51
|
Human γδ TCR Repertoires in Health and Disease. Cells 2020; 9:cells9040800. [PMID: 32225004 PMCID: PMC7226320 DOI: 10.3390/cells9040800] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
The T cell receptor (TCR) repertoires of γδ T cells are very different to those of αβ T cells. While the theoretical TCR repertoire diversity of γδ T cells is estimated to exceed the diversity of αβ T cells by far, γδ T cells are still understood as more invariant T cells that only use a limited set of γδ TCRs. Most of our current knowledge of human γδ T cell receptor diversity builds on specific monoclonal antibodies that discriminate between the two major subsets, namely Vδ2+ and Vδ1+ T cells. Of those two subsets, Vδ2+ T cells seem to better fit into a role of innate T cells with semi-invariant TCR usage, as compared to an adaptive-like biology of some Vδ1+ subsets. Yet, this distinction into innate-like Vδ2+ and adaptive-like Vδ1+ γδ T cells does not quite recapitulate the full diversity of γδ T cell subsets, ligands and interaction modes. Here, we review how the recent introduction of high-throughput TCR repertoire sequencing has boosted our knowledge of γδ T cell repertoire diversity beyond Vδ2+ and Vδ1+ T cells. We discuss the current understanding of clonal composition and the dynamics of human γδ TCR repertoires in health and disease.
Collapse
|
52
|
Fonseca S, Pereira V, Lau C, Teixeira MDA, Bini-Antunes M, Lima M. Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature. Cells 2020; 9:cells9030729. [PMID: 32188103 PMCID: PMC7140678 DOI: 10.3390/cells9030729] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Gamma delta T cells (Tc) are divided according to the type of Vδ and Vγ chains they express, with two major γδ Tc subsets being recognized in humans: Vδ2Vγ9 and Vδ1. Despite many studies in pathological conditions, only a few have quantified the γδ Tc subsets in healthy adults, and a comprehensive review of the factors influencing its representation in the blood is missing. Here we quantified the total γδ Tc and the Vδ2/Vγ9 and Vδ1 Tc subsets in the blood from 30 healthy, Caucasian, Portuguese adults, we characterized their immunophenotype by 8-color flow cytometry, focusing in a few relevant Tc markers (CD3/TCR-γδ, CD5, CD8), and costimulatory (CD28), cytotoxic (CD16) and adhesion (CD56) molecules, and we examined the impacts of age and gender. Additionally, we reviewed the literature on the influences of race/ethnicity, age, gender, special periods of life, past infections, diet, medications and concomitant diseases on γδ Tc and their subsets. Given the multitude of factors influencing the γδ Tc repertoire and immunophenotype and the high variation observed, caution should be taken in interpreting “abnormal” γδ Tc values and repertoire deviations, and the clinical significance of small populations of “phenotypically abnormal” γδ Tc in the blood.
Collapse
Affiliation(s)
- Sónia Fonseca
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Vanessa Pereira
- Department of Clinical Pathology, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E); 4434-502 Vila Nova de Gaia, Portugal;
| | - Catarina Lau
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Maria dos Anjos Teixeira
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Marika Bini-Antunes
- Laboratory of Immunohematology and Blood Donors Unit, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001Porto, Portugal;
| | - Margarida Lima
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
- Correspondence: ; Tel.: + 351-22-20-77-500
| |
Collapse
|
53
|
Nelson CS, Baraniak I, Lilleri D, Reeves MB, Griffiths PD, Permar SR. Immune Correlates of Protection Against Human Cytomegalovirus Acquisition, Replication, and Disease. J Infect Dis 2020; 221:S45-S59. [PMID: 32134477 PMCID: PMC7057792 DOI: 10.1093/infdis/jiz428] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects and an etiology of significant morbidity and mortality in solid organ and hematopoietic stem cell transplant recipients. There is tremendous interest in developing a vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease, yet after nearly a half-century of research and development in this field we remain without such an intervention. Defining immune correlates of protection is a process that enables targeted vaccine/immunotherapeutic discovery and informed evaluation of clinical performance. Outcomes in the HCMV field have previously been measured against a variety of clinical end points, including virus acquisition, systemic replication, and progression to disease. Herein we review immune correlates of protection against each of these end points in turn, showing that control of HCMV likely depends on a combination of innate immune factors, antibodies, and T-cell responses. Furthermore, protective immune responses are heterogeneous, with no single immune parameter predicting protection against all clinical outcomes and stages of HCMV infection. A detailed understanding of protective immune responses for a given clinical end point will inform immunogen selection and guide preclinical and clinical evaluation of vaccines or immunotherapeutics to prevent HCMV-mediated congenital and transplant disease.
Collapse
Affiliation(s)
- Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,Correspondence: Cody S. Nelson, Human Vaccine Institute, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710 ()
| | - Ilona Baraniak
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Daniele Lilleri
- Laboratory of Genetics, Transplantation, and Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
54
|
Beucke N, Wesch D, Oberg HH, Peters C, Bochem J, Weide B, Garbe C, Pawelec G, Sebens S, Röcken C, Hashimoto H, Löffler MW, Nocerino P, Kordasti S, Kabelitz D, Schilbach K, Wistuba-Hamprecht K. Pitfalls in the characterization of circulating and tissue-resident human γδ T cells. J Leukoc Biol 2020; 107:1097-1105. [PMID: 31967358 DOI: 10.1002/jlb.5ma1219-296r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 01/11/2023] Open
Abstract
Dissection of the role and function of human γδ T cells and their heterogeneous subsets in cancer, inflammation, and auto-immune diseases is a growing and dynamic research field of increasing interest to the scientific community. Therefore, harmonization and standardization of techniques for the characterization of peripheral and tissue-resident γδ T cells is crucial to facilitate comparability between published and emerging research. The application of commercially available reagents to classify γδ T cells, in particular the combination of multiple Abs, is not always trouble-free, posing major demands on researchers entering this field. Occasionally, even entire γδ T cell subsets may remain undetected when certain Abs are combined in flow cytometric analysis with multicolor Ab panels, or might be lost during cell isolation procedures. Here, based on the recent literature and our own experience, we provide an overview of methods commonly employed for the phenotypic and functional characterization of human γδ T cells including advanced polychromatic flow cytometry, mass cytometry, immunohistochemistry, and magnetic cell isolation. We highlight potential pitfalls and discuss how to circumvent these obstacles.
Collapse
Affiliation(s)
- Nicola Beucke
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Jonas Bochem
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Benjamin Weide
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Claus Garbe
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Graham Pawelec
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christoph Röcken
- Institute of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hisayoshi Hashimoto
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Markus W Löffler
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Paola Nocerino
- Systems Cancer Immunology, Comprehensive Cancer Centre, King's College London, London, UK
| | - Shahram Kordasti
- Systems Cancer Immunology, Comprehensive Cancer Centre, King's College London, London, UK
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Karin Schilbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | | |
Collapse
|
55
|
CD8 + γδ T Cells Are More Frequent in CMV Seropositive Bone Marrow Grafts and Display Phenotype of an Adaptive Immune Response. Stem Cells Int 2019; 2019:6348060. [PMID: 31885619 PMCID: PMC6925825 DOI: 10.1155/2019/6348060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/24/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
The role of gamma delta (γδ) T cells in human cytomegalovirus (HCMV) immune surveillance has been the focus of research interest for years. Recent reports have shown a substantial clonal proliferation of γδ T cells in response to HCMV, shedding light on the adaptive immune response of γδ T cells. Nevertheless, most efforts have focused on Vδ2neg γδ T cell subset while less attention has been given to investigate other less common γδ T cell subsets. In this regard, a distinct subpopulation of γδ T cells that expresses the CD8 coreceptor (CD8+ γδ T cells) has not been thoroughly explored. Whether it is implicated in HCMV response and its ability to generate adaptive response has not been thoroughly investigated. In this study, we combined flow cytometry and immune sequencing of the TCR γ-chain (TRG) to analyze in-depth bone marrow (BM) graft γδ T cells from CMV seropositive (CMV+) and CMV seronegative (CMV-) donors. We showed that the frequency of CD8+ γδ T cells was significantly higher in CMV+ grafts compared to CMV- grafts (P < 0.001). Further characterization revealed that CD8+ γδ T cells from CMV+ grafts express Vγ9- and preferentially differentiated from a naive to terminal effector memory phenotype (CD27low/-CD45RO-). In line with these findings, TRG immune sequencing revealed clonal focusing and reduced usage of the Vγ9/JP gene segment in a CMV+ graft. Furthermore, CD8+ γδ T cells showed an enhanced response to TCR/CD3 and cytokine stimulation in contrast to CD8- γδ T cells. We conclude that γδ T cells in BM grafts are reshaped by donor CMV serostatus and highlight the potential adaptive role of CD8+ γδ T cells in HCMV immune response.
Collapse
|
56
|
Cona A, Tesoro D, Chiamenti M, Merlini E, Ferrari D, Marti A, Codecà C, Ancona G, Tincati C, d'Arminio Monforte A, Marchetti G. Disseminated cytomegalovirus disease after bendamustine: a case report and analysis of circulating B- and T-cell subsets. BMC Infect Dis 2019; 19:881. [PMID: 31640581 PMCID: PMC6806551 DOI: 10.1186/s12879-019-4545-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/09/2019] [Indexed: 11/29/2022] Open
Abstract
Background Bendamustine, used for the treatment of indolent B-cell non-Hodgkin lymphoma and chronic lymphocytic leukemia, is known to cause prolonged myelosuppression and lymphocytopenia and has been associated with the risk of developing serious and fatal infections. While reports of localized CMV infections in asymptomatic patients exist, disseminated CMV disease has not been described. Case presentation We report the first case of disseminated CMV infection in a 75-year-old male diagnosed with lymphoplasmacytic lymphoma/Waldenström macroglobulinemia with massive bone marrow infiltration. Despite 6-cycle R-bendamustine chemotherapy resulted in a good partial response, the patient developed persistent fever and severe weight loss. Analysis of cerebrospinal fluid and peripheral blood revealed the presence of CMV-DNA, while the fundus oculi examination revealed bilateral CMV retinitis. Treatment with induction and maintenance drugs was complicated by neutropenia and deterioration of renal function with electrolyte imbalance. From an immunological standpoint, we observed a profound imbalances in phenotype and function of B- and T-cell subsets, with a high proportion of circulating total, activated CD69+ and CD80+ B-cells, a low γ/δ T-cell frequency with a high proportion of CD69- and CD38-expressing cells, and hyperactivated/exhausted CD4+ and CD8+ T-cell phenotypes unable to face CMV challenge. Conclusions We hereby describe a severe form of disseminated CMV disease after R-bendamustine treatment. Our observations strongly support the careful clinical monitoring of CMV reactivation/infection in oncologic patients undergoing this therapeutic regimen.
