51
|
Yu K, Sun Y, Guo K, Peng J, Jiang Y. Early blood pressure management in hemorrhagic stroke: a meta-analysis. J Neurol 2023:10.1007/s00415-023-11654-w. [PMID: 36884070 DOI: 10.1007/s00415-023-11654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
The aim of the present meta-analysis was to evaluate the outcomes and effects of different systolic blood pressure (SBP) lowering in patients with hemorrhagic stroke using data from randomized controlled trials. A total of 2592 records were identified for this meta-analysis. We finally included 8 studies (6119 patients; mean age 62.8 ± 13.0, 62.7% men). No evidence of heterogeneity between estimates (I2 = 0% < 50%, P = 0.26), or publication bias in the funnel plots (P = 0.065, Egger statistical test) was detected. Death or major disability rates were similar between patients with intensive BP-lowering treatment (SBP < 140 mmHg) and those receiving guideline BP-lowering treatment (SBP < 180 mmHg). Intensive BP-lowering treatment may have a better functional outcome, but the results were not significantly different (log RR = - 0.03, 95% CI: - 0.09 to 0.02; P = 0.55). Intensive BP-lowering treatment tended to be associated with lower early hematoma growth compared with guideline treatment (log RR = - 0.24, 95% CI - 0.38, - 0.11; P < 0.001). Intensive BP-lowering helps reduce hematoma enlargement in the early stage of acute hemorrhagic stroke. However, this observation did not translate into functional outcomes. Further research is needed to clarify the specific scope and time of blood pressure reduction.
Collapse
Affiliation(s)
- Kuangyang Yu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
| | - Yuxuan Sun
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
| | - Kecheng Guo
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China. .,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China. .,Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China. .,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China. .,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
52
|
Singh A, Bonnell G, De Prey J, Buchwald N, Eskander K, Kincaid KJ, Wilson CA. Small-vessel disease in the brain. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 27:100277. [PMID: 38511094 PMCID: PMC10945899 DOI: 10.1016/j.ahjo.2023.100277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/22/2024]
Abstract
Cerebral small-vessels are generally located in the brain at branch points from major cerebral blood vessels and perfuse subcortical structures such as the white matter tracts, basal ganglia, thalamus, and pons. Cerebral small-vessel disease (CSVD) can lead to several different clinical manifestations including ischemic lacunar stroke, intracerebral hemorrhage, and vascular dementia. Risk factors for CSVD overlap with conventional vascular risk factors including hypertension, diabetes mellitus, and hypercholesterolemia, as well as genetic causes. As in cardiovascular disease, treatment of CSVD involves both primary and secondary prevention. Aspirin has not been established as a primary prevention strategy for CSVD among the general population; however, long-term antiplatelet therapy with aspirin alone continues to be the mainstay of secondary stroke prevention for non-cardioembolic ischemic stroke and high-risk TIA.
Collapse
Affiliation(s)
- Amita Singh
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Gabriel Bonnell
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Justin De Prey
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Natalie Buchwald
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Kyrillos Eskander
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Keith J. Kincaid
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Christina A. Wilson
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
53
|
Abstract
Cerebral small vessel disease (CSVD) has emerged as a common factor driving age-dependent diseases, including stroke and dementia. CSVD-related dementia will affect a growing fraction of the aging population, requiring improved recognition, understanding, and treatments. This review describes evolving criteria and imaging biomarkers for the diagnosis of CSVD-related dementia. We describe diagnostic challenges, particularly in the context of mixed pathologies and the absence of highly effective biomarkers for CSVD-related dementia. We review evidence regarding CSVD as a risk factor for developing neurodegenerative disease and potential mechanisms by which CSVD leads to progressive brain injury. Finally, we summarize recent studies on the effects of major classes of cardiovascular medicines relevant to CSVD-related cognitive impairment. Although many key questions remain, the increased attention to CSVD has resulted in a sharper vision for what will be needed to meet the upcoming challenges imposed by this disease.
Collapse
Affiliation(s)
- Fanny M. Elahi
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
- Neurology Service, VA Bronx Healthcare System, Bronx, NY
| | - Michael M. Wang
- Departments of Neurology and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI
| | | |
Collapse
|
54
|
Yilmaz P, Alferink LJM, Cremers LGM, Murad SD, Niessen WJ, Ikram MA, Vernooij MW. Subclinical liver traits are associated with structural and hemodynamic brain imaging markers. Liver Int 2023; 43:1256-1268. [PMID: 36801835 DOI: 10.1111/liv.15549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND & AIMS Impaired liver function affects brain health and therefore understanding potential mechanisms for subclinical liver disease is essential. We assessed the liver-brain associations using liver measures with brain imaging markers, and cognitive measures in the general population. METHODS Within the population-based Rotterdam Study, liver serum and imaging measures (ultrasound and transient elastography), metabolic dysfunction-associated fatty liver disease (MAFLD), non-alcoholic fatty liver disease (NAFLD) and fibrosis phenotypes, and brain structure were determined in 3493 non-demented and stroke-free participants in 2009-2014. This resulted in subgroups of n = 3493 for MAFLD (mean age 69 ± 9 years, 56% ♀), n = 2938 for NAFLD (mean age 70 ± 9 years, 56% ♀) and n = 2252 for fibrosis (mean age 65 ± 7 years, 54% ♀). Imaging markers of small vessel disease and neurodegeneration, cerebral blood flow (CBF) and brain perfusion (BP) were acquired from brain MRI (1.5-tesla). General cognitive function was assessed by Mini-Mental State Examination and the g-factor. Multiple linear and logistic regression models were used for liver-brain associations and adjusted for age, sex, intracranial volume, cardiovascular risk factors and alcohol use. RESULTS Higher gamma-glutamyltransferase (GGT) levels were significantly associated with smaller total brain volume (TBV, standardized mean difference (SMD), -0.02, 95% confidence interval (CI) (-0.03 to -0.01); p = 8.4·10-4 ), grey matter volumes, and lower CBF and BP. Liver serum measures were not related to small vessel disease markers, nor to white matter microstructural integrity or general cognition. Participants with ultrasound-based liver steatosis had a higher fractional anisotropy (FA, SMD 0.11, 95% CI (0.04 to 0.17), p = 1.5·10-3 ) and lower CBF and BP. MAFLD and NAFLD phenotypes were associated with alterations in white matter microstructural integrity (NAFLD ~ FA, SMD 0.14, 95% CI (0.07 to 0.22), p = 1.6·10-4 ; NAFLD ~ mean diffusivity, SMD -0.12, 95% CI (-0.18 to -0.05), p = 4.7·10-4 ) and also with lower CBF and BP (MAFLD ~ CBF, SMD -0.13, 95% CI (-0.20 to -0.06), p = 3.1·10-4 ; MAFLD ~ BP, SMD -0.12, 95% CI (-0.20 to -0.05), p = 1.6·10-3 ). Furthermore, fibrosis phenotypes were related to TBV, grey and white matter volumes. CONCLUSIONS Presence of liver steatosis, fibrosis and elevated serum GGT are associated with structural and hemodynamic brain markers in a population-based cross-sectional setting. Understanding the hepatic role in brain changes can target modifiable factors and prevent brain dysfunction.
