51
|
McCarron A, Donnelley M, Parsons D. Airway disease phenotypes in animal models of cystic fibrosis. Respir Res 2018; 19:54. [PMID: 29609604 PMCID: PMC5879563 DOI: 10.1186/s12931-018-0750-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.
Collapse
Affiliation(s)
- Alexandra McCarron
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| | - Martin Donnelley
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| | - David Parsons
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| |
Collapse
|
52
|
Hull RL, Gibson RL, McNamara S, Deutsch GH, Fligner CL, Frevert CW, Ramsey BW, Sanda S. Islet Interleukin-1β Immunoreactivity Is an Early Feature of Cystic Fibrosis That May Contribute to β-Cell Failure. Diabetes Care 2018; 41:823-830. [PMID: 29437698 PMCID: PMC5860832 DOI: 10.2337/dc17-1387] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/06/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Cystic fibrosis-related diabetes (CFRD) is a common complication of cystic fibrosis (CF), increasing patient morbidity and mortality. Poor understanding of CFRD pathogenesis limits the development of targeted therapies to treat and/or prevent the disease. The aim of this study was to evaluate islet pathology, specifically, inflammation, amyloid deposition, and endocrine cell composition in subjects with CF with diabetes and with CF without diabetes. RESEARCH DESIGN AND METHODS A retrospective analysis of archived pancreas tissue collected at autopsy was conducted using pancreas tissue from subjects with CF and diabetes (CFRD) (n = 18) and CF without diabetes (CF-no DM) (n = 17). Two cohorts of control non-CF subjects were identified, each matched to CFRD and CF-no DM subjects for age, sex, and BMI (non-CF older, n = 20, and non-CF younger, n = 20), respectively. Immunohistochemistry was performed to assess interleukin-1β (IL-1β) and islet hormone (insulin, glucagon, somatostatin, and pancreatic polypeptide) immunoreactivity; histochemistry was performed to quantify amyloid deposition. RESULTS Islet IL-1β immunoreactivity was substantially increased in both CFRD and CF-no DM subjects compared with non-CF subjects and was common in young subjects with CF (≤10 years of age). In contrast, islet amyloid deposition was increased only in CFRD subjects. We also observe abnormal islet hormone immunoreactivity, characterized by increased glucagon immunoreactivity, in CF-no DM and CFRD subjects compared with non-CF subjects. CONCLUSIONS These findings reveal novel molecular pathways and therapeutic targets underlying islet pathology in CF subjects and may be important in developing new approaches to treat CFRD.
Collapse
Affiliation(s)
- Rebecca L Hull
- Department of Medicine, University of Washington, Seattle, WA
| | - Ronald L Gibson
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Sharon McNamara
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Gail H Deutsch
- Department of Pathology, University of Washington, Seattle, WA
| | | | - Charles W Frevert
- Department of Medicine, University of Washington, Seattle, WA.,Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Bonnie W Ramsey
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Srinath Sanda
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA .,Diabetes Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
53
|
Rotti PG, Xie W, Poudel A, Yi Y, Sun X, Tyler SR, Uc A, Norris AW, Hara M, Engelhardt JF, Gibson-Corley KN. Pancreatic and Islet Remodeling in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Knockout Ferrets. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:876-890. [PMID: 29366680 DOI: 10.1016/j.ajpath.2017.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/05/2017] [Accepted: 12/28/2017] [Indexed: 12/25/2022]
Abstract
In cystic fibrosis (CF), there is early destruction of the exocrine pancreas, and this results in a unique form of diabetes that affects approximately half of adult CF individuals. An animal model of cystic fibrosis-related diabetes has been developed in the ferret, which progresses through phases of glycemic abnormalities because of islet remodeling during and after exocrine destruction. Herein, we quantified the pancreatic histopathological changes that occur during these phases. There was an increase in percentage ductal, fat, and islet area in CF ferrets over time compared with age-matched wild-type controls. We also quantified islet size, shape, islet cell composition, cell proliferation (Ki-67), and expression of remodeling markers (matrix metalloprotease-7, desmin, and α-smooth muscle actin). Pancreatic ducts were dilated with scattered proliferating cells and were surrounded by activated stellate cells, indicative of tissue remodeling. The timing of islet and duct proliferation, stellate cell activation, and matrix remodeling coincided with the previously published stages of glycemic crisis and inflammation. This mapping of remodeling events in the CF ferret pancreas provides insights into early changes that control glycemic intolerance and subsequent recovery during the evolution of CF pancreatic disease.
Collapse
Affiliation(s)
- Pavana G Rotti
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa; Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa
| | - Weiliang Xie
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Ananta Poudel
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Yaling Yi
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Scott R Tyler
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Aliye Uc
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Andrew W Norris
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | | |
Collapse
|
54
|
Tanner MR, Beeton C. Differences in ion channel phenotype and function between humans and animal models. FRONT BIOSCI-LANDMRK 2018; 23:43-64. [PMID: 28930537 PMCID: PMC5626566 DOI: 10.2741/4581] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion channels play crucial roles in regulating a broad range of physiological processes. They form a very large family of transmembrane proteins. Their diversity results from not only a large number of different genes encoding for ion channel subunits but also the ability of subunits to assemble into homo- or heteromultimers, the existence of splice variants, and the expression of different regulatory subunits. These characteristics and the existence of very selective modulators make ion channels very attractive targets for therapy in a wide variety of pathologies. Some ion channels are already being targeted in the clinic while many more are being evaluated as novel drug targets in both clinical and preclinical studies. Advancing ion channel modulators from the bench to the clinic requires their assessment for safety and efficacy in animal models. While extrapolating results from one species to another is tempting, doing such without careful evaluation of the ion channels in different species presents a risk as the translation is not always straightforward. Here, we discuss differences between species in terms of ion channels expressed in selected tissues, differing roles of ion channels in some cell types, variable response to pharmacological agents, and human channelopathies that cannot fully be replicated in animal models.
Collapse
Affiliation(s)
- Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX 77030, and Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston TX 77030
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX 77030, and Center for Drug Discovery and Biology of Inflammation Center, Baylor College of Medicine, Houston TX 77030,
| |
Collapse
|
55
|
Moheet A, Moran A. CF-related diabetes: Containing the metabolic miscreant of cystic fibrosis. Pediatr Pulmonol 2017; 52:S37-S43. [PMID: 28714601 DOI: 10.1002/ppul.23762] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/15/2017] [Indexed: 01/20/2023]
Abstract
Cystic fibrosis-related diabetes (CFRD) is associated with both an increase in morbidity and mortality in people with cystic fibrosis (CF). With increased screening and improved life expectancy of people with CF, the prevalence of CFRD is expected to rise further. The underlying pathophysiological mechanisms causing glucose intolerance and diabetes in patients with CF are not well understood but both functional and structural abnormalities in islet cells are likely to have key roles. Insulin therapy improves health outcomes in patients with CF. Future research is needed to better understand the mechanisms underlying the development of CFRD and to develop new screening and treatment strategies to minimize the detrimental impact of CFRD on health outcomes in people with CF.
Collapse
Affiliation(s)
- Amir Moheet
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
56
|
Yoon JC. Evolving Mechanistic Views and Emerging Therapeutic Strategies for Cystic Fibrosis-Related Diabetes. J Endocr Soc 2017; 1:1386-1400. [PMID: 29264462 PMCID: PMC5686691 DOI: 10.1210/js.2017-00362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a common and important complication of cystic fibrosis, an autosomal recessive genetic disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Cystic fibrosis-related diabetes (CFRD) is associated with profound detrimental effects on the disease course and mortality and is expected to increase in prevalence as the survival of patients with cystic fibrosis continues to improve. Despite progress in the functional characterization of CFTR molecular defects, the mechanistic basis of CFRD is not well understood, in part because of the relative inaccessibility of the pancreatic tissue and the limited availability of representative animal models. This review presents a concise overview of the current understanding of CFRD pathogenesis and provides a cutting-edge update on novel findings from human and animal studies. Potential contributions from paracrine mechanisms and β-cell compensatory mechanisms are highlighted, as well as functional β-cell and α-cell defects, incretin defects, exocrine pancreatic insufficiency, and loss of islet cell mass. State-of-the-art and emerging treatment options are explored, including advances in insulin administration, CFTR modulators, cell replacement, gene replacement, and gene editing therapies.
Collapse
Affiliation(s)
- John C Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, California 95616
| |
Collapse
|
57
|
Sun X, Yi Y, Xie W, Liang B, Winter MC, He N, Liu X, Luo M, Yang Y, Ode KL, Uc A, Norris AW, Engelhardt JF. CFTR Influences Beta Cell Function and Insulin Secretion Through Non-Cell Autonomous Exocrine-Derived Factors. Endocrinology 2017; 158:3325-3338. [PMID: 28977592 PMCID: PMC5659686 DOI: 10.1210/en.2017-00187] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/13/2017] [Indexed: 01/05/2023]
Abstract
Although β-cell dysfunction in cystic fibrosis (CF) leads to diabetes, the mechanism by which the cystic fibrosis transmembrane conductance regulator (CFTR) channel influences islet insulin secretion remains debated. We investigated the CFTR-dependent islet-autonomous mechanisms affecting insulin secretion by using islets isolated from CFTR knockout ferrets. Total insulin content was lower in CF as compared with wild-type (WT) islets. Furthermore, glucose-stimulated insulin secretion (GSIS) was impaired in perifused neonatal CF islets, with reduced first, second, and amplifying phase secretion. Interestingly, CF islets compensated for reduced insulin content under static low-glucose conditions by secreting a larger fraction of islet insulin than WT islets, probably because of elevated SLC2A1 transcripts, increased basal inhibition of adenosine triphosphate-sensitive potassium channels (K-ATP), and elevated basal intracellular Ca2+. Interleukin (IL)-6 secretion by CF islets was higher relative to WT, and IL-6 treatment of WT ferret islets produced a CF-like phenotype with reduced islet insulin content and elevated percentage insulin secretion in low glucose. CF islets exhibited altered expression of INS, CELA3B, and several β-cell maturation and proliferation genes. Pharmacologic inhibition of CFTR reduced GSIS by WT ferret and human islets but similarly reduced insulin secretion and intracellular Ca2+ in CFTR knockout ferret islets, indicating that the mechanism of action is not through CFTR. Single-molecule fluorescent in situ hybridization, on isolated ferret and human islets and ferret pancreas, demonstrated that CFTR RNA colocalized within KRT7+ ductal cells but not endocrine cells. These results suggest that CFTR affects β-cell function via a paracrine mechanism involving proinflammatory factors secreted from islet-associated exocrine-derived cell types.
