51
|
Liu H, Chen Y, Wen Y, Zhu S, Huang S, He L, Hou S, Lai X, Chen S, Dai Z, Liang J. Phloridzin Ameliorates Lipid Deposition in High-Fat-Diet-Fed Mice with Nonalcoholic Fatty Liver Disease via Inhibiting the mTORC1/SREBP-1c Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8671-8683. [PMID: 34342231 DOI: 10.1021/acs.jafc.1c01645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We aimed to investigate whether phloridzin could alleviate nonalcoholic fatty liver disease (NAFLD) in mice, which was induced by feeding a high-fat diet (HFD). We initially analyzed the effect of phloridzin on alleviating HFD-induced NAFLD in C57BL/6J mice and oleic acid (OA)-stimulated human normal liver L-02 cells (L02). Then, we investigated the mechanism of phloridzin on the mTORC1/sterol-regulatory element-binding protein-1c (SREBP-1c) signaling pathway by siRNA analysis, qRT-PCR, flow cytometry, and western blot analysis in vivo and in vitro. The results revealed that phloridzin significantly inhibited the increase in body weight, alleviated abnormal lipid metabolism, and decreased lipid biosynthesis and insulin resistance. Moreover, phloridzin augmented the number of CD8+CD122+PD-1+ Tregs and CD4+FoxP3+ Tregs in HFD-fed C57BL/6J mice and HFD-fed aP2-SREBF1c mice and downregulated the mTORC1/SREBP-1c signaling pathway-related protein expressions in vivo and in vitro. Furthermore, phloridzin reduced the expression of SREBP-1c in SREBP-1c-RNAi-lentivirus-transfected L02 cells and reversed the SREBP-1c expression in HFD-fed aP2-SREBF1c transgenic mice. Phloridzin ameliorates lipid accumulation and insulin resistance via inhibiting the mTORC1/SREBP-1c pathways. These results indicated that phloridzin may actively ameliorate NAFLD.
Collapse
Affiliation(s)
- Huazhen Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou University of Chinese Medicine, Guangdong, Guangzhou 510405 China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510006, P. R. China
| | - Yifan Wen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510006, P. R. China
| | - Shumin Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510006, P. R. China
| | - Song Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510006, P. R. China
| | - Lian He
- Guangdong Food and Drug Vocational College, Guangdong, Guangzhou 510520, P. R. China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510006, P. R. China
| | - Xiaoping Lai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510006, P. R. China
| | - Shuxian Chen
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong, Guangzhou 510080, China
| | - Zhenhua Dai
- The Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou University of Chinese Medicine, Guangdong, Guangzhou 510405 China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510006, P. R. China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Guangdong, Dongguan 523808, P. R. China
| |
Collapse
|
52
|
Shi F, Simandi Z, Nagy L, Collins S. Diet-dependent natriuretic peptide receptor C expression in adipose tissue is mediated by PPARγ via long-range distal enhancers. J Biol Chem 2021; 297:100941. [PMID: 34245781 PMCID: PMC8326739 DOI: 10.1016/j.jbc.2021.100941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 02/08/2023] Open
Abstract
The cardiac natriuretic peptides (NPs) are well established as regulators of blood pressure and fluid volume, but they also stimulate adipocyte lipolysis and control the gene program of nonshivering thermogenesis in brown adipose tissue. The NP "clearance" receptor C (NPRC) functions to clear NPs from the circulation via peptide internalization and degradation and thus is an important regulator of NP signaling and adipocyte metabolism. It is well known that the Nprc gene is highly expressed in adipose tissue and dynamically regulated upon nutrition and environmental changes. However, the molecular basis for how Nprc gene expression is regulated is still poorly understood. Here, we identified the nuclear receptor transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) as a transcriptional regulator of Nprc expression in mouse adipocytes. During 3T3-L1 adipocyte differentiation, levels of Nprc expression increase in parallel with PPARγ induction. Rosiglitazone, a classic PPARγ agonist, increases, whereas siRNA knockdown of PPARγ reduces, Nprc expression in 3T3-L1 adipocytes. By using chromosome conformation capture and luciferase reporter assays, we demonstrate that PPARγ controls Nprc gene expression in adipocytes through its long-range distal enhancers. Furthermore, the induction of Nprc expression in adipose tissue during high-fat diet feeding is found to be associated with increased PPARγ enhancer activity. Our findings define PPARγ as a mediator of adipocyte Nprc gene expression and establish a new connection between PPARγ and the control of adipocyte NP signaling in obesity.
Collapse
Affiliation(s)
- Fubiao Shi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Zoltan Simandi
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, Saint Petersburg, Florida, USA; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, Saint Petersburg, Florida, USA; Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA; Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA.
| |
Collapse
|
53
|
Park WY, Park J, Ahn KS, Kwak HJ, Um JY. Ellagic acid induces beige remodeling of white adipose tissue by controlling mitochondrial dynamics and SIRT3. FASEB J 2021; 35:e21548. [PMID: 33956354 DOI: 10.1096/fj.202002491r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
To determine whether ellagic acid (EA) induces the "beige remodeling" of white adipose tissue (WAT), we treated cold-exposed mice and mouse stromal vascular fraction (SVF) cells with EA, a phytochemical abundant in fruits and vegetables, in particular berries. We then investigated the mechanism of EA in beige remodeling with a particular focus on DRP1-mediated mitochondrial fission and SIRT3. EA induced the trans-differentiation of white adipocytes to beige adipocytes by promoting the expression of UCP1 and other brown and beige adipocytes/fat factors (PRDM16, UCP1, PGC1α, CD137, and TBX1) and mitochondrial dynamics-related factors (SIRT3, NRF1, CPT1β, DRP1, and FIS1) in 3T3-L1/SVF cells, and these were confirmed in the inguinal WAT of a cold-exposed mouse model. The browning effect of EA was abolished by a potent DRP1 inhibitor Mdivi-1 or SIRT3 knockdown, suggesting that EA induces beige remodeling of WAT by regulating the mitochondrial dynamics and SIRT3.
Collapse
Affiliation(s)
- Woo Yong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinbong Park
- Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun Jeong Kwak
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
54
|
Sánchez-Alegría K, Bastián-Eugenio CE, Vaca L, Arias C. Palmitic acid induces insulin resistance by a mechanism associated with energy metabolism and calcium entry in neuronal cells. FASEB J 2021; 35:e21712. [PMID: 34110637 DOI: 10.1096/fj.202100243r] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023]
Abstract
Palmitic acid (PA) is a saturated fatty acid whose high consumption has been largely associated with the development of different metabolic alterations, such as insulin resistance, metabolic syndrome, and type 2 diabetes. Particularly in the brain, insulin signaling disruption has been linked to cognitive decline and is considered a risk factor for Alzheimer's disease. Cumulative evidence has demonstrated the participation of PA in the molecular cascade underlying cellular insulin resistance in peripheral tissues, but its role in the development of neuronal insulin resistance and the mechanisms involved are not fully understood. It has generally been accepted that the brain does not utilize fatty acids as a primary energy source, but recent evidence shows that neurons possess the machinery for fatty acid β-oxidation. However, it is still unclear under what conditions neurons use fatty acids as energy substrates and the implications of their oxidative metabolism in modifying insulin-stimulated effects. In the present work, we have found that neurons differentiated from human neuroblastoma MSN exposed to high but nontoxic concentrations of PA generate ATP through mitochondrial metabolism, which is associated with an increase in the cytosolic Ca2+ and diminished insulin signaling in neurons. These findings reveal a novel mechanism by which saturated fatty acids produce Ca2+ entry and insulin resistance that may play a causal role in increasing neuronal vulnerability associated with metabolic diseases.
Collapse
Affiliation(s)
- Karina Sánchez-Alegría
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carlos Ernesto Bastián-Eugenio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Vaca
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
55
|
Zhao X, Wang J, Deng Y, Liao L, Zhou M, Peng C, Li Y. Quercetin as a protective agent for liver diseases: A comprehensive descriptive review of the molecular mechanism. Phytother Res 2021; 35:4727-4747. [PMID: 34159683 DOI: 10.1002/ptr.7104] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Quercetin is the major representative of the flavonoid subgroup of flavones, with good pharmacological activities for the treatment of liver diseases, including liver steatosis, fatty hepatitis, liver fibrosis, and liver cancer. It can significantly influence the development of liver diseases via multiple targets and multiple pathways via antifat accumulation, anti-inflammatory, and antioxidant activity, as well as the inhibition of cellular apoptosis and proliferation. Despite extensive research on understanding the mechanism of quercetin in the treatment of liver diseases, there are still no targeted therapies available. Thus, we have comprehensively searched and summarized the different targets of quercetin in different stages of liver diseases and concluded that quercetin inhibited inflammation of the liver mainly through NF-κB/TLR/NLRP3, reduced PI3K/Nrf2-mediated oxidative stress, mTOR activation in autophagy, and inhibited the expression of apoptotic factors associated with the development of liver diseases. In addition, quercetin showed different mechanisms of action at different stages of liver diseases, including the regulation of PPAR, UCP, and PLIN2-related factors via brown fat activation in liver steatosis. The compound inhibited stromal ECM deposition at the liver fibrosis stage, affecting TGF1β, endoplasmic reticulum stress (ERs), and apoptosis. While at the final liver cancer stage, inhibiting cancer cell proliferation and spread via the hTERT, MEK1/ERK1/2, Notch, and Wnt/β-catenin-related signaling pathways. In conclusion, quercetin is an effective liver protectant. We hope to explore the pathogenesis of quercetin in different stages of liver diseases through the review, so as to provide more accurate targets and theoretical basis for further research of quercetin in the treatment of liver diseases.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
56
|
Guilherme A, Yenilmez B, Bedard AH, Henriques F, Liu D, Lee A, Goldstein L, Kelly M, Nicoloro SM, Chen M, Weinstein L, Collins S, Czech MP. Control of Adipocyte Thermogenesis and Lipogenesis through β3-Adrenergic and Thyroid Hormone Signal Integration. Cell Rep 2021; 31:107598. [PMID: 32375048 PMCID: PMC7676427 DOI: 10.1016/j.celrep.2020.107598] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/24/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Here, we show that β adrenergic signaling coordinately upregulates de novo lipogenesis (DNL) and thermogenesis in subcutaneous white adipose tissue (sWAT), and both effects are blocked in mice lacking the cAMP-generating G protein-coupled receptor Gs (Adipo-GsαKO) in adipocytes. However, UCP1 expression but not DNL activation requires rapamycin-sensitive mTORC1. Furthermore, β3-adrenergic agonist CL316243 readily upregulates thermogenic but not lipogenic genes in cultured adipocytes, indicating that additional regulators must operate on DNL in sWAT in vivo. We identify one such factor as thyroid hormone T3, which is elevated locally by adrenergic signaling. T3 administration to wild-type mice enhances both thermogenesis and DNL in sWAT. Mechanistically, T3 action on UCP1 expression in sWAT depends upon cAMP and is blocked in Adipo-GsαKO mice even as elevated DNL persists. Thus, T3 enhances sWAT thermogenesis by amplifying cAMP signaling, while its control of adipocyte DNL can be mediated independently of both cAMP and rapamycin-sensitive mTORC1.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dianxin Liu
- Departments of Medicine, Cardiovascular Medicine, and Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexandra Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lauren Goldstein
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sarah M Nicoloro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Min Chen
- Metabolic Diseases Branch, NIDDK, NIH, Bethesda, MD 20892-1752, USA
| | - Lee Weinstein
- Metabolic Diseases Branch, NIDDK, NIH, Bethesda, MD 20892-1752, USA
| | - Sheila Collins
- Departments of Medicine, Cardiovascular Medicine, and Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
57
|
Lundh M, Altıntaş A, Tozzi M, Fabre O, Ma T, Shamsi F, Gerhart-Hines Z, Barrès R, Tseng YH, Emanuelli B. Cold-induction of afadin in brown fat supports its thermogenic capacity. Sci Rep 2021; 11:9794. [PMID: 33963248 PMCID: PMC8105362 DOI: 10.1038/s41598-021-89207-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
The profound energy-expending nature of brown adipose tissue (BAT) thermogenesis makes it an attractive target tissue to combat obesity-associated metabolic disorders. While cold exposure is the strongest inducer of BAT activity, the temporal mechanisms tuning BAT adaptation during this activation process are incompletely understood. Here we show that the scaffold protein Afadin is dynamically regulated by cold in BAT, and participates in cold acclimation. Cold exposure acutely increases Afadin protein levels and its phosphorylation in BAT. Knockdown of Afadin in brown pre-adipocytes does not alter adipogenesis but restricts β3-adrenegic induction of thermogenic genes expression and HSL phosphorylation in mature brown adipocytes. Consistent with a defect in thermogenesis, an impaired cold tolerance was observed in fat-specific Afadin knockout mice. However, while Afadin depletion led to reduced Ucp1 mRNA induction by cold, stimulation of Ucp1 protein was conserved. Transcriptomic analysis revealed that fat-specific ablation of Afadin led to decreased functional enrichment of gene sets controlling essential metabolic functions at thermoneutrality in BAT, whereas it led to an altered reprogramming in response to cold, with enhanced enrichment of different pathways related to metabolism and remodeling. Collectively, we demonstrate a role for Afadin in supporting the adrenergic response in brown adipocytes and BAT function.