Collapse
Affiliation(s)
- Pinar Yilmaz
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Louise J M Alferink
- Departments of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lotte G M Cremers
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sarwa D Murad
- Departments of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
55
|
Reiländer A, Pilatus U, Schüre JR, Shrestha M, Deichmann R, Nöth U, Hattingen E, Gracien RM, Wagner M, Seiler A. Impaired oxygen extraction and adaptation of intracellular energy metabolism in cerebral small vessel disease. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100162. [PMID: 36851996 PMCID: PMC9957754 DOI: 10.1016/j.cccb.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND We aimed to investigate whether combined phosphorous (31P) magnetic resonance spectroscopic imaging (MRSI) and quantitative T 2 ' mapping are able to detect alterations of the cerebral oxygen extraction fraction (OEF) and intracellular pH (pHi) as markers the of cellular energy metabolism in cerebral small vessel disease (SVD). MATERIALS AND METHODS 32 patients with SVD and 17 age-matched healthy control subjects were examined with 3-dimensional 31P MRSI and oxygenation-sensitive quantitative T 2 ' mapping (1/ T 2 ' = 1/T2* - 1/T2) at 3 Tesla (T). PHi was measured within the white matter hyperintensities (WMH) in SVD patients. Quantitative T 2 ' values were averaged across the entire white matter (WM). Furthermore, T 2 ' values were extracted from normal-appearing WM (NAWM) and the WMH and compared between patients and controls. RESULTS Quantitative T 2 ' values were significantly increased across the entire WM and in the NAWM in patients compared to control subjects (149.51 ± 16.94 vs. 138.19 ± 12.66 ms and 147.45 ± 18.14 vs. 137.99 ± 12.19 ms, p < 0.05). WM T 2 ' values correlated significantly with the WMH load (ρ=0.441, p = 0.006). Increased T 2 ' was significantly associated with more alkaline pHi (ρ=0.299, p < 0.05). Both T 2 ' and pHi were significantly positively correlated with vascular pulsatility in the distal carotid arteries (ρ=0.596, p = 0.001 and ρ=0.452, p = 0.016). CONCLUSIONS This exploratory study found evidence of impaired cerebral OEF in SVD, which is associated with intracellular alkalosis as an adaptive mechanism. The employed techniques provide new insights into the pathophysiology of SVD with regard to disease-related consequences on the cellular metabolic state.
Collapse
Key Words
- BBB, blood-brain barrier
- CBF, cerebral blood flow
- CBV, cerebral blood volume
- CMRO2, Cerebral metabolic rate of oxygen
- Cellular energy metabolism
- DTI, diffusion tensor imaging
- GE, gradient echo
- Hb, hemoglobin
- ICA, internal carotid artery
- MR spectroscopy
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- MRSI, magnetic resonance spectroscopic imaging
- Microstructural impairment
- NAWM, normal-appearing white matter
- OEF, oxygen extraction fraction
- Oxygen extraction fraction
- PI, Pulsatility index
- RF, radio frequency
- SVD, cerebral small vessel disease
- Small vessel disease
- TR, repetition time
- WM, white matter
- WMH, white matter hyperintensities
- pHi, intracellular pH
- quantitative MRI
Collapse
Affiliation(s)
- Annemarie Reiländer
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Jan-Rüdiger Schüre
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Manoj Shrestha
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Marlies Wagner
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Alexander Seiler
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| |
Collapse
|
56
|
Li X, Hui Y, Shi H, Li M, Zhao X, Li R, Zhang W, Lv H, Wu Y, Li J, Cui L, Zhao P, Wu S, Wang Z. Altered cerebral blood flow and white matter during wakeful rest in patients with obstructive sleep apnea: a population-based retrospective study. Br J Radiol 2023; 96:20220867. [PMID: 36715135 PMCID: PMC9975376 DOI: 10.1259/bjr.20220867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES To explore changes in cerebral blood flow (CBF) and white matter during wakeful rest in patients with obstructive sleep apnea (OSA). METHODS The subjects comprised OSA patients and age- and sex-matched non-sleep apnea (NSA) subjects from December 2020 to December 2021. All subjects underwent structural and arterial spin labeling MRI examinations using a 3.0 T MRI scanner. Intergroup differences in regional and global CBF and white matter hyperintensities (WMHs) were analyzed. RESULTS In this study, 100 (74 males) of 750 (439 males) subjects were diagnosed with OSA, so the prevalence of OSA in the general population was 13.3% (100/750), with 16.9% (74/439) in males and 8.4% (26/311) in females. Excluding four patients with incomplete imaging data, 96 OSA patients and 103 age- and sex-matched NSA subjects were included. At global level, OSA patients showed significantly decreased CBF values in gray matter and whole brain compared to NSA subjects (gray matter: p = 0.010; whole brain: p = 0.021). No significant difference in CBF values was found in WM between the two groups (p = 0.250). At regional level, compared with NSA subjects, patients with OSA exhibited significantly decreased regional CBF values mainly in right parietal lobe and right temporal lobe. Moreover, OSA patients had significantly higher WMHs burden than NSA subjects (p = 0.017). CONCLUSIONS OSA patients exhibit decreased global and regional CBF values and increased WMHs burden. ADVANCES IN KNOWLEDGE These findings provide a basis for exploring neuropathological changes of OSA and for early and appropriate treatment.
Collapse
Affiliation(s)
- Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Hui
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huijing Shi
- Department of Rheumatology and Immunology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Mengning Li
- Department of MRI Room, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Xinyu Zhao
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenfei Zhang
- Department of MRI Room, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuntao Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liufu Cui
- Department of Rheumatology and Immunology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
57
|
Zhao J, Wang X, Li Q, Lu C, Li S. The relevance of serum macrophage migratory inhibitory factor and cognitive dysfunction in patients with cerebral small vascular disease. Front Aging Neurosci 2023; 15:1083818. [PMID: 36824264 PMCID: PMC9941340 DOI: 10.3389/fnagi.2023.1083818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Cerebral small vascular disease (CSVD) is a common type of cerebrovascular disease, and an important cause of vascular cognitive impairment (VCI) and stroke. The disease burden is expected to increase further as a result of population aging, an ongoing high prevalence of risk factors (e.g., hypertension), and inadequate management. Due to the poor understanding of pathophysiology in CSVD, there is no effective preventive or therapeutic approach for CSVD. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that is related to the occurrence and development of vascular dysfunction diseases. Therefore, MIF may contribute to the pathogenesis of CSVD and VCI. Here, reviewed MIF participation in chronic cerebral ischemia-hypoperfusion and neurodegeneration pathology, including new evidence for CSVD, and its potential role in protection against VCI.