Collapse
Affiliation(s)
- Xingshen Sun
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Yaling Yi
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Weiliang Xie
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Bo Liang
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | | | - Nan He
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Xiaoming Liu
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Meihui Luo
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Yu Yang
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Katie Larson Ode
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242
| | - Aliye Uc
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242
| | - John F. Engelhardt
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
58
|
Animal and model systems for studying cystic fibrosis. J Cyst Fibros 2017; 17:S28-S34. [PMID: 28939349 DOI: 10.1016/j.jcf.2017.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 01/07/2023]
Abstract
The cystic fibrosis (CF) field is the beneficiary of five species of animal models that lack functional cystic fibrosis transmembrane conductance regulator (CFTR) channel. These models are rapidly informing mechanisms of disease pathogenesis and CFTR function regardless of how faithfully a given organ reproduces the human CF phenotype. New approaches of genetic engineering with RNA-guided nucleases are rapidly expanding both the potential types of models available and the approaches to correct the CFTR defect. The application of new CRISPR/Cas9 genome editing techniques are similarly increasing capabilities for in vitro modeling of CFTR functions in cell lines and primary cells using air-liquid interface cultures and organoids. Gene editing of CFTR mutations in somatic stem cells and induced pluripotent stem cells is also transforming gene therapy approaches for CF. This short review evaluates several areas that are key to building animal and cell systems capable of modeling CF disease and testing potential treatments.
Collapse
|
59
|
Hohwieler M, Perkhofer L, Liebau S, Seufferlein T, Müller M, Illing A, Kleger A. Stem cell-derived organoids to model gastrointestinal facets of cystic fibrosis. United European Gastroenterol J 2017; 5:609-624. [PMID: 28815024 PMCID: PMC5548342 DOI: 10.1177/2050640616670565] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) is one of the most frequently occurring inherited human diseases caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) which lead to ample defects in anion transport and epithelial fluid secretion. Existing models lack both access to early stages of CF development and a coeval focus on the gastrointestinal CF phenotypes, which become increasingly important due increased life span of the affected individuals. Here, we provide a comprehensive overview of gastrointestinal facets of CF and the opportunity to model these in various systems in an attempt to understand and treat CF. A particular focus is given on forward-leading organoid cultures, which may circumvent current limitations of existing models and thereby provide a platform for drug testing and understanding of disease pathophysiology in gastrointestinal organs.
Collapse
Affiliation(s)
- Meike Hohwieler
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tuebingen, Oesterbergstr. 3, 72074 Tuebingen, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Martin Müller
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Anett Illing
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| |
Collapse
|
60
|
Yi Y, Norris AW, Wang K, Sun X, Uc A, Moran A, Engelhardt JF, Ode KL. Abnormal Glucose Tolerance in Infants and Young Children with Cystic Fibrosis. Am J Respir Crit Care Med 2017; 194:974-980. [PMID: 27447840 DOI: 10.1164/rccm.201512-2518oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE In cystic fibrosis, abnormal glucose tolerance is associated with decreased lung function and worsened outcomes. Translational evidence indicates that abnormal glucose tolerance may begin in early life. OBJECTIVES To determine whether very young children with cystic fibrosis have increased abnormal glucose tolerance prevalence compared with control subjects. The secondary objective was to compare area under the curve for glucose and insulin in children with cystic fibrosis with control subjects. METHODS This is a prospective multicenter study in children ages 3 months to 5 years with and without cystic fibrosis. MEASUREMENTS AND MAIN RESULTS Oral glucose tolerance testing with glucose, insulin, and C-peptide was sampled at 0, 10, 30, 60, 90, and 120 minutes. Twenty-three children with cystic fibrosis and nine control subjects had complete data. All control subjects had normal glucose tolerance. Nine of 23 subjects with cystic fibrosis had abnormal glucose tolerance (39%; P = 0.03). Of those, two met criteria for cystic fibrosis-related diabetes, two indeterminate glycemia, and six impaired glucose tolerance. Children with cystic fibrosis failed to exhibit the normal increase in area under the curve insulin with age observed in control subjects (P < 0.01), despite increased area under the curve glucose (P = 0.02). CONCLUSIONS Abnormal glucose tolerance is notably prevalent among young children with cystic fibrosis. Children with cystic fibrosis lack the normal increase in insulin secretion that occurs in early childhood despite increased glucose. These findings demonstrate that glycemic abnormalities begin very early in cystic fibrosis, possibly because of insufficient insulin secretion.
Collapse
Affiliation(s)
- Yaling Yi
- 1 Department of Anatomy and Cell Biology
| | - Andrew W Norris
- 2 Department of Pediatrics.,3 Fraternal Order of Eagles Diabetes Research Center, and
| | - Kai Wang
- 4 Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa; and
| | | | | | - Antoinette Moran
- 5 Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - John F Engelhardt
- 1 Department of Anatomy and Cell Biology.,3 Fraternal Order of Eagles Diabetes Research Center, and
| | - Katie Larson Ode
- 2 Department of Pediatrics.,3 Fraternal Order of Eagles Diabetes Research Center, and
| |
Collapse
|
61
|
Reznikov LR. Cystic Fibrosis and the Nervous System. Chest 2017; 151:1147-1155. [PMID: 27876591 PMCID: PMC5472519 DOI: 10.1016/j.chest.2016.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/13/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an anion channel that conducts bicarbonate and chloride across cell membranes. Although defective anion transport across epithelial cells is accepted as the basic defect in CF, many of the features observed in people with CF and organs affected by CF are modulated by the nervous system. This is of interest because CFTR expression has been reported in both the peripheral and central nervous systems, and it is well known that the transport of anions, such as chloride, greatly modulates neuronal excitability. Thus it is predicted that in CF, lack of CFTR in the nervous system affects neuronal function. Consistent with this prediction, several nervous system abnormalities and nervous system disorders have been described in people with CF and in animal models of CF. The goal of this special feature article is to highlight the expression and function of CFTR in the nervous system. Special emphasis is placed on nervous system abnormalities described in people with CF and in animal models of CF. Finally, features of CF that may be modulated by or attributed to faulty nervous system function are discussed.
Collapse
Affiliation(s)
- Leah R Reznikov
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL.
| |
Collapse
|
62
|
CFTR is involved in the regulation of glucagon secretion in human and rodent alpha cells. Sci Rep 2017; 7:90. [PMID: 28273890 PMCID: PMC5428348 DOI: 10.1038/s41598-017-00098-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/07/2017] [Indexed: 12/15/2022] Open
Abstract
Glucagon is the main counterregulatory hormone in the body. Still, the mechanism involved in the regulation of glucagon secretion from pancreatic alpha cells remains elusive. Dysregulated glucagon secretion is common in patients with Cystic Fibrosis (CF) that develop CF related diabetes (CFRD). CF is caused by a mutation in the Cl- channel Cystic fibrosis transmembrane conductance regulator (CFTR), but whether CFTR is present in human alpha cells and regulate glucagon secretion has not been investigated in detail. Here, both human and mouse alpha cells showed CFTR protein expression, whereas CFTR was absent in somatostatin secreting delta cells. CFTR-current activity induced by cAMP was measured in single alpha cells. Glucagon secretion at different glucose levels and in the presence of forskolin was increased by CFTR-inhibition in human islets, whereas depolarization-induced glucagon secretion was unaffected. CFTR is suggested to mainly regulate the membrane potential through an intrinsic alpha cell effect, as supported by a mathematical model of alpha cell electrophysiology. In conclusion, CFTR channels are present in alpha cells and act as important negative regulators of cAMP-enhanced glucagon secretion through effects on alpha cell membrane potential. Our data support that loss-of-function mutations in CFTR contributes to dysregulated glucagon secretion in CFRD.
Collapse
|
63
|
Sheikh S, Gudipaty L, De Leon DD, Hadjiliadis D, Kubrak C, Rosenfeld NK, Nyirjesy SC, Peleckis AJ, Malik S, Stefanovski D, Cuchel M, Rubenstein RC, Kelly A, Rickels MR. Reduced β-Cell Secretory Capacity in Pancreatic-Insufficient, but Not Pancreatic-Sufficient, Cystic Fibrosis Despite Normal Glucose Tolerance. Diabetes 2017; 66:134-144. [PMID: 27495225 PMCID: PMC5204312 DOI: 10.2337/db16-0394] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/01/2016] [Indexed: 01/21/2023]
Abstract
Patients with pancreatic-insufficient cystic fibrosis (PI-CF) are at increased risk for developing diabetes. We determined β-cell secretory capacity and insulin secretory rates from glucose-potentiated arginine and mixed-meal tolerance tests (MMTTs), respectively, in pancreatic-sufficient cystic fibrosis (PS-CF), PI-CF, and normal control subjects, all with normal glucose tolerance, in order to identify early pathophysiologic defects. Acute islet cell secretory responses were determined under fasting, 230 mg/dL, and 340 mg/dL hyperglycemia clamp conditions. PI-CF subjects had lower acute insulin, C-peptide, and glucagon responses compared with PS-CF and normal control subjects, indicating reduced β-cell secretory capacity and α-cell function. Fasting proinsulin-to-C-peptide and proinsulin secretory ratios during glucose potentiation were higher in PI-CF, suggesting impaired proinsulin processing. In the first 30 min of the MMTT, insulin secretion was lower in PI-CF compared with PS-CF and normal control subjects, and glucagon-like peptide 1 and gastric inhibitory polypeptide were lower compared with PS-CF, and after 180 min, glucose was higher in PI-CF compared with normal control subjects. These findings indicate that despite "normal" glucose tolerance, adolescents and adults with PI-CF have impairments in functional islet mass and associated early-phase insulin secretion, which with decreased incretin responses likely leads to the early development of postprandial hyperglycemia in CF.
