMCID: PMC11467355 DOI: 10.23876/j.krcp.23.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/14/2023] [Accepted: 11/10/2023] [Indexed: 05/14/2024] Open
Abstract
Dialysis has been the dominant treatment regimen in end-stage kidney disease as a means to remove uremic waste products and to maintain electrolyte, acid base, and fluid balance. However, given that dialysis may not always provide a survival benefit nor improved quality of life in certain subpopulations, there is growing recognition of the need for conservative and preservative management as an alternative treatment strategy for advanced chronic kidney disease (CKD). Personalized nutritional management tailored to patient's sociodemographics, social needs, psychological status, health literacy level, and preferences is a key component of conservative and preservative care, as well as in the management of patients transitioning from non-dialysis dependent CKD to dialysis. In this review, we discuss the nutritional and metabolic alterations that ensue in CKD; the rationale for low-protein diets in the conservative and preservative management of advanced CKD; the role of plant-based diets in kidney health; emerging data on dietary potassium and sodium intake on CKD outcomes; and the practical implementation of dietary interventions in advanced kidney disease.
Collapse
Affiliation(s)
- Yoko Narasaki
- Division of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, University of California Irvine, Orange, CA, USA
- Tibor Rubin Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA
| | - Man Kit Siu
- Division of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, University of California Irvine, Orange, CA, USA
- Tibor Rubin Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA
| | - Matthew Nguyen
- Division of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, University of California Irvine, Orange, CA, USA
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, University of California Irvine, Orange, CA, USA
- Tibor Rubin Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA
- The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Connie M. Rhee
- Division of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, University of California Irvine, Orange, CA, USA
- Tibor Rubin Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA
| |
Collapse
|
57
|
Kamenický P, Briot K, Munns CF, Linglart A. X-linked hypophosphataemia. Lancet 2024; 404:887-901. [PMID: 39181153 DOI: 10.1016/s0140-6736(24)01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 08/27/2024]
Abstract
X-linked hypophosphataemia is a genetic disease caused by defects in the phosphate regulating endopeptidase homolog X-linked (PHEX) gene and is characterised by X-linked dominant inheritance. The main consequence of PHEX deficiency is increased production of the phosphaturic hormone fibroblast growth factor 23 (FGF23) in osteoblasts and osteocytes. Chronic exposure to circulating FGF23 is responsible for renal phosphate wasting and decreased synthesis of calcitriol, which decreases intestinal phosphate absorption. These mechanisms result in lifelong hypophosphataemia, impaired growth plate and bone matrix mineralisation, and diverse manifestations in affected children and adults, including some debilitating morbidities and possibly increased mortality. Important progress has been made in disease knowledge and management over the past decade; in particular, targeting FGF23 is a therapeutic approach that has substantially improved outcomes. However, patients affected by this complex disease need lifelong care and innovative treatment strategies, such as gene repair of PHEX, are necessary to further limit the disease burden.
Collapse
Affiliation(s)
- Peter Kamenický
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Centre de Référence des Maladies du Métabolisme du Calcium et du Phosphate, Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.
| | - Karine Briot
- Centre de Référence des Maladies du Métabolisme du Calcium et du Phosphate, Service de Rhumatologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Craig F Munns
- Department of Endocrinology and Diabetes, Queensland Children's Hospital and Child Health Research Centre and Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Agnès Linglart
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service d'Endocrinologie et du Diabète de l'Enfant, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| |
Collapse
|
58
|
Heitman K, Bollenbecker S, Bradley J, Czaya B, Fajol A, Thomas SM, Li Q, Komarova S, Krick S, Rowe GC, Alexander MS, Faul C. Hyperphosphatemia Contributes to Skeletal Muscle Atrophy in Mice. Int J Mol Sci 2024; 25:9308. [PMID: 39273260 PMCID: PMC11395169 DOI: 10.3390/ijms25179308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with various pathologic changes, including elevations in serum phosphate levels (hyperphosphatemia), vascular calcification, and skeletal muscle atrophy. Elevated phosphate can damage vascular smooth muscle cells and cause vascular calcification. Here, we determined whether high phosphate can also affect skeletal muscle cells and whether hyperphosphatemia, in the context of CKD or by itself, is associated with skeletal muscle atrophy. As models of hyperphosphatemia with CKD, we studied mice receiving an adenine-rich diet for 14 weeks and mice with deletion of Collagen 4a3 (Col4a3-/-). As models of hyperphosphatemia without CKD, we analyzed mice receiving a high-phosphate diet for three and six months as well as a genetic model for klotho deficiency (kl/kl). We found that adenine, Col4a3-/-, and kl/kl mice have reduced skeletal muscle mass and function and develop atrophy. Mice on a high-phosphate diet for six months also had lower skeletal muscle mass and function but no significant signs of atrophy, indicating less severe damage compared with the other three models. To determine the potential direct actions of phosphate on skeletal muscle, we cultured primary mouse myotubes in high phosphate concentrations, and we detected the induction of atrophy. We conclude that in experimental mouse models, hyperphosphatemia is sufficient to induce skeletal muscle atrophy and that, among various other factors, elevated phosphate levels might contribute to skeletal muscle injury in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.B.); (S.K.)
| | - Jordan Bradley
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Brian Czaya
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Abul Fajol
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Sarah Madison Thomas
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Qing Li
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Svetlana Komarova
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.B.); (S.K.)
| | - Glenn C. Rowe
- Division of Cardiovascular Disease, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Division of Neurology, Department of Pediatrics, Children’s of Alabama, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| |
Collapse
|
59
|
Sharma AR, Chatterjee S, Lee YH, Lee SS. Targeting Crosstalk of Signaling Pathways among Muscles-Bone-Adipose Tissue: A Promising Therapeutic Approach for Sarcopenia. Aging Dis 2024; 15:1619-1645. [PMID: 37815907 PMCID: PMC11272187 DOI: 10.14336/ad.2023.00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/03/2023] [Indexed: 10/12/2023] Open
Abstract
The aging process is associated with the development of a wide range of degenerative disorders in mammals. These diseases are characterized by a progressive decline in function at multiple levels, including the molecular, cellular, tissue, and organismal. Furthermore, it is responsible for various healthcare costs in developing and developed countries. Sarcopenia is the deterioration in the quality and functionality of muscles, which is extremely concerning as it manages many functions in the human body. This article reviews the molecular crosstalk involved in sarcopenia and the specific roles of many mediator molecules in establishing cross-talk between muscles, bone, and fatty tissues, eventually leading to sarcopenia. Besides, the involvement of various etiological factors, such as neurology, endocrinology, lifestyle, etc., makes it exceedingly difficult for clinicians to develop a coherent hypothesis that may lead to the well-organized management system required to battle this debilitating disease. The several hallmarks contributing to the progression of the disease is a vital question that needs to be addressed to ensure an efficient treatment for sarcopenia patients. Also, the intricate molecular mechanism involved in developing this disease requires more studies. The direct relationship of cellular senescence with aging is one of the pivotal issues contributing to disease pathophysiology. Some patented treatment strategies have been discussed, including drugs undergoing clinical trials and emerging options like miRNA and protein-enclosed extracellular vesicles. A clear understanding of the secretome, including the signaling pathways involved between muscles, bone, and fatty tissues, is extremely beneficial for developing novel therapeutics for curing sarcopenia.
Collapse
Affiliation(s)
| | | | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
60
|
Benli S, Yesil E, Tazeoglu D, Ozcan C, Ozcan IT, Dag A. Changes in cardiac functions in patients treated with parathyroidectomy for secondary hyperparathyroidism. Updates Surg 2024; 76:1443-1452. [PMID: 38530609 PMCID: PMC11341577 DOI: 10.1007/s13304-024-01812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Our study aims to investigate the changes in cardiac functions, especially myocardial performance index (MPI), in patients who underwent parathyroidectomy for secondary hyperparathyroidism. Patients who underwent parathyroidectomy for secondary hyperparathyroidism between June 2010 and September 2021 were analyzed retrospectively. The patients were divided into two groups: those who underwent total parathyroidectomy (group 1) and those who underwent subtotal parathyroidectomy (group 2). The groups were compared according to the echocardiogram findings performed in the preoperative period and the postoperative sixth month. In addition, cardiac structure, and systolic and diastolic functions, especially myocardial performance index, were evaluated by echocardiography and Doppler imaging. Thirty-seven patients were examined; 16 (43.2%) underwent total parathyroidectomy, and 21 (56.8%) had subtotal parathyroidectomy performed. Group 1's mean left ventricular end-systolic diameter (LVES) decreased from 2.53 ± 0.57 to 2.35 ± 0.37 cm after parathyroidectomy. In Group 1, the postoperative value of LVES and end-systolic volume decreased significantly compared to the preoperative period (p = 0.042, p = 0.008, respectively). EF increased from 59.25 ± 0.05 to 67.81 ± 4.04. In Group 1, EF and EV postoperatively increased significantly compared to the preoperative period (p = 0.023, p = 0.021, respectively). The mean MPI decreased from 0.45 ± 0.07 to 0.39 ± 0.04 after parathyroidectomy in group 1. In group 2, it decreased from 0.46 ± 0.06 to 0.40 ± 0.04 (p < 0.001). The present study provides an improvement in myocardial functions after parathyroidectomy. While LVES, EF, ejection volume, end-systolic volume, and MPI improved in both groups, the MPI improvement was more evident in the total parathyroidectomy group.
Collapse
Affiliation(s)
- Sami Benli
- Department of General Surgery, Division of Surgical Oncology, Mersin University Medical Faculty, Mersin, Turkey.
| | - Emrah Yesil
- Department of Cardiology, Mersin University Medical Faculty, Mersin, Turkey
| | - Deniz Tazeoglu
- Department of General Surgery, Division of Surgical Oncology, Mersin University Medical Faculty, Mersin, Turkey
| | - Cumhur Ozcan
- Department of General Surgery, Division of Endocrine Surgery, Mersin University Medical Faculty, Mersin, Turkey
| | | | - Ahmet Dag
- Department of General Surgery, Division of Endocrine Surgery, Mersin University Medical Faculty, Mersin, Turkey
| |
Collapse
|
61
|
Lisa A, Carbone F, Liberale L, Montecucco F. The Need to Identify Novel Markers for Early Renal Injury in Cardiorenal Syndrome. Cells 2024; 13:1283. [PMID: 39120314 PMCID: PMC11311518 DOI: 10.3390/cells13151283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The term "Cardiorenal Syndrome" (CRS) refers to the complex interplay between heart and kidney dysfunction. First described by Robert Bright in 1836, CRS was brought to its modern view by Ronco et al. in 2008, who defined it as one organ's primary dysfunction leading to secondary dysfunction in the other, a view that led to the distinction of five different types depending on the organ of primary dysfunction and the temporal pattern (acute vs. chronic). Their pathophysiology is intricate, involving various hemodynamic, neurohormonal, and inflammatory processes that result in damage to both organs. While traditional biomarkers have been utilized for diagnosing and prognosticating CRS, they are inadequate for the early detection of acute renal damage. Hence, there is a pressing need to discover new biomarkers to enhance clinical outcomes and treatment approaches.
Collapse
Affiliation(s)
- Anna Lisa
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy (F.C.); (L.L.)
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy (F.C.); (L.L.)
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy (F.C.); (L.L.)
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy (F.C.); (L.L.)
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| |
Collapse
|
62
|
Dong Y, Yuan H, Ma G, Cao H. Bone-muscle crosstalk under physiological and pathological conditions. Cell Mol Life Sci 2024; 81:310. [PMID: 39066929 PMCID: PMC11335237 DOI: 10.1007/s00018-024-05331-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Anatomically connected bones and muscles determine movement of the body. Forces exerted on muscles are then turned to bones to promote osteogenesis. The crosstalk between muscle and bone has been identified as mechanotransduction previously. In addition to the mechanical features, bones and muscles are also secretory organs which interact closely with one another through producing myokines and osteokines. Moreover, besides the mechanical features, other factors, such as nutrition metabolism, physiological rhythm, age, etc., also affect bone-muscle crosstalk. What's more, osteogenesis and myogenesis within motor system occur almost in parallel. Pathologically, defective muscles are always detected in bone associated diseases and induce the osteopenia, inflammation and abnormal bone metabolism, etc., through biomechanical or biochemical coupling. Hence, we summarize the study findings of bone-muscle crosstalk and propose potential strategies to improve the skeletal or muscular symptoms of certain diseases. Altogether, functional improvement of bones or muscles is beneficial to each other within motor system.