Collapse
Affiliation(s)
- Morten Lundh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marco Tozzi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Odile Fabre
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Farnaz Shamsi
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
58
|
Henriques F, Bedard AH, Guilherme A, Kelly M, Chi J, Zhang P, Lifshitz LM, Bellvé K, Rowland LA, Yenilmez B, Kumar S, Wang Y, Luban J, Weinstein LS, Lin JD, Cohen P, Czech MP. Single-Cell RNA Profiling Reveals Adipocyte to Macrophage Signaling Sufficient to Enhance Thermogenesis. Cell Rep 2021; 32:107998. [PMID: 32755590 PMCID: PMC7433376 DOI: 10.1016/j.celrep.2020.107998] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
Adipocytes deficient in fatty acid synthase (iAdFASNKO) emit signals that mimic cold exposure to enhance the appearance of thermogenic beige adipocytes in mouse inguinal white adipose tissues (iWATs). Both cold exposure and iAdFASNKO upregulate the sympathetic nerve fiber (SNF) modulator Neuregulin 4 (Nrg4), activate SNFs, and require adipocyte cyclic AMP/protein kinase A (cAMP/PKA) signaling for beige adipocyte appearance, as it is blocked by adipocyte Gsα deficiency. Surprisingly, however, in contrast to cold-exposed mice, neither iWAT denervation nor Nrg4 loss attenuated adipocyte browning in iAdFASNKO mice. Single-cell transcriptomic analysis of iWAT stromal cells revealed increased macrophages displaying gene expression signatures of the alternately activated type in iAdFASNKO mice, and their depletion abrogated iWAT beiging. Altogether, these findings reveal that divergent cellular pathways are sufficient to cause adipocyte browning. Importantly, adipocyte signaling to enhance alternatively activated macrophages in iAdFASNKO mice is associated with enhanced adipose thermogenesis independent of the sympathetic neuron involvement this process requires in the cold. Henriques et al. show an alternative pathway to enhance thermogenesis through an adipocyte cAMP/PKA axis in denervated iWAT. Signals emanating from this pathway generate M2-type macrophages associated with iWAT browning.
Collapse
Affiliation(s)
- Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Karl Bellvé
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shreya Kumar
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yetao Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jiandie D Lin
- Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
59
|
Allu PKR, Paulo E, Bertholet AM, Situ G, Lee SH, Wu Y, Gleason CE, Saha B, Chawla A, Wang B, Pearce D. Role of mTORC2 in biphasic regulation of brown fat metabolism in response to mild and severe cold. J Biol Chem 2021; 296:100632. [PMID: 33865855 PMCID: PMC8121962 DOI: 10.1016/j.jbc.2021.100632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Nonshivering thermogenesis is essential for mammals to maintain body temperature. According to the canonical view, temperature is sensed by cutaneous thermoreceptors and nerve impulses transmitted to the hypothalamus, which generates sympathetic signals to ß-adrenergic receptors in brown adipocytes. The energy for heat generation is primarily provided by the oxidation of fatty acids derived from triglyceride hydrolysis and cellular uptake. Fatty acids also activate the uncoupling protein, UCP1, which creates a proton leak that uncouples mitochondrial oxidative phosphorylation from ATP production, resulting in energy dissipation as heat. Recent evidence supports the idea that in response to mild cold, ß-adrenergic signals stimulate not only lipolysis and fatty acid oxidation, but also act through the mTORC2-Akt signaling module to stimulate de novo lipogenesis. This opposing anabolic effect is thought to maintain lipid fuel stores during increased catabolism. We show here, using brown fat-specific Gs-alpha knockout mice and cultured adipocytes that, unlike mild cold, severe cold directly cools brown fat and bypasses ß-adrenergic signaling to inhibit mTORC2. This cell-autonomous effect both inhibits lipogenesis and augments UCP1 expression to enhance thermogenesis. These findings suggest a novel mechanism for overriding ß-adrenergic-stimulated anabolic activities while augmenting catabolic activities to resolve the homeostatic crisis presented by severe cold.
Collapse
Affiliation(s)
- Prasanna K R Allu
- Department of Medicine, Division of Nephrology, University of California at San Francisco, San Francisco, California, USA.
| | - Esther Paulo
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California, USA
| | - Ambre M Bertholet
- Department of Physiology, University of California at San Francisco, San Francisco, California, USA
| | - Gavin Situ
- Department of Medicine, Division of Nephrology, University of California at San Francisco, San Francisco, California, USA
| | - Seung-Hwan Lee
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California, USA
| | - Yixuan Wu
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California, USA
| | - Catherine E Gleason
- Department of Medicine, Division of Nephrology, University of California at San Francisco, San Francisco, California, USA
| | - Bidisha Saha
- Department of Medicine, Division of Nephrology, University of California at San Francisco, San Francisco, California, USA
| | - Ajay Chawla
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California, USA
| | - Biao Wang
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California, USA
| | - David Pearce
- Department of Medicine, Division of Nephrology, University of California at San Francisco, San Francisco, California, USA; Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California, USA.
| |
Collapse
|
60
|
Natural Bioactive Compounds as Potential Browning Agents in White Adipose Tissue. Pharm Res 2021; 38:549-567. [PMID: 33783666 PMCID: PMC8082541 DOI: 10.1007/s11095-021-03027-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of overweight and obesity underlies many common metabolic diseases. Approaches aimed to reduce energy intake and/or stimulate energy expenditure represent potential strategies to control weight gain. Adipose tissue is a major energy balancing organ. It can be classified as white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT stores excess metabolic energy, BAT dissipates it as heat via adaptive thermogenesis. WAT also participates in thermogenesis by providing thermogenic fuels and by directly generating heat after browning. Browned WAT resembles BAT morphologically and metabolically and is classified as beige fat. Like BAT, beige fat can produce heat. Human adults have BAT-like or beige fat. Recruitment and activation of this fat type have the potential to increase energy expenditure, thereby countering against obesity and its metabolic complications. Given this, agents capable of inducing WAT browning have recently attracted broad attention from biomedical, nutritional and pharmaceutical societies. In this review, we summarize natural bioactive compounds that have been shown to promote beige adipocyte recruitment and activation in animals and cultured cells. We also discuss potential molecular mechanisms for each compound to induce adipose browning and metabolic benefits.
Collapse
|
61
|
Whitehead A, Krause FN, Moran A, MacCannell ADV, Scragg JL, McNally BD, Boateng E, Murfitt SA, Virtue S, Wright J, Garnham J, Davies GR, Dodgson J, Schneider JE, Murray AJ, Church C, Vidal-Puig A, Witte KK, Griffin JL, Roberts LD. Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nat Commun 2021; 12:1905. [PMID: 33772024 PMCID: PMC7998027 DOI: 10.1038/s41467-021-22272-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Brown and beige adipose tissue are emerging as distinct endocrine organs. These tissues are functionally associated with skeletal muscle, adipose tissue metabolism and systemic energy expenditure, suggesting an interorgan signaling network. Using metabolomics, we identify 3-methyl-2-oxovaleric acid, 5-oxoproline, and β-hydroxyisobutyric acid as small molecule metabokines synthesized in browning adipocytes and secreted via monocarboxylate transporters. 3-methyl-2-oxovaleric acid, 5-oxoproline and β-hydroxyisobutyric acid induce a brown adipocyte-specific phenotype in white adipocytes and mitochondrial oxidative energy metabolism in skeletal myocytes both in vitro and in vivo. 3-methyl-2-oxovaleric acid and 5-oxoproline signal through cAMP-PKA-p38 MAPK and β-hydroxyisobutyric acid via mTOR. In humans, plasma and adipose tissue 3-methyl-2-oxovaleric acid, 5-oxoproline and β-hydroxyisobutyric acid concentrations correlate with markers of adipose browning and inversely associate with body mass index. These metabolites reduce adiposity, increase energy expenditure and improve glucose and insulin homeostasis in mouse models of obesity and diabetes. Our findings identify beige adipose-brown adipose-muscle physiological metabokine crosstalk.
Collapse
Affiliation(s)
| | - Fynn N Krause
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Amy Moran
- School of Medicine, University of Leeds, Leeds, UK
| | | | | | - Ben D McNally
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Steven A Murfitt
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Samuel Virtue
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - John Wright
- School of Medicine, University of Leeds, Leeds, UK
| | - Jack Garnham
- School of Medicine, University of Leeds, Leeds, UK
| | - Graeme R Davies
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - James Dodgson
- Phenotypic Screening and High Content Imaging, Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christopher Church
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
62
|
Wu C, Yu P, Sun R. Adipose tissue and age‑dependent insulin resistance: New insights into WAT browning (Review). Int J Mol Med 2021; 47:71. [PMID: 33693956 PMCID: PMC7952244 DOI: 10.3892/ijmm.2021.4904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Insulin resistance (IR) is defined as impaired insulin function, reduced glucose uptake and increased glucose production, which can result in type II diabetes, metabolic syndrome and even bone metabolic disorders. A possible reason for the increasing incidence of IR is population aging. Adipose tissue (AT) is an important endocrine organ that serves a crucial role in whole-body energy homeostasis. AT can be divided into white AT (WAT), beige AT and brown AT (BAT). Several mechanisms have been previously associated with age-dependent IR in WAT. However, BAT, a metabolically active tissue, controls the levels of plasma glucose and triglyceride metabolism. Therefore, the present review aimed to summarize the mechanisms of age-dependent IR induced by AT and to determine the role of WAT browning in achieving positive therapeutic outcomes in age-dependent IR.