Collapse
Affiliation(s)
- Saba Sheikh
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lalitha Gudipaty
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Diva D De Leon
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Denis Hadjiliadis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Christina Kubrak
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Nora K Rosenfeld
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sarah C Nyirjesy
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Amy J Peleckis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Saloni Malik
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Darko Stefanovski
- Department of Biostatistics, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Ronald C Rubenstein
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
64
|
Mainguy C, Bellon G, Delaup V, Ginoux T, Kassai-Koupai B, Mazur S, Rabilloud M, Remontet L, Reix P. Sensitivity and specificity of different methods for cystic fibrosis-related diabetes screening: is the oral glucose tolerance test still the standard? J Pediatr Endocrinol Metab 2017; 30:27-35. [PMID: 27977404 DOI: 10.1515/jpem-2016-0184] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cystic fibrosis-related diabetes (CFRD) is a late cystic fibrosis (CF)-associated comorbidity whose prevalence is increasing sharply lifelong. Guidelines for glucose metabolism (GM) monitoring rely on the oral glucose tolerance test (OGTT). However, this test is neither sensitive nor specific. The aim of this study was to compare sensitivity and specificity of different methods for GM monitoring in children and adolescents with CF. METHODS Continuous glucose monitoring system (CGMS), used as the reference method, was compared with the OGTT, intravenous glucose tolerance test (IGTT), homeostasis model assessment index of insulin resistance (HOMA-IR), homeostasis model assessment index of β-cell function (HOMA-%B) and glycated haemoglobin A1C. Patients were classified into three groups according to CGMS: normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and diabetes mellitus (DM). RESULTS Twenty-nine patients (median age: 13.1 years) were recruited. According to CGMS, 11 had DM, 12 IGT and six NGT, whereas OGTT identified three patients with DM and five with IGT. While 13 of 27 had insulin deficiency according to IGTT, there was 19 of 28 according to HOMA-%B. According to HOMA-IR, 12 of 28 had insulin resistance. HOMA-%B was the most sensitive method for CFRD screening [sensitivity 91% (95% CI), specificity 47% (95% CI) and negative predictive value 89% (95% CI)]. CONCLUSIONS OGTT showed the weak capacity to diagnose DM in CF and should no longer be considered as the reference method for CFRD screening in patients with CF. In our study, HOMA-%B showed promising metrics for CFRD screening. Finally, CGMS revealed that pathological glucose excursions were frequent even early in life.
Collapse
|
65
|
Abstract
CFTR protein is an ion channel regulated by cAMP-dependent phosphorylation and expressed in many types of epithelial cells. CFTR-mediated chloride and bicarbonate secretion play an important role in the respiratory and gastrointestinal systems. Pharmacological modulators of CFTR represent promising drugs for a variety of diseases. In particular, correctors and potentiators may restore the activity of CFTR in cystic fibrosis patients. Potentiators are also potentially useful to improve mucociliary clearance in patients with chronic obstructive pulmonary disease. On the other hand, CFTR inhibitors may be useful to block fluid and electrolyte loss in secretory diarrhea and slow down the progression of polycystic kidney disease.
Collapse
Affiliation(s)
- Olga Zegarra-Moran
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Luis J V Galietta
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy.
| |
Collapse
|
66
|
Kessler L, Abély M. Atteinte pancréatique exocrine et endocrine dans la mucoviscidose. Arch Pediatr 2016; 23:12S21-12S32. [DOI: 10.1016/s0929-693x(17)30059-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
67
|
Chronic Pancreatitis in the 21st Century - Research Challenges and Opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2016; 45:1365-1375. [PMID: 27748719 PMCID: PMC5117429 DOI: 10.1097/mpa.0000000000000713] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A workshop was sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases to focus on research gaps and opportunities in chronic pancreatitis (CP) and its sequelae. This conference marked the 20th year anniversary of the discovery of the cationic trypsinogen (PRSS1) gene mutation for hereditary pancreatitis. The event was held on July 27, 2016, and structured into 4 sessions: (1) pathophysiology, (2) exocrine complications, (3) endocrine complications, and (4) pain. The current state of knowledge was reviewed; many knowledge gaps and research needs were identified that require further investigation. Common themes included the need to design better tools to diagnose CP and its sequelae early and reliably, identify predisposing risk factors for disease progression, develop standardized protocols to distinguish type 3c diabetes mellitus from other types of diabetes, and design effective therapeutic strategies through novel cell culture technologies, animal models mimicking human disease, and pain management tools. Gene therapy and cystic fibrosis conductance regulator potentiators as possible treatments of CP were discussed. Importantly, the need for CP end points and intermediate targets for future drug trials was emphasized.
Collapse
|
68
|
Akhtar Y, Blackman SM. Hyperglycemia in Young Children with Cystic Fibrosis. Am J Respir Crit Care Med 2016; 194:924-925. [DOI: 10.1164/rccm.201608-1579ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yasmin Akhtar
- Division of Pediatric EndocrinologyJohns Hopkins University School of MedicineBaltimore, Maryland
| | - Scott M. Blackman
- Division of Pediatric EndocrinologyJohns Hopkins University School of MedicineBaltimore, Maryland
| |
Collapse
|
69
|
Abstract
Cystic fibrosis-related diabetes mellitus (CFRD) is the most common endocrine complication of cystic fibrosis (CF), affecting more than 50% of patients by the 4th decade of life. CFRD is often preceded by worsening pulmonary status and nutritional decline. Treatment of CFRD is associated with improvements in body weight and pulmonary function and a reduction in pulmonary exacerbations. Because of the clinical significance of CFRD, diabetes screening with an oral glucose tolerance test (OGTT) is recommended annually for all patients with CF starting at age 10 years. The OGTT detects CFRD with greater sensitivity than random glucose or hemoglobin A1c testing. The first-line treatment for CFRD is insulin. The use of other treatments such as oral medications remains under study. [Pediatr Ann. 2016;45(9):e321-e326.].
Collapse
|
70
|
Abstract
Cystic fibrosis is frequently complicated by endocrine disorders. Diabetes can be expected to affect most with CF and pancreatic insufficiency and varies widely in age of onset, but early identification and treatment improve morbidity and mortality. Short stature can be exacerbated by relative delay of puberty and by use of inhaled corticosteroids. Bone disease in CF causes fragility fractures and should be assessed by monitoring bone mineral density and optimizing vitamin D status. Detecting and managing endocrine complications in CF can reduce morbidity and mortality in CF. These complications can be expected to become more common as the CF population ages.
Collapse
Affiliation(s)
- Scott M. Blackman
- Division of Pediatric Endocrinology, Department of Pediatrics, Johns Hopkins University and Johns Hopkins Hospital, Baltimore, MD
| | - Vin Tangpricha
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine and the Atlanta VA Medical Center, Atlanta, GA
| |
Collapse
|
71
|
Koivula FNM, McClenaghan NH, Harper AGS, Kelly C. Islet-intrinsic effects of CFTR mutation. Diabetologia 2016; 59:1350-1355. [PMID: 27033560 PMCID: PMC4901107 DOI: 10.1007/s00125-016-3936-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/26/2016] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis-related diabetes (CFRD) is the most significant extra-pulmonary comorbidity in cystic fibrosis (CF) patients, and accelerates lung decline. In addition to the traditional view that CFRD is a consequence of fibrotic destruction of the pancreas as a whole, emerging evidence may implicate a role for cystic fibrosis transmembrane-conductance regulator (CFTR) in the regulation of insulin secretion from the pancreatic islet. Impaired first-phase insulin responses and glucose homeostasis have also been reported in CF patients. CFTR expression in both human and mouse beta cells has been confirmed, and recent studies have shown differences in endocrine pancreatic morphology from birth in CF. Recent experimental evidence suggests that functional CFTR channels are required for insulin exocytosis and the regulation of membrane potential in the pancreatic beta cell, which may account for the impairments in insulin secretion observed in many CF patients. These novel insights suggest that the pathogenesis of CFRD is more complicated than originally thought, with implications for diabetes treatment and screening in the CF population. This review summarises recent emerging evidence in support of a primary role for endocrine pancreatic dysfunction in the development of CFRD. Summary • CF is an autosomal recessive disorder caused by mutations in the CFTR gene • The vast majority of morbidity and mortality in CF results from lung disease. However CFRD is the largest extra-pulmonary co-morbidity and rapidly accelerates lung decline • Recent experimental evidence shows that functional CFTR channels are required for normal patterns of first phase insulin secretion from the pancreatic beta cell • Current clinical recommendations suggest that insulin is more effective than oral glucose-lowering drugs for the treatment of CFRD. However, the emergence of CFTR corrector and potentiator drugs may offer a personalised approach to treating diabetes in the CF population.