Collapse
Affiliation(s)
- Andrea Cona
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Via di Rudinì 8, 20142, Milan, Italy
| | - Daniele Tesoro
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Via di Rudinì 8, 20142, Milan, Italy
| | - Margherita Chiamenti
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Via di Rudinì 8, 20142, Milan, Italy.,Department of Diagnostics and Public Health, University of Verona, Gianbattista Rossi Hospital, Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Esther Merlini
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Via di Rudinì 8, 20142, Milan, Italy
| | - Daris Ferrari
- Department of Medical Oncology, ASST Santi Paolo e Carlo, Milan, Italy
| | - Antonio Marti
- U.O. Radiologia, Ospedale di Vizzolo Predabissi, Vizzolo Predabissi, Milan, Italy
| | - Carla Codecà
- Department of Medical Oncology, ASST Santi Paolo e Carlo, Milan, Italy
| | - Giuseppe Ancona
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Via di Rudinì 8, 20142, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Via di Rudinì 8, 20142, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Via di Rudinì 8, 20142, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Via di Rudinì 8, 20142, Milan, Italy.
| |
Collapse
|
57
|
Sant S, Jenkins MR, Dash P, Watson KA, Wang Z, Pizzolla A, Koutsakos M, Nguyen TH, Lappas M, Crowe J, Loudovaris T, Mannering SI, Westall GP, Kotsimbos TC, Cheng AC, Wakim L, Doherty PC, Thomas PG, Loh L, Kedzierska K. Human γδ T-cell receptor repertoire is shaped by influenza viruses, age and tissue compartmentalisation. Clin Transl Immunology 2019; 8:e1079. [PMID: 31559018 PMCID: PMC6756999 DOI: 10.1002/cti2.1079] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background Although γδ T cells comprise up to 10% of human peripheral blood T cells, questions remain regarding their role in disease states and T‐cell receptor (TCR) clonal expansions. We dissected anti‐viral functions of human γδ T cells towards influenza viruses and defined influenza‐reactive γδ TCRs in the context of γδ‐TCRs across the human lifespan. Methods We performed 51Cr‐killing assay and single‐cell time‐lapse live video microscopy to define mechanisms underlying γδ T‐cell‐mediated killing of influenza‐infected targets. We assessed cytotoxic profiles of γδ T cells in influenza‐infected patients and IFN‐γ production towards influenza‐infected lung epithelial cells. Using single‐cell RT‐PCR, we characterised paired TCRγδ clonotypes for influenza‐reactive γδ T cells in comparison with TCRs from healthy neonates, adults, elderly donors and tissues. Results We provide the first visual evidence of γδ T‐cell‐mediated killing of influenza‐infected targets and show distinct features to those reported for CD8+ T cells. γδ T cells displayed poly‐cytotoxic profiles in influenza‐infected patients and produced IFN‐γ towards influenza‐infected cells. These IFN‐γ‐producing γδ T cells were skewed towards the γ9δ2 TCRs, particularly expressing the public GV9‐TCRγ, capable of pairing with numerous TCR‐δ chains, suggesting their significant role in γδ T‐cell immunity. Neonatal γδ T cells displayed extensive non‐overlapping TCRγδ repertoires, while adults had enriched γ9δ2‐pairings with diverse CDR3γδ regions. Conversely, the elderly showed distinct γδ‐pairings characterised by large clonal expansions, a profile also prominent in adult tissues. Conclusion Human TCRγδ repertoire is shaped by age, tissue compartmentalisation and the individual's history of infection, suggesting that these somewhat enigmatic γδ T cells indeed respond to antigen challenge.
Collapse
Affiliation(s)
- Sneha Sant
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Misty R Jenkins
- Immunology Division Walter and Eliza Hall Institute Melbourne VIC Australia.,LaTrobe Institute for Molecular Science La Trobe University Melbourne VIC Australia.,Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Pradyot Dash
- Department of Immunology St Jude Children's Research Hospital Memphis TN USA
| | - Katherine A Watson
- Immunology Division Walter and Eliza Hall Institute Melbourne VIC Australia
| | - Zhongfang Wang
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Angela Pizzolla
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Thi Ho Nguyen
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group Department of Obstetrics & Gynaecology Mercy Hospital for Women University of Melbourne Melbourne VIC Australia
| | | | - Tom Loudovaris
- Immunology and Diabetes Unit St Vincent's Institute of Medical Research Fitzroy VIC Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit St Vincent's Institute of Medical Research Fitzroy VIC Australia
| | - Glen P Westall
- Lung Transplant Unit Alfred Hospital Melbourne VIC Australia
| | - Tom C Kotsimbos
- Department of Allergy, Immunology and Respiratory Medicine The Alfred Hospital Melbourne VIC Australia.,Department of Medicine Central Clinical School The Alfred Hospital Melbourne Monash University Melbourne VIC Australia
| | - Allen C Cheng
- School of Public Health and Preventive Medicine Monash University Melbourne VIC Australia.,Infection Prevention and Healthcare Epidemiology Unit Alfred Health Melbourne VIC Australia
| | - Linda Wakim
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia.,Immunology Division Walter and Eliza Hall Institute Melbourne VIC Australia
| | - Paul G Thomas
- Department of Immunology St Jude Children's Research Hospital Memphis TN USA
| | - Liyen Loh
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| |
Collapse
|
58
|
Sullivan LC, Shaw EM, Stankovic S, Snell GI, Brooks AG, Westall GP. The complex existence of γδ T cells following transplantation: the good, the bad and the simply confusing. Clin Transl Immunology 2019; 8:e1078. [PMID: 31548887 PMCID: PMC6748302 DOI: 10.1002/cti2.1078] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Gamma delta (γδ) T cells are a highly heterogeneous population of lymphocytes that exhibit innate and adaptive immune properties. Despite comprising the majority of residing lymphocytes in many organs, the role of γδ T cells in transplantation outcomes is under‐researched. γδ T cells can recognise a diverse array of ligands and exert disparate effector functions. As such, they may potentially contribute to both allograft acceptance and rejection, as well as impacting on infection and post‐transplant malignancy. Here, we review the current literature on the role and function of γδ T cells following solid organ and hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Lucy C Sullivan
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia.,Lung Transplant Service The Alfred Hospital Melbourne VIC Australia
| | - Evangeline M Shaw
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Sanda Stankovic
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Gregory I Snell
- Lung Transplant Service The Alfred Hospital Melbourne VIC Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Glen P Westall
- Lung Transplant Service The Alfred Hospital Melbourne VIC Australia
| |
Collapse
|
59
|
Maimaitijiang G, Watanabe M, Shinoda K, Isobe N, Nakamura Y, Masaki K, Matsushita T, Yoshikai Y, Kira JI. Long-term use of interferon-β in multiple sclerosis increases Vδ1 -Vδ2 -Vγ9 - γδ T cells that are associated with a better outcome. J Neuroinflammation 2019; 16:179. [PMID: 31519178 PMCID: PMC6743159 DOI: 10.1186/s12974-019-1574-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Background We previously reported that Vδ2+Vγ9+ γδ T cells were significantly decreased in multiple sclerosis (MS) patients without disease-modifying therapies (untreated MS) and were negatively correlated with Expanded Disability Status Scale (EDSS) scores, suggesting protective roles of Vδ2+Vγ9+ γδ T cells. Interferon-β (IFN-β) is one of the first-line disease-modifying drugs for MS. However, no previous studies have reported changes in γδ T cell subsets under IFN-β treatment. Therefore, we aimed to clarify the effects of the long-term usage of IFN-β on γδ T cell subsets in MS patients. Methods Comprehensive flow cytometric immunophenotyping was performed in 35 untreated MS and 21 MS patients on IFN-β for more than 2 years (IFN-β-treated MS) including eight super-responders fulfilling no evidence of disease activity criteria, and 44 healthy controls (HCs). Results The percentages of Vδ2+Vγ9+ cells in γδ T cells were significantly lower in untreated and IFN-β-treated MS patients than in HCs. By contrast, the percentages of Vδ1−Vδ2−Vγ9− cells in γδ T cells were markedly higher in IFN-β-treated MS patients than in HCs and untreated MS patients (both p < 0.001). A significant negative correlation between the percentages of Vδ2+Vγ9+ cells in γδ T cells and EDSS scores was confirmed in untreated MS but not evident in IFN-β-treated MS. Moreover, class-switched memory B cells were decreased in IFN-β-treated MS compared with HCs (p < 0.001) and untreated MS patients (p = 0.006). Interestingly, the percentages of Vδ1−Vδ2−Vγ9− cells in γδ T cells were negatively correlated with class-switched memory B cell percentages in all MS patients (r = − 0.369, p = 0.005), and the percentages of Vδ1−Vδ2−Vγ9− cells in Vδ1−Vδ2− γδ T cells were negatively correlated with EDSS scores only in IFN-β super-responders (r = − 0.976, p < 0.001). Conclusions The present study suggests that long-term usage of IFN-β increases Vδ1−Vδ2−Vγ9− γδ T cells, which are associated with a better outcome, especially in IFN-β super-responders. Thus, increased Vδ1−Vδ2−Vγ9− cells together with decreased class-switched memory B cells may contribute to the suppression of disease activity in MS patients under IFN-β treatment. Electronic supplementary material The online version of this article (10.1186/s12974-019-1574-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guzailiayi Maimaitijiang
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Shinoda
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriko Isobe
- Department of Neurological Therapeutics, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuri Nakamura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
60
|
Sebestyen Z, Prinz I, Déchanet-Merville J, Silva-Santos B, Kuball J. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat Rev Drug Discov 2019; 19:169-184. [PMID: 31492944 DOI: 10.1038/s41573-019-0038-z] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 01/14/2023]
Abstract
Clinical responses to checkpoint inhibitors used for cancer immunotherapy seemingly require the presence of αβT cells that recognize tumour neoantigens, and are therefore primarily restricted to tumours with high mutational load. Approaches that could address this limitation by engineering αβT cells, such as chimeric antigen receptor T (CAR T) cells, are being investigated intensively, but these approaches have other issues, such as a scarcity of appropriate targets for CAR T cells in solid tumours. Consequently, there is renewed interest among translational researchers and commercial partners in the therapeutic use of γδT cells and their receptors. Overall, γδT cells display potent cytotoxicity, which usually does not depend on tumour-associated (neo)antigens, towards a large array of haematological and solid tumours, while preserving normal tissues. However, the precise mechanisms of tumour-specific γδT cells, as well as the mechanisms for self-recognition, remain poorly understood. In this Review, we discuss the challenges and opportunities for the clinical implementation of cancer immunotherapies based on γδT cells and their receptors.
