51
|
Bathina S, Das UN. PUFAs, BDNF and lipoxin A4 inhibit chemical-induced cytotoxicity of RIN5F cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivo. Lipids Health Dis 2019; 18:214. [PMID: 31823816 PMCID: PMC7159172 DOI: 10.1186/s12944-019-1164-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/03/2019] [Indexed: 12/23/2022] Open
Abstract
Objective To study whether minimal doses of arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and lipoxin A4 (LXA4) and brain-derived neurotrophic factor (BDNF), when used in combination can protect RIN5F cells from chemical-induced cytotoxicity. As a corollary, to know whether plasma BDNF and LXA4 are altered in STZ-induced type 2 DM animals. Materials and methods RIN5F cells, alloxan (AL), streptozotocin (STZ), doxorubicin (DB), and benzo(a)pyrene (BP) were used in this study. Chemical-induced apoptosis and changes in antioxidants, lipid peroxides and nitric oxide (NO) and LXA4 and BDNF levels in RIN5F cells were studied. Alterations in plasma concentrations of BDNF and LXA4 in STZ-induced type 2 diabetes animals was estimated. Results BDNF, LXA4 and AA, EPA and DHA protected (P < 0.001 and P < 0.01 respectively) against AL/STZ/DB/BP-induced toxicity to RIN5F cells in vitro. AL/ STZ/DB/BP inhibited BDNF and LXA4 production by RIN5F cells and were restored to normal by AA, EPA and DHA. Sub-optimal doses of BDNF, LXA4, AA and EPA when used in combination protected against cytotoxic action of AL/STZ/DB/BP on RIN5F cells in vitro by restoring LXA4/BDNF levels and altered antioxidant/lipid peroxides/NO levels (P < 0.01) to normal. STZ (65 mg/kg)-induced type 2 diabetes mellitus animals showed reduced plasma BDNF and LXA4 levels (P < 0.001). Discussion AL/STZ/DB/BP-induced cytotoxicity to RIN5F cells in vitro can be prevented by BDNF, LXA4 and AA. AL/STZ/DB/BP are cytotoxic, possibly, by suppressing the production of LXA4 and BDNF in RIN5F cells. STZ-induced type 2 DM animals have decreased plasma levels of LXA4 and BDNF. Conclusion The results of the present study suggest that BDNF, LXA4, EPA, DHA, AA, GLA and BDNF protect pancreatic β cells from the cytotoxic action of various chemicals and prevent development of diabetes mellitus. LXA4 seems to be the mediator of these cytoprotective actions of BDNF and PUFAs suggesting a close interaction exists among these molecules (BDNF, PUFAs and LXA4). Hence, methods developed to deliver a combination of PUFAs (especially AA), LXA4 and BDNF may prevent development of diabetes mellitus (both type 1 and type 2).
Collapse
Affiliation(s)
- Siresha Bathina
- BioScience Research Centre and Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, 530048, India.,Present Address: Department of Biotechnology, Gandhi Institute of Technology and Management (GITAM) Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| | - Undurti N Das
- BioScience Research Centre and Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, 530048, India. .,UND Life Sciences, 2221, NW 5th St, Battle Ground, WA, 98604, USA.
| |
Collapse
|
52
|
Cai L, Wang S, Gao P, Shen X, Jalaludin B, Bloom MS, Wang Q, Bao J, Zeng X, Gui Z, Chen Y, Huang C. Effects of ambient particulate matter on fasting blood glucose among primary school children in Guangzhou, China. ENVIRONMENTAL RESEARCH 2019; 176:108541. [PMID: 31271922 DOI: 10.1016/j.envres.2019.108541] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Exposure to ambient particulate matter (PM) has been linked with diabetes and elevated blood glucose in adults. However, there are few reports on the effects of PM on fasting blood glucose (FBG) among children. OBJECTIVES The study aimed to assess the associations between medium-term exposure of ambient particles with diameters ≤2.5 μm (PM2.5), and ≤10 μm (PM10) and FBG in a general population of children, and also to explore the modifying effects of diet. METHODS In this cross-sectional study, we enrolled 4234 children (aged 6-13 years) residing in Guangzhou, China, in 2017. Individual PM2.5 and PM10 exposures during the 186-day period before each physical examination were retrospectively estimated by an inverse distance weighting interpolation and time-weighted approach according to their home address, school address, and activity patterns. Linear mixed effect models were used to examine the relationships between PM2.5 and PM10 with FBG after adjusting for covariates. RESULTS We found that per 10 μg/m3 increase in PM2.5 and PM10 levels during the 186-day period were associated with 2.3% (95% CI: 1.0%, 3.8%) higher FBG and 0.9% (95% CI: 0.5%, 1.4%) higher FBG, respectively. Stronger effect estimates were observed among subgroups of children with a family history of diabetes, and higher intake of sugar-sweetened beverages (SSBs). Also, we found significant interactions between PM2.5 concentration and family history of diabetes and SSBs intake on FBG. CONCLUSIONS Medium-term exposure to ambient PM2.5 and PM10 were associated with higher FBG levels in children, and that higher SSBs intake might modify these associations.
Collapse
Affiliation(s)
- Li Cai
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, China
| | - Suhan Wang
- Department of Health Policy and Management, School of Public Health, Sun Yat-sen University, China; Laboratory of Meteorology and Health, Shanghai Meteorological Service, China
| | - Peng Gao
- Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, China
| | - Xiaoting Shen
- Center for Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, China
| | - Bin Jalaludin
- Population Health, South Western Sydney Local Health District, Liverpool, NSW, 2170, Australia
| | - Michael S Bloom
- Department of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Qiong Wang
- Department of Health Policy and Management, School of Public Health, Sun Yat-sen University, China; Laboratory of Meteorology and Health, Shanghai Meteorological Service, China
| | - Junzhe Bao
- Department of Health Policy and Management, School of Public Health, Sun Yat-sen University, China; Laboratory of Meteorology and Health, Shanghai Meteorological Service, China
| | - Xia Zeng
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, China
| | - Zhaohuan Gui
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, China
| | - Yajun Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, China.
| | - Cunrui Huang
- Department of Health Policy and Management, School of Public Health, Sun Yat-sen University, China; Laboratory of Meteorology and Health, Shanghai Meteorological Service, China.
| |
Collapse
|
53
|
Liu F, Chen G, Huo W, Wang C, Liu S, Li N, Mao S, Hou Y, Lu Y, Xiang H. Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1235-1245. [PMID: 31252121 DOI: 10.1016/j.envpol.2019.06.033] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 05/21/2023]
Abstract
Previous meta-analyses on associations between air pollution (AP) and type 2 diabetes mellitus (T2DM) were mainly focused on studies conducted in high-income countries. Evidence should be updated by including more recent studies, especially those conducted in low- and middle-income countries. We therefore conducted a systematic review and meta-analysis of epidemiological studies to conclude an updated pooled effect estimates between long-term AP exposure and the prevalence and incidence of T2DM. We searched PubMed, Embase, and Web of Science to identify studies regarding associations of AP with T2DM prevalence and incidence prior to January 2019. A random-effects model was employed to analyze the overall effects. A total of 30 articles were finally included in this meta-analysis. The pooled results showed that higher levels of AP exposure were significantly associated with higher prevalence of T2DM (per 10 μg/m3 increase in concentrations of particles with aerodynamic diameter < 2.5 μm (PM2.5): odds ratio (OR) = 1.09, 95% confidence interval (95%CI): 1.05, 1.13; particles with aerodynamic diameter < 10 μm (PM10): OR = 1.12, 95%CI: 1.06, 1.19; nitrogen dioxide (NO2): OR = 1.05, 95%CI:1.03, 1.08). Besides, higher level of PM2.5 exposure was associated with higher T2DM incidence (per 10 μg/m3 increase in concentration of PM2.5: hazard ratio (HR) = 1.10, 95%CI:1.04, 1.16), while the associations between PM10, NO2 and T2DM incidence were not statistically significant. The associations between AP exposure and T2DM prevalence showed no significant difference between high-income countries and low- and middle-incomes countries. However, different associations were identified between PM2.5 exposure and T2DM prevalence in different geographic areas. No significant differences were found in associations of AP and T2DM prevalence/incidence between females and males, except for the effect of NO2 on T2DM incidence. Overall, AP exposure was positively associated with T2DM. There still remains a need for evidence from low- and middle-income countries on the relationships between AP and T2DM.
Collapse
Affiliation(s)
- Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Suyang Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Shuyuan Mao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yitan Hou
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health Sciences, University Hawaii at Manoa, 1960 East West Rd, Biomed Bldg, D105, Honolulu, USA
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
54
|
Han Y, Wang Y, Li W, Chen X, Xue T, Chen W, Fan Y, Qiu X, Zhu T. Susceptibility of prediabetes to the health effect of air pollution: a community-based panel study with a nested case-control design. Environ Health 2019; 18:65. [PMID: 31307478 PMCID: PMC6631920 DOI: 10.1186/s12940-019-0502-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/23/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND Recent studies suggest that people with diabetes or who are at risk of developing diabetes, i.e. prediabetic (preDM), are potentially susceptible to air pollution, but the underlying mechanisms remain unclear because the existing epidemiological studies did not include healthy control groups and only focused on limited health outcomes. We hypothesized that acute exposure to ambient fine particles (PM2.5) will lead to enhanced pulmonary and cardiometabolic changes in preDM than healthy individuals. METHODS We recruited 60 preDM and 60 healthy individuals from a community of 22,343 adults in Beijing China, and arranged each subject to complete up to seven repeated clinical visits with measures of 6 cardiopulmonary biomarkers, 6 cytokines, 4 blood pressure and endothelial function outcomes and 4 glucose metabolism biomarkers.. Moving averaged daily ambient PM2.5 in preceding 1-14 days was matched to each subject and the PM2.5 associated effect on multiple biomarkers was estimated and compared between PreDM and healthy subjects based on linear mixed effect model. RESULTS All the subjects exhibited significant acute elevation of exhaled nitric oxide, white blood cells, neutrophils, interleukin-1α, and glycated haemoglobin with increased exposure to PM2.5. PreDM subjects had significant stronger adverse changes compared to healthy subjects in 6 cardiometabolic biomarkers, namely, interleukin-2, interleukin-8, systolic and diastolic blood pressure, augmentation pressure, and glucose. The maximum elevation of these 6 biomarkers in PreDM subjects were 8.6% [CI: 4.1-13.3%], 10.0% [CI: 3.9-16.4%], 1.9% [CI: 0.2-3.6%], 1.2% [CI: - 0.1-2.4%], 5.7% [CI: - 0.1-11.8%], 2.4% [CI: 0.7-4.2%], respectively, per an interquartile increase of ambient PM2.5 (61.4 μg m- 3) throughout the exposure window of the preceding 1-14 days. No significant difference was observed for the changes in pulmonary biomarkers between the two groups. CONCLUSIONS PreDM individuals are more susceptible to the acute cardiometabolic effect of air pollution than the healthy individuals. A considerable public health burden can be inferred, given the high prevalence of prediabetes and the ubiquity of air pollution in China and worldwide.
Collapse
Affiliation(s)
- Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing, 100871, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing, 100871, China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing, 100871, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing, 100871, China
| | - Tao Xue
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing, 100871, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing, 100871, China
| | - Yunfei Fan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing, 100871, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing, 100871, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing, 100871, China.
| |
Collapse
|
55
|
Association Between Long-term Exposure to PM2.5 and Incidence of Type 2 Diabetes in Taiwan. Epidemiology 2019; 30 Suppl 1:S67-S75. [DOI: 10.1097/ede.0000000000001035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
56
|
Abstract
Air pollution has a compelling history in the development of human cultures. Fossil fuels opened a new human cultural chapter of extraordinary technical and economic growth while bringing about noxious and unhealthful combustion byproducts to breathe. Toxicology saw its birth in the modern world with demonstrating the potential harmful effects of breathing smoke in its various forms. The empirical nature of toxicology provided insights and underpinnings to epidemiological studies providing biological plausibility and relative risk attributions. As toxicology evolves with its sister sciences, there will be gains in fundamental understandings of susceptibility and potential long-term risks of air pollution with revelation of potential interventions and remedies for those affected.