Collapse
Affiliation(s)
- Fiona N Manderson Koivula
- Northern Ireland Centre for Stratified Medicine, University of Ulster, C-TRIC, Altnagelvin Hospital Site, Glenshane Road, Derry/Londonderry, BT47 6SB, Northern Ireland, UK
| | - Neville H McClenaghan
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Alan G S Harper
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, UK
| | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, University of Ulster, C-TRIC, Altnagelvin Hospital Site, Glenshane Road, Derry/Londonderry, BT47 6SB, Northern Ireland, UK.
| |
Collapse
|
72
|
Prentice B, Hameed S, Verge CF, Ooi CY, Jaffe A, Widger J. Diagnosing cystic fibrosis-related diabetes: current methods and challenges. Expert Rev Respir Med 2016; 10:799-811. [DOI: 10.1080/17476348.2016.1190646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bernadette Prentice
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, Australia
- School of Women’s and Children’s Health, The University of New South Wales, Randwick, Australia
| | - Shihab Hameed
- School of Women’s and Children’s Health, The University of New South Wales, Randwick, Australia
- Department of Endocrinology, Sydney Children’s Hospital, Randwick, Australia
| | - Charles F. Verge
- School of Women’s and Children’s Health, The University of New South Wales, Randwick, Australia
- Department of Endocrinology, Sydney Children’s Hospital, Randwick, Australia
| | - Chee Y. Ooi
- School of Women’s and Children’s Health, The University of New South Wales, Randwick, Australia
- Department of Gastroenterology, Sydney Children’s Hospital, Randwick, Australia
| | - Adam Jaffe
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, Australia
- School of Women’s and Children’s Health, The University of New South Wales, Randwick, Australia
| | - John Widger
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, Australia
- School of Women’s and Children’s Health, The University of New South Wales, Randwick, Australia
| |
Collapse
|
73
|
Yi Y, Sun X, Gibson-Corley K, Xie W, Liang B, He N, Tyler SR, Uc A, Philipson LH, Wang K, Hara M, Ode KL, Norris AW, Engelhardt JF. A Transient Metabolic Recovery from Early Life Glucose Intolerance in Cystic Fibrosis Ferrets Occurs During Pancreatic Remodeling. Endocrinology 2016; 157:1852-65. [PMID: 26862997 PMCID: PMC4870869 DOI: 10.1210/en.2015-1935] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cystic fibrosis (CF)-related diabetes in humans is intimately related to exocrine pancreatic insufficiency, yet little is known about how these 2 disease processes simultaneously evolve in CF. In this context, we examined CF ferrets during the evolution of exocrine pancreatic disease. At 1 month of age, CF ferrets experienced a glycemic crisis with spontaneous diabetic-level hyperglycemia. This occurred during a spike in pancreatic inflammation that was preceded by pancreatic fibrosis and loss of β-cell mass. Surprisingly, there was spontaneous normalization of glucose levels at 2-3 months, with intermediate hyperglycemia thereafter. Mixed meal tolerance was impaired at all ages, but glucose intolerance was not detected until 4 months. Insulin secretion in response to hyperglycemic clamp and to arginine was impaired. Insulin sensitivity, measured by euglycemic hyperinsulinemic clamp, was normal. Pancreatic inflammation rapidly diminished after 2 months of age during a period where β-cell mass rose and gene expression of islet hormones, peroxisome proliferator-activated receptor-γ, and adiponectin increased. We conclude that active CF exocrine pancreatic inflammation adversely affects β-cells but is followed by islet resurgence. We predict that very young humans with CF may experience a transient glycemic crisis and postulate that pancreatic inflammatory to adipogenic remodeling may facilitate islet adaptation in CF.
Collapse
Affiliation(s)
- Yaling Yi
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Xingshen Sun
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Katherine Gibson-Corley
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Weiliang Xie
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Bo Liang
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Nan He
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Scott R Tyler
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Aliye Uc
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Louis H Philipson
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Kai Wang
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Manami Hara
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Katie Larson Ode
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - Andrew W Norris
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| | - John F Engelhardt
- Anatomy and Cell Biology (Y.Y., X.S., W.X., B.L., N.H., S.R.T., J.F.E.), Departments of Pathology (K.G.-C.) and Pediatrics (A.U., K.L.O., A.W.N.), Fraternal Order of Eagles Diabetes Research Center (A.W.N., J.F.E.), and Department of Biostatistics (K.W.), College of Public Health, University of Iowa, Iowa City, Iowa 52242; and Department of Medicine (L.H.P., M.H.), University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
74
|
Hegyi P, Wilschanski M, Muallem S, Lukacs GL, Sahin-Tóth M, Uc A, Gray MA, Rakonczay Z, Maléth J. CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis. Rev Physiol Biochem Pharmacol 2016; 170:37-66. [PMID: 26856995 DOI: 10.1007/112_2015_5002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that conducts chloride and bicarbonate ions across epithelial cell membranes. Mutations in the CFTR gene diminish the ion channel function and lead to impaired epithelial fluid transport in multiple organs such as the lung and the pancreas resulting in cystic fibrosis. Heterozygous carriers of CFTR mutations do not develop cystic fibrosis but exhibit increased risk for pancreatitis and associated pancreatic damage characterized by elevated mucus levels, fibrosis, and cyst formation. Importantly, recent studies demonstrated that pancreatitis causing insults, such as alcohol, smoking, or bile acids, strongly inhibit CFTR function. Furthermore, human studies showed reduced levels of CFTR expression and function in all forms of pancreatitis. These findings indicate that impairment of CFTR is critical in the development of pancreatitis; therefore, correcting CFTR function could be the first specific therapy in pancreatitis. In this review, we summarize recent advances in the field and discuss new possibilities for the treatment of pancreatitis.
Collapse
Affiliation(s)
- Péter Hegyi
- Institute for Translational Medicine and 1st Department of Medicine, University of Pécs, Pécs, Hungary.
- MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary.
- First Department of Medicine, University of Szeged, Szeged, Hungary.
| | - Michael Wilschanski
- Pediatric Gastroenterology Unit, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Shmuel Muallem
- National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | | | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Aliye Uc
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Michael A Gray
- Institute for Cell & Molecular Biosciences, University Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged, Hungary
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary
| |
Collapse
|
75
|
Fontés G, Ghislain J, Benterki I, Zarrouki B, Trudel D, Berthiaume Y, Poitout V. The ΔF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Is Associated With Progressive Insulin Resistance and Decreased Functional β-Cell Mass in Mice. Diabetes 2015; 64:4112-22. [PMID: 26283735 PMCID: PMC4876763 DOI: 10.2337/db14-0810] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/10/2015] [Indexed: 01/20/2023]
Abstract
Cystic fibrosis (CF) is the result of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CF-related diabetes affects 50% of adult CF patients. How CFTR deficiency predisposes to diabetes is unknown. Herein, we examined the impact of the most frequent cftr mutation in humans, deletion of phenylalanine at position 508 (ΔF508), on glucose homeostasis in mice. We compared ΔF508 mutant mice with wild-type (WT) littermates. Twelve-week-old male ΔF508 mutants had lower body weight, improved oral glucose tolerance, and a trend toward higher insulin tolerance. Glucose-induced insulin secretion was slightly diminished in ΔF508 mutant islets, due to reduced insulin content, but ΔF508 mutant islets were not more sensitive to proinflammatory cytokines than WT islets. Hyperglycemic clamps confirmed an increase in insulin sensitivity with normal β-cell function in 12- and 18-week-old ΔF508 mutants. In contrast, 24-week-old ΔF508 mutants exhibited insulin resistance and reduced β-cell function. β-Cell mass was unaffected at 11 weeks of age but was significantly lower in ΔF508 mutants versus controls at 24 weeks. This was not associated with gross pancreatic pathology. We conclude that the ΔF508 CFTR mutation does not lead to an intrinsic β-cell secretory defect but is associated with insulin resistance and a β-cell mass deficit in aging mutants.
Collapse
Affiliation(s)
- Ghislaine Fontés
- Montreal Diabetes Research Center, University of Montreal, Quebec, Canada University of Montreal Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center, University of Montreal, Quebec, Canada University of Montreal Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Isma Benterki
- Montreal Diabetes Research Center, University of Montreal, Quebec, Canada University of Montreal Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Bader Zarrouki
- Montreal Diabetes Research Center, University of Montreal, Quebec, Canada University of Montreal Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Dominique Trudel
- University of Montreal Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Yves Berthiaume
- University of Montreal Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, University of Montreal, Quebec, Canada University of Montreal Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
76
|
Gibson-Corley KN, Meyerholz DK, Engelhardt JF. Pancreatic pathophysiology in cystic fibrosis. J Pathol 2015; 238:311-20. [PMID: 26365583 DOI: 10.1002/path.4634] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/28/2022]
Abstract
The pancreas is one of the earliest, and most commonly affected, organs in patients with cystic fibrosis (CF). Studying the pathogenesis of pancreatic disease is limited in CF patients, due to its early clinical onset, co-morbidities and lack of tissue samples from the early phases of disease. In recent years, several new CF animal models have been developed that have advanced our understanding of both CF exocrine and endocrine pancreatic disease. Additionally, these models have helped us to better define the influence of pancreatic lesions on CF disease progression in other organs, such as the gastrointestinal tract and lung.
Collapse
Affiliation(s)
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
77
|
Wisely SM, Ryder OA, Santymire RM, Engelhardt JF, Novak BJ. A Road Map for 21st Century Genetic Restoration: Gene Pool Enrichment of the Black-Footed Ferret. J Hered 2015; 106:581-92. [PMID: 26304983 PMCID: PMC4567841 DOI: 10.1093/jhered/esv041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/07/2015] [Indexed: 12/15/2022] Open
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) could benefit recovery programs of critically endangered species but must be weighed with the risks of failure. To weigh the risks and benefits, a decision-making process that evaluates progress is needed. Experiments that evaluate the efficiency and efficacy of blastocyst, fetal, and post-parturition development are necessary to determine the success or failure or species-specific iSCNT programs. Here, we use the black-footed ferret (Mustela nigripes) as a case study for evaluating this emerging biomedical technology as a tool for genetic restoration. The black-footed ferret has depleted genetic variation yet genome resource banks contain genetic material of individuals not currently represented in the extant lineage. Thus, genetic restoration of the species is in theory possible and could help reduce the persistent erosion of genetic diversity from drift. Extensive genetic, genomic, and reproductive science tools have previously been developed in black-footed ferrets and would aid in the process of developing an iSCNT protocol for this species. Nonetheless, developing reproductive cloning will require years of experiments and a coordinated effort among recovery partners. The information gained from a well-planned research effort with the goal of genetic restoration via reproductive cloning could establish a 21st century model for evaluating and implementing conservation breeding that would be applicable to other genetically impoverished species.