Collapse
Affiliation(s)
- Zsolt Sebestyen
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Centre for Individualized Infection Medicine (CiiM), Hannover, Germany
| | - Julie Déchanet-Merville
- ImmunoConcept, CNRS UMR 5164, Equipe Labelisee Ligue Contre le Cancer, University of Bordeaux, Bordeaux, France
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jurgen Kuball
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands. .,Department of Haematology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
61
|
Juno JA, Eriksson EM. γδ T-cell responses during HIV infection and antiretroviral therapy. Clin Transl Immunology 2019; 8:e01069. [PMID: 31321033 PMCID: PMC6636517 DOI: 10.1002/cti2.1069] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
HIV infection is associated with a rapid and sustained inversion of the Vδ1:Vδ2 T‐cell ratio in peripheral blood. Studies of antiretroviral therapy (ART)‐treated cohorts suggest that ART is insufficient to reconstitute either the frequency or function of the γδ T‐cell subset. Recent advances are now beginning to shed light on the relationship between microbial translocation, chronic inflammation, immune ageing and γδ T‐cell immunology. Here, we review the impact of acute, chronic untreated and treated HIV infection on circulating and mucosal γδ T‐cell subsets and highlight novel approaches to harness γδ T cells as components of anti‐HIV immunotherapy.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Emily M Eriksson
- Division of Population Health and Immunity Walter and Eliza Hall Institute of Medical Science Melbourne VIC Australia.,Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
62
|
Cavalcanti De Albuquerque R, Granato A, Silva Castro I, Carvalho Torres R, Santos Souza F, Lima MA, Celestino Bezerra Leite AC, de Melo Espíndola O, Echevarria-Lima J. Phenotypic and functional changes in gamma delta T lymphocytes from HTLV-1 carriers. J Leukoc Biol 2019; 106:607-618. [PMID: 31287591 DOI: 10.1002/jlb.ma1118-467r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/11/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Human T-cell lymphotropic virus type-1 (HTLV-1) is the etiologic agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), which is a chronic inflammatory disease that leads to gradual loss of motor movement as a result of the death of spinal cord cells through immune mediated mechanisms. The risk to develop HAM/TSP disease positively correlates with the magnitude of HTLV-1 proviral load. Gamma-delta T lymphocytes have been recognized as important players in a variety of infectious diseases. Therefore, we have investigated interactions between HTLV-1 infection and γδ T lymphocytes during HAM/TSP. Similar frequencies of total γδ T lymphocytes and their Vγ9δ2+ and Vγ9δ2neg subpopulations were observed in HAM/TSP patients. However, T lymphocytes obtained from HTLV-1 carriers displayed significantly higher rates of spontaneous proliferation and NKp30 expression when compared to cells from uninfected donors. In addition, an important decrease in the frequency of granzyme B+ γδ T lymphocytes (approximately 50%) was observed in HAM/TSP patients. Higher proportion of IFN-γ+ γδ T lymphocytes was found in HTLV-1-infected patients, which positively correlated with the HTLV-1 proviral load in peripheral blood mononuclear cells. Collectively, our data indicates that HTLV-1 infection leads to phenotypic and functional changes in the population of γδ T lymphocyte population, suggesting that HTLV-1 infection modulates functions associated to these cells, which might be involved in controlling the infection or in the development of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Raquel Cavalcanti De Albuquerque
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Granato
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - Isabela Silva Castro
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Carvalho Torres
- Plataforma de Imuno-Análise, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Santos Souza
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Marco Antonio Lima
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Claudia Celestino Bezerra Leite
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Otávio de Melo Espíndola
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
63
|
Tometten I, Felgentreff K, Hönig M, Hauck F, Albert MH, Niehues T, Perez R, Ghosh S, Picard C, Stary J, Formankova R, Worth A, Soler-Palacín P, García-Prat M, Allende LM, Gonzalez-Granado LI, Stepensky P, Di Cesare S, Scarselli A, Cancrini C, Speckmann C, Gilmour K, Notarangelo L, Ehl S, Rohr JC. Increased proportions of γδ T lymphocytes in atypical SCID associate with disease manifestations. Clin Immunol 2019; 201:30-34. [PMID: 30776520 DOI: 10.1016/j.clim.2018.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022]
Abstract
Severe combined immunodeficiencies (SCID) comprise a group of genetic diseases characterized by abrogated development of T lymphocytes. In some case reports of atypical SCID patients elevated proportions of γδ T lymphocytes have been reported. However, it is unknown whether these γδ T cells modulate or reflect the patient's clinical phenotype. We investigated the frequency of elevated γδ T cell proportions and associations with clinical disease manifestations in a cohort of 76 atypical SCID patients. Increased proportions of γδ T lymphocytes were present in approximately 60% of these patients. Furthermore, we identified positive correlations between elevated proportions of γδ T cells and the occurrence of CMV infections and autoimmune cytopenias. We discuss that CMV infections might trigger an expansion of γδ T lymphocytes, which could drive the development of autoimmune cytopenias. We advocate that atypical SCID patients should be screened for elevated proportions of γδ T lymphocytes, CMV infection and autoimmune cytopenias.
Collapse
Affiliation(s)
- Inga Tometten
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kerstin Felgentreff
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Manfred Hönig
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Tim Niehues
- HELIOS Children's Hospital Krefeld, Pediatric Immunology and Rheumatology, Krefeld, Germany
| | - Ruy Perez
- HELIOS Children's Hospital Krefeld, Pediatric Immunology and Rheumatology, Krefeld, Germany
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Dusseldorf, Germany
| | - Capucine Picard
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute Paris, Paris, France; Paediatric Haematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, APHP, Paris, France; Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, University Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Renata Formankova
- Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Austen Worth
- Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit (UPIIP), Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Marina García-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit (UPIIP), Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Luis M Allende
- Immunology Department, Hospital Universitario 12 de Octubre, Research Institute (i+12). Madrid, Spain
| | - Luis Ignacio Gonzalez-Granado
- Immunodeficiencies Unit, Department of Pediatrics, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (i+12), Madrid, Spain; Complutense University of Madrid, Madrid, Spain
| | - Polina Stepensky
- Department of Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Silvia Di Cesare
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | - Alessia Scarselli
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | - Caterina Cancrini
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carsten Speckmann
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Luigi Notarangelo
- Laboratory of Clinical Immunology and Microbiology, LCIM, National Institute of Allergy and Infectious Diseases, NIAID, National Institutes of Health, NIH, Bethesda, MD, USA
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan C Rohr
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
64
|
Piñana JL, Perez-Pitarch A, Guglieri-Lopez B, Giménez E, Hernandez-Boluda JC, Terol MJ, Ferriols-Lisart R, Solano C, Navarro D. Sirolimus exposure and the occurrence of cytomegalovirus DNAemia after allogeneic hematopoietic stem cell transplantation. Am J Transplant 2018; 18:2885-2894. [PMID: 29603596 DOI: 10.1111/ajt.14754] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 01/25/2023]
Abstract
Sirolimus appears to protect against cytomegalovirus (CMV) in organ transplant recipients. The effect of this drug in allogeneic hematopoietic stem cell transplantation recipients remains unexplored. By means of multivariate continuous-time Markov model analyses, we identified 3 independent covariates that significantly impacted the risk of CMV DNAemia: recipient/donor CMV serostatus, tacrolimus exposure, and sirolimus exposure. CMV-seropositive recipients with CMV-seronegative donors had a significantly higher probability of having detectable CMV DNAemia. Increasing the tacrolimus trough concentration from 0 to 16 ng/mL increased the probability of patients having detectable CMV DNAemia by 40% (from 40% to 80%), whereas this probability decreased by 25% (from 40% to 15%) when trough concentrations of sirolimus increased from 0 to 16 ng/mL. Sensitivity analysis showed that sirolimus exposure between 0 and 6 ng/mL has no or negligible effect on CMV DNAemia, but levels >8 ng/mL significantly decreased the number of detectable CMV DNAemia cases (the risk ratios decreased from 0.68 to 0.21 when whole blood sirolimus concentrations changed from 8 to 18 ng/mL, P < .01). In conclusion, we used a pharmacometric statistical tool to provide the first clinical evidence that fewer CMV DNAemia events become detectable as sirolimus exposure increases.
Collapse
Affiliation(s)
- José Luis Piñana
- Department of Hematology, Fundación de investigación, INCLIVA, Hospital Clínico Universitario, Valencia, Spain.,Department of Hematology, Hospital Universitari i Politècnic la Fe, Valencia, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| | | | | | - Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, Valencia, Spain
| | | | - María José Terol
- Department of Hematology, Fundación de investigación, INCLIVA, Hospital Clínico Universitario, Valencia, Spain
| | | | - Carlos Solano
- Department of Hematology, Fundación de investigación, INCLIVA, Hospital Clínico Universitario, Valencia, Spain.,Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Valencia, Spain.,Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
65
|
McCallion O, Hester J, Issa F. Deciphering the Contribution of γδ T Cells to Outcomes in Transplantation. Transplantation 2018; 102:1983-1993. [PMID: 29994977 PMCID: PMC6215479 DOI: 10.1097/tp.0000000000002335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
γδ T cells are a subpopulation of lymphocytes expressing heterodimeric T-cell receptors composed of γ and δ chains. They are morphologically and functionally heterogeneous, innate yet also adaptive in behavior, and exhibit diverse activities spanning immunosurveillance, immunomodulation, and direct cytotoxicity. The specific responses of γδ T cells to allografts are yet to be fully elucidated with evidence of both detrimental and tolerogenic roles in different settings. Here we present an overview of γδ T-cell literature, consider ways in which their functional heterogeneity contributes to the outcomes after transplantation, and reflect on methods to harness their beneficial properties.