Collapse
Affiliation(s)
- Yuechao Dong
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongyan Yuan
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
63
|
Lin Z, Pan W. A robust cis-Mendelian randomization method with application to drug target discovery. Nat Commun 2024; 15:6072. [PMID: 39025905 PMCID: PMC11258283 DOI: 10.1038/s41467-024-50385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
Mendelian randomization (MR) uses genetic variants as instrumental variables (IVs) to investigate causal relationships between traits. Unlike conventional MR, cis-MR focuses on a single genomic region using only cis-SNPs. For example, using cis-pQTLs for a protein as exposure for a disease opens a cost-effective path for drug target discovery. However, few methods effectively handle pleiotropy and linkage disequilibrium (LD) of cis-SNPs. Here, we propose cisMR-cML, a method based on constrained maximum likelihood, robust to IV assumption violations with strong theoretical support. We further clarify the severe but largely neglected consequences of the current practice of modeling marginal, instead of conditional genetic effects, and only using exposure-associated SNPs in cis-MR analysis. Numerical studies demonstrated our method's superiority over other existing methods. In a drug-target analysis for coronary artery disease (CAD), including a proteome-wide application, we identified three potential drug targets, PCSK9, COLEC11 and FGFR1 for CAD.
Collapse
Affiliation(s)
- Zhaotong Lin
- Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Statistics, Florida State University, Tallahassee, FL, 32306, USA.
| | - Wei Pan
- Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
64
|
Zhao R, Yan Y, Dong Y, Wang X, Li X, Qiao R, Zhang H, Cui N, Han Y, Wang C, Han J, Ma Q, Liu D, Yang J, Gu G, Wang C. FGF13 deficiency ameliorates calcium signaling abnormality in heart failure by regulating microtubule stability. Biochem Pharmacol 2024; 225:116329. [PMID: 38821375 DOI: 10.1016/j.bcp.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Calcium signaling abnormality in cardiomyocytes, as a key mechanism, is closely associated with developing heart failure. Fibroblast growth factor 13 (FGF13) demonstrates important regulatory roles in the heart, but its association with cardiac calcium signaling in heart failure remains unknown. This study aimed to investigate the role and mechanism of FGF13 on calcium mishandling in heart failure. Mice underwent transaortic constriction to establish a heart failure model, which showed decreased ejection fraction, fractional shortening, and contractility. FGF13 deficiency alleviated cardiac dysfunction. Heart failure reduces calcium transients in cardiomyocytes, which were alleviated by FGF13 deficiency. Meanwhile, FGF13 deficiency restored decreased Cav1.2 and Serca2α expression and activity in heart failure. Furthermore, FGF13 interacted with microtubules in the heart, and FGF13 deficiency inhibited the increase of microtubule stability during heart failure. Finally, in isoproterenol-stimulated FGF13 knockdown neonatal rat ventricular myocytes (NRVMs), wildtype FGF13 overexpression, but not FGF13 mutant, which lost the binding site of microtubules, promoted calcium transient abnormality aggravation and Cav1.2 downregulation compared with FGF13 knockdown group. Generally, FGF13 deficiency improves abnormal calcium signaling by inhibiting the increased microtubule stability in heart failure, indicating the important role of FGF13 in cardiac calcium homeostasis and providing new avenues for heart failure prevention and treatment.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingke Yan
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Yiming Dong
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiangchong Wang
- Department of Pharmacology, Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Xuyan Li
- College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Ruoyang Qiao
- College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Nanqi Cui
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yanxue Han
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Cong Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Jiabing Han
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Qianli Ma
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Demin Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jing Yang
- Department of Pathology and Pathophysiology, Hangzhou Normal University, Hangzhou 311121, China.
| | - Guoqiang Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Chuan Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
65
|
Easter M, Hirsch MJ, Harris E, Howze PH, Matthews EL, Jones LI, Bollenbecker S, Vang S, Tyrrell DJ, Sanders YY, Birket SE, Barnes JW, Krick S. FGF receptors mediate cellular senescence in the cystic fibrosis airway epithelium. JCI Insight 2024; 9:e174888. [PMID: 38916962 PMCID: PMC11383597 DOI: 10.1172/jci.insight.174888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
The number of adults living with cystic fibrosis (CF) has already increased significantly because of drastic improvements in life expectancy attributable to advances in treatment, including the development of highly effective modulator therapy. Chronic airway inflammation in CF contributes to morbidity and mortality, and aging processes like inflammaging and cell senescence influence CF pathology. Our results show that single-cell RNA sequencing data, human primary bronchial epithelial cells from non-CF and CF donors, a CF bronchial epithelial cell line, and Cftr-knockout (Cftr-/-) rats all demonstrated increased cell senescence markers in the CF bronchial epithelium. This was associated with upregulation of fibroblast growth factor receptors (FGFRs) and mitogen-activated protein kinase (MAPK) p38. Inhibition of FGFRs, specifically FGFR4 and to some extent FGFR1, attenuated cell senescence and improved mucociliary clearance, which was associated with MAPK p38 signaling. Mucociliary dysfunction could also be improved using a combination of senolytics in a CF ex vivo model. In summary, FGFR/MAPK p38 signaling contributes to cell senescence in CF airways, which is associated with impaired mucociliary clearance. Therefore, attenuation of cell senescence in the CF airways might be a future therapeutic strategy improving mucociliary dysfunction and lung disease in an aging population with CF.
Collapse
Affiliation(s)
- Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Meghan June Hirsch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Elex Harris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| | - Patrick Henry Howze
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Emma Lea Matthews
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Luke I. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Shia Vang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Daniel J. Tyrrell
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | | | - Susan E. Birket
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| |
Collapse
|
66
|
Barbuto S, Hu L, Abenavoli C, Picotti M, Manna GL, Nicola LD, Genovesi S, Provenzano M. Coronary Artery Disease in Patients Undergoing Hemodialysis: A Problem that Sounds the Alarm. Rev Cardiovasc Med 2024; 25:200. [PMID: 39076335 PMCID: PMC11270123 DOI: 10.31083/j.rcm2506200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 07/31/2024] Open
Abstract
Chronic kidney disease (CKD) is affecting more and more individuals over time. The importance of the increased prevalence is enhanced by the close association with the increased risk of poor individual outcomes such as death, fatal and non-fatal cardiovascular (CV) events and progression to end stage kidney disease (ESKD). ESKD requires replacement treatment such as hemodialysis (HD), a particular and complex context that unfortunately has been rarely considered in observational studies in the last few decades. The current perspective of HD as a bridge to kidney transplant requires greater attention from observational and experimental research both in the prevention and treatment of CV events in ESKD patients. We present a narrative review by performing a literature review to extrapolate the most significant articles exploring the CV risk, in particular coronary artery disease (CAD), in ESKD and evaluating possible innovative diagnostic and therapeutic tools in these patients. The risk of CAD increases linearly when the estimated glomerular filtration rate (eGFR) declines and reached the most significant level in ESKD patients. Several diagnostic techniques have been evaluated to predict CAD in ESKD such as laboratory tests (Troponin-T, N-terminal pro b-type natriuretic peptide, alkaline phosphatase), echocardiography and imaging techniques for vascular calcifications evaluation. Similarly, treatment is based on lifestyle changes, medical therapy and invasive techniques such as coronary artery bypass grafting (CABG) and percutaneous coronary intervention (PCI). Unfortunately in the literature there are no clear indications of the usefulness and validity of biomarkers and possible treatments in ESKD patients. Considering the ESKD weight in terms of prevalence and costs it is necessary to implement clinical research in order to develop prognostic reliable biomarkers for CV and CAD risk prediction, in patients with ESKD. It should be highlighted that HD is a peculiar setting that offers the opportunity to implement research and facilitates patient monitoring by favoring the design of clinical trials.
Collapse
Affiliation(s)
- Simona Barbuto
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Nephrology Unit, Department of Medical and Surgical Science (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Lilio Hu
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Nephrology Unit, Department of Medical and Surgical Science (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Chiara Abenavoli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Nephrology Unit, Department of Medical and Surgical Science (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Matilde Picotti
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Nephrology Unit, Department of Medical and Surgical Science (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Nephrology Unit, Department of Medical and Surgical Science (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Luca De Nicola
- Division of Nephrology, University of Campania “Luigi Vanvitelli”, 80137 Naples, Italy
| | - Simonetta Genovesi
- School of Medicine and Surgery, Nephrology Clinic, University of Milano Bicocca, 20900 Monza, Italy
- Istituto Auxologico Italiano, IRCCS, 20095 Milan, Italy
| | - Michele Provenzano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Nephrology Unit, Department of Medical and Surgical Science (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
67
|
Liu M, Cheng L, Ye Q, Liu H, Shu C, Gao H, Liu X, Zhang X, Chen G. Hypericin Alleviates Chronic Kidney Disease-induced Left Ventricular Hypertrophy by Regulation of FGF23-FGFR4 Signaling Pathway. J Cardiovasc Pharmacol 2024; 83:588-601. [PMID: 38547517 DOI: 10.1097/fjc.0000000000001559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/25/2024] [Indexed: 06/15/2024]
Abstract
ABSTRACT Chronic kidney disease (CKD) is a significant global health threat that imposes a substantial burden on both individuals and societies. CKD frequently correlates with cardiovascular events, particularly left ventricular hypertrophy (LVH), which contributes to the high mortality rate associated with CKD. Fibroblast growth factor 23 (FGF23), a hormone primarily involved in regulating calcium and phosphorus metabolism, has been identified as a major risk factor for LVH in CKD patients. Elevated serum FGF23 levels are known to induce LVH and myocardial fibrosis by activating the fibroblast growth factor receptor 4 (FGFR4) signal pathway. Therefore, targeting FGFR4 and its downstream signaling pathways holds potential as a treatment strategy for cardiac dysfunction in CKD. In our current study, we have discovered that Hypericin, a key component derived from Hypericum perforatum , has the ability to alleviate CKD-related LVH by targeting the FGFR4/phospholipase C gamma 1 (PLCγ1) signaling pathway. Through in vitro experiments using rat cardiac myocyte H9c2 cells, we observed that Hypericin effectively inhibits FGF23-induced hypertrophy and fibrosis by suppressing the FGFR4/PLCγ1/calcineurin/nuclear factor of activated T-cell (NFAT3) signaling pathway. In addition, our in vivo studies using mice on a high-phosphate diet and rat models of 5/6 nephrectomy demonstrated that Hypericin has therapeutic effects against CKD-induced LVH by modulating the FGFR4/PLCγ1/calcineurin/NFAT3 signaling pathway. In conclusion, our research highlights the potential of Hypericin as a candidate for the treatment of CKD-induced cardiomyopathy. By suppressing the FGFR4/PLCγ1 signaling pathway, Hypericin shows promise in attenuating LVH and myocardial fibrosis associated with CKD.