Collapse
Affiliation(s)
- Daniel L Costa
- University of North Carolina, U.S. Environmental Protection Emeritus, Research Triangle Park, North Carolina
| |
Collapse
|
57
|
Zhu X, Qiu H, Wang L, Duan Z, Yu H, Deng R, Zhang Y, Zhou L. Risks of hospital admissions from a spectrum of causes associated with particulate matter pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:90-100. [PMID: 30502738 DOI: 10.1016/j.scitotenv.2018.11.240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 05/04/2023]
Abstract
Ambient particulate matter (PM) pollution has been linked to elevated hospital admissions (HAs), especially from respiratory and cardiovascular diseases. However, few studies have estimated the associations between PM pollution and HAs for a wider range of broad disease categories. This study aimed to evaluate the effects of PM with aerodynamic diameter ≤ 2.5 μm (PM2.5) and ≤10 μm (PM10) on a range of broad and specific causes of HAs in Chengdu, China during 2015-2016, using a generalized additive model (GAM). Age-, gender- and season-specific analyses were also performed on the broad categories. We further calculated the corresponding morbidity burden due to PM exposure. During the study period, the daily mean level for PM2.5 and PM10 was 57.3 μg/m3 and 94.7 μg/m3, respectively. For broad disease categories, each 10 μg/m3 increase in PM10 at lag06 was associated with increments of 0.65% (95% CI: 0.32%-0.99%) in HAs from respiratory, 0.49% (95% CI: 0.04%-0.95%) from circulatory and 0.91% (95% CI: 0.15%-1.69%) from skin and subcutaneous tissue diseases. By contrast, only respiratory HAs showed a significant positive association with elevated PM2.5 at lag06 (1.03% increase per 10 μg/m3, 95% CI: 0.50%-1.56%, p < 0.001). Increased HAs risks for several more refined specific causes within respiratory, circulatory, skin and subcutaneous tissue, nervous and genitourinary diseases were also observed. Subgroup analyses indicated that effect estimates were modified by age, gender and season. Overall, the largest morbidity burden was observed in myocardial infarction, about 11.27% (95% CI: 3.45%-18.07%) and 11.11% (95% CI: 4.07%-17.27%) of HAs for myocardial infarction could be attributable to PM2.5 and PM10 levels exceeding the WHO's air quality guidelines (24-h mean: 25 μg/m3 for PM2.5 and 50 μg/m3 for PM10). Our study suggests that both PM2.5 and PM10 increase risks of morbidity from broad range of causes of HAs in Chengdu, and result in substantial morbidity burden.
Collapse
Affiliation(s)
- Xiaojuan Zhu
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China; Center for Artificial Intelligence and Smart Health, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Hang Qiu
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China; Center for Artificial Intelligence and Smart Health, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Liya Wang
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhanqi Duan
- Health and Family Planning Information Center of Sichuan Province, Chengdu, China
| | - Haiyan Yu
- School of Economics and Management, Chongqing University of Posts and Telecommunications, Chongqing, China; Department of Statistics, The Pennsylvania State University, University Park, PA, USA
| | - Ren Deng
- Health and Family Planning Information Center of Sichuan Province, Chengdu, China
| | - Yanlong Zhang
- Chengdu Shulianyikang Technology Co., Ltd, Chengdu, China
| | - Li Zhou
- Health and Family Planning Information Center of Sichuan Province, Chengdu, China.
| |
Collapse
|
58
|
Diabetes Status and Susceptibility to the Effects of PM2.5 Exposure on Cardiovascular Mortality in a National Canadian Cohort. Epidemiology 2019; 29:784-794. [PMID: 30074537 DOI: 10.1097/ede.0000000000000908] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Diabetes is infrequently coded as the primary cause of death but may contribute to cardiovascular disease (CVD) mortality in response to fine particulate matter (PM2.5) exposure. We analyzed all contributing causes of death to examine susceptibility of diabetics to CVD mortality from long-term exposure. METHODS We linked a subset of the 2001 Canadian Census Health and Environment Cohort (CanCHEC) with 10 years of follow-up to all causes of death listed on death certificates. We used survival models to examine the association between CVD deaths (n = 123,500) and exposure to PM2.5 among deaths that co-occurred with diabetes (n = 20,600) on the death certificate. More detailed information on behavioral covariates and diabetes status at baseline available in the Canadian Community Health Survey (CCHS)-mortality cohort (n = 12,400 CVD deaths, with 2,800 diabetes deaths) complemented the CanCHEC analysis. RESULTS Among CanCHEC subjects, comention of diabetes on the death certificate increased the magnitude of association between CVD mortality and PM2.5 (HR = 1.51 [1.39-1.65] per 10 μg/m) versus all CVD deaths (HR = 1.25 [1.21-1.29]) or CVD deaths without diabetes (HR = 1.20 [1.16-1.25]). Among CCHS subjects, diabetics who used insulin or medication (included as proxies for severity) had higher HR estimates for CVD deaths from PM2.5 (HR = 1.51 [1.08-2.12]) relative to the CVD death estimate for all respondents (HR = 1.31 [1.16-1.47]). CONCLUSIONS Mention of diabetes on the death certificate resulted in higher magnitude associations between PM2.5 and CVD mortality, specifically among those who manage their diabetes with insulin or medication. Analyses restricted to the primary cause of death likely underestimate the role of diabetes in air pollution-related mortality. See video abstract at, http://links.lww.com/EDE/B408.
Collapse
|
59
|
ELSHAHIDI MH. Outdoor Air Pollution and Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2019; 48:9-19. [PMID: 30847307 PMCID: PMC6401584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND During the past 20 years, the prevalence of gestational diabetes mellitus (GDM) has increased by ∼10%-100% in several race/ethnicity groups. There is an association between ambient air pollution (AAP) and GDM. This study aimed to summarize the evidence about the association between AAP and GDM. METHODS PubMed, Embase, Scopus, Web of Science and Cochrane Library were searched from inception till Oct 2017. Studies about the association between ambient air pollutants levels and GDM were included. Pooled effect estimates and their 95% confidence interval (CI) were calculated using R. RESULTS Eight studies met the inclusion criteria. The odds of developing GDM upon exposure to CO (per 1 ppm), NO (per 1 ppb), NO2 (per 10 μg/m3), NOx (per 1 ppb), O3 (per 10 ppb), SO2 (per 10 ppb), PM10 (per 10 μg/m3) and PM2.5 (per 10 μg/m3) were 1.47 (95% CI 0.88-2.06), 1.04 (95% CI 1.03-1.06), 1 (95% CI 0.93-1.08), 1.02 (95% CI 1-1.04), 1.05 (95% CI 0.94-1.16), 1.39 (95% CI 1.04-1.73), 0.97 (95% CI 0.94-0.99) and 1.12 (95% CI 0.93-1.31), respectively. CONCLUSION The current literature showed evidence for an association between AAP and GDM. However, further well-designed studies are needed.
Collapse
|
60
|
Yang Y, Guo Y, Qian ZM, Ruan Z, Zheng Y, Woodward A, Ai S, Howard SW, Vaughn MG, Ma W, Wu F, Lin H. Ambient fine particulate pollution associated with diabetes mellitus among the elderly aged 50 years and older in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:815-823. [PMID: 30243190 DOI: 10.1016/j.envpol.2018.09.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
The linkage between ambient air pollution exposure and occurrence of diabetes mellitus is not well defined. This study examined the association between exposure to fine particles (PM2.5) and the prevalence of diabetes among Chinese elderly people. We surveyed 11,504 adults aged ≥50 years in China, estimated the annual concentrations of ambient PM2.5 using a satellite-based model of aerosol optical depth information. We employed a generalized mixed effects model to examine the association between PM2.5 and the prevalence of diabetes and explored potential effect modifiers. We estimated diabetes burden attributable to ambient PM2.5 if the observed association is indeed causal. The diabetes prevalence among the participants was 6.5% (n = 745). Our analysis found a statistically significant association between PM2.5 and diabetes. The adjusted odds ratio was 1.27 (95% confidence interval (CI), 1.12, 1.43) for each 10 μg/m3 increment in ambient PM2.5. Stratified analyses found a lower association among the participants with higher consumption of fruit. We estimated that 22.02% (95% CI: 8.59%, 43.29%) of the diabetes cases could be ascribable to ambient PM2.5. Our finding suggests that PM2.5 exposures could increase the risk of diabetes, and if causal, could be responsible for substantial burden of diabetes among the Chinese elderly; and higher intakes of fruit might reduce the harmful effects of PM2.5, however, due to the limitation of the cross-sectional study design, more studies are warranted to confirm this observation.
Collapse
Affiliation(s)
- Yin Yang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yanfei Guo
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Zhengmin Min Qian
- College for Public Health & Social Justice, Saint Louis University, St. Louis, Missouri, USA
| | - Zengliang Ruan
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Zheng
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Alistair Woodward
- School of Population Health, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Siqi Ai
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Steven W Howard
- College for Public Health & Social Justice, Saint Louis University, St. Louis, Missouri, USA
| | - Michael G Vaughn
- College for Public Health & Social Justice, Saint Louis University, St. Louis, Missouri, USA
| | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Fan Wu
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China.
| | - Hualiang Lin
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
61
|
Dang J, Yang M, Zhang X, Ruan H, Qin G, Fu J, Shen Z, Tan A, Li R, Moore J. Associations of Exposure to Air Pollution with Insulin Resistance: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2593. [PMID: 30463387 PMCID: PMC6266153 DOI: 10.3390/ijerph15112593] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
In this article, we review the available evidence and explore the association between air pollution and insulin resistance (IR) using meta-analytic techniques. Cohort studies published before January 2018 were selected through English-language literature searches in nine databases. Six cohort studies were included in our sample, which assessed air pollutants including PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm), NO₂(nitrogen dioxide), and PM10 (particulate matter with an aerodynamic diameter less than 10 μm). Percentage change in insulin or insulin resistance associated with air pollutants with corresponding 95% confidence interval (CI) was used to evaluate the risk. A pooled effect (percentage change) was observed, with a 1 μg/m³ increase in NO₂ associated with a significant 1.25% change (95% CI: 0.67, 1.84; I² = 0.00%, p = 0.07) in the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and a 0.60% change (95% CI: 0.17, 1.03; I² = 30.94%, p = 0.27) in insulin. Similar to the analysis of NO₂, a 1 μg/m³ increase in PM10 was associated with a significant 2.77% change (95% CI: 0.67, 4.87; I² = 94.98%, p < 0.0001) in HOMA-IR and a 2.75% change in insulin (95% CI: 0.45, 5.04; I² = 58.66%, p = 0.057). No significant associations were found between PM2.5 and insulin resistance biomarkers. We conclude that increased exposure to air pollution can lead to insulin resistance, further leading to diabetes and cardiometabolic diseases. Clinicians should consider the environmental exposure of patients when making screening and treatment decisions for them.
Collapse
Affiliation(s)
- Jiajia Dang
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Mengtong Yang
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Xinge Zhang
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Haotian Ruan
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Guiyu Qin
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Jialin Fu
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Ziqiong Shen
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Anran Tan
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Rui Li
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Justin Moore
- Department of Family & Community Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
- Department of Epidemiology & Prevention, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
- Department of Implementation Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
62
|
Kim H, Kim W, Choi JE, Kim C, Sohn J. Short-term Effect of Ambient Air Pollution on Emergency Department Visits for Diabetic Coma in Seoul, Korea. J Prev Med Public Health 2018; 51:265-274. [PMID: 30514056 PMCID: PMC6283743 DOI: 10.3961/jpmph.18.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022] Open
Abstract
Objectives A positive association between air pollution and both the incidence and prevalence of diabetes mellitus (DM) has been reported in some epidemiologic and animal studies, but little research has evaluated the relationship between air pollution and diabetic coma. Diabetic coma is an acute complication of DM caused by diabetic ketoacidosis or hyperosmolar hyperglycemic state, which is characterized by extreme hyperglycemia accompanied by coma. We conducted a time-series study with a generalized additive model using a distributed-lag non-linear model to assess the association between ambient air pollution (particulate matter less than 10 μm in aerodynamic diameter, nitrogen dioxide [NO2], sulfur dioxide, carbon monoxide, and ozone) and emergency department (ED) visits for DM with coma in Seoul, Korea from 2005 to 2009. Methods The ED data and medical records from the 3 years previous to each diabetic coma event were obtained from the Health Insurance Review and Assessment Service to examine the relationship with air pollutants. Results Overall, the adjusted relative risks (RRs) for an interquartile range (IQR) increment of NO2 was statistically significant at lag 1 (RR, 1.125; 95% confidence interval [CI], 1.039 to 1.219) in a single-lag model and both lag 0-1 (RR, 1.120; 95% CI, 1.028 to 1.219) and lag 0-3 (RR, 1.092; 95% CI, 1.005 to 1.186) in a cumulative-lag model. In a subgroup analysis, significant positive RRs were found for females for per-IQR increments of NO2 at cumulative lag 0-3 (RR, 1.149; 95% CI, 1.022 to 1.291). Conclusions The results of our study suggest that ambient air pollution, specifically NO2, is associated with ED visits for diabetic coma.