Collapse
Affiliation(s)
- Jianhua Zhao
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China,*Correspondence: Jianhua Zhao,
| | - Xiaoting Wang
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qiong Li
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengbiao Lu
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
58
|
Wang JL, Cheng XR, Meng ZY, Wang YL. Impact of total cerebral small vessel disease score on ophthalmic artery morphologies and hemodynamics. J Transl Med 2023; 21:65. [PMID: 36726156 PMCID: PMC9890861 DOI: 10.1186/s12967-023-03908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) is a systemic disease, affecting not only the brain, but also eyes and other organs. The total CSVD score is a tool for comprehensive evaluation of brain lesions in patients with CSVD. The ophthalmic artery (OA) is a direct response to ocular blood flow. However, little is known about the correlation between CSVD and characteristics of OA. We investigated the OA morphologies and hemodynamics in patients with CSVD and the correlation between these changes and the total CSVD score. METHODS This cross-sectional observational study included 34 eyes from 22 patients with CSVD and 10 eyes from 5 healthy controls. The total CSVD score was rated according to the CSVD signs on magnetic resonance imaging. OA morphological characteristics were measured on the basis of 3D OA model reconstruction. OA hemodynamic information was calculated using computational fluid dynamics simulations. RESULTS The total CSVD score negatively correlated with the OA diameter, blood flow velocity, and mass flow ratio (all P < 0.05). After adjusting for potential confounding factors, the total CSVD score was still independently correlated with the OA blood velocity (β = - 0.202, P = 0.005). The total CSVD score was not correlated with OA angle (P > 0.05). The presence of cerebral microbleeds and enlarged perivascular spaces was correlated with the OA diameter (both P < 0.01), while the lacunar infarcts and white matter hyperintensities were correlated with the OA blood velocity (both P < 0.001). CONCLUSIONS The decrease of the blood velocity in the OA was associated with the increase in the total CSVD score. The changes of the OA diameter and velocity were associated with the presence of various CSVD signs. The findings suggest that more studies are needed in the future to evaluate CSVD by observing the morphologies and hemodynamics of OA.
Collapse
Affiliation(s)
- Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| | - Xue-Ru Cheng
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Zhao-Yang Meng
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
59
|
Lin Z, Lim C, Jiang D, Soldan A, Pettigrew C, Oishi K, Zhu Y, Moghekar A, Liu P, Albert M, Lu H. Longitudinal changes in brain oxygen extraction fraction (OEF) in older adults: Relationship to markers of vascular and Alzheimer's pathology. Alzheimers Dement 2023; 19:569-577. [PMID: 35791732 PMCID: PMC10838398 DOI: 10.1002/alz.12727] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Oxygen extraction fraction (OEF) reflects the balance between oxygen delivery and consumption. We longitudinally measured OEF in older adults to examine the relationship with markers of Alzheimer's disease (AD) and vascular pathology. METHODS One hundred thirty-seven participants were studied at two time-points at an interval of 2.16 years. OEF was measured using T2 -relaxation-under-spin-tagging (TRUST) magnetic resonance imaging (MRI). The association between OEF and vascular risks, white matter hyperintensities (WMH), cerebrospinal fluid (CSF) measures of amyloid beta (Aβ), total tau (t-tau), and phosphorylated tau 181 (p-tau181) was examined. RESULTS OEF increased from baseline to follow-up. The increase in OEF was more prominent in individuals with high vascular risks compared to those with low vascular risks, and was associated with progression of vascular risks and the growth in WMH volume. OEF change was not related to CSF markers of AD pathology or their progression. DISCUSSION Longitudinal OEF change in older adults is primarily related to vascular pathology.
Collapse
Affiliation(s)
- Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chantelle Lim
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kumiko Oishi
- Center for Imaging Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuxin Zhu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
60
|
Risacher SL, Apostolova LG. Neuroimaging in Dementia. Continuum (Minneap Minn) 2023; 29:219-254. [PMID: 36795879 DOI: 10.1212/con.0000000000001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVE Neurodegenerative diseases are significant health concerns with regard to morbidity and social and economic hardship around the world. This review describes the state of the field of neuroimaging measures as biomarkers for detection and diagnosis of both slowly progressing and rapidly progressing neurodegenerative diseases, specifically Alzheimer disease, vascular cognitive impairment, dementia with Lewy bodies or Parkinson disease dementia, frontotemporal lobar degeneration spectrum disorders, and prion-related diseases. It briefly discusses findings in these diseases in studies using MRI and metabolic and molecular-based imaging (eg, positron emission tomography [PET] and single-photon emission computerized tomography [SPECT]). LATEST DEVELOPMENTS Neuroimaging studies with MRI and PET have demonstrated differential patterns of brain atrophy and hypometabolism in different neurodegenerative disorders, which can be useful in differential diagnoses. Advanced MRI sequences, such as diffusion-based imaging, and functional MRI (fMRI) provide important information about underlying biological changes in dementia and new directions for development of novel measures for future clinical use. Finally, advancements in molecular imaging allow clinicians and researchers to visualize dementia-related proteinopathies and neurotransmitter levels. ESSENTIAL POINTS Diagnosis of neurodegenerative diseases is primarily based on symptomatology, although the development of in vivo neuroimaging and fluid biomarkers is changing the scope of clinical diagnosis, as well as the research into these devastating diseases. This article will help inform the reader about the current state of neuroimaging in neurodegenerative diseases, as well as how these tools might be used for differential diagnoses.
Collapse
Affiliation(s)
- Shannon L Risacher
- Address correspondence to Dr Shannon L. Risacher, 355 W 16th St, Indianapolis, IN 46202,
| | | |
Collapse
|
61
|
Fu X, Zhang W, Li X, Liu H, Zhang Y, Gao Q. Critical closing pressure as a new hemodynamic marker of cerebral small vessel diseases burden. Front Neurol 2023; 14:1091075. [PMID: 37025201 PMCID: PMC10071665 DOI: 10.3389/fneur.2023.1091075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Purpose To investigate cerebrovascular hemodynamics, including critical closing pressure (CrCP) and pulsatility index (PI), and their independent relationship with cerebral small vessel disease (CSVD) burden in patients with small-vessel occlusion (SVO). Methods We recruited consecutive patients with SVO of acute cerebral infarction who underwent brain magnetic resonance imaging (MRI), transcranial Doppler (TCD) and CrCP during admission. Cerebrovascular hemodynamics were assessed using TCD. We used the CSVD score to rate the total MRI burden of CSVD. Multiple regression analysis was used to determine parameters related to CSVD burden or CrCP. Results Ninety-seven of 120 patients (mean age, 64.51 ± 9.99 years; 76% male) completed the full evaluations in this study. We observed that CrCP was an independent determinant of CSVD burden in four models [odds ratio, 1.41; 95% confidence interval (CI), 1.17-1.71; P < 0.001] and correlated with CSVD burden [β (95% CI): 0.05 (0.04-0.06); P < 0.001]. In ROC analysis, CrCP was considered as a predictor of CSVD burden, and AUC was 86.2% (95% CI, 78.6-93.9%; P < 0.001). Multiple linear regression analysis showed that CrCP was significantly correlated with age [β (95% CI): 0.27 (0.06 to 0.47); P = 0.012], BMI [β (95% CI): 0.61 (0.00-1.22)] and systolic BP [β (95% CI): 0.16 (0.09-0.23); P < 0.001]. Conclusions CrCP representing cerebrovascular tension is an independent determinant and predictor of CSVD burden. It was significantly correlated with age, BMI and systolic blood pressure. These results provide new insights in the mechanism of CSVD development.