Collapse
MESH Headings
- Animals
- Perylene/analogs & derivatives
- Perylene/pharmacology
- Signal Transduction/drug effects
- Fibroblast Growth Factors/metabolism
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/drug therapy
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/prevention & control
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/drug therapy
- Fibrosis
- Disease Models, Animal
- Fibroblast Growth Factor-23
- Rats
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Cell Line
- Mice, Inbred C57BL
- Anthracenes/pharmacology
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Phospholipase C gamma/metabolism
- NFATC Transcription Factors/metabolism
- Mice
Collapse
Affiliation(s)
- Min Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linting Cheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianru Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huamin Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China ; and
| | - Cong Shu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haocheng Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China ; and
| | - Xin Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuhua Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China ; and
| | - Gaozhi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Chronic Kidney Disease, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
68
|
Cernaro V, Longhitano E, Casuscelli C, Peritore L, Santoro D. Hyperphosphatemia in Chronic Kidney Disease: The Search for New Treatment Paradigms and the Role of Tenapanor. Int J Nephrol Renovasc Dis 2024; 17:151-161. [PMID: 38831770 PMCID: PMC11144652 DOI: 10.2147/ijnrd.s385826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Hyperphosphataemia represents a significant challenge in the management of chronic kidney disease, exerting a pronounced influence on the pathogenesis of cardiovascular complications and mineral bone disorders. Traditional approaches to address hyperphosphataemia involve implementing dietary phosphate restrictions, administering phosphate binders, and, in cases of end-stage renal disease, resorting to dialysis. Unfortunately, these interventions frequently prove inadequate in maintaining phosphate levels within recommended ranges. Additionally, commonly employed pharmacological agents are not immune to eliciting adverse events, thereby limiting their prescription and therapeutic adherence. There is a growing focus on exploring novel therapeutic strategies in this context. The current discussion centres on tenapanor, a pharmacological agent predominantly acting as a selective inhibitor of sodium/hydrogen exchanger isoform 3 (NHE3). Its mechanism of action involves modulating tight junctions, resulting in reduced sodium absorption and intestinal paracellular permeability to phosphate. Furthermore, tenapanor downregulates sodium-dependent phosphate 2b transport protein (NaPi2b) expression, thereby impeding active transcellular phosphate transport. Clinical trials have elucidated the efficacy and safety profile of tenapanor. This evidence hints at a potential paradigm shift in the management of hyperphosphataemia. However, the burgeoning optimism surrounding tenapanor warrants tempered enthusiasm, as further research remains indispensable. The imperative lies in meticulously delineating its efficacy and safety contours within the crucible of clinical practice. In this review, we synthesize the intricate interplay between hyperphosphataemia and Chronic Kidney Disease-Mineral Bone Disorder, and we discuss the existing pharmacological interventions for hyperphosphataemia and explore emerging treatment paradigms that offer novel perspectives in managing elevated phosphate levels in CKD patients.
Collapse
Affiliation(s)
- Valeria Cernaro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Elisa Longhitano
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Chiara Casuscelli
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Luigi Peritore
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
69
|
Yuan Y, Shen Z, Teng T, Xu S, Kong C, Zeng X, A. Hofmann Bowman M, Yan L. S100a8/9 (S100 Calcium Binding Protein a8/9) Promotes Cardiac Hypertrophy Via Upregulation of FGF23 (Fibroblast Growth Factor 23) in Mice. J Am Heart Assoc 2024; 13:e028006. [PMID: 38726894 PMCID: PMC11179804 DOI: 10.1161/jaha.122.028006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/04/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND S100a8/9 (S100 calcium binding protein a8/9) belongs to the S100 family and has gained a lot of interest as a critical regulator of inflammatory response. Our previous study found that S100a8/9 homolog promoted aortic valve sclerosis in mice with chronic kidney disease. However, the role of S100a8/9 in pressure overload-induced cardiac hypertrophy remains unclear. The present study was to explore the role of S100a8/9 in cardiac hypertrophy. METHODS AND RESULTS Cardiomyocyte-specific S100a9 loss or gain of function was achieved using an adeno-associated virus system, and the model of cardiac hypertrophy was established by aortic banding-induced pressure overload. The results indicate that S100a8/9 expression was increased in response to pressure overload. S100a9 deficiency alleviated pressure overload-induced hypertrophic response, whereas S100a9 overexpression accelerated cardiac hypertrophy. S100a9-overexpressed mice showed increased FGF23 (fibroblast growth factor 23) expression in the hearts after exposure to pressure overload, which activated calcineurin/NFAT (nuclear factor of activated T cells) signaling in cardiac myocytes and thus promoted hypertrophic response. A specific antibody that blocks FGFR4 (FGF receptor 4) largely abolished the prohypertrophic response of S100a9 in mice. CONCLUSIONS In conclusion, S100a8/9 promoted the development of cardiac hypertrophy in mice. Targeting S100a8/9 may be a promising therapeutic approach to treat cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu‐Pei Yuan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Zhuo‐Yu Shen
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Teng Teng
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Si‐Chi Xu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Chun‐Yan Kong
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Xiao‐Feng Zeng
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | | | - Ling Yan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| |
Collapse
|
70
|
Donate-Correa J, Martín-Núñez E, Hernández-Carballo C, González-Luis A, Mora-Fernández C, Martín-Olivera A, Rodríguez-Ramos S, Cerro-López P, López-Castillo Á, Delgado-Molinos A, López-Tarruella VC, Navarro-González JF. FGF23 as a Potential Pathophysiological Factor in Peripheral Arterial Disease Associated with Chronic Kidney Disease. Int J Mol Sci 2024; 25:5457. [PMID: 38791495 PMCID: PMC11121420 DOI: 10.3390/ijms25105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Fibroblast growth factor 23 (FGF23) levels are often elevated in chronic kidney disease (CKD). FGF23 and inflammation are common characteristics in CKD, and both are associated with worse disease progression and the occurrence of complications. The existence of an interaction between FGF23 and inflammation has been suggested, each of which influences the expression and activity of the other, leading to a vicious feedback loop with adverse outcomes, including cardiovascular disease and mortality. In this work, we determined circulating FGF23 levels in a group of patients with CKD stages 3 and 4 subjected to elective femoral endarterectomy due to established peripheral artery disease (PAD), a condition resulting from an athero-inflammatory process, and we studied its associations with different inflammatory markers and mediators. We evaluated its association with serum tumor necrosis factor (TNF)α, interleukin (IL) 6, and IL10, as well as with the gene expression levels of these parameters and A disintegrin and metalloproteinase domain-containing protein (ADAM) 17 in femoral vascular tissue and peripheral blood circulating cells (PBCCs). We also analyzed its association with serum concentrations of C-reactive protein (CRP), the systemic immune inflammation index (SII), and the neutrophil-to-lymphocyte ratio (NLR). Finally, we determined the vascular immunoreactivity of protein TNFα in a subgroup of patients. FGF23 concentrations were independently associated with circulating and PBCC mRNA levels of TNFα. Worst kidney function and diabetes were also found to be contributing to FGF23 levels. Patients with higher levels of FGF23 also had greater vascular immunoreactivity for TNFα.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Research Unit, University Hospital Nuestra Señora de Candelaria (UHNSC), 38010 Santa Cruz de Tenerife, Spain; (E.M.-N.); (C.H.-C.); (A.G.-L.); (C.M.-F.); (A.M.-O.)
- GEENDIAB (Grupo Español Para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39000 Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38000 Santa Cruz de Tenerife, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Ernesto Martín-Núñez
- Research Unit, University Hospital Nuestra Señora de Candelaria (UHNSC), 38010 Santa Cruz de Tenerife, Spain; (E.M.-N.); (C.H.-C.); (A.G.-L.); (C.M.-F.); (A.M.-O.)
- Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
| | - Carolina Hernández-Carballo
- Research Unit, University Hospital Nuestra Señora de Candelaria (UHNSC), 38010 Santa Cruz de Tenerife, Spain; (E.M.-N.); (C.H.-C.); (A.G.-L.); (C.M.-F.); (A.M.-O.)
| | - Ainhoa González-Luis
- Research Unit, University Hospital Nuestra Señora de Candelaria (UHNSC), 38010 Santa Cruz de Tenerife, Spain; (E.M.-N.); (C.H.-C.); (A.G.-L.); (C.M.-F.); (A.M.-O.)
- Doctoral and Graduate School, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Carmen Mora-Fernández
- Research Unit, University Hospital Nuestra Señora de Candelaria (UHNSC), 38010 Santa Cruz de Tenerife, Spain; (E.M.-N.); (C.H.-C.); (A.G.-L.); (C.M.-F.); (A.M.-O.)
- GEENDIAB (Grupo Español Para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39000 Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Alberto Martín-Olivera
- Research Unit, University Hospital Nuestra Señora de Candelaria (UHNSC), 38010 Santa Cruz de Tenerife, Spain; (E.M.-N.); (C.H.-C.); (A.G.-L.); (C.M.-F.); (A.M.-O.)
| | - Sergio Rodríguez-Ramos
- Transplant Coordination, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (S.R.-R.); (P.C.-L.)
| | - Purificación Cerro-López
- Transplant Coordination, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (S.R.-R.); (P.C.-L.)
| | - Ángel López-Castillo
- Vascular Surgery Service, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (Á.L.-C.); (A.D.-M.)
| | - Alejandro Delgado-Molinos
- Vascular Surgery Service, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (Á.L.-C.); (A.D.-M.)
| | | | - Juan F. Navarro-González
- Research Unit, University Hospital Nuestra Señora de Candelaria (UHNSC), 38010 Santa Cruz de Tenerife, Spain; (E.M.-N.); (C.H.-C.); (A.G.-L.); (C.M.-F.); (A.M.-O.)
- GEENDIAB (Grupo Español Para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39000 Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38000 Santa Cruz de Tenerife, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28000 Madrid, Spain
- Nephrology Service, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
71
|
Brener A, Cleper R, Baruch G, Rothschild E, Yackobovitch-Gavan M, Beer G, Zeitlin L, Kapusta L. Cardiovascular health in pediatric patients with X-linked hypophosphatemia under two years of burosumab therapy. Front Endocrinol (Lausanne) 2024; 15:1400273. [PMID: 38818505 PMCID: PMC11137213 DOI: 10.3389/fendo.2024.1400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction X-linked hypophosphatemia (XLH) is caused by an inactivating mutation in the phosphate-regulating endopeptidase X-linked (PHEX) gene whose defective product fails to control phosphatonin fibroblast growth factor 23 (FGF23) serum levels. Although elevated FGF23 levels have been linked with detrimental cardiac effects, the cardiologic outcomes in XLH patients have been subject to debate. Our study aimed to evaluate the prevalence and severity of cardiovascular morbidity in pediatric XLH patients before, during, and after a 2-year treatment period with burosumab, a recombinant anti-FGF23 antibody. Methods This prospective observational study was conducted in a tertiary medical center, and included 13 individuals with XLH (age range 0.6-16.2 years) who received burosumab every 2 weeks. Clinical assessment at treatment initiation and after .5, 1, and 2 years of uninterrupted treatment included anthropometric measurements and cardiologic evaluations (blood pressure [BP], electrocardiogram, conventional echocardiography, and myocardial strain imaging). Results The linear growth of all patients improved significantly (mean height z-score: from -1.70 ± 0.80 to -0.96 ± 1.08, P=0.03). Other favorable effects were decline in overweight/obesity rates (from 46.2% to 23.1%) and decreased rates of elevated BP (systolic BP from 38.5% to 15.4%; diastolic BP from 38.5% to 23.1%). Electrocardiograms revealed no significant abnormality throughout the study period. Cardiac dimensions and myocardial strain parameters were within the normative range for age at baseline and remained unchanged during the study period. Conclusion Cardiologic evaluations provided reassurance that 2 years of burosumab therapy did not cause cardiac morbidity. The beneficial effect of this treatment was a reduction in cardiovascular risk factors, as evidenced by the lower prevalence of both overweight/obesity and elevated BP.
Collapse
Affiliation(s)
- Avivit Brener
- Institute of Pediatric Endocrinology and Diabetes, Dana-Dwek Children’s Hospital, Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roxana Cleper
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Pediatric Nephrology Unit, Dana-Dwek Children’s Hospital, Sourasky Medical Center, Tel Aviv, Israel
| | - Guy Baruch
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine, Sourasky Medical Center, Tel Aviv, Israel
| | - Ehud Rothschild
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine, Sourasky Medical Center, Tel Aviv, Israel
| | - Michal Yackobovitch-Gavan
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Beer
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Pediatric Cardiology Unit, Dana-Dwek Children’s Hospital, Sourasky Medical Center, Tel Aviv, Israel
| | - Leonid Zeitlin
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Metabolic Bone Disease Unit, Pediatric Orthopedic Department, Dana-Dwek Children’s Hospital, Sourasky Medical Center, Tel Aviv, Israel
| | - Livia Kapusta
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Pediatric Cardiology Unit, Dana-Dwek Children’s Hospital, Sourasky Medical Center, Tel Aviv, Israel
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
72
|
Secondulfo C, Visco V, Virtuoso N, Fortunato M, Migliarino S, Rispoli A, La Mura L, Stellato A, Caliendo G, Settembre E, Galluccio F, Hamzeh S, Bilancio G. Vitamin D: A Bridge between Kidney and Heart. Life (Basel) 2024; 14:617. [PMID: 38792638 PMCID: PMC11123235 DOI: 10.3390/life14050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) are highly prevalent conditions, each significantly contributing to the global burden of morbidity and mortality. CVD and CKD share a great number of common risk factors, such as hypertension, diabetes, obesity, and smoking, among others. Their relationship extends beyond these factors, encompassing intricate interplay between the two systems. Within this complex network of pathophysiological processes, vitamin D has emerged as a potential linchpin, exerting influence over diverse physiological pathways implicated in both CKD and CVD. In recent years, scientific exploration has unveiled a close connection between these two prevalent conditions and vitamin D, a crucial hormone traditionally recognized for its role in bone health. This article aims to provide an extensive review of vitamin D's multifaceted and expanding actions concerning its involvement in CKD and CVD.