Collapse
Affiliation(s)
- Chuanlong Wu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Pei Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ruixin Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
63
|
Abstract
Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.
Collapse
Affiliation(s)
- Angelia Szwed
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Eugene Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
64
|
Lee MK, Lee B, Kim CY. Natural Extracts That Stimulate Adipocyte Browning and Their Underlying Mechanisms. Antioxidants (Basel) 2021; 10:antiox10020308. [PMID: 33671335 PMCID: PMC7922619 DOI: 10.3390/antiox10020308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Despite progress in understanding the developmental lineage and transcriptional factors regulating brown and beige adipocytes, the role of environmental modifiers, such as food components and natural extracts, remains to be elucidated. Furthermore, the undesirable pleiotropic effects produced by synthetic drugs targeting adipose tissue browning and thermogenesis necessitate research into alternative natural sources to combat obesity and related metabolic disorders. The current review, therefore, focused on the effects of various extracts from foods, plants, and marine products on adipose tissue browning and obesity. In particular, the recent findings of food components and marine products on adipose tissue browning will be discussed here.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Nam-gu, Daeyeon Dong, Busan 608737, Korea;
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Nam-gu, Daeyeon Dong, Busan 608737, Korea;
- Correspondence: (B.L.); (C.Y.K.); Tel.: +82-51-629-5852 (B.L.); +82-53-810-2871 (C.Y.K.)
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (B.L.); (C.Y.K.); Tel.: +82-51-629-5852 (B.L.); +82-53-810-2871 (C.Y.K.)
| |
Collapse
|
65
|
Liu L, Li Y, Wang J, Zhang D, Wu H, Li W, Wei H, Ta N, Fan Y, Liu Y, Wang X, Wang J, Pan X, Liao X, Zhu Y, Chen Q. Mitophagy receptor FUNDC1 is regulated by PGC-1α/NRF1 to fine tune mitochondrial homeostasis. EMBO Rep 2021; 22:e50629. [PMID: 33554448 DOI: 10.15252/embr.202050629] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Mitophagy is an essential cellular autophagic process that selectively removes superfluous and damaged mitochondria, and it is coordinated with mitochondrial biogenesis to fine tune the quantity and quality of mitochondria. Coordination between these two opposing processes to maintain the functional mitochondrial network is of paramount importance for normal cellular and organismal metabolism. However, the underlying mechanism is not completely understood. Here we report that PGC-1α and nuclear respiratory factor 1 (NRF1), master regulators of mitochondrial biogenesis and metabolic adaptation, also transcriptionally upregulate the gene encoding FUNDC1, a previously characterized mitophagy receptor, in response to cold stress in brown fat tissue. NRF1 binds to the classic consensus site in the promoter of Fundc1 to upregulate its expression and to enhance mitophagy through its interaction with LC3. Specific knockout of Fundc1 in BAT results in reduced mitochondrial turnover and accumulation of functionally compromised mitochondria, leading to impaired adaptive thermogenesis. Our results demonstrate that FUNDC1-dependent mitophagy is directly coupled with mitochondrial biogenesis through the PGC-1α/NRF1 pathway, which dictates mitochondrial quantity, quality, and turnover and contributes to adaptive thermogenesis.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jianing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Di Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Hao Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenhui Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huifang Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Na Ta
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuyuan Fan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yujiao Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xudong Liao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yushan Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
66
|
Hildebrand S, Löwa N, Paysen H, Fratila RM, Reverte-Salisa L, Trakoolwilaiwan T, Niu Z, Kasparis G, Preuss SF, Kosch O, M de la Fuente J, Thanh NTK, Wiekhorst F, Pfeifer A. Quantification of Lipoprotein Uptake in Vivo Using Magnetic Particle Imaging and Spectroscopy. ACS NANO 2021; 15:434-446. [PMID: 33306343 DOI: 10.1021/acsnano.0c03229] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipids are a major source of energy for most tissues, and lipid uptake and storage is therefore crucial for energy homeostasis. So far, quantification of lipid uptake in vivo has primarily relied on radioactive isotope labeling, exposing human subjects or experimental animals to ionizing radiation. Here, we describe the quantification of in vivo uptake of chylomicrons, the primary carriers of dietary lipids, in metabolically active tissues using magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS). We show that loading artificial chylomicrons (ACM) with iron oxide nanoparticles (IONPs) enables rapid and highly sensitive post hoc detection of lipid uptake in situ using MPS. Importantly, by utilizing highly magnetic Zn-doped iron oxide nanoparticles (ZnMNPs), we generated ACM with MPI tracer properties superseding the current gold-standard, Resovist, enabling quantification of lipid uptake from whole-animal scans. We focused on brown adipose tissue (BAT), which dissipates heat and can consume a large part of nutrient lipids, as a model for tightly regulated and inducible lipid uptake. High BAT activity in humans correlates with leanness and improved cardiometabolic health. However, the lack of nonradioactive imaging techniques is an important hurdle for the development of BAT-centered therapies for metabolic diseases such as obesity and type 2 diabetes. Comparison of MPI measurements with iron quantification by inductively coupled plasma mass spectrometry revealed that MPI rivals the performance of this highly sensitive technique. Our results represent radioactivity-free quantification of lipid uptake in metabolically active tissues such as BAT.
Collapse
Affiliation(s)
- Staffan Hildebrand
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Norbert Löwa
- 8.23 Metrology for Magnetic Nanoparticles, Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Hendrik Paysen
- 8.23 Metrology for Magnetic Nanoparticles, Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Raluca M Fratila
- INMA - Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Laia Reverte-Salisa
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Thithawat Trakoolwilaiwan
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K
- UCL Healthcare Biomagnetics Laboratories, 21 Albemarle Street, London W1S 4BS, U.K
| | - Zheming Niu
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Georgios Kasparis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K
- UCL Healthcare Biomagnetics Laboratories, 21 Albemarle Street, London W1S 4BS, U.K
| | - Stephanie Franziska Preuss
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Olaf Kosch
- 8.23 Metrology for Magnetic Nanoparticles, Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Jesus M de la Fuente
- INMA - Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K
- UCL Healthcare Biomagnetics Laboratories, 21 Albemarle Street, London W1S 4BS, U.K
| | - Frank Wiekhorst
- 8.23 Metrology for Magnetic Nanoparticles, Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Alexander Pfeifer
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
67
|
Lou P, Bi X, Tian Y, Li G, Kang Q, Lv C, Song Y, Xu J, Sheng X, Yang X, Liu R, Meng Q, Ren F, Plikus MV, Liang B, Zhang B, Guo H, Yu Z. MiR-22 modulates brown adipocyte thermogenesis by synergistically activating the glycolytic and mTORC1 signaling pathways. Am J Cancer Res 2021; 11:3607-3623. [PMID: 33664851 PMCID: PMC7914365 DOI: 10.7150/thno.50900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Brown adipose tissue (BAT) dissipates chemical energy as heat and has the potential to be a protective strategy to prevent obesity. microRNAs (miRNAs) are emerging as important posttranscriptional factors affecting the thermogenic function of BAT. However, the regulatory mechanism underlying miRNA-mediated energy metabolism in BAT is not fully understood. Here, we explored the roles of miR-22 in BAT thermogenesis and energy metabolism. Methods: Using global and conditional knockout mice as in vivo models and primary brown adipocytes as an in vitro system, we investigated the function of miR-22 in BAT thermogenesis in vivo and in vitro. Results: miR-22 expression was upregulated in BAT in response to cold exposure and during brown preadipocyte differentiation. Both global and conditional knockout mice displayed BAT whitening, impaired cold tolerance, and decreased BAT thermogenesis. Moreover, we found that miR-22 deficiency impaired BAT glycolytic capacity, which is critical for thermogenesis. The mechanistic results revealed that miR-22 activated the mTORC1 signaling pathway by directly suppressing Tsc1 and concomitantly directly suppressing Hif1an, an inhibitor of Hif1α, which promotes glycolysis and maintains thermogenesis. Conclusions: Our findings identify miR-22 as a critical regulator in the control of thermogenesis in BAT and as a potential therapeutic target for human metabolic disorders.
Collapse
|
68
|
Jia YF, Jeeva S, Xu J, Heppelmann CJ, Jang JS, Slama MQ, Tapadar S, Oyelere AK, Kang SM, Matveyenko AV, Peterson QP, Shin CH. TBK1 regulates regeneration of pancreatic β-cells. Sci Rep 2020; 10:19374. [PMID: 33168920 PMCID: PMC7653919 DOI: 10.1038/s41598-020-76600-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Small-molecule inhibitors of non-canonical IκB kinases TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε) have shown to stimulate β-cell regeneration in multiple species. Here we demonstrate that TBK1 is predominantly expressed in β-cells in mammalian islets. Proteomic and transcriptome analyses revealed that genetic silencing of TBK1 increased expression of proteins and genes essential for cell proliferation in INS-1 832/13 rat β-cells. Conversely, TBK1 overexpression decreased sensitivity of β-cells to the elevation of cyclic AMP (cAMP) levels and reduced proliferation of β-cells in a manner dependent on the activity of cAMP-hydrolyzing phosphodiesterase 3 (PDE3). While the mitogenic effect of (E)3-(3-phenylbenzo[c]isoxazol-5-yl)acrylic acid (PIAA) is derived from inhibition of TBK1, PIAA augmented glucose-stimulated insulin secretion (GSIS) and expression of β-cell differentiation and proliferation markers in human embryonic stem cell (hESC)-derived β-cells and human islets. TBK1 expression was increased in β-cells upon diabetogenic insults, including in human type 2 diabetic islets. PIAA enhanced expression of cell cycle control molecules and β-cell differentiation markers upon diabetogenic challenges, and accelerated restoration of functional β-cells in streptozotocin (STZ)-induced diabetic mice. Altogether, these data suggest the critical function of TBK1 as a β-cell autonomous replication barrier and present PIAA as a valid therapeutic strategy augmenting functional β-cells.
Collapse
Affiliation(s)
- Yun-Fang Jia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Subbiah Jeeva
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Jin Xu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Jin Sung Jang
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael Q Slama
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Subhasish Tapadar
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Chong Hyun Shin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA. .,Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
69
|
Takata K, Goto T, Kuroda M, Kimura Y, Harada I, Ueda K, Kawada T, Kioka N. Stiffness of the extracellular matrix regulates differentiation into beige adipocytes. Biochem Biophys Res Commun 2020; 532:205-210. [PMID: 32859378 DOI: 10.1016/j.bbrc.2020.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/15/2022]
Abstract
Beige/brite adipocytes, which express high levels of uncoupling protein 1 (UCP1) to generate heat using stored triglycerides, are induced under specific stimuli such as cold exposure in inguinal white adipose tissue (iWAT). Although extracellular microenvironments such as extracellular matrix (ECM) stiffness are known to regulate cell behaviors, including cell differentiation into adipocytes, the effect on iWAT cells is unknown. In this study, we show that rigid ECM promotes the cell spreading of iWAT-derived preadipocytes. Furthermore, the expression of UCP1 and other thermogenic genes in iWAT cells is promoted when the cells are cultured on rigid ECM. The expression of mTOR, a kinase known to regulate the differentiation to beige adipocytes, is decreased on rigid substrates. These results suggest that ECM stiffness plays an important role in the differentiation to beige adipocytes.