Collapse
Affiliation(s)
- Xian Fu
- Department of Neurology, Shenzhen Bao'an District Songgang People's Hospital, Shenzhen, China
- Xian Fu
| | - Weijin Zhang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xianliang Li
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongying Liu
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yin Zhang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingchun Gao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Qingchun Gao
| |
Collapse
|
62
|
Li J, Zeng Q, Luo X, Li K, Liu X, Hong L, Zhang X, Zhong S, Qiu T, Liu Z, Chen Y, Huang P, Zhang M. Decoupling of Regional Cerebral Blood Flow and Brain Function Along the Alzheimer's Disease Continuum. J Alzheimers Dis 2023; 95:287-298. [PMID: 37483006 DOI: 10.3233/jad-230503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is accompanied with impaired neurovascular coupling. However, its early alteration remains elusive along the AD continuum. OBJECTIVE This study aimed to investigate the early disruption of neurovascular coupling in cognitively normal (CN) and mild cognitive impairment (MCI) elderly and its association with cognition and AD pathologies. METHODS We included 43 amyloid-β-negative CN participants and 38 amyloid-β-positive individuals (18 CN and 20 MCI) from the Alzheimer's Disease Neuroimaging Initiative dataset. Regional homogeneity (ReHo) map was used to represent neuronal activity and cerebral blood flow (CBF) map was used to represent cerebral blood perfusion. Neurovascular coupling was assessed by CBF/ReHo ratio at the voxel level. Analyses of covariance to detect the between-group differences and to further investigate the relations between CBF/ReHo ratio and AD biomarkers or cognition. In addition, the correlation of cerebral small vessel disease (SVD) burden and neurovascular coupling was assessed as well. RESULTS Related to amyloid-β-negative CN group, amyloid-β-positive groups showed decreased CBF/ReHo ratio mainly in the left medial and inferior temporal gyrus. Furthermore, lower CBF/ReHo ratio was associated with a lower Mini-Mental State Examination score as well as higher AD pathological burden. No association between CBF/ReHo ratio and SVD burden was observed. CONCLUSION AD pathology is a major correlate of the disturbed neurovascular coupling along the AD continuum, independent of SVD pathology. The CBF/ReHo ratio may be an index for detecting neurovascular coupling abnormalities, which could be used for early diagnosis in the future.
Collapse
Affiliation(s)
- Jixuan Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Luwei Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Siyan Zhong
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Qiu
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Zhirong Liu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
63
|
Fedin AI. [Arterial hypertension and cognitive impairment. Neurologist's view]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:7-13. [PMID: 37994882 DOI: 10.17116/jnevro20231231117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The article presents a review of the literature on the relationship of cognitive impairment (CI) with arterial hypertension (AH). The pathogenetic mechanisms AH are characterized by the development of cerebral microangiopathy. Antihypertensive therapy (AHT) should take into account violations of autoregulation of cerebral blood flow in cerebrovascular disease and critical stenoses of large cerebral arteries, especially in fragile patients older than 80 years. The importance of AHT focused on the level of cerebral perfusion blood pressure, the severity of CI and the physical functioning of patients is emphasized. Neurocytoprotective therapy is recommended for correction of CI.
Collapse
Affiliation(s)
- A I Fedin
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
64
|
Wang ZY, Li MZ, Li WJ, Ouyang JF, Gou XJ, Huang Y. Mechanism of action of Daqinjiao decoction in treating cerebral small vessel disease explored using network pharmacology and molecular docking technology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154538. [PMID: 36370638 DOI: 10.1016/j.phymed.2022.154538] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral small vessel disease (CSVD) is a clinically commonly-seen slow-progressing cerebral vascular disease. As a classic Chinese formula for the treatment of stroke, Daqinjiao Decoction (DQJD) is now used to treat CSVD with desirable effect. Since the mechanism of action is still unclear, this article will explore the therapeutic effect and mechanism of action of the formula using network pharmacology technology. METHODS The major chemical components and potential target genes of DQJD were screened by bioinformatics. The key targets in CSVD were identified based on network modules. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Pharmacodynamics of the decoction was evaluated by establishing a rat model with bilateral common carotid artery occlusion in the brain. Molecular docking, Western blot analysis and quantitative real-time polymerase chain reaction (QRT-PCR) were performed to confirm the effectiveness of targets in related pathways. RESULTS Network pharmacology showed that 16 targets and 30 pathways were involved in the DQJD-targeted pathway network. Results revealed that DQJD might play a role by targeting the key targets including Caspse3 and P53 and regulating the P53 signaling pathway. Cognitive function and neuronal cell changes of rats were evaluated using Morris water maze, open field test and HE staining. It was indicated that DQJD could keep the nerve cells intact and neatly arranged. The decoction could improve the memory and learning ability of rats compared with the model group. It decreased the protein and mRNA expression levels of Caspse3 and P53 significantly (p<0.01). CONCLUSION The study shows that baicalein, quercetin and wogonin, the effective components of DQJD, may regulate multiple signaling pathways by targeting the targets like Caspse3 and P53 and treat CSVD by reducing the damage to brain nerve cells.
Collapse
Affiliation(s)
- Zhuo-Yuan Wang
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China
| | - Ming-Zhe Li
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Wen-Jie Li
- Experimental Research center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing 100700, China
| | - Jing-Feng Ouyang
- Experimental Research center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing 100700, China
| | - Xiao-Jun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China.
| | - Ying Huang
- Experimental Research center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing 100700, China.
| |
Collapse
|
65
|
Reid M, Tadros GS, McDougall CC, Reaume N, McDougall B, Sah RG, Wang M, Smith EE, Frayne R, Coutts S, Sajobi T, Longman RS, d'Esterre CD, Barber P. Arterial spin labelling reveals multi-regional cerebral hypoperfusion in patients with transient ischemic attack that are unrelated to ischemia location: A proof-of-concept study. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100164. [PMID: 37124951 PMCID: PMC10130071 DOI: 10.1016/j.cccb.2023.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Background and Aims Patients with transient ischemic attack (TIA) have a substantially increased risk of early dementia. In this exploratory study, we aim to determine whether patients with TIA have 1) measurable regional cerebral hypoperfusion unrelated to the location of ischemia, and 2) determine the relationship of regional cerebral blood flow (rCBF) with their cognitive profiles. Methods Patients with TIA (N = 49) and seventy-nine (N = 79) age and sex matched controls underwent formal neuropsychological testing and MRI. Quantitative arterial spin labelling rCBF maps (mL/min/100 g) were registered to the corresponding high resolution T1-weighted image. Linear regression was used to determine the association between demographic, clinical and cognitive variables and rCBF. Results Patients with TIA had significantly (p < 0.05) lower cognitive scores in the MMSE, MOCA, ACE-R, WAIS-IV DS Coding and Trail Making Tests A and B compared to controls. TIA patients had significantly lower rCBF in the left entorhinal cortex (p = 0.03), right posterior cingulate (p = 0.04), and right precuneus (p = 0.05), after adjusting for age and sex, that were unrelated to the regional anatomical volume and DWI positivity. Regional hypoperfusion in the right posterior cingulate and right precuneus was associated with impaired visual memory (BVMT total, p = 0.05 for both regions) and slower processing speed (TMT A, p = 0.04 and p = 0.01), respectively after adjusting for age and sex. Conclusions TIA patients have patterns of regional hypoperfusion in multiple cortical regions unrelated to the parcellated regional anatomical volume or the presence of a DWI lesion. Regional hypoperfusion in patients with TIA may be an early marker conferring risk of future cognitive decline that needs to be confirmed by future studies.