Collapse
Affiliation(s)
- Hyunmee Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Woojin Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Eun Choi
- Department of Public Health, Yonsei University Graduate School, Seoul, Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.,Department of Public Health, Yonsei University Graduate School, Seoul, Korea.,Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Korea
| | - Jungwoo Sohn
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Korea
| |
Collapse
|
63
|
Pardo M, Kuperman Y, Levin L, Rudich A, Haim Y, Schauer JJ, Chen A, Rudich Y. Exposure to air pollution interacts with obesogenic nutrition to induce tissue-specific response patterns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:532-543. [PMID: 29684880 DOI: 10.1016/j.envpol.2018.04.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Obesity and exposure to particular matter (PM) have become two leading global threats to public health. However, the exact mechanisms and tissue-specificity of their health effects are largely unknown. Here we investigate whether a metabolic challenge (early nutritional obesity) synergistically interacts with an environmental challenge (PM exposure) to alter genes representing key response pathways, in a tissue-specific manner. Mice subjected to 7 weeks obesogenic nutrition were exposed every other day during the final week and a half to aqueous extracts of PM collected in the city of London (UK). The expression of 61 selected genes representing key response pathways were investigated in lung, liver, white and brown adipose tissues. Principal component analysis (PCA) revealed distinct patterns of expression changes between the 4 tissues, particularly in the lungs and the liver. Surprisingly, the lung responded to the nutrition challenge. The response of these organs to the PM challenge displayed opposite patterns for some key genes, in particular, those related to the Nrf2 pathway. While the contribution to the variance in gene expression changes in mice exposed to the combined challenge were largely similar among the tissues in PCA1, PCA2 exhibited predominant contribution of inflammatory and oxidative stress responses to the variance in the lungs, and a greater contribution of autophagy genes and MAP kinases in adipose tissues. Possible involvement of alterations in DNA methylation was demonstrated by cell-type-specific responses to a methylation inhibitor. Correspondingly, the DNA methyltransferase Dnmt3a2 increased in the lungs but decreased in the liver, demonstrating potential tissue-differential synergism between nutritional and PM exposure. The results suggest that urban PM, containing dissolved metals, interacts with obesogenic nutrition to regulate diverse response pathways including inflammation and oxidative stress, in a tissue-specific manner. Tissue-differential effects on DNA methylation may underlie tissue-specific responses to key stress-response genes such as catalase and Nrf2.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Liron Levin
- Department of Life Sciences, Bioinformatics Core Facility, Ben-Gurion University of the Negev, Beer Sheva, 84103, Israel
| | - Assaf Rudich
- The Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel; The National Institute of Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Yulia Haim
- The Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel; The National Institute of Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
64
|
Hernandez AM, Gimeno Ruiz de Porras D, Marko D, Whitworth KW. The Association Between PM2.5 and Ozone and the Prevalence of Diabetes Mellitus in the United States, 2002 to 2008. J Occup Environ Med 2018; 60:594-602. [PMID: 29634612 PMCID: PMC8851375 DOI: 10.1097/jom.0000000000001332] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To examine the association between air pollution and diabetes prevalence in the United States, 2002 to 2008. METHODS Annual average particulate matter (PM2.5) and ozone concentrations were calculated using daily county-level data from the CDC's Tracking Network. Individual-level outcome and covariate data were obtained from the Centers for Disease Control and Prevention (CDC) Behavioral Risk Factor Surveillance System for 862,519 individuals. We used Poisson regression analyses to examine associations between each air pollutant (per 10-unit increase) with diabetes, including regional sub-analyses. Analyses were adjusted for year, age, sex, race, ethnicity, education, income, smoking status, body mass index, exercise, and asthma. RESULTS Positive associations between each pollutant and diabetes were found (PM2.5: prevalence ratio [PR] = 1.10; 95% confidence interval [CI] = 1.03, 1.17; ozone: PR = 1.06; 95% CI = 1.03, 1.09). There was limited evidence of effect modification by region. CONCLUSIONS Interventions to reduce ambient air pollution may help alleviate the diabetes burden in the US.
Collapse
Affiliation(s)
- Ashley M Hernandez
- Department of Epidemiology Human Genetics and Environmental Sciences, UTHealth School of Public Health in San Antonio, San Antonio (Ms Hernandez, Dr Gimeno Ruiz de Porras, Dr Whitworth); Southwest Center for Occupational and Environmental Health (SWCOEH) (Dr Gimeno Ruiz de Porras, Dr Whitworth); Center for Research in Occupational Health (CISAL), Universitat Pompeu Fabra, Barcelona (Dr Gimeno Ruiz de Porras); Centro de Investigacion Biomedica en Red de Epidemiologia y Salud Publica (CIBERESP) (Dr Gimeno Ruiz de Porras), Spain; Department of Management, Policy and Community Health (Dr Marko); Institute for Health Policy, UTHealth School of Public Health (Dr Marko), Houston, Texas
| | | | | | | |
Collapse
|
65
|
Chen M, Zhou H, Xu Y, Qiu L, Hu Z, Qin X, Chen S, Zhang Y, Cao Q, Abu-Amer Y, Ying Z. From the Cover: Lung-Specific Overexpression of Constitutively Active IKK2 Induces Pulmonary and Systemic Inflammations but Not Hypothalamic Inflammation and Glucose Intolerance. Toxicol Sci 2018; 160:4-14. [PMID: 29036520 DOI: 10.1093/toxsci/kfx154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lung is constantly exposed to ambient pollutants such as ambient fine particulate matter (PM2.5), making it one of the most frequent locations of inflammation in the body. Given the establishment of crucial role of inflammation in the pathogenesis of cardiometabolic diseases, pulmonary inflammation is thus widely believed to be an important risk factor for cardiometabolic diseases. However, the causality between them has not yet been well established. To determine if pulmonary inflammation is sufficient to cause adverse cardiometabolic effects, SFTPC-rtTA+/-tetO-cre+/-pROSA-inhibitor κB kinase 2(IKK2)ca+/- (LungIKK2ca) and littermate SFTPC-rtTA+/-tetO-cre-/-pROSA-IKK2ca+/- wildtype (WT) mice were fed with doxycycline diet to induce constitutively active Ikk2 (Ikk2ca) overexpression in the lung and their pulmonary, systemic, adipose, and hypothalamic inflammations, vascular function, and glucose homeostasis were assessed. Feeding with doxycycline diet resulted in IKK2ca overexpression in the lungs of LungIKK2ca but not WT mice. This induction of IKK2ca was accompanied by marked pulmonary inflammation as evidenced by significant increases in bronchoalveolar lavage fluid leukocytes, pulmonary macrophage infiltration, and pulmonary mRNA expression of tumor necrosis factor α (Tnfα) and interleukin-6 (Il-6). This pulmonary inflammation due to lung-specific overexpression of IKK2ca was sufficient to increase circulating TNFα and IL-6 levels, adipose expression of Tnfα and Il-6 mRNA, aortic endothelial dysfunction, and systemic insulin resistance. Unexpectedly, no significant alteration in hypothalamic expression of Tnfα and Il-6 mRNA and glucose intolerance were observed in these mice. Pulmonary inflammation is sufficient to induce systemic inflammation, endothelial dysfunction, and insulin resistance, but not hypothalamic inflammation and glucose intolerance.
Collapse
Affiliation(s)
- Minjie Chen
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huifen Zhou
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Pathology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Lianglin Qiu
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Occupational and Environmental Health, School of Public Health, Nantong University, Nantong 226019, China
| | - Ziying Hu
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Endocrinology, The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450003, China
| | - Xiaobo Qin
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Sufang Chen
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yuhao Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yousef Abu-Amer
- Orthopedics and Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri63110
| | - Zhekang Ying
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
66
|
Rajkumar S, Clark ML, Young BN, Benka-Coker ML, Bachand AM, Brook RD, Nelson TL, Volckens J, Reynolds SJ, L’Orange C, Good N, Koehler K, Africano S, Osorto Pinel AB, Peel JL. Exposure to household air pollution from biomass-burning cookstoves and HbA1c and diabetic status among Honduran women. INDOOR AIR 2018; 28:10.1111/ina.12484. [PMID: 29896912 PMCID: PMC6292747 DOI: 10.1111/ina.12484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/08/2018] [Indexed: 05/05/2023]
Abstract
Household air pollution from biomass cookstoves is estimated to be responsible for more than two and a half million premature deaths annually, primarily in low and middle-income countries where cardiometabolic disorders, such as Type II Diabetes, are increasing. Growing evidence supports a link between ambient air pollution and diabetes, but evidence for household air pollution is limited. This cross-sectional study of 142 women (72 with traditional stoves and 70 with cleaner-burning Justa stoves) in rural Honduras evaluated the association of exposure to household air pollution (stove type, 24-hour average kitchen and personal fine particulate matter [PM2.5 ] mass and black carbon) with glycated hemoglobin (HbA1c) levels and diabetic status based on HbA1c levels. The prevalence ratio (PR) per interquartile range increase in pollution concentration indicated higher prevalence of prediabetes/diabetes (vs normal HbA1c) for all pollutant measures (eg, PR per 84 μg/m3 increase in personal PM2.5 , 1.49; 95% confidence interval [CI], 1.11-2.01). Results for HbA1c as a continuous variable were generally in the hypothesized direction. These results provide some evidence linking household air pollution with the prevalence of prediabetes/diabetes, and, if confirmed, suggest that the global public health impact of household air pollution may be broader than currently estimated.
Collapse
Affiliation(s)
- Sarah Rajkumar
- Department of Environmental and Radiological Health Sciences, Colorado State University, Campus Delivery 1681, Fort Collins, CO 80523, USA
| | - Maggie L. Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Campus Delivery 1681, Fort Collins, CO 80523, USA
| | - Bonnie N. Young
- Department of Environmental and Radiological Health Sciences, Colorado State University, Campus Delivery 1681, Fort Collins, CO 80523, USA
| | - Megan L. Benka-Coker
- Department of Environmental and Radiological Health Sciences, Colorado State University, Campus Delivery 1681, Fort Collins, CO 80523, USA
| | - Annette M. Bachand
- Department of Environmental and Radiological Health Sciences, Colorado State University, Campus Delivery 1681, Fort Collins, CO 80523, USA
| | - Robert D. Brook
- Division of Cardiovascular Medicine, University of Michigan Medical School, Domino’s Farms, 24 Frank Lloyd Wright Dr, Ann Arbor, MI 48105, USA
| | - Tracy L. Nelson
- Department of Health and Exercise Science, Colorado State University, 215D Moby Complex B Wing, Fort Collins, CO 80523, USA
| | - John Volckens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Campus Delivery 1681, Fort Collins, CO 80523, USA
- Department of Mechanical Engineering, Colorado State University, 306 Scott Bioengineering Building, Fort Collins, CO 80523, USA
| | - Stephen J. Reynolds
- Department of Environmental and Radiological Health Sciences, Colorado State University, Campus Delivery 1681, Fort Collins, CO 80523, USA
- Mountain and Plains ERC, Colorado School of Public Health, 13001 E. 17th Place, Mail Stop B119, Aurora, CO 80045, USA
| | - Christian L’Orange
- Department of Mechanical Engineering, Colorado State University, 306 Scott Bioengineering Building, Fort Collins, CO 80523, USA
| | - Nicholas Good
- Department of Environmental and Radiological Health Sciences, Colorado State University, Campus Delivery 1681, Fort Collins, CO 80523, USA
| | - Kirsten Koehler
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | - Sebastian Africano
- Trees, Water & People, 633 Remington Street, Fort Collins, CO 80524, USA
| | - Anibal B. Osorto Pinel
- Trees, Water & People, 633 Remington Street, Fort Collins, CO 80524, USA
- Asociación Hondureña para el desarrollo, Calle Principal, Casa No. 2245, Tegucigalpa, Honduras
| | - Jennifer L. Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Campus Delivery 1681, Fort Collins, CO 80523, USA
| |
Collapse
|
67
|
Eze IC, Foraster M, Schaffner E, Vienneau D, Héritier H, Rudzik F, Thiesse L, Pieren R, Imboden M, von Eckardstein A, Schindler C, Brink M, Cajochen C, Wunderli JM, Röösli M, Probst-Hensch N. Long-term exposure to transportation noise and air pollution in relation to incident diabetes in the SAPALDIA study. Int J Epidemiol 2018; 46:1115-1125. [PMID: 28338949 PMCID: PMC5837207 DOI: 10.1093/ije/dyx020] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 12/13/2022] Open
Abstract
Background Epidemiological studies have inconsistently linked transportation noise and air pollution (AP) with diabetes risk. Most studies have considered single noise sources and/or AP, but none has investigated their mutually independent contributions to diabetes risk. Methods We investigated 2631 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA), without diabetes in 2002 and without change of residence between 2002 and 2011. Using questionnaire and biomarker data, incident diabetes cases were identified in 2011. Noise and AP exposures in 2001 were assigned to participants’ residences (annual average road, railway or aircraft noise level during day-evening-night (Lden), total night number of noise events, intermittency ratio (temporal variation as proportion of event-based noise level over total noise level) and nitrogen dioxide (NO2) levels. We applied mixed Poisson regression to estimate the relative risk (RR) of diabetes and their 95% confidence intervals (CI) in mutually-adjusted models. Results Diabetes incidence was 4.2%. Median [interquartile range (IQR)] road, railway, aircraft noise and NO2 were 54 (10) dB, 32 (11) dB, 30 (12) dB and 21 (15) μg/m3, respectively. Lden road and aircraft were associated with incident diabetes (respective RR: 1.35; 95% CI: 1.02–1.78 and 1.86; 95% CI: 0.96–3.59 per IQR) independently of Lden railway and NO2 (which were not associated with diabetes risk) in mutually adjusted models. We observed stronger effects of Lden road among participants reporting poor sleep quality or sleeping with open windows. Conclusions Transportation noise may be more relevant than AP in the development of diabetes, potentially acting through noise-induced sleep disturbances.