Collapse
Affiliation(s)
- Kyoko Takata
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Technology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Mito Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Ichiro Harada
- Medical Products Technology Development Center, R&D Headquarters, Canon Inc., Ohta-ku, Tokyo, 146-8501, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| | - Teruo Kawada
- Division of Food Science and Technology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
70
|
Ruocco C, Ragni M, Rossi F, Carullo P, Ghini V, Piscitelli F, Cutignano A, Manzo E, Ioris RM, Bontems F, Tedesco L, Greco CM, Pino A, Severi I, Liu D, Ceddia RP, Ponzoni L, Tenori L, Rizzetto L, Scholz M, Tuohy K, Bifari F, Di Marzo V, Luchinat C, Carruba MO, Cinti S, Decimo I, Condorelli G, Coppari R, Collins S, Valerio A, Nisoli E. Manipulation of Dietary Amino Acids Prevents and Reverses Obesity in Mice Through Multiple Mechanisms That Modulate Energy Homeostasis. Diabetes 2020; 69:2324-2339. [PMID: 32778569 PMCID: PMC7576563 DOI: 10.2337/db20-0489] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Reduced activation of energy metabolism increases adiposity in humans and other mammals. Thus, exploring dietary and molecular mechanisms able to improve energy metabolism is of paramount medical importance because such mechanisms can be leveraged as a therapy for obesity and related disorders. Here, we show that a designer protein-deprived diet enriched in free essential amino acids can 1) promote the brown fat thermogenic program and fatty acid oxidation, 2) stimulate uncoupling protein 1 (UCP1)-independent respiration in subcutaneous white fat, 3) change the gut microbiota composition, and 4) prevent and reverse obesity and dysregulated glucose homeostasis in multiple mouse models, prolonging the healthy life span. These effects are independent of unbalanced amino acid ratio, energy consumption, and intestinal calorie absorption. A brown fat-specific activation of the mechanistic target of rapamycin complex 1 seems involved in the diet-induced beneficial effects, as also strengthened by in vitro experiments. Hence, our results suggest that brown and white fat may be targets of specific amino acids to control UCP1-dependent and -independent thermogenesis, thereby contributing to the improvement of metabolic health.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Fabio Rossi
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Pierluigi Carullo
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
- Institute of Genetic and Biomedical Research, National Research Council, Rozzano, Italy
| | - Veronica Ghini
- Interuniversity Consortium for Magnetic Resonance, Sesto Fiorentino, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Adele Cutignano
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Emiliano Manzo
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Rafael Maciel Ioris
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Franck Bontems
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laura Tedesco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | | | - Annachiara Pino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Center of Obesity, Ancona, Italy
| | - Dianxin Liu
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Luisa Ponzoni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
- Institute of Neuroscience, National Research Council, Milan, Italy
| | - Leonardo Tenori
- FiorGen Foundation, Sesto Fiorentino, Italy
- Center of Magnetic Resonance, University of Florence, Sesto Fiorentino, Italy
| | - Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Matthias Scholz
- Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Kieran Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Vincenzo Di Marzo
- Canada Excellence Research Chair Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada
- Joint International Research Unit for Chemical and Biochemical Research on the Microbiome and Its Impact on Metabolic Health and Nutrition, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy and Université Laval, Quebec City, Canada
| | - Claudio Luchinat
- Interuniversity Consortium for Magnetic Resonance, Sesto Fiorentino, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Center of Obesity, Ancona, Italy
| | - Ilaria Decimo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gianluigi Condorelli
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
- Institute of Genetic and Biomedical Research, National Research Council, Rozzano, Italy
- Humanitas University, Rozzano, Italy
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, Brescia University, Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
71
|
Ramírez-Jarquín UN, Shahani N, Pryor W, Usiello A, Subramaniam S. The mammalian target of rapamycin (mTOR) kinase mediates haloperidol-induced cataleptic behavior. Transl Psychiatry 2020; 10:336. [PMID: 33009372 PMCID: PMC7532208 DOI: 10.1038/s41398-020-01014-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/20/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine/threonine kinase protein complex (mTORC1 or mTORC2) that orchestrates diverse functions ranging from embryonic development to aging. However, its brain tissue-specific roles remain less explored. Here, we have identified that the depletion of the mTOR gene in the mice striatum completely prevented the extrapyramidal motor side effects (catalepsy) induced by the dopamine 2 receptor (D2R) antagonist haloperidol, which is the most widely used typical antipsychotic drug. Conversely, a lack of striatal mTOR in mice did not affect catalepsy triggered by the dopamine 1 receptor (D1R) antagonist SCH23390. Along with the lack of cataleptic effects, the administration of haloperidol in mTOR mutants failed to increase striatal phosphorylation levels of ribosomal protein pS6 (S235/236) as seen in control animals. To confirm the observations of the genetic approach, we used a pharmacological method and determined that the mTORC1 inhibitor rapamycin has a profound influence upon post-synaptic D2R-dependent functions. We consistently found that pretreatment with rapamycin entirely prevented (in a time-dependent manner) the haloperidol-induced catalepsy, and pS6K (T389) and pS6 (S235/236) signaling upregulation, in wild-type mice. Collectively, our data indicate that striatal mTORC1 blockade may offer therapeutic benefits with regard to the prevention of D2R-dependent extrapyramidal motor side effects of haloperidol in psychiatric illness.
Collapse
Affiliation(s)
- Uri Nimrod Ramírez-Jarquín
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - Neelam Shahani
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - William Pryor
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - Alessandro Usiello
- grid.9841.40000 0001 2200 8888Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy ,grid.4691.a0000 0001 0790 385XLaboratory of Behavioral Neuroscience, CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida, 33458, USA.
| |
Collapse
|
72
|
Thermogenic Activation Downregulates High Mitophagy Rate in Human Masked and Mature Beige Adipocytes. Int J Mol Sci 2020; 21:ijms21186640. [PMID: 32927882 PMCID: PMC7555361 DOI: 10.3390/ijms21186640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Thermogenic brown and beige adipocytes oxidize metabolic substrates producing heat, mainly by the mitochondrial uncoupling protein UCP1, and can thus counteract obesity. Masked beige adipocytes possess white adipocyte-like morphology, but can be made thermogenic by adrenergic stimuli. We investigated the regulation of mitophagy upon thermogenic activation of human masked and mature beige adipocytes. Human primary abdominal subcutaneous adipose-derived stromal cells (hASCs) and Simpson-Golabi-Behmel syndrome (SGBS) preadipocytes were differentiated to white and beige adipocytes, then their cAMP-induced thermogenic potential was assessed by detecting increased expressions of UCP1, mitochondrial DNA content and respiratory chain complex subunits. cAMP increased the thermogenic potential of white adipocytes similarly to beige ones, indicating the presence of a masked beige population. In unstimulated conditions, a high autophagic flux and mitophagy rates (demonstrated by LC3 punctae and TOM20 co-immunostaining) were observed in white adipocytes, while these were lower in beige adipocytes. Silencing and gene expression experiments showed that the ongoing mitophagy was Parkin-independent. cAMP treatment led to the downregulation of mitophagy through PKA in both types of adipocytes, resulting in more fragmented mitochondria and increased UCP1 levels. Our data indicates that mitophagy is repressed upon encountering a short-term adrenergic stimulus, as a fast regulatory mechanism to provide high mitochondrial content for thermogenesis.
Collapse
|
73
|
Zhang X, Wu D, Wang C, Luo Y, Ding X, Yang X, Silva F, Arenas S, Weaver JM, Mandell M, Deretic V, Liu M. Sustained activation of autophagy suppresses adipocyte maturation via a lipolysis-dependent mechanism. Autophagy 2020; 16:1668-1682. [PMID: 31840569 PMCID: PMC8386625 DOI: 10.1080/15548627.2019.1703355] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of macroautophagy/autophagy is implicated in obesity and insulin resistance. However, it remains poorly defined how autophagy regulates adipocyte development. Using adipose-specific rptor/raptor knockout (KO), atg7 KO and atg7 rptor double-KO mice, we show that inhibiting MTORC1 by RPTOR deficiency led to autophagic sequestration of lipid droplets, formation of LD-containing lysosomes, and elevation of basal and isoproterenol-induced lipolysis in vivo and in primary adipocytes. Despite normal differentiation at an early phase, progressive degradation and shrinkage of cellular LDs and downregulation of adipogenic markers PPARG and PLIN1 occurred in terminal differentiation of rptor KO adipocytes, which was rescued by inhibiting lipolysis or lysosome. In contrast, inactivating autophagy by depletion of ATG7 protected adipocytes against RPTOR deficiency-induced formation of LD-containing lysosomes, LD degradation, and downregulation of adipogenic markers in vitro. Ultimately, atg7 rptor double-KO mice displayed decreased lipolysis, restored adipose tissue development, and upregulated thermogenic gene expression in brown and inguinal adipose tissue compared to RPTOR-deficient mice in vivo. Collectively, our study demonstrates that autophagy plays an important role in regulating adipocyte maturation via a lipophagy and lipolysis-dependent mechanism. ABBREVIATIONS ATG7: autophagy related 7; BAT: brown adipose tissue; CEBPB/C/EBPβ: CCAAT enhancer binding protein beta; DGAT1: diacylglycerol O-acyltransferase 1; eWAT: epididymal white adipose tissue; iWAT: inguinal white adipose tissue; KO: knockout; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; PLIN1: perepilin 1; PNPLA2/ATGL: patatin-like phospholipase domain containing 2; PPARG/PPARγ: peroxisome proliferator activated receptor gamma; RPTOR: regulatory associated protein of MTOR complex1; TG: triglyceride; ULK1: unc-51 like kinase 1; UCP1: uncoupling protein 1; WAT: white adipose tissue.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Dandan Wu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xiaofeng Ding
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xin Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Floyd Silva
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Sara Arenas
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - John Michael Weaver
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Michael Mandell
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA,Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA,Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA,CONTACT Meilian Liu Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, USA
| |
Collapse
|
74
|
Melick CH, Jewell JL. Regulation of mTORC1 by Upstream Stimuli. Genes (Basel) 2020; 11:genes11090989. [PMID: 32854217 PMCID: PMC7565831 DOI: 10.3390/genes11090989] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionary conserved Ser/Thr protein kinase that senses multiple upstream stimuli to control cell growth, metabolism, and autophagy. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1). A significant amount of research has uncovered the signaling pathways regulated by mTORC1, and the involvement of these signaling cascades in human diseases like cancer, diabetes, and ageing. Here, we review advances in mTORC1 regulation by upstream stimuli. We specifically focus on how growth factors, amino acids, G-protein coupled receptors (GPCRs), phosphorylation, and small GTPases regulate mTORC1 activity and signaling.