Collapse
Affiliation(s)
- Meaghan Reid
- Department of Medical Sciences, University of Calgary, Calgary, AB, Canada
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, Calgary, AB, Canada
- Seaman Family MR Center, Foothills Medical Centre, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - George S. Tadros
- Seaman Family MR Center, Foothills Medical Centre, Calgary, AB, Canada
- Department of Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Connor C. McDougall
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, Calgary, AB, Canada
- Department of Mechanical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Noaah Reaume
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, Calgary, AB, Canada
- Seaman Family MR Center, Foothills Medical Centre, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Brooklyn McDougall
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, Calgary, AB, Canada
- Seaman Family MR Center, Foothills Medical Centre, Calgary, AB, Canada
| | - Rani Gupta Sah
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, Calgary, AB, Canada
- Seaman Family MR Center, Foothills Medical Centre, Calgary, AB, Canada
- Department of Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Meng Wang
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Eric E. Smith
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, Calgary, AB, Canada
- Department of Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Richard Frayne
- Seaman Family MR Center, Foothills Medical Centre, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Shelagh Coutts
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, Calgary, AB, Canada
- Seaman Family MR Center, Foothills Medical Centre, Calgary, AB, Canada
- Department of Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Tolulope Sajobi
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - R. Stewart Longman
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Neuropsychology Service, Foothills Medical Centre, Calgary, AB, Canada
| | - Christopher D. d'Esterre
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, Calgary, AB, Canada
- Seaman Family MR Center, Foothills Medical Centre, Calgary, AB, Canada
- Department of Mechanical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Philip Barber
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, Calgary, AB, Canada
- Seaman Family MR Center, Foothills Medical Centre, Calgary, AB, Canada
- Department of Mechanical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Correspond author at: Calgary Stroke Program, Departments of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
66
|
Palà E, Escudero-Martínez I, Penalba A, Bustamante A, Lamana-Vallverdú M, Mancha F, Ocete RF, Piñero P, Galvao-Carmona A, Gómez-Herranz M, Pérez-Sánchez S, Moniche F, González A, Montaner J. Association of blood-based biomarkers with radiologic markers and cognitive decline in atrial fibrillation patients. J Stroke Cerebrovasc Dis 2022; 31:106833. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
|
67
|
Hayes G, Pinto J, Sparks SN, Wang C, Suri S, Bulte DP. Vascular smooth muscle cell dysfunction in neurodegeneration. Front Neurosci 2022; 16:1010164. [PMID: 36440263 PMCID: PMC9684644 DOI: 10.3389/fnins.2022.1010164] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the key moderators of cerebrovascular dynamics in response to the brain's oxygen and nutrient demands. Crucially, VSMCs may provide a sensitive biomarker for neurodegenerative pathologies where vasculature is compromised. An increasing body of research suggests that VSMCs have remarkable plasticity and their pathophysiology may play a key role in the complex process of neurodegeneration. Furthermore, extrinsic risk factors, including environmental conditions and traumatic events can impact vascular function through changes in VSMC morphology. VSMC dysfunction can be characterised at the molecular level both preclinically, and clinically ex vivo. However the identification of VSMC dysfunction in living individuals is important to understand changes in vascular function at the onset and progression of neurological disorders such as dementia, Alzheimer's disease, and Parkinson's disease. A promising technique to identify changes in the state of cerebral smooth muscle is cerebrovascular reactivity (CVR) which reflects the intrinsic dynamic response of blood vessels in the brain to vasoactive stimuli in order to modulate regional cerebral blood flow (CBF). In this work, we review the role of VSMCs in the most common neurodegenerative disorders and identify physiological systems that may contribute to VSMC dysfunction. The evidence collected here identifies VSMC dysfunction as a strong candidate for novel therapeutics to combat the development and progression of neurodegeneration, and highlights the need for more research on the role of VSMCs and cerebrovascular dynamics in healthy and diseased states.
Collapse
Affiliation(s)
- Genevieve Hayes
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Joana Pinto
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sierra N. Sparks
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Congxiyu Wang
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Daniel P. Bulte
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
68
|
Tsvetanov KA, Spindler LRB, Stamatakis EA, Newcombe VFJ, Lupson VC, Chatfield DA, Manktelow AE, Outtrim JG, Elmer A, Kingston N, Bradley JR, Bullmore ET, Rowe JB, Menon DK. Hospitalisation for COVID-19 predicts long lasting cerebrovascular impairment: A prospective observational cohort study. Neuroimage Clin 2022; 36:103253. [PMID: 36451358 PMCID: PMC9639388 DOI: 10.1016/j.nicl.2022.103253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Human coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has multiple neurological consequences, but its long-term effect on brain health is still uncertain. The cerebrovascular consequences of COVID-19 may also affect brain health. We studied the chronic effect of COVID-19 on cerebrovascular health, in relation to acute severity, adverse clinical outcomes and in contrast to control group data. Here we assess cerebrovascular health in 45 patients six months after hospitalisation for acute COVID-19 using the resting state fluctuation amplitudes (RSFA) from functional magnetic resonance imaging, in relation to disease severity and in contrast with 42 controls. Acute COVID-19 severity was indexed by COVID-19 WHO Progression Scale, inflammatory and coagulatory biomarkers. Chronic widespread changes in frontoparietal RSFA were related to the severity of the acute COVID-19 episode. This relationship was not explained by chronic cardiorespiratory dysfunction, age, or sex. The level of cerebrovascular dysfunction was associated with cognitive, mental, and physical health at follow-up. The principal findings were consistent across univariate and multivariate approaches. The results indicate chronic cerebrovascular impairment following severe acute COVID-19, with the potential for long-term consequences on cognitive function and mental wellbeing.
Collapse
Affiliation(s)
- Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
| | - Lennart R B Spindler
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Virginia F J Newcombe
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Victoria C Lupson
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Doris A Chatfield
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Anne E Manktelow
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Joanne G Outtrim
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Anne Elmer
- Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - John R Bradley
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Edward T Bullmore
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, United Kingdom
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom; Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
69
|
Chen CF, Peng SL. Editorial for "Longitudinal Changes in Global Cerebral Blood Flow in Cognitively Normal Older Adults: A Phase-Contrast MRI Study". J Magn Reson Imaging 2022; 56:1546-1547. [PMID: 35244295 DOI: 10.1002/jmri.28138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Chih-Feng Chen
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
70
|
Huo Y, Wang Y, Guo C, Liu Q, Shan L, Liu M, Wu H, Li G, Lv H, Lu L, Zhou Y, Feng J, Han Y. Deep white matter hyperintensity is spatially correlated to MRI-visible perivascular spaces in cerebral small vessel disease on 7 Tesla MRI. Stroke Vasc Neurol 2022; 8:144-150. [PMID: 36170993 PMCID: PMC10176991 DOI: 10.1136/svn-2022-001611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/14/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The association between perivascular space (PVS) and white matter hyperintensity (WMH) has been unclear. Normal-appearing white matter (NAWM) around WMH is also found correlated with the development of focal WMH. This study aims to investigate the topological connections among PVS, deep WMH (dWMH) and NAWM around WMH using 7 Tesla (7T) MRI. METHODS Thirty-two patients with non-confluent WMHs and 16 subjects without WMHs were recruited from our department and clinic. We compared the PVS burden between patients with and without WMHs using a 5-point scale. Then, the dilatation and the number of PVS within a radius of 1 cm around each dWMH were compared with those of a reference site (without WMH) in the contralateral hemisphere. In this study, we define NAWM as an area within the radius of 1 cm around each dWMH. Furthermore, we assessed the spatial relationship between dWMH and PVS. RESULTS Higher PVS scores in the centrum semiovale were found in patients with >5 dWMHs (median 3) than subjects without dWMH (median 2, p = 0.014). We found there was a greater dilatation and a higher number of PVS in NAWM around dWMH than at the reference sites (p<0.001, p<0.001). In addition, 79.59% of the dWMHs were spatially connected with PVS. CONCLUSION dWMH, NAWM surrounding WMH and MRI-visible PVS are spatially correlated in the early stage of cerebral small vessel disease. Future study of WMH and NAWM should not overlook MRI-visible PVS.