Collapse
Affiliation(s)
- Ikenna C Eze
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Maria Foraster
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Emmanuel Schaffner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Harris Héritier
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Franziska Rudzik
- Center for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Laurie Thiesse
- Center for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Reto Pieren
- Empa, Laboratory for Acoustics/Noise Control, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Christian Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Mark Brink
- Federal Office for the Environment, Bern, Switzerland
| | - Christian Cajochen
- Center for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Jean-Marc Wunderli
- Empa, Laboratory for Acoustics/Noise Control, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
68
|
Lucht SA, Hennig F, Matthiessen C, Ohlwein S, Icks A, Moebus S, Jöckel KH, Jakobs H, Hoffmann B. Air Pollution and Glucose Metabolism: An Analysis in Non-Diabetic Participants of the Heinz Nixdorf Recall Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:047001. [PMID: 29616776 PMCID: PMC6071794 DOI: 10.1289/ehp2561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Despite the importance of understanding the connection between air pollution exposure and diabetes, studies investigating links between air pollution and glucose metabolism in nondiabetic adults are limited. OBJECTIVE We aimed to estimate the association of medium-term air pollution exposures with blood glucose and glycated hemoglobin A1c (HbA1c) among nondiabetics. METHODS This study included observations from nondiabetic participants (nobs=7,108) of the population-based Heinz Nixdorf Recall study at baseline (2000–2003) and follow-up examination (2006–2008). Daily fine particulate matter (aerodynamic diameter≤2.5 μm, PM2.5; aerodynamic diameter≤10 μm, PM10), accumulation mode particle number (PNAM), and nitrogen dioxide (NO2) exposures were estimated at participants’ residences using the spatiotemporal European Air Pollution Dispersion (EURAD) chemistry transport model. We evaluated the associations between medium-term air pollution exposures (28- and 91-d means) and glucose metabolism measures using mixed linear regression and adjusting for season, meteorology, and personal characteristics. A range of other exposure windows (1-, 2-, 3-, 7-, 14-, 45-, 60-, 75-, 105-, 120-, and 182-d means) were also evaluated to identify potentially relevant biological windows. RESULTS We observed positive associations between PM2.5 and PNAM exposures and blood glucose levels [e.g., 28-d PM2.5: 0.91 mg/dL (95% CI: 0.38, 1.44) per 5.7 μg/m3]. PM2.5, PM10, and PNAM exposures were positively associated with HbA1c [e.g., 91-d PM2.5: 0.07 p.p. (95% CI: 0.04, 0.10) per 4.0 μg/m3]. Mean exposures during longer exposure windows (75- to 105-d) were most strongly associated with HbA1c, whereas 7- to 45-d exposures were most strongly associated with blood glucose. NO2 exposure was not associated with blood glucose or with HbA1c. CONCLUSIONS Medium-term PM and PNAM exposures were positively associated with glucose measures in nondiabetic adults. These findings indicate that reducing ambient air pollution levels may decrease the risk of diabetes. https://doi.org/10.1289/EHP2561.
Collapse
Affiliation(s)
- Sarah A Lucht
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Frauke Hennig
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Clara Matthiessen
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Simone Ohlwein
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrea Icks
- Institute for Health Services Research and Health Economics, Centre for Health and Society, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Health Services Research and Health Economics, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Susanne Moebus
- Institute of Medical Informatics, University Hospital Essen, University of Duisburg-Essen, Biometry and Epidemiology (IMIBE), Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, University Hospital Essen, University of Duisburg-Essen, Biometry and Epidemiology (IMIBE), Essen, Germany
| | - Hermann Jakobs
- Rhenish Institute for Environmental Research (RIU), University of Cologne, Cologne, Germany
| | - Barbara Hoffmann
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
69
|
Mudumbi JBN, Ntwampe SKO, Mekuto L, Matsha T, Itoba-Tombo EF. The role of pollutants in type 2 diabetes mellitus (T2DM) and their prospective impact on phytomedicinal treatment strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:262. [PMID: 29610974 DOI: 10.1007/s10661-018-6634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of diabetes and it is characterized by high blood sugar and abnormal sera lipid levels. Although the specific reasons for the development of these abnormalities are still not well understood, traditionally, genetic and lifestyle behavior have been reported as the leading causes of this disease. In the last three decades, the number of diabetic patients has drastically increased worldwide, with current statistics suggesting the number is to double in the next two decades. To combat this incurable ailment, orthodox medicines, to which economically disadvantaged patients have minimal access to, have been used. Thus, a considerable amalgamation of medicinal plants has recently been proven to possess therapeutic capabilities to manage T2DM, and this has prompted studies primarily focusing on the healing aspect of these plants, and ultimately, their commercialization. Hence, this review aims to highlight the potential threat of pollutants, i.e., polyfluoroalkyl compounds (PFCs), endocrine disrupting chemicals (EDCs) and heavy metals, to medicinal plants, and their prospective impact on the phytomedicinal therapy strategies for T2DM. It is further suggested that auxiliary research be undertaken to better comprehend the factors that influence the uptake of these compounds by these plants. This should include a comprehensive risk assessment of phytomedicinal products destined for the treatment of T2DM. Regulations that control the use of PFC-precursors in certain developing countries are also long overdue.
Collapse
Affiliation(s)
- John Baptist Nzukizi Mudumbi
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa.
| | - Seteno Karabo Obed Ntwampe
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, PO Box 17011, Johannesburg, Gauteng, 2028, South Africa
| | - Tandi Matsha
- Department of Bio-Medical sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Elie Fereche Itoba-Tombo
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| |
Collapse
|
70
|
Rao X, Zhong J, Brook RD, Rajagopalan S. Effect of Particulate Matter Air Pollution on Cardiovascular Oxidative Stress Pathways. Antioxid Redox Signal 2018; 28:797-818. [PMID: 29084451 PMCID: PMC5831906 DOI: 10.1089/ars.2017.7394] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Particulate matter (PM) air pollution is a leading cause of global cardiovascular morbidity and mortality. Understanding the biological action of PM is of particular importance in improvement of public health. Recent Advances: Both fine (PM <2.5 μM) and ultrafine particles (<0.1 μM) are widely believed to mediate their effects through redox regulated pathways. A rather simplistic graded ramp model of redox stress has been replaced by a more sophisticated understanding of the role of oxidative stress in signaling, and the realization that many of the observed effects may involve disruption and/or enhancement of normal endogenous redox signaling and induction of a potent immune-mediated response, through entrainment of multiple reactive oxygen species (ROS). CRITICAL ISSUES The molecular events by which pulmonary oxidative stress in response to inhalational exposure to air pollution triggers inflammation, major ROS (e.g., superoxide, hydroxyl radical, nitric oxide, and peroxynitrite) generated in air pollution exposure, types of oxidative tissue damage in target organs, contributions of nonimmune and immune cells in inflammation, and the role of protective proteins (e.g., surfactant, proteins, and antioxidants) are highly complex and may differ depending on models and concomitant disease states. FUTURE DIRECTIONS While the role of oxidative stress in the lung has been well demonstrated, the role of oxidative stress in mediating systemic effects especially in inflammation and injury processes needs further work. The role of antioxidant defenses with chronic exposure will also need further exploration. Antioxid. Redox Signal. 28, 797-818.
Collapse
Affiliation(s)
- Xiaoquan Rao
- 1 Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University , Cleveland, Ohio
| | - Jixin Zhong
- 1 Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University , Cleveland, Ohio
| | - Robert D Brook
- 2 Department of Medicine, Division of Cardiovascular Medicine, University of Michigan , Ann Arbor, Michigan
| | - Sanjay Rajagopalan
- 1 Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
71
|
Ozone modifies the metabolic and endocrine response to glucose: Reproduction of effects with the stress hormone corticosterone. Toxicol Appl Pharmacol 2018; 342:31-38. [DOI: 10.1016/j.taap.2018.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/16/2018] [Accepted: 01/28/2018] [Indexed: 12/23/2022]
|
72
|
Wang F, Wang J, Li Y, Han X, Hu H, Yu C, Yuan J, Yao P, Miao X, Wei S, Wang Y, Chen W, Liang Y, Guo H, Zhang X, Yang H, Wu T, He M. Associations between daily cooking duration and the prevalence of diabetes and prediabetes in a middle-aged and elderly Chinese population: A cross-sectional study. INDOOR AIR 2018; 28:238-246. [PMID: 29028277 DOI: 10.1111/ina.12434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Experimental and epidemiological studies indicated that ambient air pollution was positively associated with diabetes. Few studies investigated the associations between household air pollution, for example, daily cooking duration and diabetes or prediabetes. We conducted a cross-sectional study to investigate the associations of daily cooking duration with the prevalence of diabetes and prediabetes among a middle-aged and elderly population. A total of 26 089 individuals (11 250 males and 14 839 females) derived from the Dongfeng-Tongji cohort study were included. Daily cooking duration was assessed by questionnaire. Diabetes and prediabetes were identified according to the criterion of American Diabetes Association. No significant association was observed between daily cooking duration and the prevalence risk of diabetes (odds ratio[OR] = 0.97, 95% confidence interval[CI]: [0.81-1.16], P for trend = .74); however, longer daily cooking duration was associated with higher prevalence risk of prediabetes (OR = 1.26, 95% CI: 1.07-1.47; P for trend = .003) and hyperglycemia (OR = 1.21, 95% CI: 1.05-1.41; P for trend = .005). Our study suggested that daily cooking duration was not associated with diabetes but with higher prevalence risk of prediabetes/hyperglycemia in a middle-aged and elderly Chinese population.
Collapse
Affiliation(s)
- F Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X Han
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H Hu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - C Yu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Yuan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - P Yao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - S Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - W Chen
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Liang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, China
| | - T Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - M He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
73
|
Münzel T, Sørensen M, Gori T, Schmidt FP, Rao X, Brook FR, Chen LC, Brook RD, Rajagopalan S. Environmental stressors and cardio-metabolic disease: part II-mechanistic insights. Eur Heart J 2018; 38:557-564. [PMID: 27460891 PMCID: PMC5381593 DOI: 10.1093/eurheartj/ehw294] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
Environmental factors can act as facilitators of chronic non-communicable diseases. Ambient noise and air pollution collectively outrank all other environmental risk factors in importance, contributing to over 75% of the disease and disability burden associated with known environmental risk factors. In the first part of this review, we discussed the global burden and epidemiologic evidence supporting the importance of these novel risk factors as facilitators of cardiometabolic disease. In this part, we will discuss pathophysiological mechanisms responsible for noise and air pollution-mediated effects. Akin to traditional cardiovascular risk factors, a considerable body of evidence suggests that these environmental agents induce low-grade inflammation, oxidative stress, vascular dysfunction, and autonomic nervous system imbalance, thereby facilitating the development of diseases such as hypertension and diabetes. Through their impact on traditional risk factors and via additional novel mechanisms, environmental risk factors may have much larger impact on cardiovascular events than currently appreciated. In the second part of this review, we discuss deficiencies and gaps in knowledge and opportunities for new research.