Collapse
Affiliation(s)
- Chase H. Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenna L. Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
75
|
He Y, Zuo C, Jia D, Bai P, Kong D, Chen D, Liu G, Li J, Wang Y, Chen G, Yan S, Xiao B, Zhang J, Piao L, Li Y, Deng Y, Li B, Roux PP, Andreasson KI, Breyer RM, Su Y, Wang J, Lyu A, Shen Y, Yu Y. Loss of DP1 Aggravates Vascular Remodeling in Pulmonary Arterial Hypertension via mTORC1 Signaling. Am J Respir Crit Care Med 2020; 201:1263-1276. [PMID: 31917615 DOI: 10.1164/rccm.201911-2137oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rationale: Vascular remodeling, including smooth muscle cell hypertrophy and proliferation, is the key pathological feature of pulmonary arterial hypertension (PAH). Prostaglandin I2 analogs (beraprost, iloprost, and treprostinil) are effective in the treatment of PAH. Of note, the clinically favorable effects of treprostinil in severe PAH may be attributable to concomitant activation of DP1 (D prostanoid receptor subtype 1).Objectives: To study the role of DP1 in the progression of PAH and its underlying mechanism.Methods: DP1 levels were examined in pulmonary arteries of patients and animals with PAH. Multiple genetic and pharmacologic approaches were used to investigate DP1-mediated signaling in PAH.Measurements and Main Results: DP1 expression was downregulated in hypoxia-treated pulmonary artery smooth muscle cells and in pulmonary arteries from rodent PAH models and patients with idiopathic PAH. DP1 deletion exacerbated pulmonary artery remodeling in hypoxia-induced PAH, whereas pharmacological activation or forced expression of the DP1 receptor had the opposite effect in different rodent models. DP1 deficiency promoted pulmonary artery smooth muscle cell hypertrophy and proliferation in response to hypoxia via induction of mTORC1 (mammalian target of rapamycin complex 1) activity. Rapamycin, an inhibitor of mTORC1, alleviated the hypoxia-induced exacerbation of PAH in DP1-knockout mice. DP1 activation facilitated raptor dissociation from mTORC1 and suppressed mTORC1 activity through PKA (protein kinase A)-dependent phosphorylation of raptor at Ser791. Moreover, treprostinil treatment blocked the progression of hypoxia-induced PAH in mice in part by targeting the DP1 receptor.Conclusions: DP1 activation attenuates hypoxia-induced pulmonary artery remodeling and PAH through PKA-mediated dissociation of raptor from mTORC1. These results suggest that the DP1 receptor may serve as a therapeutic target for the management of PAH.
Collapse
Affiliation(s)
- Yuhu He
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Caojian Zuo
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Cardiology, Shanghai General Hospital, and
| | - Daile Jia
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peiyuan Bai
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Deping Kong
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Di Chen
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guizhu Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Juanjuan Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyang Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guilin Chen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuai Yan
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing Xiao
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingjuan Piao
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanli Li
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yi Deng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bin Li
- Orthopedic Institute, Soochow University, Jiangsu, China
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer and.,Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, Tennessee.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ankang Lyu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
76
|
Liu Y, Zheng Y, Zhou Y, Liu Y, Xie M, Meng W, An M. The expression and significance of mTORC1 in diabetic retinopathy. BMC Ophthalmol 2020; 20:297. [PMID: 32689970 PMCID: PMC7370483 DOI: 10.1186/s12886-020-01553-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/06/2020] [Indexed: 01/23/2023] Open
Abstract
Background To investigate the expression and significance of mechanistic target of rapamycin complex 1(mTORC1) in diabetic retinopathy (DR), and to find new targets and new methods for the treatment of DR. Methods A DR rat model was prepared by general feeding combined with intraperitoneal injection of 10% streptozotocin (60 mg/kg). The rats were randomly divided into a control group (NDM group) and a diabetes group (DM group). Three months later, the degrees of retinopathy was determined using hematoxylin and eosin staining, and the levels of p-S6, VEGF, and PEDF proteins were detected by immunohistochemistry and western blotting. Human retinal capillary endothelial cells (HRCECs) were cultured in high glucose (HG) conditions, then treated with rapamycin or transfected with siTSC1.The protein levels of p-S6 were assessed by western blotting. The 5-ethynyl-2′-deoxyuridine assay was used to detect cell proliferation, and the Transwell assay was used to detect cell migration. Results A DM rat model was successfully developed. The expressions of p-S6 and VEGF proteins were significantly increased in the DM group (p < 0.05), and the expression of PEDF protein was significantly decreased compared with the NDM group (p < 0.05). In vitro, the p-S6 protein, as well as cell proliferation and migration, in HG induced HRCECs were increased (p < 0.05) compared with the control (normal glucose) group (p < 0.05). After transfection with siTSC1 to activate mTORC1, the expression of p-S6, as well as cell proliferation and migration, were increased. In contrast, rapamycin decreased p-S6 expression, as well as proliferation and migration, in HG induced HRCECs compared to the control group (p < 0.05). Conclusion mTORC1 plays an important role in DR. After activation, mTORC1 induced expression of the p-S6 protein, regulated the expressions of VEGF and PEDF proteins, and changed the proliferation and migration of endothelial cells. The mTORC1 can therefore be used as a new target,as well as in the treatment of DR.
Collapse
Affiliation(s)
- Yanli Liu
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diesases, Guangzhou, China
| | - Yarong Zheng
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diesases, Guangzhou, China
| | - Yekai Zhou
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diesases, Guangzhou, China
| | - Yi Liu
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diesases, Guangzhou, China
| | - Mengxuan Xie
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diesases, Guangzhou, China
| | - Wenjing Meng
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diesases, Guangzhou, China
| | - Meixia An
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diesases, Guangzhou, China.
| |
Collapse
|
77
|
Tyagi A, Kamal MA, Poddar NK. Integrated Pathways of COX-2 and mTOR: Roles in Cell Sensing and Alzheimer's Disease. Front Neurosci 2020; 14:693. [PMID: 32742252 PMCID: PMC7364283 DOI: 10.3389/fnins.2020.00693] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclooxygenases (COX) are enzymes catalyzing arachidonic acid into prostanoids. COX exists in three isoforms: COX-1, 2, and 3. COX-1 and COX-2 have been widely studied in order to explore and understand their involvement in Alzheimer’s disease (AD), a progressive neuroinflammatory dementia. COX-2 was traditionally viewed to be expressed only under pathological conditions and to have detrimental effects in AD pathophysiology and neurodegeneration. However, an increasing number of reports point to much more complex roles of COX-2 in AD. Mammalian/mechanistic target of rapamycin (mTOR) has been considered as a hub which integrates multiple signaling cascades, some of which are also involved in AD progression. COX-2 and mTOR are both involved in environmental sensing, growth, and metabolic processes of the cell. They are also known to act in cooperation in many different cancers and thus, their role together in normal cellular functions as well as AD has been explored in this review. Some of the therapeutic approaches targeting COX-2 and mTOR in AD and cancer are also discussed.
Collapse
Affiliation(s)
- Arti Tyagi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Mohammad A Kamal
- King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Enzymoics, Hebersham, NSW, Australia
| | | |
Collapse
|
78
|
Gencarelli M, Laurino A, Landucci E, Buonvicino D, Mazzantini C, Chiellini G, Raimondi L. 3-Iodothyronamine Affects Thermogenic Substrates' Mobilization in Brown Adipocytes. BIOLOGY 2020; 9:biology9050095. [PMID: 32375297 PMCID: PMC7285105 DOI: 10.3390/biology9050095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022]
Abstract
We investigated the effect of 3-iodothyronamine (T1AM) on thermogenic substrates in brown adipocytes (BAs). BAs isolated from the stromal fraction of rat brown adipose tissue were exposed to an adipogenic medium containing insulin in the absence (M) or in the presence of 20 nM T1AM (M+T1AM) for 6 days. At the end of the treatment, the expression of p-PKA/PKA, p-AKT/AKT, p-AMPK/AMPK, p-CREB/CREB, p-P38/P38, type 1 and 3 beta adrenergic receptors (β1–β3AR), GLUT4, type 2 deiodinase (DIO2), and uncoupling protein 1 (UCP-1) were evaluated. The effects of cell conditioning with T1AM on fatty acid mobilization (basal and adrenergic-mediated), glucose uptake (basal and insulin-mediated), and ATP cell content were also analyzed in both cell populations. When compared to cells not exposed, M+T1AM cells showed increased p-PKA/PKA, p-AKT/AKT, p-CREB/CREB, p-P38/P38, and p-AMPK/AMPK, downregulation of DIO2 and β1AR, and upregulation of glycosylated β3AR, GLUT4, and adiponectin. At basal conditions, glycerol release was higher for M+T1AM cells than M cells, without any significant differences in basal glucose uptake. Notably, in M+T1AM cells, adrenergic agonists failed to activate PKA and lipolysis and to increase ATP level, but the glucose uptake in response to insulin exposure was more pronounced than in M cells. In conclusion, our results suggest that BAs conditioning with T1AM promote a catabolic condition promising to fight obesity and insulin resistance.
Collapse
Affiliation(s)
- Manuela Gencarelli
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (M.G.); (A.L.)
| | - Annunziatina Laurino
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (M.G.); (A.L.)
| | - Elisa Landucci
- Department of Health Sciences, Section of Pharmacology, University of Florence, 50139 Florence, Italy; (E.L.); (D.B.); (C.M.)
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Pharmacology, University of Florence, 50139 Florence, Italy; (E.L.); (D.B.); (C.M.)
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Pharmacology, University of Florence, 50139 Florence, Italy; (E.L.); (D.B.); (C.M.)
| | | | - Laura Raimondi
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (M.G.); (A.L.)
- Correspondence: ; Tel.: +390-554-278-375
| |
Collapse
|
79
|
Kang NH, Mukherjee S, Jang MH, Pham HG, Choi M, Yun JW. Ketoprofen alleviates diet-induced obesity and promotes white fat browning in mice via the activation of COX-2 through mTORC1-p38 signaling pathway. Pflugers Arch 2020; 472:583-596. [DOI: 10.1007/s00424-020-02380-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
|
80
|
Han X, Guo J, You Y, Zhan J, Huang W. p-Coumaric acid prevents obesity via activating thermogenesis in brown adipose tissue mediated by mTORC1-RPS6. FASEB J 2020; 34:7810-7824. [PMID: 32350925 DOI: 10.1096/fj.202000333r] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
Brown adipose tissue (BAT) has long been recognized as an energy-consuming organ and a possible target for combating metabolism disorder. Although numerous studies have demonstrated the ability of phytochemical phenolic acids to improve obesity by activating BAT, the underlying mechanism or mechanism therein remain obscure. In this study, diet-induced obese mice, genetically obese mice, and C3H10T1/2 cells were used to examine the effects of p-Coumaric acid (CA) on metabolism profiles. The results showed that CA prevented metabolic syndromes in the two mice models through the activation of BAT. This phenomenon was closely linked to the upregulation of uncoupling protein 1 (UCP1) and the accelerated burning of fatty acids and glucose, which consequently enhanced the energy expenditure and thermogenesis. Similar results were also obtained in vitro. Importantly, these effects were mediated by the mammalian target of rapamycin complex 1 (mTORC1)-RPS6 pathway. These findings reveal, to the best of our knowledge for the first time, the close correlation between mTORC1-RPS6 and BAT-mediated thermogenesis, and, in addition, the key role played by mTORC1-RPS6 in mediating phenolic acids-induced activation of BAT, thus preventing obesity.