Collapse
Affiliation(s)
- Yajing Huo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yilin Wang
- Georgetown Preparatory School, North Bethesda, Maryland, USA
| | - Cen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianyun Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Shan
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haibo Wu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanwu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihui Lv
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingdan Lu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yintin Zhou
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
71
|
Bouhrara M, Triebswetter C, Kiely M, Bilgel M, Dolui S, Erus G, Meirelles O, Bryan NR, Detre JA, Launer LJ. Association of Cerebral Blood Flow With Longitudinal Changes in Cerebral Microstructural Integrity in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. JAMA Netw Open 2022; 5:e2231189. [PMID: 36094503 PMCID: PMC9468885 DOI: 10.1001/jamanetworkopen.2022.31189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
IMPORTANCE Decreased cerebral tissue integrity and cerebral blood flow (CBF) are features of neurodegenerative diseases. Brain tissue maintenance is an energy-demanding process, making it particularly sensitive to hypoperfusion. However, little is known about the association between blood flow and brain microstructural integrity, including in normative aging. OBJECTIVE To assess associations between CBF and changes in cerebral tissue integrity in white matter and gray matter brain regions. DESIGN, SETTING, AND PARTICIPANTS In this longitudinal cohort study, magnetic resonance imaging was performed on 732 healthy adults from the Coronary Artery Risk Development in Young Adults (CARDIA) study, a prospective longitudinal study (baseline age of 18-30 years) that examined participants up to 8 times during 30 years (1985-1986 to 2015-2016). Cerebral blood flow was measured at baseline (year 25 of the CARDIA study), and changes in diffusion tensor indices of fractional anisotropy (FA) and mean diffusivity (MD), measures of microstructural tissue integrity, were measured at both baseline and after approximately 5 years of follow-up (year 30). Analyses were conducted from November 5, 2020, to January 29, 2022. MAIN OUTCOMES AND MEASURES Automated algorithms and linear mixed-effects statistical models were used to evaluate the associations between CBF at baseline and changes in FA or MD. RESULTS After exclusion of participants with missing or low-quality data, 654 at baseline (342 women; mean [SD] age, 50.3 [3.5] years) and 433 at follow-up (230 women; mean [SD] age, 55.1 [3.5] years) were scanned for CBF or FA and MD imaging. In the baseline cohort, 247 participants were Black (37.8%) and 394 were White (60.2%); in the follow-up cohort, 156 were Black (36.0%) and 277 were White (64.0%). Cross-sectionally, FA and MD were associated with CBF in most regions evaluated, with lower CBF values associated with lower FA or higher MD values, including the frontal white matter lobes (for CBF and MD: mean [SE] β = -1.4 [0.5] × 10-6; for CBF and FA: mean [SE] β = 2.9 [1.0] × 10-4) and the parietal white matter lobes (for CBF and MD: mean [SE] β = -2.4 [0.6] × 10-6; for CBF and FA: mean [SE] β = 4.4 [1.1] × 10-4). Lower CBF values at baseline were also significantly associated with steeper regional decreases in FA or increases in MD in most brain regions investigated, including the frontal (for CBF and MD: mean [SE] β = -1.1 [0.6] × 10-6; for CBF and FA: mean [SE] β = 2.9 [1.0] × 10-4) and parietal lobes (for CBF and MD: mean [SE] β = -1.5 [0.7] × 10-6; for CBF and FA: mean [SE] β = 4.4 [1.1] × 10-4). CONCLUSIONS AND RELEVANCE Results of this longitudinal cohort study of the association between CBF and diffusion tensor imaging metrics suggest that blood flow may be significantly associated with brain tissue microstructure. This work may lay the foundation for investigations to clarify the nature of early brain damage in neurodegeneration. Such studies may lead to new neuroimaging biomarkers of brain microstructure and function for disease progression.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Curtis Triebswetter
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Matthew Kiely
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia
| | - Osorio Meirelles
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Nick R. Bryan
- Department of Diagnostic Medicine, University of Texas, Austin
| | - John A. Detre
- Department of Radiology, University of Pennsylvania, Philadelphia
- Department of Neurology, University of Pennsylvania, Philadelphia
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
72
|
Lu W, Yu C, Wang L, Wang F, Qiu J. Perfusion heterogeneity of cerebral small vessel disease revealed via arterial spin labeling MRI and machine learning. Neuroimage Clin 2022; 36:103165. [PMID: 36037662 PMCID: PMC9434130 DOI: 10.1016/j.nicl.2022.103165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Cerebral small vessel disease (CSVD) is associated with altered cerebral perfusion. However, global and regional cerebral blood flow (CBF) are highly heterogeneous across CSVD patients. The aim of this study was to identify subtypes of CSVD with different CBF patterns using an advanced machine learning approach. 121 CSVD patients and 53 healthy controls received arterial spin label MRI, T1 structural MRI and clinical measurements. Regional CBF were used to identify distinct perfusion subtypes of CSVD via a semi-supervised machine learning algorithm. Statistical analyses were used to explore alterations in CBF, clinical measures, gray and white matter volume between healthy controls and different subtypes of CSVD. Correlation analysis was used to assess the association between clinical measures and altered CBF in each CSVD subtype. Three subtypes of CSVD with distinct CBF patterns were found. Subtype 1 showed decreased CBF in the temporal lobe and increased CBF in the parietal and occipital lobe. Subtype 2 exhibited decreased CBF in the right hemisphere of the brain, and increased CBF in the left cerebrum. Subtype 3 demonstrated decreased CBF in the posterior part of the brain, and increased CBF in anterior part of the brain. The three subtypes also differed significantly in gender (p = 0.005), the proportion of subjects with lacune (p = 0.002), with periventricular white matter hyperintensity (p = 0.043), and CSVD burden score (p = 0.048). In subtype 3, it was found that widespread decreased CBF was correlated with total CSVD burden score (r = -0.324, p = 0.029). Compared with healthy controls, the three CSVD subtypes also showed distinct volumetric patterns of white matter. The current results associate different subtypes with different clinical and imaging phenotypes, which can improve the understanding of brain perfusion alterations of CSVD and can facilitate precision diagnosis of CSVD.