Collapse
Affiliation(s)
- Thomas Münzel
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center Mainz and Deutsches Zentrum für Herz und Kreislauf Forschung, Standort Rhein-Main, Germany
| | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Tommaso Gori
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center Mainz and Deutsches Zentrum für Herz und Kreislauf Forschung, Standort Rhein-Main, Germany
| | - Frank P Schmidt
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center Mainz and Deutsches Zentrum für Herz und Kreislauf Forschung, Standort Rhein-Main, Germany
| | - Xiaoquan Rao
- Division of Cardiovascular Medicine, University of Maryland Medical Center, 110 South Paca Street, Suite 7-100, Baltimore, MD 21201, USA
| | - Frank R Brook
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada.,Processes Research Section Environment and Climate Change Canada, Canada
| | - Lung Chi Chen
- Department of Environmental Medicine, New York University, New York, USA
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, USA
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, University of Maryland Medical Center, 110 South Paca Street, Suite 7-100, Baltimore, MD 21201, USA
| |
Collapse
|
74
|
Hassanvand MS, Naddafi K, Malek M, Valojerdi AE, Mirzadeh M, Samavat T, Hezaveh AM, Hodjatzadeh A, Khamseh ME. Effect of long-term exposure to ambient particulate matter on prevalence of type 2 diabetes and hypertension in Iranian adults: an ecologic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1713-1718. [PMID: 29101696 DOI: 10.1007/s11356-017-0561-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Air pollution is considered as an environmental risk to health worldwide. Current evidence is mostly from Western populations exposed to lower levels of pollutants. This study was to explore the association of type 2 diabetes (T2D) and hypertension prevalence with exposure to high levels of air pollution in Iranian adults. The air pollution data were obtained from the air quality monitoring stations of five large cities in Iran from 2006 to 2011. The air quality monitoring stations could only detect ambient particulate matter_10 (PM10) during the study period; therefore, the average PM10 concentration was considered for comparison. We grouped the cities as group 1 (Tehran, Shiraz) with PM10 concentration < 100 μg/m3, and group 2 (Kermanshah, Ahwaz, Esfahan) with PM10 concentration > 100 μg/m3. Data from the Surveillance of Risk Factors of Non-Communicable Disease (SuRFNCD) study were used to calculate the prevalence of T2D and hypertension. We assessed the association between air pollution and the prevalence of T2D using logistic regression models. Odds ratios (ORs) with 95% CI for each outcome were calculated after adjusting for age, sex, BMI, physical activity, and other covariates. The 5-year average of PM10 concentration was higher in group 2 (120.15 ± 6.81 μg/m3) compared to group 1 (83.95 ± 7.81 μg/m3). The prevalence of T2D in group 2 was 13.8%, while it was 10.7% in group 1 (p = 0.01), OR = 1.32 (95% CI 1.03-1.69). Similarly, hypertension was more prevalent in group 2 (15.7 vs. 11.9%, p = 0.005, OR = 1.55, 95% CI 1.20-1.99). PM10 is associated with higher prevalence of T2D and hypertension in Iranian adults.
Collapse
Affiliation(s)
- Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Malek
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Ebrahim Valojerdi
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | | | - Tahereh Samavat
- Center for Non-Communicable Diseases Management, Deputy for Health, Ministry of Health and Medical Education, Tehran, Iran
| | - Alireza Mahdavi Hezaveh
- Center for Non-Communicable Diseases Management, Deputy for Health, Ministry of Health and Medical Education, Tehran, Iran
| | - Alieh Hodjatzadeh
- Center for Non-Communicable Diseases Management, Deputy for Health, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammad Ebrahim Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
- , No. 10, Firoozeh St., South Vali-asr Ave., Vali-asr Sq., Tehran, Iran.
| |
Collapse
|
75
|
Xu J, Zhang W, Lu Z, Zhang F, Ding W. Airborne PM 2.5-Induced Hepatic Insulin Resistance by Nrf2/JNK-Mediated Signaling Pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14070787. [PMID: 28708100 PMCID: PMC5551225 DOI: 10.3390/ijerph14070787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022]
Abstract
Animal and epidemiological studies have suggested that exposure to airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM2.5) is associated with the risk of developing type 2 diabetes. However, the mechanism underlying this risk is poorly understood. In the present study, we investigated the effects of PM2.5 exposure on glucose homeostasis and related signaling pathways in mice. Wild-type and nuclear factor erythroid 2-related factor 2 (Nrf2) knockout (Nrf2−/−) C57BL/6 male mice were exposed to either ambient concentrated PM2.5 or filtered air (FA) for 12 weeks through a whole-body PM exposure system. At the end of the exposure, we assessed liver damage, and performed metabolic studies, gene expressions, as well as molecular signal transductions to determine the signaling pathways involving oxidative responses, insulin signaling, and glucose metabolism. Our results indicated that PM2.5 exposure for 12 weeks caused significant liver damage as evidenced by elevated levels of aminotransferase (AST) and alanine aminotransferase (ALT). Furthermore, PM2.5 exposure induced impaired glucose tolerance and inhibited glycogen synthesis, leading to hepatic insulin resistance indicated by higher glucose levels, higher area under the curve (AUC), and homeostasis model assessment of insulin resistance (HOMA-IR) values. We further found that PM2.5 exposure significantly increased the expressions of Nrf2 and Nrf2-regulated antioxidant genes. Moreover, PM2.5 exposure activated the c-Jun N-terminal kinase (JNK) signaling pathway and increased insulin receptor substrate-1 (IRS-1) phosphorylation at Ser307, but reduced protein kinase B phosphorylation at Ser473. Taken together, our study demonstrated PM2.5 exposure triggered Nrf2-mediated oxidative responses and activated the JNK-mediated inhibitory signaling pathway, resulting in hepatic insulin resistance.
Collapse
Affiliation(s)
- Jinxia Xu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
- Sino-Danish College, University of Chinese Academy of Sciences, No. 3 Zhongguancun South 1st Alley, Beijing 100190, China.
| | - Wei Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Zhongbing Lu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
76
|
He D, Wu S, Zhao H, Qiu H, Fu Y, Li X, He Y. Association between particulate matter 2.5 and diabetes mellitus: A meta-analysis of cohort studies. J Diabetes Investig 2017; 8:687-696. [PMID: 28122165 PMCID: PMC5583950 DOI: 10.1111/jdi.12631] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/31/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Aims/Introduction The present meta‐analysis was carried out to assess the association between exposure to the level of atmospheric particulate matter 2.5 (PM2.5; fine particulate matter with aerodynamic diameter less than 2.5 μm) and type 2 diabetes mellitus or gestational diabetes mellitus (GDM). Materials and Methods We searched the Medline, EMBASE, Cochrane and Web of Science databases to obtain articles according to the responding literature search strategies. Among a total of 279 identified articles, 55 were reviewed in depth, of which 10 articles (11 cohort studies) satisfied the inclusion criteria. Only cohort studies that disclosed the association between PM2.5 and type 2 diabetes mellitus or GDM were included in this article. A fixed‐effects model was selected if P > 0.1 and I2 < 50%; otherwise, a random‐effects model would be used to calculate the total effect value. Subgroup analysis was further carried out according to the types of diabetes mellitus (type 2 diabetes mellitus and GDM). The relative risk was used to estimate the association between PM2.5 and diabetes mellitus. Results The positive associations between PM2.5 and the incidence of type 2 diabetes mellitus were found in the long‐term exposure period (relative risk 1.25, 95% confidence interval 1.10–1.43), which showed that with every 10‐μg/m3 increase in PM2.5, the risk of type 2 diabetes mellitus would increase by 25% in the long‐term exposure. Although the significant associations were not identified between maternal exposure to PM2.5 and GDM in the first trimester, the second trimester and the entire pregnancy periods, we could conclude that maternal exposure to PM2.5 in the entire pregnancy period would be more likely to lead to developing GDM (relative risk 1.162, 95% confidence interval 0.806–1.675) than the other two periods. Conclusions Long‐term exposure to PM2.5 would be more likely to lead to developing type 2 diabetes mellitus, but more studies would be required to confirm the association between PM2.5 and GDM. It might be a wise to take effective measures to reduce PM2.5 exposure in vulnerable populations, especially for pregnant women.
Collapse
Affiliation(s)
- Dian He
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Shaowen Wu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Haiping Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Hongyan Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Yang Fu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xingming Li
- School of Health Administration and Education, Capital Medical University, Beijing, China
| | - Yan He
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
77
|
Claeys MJ, Rajagopalan S, Nawrot TS, Brook RD. Climate and environmental triggers of acute myocardial infarction. Eur Heart J 2017; 38:955-960. [PMID: 27106953 DOI: 10.1093/eurheartj/ehw151] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/20/2016] [Indexed: 12/17/2022] Open
Abstract
Over the past few decades, a growing body of epidemiological and clinical evidence has led to heightened concerns about the potential short- and long-term deleterious effects of the environment on cardiovascular health, including the risk for acute myocardial infarction (AMI). This review highlights the increased risk of AMI caused by exposure to air pollution and cold temperatures. These factors should be considered modifiable risk factors in the prevention of cardiovascular disease. The current body of knowledge about the biological mechanisms linking environmental changes to atherothrombotic events and the impact of climate change on cardiovascular health are discussed. Finally, recommendations for prevention and public policy are presented.
Collapse
Affiliation(s)
- Marc J Claeys
- Department of Cardiology, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | | | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.,Department of Public Health and Primary Care, Centre for Environment and Health, Leuven University, Leuven, Belgium
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan, AnnArbor, MI, USA
| |
Collapse
|
78
|
Mbiaké R, Mfoumou E, Wakata AB, Ndjeuna E, Djamen JRK, Leduc R, Bobda C. Atmospheric Dispersion Modeling of the Emissions from the Logbaba Thermal Power Plant, Douala-Cameroon. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ojap.2017.64010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
79
|
Ying Z, Allen K, Zhong J, Chen M, Williams KM, Wagner JG, Lewandowski R, Sun Q, Rajagopalan S, Harkema JR. Subacute inhalation exposure to ozone induces systemic inflammation but not insulin resistance in a diabetic mouse model. Inhal Toxicol 2016; 28:155-63. [PMID: 26986950 DOI: 10.3109/08958378.2016.1146808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Epidemiological studies suggest that diabetics may be more susceptible to the adverse health effects from exposure to high ambient concentrations of ozone, the primary oxidant gas in photochemical smog. While increased morbidity and mortality from ozone inhalation has been linked to disruption of normal cardiovascular and airway functions, potential effects on glucose and insulin homeostasis are not understood. We tested the hypothesis that ozone exposure would worsen metabolic homeostasis in KKAy mice, a genetic diabetic animal model. Male KKAy mice were exposed to 0.5 ppm ozone for 13 consecutive weekdays, and then assessed for airway, adipose and systemic inflammation, glucose homeostasis, and insulin signaling. Ozone exposure increased plasma TNFα, as well as expression of VCAM-1, iNOS and IL-6 in both pulmonary and adipose tissues. Pro-inflammatory CD11b(+)Gr-1(lo)7/4(hi) macrophages were increased by 200% in adipose tissue, but unchanged in blood. Interestingly, glucose levels were not significantly different in the insulin tolerance test between air- and ozone-exposed mice, whereas fasting insulin levels and HOMA-IR in ozone-exposed animals were significantly reduced. These changes were accompanied by increased insulin signaling in skeletal muscle and liver, but not adipose tissues. Ozone also caused decrease in body weight and plasma leptin. Our results show that in addition to marked local and systemic inflammation, ozone increases insulin sensitivity that may be related to weight loss/leptin sensitization-dependent mechanisms in KKAy mice, warranting further study on the role of hyperglycemia in mediating cardiometabolic effects of ozone inhalation.