Collapse
Affiliation(s)
- Xue Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jielong Guo
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
81
|
Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab 2020; 34:27-42. [PMID: 32180558 PMCID: PMC6997501 DOI: 10.1016/j.molmet.2019.12.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The diminished glucose lowering effect of insulin in obesity, called "insulin resistance," is associated with glucose intolerance, type 2 diabetes, and other serious maladies. Many publications on this topic have suggested numerous hypotheses on the molecular and cellular disruptions that contribute to the syndrome. However, significant uncertainty remains on the mechanisms of its initiation and long-term maintenance. SCOPE OF REVIEW To simplify insulin resistance analysis, this review focuses on the unifying concept that adipose tissue is a central regulator of systemic glucose homeostasis by controlling liver and skeletal muscle metabolism. Key aspects of adipose function related to insulin resistance reviewed are: 1) the modes by which specific adipose tissues control hepatic glucose output and systemic glucose disposal, 2) recently acquired understanding of the underlying mechanisms of these modes of regulation, and 3) the steps in these pathways adversely affected by obesity that cause insulin resistance. MAJOR CONCLUSIONS Adipocyte heterogeneity is required to mediate the multiple pathways that control systemic glucose tolerance. White adipocytes specialize in sequestering triglycerides away from the liver, muscle, and other tissues to limit toxicity. In contrast, brown/beige adipocytes are very active in directly taking up glucose in response to β adrenergic signaling and insulin and enhancing energy expenditure. Nonetheless, white, beige, and brown adipocytes all share the common feature of secreting factors and possibly exosomes that act on distant tissues to control glucose homeostasis. Obesity exerts deleterious effects on each of these adipocyte functions to cause insulin resistance.
Collapse
Affiliation(s)
- Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
82
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
83
|
Festuccia WT. Regulation of Adipocyte and Macrophage Functions by mTORC1 and 2 in Metabolic Diseases. Mol Nutr Food Res 2020; 65:e1900768. [DOI: 10.1002/mnfr.201900768] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- William T. Festuccia
- Department of Physiology and Biophysics Institute of Biomedical Sciences University of Sao Paulo Sao Paulo 05508000 Brazil
| |
Collapse
|
84
|
González A, Hall MN, Lin SC, Hardie DG. AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab 2020; 31:472-492. [PMID: 32130880 DOI: 10.1016/j.cmet.2020.01.015] [Citation(s) in RCA: 423] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The AMPK (AMP-activated protein kinase) and TOR (target-of-rapamycin) pathways are interlinked, opposing signaling pathways involved in sensing availability of nutrients and energy and regulation of cell growth. AMPK (Yin, or the "dark side") is switched on by lack of energy or nutrients and inhibits cell growth, while TOR (Yang, or the "bright side") is switched on by nutrient availability and promotes cell growth. Genes encoding the AMPK and TOR complexes are found in almost all eukaryotes, suggesting that these pathways arose very early during eukaryotic evolution. During the development of multicellularity, an additional tier of cell-extrinsic growth control arose that is mediated by growth factors, but these often act by modulating nutrient uptake so that AMPK and TOR remain the underlying regulators of cellular growth control. In this review, we discuss the evolution, structure, and regulation of the AMPK and TOR pathways and the complex mechanisms by which they interact.
Collapse
Affiliation(s)
- Asier González
- Biozentrum, University of Basel, CH4056 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, CH4056 Basel, Switzerland
| | - Sheng-Cai Lin
- School of Life Sciences, Xiamen University, Xiamen, 361102 Fujian, China
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
85
|
Mao X, Huang D, Rao C, Du M, Liang M, Li F, Liu B, Huang K. Enoyl coenzyme A hydratase 1 combats obesity and related metabolic disorders by promoting adipose tissue browning. Am J Physiol Endocrinol Metab 2020; 318:E318-E329. [PMID: 31961704 DOI: 10.1152/ajpendo.00424.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Browning of white adipose tissue (WAT) has been recognized as an important strategy for the treatment of obesity, insulin resistance, and diabetes. Enoyl coenzyme A hydratase 1 (ECH1) is a widely known enzyme involved in lipid metabolism. However, whether and how ECH1 is implicated in browning of WAT remain obscure. Adeno-associated, virus-mediated genetic engineering of ECH1 in adipose tissue was used in investigations in mouse models of obesity induced by a high-fat diet (HFD) or browning induced by cold exposure. Metabolic parameters showed that ECH1 overexpression decreased weight gain and improved insulin sensitivity and lipid profile after 8 wk of an HFD. Further work revealed that these changes were associated with enhanced energy expenditure and increased appearance of brown-like adipocytes in inguinal WAT, as verified by a remarkable increase in uncoupling protein 1 and thermogenic gene expression. In vitro, ECH1 induced brown fat-related gene expression in adipocytes differentiated from primary stromal vascular fractions, whereas knockdown of ECH1 reversed this effect. Mechanistically, ECH1 regulated the thermogenic program by inhibiting mammalian target of rapamycin signaling, which may partially explain the potential mechanism for ECH1 regulating adipose browning. In summary, ECH1 may participate in the pathology of obesity by regulating browning of WAT, which probably provides us with a new therapeutic strategy for combating obesity.
Collapse
Affiliation(s)
- Xiaoxiang Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caijun Rao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baoqing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
86
|
Przygodda F, Lautherbach N, Buzelle SL, Goncalves DA, Assis AP, Paula-Gomes S, Garófalo MAR, Heck LC, Matsuo FS, Mota RF, Osako MK, Kettelhut IC, Navegantes LC. Sympathetic innervation suppresses the autophagic-lysosomal system in brown adipose tissue under basal and cold-stimulated conditions. J Appl Physiol (1985) 2020; 128:855-871. [PMID: 32027543 DOI: 10.1152/japplphysiol.00065.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The sympathetic nervous system (SNS) activates cAMP signaling and promotes trophic effects on brown adipose tissue (BAT) through poorly understood mechanisms. Because norepinephrine has been found to induce antiproteolytic effects on muscle and heart, we hypothesized that the SNS could inhibit autophagy in interscapular BAT (IBAT). Here, we describe that selective sympathetic denervation of rat IBAT kept at 25°C induced atrophy, and in parallel dephosphorylated forkhead box class O (FoxO), and increased cathepsin activity, autophagic flux, autophagosome formation, and expression of autophagy-related genes. Conversely, cold stimulus (4°C) for up to 72 h induced thermogenesis and IBAT hypertrophy, an anabolic effect that was associated with inhibition of cathepsin activity, autophagic flux, and autophagosome formation. These effects were abrogated by sympathetic denervation, which also upregulated Gabarapl1 mRNA. In addition, the cold-driven sympathetic activation stimulated the mechanistic target of rapamycin (mTOR) pathway, leading to the enhancement of protein synthesis, evaluated in vivo by puromycin incorporation, and to the inhibitory phosphorylation of Unc51-like kinase-1, a key protein in the initiation of autophagy. This coincided with a higher content of exchange protein-1 directly activated by cAMP (Epac1), a cAMP effector, and phosphorylation of Akt at Thr308, all these effects being abolished by denervation. Systemic treatment with norepinephrine for 72 h mimicked most of the cold effects on IBAT. These data suggest that the noradrenergic sympathetic inputs to IBAT restrain basal autophagy via suppression of FoxO and, in the setting of cold, stimulate protein synthesis via the Epac/Akt/mTOR-dependent pathway and suppress the autophagosome formation, probably through posttranscriptional mechanisms.NEW & NOTEWORTHY The underlying mechanisms related to the anabolic role of sympathetic innervation on brown adipose tissue (BAT) are unclear. We show that sympathetic denervation activates autophagic-lysosomal degradation, leading to a loss of mitochondrial proteins and BAT atrophy. Conversely, cold-driven sympathetic activation suppresses autophagy and stimulates protein synthesis, leading to BAT hypertrophy. Given its high-potential capacity for heat production, understanding the mechanisms that contribute to BAT mass is important to optimize chances of survival for endotherms in cold ambients.
Collapse
Affiliation(s)
- Franciele Przygodda
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Natalia Lautherbach
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Samyra Lopes Buzelle
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dawit Albieiro Goncalves
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Paula Assis
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sílvia Paula-Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Lilian Carmo Heck
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Flávia Sayuri Matsuo
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ryerson Fonseca Mota
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana Kiomy Osako
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Isis C Kettelhut
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
87
|
Liu Z, Liao W, Yin X, Zheng X, Li Q, Zhang H, Zheng L, Feng X. Resveratrol-induced brown fat-like phenotype in 3T3-L1 adipocytes partly via mTOR pathway. Food Nutr Res 2020; 64:3656. [PMID: 32047421 PMCID: PMC6983979 DOI: 10.29219/fnr.v64.3656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Background Browning of white adipose tissues (WAT) is recognized as a novel way to combat obesity and its related comorbidities. Thus, a lot of dietary agents contributing to browning of WAT have been identified. Objective In this study, we try to explore the mechanism of the browning of WAT induced by resveratrol (Res) in 3T3-L1 adipocytes. Methods The levels of cell viability and lipid accumulation were evaluated under different concentrations of Res. Cell signaling pathway analysis was performed to investigate the possible mechanisms of the WAT browning effect of Res in 3T3-L1 cells. Results We found that Res induced the brown fat-like phenotype by activating protein expressions of brown adipocyte-specific markers, such as peroxisome proliferator-activated receptor gamma (PPAR-γ), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), and uncoupling protein 1 (UCP1). Besides, Res reduced lipid accumulation, as shown by Oil Red O staining. The increased small lipid droplets implied that Res-treated 3T3-L1 adipocytes had some features of brown adipocytes. The brown fat-like phenotype in 3T3-L1 adipocytes induced by Res was possibly mediated by activation of mammalian target of rapamycin (mTOR), as brown adipocyte-specific markers were decreased by rapamycin, an inhibitor of mTOR and the MHY1485 treatment, an activator of mTOR, showed the similar effect of Res on browning markers. Conclusions Res induced brown-like adipocyte phenotype in 3T3-L1 adipocytes partly via mTOR pathway, which provided new insights into the utilization of Res to prevent obesity and related comorbidities.