Collapse
Affiliation(s)
- Samantha M Wisely
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak).
| | - Oliver A Ryder
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak)
| | - Rachel M Santymire
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak)
| | - John F Engelhardt
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak)
| | - Ben J Novak
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak)
| |
Collapse
|
78
|
Yan Z, Sun X, Feng Z, Li G, Fisher JT, Stewart ZA, Engelhardt JF. Optimization of Recombinant Adeno-Associated Virus-Mediated Expression for Large Transgenes, Using a Synthetic Promoter and Tandem Array Enhancers. Hum Gene Ther 2015; 26:334-46. [PMID: 25763813 DOI: 10.1089/hum.2015.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The packaging capacity of recombinant adeno-associated viral (rAAV) vectors limits the size of the promoter that can be used to express the 4.43-kb cystic fibrosis transmembrane conductance regulator (CFTR) cDNA. To circumvent this limitation, we screened a set of 100-mer synthetic enhancer elements, composed of ten 10-bp repeats, for their ability to augment CFTR transgene expression from a short 83-bp synthetic promoter in the context of an rAAV vector designed for use in the cystic fibrosis (CF) ferret model. Our initial studies assessing transcriptional activity in monolayer (nonpolarized) cultures of human airway cell lines and primary ferret airway cells revealed that three of these synthetic enhancers (F1, F5, and F10) significantly promoted transcription of a luciferase transgene in the context of plasmid transfection. Further analysis in polarized cultures of human and ferret airway epithelia at an air-liquid interface (ALI), as well as in the ferret airway in vivo, demonstrated that the F5 enhancer produced the highest level of transgene expression in the context of an AAV vector. Furthermore, we demonstrated that increasing the size of the viral genome from 4.94 to 5.04 kb did not significantly affect particle yield of the vectors, but dramatically reduced the functionality of rAAV-CFTR vectors because of small terminal deletions that extended into the CFTR expression cassette of the 5.04-kb oversized genome. Because rAAV-CFTR vectors greater than 5 kb in size are dramatically impaired with respect to vector efficacy, we used a shortened ferret CFTR minigene with a 159-bp deletion in the R domain to construct an rAAV vector (AV2/2.F5tg83-fCFTRΔR). This vector yielded an ∼17-fold increase in expression of CFTR and significantly improved Cl(-) currents in CF ALI cultures. Our study has identified a small enhancer/promoter combination that may have broad usefulness for rAAV-mediated CF gene therapy to the airway.
Collapse
Affiliation(s)
- Ziying Yan
- 1 Department of Anatomy and Cell Biology, University of Iowa School of Medicine , Iowa City, IA 52242.,2 Center for Gene Therapy, University of Iowa School of Medicine , Iowa City, IA 52242
| | - Xingshen Sun
- 1 Department of Anatomy and Cell Biology, University of Iowa School of Medicine , Iowa City, IA 52242
| | - Zehua Feng
- 1 Department of Anatomy and Cell Biology, University of Iowa School of Medicine , Iowa City, IA 52242
| | - Guiying Li
- 3 Department of Surgery, University of Iowa School of Medicine , Iowa City, IA 52242
| | - John T Fisher
- 1 Department of Anatomy and Cell Biology, University of Iowa School of Medicine , Iowa City, IA 52242
| | - Zoe A Stewart
- 3 Department of Surgery, University of Iowa School of Medicine , Iowa City, IA 52242
| | - John F Engelhardt
- 1 Department of Anatomy and Cell Biology, University of Iowa School of Medicine , Iowa City, IA 52242.,2 Center for Gene Therapy, University of Iowa School of Medicine , Iowa City, IA 52242.,4 Department of Internal Medicine, University of Iowa School of Medicine , Iowa City, IA 52242
| |
Collapse
|
79
|
Cai Z, Palmai-Pallag T, Khuituan P, Mutolo MJ, Boinot C, Liu B, Scott-Ward TS, Callebaut I, Harris A, Sheppard DN. Impact of the F508del mutation on ovine CFTR, a Cl- channel with enhanced conductance and ATP-dependent gating. J Physiol 2015; 593:2427-46. [PMID: 25763566 DOI: 10.1113/jp270227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Malfunction of the cystic fibrosis transmembrane conductance regulator (CFTR), a gated pathway for chloride movement, causes the common life-shortening genetic disease cystic fibrosis (CF). Towards the development of a sheep model of CF, we have investigated the function of sheep CFTR. We found that sheep CFTR was noticeably more active than human CFTR, while the most common CF mutation, F508del, had reduced impact on sheep CFTR function. Our results demonstrate that subtle changes in protein structure have marked effects on CFTR function and the consequences of the CF mutation F508del. ABSTRACT Cross-species comparative studies are a powerful approach to understanding the epithelial Cl(-) channel cystic fibrosis transmembrane conductance regulator (CFTR), which is defective in the genetic disease cystic fibrosis (CF). Here, we investigate the single-channel behaviour of ovine CFTR and the impact of the most common CF mutation, F508del-CFTR, using excised inside-out membrane patches from transiently transfected CHO cells. Like human CFTR, ovine CFTR formed a weakly inwardly rectifying Cl(-) channel regulated by PKA-dependent phosphorylation, inhibited by the open-channel blocker glibenclamide. However, for three reasons, ovine CFTR was noticeably more active than human CFTR. First, single-channel conductance was increased. Second, open probability was augmented because the frequency and duration of channel openings were increased. Third, with enhanced affinity and efficacy, ATP more strongly stimulated ovine CFTR channel gating. Consistent with these data, the CFTR modulator phloxine B failed to potentiate ovine CFTR Cl(-) currents. Similar to its impact on human CFTR, the F508del mutation caused a temperature-sensitive folding defect, which disrupted ovine CFTR protein processing and reduced membrane stability. However, the F508del mutation had reduced impact on ovine CFTR channel gating in contrast to its marked effects on human CFTR. We conclude that ovine CFTR forms a regulated Cl(-) channel with enhanced conductance and ATP-dependent channel gating. This phylogenetic analysis of CFTR structure and function demonstrates that subtle changes in structure have pronounced effects on channel function and the consequences of the CF mutation F508del.
Collapse
Affiliation(s)
- Zhiwei Cai
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Timea Palmai-Pallag
- Human Molecular Genetics Program, Lurie Children's Research Center and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60614, USA.,Harris Laboratory, formerly at the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Pissared Khuituan
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK.,Center of Calcium and Bone Research, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Michael J Mutolo
- Human Molecular Genetics Program, Lurie Children's Research Center and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60614, USA
| | - Clément Boinot
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS FRE 3511, 86022, Poitiers, France
| | - Beihui Liu
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Toby S Scott-Ward
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Isabelle Callebaut
- IMPMC, Sorbonne Universités - UPMC Univ Paris 06, UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, 75005, Paris, France
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60614, USA
| | - David N Sheppard
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
80
|
Barrio R. Management of endocrine disease: Cystic fibrosis-related diabetes: novel pathogenic insights opening new therapeutic avenues. Eur J Endocrinol 2015; 172:R131-41. [PMID: 25336504 DOI: 10.1530/eje-14-0644] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). CFTR is primarily present in epithelial cells of the airways, intestine and in cells with exocrine and endocrine functions. Mutations in the gene encoding the channel protein complex (CFTR) cause alterations in the ionic composition of secretions from the lung, gastrointestinal tract, liver, and also the pancreas. CF-related diabetes (CFRD), the most common complication of CF, has a major detrimental impact on pulmonary function, nutrition and survival. Glucose derangements in CF seem to start from early infancy and, even when the pathophysiology is multifactorial, insulin insufficiency is clearly a major component. Consistently, recent evidence has confirmed that CFTR is an important regulator of insulin secretion by islet β-cells. In addition, several other mechanisms were also recognized from cellular and animals models also contributing to either β-cell mass reduction or β-cell malfunction. Understanding such mechanisms is crucial for the development of the so-called 'transformational' therapies in CF, including the preservation of insulin secretion. Innovative therapeutic approaches aim to modify specific CFTR mutant proteins or positively modulate their function. CFTR modulators have recently shown in vitro capacity to enhance insulin secretion and thereby potential clinical utility in CFDR, including synergistic effects between corrector and potentiator drugs. The introduction of incretins and the optimization of exocrine pancreatic replacement complete the number of therapeutic options of CFRD besides early diagnosis and implementation of insulin therapy. This review focuses on the recently identified pathogenic mechanisms leading to CFRD relevant for the development of novel pharmacological avenues in CFRD therapy.
Collapse
Affiliation(s)
- Raquel Barrio
- Pediatric Diabetes UnitDepartment of Pediatrics, Ramón y Cajal University Hospital, Alcalá University, Crta. Colmenar Km 9.1, 28034 Madrid, Spain
| |
Collapse
|
81
|
Zeng JW, Zeng XL, Li FY, Ma MM, Yuan F, Liu J, Lv XF, Wang GL, Guan YY. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) prevents apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells. Apoptosis 2015; 19:1317-29. [PMID: 24999019 DOI: 10.1007/s10495-014-1014-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) acts as a cAMP-dependent chloride channel, has been studied in various types of cells. CFTR is abundantly expressed in vascular smooth muscle cells and closely linked to vascular tone regulation. However, the functional significance of CFTR in basilar vascular smooth muscle cells (BASMCs) remains elusive. Accumulating evidence has shown the direct role of CFTR in cell apoptosis that contributes to several main pathological events in CF, such as inflammation, lung injury and pancreatic insufficiency. We therefore investigated the role of CFTR in BASMC apoptotic process induced by hydrogen peroxide (H2O2). We found that H2O2-induced cell apoptosis was parallel to a significant decrease in endogenous CFTR protein expression. Silencing CFTR with adenovirus-mediated CFTR specific siRNA further enhanced H2O2-induced BASMC injury, mitochondrial cytochrome c release into cytoplasm, cleaved caspase-3 and -9 protein expression and oxidized glutathione levels; while decreased cell viability, the Bcl-2/Bax ratio, mitochondrial membrane potential, total glutathione levels, activities of superoxide dismutase and catalase. The pharmacological activation of CFTR with forskolin produced the opposite effects. These results strongly suggest that CFTR may modulate oxidative stress-related BASMC apoptosis through the cAMP- and mitochondria-dependent pathway and regulating endogenous antioxidant defense system.
Collapse
Affiliation(s)
- Jia-Wei Zeng
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Olivier AK, Gibson-Corley KN, Meyerholz DK. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology. Am J Physiol Gastrointest Liver Physiol 2015; 308:G459-71. [PMID: 25591863 PMCID: PMC4360044 DOI: 10.1152/ajpgi.00146.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multiple organ systems, including the gastrointestinal tract, pancreas, and hepatobiliary systems, are affected by cystic fibrosis (CF). Many of these changes begin early in life and are difficult to study in young CF patients. Recent development of novel CF animal models has expanded opportunities in the field to better understand CF pathogenesis and evaluate traditional and innovative therapeutics. In this review, we discuss manifestations of CF disease in gastrointestinal, pancreatic, and hepatobiliary systems of humans and animal models. We also compare the similarities and limitations of animal models and discuss future directions for modeling CF.