Collapse
Affiliation(s)
- Oliver McCallion
- Transplantation Research Immunology Group, University of Oxford, Oxford, United Kingdom
| | - Joanna Hester
- Transplantation Research Immunology Group, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Transplantation Research Immunology Group, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
66
|
Khairallah C, Chu TH, Sheridan BS. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Front Immunol 2018; 9:2636. [PMID: 30538697 PMCID: PMC6277633 DOI: 10.3389/fimmu.2018.02636] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Epithelial and mucosal barriers are critical interfaces physically separating the body from the outside environment and are the tissues most exposed to microorganisms and potential inflammatory agents. The integrity of these tissues requires fine tuning of the local immune system to enable the efficient elimination of invasive pathogens while simultaneously preserving a beneficial relationship with commensal organisms and preventing autoimmunity. Although they only represent a small fraction of circulating and lymphoid T cells, γδ T cells form a substantial population at barrier sites and even outnumber conventional αβ T cells in some tissues. After their egress from the thymus, several γδ T cell subsets naturally establish residency in predetermined mucosal and epithelial locations, as exemplified by the restricted location of murine Vγ5+ and Vγ3Vδ1+ T cell subsets to the intestinal epithelium and epidermis, respectively. Because of their preferential location in barrier sites, γδ T cells are often directly or indirectly influenced by the microbiota or the pathogens that invade these sites. More recently, a growing body of studies have shown that γδ T cells form long-lived memory populations upon local inflammation or bacterial infection, some of which permanently populate the affected tissues after pathogen clearance or resolution of inflammation. Natural and induced resident γδ T cells have been implicated in many beneficial processes such as tissue homeostasis and pathogen control, but their presence may also exacerbate local inflammation under certain circumstances. Further understanding of the biology and role of these unconventional resident T cells in homeostasis and disease may shed light on potentially novel vaccines and therapies.
Collapse
Affiliation(s)
- Camille Khairallah
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Timothy H Chu
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Brian S Sheridan
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
67
|
Luukkainen A, Puan KJ, Yusof N, Lee B, Tan KS, Liu J, Yan Y, Toppila-Salmi S, Renkonen R, Chow VT, Rotzschke O, Wang DY. A Co-culture Model of PBMC and Stem Cell Derived Human Nasal Epithelium Reveals Rapid Activation of NK and Innate T Cells Upon Influenza A Virus Infection of the Nasal Epithelium. Front Immunol 2018; 9:2514. [PMID: 30467502 PMCID: PMC6237251 DOI: 10.3389/fimmu.2018.02514] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/11/2018] [Indexed: 12/30/2022] Open
Abstract
Background: We established an in vitro co-culture model involving H3N2-infection of human nasal epithelium with peripheral blood mononuclear cells (PBMC) to investigate their cross-talk during early H3N2 infection. Methods: Nasal epithelium was differentiated from human nasal epithelial stem/progenitor cells and cultured wtih fresh human PBMC. PBMC and supernatants were harvested after 24 and 48 h of co-culture with H3N2-infected nasal epithelium. We used flow cytometry and Luminex to characterize PBMC subpopulations, their activation and secretion of cytokine and chemokines. Results: H3N2 infection of the nasal epithelium associated with significant increase in interferons (IFN-α, IFN-γ, IL-29), pro-inflammatory cytokines (TNF-α, BDNF, IL-3) and viral-associated chemokines (IP-10, MCP-3, I-TAC, MIG), detectable already after 24 h. This translates into rapid activation of monocytes, NK-cells and innate T-cells (MAIT and γδ T cells), evident with CD38+ and/or CD69+ upregulation. Conclusions: This system may contribute to in vitro mechanistic immunological studies bridging systemic models and possibly enable the development of targeted immunomodulatory therapies.
Collapse
Affiliation(s)
- Annika Luukkainen
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Kia Joo Puan
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Nurhashikin Yusof
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sanna Toppila-Salmi
- Haartman Institute, University of Helsinki, Helsinki, Finland.,Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Risto Renkonen
- Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
68
|
Davey MS, Willcox CR, Hunter S, Oo YH, Willcox BE. Vδ2 + T Cells-Two Subsets for the Price of One. Front Immunol 2018; 9:2106. [PMID: 30319605 PMCID: PMC6167451 DOI: 10.3389/fimmu.2018.02106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/28/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Martin S Davey
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Stuart Hunter
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research and National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ye Htun Oo
- Centre for Liver Research and National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,University Hospital of Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
69
|
Schattgen SA, Thomas PG. Bohemian T cell receptors: sketching the repertoires of unconventional lymphocytes. Immunol Rev 2018; 284:79-90. [PMID: 29944761 PMCID: PMC6128411 DOI: 10.1111/imr.12668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last several decades, novel populations of unconventional T cells have been identified; defined by an invariant (or nearly invariant) T cell receptor (TCR) with a fixed specificity to non-canonical antigens and major histocompatibility (MHC) molecules, they form large, functionally monoclonal populations tasked with surveying for their specific antigens. With residence in both lymphoid and non-lymphoid tissues coupled with their ability to rapidly produce a spectrum of cytokines and effector molecules, the unconventional T cells are poised as some of the first responders to infection/damage and are thought to provide critical coverage before more focused, conventional T cell responses are mobilized. However, new technologies for the measurement and characterization of TCR repertoires have identified an underappreciated amount of TCR diversity in the unconventional T cells. In many cases, the specificities of these diverse TCRs converge on the same or similar antigens as their invariant counterparts, while others have yet to be defined. Here, we will review the current knowledge of the TCR repertoires of unconventional T cells and discuss how repertoires might be used as a framework for their organization, and further our understanding of their role not only during an immune response, but also their contribution in maintaining homeostasis.
Collapse
Affiliation(s)
| | - Paul G Thomas
- St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
70
|
Pauza CD, Liou ML, Lahusen T, Xiao L, Lapidus RG, Cairo C, Li H. Gamma Delta T Cell Therapy for Cancer: It Is Good to be Local. Front Immunol 2018; 9:1305. [PMID: 29937769 PMCID: PMC6003257 DOI: 10.3389/fimmu.2018.01305] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/25/2018] [Indexed: 12/28/2022] Open
Abstract
Human gamma delta T cells have extraordinary properties including the capacity for tumor cell killing. The major gamma delta T cell subset in human beings is designated Vγ9Vδ2 and is activated by intermediates of isoprenoid biosynthesis or aminobisphosphonate inhibitors of farnesyldiphosphate synthase. Activated cells are potent for killing a broad range of tumor cells and demonstrated the capacity for tumor reduction in murine xenotransplant tumor models. Translating these findings to the clinic produced promising initial results but greater potency is needed. Here, we review the literature on gamma delta T cells in cancer therapy with emphasis on the Vγ9Vδ2 T cell subset. Our goal was to examine obstacles preventing effective Vγ9Vδ2 T cell therapy and strategies for overcoming them. We focus on the potential for local activation of Vγ9Vδ2 T cells within the tumor environment to increase potency and achieve objective responses during cancer therapy. The gamma delta T cells and especially the Vγ9Vδ2 T cell subset, have the potential to overcome many problems in cancer therapy especially for tumors with no known treatment, lacking tumor-specific antigens for targeting by antibodies and CAR-T, or unresponsive to immune checkpoint inhibitors. Translation of amazing work from many laboratories studying gamma delta T cells is needed to fulfill the promise of effective and safe cancer immunotherapy.
Collapse
Affiliation(s)
- C David Pauza
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Mei-Ling Liou
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Tyler Lahusen
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Lingzhi Xiao
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Rena G Lapidus
- Department of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cristiana Cairo
- Institute of Human Virology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Haishan Li
- American Gene Technologies International Inc., Rockville, MD, United States
| |
Collapse
|
71
|
de Witte MA, Sarhan D, Davis Z, Felices M, Vallera DA, Hinderlie P, Curtsinger J, Cooley S, Wagner J, Kuball J, Miller JS. Early Reconstitution of NK and γδ T Cells and Its Implication for the Design of Post-Transplant Immunotherapy. Biol Blood Marrow Transplant 2018; 24:1152-1162. [PMID: 29505821 PMCID: PMC5993609 DOI: 10.1016/j.bbmt.2018.02.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022]
Abstract
Relapse is the most frequent cause of treatment failure after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Natural killer (NK) cells and γδ T cells reconstitute early after allo-HSCT, contribute to tumor immunosurveillance via major histocompatibility complex-independent mechanisms and do not induce graft-versus-host disease. Here we performed a quantitative and qualitative analysis of the NK and γδ T cell repertoire in healthy individuals, recipients of HLA-matched sibling or unrelated donor allo-HSCT (MSD/MUD-HSCT) and umbilical cord blood-HSCT (UCB-HSCT). NK cells are present at high frequencies in all allo-HSCT recipients. Immune reconstitution (IR) of vδ2+ cells depended on stem cell source. In MSD/MUD-HSCT recipients, vδ2+ comprise up to 8% of the total lymphocyte pool, whereas vδ2+ T cells are barely detectable in UCB-HSCT recipients. Vδ1+ IR was driven by CMV reactivation and was comparable between MSD/MUD-HSCT and UCB-HSCT. Strategies to augment NK cell mediated tumor responses, similar to IL-15 and antibodies, also induced vδ2+ T cell responses against a variety of different tumor targets. Vδ1+ γδ T cells were induced less by these same stimuli. We also identified elevated expression of the checkpoint inhibitory molecule TIGIT (T cell Ig and ITIM domain), which is also observed on tumor-infiltrating lymphocytes and epidermal γδ T cells. Collectively, these data show multiple strategies that can result in a synergized NK and γδ T cell antitumor response. In the light of recent developments of low-toxicity allo-HSCT platforms, these interventions may contribute to the prevention of early relapse.
Collapse
Affiliation(s)
- Moniek A de Witte
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Department of Hematology, Cancer Center, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Dhifaf Sarhan
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Zachary Davis
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Martin Felices
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Daniel A Vallera
- Department of Therapeutic Radiology-Radiation Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Peter Hinderlie
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Julie Curtsinger
- Translational Therapy Laboratory, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Sarah Cooley
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - John Wagner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jurgen Kuball
- Department of Hematology, Cancer Center, University Medical Centre Utrecht, Utrecht, the Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeffrey S Miller
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
72
|
Davey MS, Willcox CR, Baker AT, Hunter S, Willcox BE. Recasting Human Vδ1 Lymphocytes in an Adaptive Role. Trends Immunol 2018; 39:446-459. [PMID: 29680462 PMCID: PMC5980997 DOI: 10.1016/j.it.2018.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/21/2018] [Accepted: 03/16/2018] [Indexed: 12/30/2022]
Abstract
γδ T cells are unconventional lymphocytes commonly described as 'innate-like' in function, which can respond in both a T cell receptor (TCR)-independent and also major histocompatibility complex (MHC)-unrestricted TCR-dependent manner. While the relative importance of TCR recognition had remained unclear, recent studies revealed that human Vδ1 T cells display unexpected parallels with adaptive αβ T cells. Vδ1 T cells undergo profound and highly focussed clonal expansion from an initially diverse and private TCR repertoire, most likely in response to specific immune challenges. Concomitantly, they differentiate from a Vδ1 T cell naïve (Tnaïve) to a Vδ1 T cell effector (Teffector) phenotype, marked by the downregulation of lymphoid homing receptors and upregulation of peripheral homing receptors and effector markers. This suggests that an adaptive paradigm applies to Vδ1 T cells, likely involving TCR-dependent but MHC-unrestricted responses to microbial and non-microbial challenges.