Collapse
Affiliation(s)
- Zihui Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Weiyao Liao
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Xiaohan Yin
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Xinjie Zheng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Qingrong Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Hongmin Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Lin Zheng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Xiang Feng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| |
Collapse
|
88
|
Pan R, Zhu X, Maretich P, Chen Y. Combating Obesity With Thermogenic Fat: Current Challenges and Advancements. Front Endocrinol (Lausanne) 2020; 11:185. [PMID: 32351446 PMCID: PMC7174745 DOI: 10.3389/fendo.2020.00185] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Brown fat and beige fat are known as thermogenic fat due to their contribution to non-shivering thermogenesis in mammals following cold stimulation. Beige fat is unique due to its origin and its development in white fat. Subsequently, both brown fat and beige fat have become viable targets to combat obesity. Over the last few decades, most therapeutic strategies have been focused on the canonical pathway of thermogenic fat activation via the β3-adrenergic receptor (AR). Notwithstanding, administering β3-AR agonists often leads to side effects including hypertension and particularly cardiovascular disease. It is thus imperative to search for alternative therapeutic approaches to combat obesity. In this review, we discuss the current challenges in the field with respect to stimulating brown/beige fat thermogenesis. Additionally, we include a summary of other newly discovered pathways, including non-AR signaling- and non-UCP1-dependent mechanisms, which could be potential targets for the treatment of obesity and its related metabolic diseases.
Collapse
MESH Headings
- Adipose Tissue, Beige/drug effects
- Adipose Tissue, Beige/metabolism
- Adipose Tissue, Beige/physiology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/physiology
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Adrenergic beta-3 Receptor Agonists/therapeutic use
- Animals
- Anti-Obesity Agents/pharmacology
- Anti-Obesity Agents/therapeutic use
- Humans
- Obesity/metabolism
- Obesity/therapy
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/physiology
- Signal Transduction/drug effects
- Thermogenesis/drug effects
- Thermogenesis/physiology
Collapse
Affiliation(s)
- Ruping Pan
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pema Maretich
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yong Chen
- Department of Endocrinology, Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yong Chen
| |
Collapse
|
89
|
Leiva M, Matesanz N, Pulgarín-Alfaro M, Nikolic I, Sabio G. Uncovering the Role of p38 Family Members in Adipose Tissue Physiology. Front Endocrinol (Lausanne) 2020; 11:572089. [PMID: 33424765 PMCID: PMC7786386 DOI: 10.3389/fendo.2020.572089] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
The complex functions of adipose tissue have been a focus of research interest over the past twenty years. Adipose tissue is not only the main energy storage depot, but also one of the largest endocrine organs in the body and carries out crucial metabolic functions. Moreover, brown and beige adipose depots are major sites of energy expenditure through the activation of adaptive, non-shivering thermogenesis. In recent years, numerous signaling molecules and pathways have emerged as critical regulators of adipose tissue, in both homeostasis and obesity-related disease. Among the best characterized are members of the p38 kinase family. The activity of these kinases has emerged as a key contributor to the biology of the white and brown adipose tissues, and their modulation could provide new therapeutic approaches against obesity. Here, we give an overview of the roles of the distinct p38 family members in adipose tissue, focusing on their actions in adipogenesis, thermogenic activity, and secretory function.
Collapse
|
90
|
Cairó M, Villarroya J. The role of autophagy in brown and beige adipose tissue plasticity. J Physiol Biochem 2019; 76:213-226. [PMID: 31811543 DOI: 10.1007/s13105-019-00708-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 01/04/2023]
Abstract
Since the rediscovery of active brown and beige adipose tissues in humans a decade ago, great efforts have been made to identify the mechanisms underlying the activation and inactivation of these tissues, with the hope of designing potential strategies to fight against obesity and associated metabolic disorders such as type 2 diabetes. Active brown/beige fat increases the energy expenditure and is associated with reduced hyperglycemia and hyperlipidemia, whereas its atrophy and inactivation have been associated with obesity and aging. Autophagy, which is the process by which intracellular components are degraded within the lysosomes, has recently emerged as an important regulatory mechanism of brown/beige fat plasticity. Studies have shown that autophagy participates in the intracellular remodeling events that occur during brown/beige adipogenesis, thermogenic activation, and inactivation. The autophagic degradation of mitochondria appears to be important for the inactivation of brown fat and the transition from beige-to-white adipose tissue. Moreover, autophagic dysregulation in adipose tissues has been associated with obesity. Thus, understanding the regulatory mechanisms that control autophagy in the physiology and pathophysiology of adipose tissues might suggest novel treatments against obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Montserrat Cairó
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Avda Diagonal 643, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatologia de la Obesidad y Nutrición, 28029, Madrid, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Avda Diagonal 643, 08028, Barcelona, Spain.
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain.
| |
Collapse
|
91
|
Towards a Better Understanding of Beige Adipocyte Plasticity. Cells 2019; 8:cells8121552. [PMID: 31805721 PMCID: PMC6953037 DOI: 10.3390/cells8121552] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
Beige adipocytes are defined as Ucp1+, multilocular adipocytes within white adipose tissue (WAT) that are capable of thermogenesis, the process of heat generation. In both mouse models and humans, the increase of beige adipocyte population, also called WAT browning, is associated with certain metabolic benefits, such as reduced obesity and increased insulin sensitivity. In this review, we summarize the current knowledge regarding WAT browning, with a special focus on the beige adipocyte plasticity, collectively referring to a bidirectional transition between thermogenic active and latent states in response to environmental changes. We further exploit the utility of a unique beige adipocyte ablation system to interrogate anti-obesity effect of beige adipocytes in vivo.
Collapse
|
92
|
Abstract
Adipose tissues, function as energy metabolism and endocrine organ, are closely associated with metabolic diseases such as obesity, insulin resistance and diabetes. Liver kinase B1 (Lkb1) and mechanistic target of rapamycin (mTOR) play crucial roles in regulating energy metabolism and cell growth in adipose tissue. Our recent study generated an adipocyte-specific Lkb1 and mTOR double knockout (DKO) mouse model and found that DKO of Lkb1 and mTOR caused reduction of brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) mass but increase of liver mass. Moreover, the DKO mice developed fatty liver and insulin resistance but displayed improved glucose tolerance and were resistant to high-fat diet (HFD) -induced obesity. In this commentary, we compare the similarities and differences of the phenotypes found in the DKO mice and Lkb1 or mTOR or mTOR complex 1 (mTORC1) or mTOR complex 2 (mTORC2) single knockout mice. Furthermore, we discuss the potential regulatory mechanism that results in the overlapping or distinct phenotypes found in these models.
Collapse
Affiliation(s)
- Ziye Xu
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenjing You
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengqin Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tizhong Shan
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
93
|
Wipperman MF, Montrose DC, Gotto AM, Hajjar DP. Mammalian Target of Rapamycin: A Metabolic Rheostat for Regulating Adipose Tissue Function and Cardiovascular Health. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:492-501. [PMID: 30803496 DOI: 10.1016/j.ajpath.2018.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/03/2018] [Accepted: 11/28/2018] [Indexed: 12/31/2022]
Abstract
The complex relationship between diet and metabolism is an important contributor to cellular metabolism and health. Over the past few decades, a central role for mammalian target of rapamycin (mTOR) in the regulation of multiple cellular processes, including the response to food intake, maintaining homeostasis, and the pathogenesis of disease, has been shown. Herein, we first review our current understanding of the biochemical functions of mTOR and its response to fluctuations in hormone levels, like insulin. Second, we highlight the role of mTOR in lipogenesis, adipogenesis, β-oxidation of lipids, and ketosis of carbohydrates, lipids, and proteins. Special attention is paid to recent advances in mTOR signaling in white versus brown adipose tissues. Finally, we review how mTOR regulates cardiovascular health and disease. Together, these insights define a clearer picture of the connection between mTOR signaling, metabolic health, and disease.
Collapse
Affiliation(s)
- Matthew F Wipperman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York; Clinical and Translational Science Center, Weill Cornell Medicine, Cornell University, New York
| | - David C Montrose
- Department of Pathology, Stony Brook Medicine, Stony Brook, New York
| | - Antonio M Gotto
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York
| | - David P Hajjar
- Department of Pathology and Biochemistry, Weill Cornell Medicine, Cornell University, New York.
| |
Collapse
|
94
|
mTOR signaling in Brown and Beige adipocytes: implications for thermogenesis and obesity. Nutr Metab (Lond) 2019; 16:74. [PMID: 31708995 PMCID: PMC6836431 DOI: 10.1186/s12986-019-0404-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Brown and beige adipocytes are mainly responsible for nonshivering thermogenesis or heat production, despite the fact that they have distinguished features in distribution, developmental origin, and functional activation. As a nutrient sensor and critical regulator of energy metabolism, mechanistic target of rapamycin (mTOR) also plays an important role in the development and functional maintenance of adipocytes. While the recent studies support the notion that mTOR (mTORC1 and mTORC2) related signaling pathways are of great significance for thermogenesis and the development of brown and beige adipocytes, the exact roles of mTOR in heat production are controversial. The similarities and disparities in terms of thermogenesis might be ascribed to the use of different animal models and experimental systems, distinct features of brown and beige adipocytes, and the complexity of regulatory networks of mTORC1 and mTORC2 in energy metabolism.
Collapse
|
95
|
Olsen JM, Åslund A, Bokhari MH, Hutchinson DS, Bengtsson T. Acute β-adrenoceptor mediated glucose clearance in brown adipose tissue; a distinct pathway independent of functional insulin signaling. Mol Metab 2019; 30:240-249. [PMID: 31767175 PMCID: PMC6838983 DOI: 10.1016/j.molmet.2019.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 12/24/2022] Open
Abstract
Objective β-adrenoceptor mediated activation of brown adipose tissue (BAT) has been associated with improvements in metabolic health in models of type 2 diabetes and obesity due to its unique ability to increase whole body energy expenditure, and rate of glucose and free fatty acid disposal. While the thermogenic arm of this phenomenon has been studied in great detail, the underlying mechanisms involved in β-adrenoceptor mediated glucose uptake in BAT are relatively understudied. As β-adrenoceptor agonist administration results in increased hepatic gluconeogenesis that can consequently result in secondary pancreatic insulin release, there is uncertainty regarding the importance of insulin and the subsequent activation of its downstream effectors in mediating β-adrenoceptor stimulated glucose uptake in BAT. Therefore, in this study, we made an effort to discriminate between the two pathways and address whether the insulin signaling pathway is dispensable for the effects of β-adrenoceptor activation on glucose uptake in BAT. Methods Using a specific inhibitor of phosphoinositide 3-kinase α (PI3Kα), which effectively inhibits the insulin signaling pathway, we examined the effects of various β-adrenoceptor agonists, including the physiological endogenous agonist norepinephrine on glucose uptake and respiration in mouse brown adipocytes in vitro and on glucose clearance in mice in vivo. Results PI3Kα inhibition in mouse primary brown adipocytes in vitro, did not inhibit β-adrenoceptor stimulated glucose uptake, GLUT1 synthesis, GLUT1 translocation or respiration. Furthermore, β-adrenoceptor mediated glucose clearance in vivo did not require insulin or Akt activation but was attenuated upon administration of a β3-adrenoceptor antagonist. Conclusions We conclude that the β-adrenergic pathway is still functionally intact upon the inhibition of PI3Kα, showing that the activation of downstream insulin effectors is not required for the acute effects of β-adrenoceptor agonists on glucose homeostasis or thermogenesis. PI3Kα/Akt are dispensable for β-AR mediated glucose clearance in vivo. PI3Kα inhibition in brown adipocytes does not inhibit GLUT1 synthesis/translocation. Acute β-AR induced thermogenesis in brown adipocytes is independent of PI3Kα/Akt. Glucose uptake in brown adipocytes does not require a functional insulin pathway.