Collapse
Affiliation(s)
- Zhekang Ying
- a Department of Medicine , Cardiology Division, University of Maryland School of Medicine , Baltimore , MD , USA
| | - Katryn Allen
- b Department of Pathobiology and Diagnostic Investigation , Michigan State University , East Lansing , MH , USA , and
| | - Jixin Zhong
- a Department of Medicine , Cardiology Division, University of Maryland School of Medicine , Baltimore , MD , USA
| | - Minjie Chen
- a Department of Medicine , Cardiology Division, University of Maryland School of Medicine , Baltimore , MD , USA
| | - Keisha M Williams
- b Department of Pathobiology and Diagnostic Investigation , Michigan State University , East Lansing , MH , USA , and
| | - James G Wagner
- b Department of Pathobiology and Diagnostic Investigation , Michigan State University , East Lansing , MH , USA , and
| | - Ryan Lewandowski
- b Department of Pathobiology and Diagnostic Investigation , Michigan State University , East Lansing , MH , USA , and
| | - Qinghua Sun
- c College of Public Health, Ohio State University , Columbus , OH , USA
| | - Sanjay Rajagopalan
- a Department of Medicine , Cardiology Division, University of Maryland School of Medicine , Baltimore , MD , USA
| | - Jack R Harkema
- b Department of Pathobiology and Diagnostic Investigation , Michigan State University , East Lansing , MH , USA , and
| |
Collapse
|
80
|
Lanzinger S, Schneider A, Breitner S, Stafoggia M, Erzen I, Dostal M, Pastorkova A, Bastian S, Cyrys J, Zscheppang A, Kolodnitska T, Peters A. Ultrafine and Fine Particles and Hospital Admissions in Central Europe. Results from the UFIREG Study. Am J Respir Crit Care Med 2016; 194:1233-1241. [DOI: 10.1164/rccm.201510-2042oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
81
|
Wolf K, Popp A, Schneider A, Breitner S, Hampel R, Rathmann W, Herder C, Roden M, Koenig W, Meisinger C, Peters A. Association Between Long-term Exposure to Air Pollution and Biomarkers Related to Insulin Resistance, Subclinical Inflammation, and Adipokines. Diabetes 2016; 65:3314-3326. [PMID: 27605624 DOI: 10.2337/db15-1567] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 08/09/2016] [Indexed: 11/13/2022]
Abstract
Insulin resistance (IR) is present long before the onset of type 2 diabetes and results not only from inherited and lifestyle factors but also likely from environmental conditions. We investigated the association between modeled long-term exposure to air pollution at residence and biomarkers related to IR, subclinical inflammation, and adipokines. Data were based on 2,944 participants of the KORA (Cooperative Health Research in the Region Augsburg) F4 study conducted in southern Germany (2006-2008). We analyzed associations between individual air pollution concentration estimated by land use regression and HOMA-IR, glucose, insulin, HbA1c, leptin, and high-sensitivity C-reactive protein levels from fasting samples using multivariable linear regression models. Effect estimates were calculated for the whole study population and subgroups of individuals who did not have diabetes, had prediabetes, or had diabetes. Among all participants, a 7.9 μg/m3 increment in particulate matter of <10 μm was associated with higher HOMA-IR (15.6% [95% CI 4.0; 28.6]) and insulin (14.5% [3.6; 26.5]). Nitrogen dioxide was associated with HOMA-IR, glucose, insulin, and leptin. Effect estimates for individuals with prediabetes were much larger and highly statistically significant, whereas individuals who did not have diabetes or had diabetes showed rather weak associations. No association was seen for HbA1c level. Our results suggested an association between long-term exposure to air pollution and IR in the general population that was attributable mainly to individuals with prediabetes.
Collapse
Affiliation(s)
- Kathrin Wolf
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Anita Popp
- Ludwig-Maximilians-Universität (LMU) Munich, Institute for Medical Informatics, Biometrics and Epidemiology, Munich, Germany
| | - Alexandra Schneider
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Susanne Breitner
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Regina Hampel
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Koenig
- University of Ulm Medical Center, Department of Internal Medicine II-Cardiology, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christa Meisinger
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Annette Peters
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | | |
Collapse
|
82
|
Rückerl R, Schneider A, Hampel R, Breitner S, Cyrys J, Kraus U, Gu J, Soentgen J, Koenig W, Peters A. Association of novel metrics of particulate matter with vascular markers of inflammation and coagulation in susceptible populations -results from a panel study. ENVIRONMENTAL RESEARCH 2016; 150:337-347. [PMID: 27344265 DOI: 10.1016/j.envres.2016.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/22/2016] [Accepted: 05/19/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Epidemiological studies have shown adverse effects of ambient air pollutants on health with inflammation and oxidative stress playing an important role. We examine the association between blood biomarkers of inflammation and coagulation and physical attributes of particulate matter which are not routinely measured such as particle length or surface area concentration and apparent density of PM. METHODS Between 3/2007 and 12/2008 187 non-smoking individuals with type 2 diabetes mellitus (T2D) or impaired glucose tolerance (IGT) were examined within the framework of the KORA Study in Augsburg, Germany. In addition, we selected 87 participants with a potential genetic predisposition on detoxifying and inflammatory pathways. This was defined by the null polymorphism for glutathione S-transferase M1 in combination with a certain single nucleotide polymorphism on the C-reactive protein (CRP) gene (rs1205) or the fibrinogen gene (rs1800790). Participants had blood drawn up to seven different times, resulting in 1765 blood samples. Air pollutants were collected at a central measurement station and individual 24-h averages calculated. Associations between air pollutants and high sensitivity CRP, myeloperoxidase (MPO), interleukin (IL)-6 and fibrinogen were analysed using additive mixed models. RESULTS For the panel with genetic susceptibility, increases were seen for CRP and MPO with most attributes, specifically particle length and active surface concentration. The %change of geometric mean and 95% confidence intervals for the 5-day average exposure for CRP and MPO were 34.6% [21.8;48.8] and 8.3% [3.2;13.6] per interquartile range increase of particle length concentration and 29.8% [15.9;45.3] and 10.4 [4.4;16.7] for active surface area. Results for the panel of T2D and IGT and the other blood biomarkers were less conclusive. CONCLUSIONS Particle length concentration and active surface concentration showed strong positive associations with blood biomarkers reflecting inflammation. These air pollution metrics might reflect harmful aerosol properties better than particulate mass or number concentration. They might therefore be important for epidemiological studies.
Collapse
Affiliation(s)
- Regina Rückerl
- ESC-Environmental Science Center, University of Augsburg, Universitätsstr. 2, 86135 Augsburg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Alexandra Schneider
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Regina Hampel
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Susanne Breitner
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Josef Cyrys
- ESC-Environmental Science Center, University of Augsburg, Universitätsstr. 2, 86135 Augsburg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Ute Kraus
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Jianwei Gu
- ESC-Environmental Science Center, University of Augsburg, Universitätsstr. 2, 86135 Augsburg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Jens Soentgen
- ESC-Environmental Science Center, University of Augsburg, Universitätsstr. 2, 86135 Augsburg, Germany.
| | - Wolfgang Koenig
- Klinik für Herz-& Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636 Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD e.V.), München, Germany.
| |
Collapse
|
83
|
Eze IC, Imboden M, Kumar A, von Eckardstein A, Stolz D, Gerbase MW, Künzli N, Pons M, Kronenberg F, Schindler C, Probst-Hensch N. Air pollution and diabetes association: Modification by type 2 diabetes genetic risk score. ENVIRONMENT INTERNATIONAL 2016; 94:263-271. [PMID: 27281273 DOI: 10.1016/j.envint.2016.04.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 05/26/2023]
Abstract
Exposure to ambient air pollution (AP) exposure has been linked to type 2 diabetes (T2D) risk. Evidence on the impact of T2D genetic variants on AP susceptibility is lacking. Compared to single variants, joint genetic variants contribute substantially to disease risk. We investigated the modification of AP and diabetes association by a genetic risk score (GRS) covering 63 T2D genes in 1524 first follow-up participants of the Swiss cohort study on air pollution and lung and heart diseases in adults. Genome-wide data and covariates were available from a nested asthma case-control study design. AP was estimated as 10-year mean residential particulate matter <10μm (PM10). We computed count-GRS and weighted-GRS, and applied PM10 interaction terms in mixed logistic regressions, on odds of diabetes. Analyses were stratified by pathways of diabetes pathology and by asthma status. Diabetes prevalence was 4.6% and mean exposure to PM10 was 22μg/m(3). Odds of diabetes increased by 8% (95% confidence interval: 2, 14%) per T2D risk allele and by 35% (-8, 97%) per 10μg/m(3) exposure to PM10. We observed a positive interaction between PM10 and count-GRS on diabetes [ORinteraction=1.10 (1.01, 1.20)], associations being strongest among participants at the highest quartile of count-GRS [OR: 1.97 (1.00, 3.87)]. Stronger interactions were observed with variants of the GRS involved in insulin resistance [(ORinteraction=1.22 (1.00, 1.50)] than with variants related to beta-cell function. Interactions with count-GRS were stronger among asthma cases. We observed similar results with weighted-GRS. Five single variants near GRB14, UBE2E2, PTPRD, VPS26A and KCNQ1 showed nominally significant interactions with PM10 (P<0.05). Our results suggest that genetic risk for T2D may modify susceptibility to air pollution through alterations in insulin sensitivity. These results need confirmation in diabetes cohort consortia.
Collapse
Affiliation(s)
- Ikenna C Eze
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Ashish Kumar
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Karolinska Institutet, Stockholm, Sweden
| | | | - Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | | | - Nino Künzli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Marco Pons
- Department of Internal Medicine, Regional Hospital of Lugano, Lugano, Switzerland
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
84
|
Abstract
OBJECTIVE To review trends in the prevalence and incidence of diabetes mellitus (DM) and related risk factors in China. METHODS We searched the literature using PubMed, China Knowledge Resource Integrated Database, and China Wanfang Digital Database for large epidemiologic studies and national surveys. RESULTS During the past 30 years (1980-2010), 7 national diabetes mellitus surveys were conducted in China mainland, indicating that the prevalence of DM has increased 17-fold, from 0.67 to 11.6% of the population. The prevalence of impaired glucose regulation (IGR, including impaired fasting glucose and impaired glucose tolerance) also increased, from 2.09 in 1994 to 27.2% in 2010. There was no national representative study of the incidence of diabetes to date; the reported incidence of type 2 diabetes during past 25 years in several cohort studies varied (2.7 to 15.8 per 1,000 person-years). Potential risk factors which could have contributed to the increasing prevalence and incidence of DM and IGR in the Chinese population include social and economic development, urbanization, dietary pattern, and Westernized lifestyle. Further, genetic studies have suggested that unique inheritable risk factors in the Chinese population may increase the risk for DM when compared to Caucasians. CONCLUSION DM and IGR have become epidemic in China. Public health strategies should focus on modifying lifestyle and dietary factors, particularly among those with a susceptible genetic background. ABBREVIATIONS BMI = body mass index DM = diabetes mellitus FBG = fasting blood glucose GWAS = genome-wide association study IGR = impaired glucose regulation IGT = impaired glucose tolerance OGTT = oral glucose tolerance test T2D = type 2 diabetes WC = waist circumference WHR = waist-hip ratio.
Collapse
Affiliation(s)
- Xiuhua Shen
- Department of Clinical Nutrition, Shanghai Xin Hua Hospital, Shanghai, China
- Department of Nutrition, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Anand Vaidya
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital & Harvard Medical School, Boston, Massachusetts
| | - Shoulin Wu
- Department of Internal Medicine, Kailuan Hospital, Tangshan, China
| | - Xiang Gao
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
85
|
Liu C, Yang C, Zhao Y, Ma Z, Bi J, Liu Y, Meng X, Wang Y, Cai J, Chen R, Kan H. Associations between long-term exposure to ambient particulate air pollution and type 2 diabetes prevalence, blood glucose and glycosylated hemoglobin levels in China. ENVIRONMENT INTERNATIONAL 2016; 92-93:416-421. [PMID: 27148900 PMCID: PMC4902714 DOI: 10.1016/j.envint.2016.03.028] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The evidence for an association between particulate air pollution and type 2 diabetes mellitus (T2DM) in developing countries was very scarce. OBJECTIVE To investigate the associations of long-term exposure to fine particulate matter (PM2.5) with T2DM prevalence and with fasting glucose and glycosylated hemoglobin (HbA1c) levels in China. METHODS This is a cross-sectional study based on a nation-wide baseline survey of 11,847 adults who participated in the China Health and Retirement Longitudinal Study from June 2011 to March 2012. The average residential exposure to PM2.5 for each participant in the same period was estimated using a satellite-based spatial statistical model. We determined the association between PM2.5 and T2DM prevalence by multivariable logistic regression models. We also evaluated the association between PM2.5 and fasting glucose and HbA1c levels using multivariable linear regression models. Stratification analyses were conducted to explore potential effect modification. RESULTS We identified 1760 cases of T2DM, corresponding to 14.9% of the study population. The average PM2.5 exposure for all participants was 72.6μg/m(3) during the study period. An interquartile range increase in PM2.5 (41.1μg/m(3)) was significantly associated with increased T2DM prevalence (prevalence ratio, PR=1.14), and elevated levels of fasting glucose (0.26mmol/L) and HbA1c (0.08%). The associations of PM2.5 with T2DM prevalence and with fasting glucose and HbA1c were stronger in several subgroups. CONCLUSIONS This nationwide cross-sectional study suggested that long-term exposure to PM2.5 might increase the risk of T2DM in China.