Collapse
Affiliation(s)
- Alicia K. Olivier
- Department of Pathology and Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Katherine N. Gibson-Corley
- Department of Pathology and Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - David K. Meyerholz
- Department of Pathology and Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
83
|
Yan Z, Stewart ZA, Sinn PL, Olsen JC, Hu J, McCray PB, Engelhardt JF. Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy. HUM GENE THER CL DEV 2015; 26:38-49. [PMID: 25675143 PMCID: PMC4367511 DOI: 10.1089/humc.2014.154] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 12/26/2014] [Indexed: 12/13/2022] Open
Abstract
Large animal models of genetic diseases are rapidly becoming integral to biomedical research as technologies to manipulate the mammalian genome improve. The creation of cystic fibrosis (CF) ferrets and pigs is an example of such progress in animal modeling, with the disease phenotypes in the ferret and pig models more reflective of human CF disease than mouse models. The ferret and pig CF models also provide unique opportunities to develop and assess the effectiveness of gene and cell therapies to treat affected organs. In this review, we examine the organ disease phenotypes in these new CF models and the opportunities to test gene therapies at various stages of disease progression in affected organs. We then discuss the progress in developing recombinant replication-defective adenoviral, adeno-associated viral, and lentiviral vectors to target genes to the lung and pancreas in ferrets and pigs, the two most affected organs in CF. Through this review, we hope to convey the potential of these new animal models for developing CF gene and cell therapies.
Collapse
Affiliation(s)
- Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa School of Medicine, Iowa City, IA 52242
- Center for Gene Therapy of Cystic Fibrosis, University of Iowa School of Medicine, Iowa City, IA 52242
| | - Zoe A. Stewart
- Department of Surgery, University of Iowa School of Medicine, Iowa City, IA 52242
| | - Patrick L. Sinn
- Center for Gene Therapy of Cystic Fibrosis, University of Iowa School of Medicine, Iowa City, IA 52242
- Department of Pediatrics, University of Iowa School of Medicine, Iowa City, IA 52242
| | - John C. Olsen
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Paul B. McCray
- Center for Gene Therapy of Cystic Fibrosis, University of Iowa School of Medicine, Iowa City, IA 52242
- Department of Pediatrics, University of Iowa School of Medicine, Iowa City, IA 52242
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa School of Medicine, Iowa City, IA 52242
- Center for Gene Therapy of Cystic Fibrosis, University of Iowa School of Medicine, Iowa City, IA 52242
- Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA 52242
| |
Collapse
|
84
|
Affiliation(s)
- David A Stoltz
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
- Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242
| | - David K Meyerholz
- Department of Pathology, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Michael J Welsh
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
- Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
- Howard Hughes Medical Institute, Roy J and Lucille A Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
85
|
Navis A, Bagnat M. Loss of cftr function leads to pancreatic destruction in larval zebrafish. Dev Biol 2015; 399:237-48. [PMID: 25592226 DOI: 10.1016/j.ydbio.2014.12.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/14/2022]
Abstract
The development and function of many internal organs requires precisely regulated fluid secretion. A key regulator of vertebrate fluid secretion is an anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Loss of CFTR function leads to defects in fluid transport and cystic fibrosis (CF), a complex disease characterized by a loss of fluid secretion and mucus buildup in many organs including the lungs, liver, and pancreas. Several animal models including mouse, ferret and pig have been generated to investigate the pathophysiology of CF. However, these models have limited accessibility to early processes in the development of CF and are not amenable for forward genetic or chemical screens. Here, we show that Cftr is expressed and localized to the apical membrane of the zebrafish pancreatic duct and that loss of cftr function leads to destruction of the exocrine pancreas and a cystic fibrosis phenotype that mirrors human disease. Our analyses reveal that the cftr mutant pancreas initially develops normally, then rapidly loses pancreatic tissue during larval life, reflecting pancreatic disease in CF. Altogether, we demonstrate that the cftr mutant zebrafish is a powerful new model for pancreatitis and pancreatic destruction in CF. This accessible model will allow more detailed investigation into the mechanisms that drive CF of the pancreas and facilitate development of new therapies to treat the disease.
Collapse
Affiliation(s)
- Adam Navis
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
86
|
Yan Z, Stewart ZA, Sinn PL, Olsen JC, Hu J, McCray, Jr. PB, Engelhardt JF. Ferret and Pig Models of Cystic Fibrosis: Prospects and Promise for Gene Therapy. HUM GENE THER CL DEV 2014. [DOI: 10.1089/hum.2014.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
87
|
Peng X, Alföldi J, Gori K, Eisfeld AJ, Tyler SR, Tisoncik-Go J, Brawand D, Law GL, Skunca N, Hatta M, Gasper DJ, Kelly SM, Chang J, Thomas MJ, Johnson J, Berlin AM, Lara M, Russell P, Swofford R, Turner-Maier J, Young S, Hourlier T, Aken B, Searle S, Sun X, Yi Y, Suresh M, Tumpey TM, Siepel A, Wisely SM, Dessimoz C, Kawaoka Y, Birren BW, Lindblad-Toh K, Di Palma F, Engelhardt JF, Palermo RE, Katze MG. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease. Nat Biotechnol 2014; 32:1250-5. [PMID: 25402615 PMCID: PMC4262547 DOI: 10.1038/nbt.3079] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/22/2014] [Indexed: 01/24/2023]
Abstract
The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.
Collapse
Affiliation(s)
- Xinxia Peng
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jessica Alföldi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | - Kevin Gori
- European Molecular Biology Laboratory, European Bio informatics Institute, Hinxton, Cambridge, UK
| | - Amie J. Eisfeld
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Scott R. Tyler
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Molecular and Cellular Biology Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - David Brawand
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | - G. Lynn Law
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Nives Skunca
- Department of Computer Science, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Masato Hatta
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - David J. Gasper
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Sara M. Kelly
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jean Chang
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Matthew J. Thomas
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | - Aaron M. Berlin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | - Marcia Lara
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | - Pamela Russell
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | | | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | - Thibaut Hourlier
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Bronwen Aken
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Steve Searle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Molecular and Cellular Biology Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Yaling Yi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Molecular and Cellular Biology Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - M. Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Adam Siepel
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Christophe Dessimoz
- European Molecular Biology Laboratory, European Bio informatics Institute, Hinxton, Cambridge, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Computer Science, University College London, London, UK
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- Laboratory of Bioresponses Regulation, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Bruce W. Birren
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Center for Gene Therapy, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robert E. Palermo
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, Seattle, Washington, USA
| |
Collapse
|
88
|
Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs despite sparing of islet cell mass. Clin Sci (Lond) 2014; 128:131-42. [PMID: 25142104 DOI: 10.1042/cs20140059] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetes is a common and significant co-morbidity in cystic fibrosis (CF). The pathogenesis of cystic fibrosis related diabetes (CFRD) is incompletely understood. Because exocrine pancreatic disease is similar between humans and pigs with CF, the CF pig model has the potential to contribute significantly to the understanding of CFRD pathogenesis. We determined the structure of the endocrine pancreas in fetal, newborn and older CF and non-CF pigs and assessed endocrine pancreas function by intravenous glucose tolerance test (IV-GTT). In fetal pigs, pancreatic insulin and glucagon density was similar between CF and non-CF. In newborn and older pigs, the insulin and glucagon density was unchanged between CF and non-CF per total pancreatic area, but increased per remnant lobular tissue in CF reflecting exocrine pancreatic loss. Although fasting glucose levels were not different between CF and non-CF newborns, CF newborns demonstrated impaired glucose tolerance and increased glucose area under the curve during IV-GTT. Second phase insulin secretion responsiveness was impaired in CF newborn pigs and significantly lower than that observed in non-CF newborns. Older CF pigs had elevated random blood glucose levels compared with non-CF. In summary, glycaemic abnormalities and insulin secretion defects were present in newborn CF pigs and spontaneous hyperglycaemia developed over time. Functional changes in CF pig pancreas were not associated with a decline in islet cell mass. Our results suggest that functional islet abnormalities, independent of structural islet loss, contribute to the early pathogenesis of CFRD.
Collapse
|
89
|
Abstract
The availability of the human genome sequence and tools for interrogating individual genomes provide an unprecedented opportunity to apply genetics to medicine. Mendelian conditions, which are caused by dysfunction of a single gene, offer powerful examples that illustrate how genetics can provide insights into disease. Cystic fibrosis, one of the more common lethal autosomal recessive Mendelian disorders, is presented here as an example. Recent progress in elucidating disease mechanism and causes of phenotypic variation, as well as in the development of treatments, demonstrates that genetics continues to play an important part in cystic fibrosis research 25 years after the discovery of the disease-causing gene.
Collapse
|
90
|
CFTR: a missing link between exocrine and endocrine pancreas? SCIENCE CHINA-LIFE SCIENCES 2014; 57:1044-5. [PMID: 25216709 DOI: 10.1007/s11427-014-4740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
91
|
Moran A, Pillay K, Becker DJ, Acerini CL. ISPAD Clinical Practice Consensus Guidelines 2014. Management of cystic fibrosis-related diabetes in children and adolescents. Pediatr Diabetes 2014; 15 Suppl 20:65-76. [PMID: 25182308 DOI: 10.1111/pedi.12178] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 06/11/2014] [Indexed: 12/17/2022] Open
Affiliation(s)
- Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
92
|
Guo JH, Chen H, Ruan YC, Zhang XL, Zhang XH, Fok KL, Tsang LL, Yu MK, Huang WQ, Sun X, Chung YW, Jiang X, Sohma Y, Chan HC. Glucose-induced electrical activities and insulin secretion in pancreatic islet β-cells are modulated by CFTR. Nat Commun 2014; 5:4420. [PMID: 25025956 PMCID: PMC4104438 DOI: 10.1038/ncomms5420] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/17/2014] [Indexed: 01/08/2023] Open
Abstract
The cause of insulin insufficiency remains unknown in many diabetic cases. Up to 50% adult patients with cystic fibrosis (CF), a disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), develop CF-related diabetes (CFRD) with most patients exhibiting insulin insufficiency. Here we show that CFTR is a regulator of glucose-dependent electrical acitivities and insulin secretion in β-cells. We demonstrate that glucose elicited whole-cell currents, membrane depolarization, electrical bursts or action potentials, Ca(2+) oscillations and insulin secretion are abolished or reduced by inhibitors or knockdown of CFTR in primary mouse β-cells or RINm5F β-cell line, or significantly attenuated in CFTR mutant (DF508) mice compared with wild-type mice. VX-809, a newly discovered corrector of DF508 mutation, successfully rescues the defects in DF508 β-cells. Our results reveal a role of CFTR in glucose-induced electrical activities and insulin secretion in β-cells, shed light on the pathogenesis of CFRD and possibly other idiopathic diabetes, and present a potential treatment strategy.