Collapse
Affiliation(s)
- Jessica M Olsen
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Alice Åslund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Muhammad Hamza Bokhari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
96
|
Machado J, Silveira WA, Gonçalves DA, Schavinski AZ, Khan MM, Zanon NM, Diaz MB, Rudolf R, Kettelhut IC, Navegantes LC. α-Calcitonin gene-related peptide inhibits autophagy and calpain systems and maintains the stability of neuromuscular junction in denervated muscles. Mol Metab 2019; 28:91-106. [PMID: 31331823 PMCID: PMC6822259 DOI: 10.1016/j.molmet.2019.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/23/2019] [Accepted: 06/28/2019] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Although it is well established that a-calcitonin gene-related peptide (CGRP) stabilizes muscle-type cholinergic receptors nicotinic subunits (AChR), the underlying mechanism by which this neuropeptide regulates muscle protein metabolism and neuromuscular junction (NMJ) morphology is unclear. METHODS To elucidate the mechanisms how CGRP controls NMJ stability in denervated mice skeletal muscles, we carried out physiological, pharmacological, and molecular analyses of atrophic muscles induced by sciatic nerve transection. RESULTS Here, we report that CGRP treatment in vivo abrogated the deleterious effects on NMJ upon denervation (DEN), an effect that was associated with suppression of skeletal muscle proteolysis, but not stimulation of protein synthesis. CGRP also blocked the DEN-induced increase in endocytic AChR vesicles and the elevation of autophagosomes per NMJ area. The treatment of denervated animals with rapamycin blocked the stimulatory effects of CGRP on mTORC1 and its inhibitory actions on autophagic flux and NMJ degeneration. Furthermore, CGRP inhibited the DEN-induced hyperactivation of Ca2+-dependent proteolysis, a degradative system that has been shown to destabilize NMJ. Consistently, calpain was found to be activated by cholinergic stimulation in myotubes leading to the dispersal of AChR clusters, an effect that was abolished by CGRP. CONCLUSION Taken together, these data suggest that the inhibitory effect of CGRP on autophagy and calpain may represent an important mechanism for the preservation of synapse morphology when degradative machinery is exacerbated upon denervation conditions.
Collapse
Affiliation(s)
- Juliano Machado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Biochemistry/Immunology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, 85764, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, 69120, Heidelberg, Germany.
| | - Wilian A Silveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Dawit A Gonçalves
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Biochemistry/Immunology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Aline Zanatta Schavinski
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Muzamil M Khan
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim, Mannheim, Germany; Institute of Medical Technology, University of Heidelberg and University of Applied Sciences Mannheim, Mannheim, Germany.
| | - Neusa M Zanon
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, 85764, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, 69120, Heidelberg, Germany.
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim, Mannheim, Germany; Institute of Medical Technology, University of Heidelberg and University of Applied Sciences Mannheim, Mannheim, Germany.
| | - Isis C Kettelhut
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Luiz C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
97
|
Iyer MS, Paszkiewicz RL, Bergman RN, Richey JM, Woolcott OO, Asare-Bediako I, Wu Q, Kim SP, Stefanovski D, Kolka CM, Clegg DJ, Kabir M. Activation of NPRs and UCP1-independent pathway following CB1R antagonist treatment is associated with adipose tissue beiging in fat-fed male dogs. Am J Physiol Endocrinol Metab 2019; 317:E535-E547. [PMID: 31237449 PMCID: PMC6766608 DOI: 10.1152/ajpendo.00539.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 11/22/2022]
Abstract
CB1 receptor (CB1R) antagonism improves the deleterious effects of a high-fat diet (HFD) by reducing body fat mass and adipocyte cell size. Previous studies demonstrated that the beneficial effects of the CB1R antagonist rimonabant (RIM) in white adipose tissue (WAT) are partially due to an increase of mitochondria numbers and upregulation thermogenesis markers, suggesting an induction of WAT beiging. However, the molecular mechanism by which CB1R antagonism induces weight loss and WAT beiging is unclear. In this study, we probed for genes associated with beiging and explored longitudinal molecular mechanisms by which the beiging process occurs. HFD dogs received either RIM (HFD+RIM) or placebo (PL) (HFD+PL) for 16 wk. Several genes involved in beiging were increased in HFD+RIM compared with pre-fat, HFD, and HFD+PL. We evaluated lipolysis and its regulators including natriuretic peptide (NP) and its receptors (NPRs), β-1 and β-3 adrenergic receptor (β1R, β3R) genes. These genes were increased in WAT depots, accompanied by an increase in lipolysis in HFD+RIM. In addition, RIM decreased markers of inflammation and increased adiponectin receptors in WAT. We observed a small but significant increase in UCP1; therefore, we evaluated the newly discovered UCP1-independent thermogenesis pathway. We confirmed that SERCA2b and RYR2, the two key genes involved in this pathway, were upregulated in the WAT. Our data suggest that the upregulation of NPRs, β-1R and β-3R, lipolysis, and SERCA2b and RYR2 may be one of the mechanisms by which RIM promotes beiging and overall the improvement of metabolic homeostasis induced by RIM.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, White/drug effects
- Animals
- Diet, High-Fat/adverse effects
- Dogs
- Gene Expression/drug effects
- Inflammation/pathology
- Inflammation/prevention & control
- Insulin Resistance
- Male
- Organelle Biogenesis
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Atrial Natriuretic Factor/drug effects
- Rimonabant/pharmacology
- Thermogenesis/drug effects
- Thermogenesis/genetics
- Uncoupling Protein 1/drug effects
- Weight Loss/drug effects
Collapse
Affiliation(s)
- Malini S Iyer
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | | | - Richard N Bergman
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Joyce M Richey
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Orison O Woolcott
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Isaac Asare-Bediako
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Qiang Wu
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Stella P Kim
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Darko Stefanovski
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Cathryn M Kolka
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Deborah J Clegg
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Morvarid Kabir
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| |
Collapse
|
98
|
Brandt C, Nolte H, Henschke S, Engström Ruud L, Awazawa M, Morgan DA, Gabel P, Sprenger HG, Hess ME, Günther S, Langer T, Rahmouni K, Fenselau H, Krüger M, Brüning JC. Food Perception Primes Hepatic ER Homeostasis via Melanocortin-Dependent Control of mTOR Activation. Cell 2019; 175:1321-1335.e20. [PMID: 30445039 DOI: 10.1016/j.cell.2018.10.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/10/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Adaptation of liver to the postprandial state requires coordinated regulation of protein synthesis and folding aligned with changes in lipid metabolism. Here we demonstrate that sensory food perception is sufficient to elicit early activation of hepatic mTOR signaling, Xbp1 splicing, increased expression of ER-stress genes, and phosphatidylcholine synthesis, which translate into a rapid morphological ER remodeling. These responses overlap with those activated during refeeding, where they are maintained and constantly increased upon nutrient supply. Sensory food perception activates POMC neurons in the hypothalamus, optogenetic activation of POMC neurons activates hepatic mTOR signaling and Xbp1 splicing, whereas lack of MC4R expression attenuates these responses to sensory food perception. Chemogenetic POMC-neuron activation promotes sympathetic nerve activity (SNA) subserving the liver, and norepinephrine evokes the same responses in hepatocytes in vitro and in liver in vivo as observed upon sensory food perception. Collectively, our experiments unravel that sensory food perception coordinately primes postprandial liver ER adaption through a melanocortin-SNA-mTOR-Xbp1s axis. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Claus Brandt
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Hendrik Nolte
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, Cologne 50931, Germany
| | - Sinika Henschke
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Linda Engström Ruud
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Motoharu Awazawa
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Donald A Morgan
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 3181 MERF, 375 Newton Rd., Iowa City, IA 52242, USA
| | - Paula Gabel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | | | - Martin E Hess
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Parkstr. 1, 61231 Bad Nauheim, Germany
| | - Thomas Langer
- Institute for Genetics, University of Cologne, Cologne 50931, Germany; Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Kamal Rahmouni
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 3181 MERF, 375 Newton Rd., Iowa City, IA 52242, USA
| | - Henning Fenselau
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Marcus Krüger
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, Cologne 50931, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
99
|
Circadian lipid synthesis in brown fat maintains murine body temperature during chronic cold. Proc Natl Acad Sci U S A 2019; 116:18691-18699. [PMID: 31451658 DOI: 10.1073/pnas.1909883116] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ambient temperature influences the molecular clock and lipid metabolism, but the impact of chronic cold exposure on circadian lipid metabolism in thermogenic brown adipose tissue (BAT) has not been studied. Here we show that during chronic cold exposure (1 wk at 4 °C), genes controlling de novo lipogenesis (DNL) including Srebp1, the master transcriptional regulator of DNL, acquired high-amplitude circadian rhythms in thermogenic BAT. These conditions activated mechanistic target of rapamycin 1 (mTORC1), an inducer of Srebp1 expression, and engaged circadian transcriptional repressors REV-ERBα and β as rhythmic regulators of Srebp1 in BAT. SREBP was required in BAT for the thermogenic response to norepinephrine, and depletion of SREBP prevented maintenance of body temperature both during circadian cycles as well as during fasting of chronically cold mice. By contrast, deletion of REV-ERBα and β in BAT allowed mice to maintain their body temperature in chronic cold. Thus, the environmental challenge of prolonged noncircadian exposure to cold temperature induces circadian induction of SREBP1 that drives fuel synthesis in BAT and is necessary to maintain circadian body temperature during chronic cold exposure. The requirement for BAT fatty acid synthesis has broad implications for adaptation to cold.
Collapse
|
100
|
Abstract
Significance: Alterations in adipose tissue function have profound consequences on whole body energy homeostasis because this tissue is central for fat accumulation, energy expenditure, glucose and insulin metabolism, and hormonal regulation. With the obesity reaching epidemic proportions globally, it is important to understand the mechanisms leading to adipose tissue malfunction. Recent Advances: Autophagy has originally been viewed as an adaptive response to cellular stress, but in recent years this process was shown to regulate important cellular processes. In adipose tissue, autophagy is a key regulator of white adipose tissue (WAT) and brown adipose tissue (BAT) adipogenesis, and dysregulated autophagy impairs fat accumulation both in vitro and in vivo. Animal studies have also suggested an important role for autophagy and mitophagy during the transition from beige to white fat. Human studies have provided evidence for altered autophagy in WAT, and these alterations correlated with the degree of insulin resistance. Critical Issues: Despite these important advances in the study of autophagy in adipose tissue, we still do not understand the physiological role of autophagy in mature white and brown adipocytes. Furthermore, several human studies involving autophagy assessment were performed on whole adipose tissue, which complicates the interpretation of the results considering the cellular heterogeneity of this tissue. Future Directions: Future studies will undoubtedly expand our understanding of the role of autophagy in fully differentiated adipocytes, and uncover novel cross-talks between this tissue and other organs in regulating lipid metabolism, redox signaling, energy homeostasis, and insulin sensitivity.
Collapse
Affiliation(s)
- Maroua Ferhat
- Program in Molecular Medicine, Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah
| | - Katsuhiko Funai
- Program in Molecular Medicine, Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah
| | - Sihem Boudina
- Program in Molecular Medicine, Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah
| |
Collapse
|