Collapse
Affiliation(s)
- Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China,School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Chunyan Yu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Liru Wang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Feng Wang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China,Corresponding authors at: No. 706 Taishan Street, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China (F. Wang). No. 619 Changcheng Road, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China (J. Qiu).
| | - Jianfeng Qiu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China,School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China,Corresponding authors at: No. 706 Taishan Street, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China (F. Wang). No. 619 Changcheng Road, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China (J. Qiu).
| |
Collapse
|
73
|
Binnie LR, Pauls MMH, Benjamin P, Dhillon MPK, Betteridge S, Clarke B, Ghatala R, Hainsworth FAH, Howe FA, Khan U, Kruuse C, Madigan JB, Moynihan B, Patel B, Pereira AC, Rostrup E, Shtaya ABY, Spilling CA, Trippier S, Williams R, Isaacs JD, Barrick TR, Hainsworth AH. Test-retest reliability of arterial spin labelling for cerebral blood flow in older adults with small vessel disease. Transl Stroke Res 2022; 13:583-594. [PMID: 35080734 PMCID: PMC9232403 DOI: 10.1007/s12975-021-00983-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022]
Abstract
Cerebral small vessel disease (SVD) is common in older people and is associated with lacunar stroke, white matter hyperintensities (WMH) and vascular cognitive impairment. Cerebral blood flow (CBF) is reduced in SVD, particularly within white matter.Here we quantified test-retest reliability in CBF measurements using pseudo-continuous arterial spin labelling (pCASL) in older adults with clinical and radiological evidence of SVD (N=54, mean (SD): 66.9 (8.7) years, 15 females/39 males). We generated whole-brain CBF maps on two visits at least 7 days apart (mean (SD): 20 (19), range 7-117 days).Test-retest reliability for CBF was high in all tissue types, with intra-class correlation coefficient [95%CI]: 0.758 [0.616, 0.852] for whole brain, 0.842 [0.743, 0.905] for total grey matter, 0.771 [0.636, 0.861] for deep grey matter (caudate-putamen and thalamus), 0.872 [0.790, 0.923] for normal-appearing white matter (NAWM) and 0.780 [0.650, 0.866] for WMH (all p<0.001). ANCOVA models indicated significant decline in CBF in total grey matter, deep grey matter and NAWM with increasing age and diastolic blood pressure (all p<0.001). CBF was lower in males relative to females (p=0.013 for total grey matter, p=0.004 for NAWM).We conclude that pCASL has high test-retest reliability as a quantitative measure of CBF in older adults with SVD. These findings support the use of pCASL in routine clinical imaging and as a clinical trial endpoint.All data come from the PASTIS trial, prospectively registered at: https://eudract.ema.europa.eu (2015-001235-20, registered 13/05/2015), http://www.clinicaltrials.gov (NCT02450253, registered 21/05/2015).
Collapse
Affiliation(s)
- Lauren R Binnie
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Mathilde M H Pauls
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Philip Benjamin
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neuroradiology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Mohani-Preet K Dhillon
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Shai Betteridge
- Department of Neuropsychology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Brian Clarke
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Rita Ghatala
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Fearghal A H Hainsworth
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Franklyn A Howe
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Usman Khan
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Christina Kruuse
- Department of Neurology and Neurovascular Research Unit, Herlev Gentofte Hospital, Herlev, Denmark
| | - Jeremy B Madigan
- Department of Neuroradiology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Barry Moynihan
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bhavini Patel
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Anthony C Pereira
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Egill Rostrup
- Mental Health Centre, University of Copenhagen, Glostrup, Denmark
| | - Anan B Y Shtaya
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Catherine A Spilling
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sarah Trippier
- South London Stroke Research Network, St George's Hospital, London, UK
| | - Rebecca Williams
- South London Stroke Research Network, St George's Hospital, London, UK
| | - Jeremy D Isaacs
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Thomas R Barrick
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Atticus H Hainsworth
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK.
| |
Collapse
|
74
|
García-García I, Michaud A, Jurado MÁ, Dagher A, Morys F. Mechanisms linking obesity and its metabolic comorbidities with cerebral grey and white matter changes. Rev Endocr Metab Disord 2022; 23:833-843. [PMID: 35059979 DOI: 10.1007/s11154-021-09706-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Obesity is a preventable risk factor for cerebrovascular disorders and it is associated with cerebral grey and white matter changes. Specifically, individuals with obesity show diminished grey matter volume and thickness, which seems to be more prominent among fronto-temporal regions in the brain. At the same time, obesity is associated with lower microstructural white matter integrity, and it has been found to precede increases in white matter hyperintensity load. To date, however, it is unclear whether these findings can be attributed solely to obesity or whether they are a consequence of cardiometabolic complications that often co-exist with obesity, such as low-grade systemic inflammation, hypertension, insulin resistance, or dyslipidemia. In this narrative review we aim to provide a comprehensive overview of the potential impact of obesity and a number of its cardiometabolic consequences on brain integrity, both separately and in synergy with each other. We also identify current gaps in knowledge and outline recommendations for future research.
Collapse
Affiliation(s)
- Isabel García-García
- Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
| | | | - María Ángeles Jurado
- Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Alain Dagher
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Filip Morys
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
75
|
Han H, Ning Z, Yang D, Yu M, Qiao H, Chen S, Chen Z, Li D, Zhang R, Liu G, Zhao X. Associations between cerebral blood flow and progression of white matter hyperintensity in community-dwelling adults: a longitudinal cohort study. Quant Imaging Med Surg 2022; 12:4151-4165. [PMID: 35919044 PMCID: PMC9338364 DOI: 10.21037/qims-22-141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/27/2022] [Indexed: 12/05/2022]
Abstract
Background White matter hyperintensity (WMH) is prevalent in elderly populations. Ischemia is characterized by a decline in cerebral blood flow (CBF) and may play a key role in the pathogenesis of WMH. However, the association between CBF reduction and WMH progression remains controversial. This study aimed to investigate the association between CBF and the progression of WMH at a 2-year follow-up of community-based, asymptomatic adults in a longitudinal cohort study across the lifespan. Methods Asymptomatic adults who participated in a community-based study were recruited and underwent brain structural and perfusion magnetic resonance imaging (MRI) at baseline and at a 2-year follow-up visit. The CBF was measured on pseudo-continuous arterial spin-labeling (pCASL) MRI. The WMH was evaluated on T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) images. Tissue segmentation was conducted on T1-weighted (T1W) images to derive binary masks of gray matter and normal-appearing white matter. Linear mixed effect models were conducted to analyze the cross-sectional and longitudinal associations between CBF and WMH. Results A total of 229 adults (mean age 57.3±12.6 years; 94 males) were enrolled at baseline, among whom 84 participants (mean age 54.1±11.9 years; 41 males) completed a follow-up visit with a mean time interval of 2.77±0.44 years. At baseline, there was a decreasing trend in gray matter (GM) CBF with an increase of WMH burden (P=0.063), but this association was attenuated after adjusting for age (P=0.362). In the longitudinal analysis, baseline WMH volume was significantly associated with the reduction of perfusion in GM [coefficient =−1.96, 95% confidence interval (CI): −3.25 to −0.67; P=0.004] and normal appearing white matter (coefficient =−0.99, 95% CI: −1.66 to −0.31; P=0.005) during follow-up. On the contrary, neither baseline CBF in GM (P=0.888) nor normal appearing white matter (P=0.850) was associated with WMH progression. In addition, CBF changes within WMH were significantly associated with both baseline (coefficient =−0.014, 95% CI: −0.025 to −0.003; P=0.017) and progression (coefficient =−1.01, 95% CI: −1.81 to −0.20; P=0.015) of WMH volume. Conclusions A WMH burden was not found to be directly associated with cortex perfusion at baseline due to the effects of age on both CBF and WMH. However, baseline WMH volume could predict the reduction of perfusion.