Collapse
Affiliation(s)
- Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Changyuan Yang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Yaohui Zhao
- National School of Development, Peking University, Beijing, China
| | - Zongwei Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jun Bi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yang Liu
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Xia Meng
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Yafeng Wang
- Institute for Social Science Survey, Peking University, Beijing, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Fudan University, Shanghai, China
- Address correspondence to Haidong Kan, School of Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai 200032, China. Tel/fax: 86(21)-54237908. ., Renjie Chen, School of Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Fudan University, Shanghai, China
- Address correspondence to Haidong Kan, School of Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai 200032, China. Tel/fax: 86(21)-54237908. ., Renjie Chen, School of Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai 200032, China.
| |
Collapse
|
86
|
Fine particulate matter potentiates type 2 diabetes development in high-fat diet-treated mice: stress response and extracellular to intracellular HSP70 ratio analysis. J Physiol Biochem 2016; 72:643-656. [PMID: 27356529 DOI: 10.1007/s13105-016-0503-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022]
Abstract
Exposure to fine particulate matter (PM2.5) air pollution is a risk factor for type 2 diabetes (T2DM). We argue whether the potentiating effect of PM2.5 over the development of T2DM in high-fat diet (HFD)-fed mice would be related to modification in cell stress response, particularly in antioxidant defenses and 70-kDa heat shock proteins (HSP70) status. Male mice were fed standard chow or HFD for 12 weeks and then randomly exposed to daily nasotropic instillation of PM2.5 for additional 12 weeks under the same diet schedule, divided into four groups (n = 14-15 each): Control, PM2.5, HFD, and HFD + PM2.5 were evaluated biometric and metabolic profiles of mice, and cellular stress response (antioxidant defense and HSP70 status) of metabolic tissues. Extracellular to intracellular HSP70 ratio ([eHSP72]/[iHSP70]), viz. H-index, was then calculated. HFD + PM2.5 mice presented a positive correlation between adiposity, increased body weight and glucose intolerance, and increased glucose and triacylglycerol plasma levels. Pancreas exhibited lower iHSP70 expression, accompanied by 3.7-fold increase in the plasma to pancreas [eHSP72]/[iHSP70] ratio. Exposure to PM2.5 markedly potentiated metabolic dysfunction in HFD-treated mice and promoted relevant alteration in cell stress response assessed by [eHSP72]/[iHSP70], a relevant biomarker of chronic low-grade inflammatory state and T2DM risk.
Collapse
|
87
|
Miller DB, Snow SJ, Henriquez A, Schladweiler MC, Ledbetter AD, Richards JE, Andrews DL, Kodavanti UP. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats. Toxicol Appl Pharmacol 2016; 306:47-57. [PMID: 27368153 DOI: 10.1016/j.taap.2016.06.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 12/17/2022]
Abstract
Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25ppm or 1.00ppm ozone, 5h/day, 3 consecutive days/week (wk) for 13wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13wk or following a 1wk recovery period (13wk+1wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13wk, however, these responses were largely reversible following a 1wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism.
Collapse
Affiliation(s)
- Desinia B Miller
- Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres Henriquez
- Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Allen D Ledbetter
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Judy E Richards
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Debora L Andrews
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
88
|
Morakinyo OM, Mokgobu MI, Mukhola MS, Hunter RP. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060592. [PMID: 27314370 PMCID: PMC4924049 DOI: 10.3390/ijerph13060592] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 02/04/2023]
Abstract
Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or) keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality.
Collapse
Affiliation(s)
- Oyewale Mayowa Morakinyo
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Matlou Ingrid Mokgobu
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Murembiwa Stanley Mukhola
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Raymond Paul Hunter
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
89
|
Bathina S, Srinivas N, Das UN. BDNF protects pancreatic β cells (RIN5F) against cytotoxic action of alloxan, streptozotocin, doxorubicin and benzo(a)pyrene in vitro. Metabolism 2016; 65:667-684. [PMID: 27085775 DOI: 10.1016/j.metabol.2016.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The study was conducted to observe whether brain-derived neurotrophic factor (BDNF) has cytoprotective actions against alloxan (AL), streptozotocin (STZ), doxorubicin (DB) and benzo(a)pyrene (BP) compounds in vitro that may account for its beneficial action in diabetes mellitus. MATERIALS AND METHODS This in vitro study was performed using rat insulinoma (RIN5F) cells. Possible cytoprotective action of BDNF (using pre-treatment, simultaneous and post-treatment schedules of RIN5F cells with BDNF) against the four chemicals tested was evaluated using MTT and apoptosis assays. Possible mechanism of cytoprotective action of BDNF was assessed by measuring BCl2/IKB-β/Pdx mRNA transcripts and anti-oxidant levels in RIN5F cells. Effect of alloxan, STZ, doxorubicin and BP on the production of BDNF by RIN5F cells was also studied. RESULTS Results of the present study revealed that BDNF in the doses (100ng>50ng>10ng/ml) has significant cytoprotection (P<0.001, P<0.01) on cytotoxic action of AL, STZ, DB and BP against rat insulinoma RIN5F (5×10(4) cells/100μl) cells in vitro. It was observed that AL, STZ, DB and BP inhibited BDNF production significantly (P<0.001) in a dose-dependent manner by RIN5F cells (0.5×10(6) cells/500μl) in vitro, while BDNF not only prevented apoptosis induced by these four chemicals but also significantly increased (P<0.001) BCl2/IKB-β/Pdx mRNA transcripts and restored anti-oxidant levels (P<0.01) in RIN5F cells to normal. DISCUSSION These results suggest that BDNF has potent cytoprotective actions, restores anti-oxidant defenses to normal and thus, prevents apoptosis and preserves insulin secreting capacity of β cells. In addition, BDNF enhanced viability of RIN 5F in vitro. Thus, BDNF not only has anti-diabetic actions but also preserves pancreatic β cells integrity and enhances their viability. These results imply that BDNF functions as an endogenous cytoprotective molecule that may explain its beneficial actions in some neurological conditions as well.
Collapse
Affiliation(s)
- Siresha Bathina
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam 530048, India
| | - Nanduri Srinivas
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Undurti N Das
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam 530048, India; UND Life Sciences, 2020 S 360th St, #K-202, Federal Way, WA 98003, USA
| |
Collapse
|
90
|
Thomson EM, Pal S, Guénette J, Wade MG, Atlas E, Holloway AC, Williams A, Vincent R. Ozone Inhalation Provokes Glucocorticoid-Dependent and -Independent Effects on Inflammatory and Metabolic Pathways. Toxicol Sci 2016; 152:17-28. [DOI: 10.1093/toxsci/kfw061] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
91
|
Eze IC, Imboden M, Kumar A, Adam M, von Eckardstein A, Stolz D, Gerbase MW, Künzli N, Turk A, Schindler C, Kronenberg F, Probst-Hensch N. A common functional variant on the pro-inflammatory Interleukin-6 gene may modify the association between long-term PM10 exposure and diabetes. Environ Health 2016; 15:39. [PMID: 26911440 PMCID: PMC4765217 DOI: 10.1186/s12940-016-0120-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/08/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Air pollutants have been linked to type 2 diabetes (T2D), hypothesized to act through inflammatory pathways and may induce interleukin-6 gene (IL6) in the airway epithelium. The cytokine interleukin-6 may impact on glucose homeostasis. Recent meta-analyses showed the common polymorphisms, IL6 -572G > C and IL6 -174G > C to be associated with T2D risk. These IL6 variants also influence circulatory interleukin-6 levels. We hypothesize that these common functional variants may modify the association between air pollutants and T2D. METHODS We cross-sectionally studied 4410 first follow-up participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases (SAPALDIA), aged 29 to 73 years who had complete data on genotypes, diabetes status and covariates. We defined diabetes as self-reported physician-diagnosed, or use of diabetes medication or non-fasting glucose >11.1 mmol/L or HbA1c > 0.065. Air pollution exposure was 10-year mean particulate matter <10 μm in diameter (PM10) assigned to participants' residences using a combination of dispersion modelling, annual trends at monitoring stations and residential history. We derived interaction terms between PM10 and genotypes, and applied mixed logistic models to explore genetic interactions by IL6 polymorphisms on the odds of diabetes. RESULTS There were 252 diabetes cases. Respective minor allele frequencies of IL6 -572G > C and IL6 -174G > C were 7 and 39 %. Mean exposure to PM10 was 22 μg/m(3). Both variants were not associated with diabetes in our study. We observed a significant positive association between PM10 and diabetes among homozygous carriers of the pro-inflammatory major G-allele of IL6 -572G > C [Odds ratio: 1.53; 95 % confidence interval (1.22, 1.92); P interaction (additive) = 0.003 and P interaction (recessive) = 0.006]. Carriers of the major G-allele of IL6 -174G > C also had significantly increased odds of diabetes, but interactions were statistically non-significant. CONCLUSIONS Our results on the interaction of PM10 with functionally well described polymorphisms in an important pro-inflammatory candidate gene are consistent with the hypothesis that air pollutants impact on T2D through inflammatory pathways. Our findings, if confirmed, are of high public health relevance considering the ubiquity of the major G allele, which puts a substantial proportion of the population at risk for the development of diabetes as a result of long-term exposure to air pollution.
Collapse
Affiliation(s)
- Ikenna C Eze
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Ashish Kumar
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
- Karolinska Institutet, Stockholm, Sweden.
| | - Martin Adam
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | | | - Daiana Stolz
- Clinic of Pneumology and Respiratory Cell Research, University Hospital Basel, Basel, Switzerland.
| | | | - Nino Künzli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | | | - Christian Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002, Basel, Switzerland.
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
92
|
Esposito K, Petrizzo M, Maiorino MI, Bellastella G, Giugliano D. Particulate matter pollutants and risk of type 2 diabetes: a time for concern? Endocrine 2016; 51:32-7. [PMID: 26024974 DOI: 10.1007/s12020-015-0638-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/21/2015] [Indexed: 01/16/2023]
Abstract
The World Health Organization estimates that worldwide in 2012 around 7 million deaths occurred prematurely due to air pollution, which is now the world's largest single environmental health risk. The higher premature mortality associated with air pollution is due to exposure to small particulate matter of 10 microns (PM10) or less in diameter. Exposure to air pollution has also been suggested as a contributing to diabetes incidence and progression. There are a number of possible biological pathways linking air pollutants to diabetes, including endothelial dysfunction, dysregulation of the visceral adipose tissue through inflammation, hepatic insulin resistance, elevated hemoglobin A1c level, elevated blood pressure, and alterations in autonomic tone, which may increase insulin resistance. The risk of future diabetes associated with exposure to 10 μg/m(3) increase of PM2.5 has been quantified in the range of 10 to 27%; the risk of diabetes mortality associated with PM2.5 appears to be quite lower, around 1% for each increment exposure of 10 μg/m(3) of both PM2.5 and PM10. Limitations of the current epidemiological evidence include the complex mixture of pollutants, the different design of the studies, the limited data available for non Western populations, and the lack of demonstration that improvement of air quality is associated with a decrease incidence of type 2 diabetes. Although the most sources of outdoor air pollution are well beyond the control of individuals, people should be informed that there are means to reduce the burden of air pollutants on diabetes risk, including avoidance of passive smoking, adoption of an healthy diet, and increasing leisure-time physical activity.
Collapse
Affiliation(s)
- Katherine Esposito
- Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy
| | - Michela Petrizzo
- IOS and Coleman - Medicina Futura Medical Center, Centro Direzionale, Naples, Italy
| | - Maria Ida Maiorino
- Department of Medical, Surgical, Neurological, Metabolic Sciences and Geriatrics, Second University of Naples, Naples, Italy
| | - Giuseppe Bellastella
- Department of Medical, Surgical, Neurological, Metabolic Sciences and Geriatrics, Second University of Naples, Naples, Italy
| | - Dario Giugliano
- Department of Medical, Surgical, Neurological, Metabolic Sciences and Geriatrics, Second University of Naples, Naples, Italy.
| |
Collapse
|
93
|
Rao X, Patel P, Puett R, Rajagopalan S. Air pollution as a risk factor for type 2 diabetes. Toxicol Sci 2015; 143:231-41. [PMID: 25628401 DOI: 10.1093/toxsci/kfu250] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent studies in both humans and animals suggest that air pollution is an important risk factor for type 2 diabetes mellitus (T2DM). However, the mechanism by which air pollution mediates propensity to diabetes is not fully understood. While a number of epidemiologic studies have shown a positive association between ambient air pollution exposure and risk for T2DM, some studies have not found such a relationship. Experimental studies in susceptible disease models do support this association and suggest the involvement of tissues involved in the pathogenesis of T2DM such as the immune system, adipose, liver, and central nervous system. This review summarizes the epidemiologic and experimental evidence between ambient outdoor air pollution and T2DM.