Collapse
Affiliation(s)
- Martin S Davey
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; These authors contributed equally
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; These authors contributed equally
| | - Alfie T Baker
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stuart Hunter
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Liver Research and NIHR Biomedical Research Unit in Liver Disease, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, School of Medicine and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
73
|
Dunne PJ, Maher CO, Freeley M, Dunne K, Petrasca A, Orikiiriza J, Dunne MR, Reidy D, O'Dea S, Loy A, Woo J, Long A, Rogers TR, Mulcahy F, Doherty DG. CD3ε Expression Defines Functionally Distinct Subsets of Vδ1 T Cells in Patients With Human Immunodeficiency Virus Infection. Front Immunol 2018; 9:940. [PMID: 29770136 PMCID: PMC5940748 DOI: 10.3389/fimmu.2018.00940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022] Open
Abstract
Human γδ T cells expressing the Vδ1 T cell receptor (TCR) recognize self and microbial antigens and stress-inducible molecules in a major histocompatibility complex-unrestricted manner and are an important source of innate interleukin (IL)-17. Vδ1 T cells are expanded in the circulation and intestines of patients with human immunodeficiency virus (HIV) infection. In this study, we show that patients with HIV have elevated frequencies, but not absolute numbers, of circulating Vδ1 T cells compared to control subjects. This increase was most striking in the patients with Candida albicans co-infection. Using flow cytometry and confocal microscopy, we identify two populations of Vδ1 T cells, based on low and high expression of the ε chain of the CD3 protein complex responsible for transducing TCR-mediated signals (denoted CD3εlo and CD3εhi Vδ1 T cells). Both Vδ1 T cell populations expressed the CD3 ζ-chain, also used for TCR signaling. Using lines of Vδ1 T cells generated from healthy donors, we show that CD3ε can be transiently downregulated by activation but that its expression is restored over time in culture in the presence of exogenous IL-2. Compared to CD3εhi Vδ1 T cells, CD3εlo Vδ1 T cells more frequently expressed terminally differentiated phenotypes and the negative regulator of T cell activation, programmed death-1 (PD-1), but not lymphocyte-activation gene 3, and upon stimulation in vitro, only the CD3εhi subset of Vδ1 T cells, produced IL-17. Thus, while HIV can infect and kill IL-17-producing CD4+ T cells, Vδ1 T cells are another source of IL-17, but many of them exist in a state of exhaustion, mediated either by the induction of PD-1 or by downregulation of CD3ε expression.
Collapse
Affiliation(s)
- Pádraic J Dunne
- Discipline of Immunology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Christina O Maher
- Discipline of Immunology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Michael Freeley
- Discipline of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Katie Dunne
- Discipline of Clinical Microbiology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Andreea Petrasca
- Discipline of Immunology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Judy Orikiiriza
- Discipline of Immunology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Margaret R Dunne
- Discipline of Immunology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Derval Reidy
- Genitourinary Infectious Diseases Department, St. James's Hospital, Dublin, Ireland
| | - Siobhan O'Dea
- Genitourinary Infectious Diseases Department, St. James's Hospital, Dublin, Ireland
| | - Aisling Loy
- Genitourinary Infectious Diseases Department, St. James's Hospital, Dublin, Ireland
| | - Jim Woo
- Genitourinary Infectious Diseases Department, St. James's Hospital, Dublin, Ireland
| | - Aideen Long
- Discipline of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Thomas R Rogers
- Discipline of Clinical Microbiology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Fiona Mulcahy
- Genitourinary Infectious Diseases Department, St. James's Hospital, Dublin, Ireland
| | - Derek G Doherty
- Discipline of Immunology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
74
|
Petrasca A, Melo AM, Breen EP, Doherty DG. Human Vδ3+ γδ T cells induce maturation and IgM secretion by B cells. Immunol Lett 2018; 196:126-134. [DOI: 10.1016/j.imlet.2018.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/12/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
|
75
|
Ravens S, Hengst J, Schlapphoff V, Deterding K, Dhingra A, Schultze-Florey C, Koenecke C, Cornberg M, Wedemeyer H, Prinz I. Human γδ T Cell Receptor Repertoires in Peripheral Blood Remain Stable Despite Clearance of Persistent Hepatitis C Virus Infection by Direct-Acting Antiviral Drug Therapy. Front Immunol 2018; 9:510. [PMID: 29616028 PMCID: PMC5864898 DOI: 10.3389/fimmu.2018.00510] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/26/2018] [Indexed: 12/28/2022] Open
Abstract
Human γδ T cells can contribute to clearance of hepatitis C virus (HCV) infection but also mediate liver inflammation. This study aimed to understand the clonal distribution of γδ T cells in peripheral blood of chronic HCV patients and following HCV clearance by interferon-free direct-acting antiviral drug therapies. To this end, γδ T cell receptor (TCR) repertoires were monitored by mRNA-based next-generation sequencing. While the percentage of Vγ9+ T cells was higher in patients with elevated liver enzymes and a few expanded Vδ3 clones could be identified in peripheral blood of 23 HCV-infected non-cirrhotic patients, overall clonality and complexity of γδ TCR repertoires were largely comparable to those of matched healthy donors. Monitoring eight chronic HCV patients before, during and up to 1 year after therapy revealed that direct-acting antiviral (DAA) drug therapies induced only minor alterations of TRG and TRD repertoires of Vγ9+ and Vγ9- cells. Together, we show that peripheral γδ TCR repertoires display a high stability (1) by chronic HCV infection in the absence of liver cirrhosis and (2) by HCV clearance in the course of DAA drug therapy.
Collapse
Affiliation(s)
- Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Julia Hengst
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Verena Schlapphoff
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Katja Deterding
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Akshay Dhingra
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Christian Schultze-Florey
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Christian Koenecke
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, Essen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
76
|
Kallemeijn MJ, Kavelaars FG, van der Klift MY, Wolvers-Tettero ILM, Valk PJM, van Dongen JJM, Langerak AW. Next-Generation Sequencing Analysis of the Human TCRγδ+ T-Cell Repertoire Reveals Shifts in Vγ- and Vδ-Usage in Memory Populations upon Aging. Front Immunol 2018; 9:448. [PMID: 29559980 PMCID: PMC5845707 DOI: 10.3389/fimmu.2018.00448] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022] Open
Abstract
Immunological aging remodels the immune system at several levels. This has been documented in particular for the T-cell receptor (TCR)αβ+ T-cell compartment, showing reduced naive T-cell outputs and an accumulation of terminally differentiated clonally expanding effector T-cells, leading to increased proneness to autoimmunity and cancer development at older age. Even though TCRαβ+ and TCRγδ+ T-cells follow similar paths of development involving V(D)J-recombination of TCR genes in the thymus, TCRγδ+ T-cells tend to be more subjected to peripheral rather than central selection. However, the impact of aging in shaping of the peripheral TRG/TRD repertoire remains largely elusive. Next-generation sequencing analysis methods were optimized based on a spike-in method using plasmid vector DNA-samples for accurate TRG/TRD receptor diversity quantification, resulting in optimally defined primer concentrations, annealing temperatures and cycle numbers. Next, TRG/TRD repertoire diversity was evaluated during TCRγδ+ T-cell ontogeny, showing a broad, diverse repertoire in thymic and cord blood samples with Gaussian CDR3-length distributions, in contrast to the more skewed repertoire in mature circulating TCRγδ+ T-cells in adult peripheral blood. During aging the naive repertoire maintained its diversity with Gaussian CDR3-length distributions, while in the central and effector memory populations a clear shift from young (Vγ9/Vδ2 dominance) to elderly (Vγ2/Vδ1 dominance) was observed. Together with less clear Gaussian CDR3-length distributions, this would be highly suggestive of differentially heavily selected repertoires. Despite the apparent age-related shift from Vγ9/Vδ2 to Vγ2/Vδ1, no clear aging effect was observed on the Vδ2 invariant T nucleotide and canonical Vγ9-Jγ1.2 selection determinants. A more detailed look into the healthy TRG/TRD repertoire revealed known cytomegalovirus-specific TRG/TRD clonotypes in a few donors, albeit without a significant aging-effect, while Mycobacterium tuberculosis-specific clonotypes were absent. Notably, in effector subsets of elderly individuals, we could identify reported TRG and TRD receptor chains from TCRγδ+ T-cell large granular lymphocyte leukemia proliferations, which typically present in the elderly population. Collectively, our results point to relatively subtle age-related changes in the human TRG/TRD repertoire, with a clear shift in Vγ/Vδ usage in memory cells upon aging.
Collapse
Affiliation(s)
- Martine J Kallemeijn
- Laboratory for Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - François G Kavelaars
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Michèle Y van der Klift
- Laboratory for Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ingrid L M Wolvers-Tettero
- Laboratory for Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jacques J M van Dongen
- Laboratory for Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Anton W Langerak
- Laboratory for Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
77
|
Affiliation(s)
- Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Jessica Strid
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
78
|
Vermijlen D, Gatti D, Kouzeli A, Rus T, Eberl M. γδ T cell responses: How many ligands will it take till we know? Semin Cell Dev Biol 2018; 84:75-86. [PMID: 29402644 DOI: 10.1016/j.semcdb.2017.10.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
γδ T cells constitute a sizeable and non-redundant fraction of the total T cell pool in all jawed vertebrates, but in contrast to conventional αβ T cells they are not restricted by classical MHC molecules. Progress in our understanding of the role of γδ T cells in the immune system has been hampered, and is being hampered, by the considerable lack of knowledge regarding the antigens γδ T cells respond to. The past few years have seen a wealth of data regarding the TCR repertoires of distinct γδ T cell populations and a growing list of confirmed and proposed molecules that are recognised by γδ T cells in different species. Yet, the physiological contexts underlying the often restricted TCR usage and the chemical diversity of γδ T cell ligands remain largely unclear, and only few structural studies have confirmed direct ligand recognition by the TCR. We here review the latest progress in the identification and validation of putative γδ T cell ligands and discuss the implications of such findings for γδ T cell responses in health and disease.