Collapse
Affiliation(s)
- Carmine Secondulfo
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Valeria Visco
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Nicola Virtuoso
- Cardiology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Martino Fortunato
- Cardiology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Serena Migliarino
- Cardiology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Antonella Rispoli
- Cardiology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Lucia La Mura
- Centro Medico Ascione Srl, 80059 Torre del Greco, Italy
| | - Adolfo Stellato
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Giuseppe Caliendo
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Emanuela Settembre
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Fabiana Galluccio
- Department of Medicine and Surgery, University of Naples “Federico II”, 80138 Napoli, Italy
| | - Sarah Hamzeh
- Department of Medicine and Surgery, University of Naples “Federico II”, 80138 Napoli, Italy
| | - Giancarlo Bilancio
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Nephrology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
73
|
Jung YS, Radhakrishnan K, Hammad S, Müller S, Müller J, Noh JR, Kim J, Lee IK, Cho SJ, Kim DK, Kim YH, Lee CH, Dooley S, Choi HS. ERRγ-inducible FGF23 promotes alcoholic liver injury through enhancing CYP2E1 mediated hepatic oxidative stress. Redox Biol 2024; 71:103107. [PMID: 38479224 PMCID: PMC10950689 DOI: 10.1016/j.redox.2024.103107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/24/2024] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a member of endocrine FGF family, along with FGF15/19 and FGF21. Recent reports showed that under pathological conditions, liver produces FGF23, although the role of hepatic FGF23 remains nebulous. Here, we investigated the role of hepatic FGF23 in alcoholic liver disease (ALD) and delineated the underlying molecular mechanism. FGF23 expression was compared in livers from alcoholic hepatitis patients and healthy controls. The role of FGF23 was examined in hepatocyte-specific knock-out (LKO) mice of cannabinoid receptor type 1 (CB1R), estrogen related receptor γ (ERRγ), or FGF23. Animals were fed with an alcohol-containing liquid diet alone or in combination with ERRγ inverse agonist. FGF23 is mainly expressed in hepatocytes in the human liver, and it is upregulated in ALD patients. In mice, chronic alcohol feeding leads to liver damage and induced FGF23 in liver, but not in other organs. FGF23 is transcriptionally regulated by ERRγ in response to alcohol-mediated activation of the CB1R. Alcohol induced upregulation of hepatic FGF23 and plasma FGF23 levels is lost in ERRγ-LKO mice, and an inverse agonist mediated inhibition of ERRγ transactivation significantly improved alcoholic liver damage. Moreover, hepatic CYP2E1 induction in response to alcohol is FGF23 dependent. In line, FGF23-LKO mice display decreased hepatic CYP2E1 expression and improved ALD through reduced hepatocyte apoptosis and oxidative stress. We recognized CBIR-ERRγ-FGF23 axis in facilitating ALD pathology through hepatic CYP2E1 induction. Thus, we propose FGF23 as a potential therapeutic target to treat ALD.
Collapse
Affiliation(s)
- Yoon Seok Jung
- Host-derived Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kamalakannan Radhakrishnan
- Host-derived Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seddik Hammad
- Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3 (H42, Floor 4), 68167, Mannheim, Germany; Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Sebastian Müller
- Center for Alcohol Research (CAR), University of Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Johannes Müller
- Center for Alcohol Research (CAR), University of Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Jung-Ran Noh
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Sung Jin Cho
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Don-Kyu Kim
- Host-derived Antiviral Research Center, Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong-Hoon Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Chul-Ho Lee
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Steven Dooley
- Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3 (H42, Floor 4), 68167, Mannheim, Germany.
| | - Hueng-Sik Choi
- Host-derived Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
74
|
Bansal N, Zelnick L, Scherzer R, Estrella M, Shlipak M. Risk Factors and Outcomes Associated With Heart Failure With Preserved and Reduced Ejection Fraction in People With Chronic Kidney Disease. Circ Heart Fail 2024; 17:e011173. [PMID: 38742428 PMCID: PMC11108746 DOI: 10.1161/circheartfailure.123.011173] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/12/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Heart failure (HF) is associated with poor outcomes in people with chronic kidney disease, yet it is unknown whether outcomes differ by HF subtype. This study aimed to examine associations of incident HF with preserved ejection fraction (HFpEF) versus HF with reduced ejection fraction (HFrEF) with progression to end-stage kidney disease (ESKD) and mortality. METHODS We studied individuals with chronic kidney disease in the CRIC study (Chronic Renal Insufficiency Cohort) who were free of HF at cohort entry. Incident HF hospitalizations were adjudicated and classified into HFpEF (ejection fraction, ≥50%) or HFrEF (ejection fraction, <50%) based on echocardiograms performed during the hospitalization or at a research study visit. ESKD was defined as need for chronic dialysis or kidney transplant. Cox proportional hazards were used to evaluate the association of time-updated HF subtype with risk of ESKD and mortality, adjusting for demographics, comorbidities, and medication use. RESULTS Among the 3557 study participants without HF at cohort entry, mean age was 57 years and mean estimated glomerular filtration rate was 45 mL/min per 1.73 m2. A total of 682 participants had incident HF. Incidence rates for HFpEF and HFrEF were 0.9 (95% CI, 0.8-1.0) and 0.7 (95% CI, 0.6-0.8) per 100 person-years, respectively (Pdifference=0.005). Associations of incident HF with progression to ESKD were not statistically different for HFpEF (hazard ratio, 2.06 [95% CI, 1.66-2.56]) and HFrEF (hazard ratio, 1.80 [95% CI, 1.36-2.38]; P=0.42). The associations with mortality were stronger for HFrEF (hazard ratio, 2.73 [95% CI, 2.24-3.33]) compared with HFpEF (hazard ratio, 1.99 [95% CI, 1.65-2.40]; P=0.0002). CONCLUSIONS In a chronic kidney disease population, the rates of HFpEF hospitalizations were greater than that of HFrEF. Risk of ESKD was high but not statically different across HF subtypes. There was a stronger association of HFrEF with mortality. Prevention and treatment of both HFpEF and HFrEF should be central priorities to improve outcomes in chronic kidney disease.
Collapse
Affiliation(s)
- Nisha Bansal
- Division of Nephrology, University of Washington
| | | | - Rebecca Scherzer
- Kidney Health Research Collaborative, University of California, San Francisco
| | - Michelle Estrella
- Kidney Health Research Collaborative, University of California, San Francisco
| | - Michael Shlipak
- Kidney Health Research Collaborative, University of California, San Francisco
| |
Collapse
|
75
|
Williams MJ, Halabi CM, Patel HM, Joseph Z, McCommis K, Weinheimer C, Kovacs A, Lima F, Finck B, Malluche H, Hruska KA. In chronic kidney disease altered cardiac metabolism precedes cardiac hypertrophy. Am J Physiol Renal Physiol 2024; 326:F751-F767. [PMID: 38385175 PMCID: PMC11386984 DOI: 10.1152/ajprenal.00416.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Conduit arterial disease in chronic kidney disease (CKD) is an important cause of cardiac complications. Cardiac function in CKD has not been studied in the absence of arterial disease. In an Alport syndrome model bred not to have conduit arterial disease, mice at 225 days of life (dol) had CKD equivalent to humans with CKD stage 4-5. Parathyroid hormone (PTH) and FGF23 levels were one log order elevated, circulating sclerostin was elevated, and renal activin A was strongly induced. Aortic Ca levels were not increased, and vascular smooth muscle cell (VSMC) transdifferentiation was absent. The CKD mice were not hypertensive, and cardiac hypertrophy was absent. Freshly excised cardiac tissue respirometry (Oroboros) showed that ADP-stimulated O2 flux was diminished from 52 to 22 pmol/mg (P = 0.022). RNA-Seq of cardiac tissue from CKD mice revealed significantly decreased levels of cardiac mitochondrial oxidative phosphorylation genes. To examine the effect of activin A signaling, some Alport mice were treated with a monoclonal Ab to activin A or an isotype-matched IgG beginning at 75 days of life until euthanasia. Treatment with the activin A antibody (Ab) did not affect cardiac oxidative phosphorylation. However, the activin A antibody was active in the skeleton, disrupting the effect of CKD to stimulate osteoclast number, eroded surfaces, and the stimulation of osteoclast-driven remodeling. The data reported here show that cardiac mitochondrial respiration is impaired in CKD in the absence of conduit arterial disease. This is the first report of the direct effect of CKD on cardiac respiration.NEW & NOTEWORTHY Heart disease is an important morbidity of chronic kidney disease (CKD). Hypertension, vascular stiffness, and vascular calcification all contribute to cardiac pathophysiology. However, cardiac function in CKD devoid of vascular disease has not been studied. Here, in an animal model of human CKD without conduit arterial disease, we analyze cardiac respiration and discover that CKD directly impairs cardiac mitochondrial function by decreasing oxidative phosphorylation. Protection of cardiac oxidative phosphorylation may be a therapeutic target in CKD.
Collapse
Affiliation(s)
- Matthew J Williams
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Carmen M Halabi
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Hiral M Patel
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Zachary Joseph
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Kyle McCommis
- Geriatrics and Nutritional Science Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Carla Weinheimer
- Cardiology Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Attila Kovacs
- Cardiology Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Florence Lima
- Renal Division, Department of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Brian Finck
- Geriatrics and Nutritional Science Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Hartmut Malluche
- Renal Division, Department of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Keith A Hruska
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
- Renal Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Cell Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
76
|
Martínez-Heredia L, Canelo-Moreno JM, García-Fontana B, Muñoz-Torres M. Non-Classical Effects of FGF23: Molecular and Clinical Features. Int J Mol Sci 2024; 25:4875. [PMID: 38732094 PMCID: PMC11084844 DOI: 10.3390/ijms25094875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This article reviews the role of fibroblast growth factor 23 (FGF23) protein in phosphate metabolism, highlighting its regulation of vitamin D, parathyroid hormone, and bone metabolism. Although it was traditionally thought that phosphate-calcium homeostasis was controlled exclusively by parathyroid hormone (PTH) and calcitriol, pathophysiological studies revealed the influence of FGF23. This protein, expressed mainly in bone, inhibits the renal reabsorption of phosphate and calcitriol formation, mediated by the α-klotho co-receptor. In addition to its role in phosphate metabolism, FGF23 exhibits pleiotropic effects in non-renal systems such as the cardiovascular, immune, and metabolic systems, including the regulation of gene expression and cardiac fibrosis. Although it has been proposed as a biomarker and therapeutic target, the inhibition of FGF23 poses challenges due to its potential side effects. However, the approval of drugs such as burosumab represents a milestone in the treatment of FGF23-related diseases.
Collapse
Affiliation(s)
- Luis Martínez-Heredia
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Manuel Muñoz-Torres
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
77
|
Neumann S, Siegert S. Investigation of α-Klotho Concentrations in Serum of Cats Affected by Hypertrophic Cardiomyopathy. Vet Sci 2024; 11:184. [PMID: 38787156 PMCID: PMC11125955 DOI: 10.3390/vetsci11050184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Being involved in various physiological and pathophysiological mechanisms (ageing, kidney damage, cardiovascular diseases, etc.), Klotho is a parameter of increasing interest. Studies in veterinary medicine are still rare, but it is exciting to find out whether the findings obtained can be transferred to animals. The aim of this study was therefore to investigate Klotho in cats. This study addressed α-Klotho concentrations in the serum of two groups of cats: one diseased group affected by hypertrophic cardiomyopathy (n = 27) and one healthy control group (n = 35). α-Klotho concentrations in serum were measured using an ELISA. The results were evaluated in the context of several echocardiographic measurement parameters in the diseased group. No significant difference between α-Klotho concentrations in the two groups was found. A slight negative correlation was found between α-Klotho concentrations and the relation of left atrium/aorta (La/Ao) in the diseased group. Gaining initial information on α-Klotho in cats, it was not possible to draw definite conclusions concerning cardiomyopathies in this species. The assessment of Klotho should be considered in terms of its broad implications in disease processes, but it is also recommended to focus on specific disease features. Both approaches might be promising as possible applications of Klotho in veterinary medicine.