Collapse
Affiliation(s)
- Jing Hui Guo
- Epithelial Cell Biology Research Center, Key Laboratory of Regenerative Medicine of Ministry of Education of China, CUHK-SJTU Joint Center for Human Reproduction and Related Disease, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Chen
- Epithelial Cell Biology Research Center, Key Laboratory of Regenerative Medicine of Ministry of Education of China, CUHK-SJTU Joint Center for Human Reproduction and Related Disease, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Chun Ruan
- 1] Epithelial Cell Biology Research Center, Key Laboratory of Regenerative Medicine of Ministry of Education of China, CUHK-SJTU Joint Center for Human Reproduction and Related Disease, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China [2] Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education of China, West China Second University Hospital, Sichuan University, Chengdu 610041, China [3] Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xue Lian Zhang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiao Hu Zhang
- Epithelial Cell Biology Research Center, Key Laboratory of Regenerative Medicine of Ministry of Education of China, CUHK-SJTU Joint Center for Human Reproduction and Related Disease, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kin Lam Fok
- Epithelial Cell Biology Research Center, Key Laboratory of Regenerative Medicine of Ministry of Education of China, CUHK-SJTU Joint Center for Human Reproduction and Related Disease, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lai Ling Tsang
- Epithelial Cell Biology Research Center, Key Laboratory of Regenerative Medicine of Ministry of Education of China, CUHK-SJTU Joint Center for Human Reproduction and Related Disease, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Mei Kuen Yu
- Epithelial Cell Biology Research Center, Key Laboratory of Regenerative Medicine of Ministry of Education of China, CUHK-SJTU Joint Center for Human Reproduction and Related Disease, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen Qing Huang
- Epithelial Cell Biology Research Center, Key Laboratory of Regenerative Medicine of Ministry of Education of China, CUHK-SJTU Joint Center for Human Reproduction and Related Disease, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Sun
- Epithelial Cell Biology Research Center, Key Laboratory of Regenerative Medicine of Ministry of Education of China, CUHK-SJTU Joint Center for Human Reproduction and Related Disease, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiu Wa Chung
- Epithelial Cell Biology Research Center, Key Laboratory of Regenerative Medicine of Ministry of Education of China, CUHK-SJTU Joint Center for Human Reproduction and Related Disease, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaohua Jiang
- 1] Epithelial Cell Biology Research Center, Key Laboratory of Regenerative Medicine of Ministry of Education of China, CUHK-SJTU Joint Center for Human Reproduction and Related Disease, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China [2] Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education of China, West China Second University Hospital, Sichuan University, Chengdu 610041, China [3] Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yoshiro Sohma
- Department of Pharmacology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Hsiao Chang Chan
- 1] Epithelial Cell Biology Research Center, Key Laboratory of Regenerative Medicine of Ministry of Education of China, CUHK-SJTU Joint Center for Human Reproduction and Related Disease, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China [2] Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education of China, West China Second University Hospital, Sichuan University, Chengdu 610041, China [3] Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
93
|
Soave D, Miller MR, Keenan K, Li W, Gong J, Ip W, Accurso F, Sun L, Rommens JM, Sontag M, Durie PR, Strug LJ. Evidence for a causal relationship between early exocrine pancreatic disease and cystic fibrosis-related diabetes: a Mendelian randomization study. Diabetes 2014; 63:2114-9. [PMID: 24550193 PMCID: PMC4030111 DOI: 10.2337/db13-1464] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/13/2014] [Indexed: 01/20/2023]
Abstract
Circulating immunoreactive trypsinogen (IRT), a biomarker of exocrine pancreatic disease in cystic fibrosis (CF), is elevated in most CF newborns. In those with severe CF transmembrane conductance regulator (CFTR) genotypes, IRT declines rapidly in the first years of life, reflecting progressive pancreatic damage. Consistent with this progression, a less elevated newborn IRT measure would reflect more severe pancreatic disease, including compromised islet compartments, and potentially increased risk of CF-related diabetes (CFRD). We show in two independent CF populations that a lower newborn IRT estimate is associated with higher CFRD risk among individuals with severe CFTR genotypes, and we provide evidence to support a causal relationship. Increased loge(IRT) at birth was associated with decreased CFRD risk in Canadian and Colorado samples (hazard ratio 0.30 [95% CI 0.15-0.61] and 0.39 [0.18-0.81], respectively). Using Mendelian randomization with the SLC26A9 rs7512462 genotype as an instrumental variable since it is known to be associated with IRT birth levels in the CF population, we provide evidence to support a causal contribution of exocrine pancreatic status on CFRD risk. Our findings suggest CFRD risk could be predicted in early life and that maintained ductal fluid flow in the exocrine pancreas could delay the onset of CFRD.
Collapse
Affiliation(s)
- David Soave
- Program in Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, CanadaDivision of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Melissa R Miller
- Program in Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Katherine Keenan
- Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Weili Li
- Program in Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, CanadaDivision of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jiafen Gong
- Program in Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wan Ip
- Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Frank Accurso
- Department of Pediatrics, University of Colorado Denver School of Medicine, Denver, CO
| | - Lei Sun
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, CanadaDepartment of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Johanna M Rommens
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marci Sontag
- Department of Epidemiology, Colorado School of Public Health and University of Colorado Denver, Aurora, CO
| | - Peter R Durie
- Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Lisa J Strug
- Program in Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, CanadaDivision of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
94
|
Edlund A, Esguerra JLS, Wendt A, Flodström-Tullberg M, Eliasson L. CFTR and Anoctamin 1 (ANO1) contribute to cAMP amplified exocytosis and insulin secretion in human and murine pancreatic beta-cells. BMC Med 2014; 12:87. [PMID: 24885604 PMCID: PMC4035698 DOI: 10.1186/1741-7015-12-87] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/10/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene lead to the disease cystic fibrosis (CF). Although patients with CF often have disturbances in glucose metabolism including impaired insulin release, no previous studies have tested the hypothesis that CFTR has a biological function in pancreatic beta-cells. METHODS Experiments were performed on islets and single beta-cells from human donors and NMRI-mice. Detection of CFTR was investigated using PCR and confocal microscopy. Effects on insulin secretion were measured with radioimmunoassay (RIA). The patch-clamp technique was used to measure ion channel currents and calcium-dependent exocytosis (as changes in membrane capacitance) on single cells with high temporal resolution. Analysis of ultrastructure was done on transmission electron microscopy (TEM) images. RESULTS We detected the presence of CFTR and measured a small CFTR conductance in both human and mouse beta-cells. The augmentation of insulin secretion at 16.7 mM glucose by activation of CFTR by cAMP (forskolin (FSK) or GLP-1) was significantly inhibited when CFTR antagonists (GlyH-101 and/or CFTRinh-172) were added. Likewise, capacitance measurements demonstrated reduced cAMP-dependent exocytosis upon CFTR-inhibition, concomitant with a decreased number of docked insulin granules. Finally, our studies demonstrate that CFTR act upstream of the chloride channel Anoctamin 1 (ANO1; TMEM16A) in the regulation of cAMP- and glucose-stimulated insulin secretion. CONCLUSION Our work demonstrates a novel function for CFTR as a regulator of pancreatic beta-cell insulin secretion and exocytosis, and put forward a role for CFTR as regulator of ANO1 and downstream priming of insulin granules prior to fusion and release of insulin. The pronounced regulatory effect of CFTR on insulin secretion is consistent with impaired insulin secretion in patients with CF.
Collapse
Affiliation(s)
| | | | | | | | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Department Clinical Sciences in Malmö, Lund University, Clinical Research Centre, SUS Malmö, Jan Waldenströms gata 35, SE 205 02 Malmö, Sweden.
| |
Collapse
|
95
|
Sun X, Olivier AK, Yi Y, Pope CE, Hayden HS, Liang B, Sui H, Zhou W, Hager KR, Zhang Y, Liu X, Yan Z, Fisher JT, Keiser NW, Song Y, Tyler SR, Goeken JA, Kinyon JM, Radey MC, Fligg D, Wang X, Xie W, Lynch TJ, Kaminsky PM, Brittnacher MJ, Miller SI, Parekh K, Meyerholz DK, Hoffman LR, Frana T, Stewart ZA, Engelhardt JF. Gastrointestinal pathology in juvenile and adult CFTR-knockout ferrets. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1309-22. [PMID: 24637292 PMCID: PMC4005986 DOI: 10.1016/j.ajpath.2014.01.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 01/27/2014] [Accepted: 01/30/2014] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is a multiorgan disease caused by loss of a functional cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel in many epithelia of the body. Here we report the pathology observed in the gastrointestinal organs of juvenile to adult CFTR-knockout ferrets. CF gastrointestinal manifestations included gastric ulceration, intestinal bacterial overgrowth with villous atrophy, and rectal prolapse. Metagenomic phylogenetic analysis of fecal microbiota by deep sequencing revealed considerable genotype-independent microbial diversity between animals, with the majority of taxa overlapping between CF and non-CF pairs. CF hepatic manifestations were variable, but included steatosis, necrosis, biliary hyperplasia, and biliary fibrosis. Gallbladder cystic mucosal hyperplasia was commonly found in 67% of CF animals. The majority of CF animals (85%) had pancreatic abnormalities, including extensive fibrosis, loss of exocrine pancreas, and islet disorganization. Interestingly, 2 of 13 CF animals retained predominantly normal pancreatic histology (84% to 94%) at time of death. Fecal elastase-1 levels from these CF animals were similar to non-CF controls, whereas all other CF animals evaluated were pancreatic insufficient (<2 μg elastase-1 per gram of feces). These findings suggest that genetic factors likely influence the extent of exocrine pancreas disease in CF ferrets and have implications for the etiology of pancreatic sufficiency in CF patients. In summary, these studies demonstrate that the CF ferret model develops gastrointestinal pathology similar to CF patients.