Collapse
Affiliation(s)
- David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Belgium.
| | - Deborah Gatti
- Department of Pharmacotherapy and Pharmaceutics and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Belgium
| | - Ariadni Kouzeli
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Teja Rus
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom; Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
79
|
Fontaine M, Vogel I, Van Eycke YR, Galuppo A, Ajouaou Y, Decaestecker C, Kassiotis G, Moser M, Leo O. Regulatory T cells constrain the TCR repertoire of antigen-stimulated conventional CD4 T cells. EMBO J 2018; 37:398-412. [PMID: 29263148 PMCID: PMC5793804 DOI: 10.15252/embj.201796881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 01/22/2023] Open
Abstract
To analyze the potential role of Tregs in controlling the TCR repertoire breadth to a non-self-antigen, a TCRβ transgenic mouse model (EF4.1) expressing a limited, yet polyclonal naïve T-cell repertoire was used. The response of EF4.1 mice to an I-Ab-associated epitope of the F-MuLV envelope protein is dominated by clones expressing a Vα2 gene segment, thus allowing a comprehensive analysis of the TCRα repertoire in a relatively large cohort of mice. Control and Treg-depleted EF4.1 mice were immunized, and the extent of the Vα2-bearing, antigen-specific TCR repertoire was characterized by high-throughput sequencing and spectratyping analysis. In addition to increased clonal expansion and acquisition of effector functions, Treg depletion led to the expression of a more diverse TCR repertoire comprising several private clonotypes rarely observed in control mice or in the pre-immune repertoire. Injection of anti-CD86 antibodies in vivo led to a strong reduction in TCR diversity, suggesting that Tregs may influence TCR repertoire diversity by modulating costimulatory molecule availability. Collectively, these studies illustrate an additional mechanism whereby Tregs control the immune response to non-self-antigens.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- B7-2 Antigen/immunology
- Cells, Cultured
- Friend murine leukemia virus/immunology
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Regulatory/immunology
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Martina Fontaine
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Isabel Vogel
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Yves-Rémi Van Eycke
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratories of Image, Signal processing & Acoustics Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Adrien Galuppo
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Yousra Ajouaou
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Christine Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratories of Image, Signal processing & Acoustics Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, UK
- Department of Medicine Faculty of Medicine, Imperial College London London, UK
| | - Muriel Moser
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Oberdan Leo
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
80
|
Turner JE, Becker M, Mittrücker HW, Panzer U. Tissue-Resident Lymphocytes in the Kidney. J Am Soc Nephrol 2017; 29:389-399. [PMID: 29093030 DOI: 10.1681/asn.2017060599] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become evident that nonlymphoid tissues are populated by distinct subsets of innate and adaptive lymphocytes that are characterized by minimal exchange with recirculating counterparts. Especially at barrier sites, such as the skin, gut, and lung, these tissue-resident lymphocyte populations are ideally positioned to quickly respond to pathogens and other environmental stimuli. The kidney harbors several classes of innate and innate-like lymphocytes that have been described to contribute to this tissue-resident population in other organs, including innate lymphoid cells, natural killer cells, natural killer T cells, mucosal-associated invariant T cells, and γδ T cells. Additionally, a substantial proportion of the adaptive lymphocytes that are found in the kidney displays a surface phenotype suggestive of tissue residency, such as CD69+CD4+ T cells. In this review, we summarize recent advances in the understanding of tissue-resident lymphocyte populations, review the available evidence for the existence of these populations in the kidney, and discuss the potential physiologic and pathophysiologic roles thereof in kidney.
Collapse
Affiliation(s)
| | | | - Hans-Willi Mittrücker
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
81
|
de Witte MA, Kuball J, Miller JS. NK Cells and γδT Cells for Relapse Protection After Allogeneic Hematopoietic Cell Transplantation (HCT). CURRENT STEM CELL REPORTS 2017; 3:301-311. [PMID: 29399441 DOI: 10.1007/s40778-017-0106-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose of review The outcome of allogeneic stem cell transplantation (allo-HCT) is still compromised by relapse and complications. NK cells and γδT cells, effectors which both function through MHC-unrestricted mechanisms, can target transformed and infected cells without inducing Graft-versus-Host Disease (GVHD). Allo-HCT platforms based on CD34+ selection or αβ-TCR depletion result in low grades of GVHD, early immune reconstitution (IR) of NK and γδT cells and minimal usage of GVHD prophylaxis. In this review we will discuss strategies to retain and expand the quantity, diversity and functionality of these reconstituting innate cell types. Recent findings Bisphosphonates, IL-15 cytokine administration, specific antibodies, checkpoint inhibitors and (CMV based) vaccination are currently being evaluated to enhance IR. All these approaches have shown to potentially enhance both NK and γδT cell immuno-repertoires. Summary Rapidly accumulating data linking innate biology to proposed clinical immune interventions, will give unique opportunities to unravel shared pathways which determine the Graft-versus-Tumor effects of NK and γδT cells.
Collapse
Affiliation(s)
- Moniek A de Witte
- Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN.,Department of Hematology, Cancer Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jürgen Kuball
- Department of Hematology, Cancer Center, University Medical Centre Utrecht, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeffrey S Miller
- Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| |
Collapse
|
82
|
D'Souza L, Gupta SL, Bal V, Rath S, George A. CD73 expression identifies a subset of IgM + antigen-experienced cells with memory attributes that is T cell and CD40 signalling dependent. Immunology 2017; 152:602-612. [PMID: 28746783 DOI: 10.1111/imm.12800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022] Open
Abstract
B-cell memory was long characterized as isotype-switched, somatically mutated and germinal centre (GC)-derived. However, it is now clear that the memory pool is a complex mixture that includes unswitched and unmutated cells. Further, expression of CD73, CD80 and CD273 has allowed the categorization of B-cell memory into multiple subsets, with combinatorial expression of the markers increasing with GC progression, isotype-switching and acquisition of somatic mutations. We have extended these findings to determine whether these markers can be used to identify IgM memory phenotypically as arising from T-dependent versus T-independent responses. We report that CD73 expression identifies a subset of antigen-experienced IgM+ cells that share attributes of functional B-cell memory. This subset is reduced in the spleens of T-cell-deficient and CD40-deficient mice and in mixed marrow chimeras made with mutant and wild-type marrow, the proportion of CD73+ IgM memory is restored in the T-cell-deficient donor compartment but not in the CD40-deficient donor compartment, indicating that CD40 ligation is involved in its generation. We also report that CD40 signalling supports optimal expression of CD73 on splenic T cells and age-associated B cells (ABCs), but not on other immune cells such as neutrophils, marginal zone B cells, peritoneal cavity B-1 B cells and regulatory T and B cells. Our data indicate that in addition to promoting GC-associated memory generation during B-cell differentiation, CD40-signalling can influence the composition of the unswitched memory B-cell pool. They also raise the possibility that a fraction of ABCs may represent T-cell-dependent IgM memory.
Collapse
Affiliation(s)
| | | | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
83
|
Gerna G, Revello MG, Baldanti F, Percivalle E, Lilleri D. The pentameric complex of human Cytomegalovirus: cell tropism, virus dissemination, immune response and vaccine development. J Gen Virol 2017; 98:2215-2234. [PMID: 28809151 DOI: 10.1099/jgv.0.000882] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Between the 1980s and 1990s, three assays were developed for diagnosis of human cytomegalovirus (HCMV) infections: leuko (L)-antigenemia, l-viremia and l-DNAemia, detecting viral protein pp65, infectious virus and viral DNA, respectively, in circulating leukocytes Repeated initial attempts to reproduce the three assays in vitro using laboratory-adapted strains and infected cell cultures were consistently unsuccessful. Results were totally reversed when wild-type HCMV strains were used to infect either fibroblasts or endothelial cells. Careful analysis and sequencing of plaque-purified viruses from recent clinical isolates drew attention to the ULb' region of the HCMV genome. Using bacterial artificial chromosome technology, it was shown by both gain-of-function and loss-of-function experiments that UL131-128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. In addition, a number of clinical isolates passaged in human fibroblasts had lost both properties (leuko-tropism and endothelial cell-tropism) when displaying a mutation in the UL131-128 locus (referred to as UL128L). In the following years, it was shown that pUL128L was complexed with gH and gL to form the pentameric complex (PC), which is required to infect endothelial, epithelial and myeloid cells. The immune response to PC was studied extensively, particularly its humoral component, showing that the great majority of the neutralizing antibody response is directed to PC. Although anti-HCMV antibodies may act with other mechanisms than mere neutralizing activity, these findings definitely favour their protective activity, thus paving the way to the development of a potentially protective HCMV vaccine.
Collapse
Affiliation(s)
- Giuseppe Gerna
- Experimental Research Laboratories, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniele Lilleri
- Experimental Research Laboratories, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
84
|
Chitadze G, Flüh C, Quabius ES, Freitag-Wolf S, Peters C, Lettau M, Bhat J, Wesch D, Oberg HH, Luecke S, Janssen O, Synowitz M, Held-Feindt J, Kabelitz D. In-depth immunophenotyping of patients with glioblastoma multiforme: Impact of steroid treatment. Oncoimmunology 2017; 6:e1358839. [PMID: 29147621 DOI: 10.1080/2162402x.2017.1358839] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
Despite aggressive treatment regimens based on surgery and radiochemotherapy, the prognosis of patients with grade IV glioblastoma multiforme (GBM) remains extremely poor, calling for alternative options such as immunotherapy. Immunological mechanisms including the Natural Killer Group 2 member D (NKG2D) receptor-ligand system play an important role in tumor immune surveillance and targeting the NKG2D system might be beneficial. However, before considering any kind of immunotherapy, a precise characterization of the immune system is important, particularly in GBM patients where conventional therapies with impact on the immune system are frequently co-administered. Here we performed an in-depth immunophenotyping of GBM patients and age-matched healthy controls and analyzed NKG2D ligand expression on primary GBM cells ex vivo. We report that GBM patients have a compromised innate immune system irrespective of steroid (dexamethasone) medication. However, dexamethasone drastically reduced the number of immune cells in the blood of GBM patients. Moreover, higher counts of immune cells influenced by dexamethasone like CD45+ lymphocytes and non-Vδ2 γδ T cells were associated with better overall survival. Higher levels of NKG2D ligands on primary GBM tumor cells were observed in patients who received radiochemotherapy, pointing towards increased immunogenic potential of GBM cells following standard radiochemotherapy. This study sheds light on how steroids and radiochemotherapy affect immune cell parameters of GBM patients, a pre-requisite for the development of new therapeutic strategies targeting the immune system in these patients.