Collapse
Affiliation(s)
- Stephan Neumann
- Institute of Veterinary Medicine, Georg-August-University of Goettingen, Burckhardtweg 2, 37077 Goettingen, Germany;
| | | |
Collapse
|
78
|
Jin J, Hao W, Xie D. Meta-analysis of the correlation between pulmonary hypertension and echocardiographic parameters in patients with chronic kidney disease. PeerJ 2024; 12:e17245. [PMID: 38650651 PMCID: PMC11034503 DOI: 10.7717/peerj.17245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Objective To investigate the correlation between pulmonary hypertension (PH) and echocardiographic parameters in patients with chronic kidney disease (CKD). Methods PubMed, Embase, Web of Science, Cochrane, VIP, CNKI, and Wanfang databases were systematically searched for articles published from inception to 19 May 2023. Study quality was estimated using the Quality Assessment of Case-Control Studies tool. Forest plots were drawn using R language software. The "metacor" function in the "meta" package was utilized for meta-analysis of the r-values and their standard errors. Heterogeneity and sensitivity analyses were carried out, with the main outcomes as r-value, p-value, and I2 value. Results Eleven studies were included, with 1,809 CKD patients. The correlations between 12 echocardiographic parameters and PH were analyzed. Except for FS and LVEF which were negatively correlated with CKD-PH, the other 10 parameters were positively correlated with CKD-PH. Among them, LA was highly correlated with CKD-PH (0.70 < r < 0.89); LVDD, RA, RV, LVMI, and LVDS were moderately correlated with CKD-PH (0.40 < r < 0.69); while PA, IVS, LVPW, SV, FS, and LVEF were lowly correlated with CKD-PH (0.20 < r < 0.39). The synthesized estimates were stable against heterogeneity. Conclusion CKD-PH patients may have large cardiac chambers, thickened septal tissue on both sides of the chambers, reduced pulmonary artery flow rates, and decreased left ventricular function.
Collapse
Affiliation(s)
- Jiahui Jin
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, Yibin Second People’s Hospital, Yibin, China
| | - Wen Hao
- Department of Nephrology, Yibin Second People’s Hospital, Yibin, China
| | - Deqiong Xie
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, Yibin Second People’s Hospital, Yibin, China
| |
Collapse
|
79
|
Saito Y, Ito H, Fukagawa M, Akizawa T, Kagimura T, Yamamoto M, Kato M, Ogata H. Effect of renin-angiotensin system inhibitors on cardiovascular events in hemodialysis patients with hyperphosphatemia: A post hoc analysis of the LANDMARK trial. Ther Apher Dial 2024; 28:192-205. [PMID: 37921027 DOI: 10.1111/1744-9987.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION The clinical benefits of renin-angiotensin system inhibitors (RASi) in patients undergoing hemodialysis remain obscure. METHODS This is a post hoc cohort analysis of the LANDMARK trial investigate whether RASi use was associated with cardiovascular events (CVEs) and all-cause mortality. A total of 2135 patients at risk for vascular calcification were analyzed using a Cox proportional hazards model with propensity-score matching. RESULTS The risk of CVEs was similar between participants with RASi use at baseline and those without RASi use at baseline and between participants with RASi use during the study period and those without RASi use during the study period. No clinical benefits of RASi use on all-cause mortality were observed. Serum phosphate levels were significantly associated with the effect of RASi on CVEs. CONCLUSIONS RASi use was not significantly associated with a lower risk of CVEs or all-cause mortality in hemodialysis patients at risk of vascular calcification.
Collapse
Affiliation(s)
- Yoshinori Saito
- Division of Nephrology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Hidetoshi Ito
- Division of Nephrology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tadao Akizawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tatsuo Kagimura
- The Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Masahiro Yamamoto
- Division of Nephrology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Masanori Kato
- Division of Nephrology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Hiroaki Ogata
- Division of Nephrology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| |
Collapse
|
80
|
Hu MC, Reneau JA, Shi M, Takahashi M, Chen G, Mohammadi M, Moe OW. C-terminal fragment of fibroblast growth factor 23 improves heart function in murine models of high intact fibroblast growth factor 23. Am J Physiol Renal Physiol 2024; 326:F584-F599. [PMID: 38299214 PMCID: PMC11208029 DOI: 10.1152/ajprenal.00298.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/02/2024] Open
Abstract
Cardiovascular disease (CVD) is the major cause of death in chronic kidney disease (CKD) and is associated with high circulating fibroblast growth factor (FGF)23 levels. It is unresolved whether high circulating FGF23 is a mere biomarker or pathogenically contributes to cardiomyopathy. It is also unknown whether the C-terminal FGF23 peptide (cFGF23), a natural FGF23 antagonist proteolyzed from intact FGF23 (iFGF23), retards CKD progression and improves cardiomyopathy. We addressed these questions in three murine models with high endogenous FGF23 and cardiomyopathy. First, we examined wild-type (WT) mice with CKD induced by unilateral ischemia-reperfusion and contralateral nephrectomy followed by a high-phosphate diet. These mice were continuously treated with intraperitoneal implanted osmotic minipumps containing either iFGF23 protein to further escalate FGF23 bioactivity, cFGF23 peptide to block FGF23 signaling, vehicle, or scrambled peptide as negative controls. Exogenous iFGF23 protein given to CKD mice exacerbated pathological cardiac remodeling and CKD progression, whereas cFGF23 treatment improved heart and kidney function, attenuated fibrosis, and increased circulating soluble Klotho. WT mice without renal insult placed on a high-phosphate diet and homozygous Klotho hypomorphic mice, both of whom develop moderate CKD and clear cardiomyopathy, were treated with cFGF23 or vehicle. Mice treated with cFGF23 in both models had improved heart and kidney function and histopathology. Taken together, these data indicate high endogenous iFGF23 is not just a mere biomarker but pathogenically deleterious in CKD and cardiomyopathy. Furthermore, attenuation of FGF23 bioactivity by cFGF23 peptide is a promising therapeutic strategy to protect the kidney and heart from high FGF23 activity.NEW & NOTEWORTHY There is a strong correlation between cardiovascular morbidity and high circulating fibroblast growth factor 23 (FGF23) levels, but causality was never proven. We used a murine chronic kidney disease (CKD) model to show that intact FGF23 (iFGF23) is pathogenic and contributes to both CKD progression and cardiomyopathy. Blockade of FGF23 signaling with a natural proteolytic product of iFGF23, C-terminal FGF23, alleviated kidney and cardiac histology, and function in three separate murine models of high endogenous FGF23.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - James A Reneau
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Mingjun Shi
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Masaya Takahashi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Gaozhi Chen
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Moosa Mohammadi
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Orson W Moe
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
81
|
Yang Z, Wang J, Ma J, Ren D, Li Z, Fang K, Shi Z. Fibroblast growth factor 23 during septic shock and myocardial injury in ICU patients. Heliyon 2024; 10:e27939. [PMID: 38509994 PMCID: PMC10950713 DOI: 10.1016/j.heliyon.2024.e27939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Objective Fibroblast growth factor 23 (FGF23) has been recognized as an important biomarker of cardiovascular disease and is closely related to inflammation over the past decade. This study aimed to assess the relationship between FGF23 and myocardial injury in patients with sepsis. Methods We sequentially measured serum FGF23, Klotho, biomarkers of inflammation (CRP, IL-6 and WBC), myocardial injury (cTnI and N-terminal B-type natriuretic peptide) and sepsis (procalcitonin) at peak of intercurrent septic shock and after complete resolution or before death in a series of 29 patients with septic shock. 29 healthy adults without infections were used as controls. Results There was a difference in serum FGF23 level between patients with septic shock and healthy adults (p < 0.0001), and the peak level of FGF23 in septic shock in the survivor group was higher than that after complete remission (p < 0.0001). No statistical difference was found in the level of FGF23 before and after treatment in the death group (p = 0.0947). At the peak of septic shock, FGF23 was significantly correlated with inflammatory markers, CRP (r = 0.8063, p < 0.0001), PCT (r = 0.6091, p = 0.0005) and WBC (r = 0.8312, p < 0.0001), while the correlation with IL-6 was not statistically significant (r = 0.0098, p = 0.9598). At the same time, it was found that FGF23 was significantly correlated with myocardial injury markers, cTNI (r = 0.8475, p < 0.0001) and NTproBNP (r = 0.8505, p < 0.0001). Nevertheless, FGF23 and klotho are not correlated (r = 0.2609, p = 0.1717). Conclusion In conclusion, in patients with septic shock and myocardial injury, the exacerbation of inflammation in the septic process was accompanied by a abnormal increase of circulating FGF23 level. FGF23 also subsided after the improvement of inflammation, and the opposite was true for patients who did not survive. The up-regulation of FGF23 may be involved in the response of patients to septic shocks, and it is also speculated that FGF23 is involved in the myocardial injury of septic shock.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital, 208 Huancheng Road East, Hangzhou, 310003, Zhejiang, China
| | - Jie Wang
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital, 208 Huancheng Road East, Hangzhou, 310003, Zhejiang, China
| | - Jilin Ma
- Department of Rheumatology and Immunology, Hangzhou Red Cross Hospital, 208 Huancheng Road East, Hangzhou, 310003, Zhejiang, China
| | - Danhong Ren
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital, 208 Huancheng Road East, Hangzhou, 310003, Zhejiang, China
| | - Zhihui Li
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital, 208 Huancheng Road East, Hangzhou, 310003, Zhejiang, China
| | - Kun Fang
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital, 208 Huancheng Road East, Hangzhou, 310003, Zhejiang, China
| | - Zhanli Shi
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital, 208 Huancheng Road East, Hangzhou, 310003, Zhejiang, China
| |
Collapse
|
82
|
Daryadel A, Tang C, Xie Y, Peitzsch M, Fisi V, Hantel C, Loffing-Cueni D, Breault DT, Penton D, Loffing J, Beuschlein F. Zona Glomerulosa-Derived Klotho Modulates Aldosterone Synthase Expression in Young Female Mice. Endocrinology 2024; 165:bqae040. [PMID: 38573585 PMCID: PMC11002783 DOI: 10.1210/endocr/bqae040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Klotho plays a critical role in the regulation of ion and fluid homeostasis. A previous study reported that haplo-insufficiency of Klotho in mice results in increased aldosterone synthase (CYP11B2) expression, elevated plasma aldosterone, and high blood pressure. This phenotype was presumed to be the result of diminished Klotho expression in zona glomerulosa (zG) cells of the adrenal cortex; however, systemic effects on adrenal aldosterone production could not be ruled out. To examine whether Klotho expressed in the zG is indeed a critical regulator of aldosterone synthesis, we generated a tamoxifen-inducible, zG-specific mouse model of Klotho deficiency by crossing Klotho-flox mice with Cyp11b2-CreERT mice (zG-Kl-KO). Tamoxifen-treated Cyp11b2-CreERT animals (zG-Cre) served as controls. Rosa26-mTmG reporter mice were used for Cre-dependent lineage-marking. Two weeks after tamoxifen induction, the specificity of the zG-Cre line was verified using immunofluorescence analysis to show that GFP expression was restricted to the zG. RNA in situ hybridization revealed a 65% downregulation of Klotho messenger RNA expression in the zG of zG-Kl-KO female mice at age 12 weeks compared to control mice. Despite this significant decrease, zG-Kl-KO mice exhibited no difference in plasma aldosterone levels. However, adrenal CYP11B2 expression and the CYP11B2 promotor regulatory transcription factors, NGFIB and Nurr1, were enhanced. Together with in vitro experiments, these results suggest that zG-derived Klotho modulates Cyp11b2 but does not evoke a systemic phenotype in young adult mice on a normal diet. Further studies are required to investigate the role of adrenal Klotho on aldosterone synthesis in aged animals.