Collapse
Affiliation(s)
- Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | | | - Yaling Yi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Christopher E Pope
- Department of Pediatrics, University of Washington, Seattle, Washington; Department of Microbiology, University of Washington, Seattle, Washington
| | - Hillary S Hayden
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Bo Liang
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Hongshu Sui
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Weihong Zhou
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Kyle R Hager
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - John T Fisher
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Nicholas W Keiser
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Yi Song
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Scott R Tyler
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - J Adam Goeken
- Department of Pathology, University of Iowa, Iowa City, Iowa
| | - Joann M Kinyon
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Matthew C Radey
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Danielle Fligg
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Xiaoyan Wang
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Weiliang Xie
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Thomas J Lynch
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Paul M Kaminsky
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | | | - Samuel I Miller
- Department of Microbiology, University of Washington, Seattle, Washington; Department of Genome Sciences, University of Washington, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Kalpaj Parekh
- Department of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | | | - Lucas R Hoffman
- Department of Pediatrics, University of Washington, Seattle, Washington; Department of Microbiology, University of Washington, Seattle, Washington
| | - Timothy Frana
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Zoe A Stewart
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
96
|
Sun X, Olivier AK, Liang B, Yi Y, Sui H, Evans TIA, Zhang Y, Zhou W, Tyler SR, Fisher JT, Keiser NW, Liu X, Yan Z, Song Y, Goeken JA, Kinyon JM, Fligg D, Wang X, Xie W, Lynch TJ, Kaminsky PM, Stewart ZA, Pope RM, Frana T, Meyerholz DK, Parekh K, Engelhardt JF. Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets. Am J Respir Cell Mol Biol 2014; 50:502-12. [PMID: 24074402 DOI: 10.1165/rcmb.2013-0261oc] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic bacterial lung infections in cystic fibrosis (CF) are caused by defects in the CF transmembrane conductance regulator chloride channel. Previously, we described that newborn CF transmembrane conductance regulator-knockout ferrets rapidly develop lung infections within the first week of life. Here, we report a more slowly progressing lung bacterial colonization phenotype observed in juvenile to adult CF ferrets reared on a layered antibiotic regimen. Even on antibiotics, CF ferrets were still very susceptible to bacterial lung infection. The severity of lung histopathology ranged from mild to severe, and variably included mucus obstruction of the airways and submucosal glands, air trapping, atelectasis, bronchopneumonia, and interstitial pneumonia. In all CF lungs, significant numbers of bacteria were detected and impaired tracheal mucociliary clearance was observed. Although Streptococcus, Staphylococcus, and Enterococcus were observed most frequently in the lungs of CF animals, each animal displayed a predominant bacterial species that accounted for over 50% of the culturable bacteria, with no one bacterial taxon predominating in all animals. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry fingerprinting was used to quantify lung bacteria in 10 CF animals and demonstrated Streptococcus, Staphylococcus, Enterococcus, or Escherichia as the most abundant genera. Interestingly, there was significant overlap in the types of bacteria observed in the lung and intestine of a given CF animal, including bacterial taxa unique to the lung and gut of each CF animal analyzed. These findings demonstrate that CF ferrets develop lung disease during the juvenile and adult stages that is similar to patients with CF, and suggest that enteric bacterial flora may seed the lung of CF ferrets.
Collapse
|
97
|
Wang Y, Wrennall JA, Cai Z, Li H, Sheppard DN. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Int J Biochem Cell Biol 2014; 52:47-57. [PMID: 24727426 DOI: 10.1016/j.biocel.2014.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
Abstract
Defective epithelial ion transport is the hallmark of the life-limiting genetic disease cystic fibrosis (CF). This abnormality is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), the ATP-binding cassette transporter that functions as a ligand-gated anion channel. Since the identification of the CFTR gene, almost 2000 disease-causing mutations associated with a spectrum of clinical phenotypes have been reported, but the majority remain poorly characterised. Studies of a small number of mutations including the most common, F508del-CFTR, have identified six general mechanisms of CFTR dysfunction. Here, we review selectively progress to understand how CF mutations disrupt CFTR processing, stability and function. We explore CFTR structure and function to explain the molecular mechanisms of CFTR dysfunction and highlight new knowledge of disease pathophysiology emerging from large animal models of CF. Understanding CFTR dysfunction is crucial to the development of transformational therapies for CF patients.
Collapse
Affiliation(s)
- Yiting Wang
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Joe A Wrennall
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Zhiwei Cai
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Hongyu Li
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David N Sheppard
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
98
|
Sui H, Yi Y, Yao J, Liang B, Sun X, Hu S, Uc A, Nelson DJ, Ode KL, Philipson LH, Engelhardt JF, Norris AW. Quantifying insulin sensitivity and entero-insular responsiveness to hyper- and hypoglycemia in ferrets. PLoS One 2014; 9:e90519. [PMID: 24594704 PMCID: PMC3940889 DOI: 10.1371/journal.pone.0090519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 02/03/2014] [Indexed: 01/03/2023] Open
Abstract
Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5–6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes.
Collapse
Affiliation(s)
- Hongshu Sui
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America; Department of Histology and Embryology, Taishan Medical University, Taian Shandong, China
| | - Yaling Yi
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Jianrong Yao
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Bo Liang
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Shanming Hu
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Aliye Uc
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Deborah J Nelson
- Department of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago, Illinois, United States of America
| | - Katie Larson Ode
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Louis H Philipson
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew W Norris
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
99
|
Fisher JT, Tyler SR, Zhang Y, Lee BJ, Liu X, Sun X, Sui H, Liang B, Luo M, Xie W, Yi Y, Zhou W, Song Y, Keiser N, Wang K, de Jonge HR, Engelhardt JF. Bioelectric characterization of epithelia from neonatal CFTR knockout ferrets. Am J Respir Cell Mol Biol 2013; 49:837-44. [PMID: 23782101 DOI: 10.1165/rcmb.2012-0433oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening, recessive, multiorgan genetic disorder caused by the loss of CF transmembrane conductance regulator (CFTR) chloride channel function found in many types of epithelia. Animal models that recapitulate the human disease phenotype are critical to understanding pathophysiology in CF and developing therapies. CFTR knockout ferrets manifest many of the phenotypes observed in the human disease, including lung infections, pancreatic disease and diabetes, liver disease, malnutrition, and meconium ileus. In the present study, we have characterized abnormalities in the bioelectric properties of the trachea, stomach, intestine, and gallbladder of newborn CF ferrets. Short-circuit current (ISC) analysis of CF and wild-type (WT) tracheas revealed the following similarities and differences: (1) amiloride-sensitive sodium currents were similar between genotypes; (2) responses to 4,4'-diisothiocyano-2,2'-stilbene disulphonic acid were 3.3-fold greater in CF animals, suggesting elevated baseline chloride transport through non-CFTR channels in a subset of CF animals; and (3) a lack of 3-isobutyl-1-methylxanthine (IBMX)/forskolin-stimulated and N-(2-Naphthalenyl)-((3,5-dibromo-2,4-dihydroxyphenyl)methylene)glycine hydrazide (GlyH-101)-inhibited currents in CF animals due to the lack of CFTR. CFTR mRNA was present throughout all levels of the WT ferret and IBMX/forskolin-inducible ISC was only observed in WT animals. However, despite the lack of CFTR function in the knockout ferret, the luminal pH of the CF ferret gallbladder, stomach, and intestines was not significantly changed relative to WT. The WT stomach and gallbladder exhibited significantly enhanced IBMX/forskolin ISC responses and inhibition by GlyH-101 relative to CF samples. These findings demonstrate that multiple organs affected by disease in the CF ferret have bioelectric abnormalities consistent with the lack of cAMP-mediated chloride transport.
Collapse
|
100
|
Hunt WR, Zughaier SM, Guentert DE, Shenep MA, Koval M, McCarty NA, Hansen JM. Hyperglycemia impedes lung bacterial clearance in a murine model of cystic fibrosis-related diabetes. Am J Physiol Lung Cell Mol Physiol 2013; 306:L43-9. [PMID: 24097557 DOI: 10.1152/ajplung.00224.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cystic fibrosis-related diabetes (CFRD) is the most common comorbidity associated with cystic fibrosis (CF), impacting more than half of patients over age 30. CFRD is clinically significant, portending accelerated decline in lung function, more frequent pulmonary exacerbations, and increased mortality. Despite the profound morbidity associated with CFRD, little is known about the underlying CFRD-related pulmonary pathology. Our aim was to develop a murine model of CFRD to explore the hypothesis that elevated glucose in CFRD is associated with reduced lung bacterial clearance. A diabetic phenotype was induced in gut-corrected CF transmembrane conductance regulator (CFTR) knockout mice (CFKO) and their CFTR-expressing wild-type littermates (WT) utilizing streptozotocin. Mice were subsequently challenged with an intratracheal inoculation of Pseudomonas aeruginosa (PAO1) (75 μl of 1-5 × 10(6) cfu/ml) for 18 h. Bronchoalveolar lavage fluid was collected for glucose concentration and cell counts. A portion of the lung was homogenized and cultured as a measure of the remaining viable PAO1 inoculum. Diabetic mice had increased airway glucose compared with nondiabetic mice. The ability to clear bacteria from the lung was significantly reduced in diabetic WT mice and control CFKO mice. Critically, bacterial clearance by diabetic CFKO mice was significantly more diminished compared with nondiabetic CFKO mice, despite an even more robust recruitment of neutrophils to the airways. This finding that CFRD mice boast an exaggerated, but less effective, inflammatory cell response to intratracheal PAO1 challenge presents a novel and useful murine model to help identify therapeutic strategies that promote bacterial clearance in CFRD.
Collapse
|