Collapse
Affiliation(s)
- Guranda Chitadze
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Charlotte Flüh
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Elgar Susanne Quabius
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany.,Dept. of Oto-Rhino-Laryngology, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Schleswig-Hostein, Germany
| | - Christian Peters
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Jaydeep Bhat
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Stefanie Luecke
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Michael Synowitz
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Janka Held-Feindt
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| |
Collapse
|
85
|
Peripheral clonal selection shapes the human γδ T-cell repertoire. Cell Mol Immunol 2017; 14:733-735. [PMID: 28782752 DOI: 10.1038/cmi.2017.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/10/2023] Open
|
86
|
Clonal expansion shapes the human Vδ1T cell receptor repertoire. Cell Mol Immunol 2017; 15:96-98. [PMID: 28737739 DOI: 10.1038/cmi.2017.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 11/08/2022] Open
|
87
|
Ageing and latent CMV infection impact on maturation, differentiation and exhaustion profiles of T-cell receptor gammadelta T-cells. Sci Rep 2017; 7:5509. [PMID: 28710491 PMCID: PMC5511140 DOI: 10.1038/s41598-017-05849-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/05/2017] [Indexed: 01/07/2023] Open
Abstract
Ageing is a broad cellular process, largely affecting the immune system, especially T-lymphocytes. Additionally to immunosenescence alone, cytomegalovirus (CMV) infection is thought to have major impacts on T-cell subset composition and exhaustion. These impacts have been studied extensively in TCRαβ+ T-cells, with reduction in naive, increase in effector (memory) subsets and shifts in CD4/CD8-ratios, in conjunction with morbidity and mortality in elderly. Effects of both ageing and CMV on the TCRγδ+ T-cell compartment remain largely elusive. In the current study we investigated Vγ- and Vδ-usage, maturation, differentiation and exhaustion marker profiles of both CD4 and CD8 double-negative (DN) and CD8+TCRγδ+ T-cells in 157 individuals, age range 20–95. We observed a progressive decrease in absolute numbers of total TCRγδ+ T-cells in blood, affecting the predominant Vγ9/Vδ2 population. Aged TCRγδ+ T-cells appeared to shift from naive to more (late-stage) effector phenotypes, which appeared more prominent in case of persistent CMV infections. In addition, we found effects of both ageing and CMV on the absolute counts of exhausted TCRγδ+ T-cells. Collectively, our data show a clear impact of ageing and CMV persistence on DN and CD8+TCRγδ+ T-cells, similar to what has been reported in CD8+TCRαβ+ T-cells, indicating that they undergo similar ageing processes.
Collapse
|
88
|
Lawand M, Déchanet-Merville J, Dieu-Nosjean MC. Key Features of Gamma-Delta T-Cell Subsets in Human Diseases and Their Immunotherapeutic Implications. Front Immunol 2017; 8:761. [PMID: 28713381 PMCID: PMC5491929 DOI: 10.3389/fimmu.2017.00761] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/16/2017] [Indexed: 02/01/2023] Open
Abstract
The unique features of gamma-delta (γδ) T cells, related to their antigen recognition capacity, their tissue tropism, and their cytotoxic function, make these cells ideal candidates that could be targeted to induce durable immunity in the context of different pathologies. In this review, we focus on the main characteristics of human γδ T-cell subsets in diseases and the key mechanisms that could be explored to target these cells.
Collapse
Affiliation(s)
- Myriam Lawand
- Cordeliers Research Center, UMRS 1138, Team "Cancer, Immune Control and Escape", INSERM, Paris, France.,Cordeliers Research Center, UMRS 1138, University Sorbonne-Paris Cité, University Paris Descartes, Paris, France.,Cordeliers Research Center, UMRS 1138, University Pierre and Marie Curie (UPMC), Paris 06, University Paris-Sorbonne, Paris, France
| | | | - Marie-Caroline Dieu-Nosjean
- Cordeliers Research Center, UMRS 1138, Team "Cancer, Immune Control and Escape", INSERM, Paris, France.,Cordeliers Research Center, UMRS 1138, University Sorbonne-Paris Cité, University Paris Descartes, Paris, France.,Cordeliers Research Center, UMRS 1138, University Pierre and Marie Curie (UPMC), Paris 06, University Paris-Sorbonne, Paris, France
| |
Collapse
|
89
|
Lymphadenopathy driven by TCR-V γ8V δ1 T-cell expansion in FAS-related autoimmune lymphoproliferative syndrome. Blood Adv 2017; 1:1101-1106. [PMID: 29296752 DOI: 10.1182/bloodadvances.2017006411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/30/2017] [Indexed: 12/25/2022] Open
Abstract
FAS-dependent apoptosis in Vδ1 T cells makes the latter possible culprits for the lymphadenopathy observed in patients with FAS mutations.Rapamycin and methylprednisolone resistance should prompt clinicians to look for Vδ1 T cell proliferation in ALPS-FAS patients.
Collapse
|
90
|
Lee S, Affandi JS, Irish AB, Price P. Cytomegalovirus infection alters phenotypes of different γδ T-cell subsets in renal transplant recipients with long-term stable graft function. J Med Virol 2017; 89:1442-1452. [PMID: 28198539 DOI: 10.1002/jmv.24784] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/03/2017] [Accepted: 01/21/2017] [Indexed: 02/03/2023]
Abstract
Cytomegalovirus (CMV) infection alters the phenotypic profiles of T-cells and NK cells in healthy and immunocompromised individuals. Here, we examined the effects of CMV infection on the phenotype and functions of γδ T-cell subsets in renal transplant recipients (RTR) stable several years after transplantation (n = 80) and healthy controls (n = 72). Differentiation status, function, and expression of HLA-DR, CD57, and LIR-1 on Vδ2- and Vδ2+ γδ T-cells were examined in peripheral blood cells using flow cytometry. Percentages of Vδ2- γδ T-cells were higher in RTR who are CMV-seropositive and correlated with CMV antibody levels. Proportions of Vδ2- γδ T-cells expressing HLA-DR, CD57, or LIR-1 were increased in CMV-seropositive RTR and healthy controls compared to their seronegative counterparts. Additionally, Vδ2- γδ T-cells were skewed towards a terminally differentiated phenotype and most expressed CD8 in individuals who were CMV-seropositive. Increased expression of LIR-1 on terminally differentiated Vδ2- γδ T-cells was associated with CMV seropositivity in RTR and controls. The presence of CMV DNA in 15 RTR was associated with higher frequencies of LIR-1+ Vδ2+ γδ T-cells and increased percentages of terminally differentiated effector memory cells in both γδ T-cell subsets. Our study further characterises the effects of CMV and transplantation on γδ T-cell phenotypes.
Collapse
Affiliation(s)
- Silvia Lee
- Biomedical Science, Curtin University, Bentley, Australia.,Department of Microbiology, Royal Perth Hospital, Perth, Australia
| | | | - Ashley B Irish
- Medicine & Pharmacology, University of Western Australia, Nedlands, Australia.,Department of Nephrology, Fiona Stanley Hospital, Murdoch, Australia
| | - Patricia Price
- Biomedical Science, Curtin University, Bentley, Australia.,Medicine & Pharmacology, University of Western Australia, Nedlands, Australia
| |
Collapse
|
91
|
Davey MS, Willcox CR, Joyce SP, Ladell K, Kasatskaya SA, McLaren JE, Hunter S, Salim M, Mohammed F, Price DA, Chudakov DM, Willcox BE. Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat Commun 2017; 8:14760. [PMID: 28248310 PMCID: PMC5337994 DOI: 10.1038/ncomms14760] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/30/2017] [Indexed: 02/06/2023] Open
Abstract
γδ T cells are considered to be innate-like lymphocytes that respond rapidly to stress without clonal selection and differentiation. Here we use next-generation sequencing to probe how this paradigm relates to human Vδ2neg T cells, implicated in responses to viral infection and cancer. The prevalent Vδ1 T cell receptor (TCR) repertoire is private and initially unfocused in cord blood, typically becoming strongly focused on a few high-frequency clonotypes by adulthood. Clonal expansions have differentiated from a naive to effector phenotype associated with CD27 downregulation, retaining proliferative capacity and TCR sensitivity, displaying increased cytotoxic markers and altered homing capabilities, and remaining relatively stable over time. Contrastingly, Vδ2+ T cells express semi-invariant TCRs, which are present at birth and shared between individuals. Human Vδ1+ T cells have therefore evolved a distinct biology from the Vδ2+ subset, involving a central, personalized role for the γδ TCR in directing a highly adaptive yet unconventional form of immune surveillance. γδ T cells are generally considered innate-like lymphocytes. Here the authors sequence human γδ T cell receptors (TCR) to show focusing of the private Vδ1 TCR repertoire, suggesting that, unlike Vδ2 T cells, the Vδ1 T cell compartment has adaptive attributes.
Collapse
Affiliation(s)
- Martin S Davey
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Stephen P Joyce
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Sofya A Kasatskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.,Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Stuart Hunter
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mahboob Salim
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.,Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
92
|
Ravens S, Schultze-Florey C, Raha S, Sandrock I, Drenker M, Oberdörfer L, Reinhardt A, Ravens I, Beck M, Geffers R, von Kaisenberg C, Heuser M, Thol F, Ganser A, Förster R, Koenecke C, Prinz I. Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat Immunol 2017; 18:393-401. [DOI: 10.1038/ni.3686] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022]
|
93
|
Severe Symptomatic Primary Human Cytomegalovirus Infection despite Effective Innate and Adaptive Immune Responses. J Virol 2017; 91:JVI.02245-16. [PMID: 28031361 DOI: 10.1128/jvi.02245-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/13/2016] [Indexed: 11/20/2022] Open
Abstract
Primary human cytomegalovirus (HCMV) infection usually goes unnoticed, causing mild or no symptoms in immunocompetent individuals. However, some rare severe clinical cases have been reported without investigation of host immune responses or viral virulence. In the present study, we investigate for the first time phenotypic and functional features, together with gene expression profiles in immunocompetent adults experiencing a severe primary HCMV infection. Twenty primary HCMV-infected patients (PHIP) were enrolled, as well as 26 HCMV-seronegative and 39 HCMV-seropositive healthy controls. PHIP had extensive lymphocytosis marked by massive expansion of natural killer (NK) and T cell compartments. Interestingly, PHIP mounted efficient innate and adaptive immune responses with a deep HCMV imprint, revealed mainly by the expansion of NKG2C+ NK cells, CD16+ Vδ2(-) γδ T cells, and conventional HCMV-specific CD8+ T cells. The main effector lymphocytes were activated and displayed an early immune phenotype that developed toward a more mature differentiated status. We suggest that both massive lymphocytosis and excessive lymphocyte activation could contribute to massive cytokine production, known to mediate tissue damage observed in PHIP. Taken together, these findings bring new insights into the comprehensive understanding of immune mechanisms involved during primary HCMV infection in immunocompetent individuals.IMPORTANCE HCMV-specific immune responses have been extensively documented in immunocompromised patients and during in utero acquisition. While it usually goes unnoticed, some rare severe clinical cases of primary HCMV infection have been reported in immunocompetent patients. However, host immune responses or HCMV virulence in these patients has not so far been investigated. In the present study, we show massive expansion of NK and T cell compartments during the symptomatic stage of acute HCMV infection. The patients mounted efficient innate and adaptive immune responses with a deep HCMV imprint. The massive lymphocytosis could be the result of nonadapted or uncontrolled immune responses limiting the effectiveness of the specific responses mounted. Both massive lymphocytosis and excessive lymphocyte activation could contribute to massive cytokine production, known to mediate tissue damage. Furthermore, we cannot exclude a delayed immune response caused by immune escape established by HCMV strains.