Collapse
Affiliation(s)
- Arezoo Daryadel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zürich (USZ) and University of Zürich (UZH), 8091 Zurich, Switzerland
| | - Cong Tang
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zürich (USZ) and University of Zürich (UZH), 8091 Zurich, Switzerland
| | - Ye Xie
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zürich (USZ) and University of Zürich (UZH), 8091 Zurich, Switzerland
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Viktoria Fisi
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zürich (USZ) and University of Zürich (UZH), 8091 Zurich, Switzerland
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zürich (USZ) and University of Zürich (UZH), 8091 Zurich, Switzerland
| | | | - David T Breault
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - David Penton
- Electrophysiology Facility, University of Zurich, 8057 Zürich, Switzerland
| | - Johannes Loffing
- Institute of Anatomy, University of Zürich, 8057 Zurich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zürich (USZ) and University of Zürich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- The LOOP Zurich Medical Research Center, 8044 Zurich, Switzerland
| |
Collapse
|
83
|
Ay B, Cyr SM, Klovdahl K, Zhou W, Tognoni CM, Iwasaki Y, Rhee EP, Dedeoglu A, Simic P, Bastepe M. Gα11 deficiency increases fibroblast growth factor 23 levels in a mouse model of familial hypocalciuric hypercalcemia. JCI Insight 2024; 9:e178993. [PMID: 38530370 PMCID: PMC11141917 DOI: 10.1172/jci.insight.178993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Fibroblast growth factor 23 (FGF23) production has recently been shown to increase downstream of Gαq/11-PKC signaling in osteocytes. Inactivating mutations in the gene encoding Gα11 (GNA11) cause familial hypocalciuric hypercalcemia (FHH) due to impaired calcium-sensing receptor signaling. We explored the effect of Gα11 deficiency on FGF23 production in mice with heterozygous (Gna11+/-) or homozygous (Gna11-/-) ablation of Gna11. Both Gna11+/- and Gna11-/- mice demonstrated hypercalcemia and mildly raised parathyroid hormone levels, consistent with FHH. Strikingly, these mice also displayed increased serum levels of total and intact FGF23 and hypophosphatemia. Gna11-/- mice showed augmented Fgf23 mRNA levels in the liver and heart, but not in bone or bone marrow, and also showed evidence of systemic inflammation with elevated serum IL-1β levels. Furin gene expression was significantly increased in the Gna11-/- liver, suggesting enhanced FGF23 cleavage despite the observed rise in circulating intact FGF23 levels. Gna11-/- mice had normal renal function and reduced serum levels of glycerol-3-phosphate, excluding kidney injury as the primary cause of elevated intact FGF23 levels. Thus, Gα11 ablation caused systemic inflammation and excess serum FGF23 in mice, suggesting that patients with FHH - at least those with GNA11 mutations - may be at risk for these complications.
Collapse
Affiliation(s)
- Birol Ay
- Endocrine Unit, Department of Medicine, and
| | | | | | - Wen Zhou
- Endocrine Unit, Department of Medicine, and
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina M. Tognoni
- Department of Veterans Affairs, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Eugene P Rhee
- Endocrine Unit, Department of Medicine, and
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alpaslan Dedeoglu
- Department of Veterans Affairs, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Massachusetts, USA
| | - Petra Simic
- Endocrine Unit, Department of Medicine, and
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
84
|
Perwad F, Akwo EA, Vartanian N, Suva LJ, Friedman PA, Robinson-Cohen C. Multi-trait Analysis of GWAS for circulating FGF23 Identifies Novel Network Interactions Between HRG-HMGB1 and Cardiac Disease in CKD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.04.24303051. [PMID: 38496593 PMCID: PMC10942519 DOI: 10.1101/2024.03.04.24303051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Genome-wide association studies (GWAS) have identified numerous genetic loci associated with mineral metabolism (MM) markers but have exclusively focused on single-trait analysis. In this study, we performed a multi-trait analysis of GWAS (MTAG) of MM, exploring overlapping genetic architecture between traits, to identify novel genetic associations for fibroblast growth factor 23 (FGF23). Methods We applied MTAG to genetic variants common to GWAS of 5 genetically correlated MM markers (calcium, phosphorus, FGF23, 25-hydroxyvitamin D (25(OH)D) and parathyroid hormone (PTH)) in European-ancestry subjects. We integrated information from UKBioBank GWAS for blood levels for phosphate, 25(OH)D and calcium (n=366,484), and CHARGE GWAS for PTH (n=29,155) and FGF23 (n=16,624). We then used functional genomics to model interactive and dynamic networks to identify novel associations between genetic traits and circulating FGF23. Results MTAG increased the effective sample size for all MM markers to n=50,325 for FGF23. After clumping, MTAG identified independent genome-wide significant SNPs for all traits, including 62 loci for FGF23. Many of these loci have not been previously reported in single-trait analyses. Through functional genomics we identified Histidine-rich glycoprotein (HRG) and high mobility group box 1(HMGB1) genes as master regulators of downstream canonical pathways associated with FGF23. HRG-HMGB1 network interactions were also highly enriched in left ventricular heart tissue of a cohort of deceased hemodialysis patients. Conclusion Our findings highlight the importance of MTAG analysis of MM markers to boost the number of genome-wide significant loci for FGF23 to identify novel genetic traits. Functional genomics revealed novel networks that inform unique cellular functions and identified HRG-HMGB1 as key master regulators of FGF23 and cardiovascular disease in CKD. Future studies will provide a deeper understanding of genetic signatures associated with FGF23 and its role in health and disease.
Collapse
Affiliation(s)
- Farzana Perwad
- University of California San Francisco, San Francisco, CA
| | - Elvis A Akwo
- Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | | |
Collapse
|
85
|
Michon-Colin A, Bouderlique E, Prié D, Maruani G, Nevoux J, Briot K, Courbebaisse M. Successful Burosumab Treatment in an Adult Patient with X-Linked Hypophosphatemia and Chronic Kidney Disease Stage 3b. Calcif Tissue Int 2024; 114:310-314. [PMID: 38195892 DOI: 10.1007/s00223-023-01169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/19/2023] [Indexed: 01/11/2024]
Abstract
X-linked hypophosphatemic rickets (XLH) is a genetic cause of renal hypophosphatemia due to inactivation of the PHEX gene, with an inappropriate concentration of fibroblast growth factor 23 (FGF23). Burosumab, an anti-FGF23 monoclonal antibody, is a validated treatment for XLH, but its use in patients with chronic kidney disease (CKD) has not been validated. A 61-year-old man with XLH developed CKD during follow-up. Conventional treatment (phosphate salts and active vitamin D analogs) was poorly tolerated. Treatment with burosumab was decided at a multi-professional meeting. Before burosumab initiation, his measured glomerular filtration rate was 44 mL/min/1.73 m2 defining CKD stage 3b and intact FGF23 concentration was very high (4496.0 ng/mL, N: 22.7-93.1) due to both XLH and CKD. Severe hypophosphatemia was observed after the two first injections of burosumab at usual doses (1 mg/kg monthly) and concomitant discontinuation of the conventional treatment. After increasing the dose and reducing the interval between doses (1.3 mg/kg every three weeks) from the third injection, serum phosphate concentration normalized and remained around the lower limit of the normal range. A local cutaneous reaction was observed just after the second injection, but did not recur. We report for the first time the efficacy and good short-term tolerance of burosumab in a patient with XLH and CKD, subject to a higher dosage aimed at achieving a phosphatemia at the lower limit of the normal range.
Collapse
Affiliation(s)
- Arthur Michon-Colin
- Service de Physiologie, Unité d'Explorations Fonctionnelles Métaboliques et Rénales, Hôpital Européen Georges-Pompidou, Assistance Publique - Hôpitaux de Paris, Paris, France.
- Université Paris Cité (UPC), Paris, France.
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), 75015, Paris, France.
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, 75015, Paris, France.
| | - Elise Bouderlique
- Service de Physiologie, Unité d'Explorations Fonctionnelles Métaboliques et Rénales, Hôpital Européen Georges-Pompidou, Assistance Publique - Hôpitaux de Paris, Paris, France
- Université Paris Cité (UPC), Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), 75015, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, 75015, Paris, France
| | - Dominique Prié
- Université Paris Cité (UPC), Paris, France
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Service de Physiologie, Hôpital Necker, Assistance Publique - Hôpitaux de Paris, 75015, Paris, France
| | - Gérard Maruani
- Service de Physiologie, Unité d'Explorations Fonctionnelles Métaboliques et Rénales, Hôpital Européen Georges-Pompidou, Assistance Publique - Hôpitaux de Paris, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), 75015, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, 75015, Paris, France
| | - Jérôme Nevoux
- Université Paris-Saclay, Paris, France
- Institut de l'Audition, Paris, France
- Service ORL et implants auditifs, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris Le Kremlin-Bicêtre, Paris, France
| | - Karine Briot
- Université Paris Cité (UPC), Paris, France
- Service de Rhumatologie, Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Marie Courbebaisse
- Service de Physiologie, Unité d'Explorations Fonctionnelles Métaboliques et Rénales, Hôpital Européen Georges-Pompidou, Assistance Publique - Hôpitaux de Paris, Paris, France
- Université Paris Cité (UPC), Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), 75015, Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, 75015, Paris, France
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
| |
Collapse
|
86
|
Zhang FF, Xu YQ, Xiong JH, Hu JX, Zhu GS, Cheng SM. Bibliometric study and review of Klotho research: global characteristics and trends from 2000 to 2023. Int Urol Nephrol 2024; 56:1045-1056. [PMID: 37728807 DOI: 10.1007/s11255-023-03792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Although Klotho-related research has seen a significant upsurge, the field lacks comprehensive analytical representation and in-depth exploration of pertinent areas such as prevailing research trends and key focus areas. METHOD This review presents a bibliometric analysis of literature data gathered from the Web of Science Core Collection databases from January 1, 2000, to April 30, 2023. Parameters such as co-authorship, co-citation, co-occurrence, and the emergence of publications, countries, categories, references, and keywords were scrutinized predominantly using Citespace software. RESULTS Our investigation amassed a total of 3548 papers, with the United States leading in the quantity of publications (1175, accounting for 33.12%), followed by China (867, representing 24.44%), and Japan (439, accounting for 12.37%). While the United States is preeminent in the overall volume of publications, Scotland holds prominence in terms of centrality. Out of a total of 96 subject categories, urology and nephrology (573), and endocrinology and metabolism (542) were the two leading domains of Klotho-related publications. The 2011 paper titled "FGF23 induces left ventricular hypertrophy" by Faul C et al. holds the distinction of being the most frequently cited. The keywords "fibroblast growth factor 23," "phosphate homeostasis," and "functional variants" demonstrated the highest intensity, underscoring the potential of these research areas. CONCLUSION As the volume of literature grows, the role of Klotho in disease management and its applicability as a marker in disease progression warrant vigilant tracking and study.
Collapse
Affiliation(s)
- Fen-Fen Zhang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
| | - Yue-Qi Xu
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
| | - Jiang-Hao Xiong
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
| | - Jun-Xia Hu
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
| | - Guo-Shuang Zhu
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, No.1688 Meiling Avenue, Nanchang, 33004, Jiangxi Province, China.
| | - Shao-Min Cheng
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, No.1688 Meiling Avenue, Nanchang, 33004, Jiangxi Province, China.
| |
Collapse
|
87
|
Ito T, Akamatsu K. Echocardiographic manifestations in end-stage renal disease. Heart Fail Rev 2024; 29:465-478. [PMID: 38071738 DOI: 10.1007/s10741-023-10376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 03/16/2024]
Abstract
End-stage renal disease (ESRD) is a common but profound clinical condition, and it is associated with extremely increased morbidity and mortality. ESRD can represent four major echocardiographic findings-myocardial hypertrophy, heart failure, valvular calcification, and pericardial effusion. Multiple factors interplay leading to these abnormalities, including pressure/volume overload, oxidative stress, and neurohormonal imbalances. Uremic cardiomyopathy is characterized by left ventricular (LV) hypertrophy and marked diastolic dysfunction. In ESRD patients on hemodialysis, LV geometry is changeable bidirectionally between concentric and eccentric hypertrophy, depending upon changes in corporal fluid volume and arterial pressure, which eventually results in a characteristic of LV systolic dysfunction. Speckle tracking echocardiography enabling to detect subclinical disease might help prevent future advancement to heart failure. Heart valve calcification also is common in ESRD, keeping in mind which progresses faster than expected. In a modern era, pericardial effusion observed in ESRD patients tends to result from volume overload, rather than pericarditis. In this review, we introduce and discuss those four echocardiography-assessed findings of ESRD, with which known and conceivable pathophysiologies for each are incorporated.