Collapse
Affiliation(s)
- Xiaoquan Rao
- *Division of Cardiovascular Medicine, University of Maryland, Baltimore and Maryland Institute for Applied Environmental Health, Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park
| | - Priti Patel
- *Division of Cardiovascular Medicine, University of Maryland, Baltimore and Maryland Institute for Applied Environmental Health, Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park
| | - Robin Puett
- *Division of Cardiovascular Medicine, University of Maryland, Baltimore and Maryland Institute for Applied Environmental Health, Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park
| | - Sanjay Rajagopalan
- *Division of Cardiovascular Medicine, University of Maryland, Baltimore and Maryland Institute for Applied Environmental Health, Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park
| |
Collapse
|
94
|
Solimini AG, D'Addario M, Villari P. Ecological correlation between diabetes hospitalizations and fine particulate matter in Italian provinces. BMC Public Health 2015. [PMID: 26208978 PMCID: PMC4514955 DOI: 10.1186/s12889-015-2018-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Exposure to particulate matter has been associated with increased risk of cardiovascular and respiratory diseases. We evaluated the ecological correlation between standardized hospital discharges with diabetes in Italian provinces and fine particulate matter (PM2.5) adjusting for common risk factors, socioeconomic factors and differences in hospitalization appropriateness. Methods We used cross sectional data aggregated at the province level and available from official institutional databases for years 2008–2010. Covariates included prevalence of adult overweight, obese, smokers, physically inactive, education and income (as average gross domestic product per person, GDP). We reduced the number of covariates to a smaller number of factors for the subsequent statistical model by extracting meaningful components using principal component analysis (PCA). Log-linear multiple regression analysis was used to model diabetes hospital discharges with PCA components and PM2.5 levels and hospitalization appropriateness for men and women. Results The first PCA components for both men and women were characterized by larger loadings of risk factors (obesity, overweight, physical inactivity, cigarette smoking) and lower socioeconomic factors (educational level and mean GDP). Diabetes hospitalization increases with the first PCA component and decreases with the index of hospitalization appropriateness. In fully adjusted models, diabetes hospitalizations increase with increasing annual PM2.5 concentrations, with a rise of 3.5 % (1.3 %–5.6 %) for men and of 4.0 % (1.5 %-6.4 %) for women per unit of PM2.5 increase. Conclusions We found a significant ecological relationship between sex and age standardised hospital discharge with diabetes as principle diagnosis and mean annual PM2.5 concentrations in Italian provinces, once that covariates have been accounted for. The relationship was robust to different means of estimating PM2.5 exposure. A large portion of the variance of diabetes hospitalizations was linked to differences of hospital care appropriateness between Italian regions and this variable should routinely be included in ecological analyses of hospitalizations.
Collapse
Affiliation(s)
- Angelo G Solimini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Maddalena D'Addario
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
95
|
Wang C, Chen R, Zhao Z, Cai J, Lu J, Ha S, Xu X, Chen X, Kan H. Particulate air pollution and circulating biomarkers among type 2 diabetic mellitus patients: the roles of particle size and time windows of exposure. ENVIRONMENTAL RESEARCH 2015; 140:112-118. [PMID: 25863184 DOI: 10.1016/j.envres.2015.03.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Short-term associations between size-fractionated particulate matter (PM) air pollution and circulating biomarkers are not well established, especially among diabetes patients. METHODS We conducted a longitudinal panel study involving 6 repeated measurements of 12 circulating biomarkers among 35 diabetes patients from April to June, 2013 in Shanghai, China. Real-time number and mass concentrations of PM with multiple size fractions between 0.25 and 10 μm were measured. Linear mixed-effect models were used to explore the associations between size-fractionated PM concentrations and blood biomarkers at different time windows. RESULTS Short-term exposure to PM was significantly associated with elevated levels of 5 biomarkers of inflammation, 3 biomarkers of coagulation and 1 vasoconstrictor. The effects varied considerably by particle size and time windows. Overall, PM with smaller size had stronger associations, and the most significant size fractions were 0.25-0.40 μm. Even 2 h exposure to PM can lead to a significant increase in biomarkers. The effects on biomarkers of inflammation and vasoconstriction were restricted to the first 12h after exposure, but the effects on coagulation persisted for 24-72 h. For example, an interquartile range increase in 2h average exposure to PM(0.25-0.40) was associated with 6-20% increase in biomarkers of inflammation, 19-38% in coagulation and 17% in vasoconstriction. PM had a stronger effect among male patients than female patients. CONCLUSIONS Our results provided important evidence on the roles of the size and time windows of exposure in the PM-mediated effects on circulating biomarkers of inflammation, coagulation and vasoconstriction in diabetes patients in China.
Collapse
Affiliation(s)
- Cuicui Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan University, Shanghai, China
| | - Zhuohui Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan University, Shanghai, China
| | - Jianxiong Lu
- Tianping Community Health Center, Xuhui District, Shanghai, China
| | - Sandie Ha
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan University, Shanghai, China; Tianping Community Health Center, Xuhui District, Shanghai, China
| | - Xiaohui Xu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan University, Shanghai, China; Tianping Community Health Center, Xuhui District, Shanghai, China
| | - Xuan Chen
- Tianping Community Health Center, Xuhui District, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan University, Shanghai, China.
| |
Collapse
|
96
|
Thiering E, Heinrich J. Epidemiology of air pollution and diabetes. Trends Endocrinol Metab 2015; 26:384-94. [PMID: 26068457 DOI: 10.1016/j.tem.2015.05.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/28/2015] [Accepted: 05/07/2015] [Indexed: 02/04/2023]
Abstract
Air pollution affects a large proportion of the global population. Air pollutants are hypothesized to exert their effects via impaired endothelial function, elevated systemic inflammation, mitochondrial dysfunction, and oxidative stress, all of which are hallmarks of type 2 diabetes (T2D). Here we review epidemiological studies aimed at answering whether diabetes patients are more vulnerable to ambient (outdoor) air pollution exposure and whether air pollution is associated with diabetes development or other predisposing conditions for T2D. Current evidence suggests an association between air pollution exposure and T2D, but more critical analysis is warranted. Understanding the associations between air pollution exposure and the development of T2D is critical in our efforts to control sources of air pollution and their impact on the disease.
Collapse
Affiliation(s)
- Elisabeth Thiering
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Division of Metabolic and Nutritional Medicine, Dr von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany.
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital Munich, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
97
|
Long-Term Exposure to Ambient Air Pollution and Metabolic Syndrome in Adults. PLoS One 2015; 10:e0130337. [PMID: 26103580 PMCID: PMC4478007 DOI: 10.1371/journal.pone.0130337] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/19/2015] [Indexed: 12/17/2022] Open
Abstract
Air pollutants (AP) play a role in subclinical inflammation, and are associated with cardiovascular morbidity and mortality. Metabolic syndrome (MetS) is inflammatory and precedes cardiovascular morbidity and type 2 diabetes. Thus, a positive association between AP and MetS may be hypothesized. We explored this association, (taking into account, pathway-specific MetS definitions), and its potential modifiers in Swiss adults. We studied 3769 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults, reporting at least four-hour fasting time before venepuncture. AP exposures were 10-year mean residential PM10 (particulate matter <10μm in diameter) and NO2 (nitrogen dioxide). Outcomes included MetS defined by World Health Organization (MetS-W), International Diabetes Federation (MetS-I) and Adult Treatment Panel-III (MetS-A) using four- and eight-hour fasting time limits. We also explored associations with individual components of MetS. We applied mixed logistic regression models to explore these associations. The prevalence of MetS-W, MetS-I and MetS-A were 10%, 22% and 18% respectively. Odds of MetS-W, MetS-I and MetS-A increased by 72% (51-102%), 31% (11-54%) and 18% (4-34%) per 10μg/m3 increase in 10-year mean PM10. We observed weaker associations with NO2. Associations were stronger among physically-active, ever-smokers and non-diabetic participants especially with PM10 (p<0.05). Associations remained robust across various sensitivity analyses including ten imputations of missing observations and exclusion of diabetes cases. The observed associations between AP exposure and MetS were sensitive to MetS definitions. Regarding the MetS components, we observed strongest associations with impaired fasting glycemia, and positive but weaker associations with hypertension and waist-circumference-based obesity. Cardio-metabolic effects of AP may be majorly driven by impairment of glucose homeostasis, and to a less-strong extent, visceral adiposity. Well-designed prospective studies are needed to confirm these findings.
Collapse
|
98
|
Rao X, Montresor-Lopez J, Puett R, Rajagopalan S, Brook RD. Ambient air pollution: an emerging risk factor for diabetes mellitus. Curr Diab Rep 2015; 15:603. [PMID: 25894943 DOI: 10.1007/s11892-015-0603-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Growing evidence supports that air pollution has become an important risk factor for developing diabetes mellitus. Understanding the contributing effect of air pollution in population studies, elucidating the potential mechanisms involved, and identifying the most responsible pollutants are all required in order to promulgate successful changes in policy and to help formulate preventive measures in an effort to reduce the risk for diabetes. This review summarizes recent findings from epidemiologic studies and mechanistic insights that provide links between exposure to air pollution and a heightened risk for diabetes.
Collapse
Affiliation(s)
- Xiaoquan Rao
- Division of Cardiovascular Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
99
|
Eze IC, Hemkens LG, Bucher HC, Hoffmann B, Schindler C, Künzli N, Schikowski T, Probst-Hensch NM. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:381-9. [PMID: 25625876 PMCID: PMC4421762 DOI: 10.1289/ehp.1307823] [Citation(s) in RCA: 391] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/26/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND Air pollution is hypothesized to be a risk factor for diabetes. Epidemiological evidence is inconsistent and has not been systematically evaluated. OBJECTIVES We systematically reviewed epidemiological evidence on the association between air pollution and diabetes, and synthesized results of studies on type 2 diabetes mellitus (T2DM). METHODS We systematically searched electronic literature databases (last search, 29 April 2014) for studies reporting the association between air pollution (particle concentration or traffic exposure) and diabetes (type 1, type 2, or gestational). We systematically evaluated risk of bias and role of potential confounders in all studies. We synthesized reported associations with T2DM in meta-analyses using random-effects models and conducted various sensitivity analyses. RESULTS We included 13 studies (8 on T2DM, 2 on type 1, 3 on gestational diabetes), all conducted in Europe or North America. Five studies were longitudinal, 5 cross-sectional, 2 case-control, and 1 ecologic. Risk of bias, air pollution assessment, and confounder control varied across studies. Dose-response effects were not reported. Meta-analyses of 3 studies on PM2.5 (particulate matter ≤ 2.5 μm in diameter) and 4 studies on NO2 (nitrogen dioxide) showed increased risk of T2DM by 8-10% per 10-μg/m3 increase in exposure [PM2.5: 1.10 (95% CI: 1.02, 1.18); NO2: 1.08 (95% CI: 1.00, 1.17)]. Associations were stronger in females. Sensitivity analyses showed similar results. CONCLUSION Existing evidence indicates a positive association of air pollution and T2DM risk, albeit there is high risk of bias. High-quality studies assessing dose-response effects are needed. Research should be expanded to developing countries where outdoor and indoor air pollution are high.
Collapse
Affiliation(s)
- Ikenna C Eze
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Miller DB, Karoly ED, Jones JC, Ward WO, Vallanat BD, Andrews DL, Schladweiler MC, Snow SJ, Bass VL, Richards JE, Ghio AJ, Cascio WE, Ledbetter AD, Kodavanti UP. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats. Toxicol Appl Pharmacol 2015; 286:65-79. [PMID: 25838073 DOI: 10.1016/j.taap.2015.03.025] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/13/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
Abstract
Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O3) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O3 at 0.25, 0.50, or 1.0ppm, 6h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0ppm O3, 6h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18h post-exposure. O3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18h-post second exposure. O3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O3. In conclusion, short-term O3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress-response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure.
Collapse
Affiliation(s)
- Desinia B Miller
- Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | | | | | - William O Ward
- Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Beena D Vallanat
- Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Debora L Andrews
- Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Virginia L Bass
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Judy E Richards
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Andrew J Ghio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Wayne E Cascio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Allen D Ledbetter
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|