Collapse
|
94
|
Khairallah C, Déchanet-Merville J, Capone M. γδ T Cell-Mediated Immunity to Cytomegalovirus Infection. Front Immunol 2017; 8:105. [PMID: 28232834 PMCID: PMC5298998 DOI: 10.3389/fimmu.2017.00105] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
γδ T lymphocytes are unconventional immune cells, which have both innate- and adaptive-like features allowing them to respond to a wide spectrum of pathogens. For many years, we and others have reported on the role of these cells in the immune response to human cytomegalovirus in transplant patients, pregnant women, neonates, immunodeficient children, and healthy people. Indeed, and as described for CD8+ T cells, CMV infection leaves a specific imprint on the γδ T cell compartment: (i) driving a long-lasting expansion of oligoclonal γδ T cells in the blood of seropositive individuals, (ii) inducing their differentiation into effector/memory cells expressing a TEMRA phenotype, and (iii) enhancing their antiviral effector functions (i.e., cytotoxicity and IFNγ production). Recently, two studies using murine CMV (MCMV) have corroborated and extended these observations. In particular, they have illustrated the ability of adoptively transferred MCMV-induced γδ T cells to protect immune-deficient mice against virus-induced death. In vivo, expansion of γδ T cells is associated with the clearance of CMV infection as well as with reduced cancer occurrence or leukemia relapse risk in kidney transplant patients and allogeneic stem cell recipients, respectively. Taken together, all these studies show that γδ T cells are important immune effectors against CMV and cancer, which are life-threatening diseases affecting transplant recipients. The ability of CMV-induced γδ T cells to act independently of other immune cells opens the door to the development of novel cellular immunotherapies that could be particularly beneficial for immunocompromised transplant recipients.
Collapse
Affiliation(s)
| | | | - Myriam Capone
- Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
| |
Collapse
|
95
|
Lilleri D, Gerna G. Maternal immune correlates of protection from human cytomegalovirus transmission to the fetus after primary infection in pregnancy. Rev Med Virol 2016; 27. [DOI: 10.1002/rmv.1921] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Daniele Lilleri
- Experimental Research Laboratories, Transplantation Area; Fondazione IRCCS Policlinico San Matteo; Pavia Italy
| | - Giuseppe Gerna
- Experimental Research Laboratories, Transplantation Area; Fondazione IRCCS Policlinico San Matteo; Pavia Italy
| |
Collapse
|
96
|
Current Perspectives on Cytomegalovirus in Heart Transplantation. CURRENT TRANSPLANTATION REPORTS 2016. [DOI: 10.1007/s40472-016-0121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
97
|
Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc Natl Acad Sci U S A 2016; 113:14378-14383. [PMID: 27911793 DOI: 10.1073/pnas.1611098113] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human γδ T cells display potent responses to pathogens and malignancies. Of particular interest are those expressing a γδ T-cell receptor (TCR) incorporating TCRδ-chain variable-region-2 [Vδ2(+)], which are activated by pathogen-derived phosphoantigens (pAgs), or host-derived pAgs that accumulate in transformed cells or in cells exposed to aminobisphosphonates. Once activated, Vδ2(+) T cells exhibit multiple effector functions that have made them attractive candidates for immunotherapy. Despite this, clinical trials have reported mixed patient responses, highlighting a need for better understanding of Vδ2(+) T-cell biology. Here, we reveal previously unappreciated functional heterogeneity between the Vδ2(+) T-cell compartments of 63 healthy individuals. In this cohort, we identify distinct "Vδ2 profiles" that are stable over time; that do not correlate with age, gender, or history of phosphoantigen activation; and that develop after leaving the thymus. Multiple analyses suggest these Vδ2 profiles consist of variable proportions of two dominant but contrasting Vδ2(+) T-cell subsets that have divergent transcriptional programs and that display mechanistically distinct cytotoxic potentials. Importantly, an individual's Vδ2 profile predicts defined effector capacities, demonstrated by contrasting mechanisms and efficiencies of killing of a range of tumor cell lines. In short, these data support patient stratification to identify individuals with Vδ2 profiles that have effector mechanisms compatible with tumor killing and suggest that tailored Vδ2-profile-specific activation protocols may maximize the chances of future treatment success.
Collapse
|
98
|
Bertaina A, Zorzoli A, Petretto A, Barbarito G, Inglese E, Merli P, Lavarello C, Brescia LP, De Angelis B, Tripodi G, Moretta L, Locatelli F, Airoldi I. Zoledronic acid boosts γδ T-cell activity in children receiving αβ + T and CD19 + cell-depleted grafts from an HLA-haplo-identical donor. Oncoimmunology 2016; 6:e1216291. [PMID: 28344861 DOI: 10.1080/2162402x.2016.1216291] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/10/2016] [Accepted: 07/18/2016] [Indexed: 01/25/2023] Open
Abstract
We demonstrated that γδ T cells of patients given HLA-haploidentical HSCT after removal of αβ+ T cells and CD19+ B cells are endowed with the capacity of killing leukemia cells after ex vivo treatment with zoledronic acid (ZOL). Thus, we tested the hypothesis that infusion of ZOL in patients receiving this type of graft may enhance γδ T-cell cytotoxic activity against leukemia cells. ZOL was infused every 28 d in 43 patients; most were treated at least twice. γδ T cells before and after ZOL treatments were studied in 33 of these 43 patients, till at least 7 mo after HSCT by high-resolution mass spectrometry, flow-cytometry, and degranulation assay. An induction of Vδ2-cell differentiation, paralleled by increased cytotoxicity of both Vδ1 and Vδ2 cells against primary leukemia blasts was associated with ZOL treatment. Cytotoxic activity was further increased in Vδ2 cells, but not in Vδ1 lymphocytes in those patients given more than one treatment. Proteomic analysis of γδ T cells purified from patients showed upregulation of proteins involved in activation processes and immune response, paralleled by downregulation of proteins involved in proliferation. Moreover, a proteomic signature was identified for each ZOL treatment. Patients given three or more ZOL infusions had a better probability of survival in comparison to those given one or two treatments (86% vs. 54%, respectively, p = 0.008). Our data indicate that ZOL infusion in pediatric recipients of αβ T- and B-cell-depleted HLA-haploidentical HSCT promotes γδ T-cell differentiation and cytotoxicity and may influence the outcome of patients.
Collapse
Affiliation(s)
- A Bertaina
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - A Zorzoli
- Laboratorio di Oncologia, Istituto Giannina Gaslini , Genova, Italy
| | - A Petretto
- Core Facilities, Istituto Giannina Gaslini , Genova, Italy
| | - G Barbarito
- Laboratorio di Oncologia, Istituto Giannina Gaslini , Genova, Italy
| | - E Inglese
- Core Facilities, Istituto Giannina Gaslini , Genova, Italy
| | - P Merli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - C Lavarello
- Core Facilities, Istituto Giannina Gaslini , Genova, Italy
| | - L P Brescia
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - B De Angelis
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - G Tripodi
- Dipartimento Ricerca Traslazionale, Medicina di Laboratorio, Diagnostica e Servizi, Istituto Giannina Gaslini , Genova, Italy
| | - L Moretta
- Area di Ricerca Immunologica, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - F Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù, Rome, Italy; Department of Pediatric Science, Università di Pavia, Pavia, Italy
| | - I Airoldi
- Laboratorio di Oncologia, Istituto Giannina Gaslini , Genova, Italy
| |
Collapse
|
99
|
Lalor SJ, McLoughlin RM. Memory γδ T Cells-Newly Appreciated Protagonists in Infection and Immunity. Trends Immunol 2016; 37:690-702. [PMID: 27567182 DOI: 10.1016/j.it.2016.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
Abstract
Despite the potential for diversity in their T cell receptor, γδ T cells are primarily considered to be innate immune cells. Recently, memory-like γδ T cell responses have been identified in murine models of infection and autoimmunity. Similar memory responses have also been described in human and non-human primate γδ T cells. It has thus become clear that subpopulations of γδ T cells can develop long-lasting memory akin to conventional αβ T cells, with protective and pathogenic consequences. Hence, a re-evaluation of their true capabilities and role in infection and immunity is required. This review discusses recent reports of memory-type responses attributed to γδ T cells and assesses this underappreciated facet of these enigmatic cells.
Collapse
Affiliation(s)
- Stephen J Lalor
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
100
|
Kaminski H, Fishman JA. The Cell Biology of Cytomegalovirus: Implications for Transplantation. Am J Transplant 2016; 16:2254-69. [PMID: 26991039 DOI: 10.1111/ajt.13791] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/17/2016] [Accepted: 03/07/2016] [Indexed: 01/25/2023]
Abstract
Interpretation of clinical data regarding the impact of cytomegalovirus (CMV) infection on allograft function is complicated by the diversity of viral strains and substantial variability of cellular receptors and viral gene expression in different tissues. Variation also exists in nonspecific (monocytes and dendritic cells) and specific (NK cells, antibodies) responses that augment T cell antiviral activities. Innate immune signaling pathways and expanded pools of memory NK cells and γδ T cells also serve to amplify host responses to infection. The clinical impact of specific memory T cell anti-CMV responses that cross-react with graft antigens and alloantigens is uncertain but appears to contribute to graft injury and to the abrogation of allograft tolerance. These responses are modified by diverse immunosuppressive regimens and by underlying host immune deficits. The impact of CMV infection on the transplant recipient reflects cellular changes and corresponding host responses, the convergence of which has been termed the "indirect effects" of CMV infection. Future studies will clarify interactions between CMV infection and allograft injury and will guide interventions that may enhance clinical outcomes in transplantation.
Collapse
Affiliation(s)
- H Kaminski
- Kidney Transplant Unit, CHU Bordeaux Pellegrin, Place Raba Léon, Bordeaux, France
| | - J A Fishman
- Transplant Infectious Disease and Immunocompromised Host Program and MGH Transplant Center, Massachusetts General Hospital, Boston, MA
| |
Collapse
|