Collapse
Affiliation(s)
- Takahide Ito
- Department of Cardiology, Osaka Medical and Pharmaceutical University, 2-7, Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Kanako Akamatsu
- Department of Cardiology, Osaka Medical and Pharmaceutical University, 2-7, Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
88
|
Turner ME, Beck L, Hill Gallant KM, Chen Y, Moe OW, Kuro-o M, Moe S, Aikawa E. Phosphate in Cardiovascular Disease: From New Insights Into Molecular Mechanisms to Clinical Implications. Arterioscler Thromb Vasc Biol 2024; 44:584-602. [PMID: 38205639 PMCID: PMC10922848 DOI: 10.1161/atvbaha.123.319198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Hyperphosphatemia is a common feature in patients with impaired kidney function and is associated with increased risk of cardiovascular disease. This phenomenon extends to the general population, whereby elevations of serum phosphate within the normal range increase risk; however, the mechanism by which this occurs is multifaceted, and many aspects are poorly understood. Less than 1% of total body phosphate is found in the circulation and extracellular space, and its regulation involves multiple organ cross talk and hormones to coordinate absorption from the small intestine and excretion by the kidneys. For phosphate to be regulated, it must be sensed. While mostly enigmatic, various phosphate sensors have been elucidated in recent years. Phosphate in the circulation can be buffered, either through regulated exchange between extracellular and cellular spaces or through chelation by circulating proteins (ie, fetuin-A) to form calciprotein particles, which in themselves serve a function for bulk mineral transport and signaling. Either through direct signaling or through mediators like hormones, calciprotein particles, or calcifying extracellular vesicles, phosphate can induce various cardiovascular disease pathologies: most notably, ectopic cardiovascular calcification but also left ventricular hypertrophy, as well as bone and kidney diseases, which then propagate phosphate dysregulation further. Therapies targeting phosphate have mostly focused on intestinal binding, of which appreciation and understanding of paracellular transport has greatly advanced the field. However, pharmacotherapies that target cardiovascular consequences of phosphate directly, such as vascular calcification, are still an area of great unmet medical need.
Collapse
Affiliation(s)
- Mandy E. Turner
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurent Beck
- Nantes Université, CNRS, Inserm, l’institut du thorax, F-44000 Nantes, France
| | - Kathleen M Hill Gallant
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Makoto Kuro-o
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Sharon Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
89
|
Soomro QH, Charytan DM. New Insights on Cardiac Arrhythmias in Patients With Kidney Disease. Semin Nephrol 2024; 44:151518. [PMID: 38772780 DOI: 10.1016/j.semnephrol.2024.151518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The risk of arrhythmia and its management become increasingly complex as kidney disease progresses. This presents a multifaceted clinical challenge. Our discussion addresses these specific challenges relevant to patients as their kidney disease advances. We highlight numerous opportunities for enhancing the current standard of care within this realm. Additionally, this review delves into research concerning early detection, prevention, diagnosis, and treatment of various arrhythmias spanning the spectrum of kidney disease.
Collapse
|
90
|
Guaricci AI, Sturdà F, Russo R, Basile P, Baggiano A, Mushtaq S, Fusini L, Fazzari F, Bertandino F, Monitillo F, Carella MC, Simonini M, Pontone G, Ciccone MM, Grandaliano G, Vezzoli G, Pesce F. Assessment and management of heart failure in patients with chronic kidney disease. Heart Fail Rev 2024; 29:379-394. [PMID: 37728751 PMCID: PMC10942934 DOI: 10.1007/s10741-023-10346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Heart failure (HF) and chronic kidney disease (CKD) are two pathological conditions with a high prevalence in the general population. When they coexist in the same patient, a strict interplay between them is observed, such that patients affected require a clinical multidisciplinary and personalized management. The diagnosis of HF and CKD relies on signs and symptoms of the patient but several additional tools, such as blood-based biomarkers and imaging techniques, are needed to clarify and discriminate the main characteristics of these diseases. Improved survival due to new recommended drugs in HF has increasingly challenged physicians to manage patients with multiple diseases, especially in case of CKD. However, the safe administration of these drugs in patients with HF and CKD is often challenging. Knowing up to which values of creatinine or renal clearance each drug can be administered is fundamental. With this review we sought to give an insight on this sizable and complex topic, in order to get clearer ideas and a more precise reference about the diagnostic assessment and therapeutic management of HF and CKD.
Collapse
Affiliation(s)
- Andrea Igoren Guaricci
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121, Bari, Italy.
| | - Francesca Sturdà
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121, Bari, Italy
| | - Roberto Russo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Paolo Basile
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121, Bari, Italy
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - Laura Fusini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - Fabio Fazzari
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - Fulvio Bertandino
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121, Bari, Italy
| | - Francesco Monitillo
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121, Bari, Italy
| | - Maria Cristina Carella
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121, Bari, Italy
| | - Marco Simonini
- Nephrology and Dialysis Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - Marco Matteo Ciccone
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121, Bari, Italy
| | - Giuseppe Grandaliano
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giuseppe Vezzoli
- Department of Nephrology and Dialysis, Vita Salute San Raffaele University, 20132, Milan, Italy
| | - Francesco Pesce
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124, Bari, Italy
| |
Collapse
|
91
|
van der Vaart A, Eelderink C, van den Heuvel EGHM, Feitsma AL, van Dijk PR, de Borst MH, Bakker SJL. Effect of high in comparison to low dairy intake intervention on markers of bone and cartilage remodeling and phosphate metabolism in healthy adults with overweight. Eur J Nutr 2024; 63:461-468. [PMID: 38183470 DOI: 10.1007/s00394-023-03278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/02/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND In the ageing population, issues with bone and joint health are highly prevalent. Both beneficial and potential risks of dairy products on bone and joint health are reported in epidemiological studies. Furthermore, the phosphorus (P) load from dairy could potentially lead to unfavorable changes in P metabolism. OBJECTIVE To investigate the effect of dairy intake on markers of bone and joint metabolism and P metabolism in an intervention study with high and low dairy intake. METHODS In a post hoc analysis of a randomized cross-over trial with overweight adults, the effect of a standardized high dairy intake [HDI (5-6 dairy portions per day) versus low dairy intake (LDI, ≤ 1 dairy portion/day)] for 6 weeks on markers of bone and joint health was assessed using enzyme-linked immunosorbent assays and electrochemiluminescence immunoassays. Markers indicative for cartilage breakdown, including urinary CTX-II, serum COMP and 4-hydroxyproline, and markers indicative for bone remodeling, such as serum CTX-I, PTH, 25(OH)D, osteocalcin, P1NP and FGF23, were investigated using linear mixed models. Furthermore, changes in P metabolism, including the main phosphate-regulating hormone FGF23 were explored. RESULTS This study was completed by 46 adults (57% female, age 59 ± 4 years, BMI 28 ± 2 kg/m2). Following HDI, markers such as urinary CTX-II excretion, COMP, 25(OH)D, PTH and CTX-I were significantly lower after HDI, as compared to LDI. For example, CTX-II excretion was 1688 ng/24 h at HDI, while it was 2050 ng/24 h at LDI (p < 0.001). Concurrently, P intake was higher at HDI than at LDI (2090 vs 1313 mg/day, p < 0.001). While plasma P levels did not differ (1.03 vs 1.04 mmol/L in LDI, p = 0.36), urinary P excretion was higher at HDI than at LDI (31 vs 28 mmol/L, p = 0.04). FGF23 levels tended to be higher at HDI than at LDI (76.3 vs. 72.9 RU/mL, p = 0.07). CONCLUSIONS HDI, as compared to LDI, reduced markers that are indicative for joint and bone resorption and bone turnover. No changes in P metabolism were observed. CLINICAL TRIAL REGISTRY This trial was registered at https://trialsearch.who.int/Trial2.aspx?TrialID=NTR4899 as NTR4899.
Collapse
Affiliation(s)
- Amarens van der Vaart
- Division of Nephrology, Department of Internal Medicine, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
- Division of Endocrinology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Coby Eelderink
- Division of Nephrology, Department of Internal Medicine, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | | | - Anouk L Feitsma
- FrieslandCampina, Stationsplein 4, PO Box 1551, 3800 BN, Amersfoort, The Netherlands
| | - Peter R van Dijk
- Division of Endocrinology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin H de Borst
- Division of Nephrology, Department of Internal Medicine, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
92
|
Hiyamuta H, Yamada S, Nakano T, Taniguchi M, Masutani K, Tsuruya K, Kitazono T. Impact of Electrocardiographic Parameters on Sudden Death in Patients Receiving Maintenance Hemodialysis: Ten-Year Outcomes of the Q-Cohort Study. J Atheroscler Thromb 2024; 31:214-231. [PMID: 37730375 PMCID: PMC10918032 DOI: 10.5551/jat.64255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 09/22/2023] Open
Abstract
AIM Sudden death is one of the most common causes of death among hemodialysis patients. Electrocardiography (ECG) is a noninvasive and inexpensive test that is regularly performed in hemodialysis clinics. However, the association between abnormal ECG findings and the risk of sudden death in hemodialysis patients is yet to be fully elucidated. Thus, the aim of this study was to determine the ECG parameters linked to sudden death in patients undergoing hemodialysis. METHODS The Q-Cohort Study is a multicenter, longitudinal, observational study of hemodialysis patients. In this study, 1,153 Japanese hemodialysis patients aged ≥ 18 years with ECG data recorded within 1 year of study enrollment were followed up for 10 years. Cox proportional hazards models were used to estimate the multivariate-adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) for the association between ECG parameters and sudden death. RESULTS During the median follow-up period of 9.0 years, 517 patients died, 76 of whom exhibited sudden death. After adjusting for confounding factors, higher heart rate, QT prolongation, and left ventricular hypertrophy as per the Sokolow-Lyon voltage criteria were found to be independently associated with an increased risk of sudden death. The adjusted HRs [95% CIs] for each abnormal ECG parameter were 2.02 [1.05-3.89], 2.10 [1.30-1.77], and 1.91 [1.18-3.09], respectively. CONCLUSIONS Higher heart rate, QT prolongation, and left ventricular hypertrophy on ECG have been determined to be associated with an increased risk of sudden death. Therefore, regular ECG recording could enable medical practitioners to identify hemodialysis patients who require intervention to prevent lethal arrhythmia.
Collapse
Affiliation(s)
- Hiroto Hiyamuta
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Kosuke Masutani
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
93
|
Curaj A, Vanholder R, Loscalzo J, Quach K, Wu Z, Jankowski V, Jankowski J. Cardiovascular Consequences of Uremic Metabolites: an Overview of the Involved Signaling Pathways. Circ Res 2024; 134:592-613. [PMID: 38422175 DOI: 10.1161/circresaha.123.324001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies. However, this review offers an overview of the uremic metabolites and details their signaling pathways involved in cardiorenal syndrome and the development of heart failure. A holistic view of the metabolites, but more importantly, an exhaustive crosstalk of their known signaling pathways, is important for depicting new therapeutic strategies in the cardiovascular field.
Collapse
Affiliation(s)
- Adelina Curaj
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, University Hospital, Ghent, Belgium (R.V.)
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Kaiseng Quach
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Zhuojun Wu
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease, RWTH Aachen University, Aachen, Germany (J.J.)
| |
Collapse
|
94
|
Thomas E, Klomhaus AM, Laster ML, Furth SL, Warady BA, Salusky IB, Hanudel MR. Associations between anemia and FGF23 in the CKiD study. Pediatr Nephrol 2024; 39:837-847. [PMID: 37752381 PMCID: PMC10817837 DOI: 10.1007/s00467-023-06160-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/13/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that plays a central role in chronic kidney disease-mineral bone disorder and is associated with CKD progression and cardiovascular morbidity. Factors related to CKD-associated anemia, including iron deficiency, can increase FGF23 production. This study aimed to assess whether anemia and/or iron deficiency are associated with increased circulating concentrations of FGF23 in the large, well-characterized Chronic Kidney Disease in Children (CKiD) study cohort. METHODS Hemoglobin concentrations, iron parameters, C-terminal (total) FGF23, intact FGF23, and relevant covariables were measured in cross-sectional analysis of CKiD study subjects. RESULTS In 493 pediatric patients with CKD (median [interquartile range] age 13 [9, 16] years), the median estimated glomerular filtration rate was 48 [35, 61] ml/min/1.73 m2, and 103 patients (21%) were anemic. Anemic subjects had higher total FGF23 concentrations than non-anemic subjects (204 [124, 390] vs. 109 [77, 168] RU/ml, p < 0.001). In multivariable linear regression modeling, anemia was independently associated with higher total FGF23, after adjustment for demographic, kidney-related, mineral metabolism, and inflammatory covariables (standardized β (95% confidence interval) 0.10 (0.04, 0.17), p = 0.002). In the subset of subjects with available iron parameters (n = 191), iron deficiency was not associated with significantly higher total FGF23 concentrations. In the subgroup that had measurements of both total and intact FGF23 (n = 185), in fully adjusted models, anemia was significantly associated with higher total FGF23 (standardized β (95% CI) 0.16 (0.04, 0.27), p = 0.008) but not intact FGF23 (standardized β (95% CI) 0.02 (-0.12, 0.15), p = 0.81). CONCLUSIONS In this cohort of pediatric patients with CKD, anemia was associated with increased total FGF23 levels but was not independently associated with elevated intact FGF23, suggesting possible effects on both FGF23 production and cleavage. Further studies are warranted to investigate non-mineral factors affecting FGF23 production and metabolism in CKD.
Collapse
Affiliation(s)
- Elizabeth Thomas
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Alexandra M Klomhaus
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marciana L Laster
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Susan L Furth
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bradley A Warady
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Isidro B Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mark R Hanudel
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
95
|
Dobre MA, Ahlawat S, Schelling JR. Chronic kidney disease associated cardiomyopathy: recent advances and future perspectives. Curr Opin Nephrol Hypertens 2024; 33:203-211. [PMID: 38193308 PMCID: PMC10872957 DOI: 10.1097/mnh.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW Cardiomyopathy in chronic kidney disease (CKD) is a complex condition with multiple triggers and poor prognosis. This review provides an overview of recent advances in CKD-associated cardiomyopathy, with a focus on pathophysiology, newly discovered biomarkers and potential therapeutic targets. RECENT FINDINGS CKD is associated with a specific pattern of myocardial hypertrophy and fibrosis, resulting in diastolic and systolic dysfunction, and often triggered by nonatherosclerotic processes. Novel biomarkers, including amino-terminal type III procollagen peptide (PIIINP), carboxy-terminal type I procollagen peptide (PICP), FGF23, marinobufagenin, and several miRNAs, show promise for early detection and risk stratification. Treatment options for CKD-associated cardiomyopathy are limited. Sodium glucose cotransporter-2 inhibitors have been shown to reduce left ventricle hypertrophy and improve ejection fraction in individuals with diabetes and mild CKD, and are currently under investigation for more advanced stages of CKD. In hemodialysis patients calcimimetic etelcalcetide resulted in a significant reduction in left ventricular mass. SUMMARY CKD-associated cardiomyopathy is a common and severe complication in CKD. The identification of novel biomarkers may lead to future therapeutic targets. Randomized clinical trials in individuals with more advanced CKD would be well posed to expand treatment options for this debilitating condition.
Collapse
Affiliation(s)
- Mirela A Dobre
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center
- School of Medicine
| | - Shruti Ahlawat
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center
| | - Jeffrey R Schelling
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center
- School of Medicine
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
96
|
Dimitriadis K, Damianaki A, Bletsa E, Pyrpyris N, Tsioufis P, Theofilis P, Beneki E, Tatakis F, Kasiakogias A, Oikonomou E, Petras D, Siasos G, Aggeli K, Tsioufis K. Renal Congestion in Heart Failure: Insights in Novel Diagnostic Modalities. Cardiol Rev 2024:00045415-990000000-00224. [PMID: 38427026 DOI: 10.1097/crd.0000000000000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Heart failure is increasingly prevalent and is estimated to increase its burden in the following years. A well-reported comorbidity of heart failure is renal dysfunction, where predominantly changes in the patient's volume status, tubular necrosis or other mechanical and neurohormonal mechanisms seem to drive this impairment. Currently, there are established biomarkers evaluating the patient's clinical status solely regarding the cardiovascular or renal system. However, as the coexistence of heart and renal failure is common and related to increased mortality and hospitalization for heart failure, it is of major importance to establish novel diagnostic techniques, which could identify patients with or at risk for cardiorenal syndrome and assist in selecting the appropriate management for these patients. Such techniques include biomarkers and imaging. In regards to biomarkers, several peptides and miRNAs indicative of renal or tubular dysfunction seem to properly identify patients with cardiorenal syndrome early on in the course of the disease, while changes in their serum levels can also be helpful in identifying response to diuretic treatment. Current and novel imaging techniques can also identify heart failure patients with early renal insufficiency and assess the volume status and the effect of treatment of each patient. Furthermore, by assessing the renal morphology, these techniques could also help identify those at risk of kidney impairment. This review aims to present all relevant clinical and trial data available in order to provide an up-to-date summary of the modalities available to properly assess cardiorenal syndrome.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | | | - Evanthia Bletsa
- 3rd Department of Cardiology, Sotiria Hospital, University of Athens, Athens, Greece
| | - Nikolaos Pyrpyris
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Panagiotis Tsioufis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Panagiotis Theofilis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Eirini Beneki
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Fotis Tatakis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Alexandros Kasiakogias
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Sotiria Hospital, University of Athens, Athens, Greece
| | | | - Gerasimos Siasos
- 3rd Department of Cardiology, Sotiria Hospital, University of Athens, Athens, Greece
| | - Konstantina Aggeli
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Konstantinos Tsioufis
- From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| |
Collapse
|
97
|
Xu C, Tsihlis G, Chau K, Trinh K, Rogers NM, Julovi SM. Novel Perspectives in Chronic Kidney Disease-Specific Cardiovascular Disease. Int J Mol Sci 2024; 25:2658. [PMID: 38473905 PMCID: PMC10931927 DOI: 10.3390/ijms25052658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic kidney disease (CKD) affects > 10% of the global adult population and significantly increases the risk of cardiovascular disease (CVD), which remains the leading cause of death in this population. The development and progression of CVD-compared to the general population-is premature and accelerated, manifesting as coronary artery disease, heart failure, arrhythmias, and sudden cardiac death. CKD and CV disease combine to cause multimorbid cardiorenal syndrome (CRS) due to contributions from shared risk factors, including systolic hypertension, diabetes mellitus, obesity, and dyslipidemia. Additional neurohormonal activation, innate immunity, and inflammation contribute to progressive cardiac and renal deterioration, reflecting the strong bidirectional interaction between these organ systems. A shared molecular pathophysiology-including inflammation, oxidative stress, senescence, and hemodynamic fluctuations characterise all types of CRS. This review highlights the evolving paradigm and recent advances in our understanding of the molecular biology of CRS, outlining the potential for disease-specific therapies and biomarker disease detection.
Collapse
Affiliation(s)
- Cuicui Xu
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
| | - George Tsihlis
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
| | - Katrina Chau
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
- Blacktown Clinical School, School of Medicine, Western Sydney University, Sydney, NSW 2148, Australia
| | - Katie Trinh
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
| | - Natasha M. Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| | - Sohel M. Julovi
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| |
Collapse
|
98
|
Mostafa RH, Moustafa A. Beyond acute infection: molecular mechanisms underpinning cardiovascular complications in long COVID. Front Cardiovasc Med 2024; 11:1268571. [PMID: 38495940 PMCID: PMC10942004 DOI: 10.3389/fcvm.2024.1268571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
SARS-CoV-2, responsible for the global COVID-19 pandemic, has manifested significant cardiovascular implications for the infected population. These cardiovascular repercussions not only linger beyond the initial phase of illness but have also been observed in individuals who remain asymptomatic. This extended and pervasive impact is often called the post-acute COVID-19 syndrome (PACS) or "Long COVID". With the number of confirmed global cases approaching an alarming 756 million, the multifaceted challenges of Long COVID are undeniable. These challenges span from individual health complications to considerable burdens on worldwide healthcare systems. Our review comprehensively examines the complications of the persistent cardiovascular complications associated with COVID-19. Furthermore, we shed light on emerging therapeutic strategies that promise to manage and possibly mitigate these complications. We also introduce and discuss the profound concerns regarding the potential transgenerational repercussions of SARS-CoV-2, emphasizing the need for a proactive and informed approach to future research and clinical practice.
Collapse
Affiliation(s)
- Roba Hamed Mostafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
- Department of Biology, American University in Cairo, New Cairo, Egypt
| |
Collapse
|
99
|
Janubová M, Žitňanová I. The effects of vitamin D on different types of cells. Steroids 2024; 202:109350. [PMID: 38096964 DOI: 10.1016/j.steroids.2023.109350] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
Vitamin D is neccessary for regulation of calcium and phosphorus metabolism in bones, affects imunity, the cardiovascular system, muscles, skin, epithelium, extracellular matrix, the central nervous system, and plays arole in prevention of aging-associated diseases. Vitamin D receptor is expressed in almost all types of cells and its activation leads to modulation of different signaling pathways. In this review, we have analysed the current knowledge of 1,25-dihydroxyvitamin D3 or 25-hydroxyvitamin D3 effects on metabolism of cells important for the function of the cardiovascular system (endothelial cells, vascular smooth muscle cells, cardiac cells and pericytes), tissue healing (fibroblasts), epithelium (various types of epithelial cells) and the central nervous system (neurons, astrocytes and microglia). The goal of this review was to compare the effects of vitamin D on the above mentioned cells in in vitro conditions and to summarize what is known in this field of research.
Collapse
Affiliation(s)
- Mária Janubová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, 813 72 Bratislava, Slovakia.
| | - Ingrid Žitňanová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, 813 72 Bratislava, Slovakia
| |
Collapse
|
100
|
Rausch S, Hammerschmidt K, Feger M, Vítek L, Föller M. Bilirubin Down-Regulates Oxidative Stress and Fibroblast Growth Factor 23 Expression in UMR106 Osteoblast-Like Cells. Exp Clin Endocrinol Diabetes 2024; 132:91-97. [PMID: 38373702 DOI: 10.1055/a-2237-8863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Fibroblast growth factor 23 (FGF23) is a major regulator of phosphate and vitamin D metabolism in the kidney, and its higher levels in plasma are associated with poorer outcomes in kidney and cardiovascular diseases. It is produced by bone cells upon enhanced oxidative stress and inhibits renal phosphate reabsorption and calcitriol (active form of vitamin D) production. Bilirubin, the final product of the heme catabolic pathway in the vascular bed, has versatile biological functions, including antioxidant and anti-inflammatory effects. This study explored whether bilirubin alters FGF23 production. METHODS Experiments were performed using UMR106 osteoblast-like cells. Fgf23 transcript levels were determined by quantitative real-time polymerase chain reaction, C-terminal and intact FGF23 protein levels were determined by enzyme-linked immunosorbent assay, and cellular oxidative stress was assessed by CellROX assay. RESULTS Unconjugated bilirubin down-regulated Fgf23 gene transcription and FGF23 protein abundance; these effects were paralleled by lower cellular oxidative stress levels. Also, conjugated bilirubin reduced Fgf23 mRNA abundance. CONCLUSION Bilirubin down-regulates FGF23 production in UMR106 cells, an effect likely to be dependent on the reduction of cellular oxidative stress.
Collapse
Affiliation(s)
- Steffen Rausch
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | | | - Martina Feger
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Libor Vítek
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michael Föller
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| |
Collapse
|