Collapse
Affiliation(s)
- Hualu Han
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Zihan Ning
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Dandan Yang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.,Department of Radiology, Beijing Geriatric Hospital, Beijing, China
| | - Miaoxin Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Huiyu Qiao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Shuo Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Zhensen Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.,Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Dongye Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Runhua Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Gaifen Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
76
|
Paschoal AM, Secchinatto KF, da Silva PHR, Zotin MCZ, Dos Santos AC, Viswanathan A, Pontes-Neto OM, Leoni RF. Contrast-agent-free state-of-the-art MRI on cerebral small vessel disease-part 1. ASL, IVIM, and CVR. NMR IN BIOMEDICINE 2022; 35:e4742. [PMID: 35429194 DOI: 10.1002/nbm.4742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Cerebral small vessel disease (cSVD), a common cause of stroke and dementia, is traditionally considered the small vessel equivalent of large artery occlusion or rupture that leads to cortical and subcortical brain damage. Microvessel endothelial dysfunction can also contribute to it. Brain imaging, including MRI, is useful to show the presence of lesions of several types, although the association between conventional MRI measures and clinical features of cSVD is not always concordant. We assessed the additional contribution of contrast-agent-free, state-of-the-art MRI techniques such as arterial spin labeling (ASL), diffusion tensor imaging, functional MRI, and intravoxel incoherent motion (IVIM) applied to cSVD in the existing literature. We performed a review following the PICO Worksheet and Search Strategy, including original papers in English, published between 2000 and 2022. For each MRI method, we extracted information about their contributions, in addition to those established with traditional MRI methods and related information about the origins, pathology, markers, and clinical outcomes in cSVD. This paper presents the first part of the review, which includes 37 studies focusing on ASL, IVIM, and cerebrovascular reactivity (CVR) measures. In general, they have shown that, in addition to white matter hyperintensities, alterations in other neuroimaging parameters such as blood flow and CVR also indicate the presence of cSVD. Such quantitative parameters were also related to cSVD risk factors. Therefore, they are promising, noninvasive tools to explore questions that have not yet been clarified about this clinical condition. However, protocol standardization is essential to increase their clinical use.
Collapse
Affiliation(s)
- André Monteiro Paschoal
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Maria Clara Zanon Zotin
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antônio Carlos Dos Santos
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Octavio M Pontes-Neto
- Department of Neurosciences and Behavioral Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Ferranti Leoni
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
77
|
Yoon JH, Shin P, Joo J, Kim GS, Oh WY, Jeong Y. Increased capillary stalling is associated with endothelial glycocalyx loss in subcortical vascular dementia. J Cereb Blood Flow Metab 2022; 42:1383-1397. [PMID: 35139674 PMCID: PMC9274855 DOI: 10.1177/0271678x221076568] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022]
Abstract
Proper regulation and patency of cerebral microcirculation are crucial for maintaining a healthy brain. Capillary stalling, i.e., the brief interruption of microcirculation has been observed in the normal brain and several diseases related to microcirculation. We hypothesized that endothelial glycocalyx, which is located on the luminal side of the vascular endothelium and involved in cell-to-cell interaction regulation in peripheral organs, is also related to cerebral capillary stalling. We measured capillary stalling and the cerebral endothelial glycocalyx (cEG) in male mice using in vivo optical coherence tomography angiography (OCT-A) and two-photon microscopy. Our findings revealed that some capillary segments were prone to capillary stalling and had less cEG. In addition, we demonstrated that the enzymatic degradation of the cEG increased the capillary stalling, mainly by leukocyte plugging. Further, we noted decreased cEG along with increased capillary stalling in a mouse model of subcortical vascular dementia (SVaD) with impaired cortical microcirculation. Moreover, gene expression related to cEG production or degradation changed in the SVaD model. These results indicate that cEG mediates capillary stalling and impacts cerebral blood flow and is involved in the pathogenesis of SVaD.
Collapse
Affiliation(s)
- Jin-Hui Yoon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Paul Shin
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Jongyoon Joo
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Gaon S Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wang-Yuhl Oh
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
78
|
Aminuddin N, Achuthan A, Ruhaiyem NIR, Che Mohd Nassir CMN, Idris NS, Mustapha M. Reduced cerebral vascular fractal dimension among asymptomatic individuals as a potential biomarker for cerebral small vessel disease. Sci Rep 2022; 12:11780. [PMID: 35821514 PMCID: PMC9276662 DOI: 10.1038/s41598-022-15710-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral small vessel disease is a neurological disease frequently found in the elderly and detected on neuroimaging, often as an incidental finding. White matter hyperintensity is one of the most commonly reported neuroimaging markers of CSVD and is linked with an increased risk of future stroke and vascular dementia. Recent attention has focused on the search of CSVD biomarkers. The objective of this study is to explore the potential of fractal dimension as a vascular neuroimaging marker in asymptomatic CSVD with low WMH burden. Df is an index that measures the complexity of a self-similar and irregular structure such as circle of Willis and its tributaries. This exploratory cross-sectional study involved 22 neurologically asymptomatic adult subjects (42 ± 12 years old; 68% female) with low to moderate 10-year cardiovascular disease risk prediction score (QRISK2 score) who underwent magnetic resonance imaging/angiography (MRI/MRA) brain scan. Based on the MRI findings, subjects were divided into two groups: subjects with low WMH burden and no WMH burden, (WMH+; n = 8) and (WMH−; n = 14) respectively. Maximum intensity projection image was constructed from the 3D time-of-flight (TOF) MRA. The complexity of the CoW and its tributaries observed in the MIP image was characterised using Df. The Df of the CoW and its tributaries, i.e., Df (w) was significantly lower in the WMH+ group (1.5172 ± 0.0248) as compared to WMH− (1.5653 ± 0.0304, p = 0.001). There was a significant inverse relationship between the QRISK2 risk score and Df (w), (rs = − .656, p = 0.001). Df (w) is a promising, non-invasive vascular neuroimaging marker for asymptomatic CSVD with WMH. Further study with multi-centre and long-term follow-up is warranted to explore its potential as a biomarker in CSVD and correlation with clinical sequalae of CSVD.
Collapse
Affiliation(s)
- Niferiti Aminuddin
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.,Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Anusha Achuthan
- School of Computer Sciences, Universiti Sains Malaysia, 11800, USM, Pulau Pinang, Malaysia
| | | | - Che Mohd Nasril Che Mohd Nassir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nur Suhaila Idris
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan, Malaysia.,Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia. .,Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
79
|
Zhang R, Huang P, Wang S, Jiaerken Y, Hong H, Zhang Y, Yu X, Lou M, Zhang M. Decreased Cerebral Blood Flow and Delayed Arterial Transit Are Independently Associated With White Matter Hyperintensity. Front Aging Neurosci 2022; 14:762745. [PMID: 35711906 PMCID: PMC9197206 DOI: 10.3389/fnagi.2022.762745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
AimWhite matter hyperintensities (WMH) and lacunes were important features of cerebral small vessel disease (CSVD), which contributes to 25% of ischemic strokes and 45% of dementias. Currently, the underlying mechanisms of WMH and lacunes are not clear, and the role of hemodynamic changes is not fully investigated. In this study, we aimed to measure the cerebral blood flow (CBF) and arterial transit in CSVD patients and to investigate their association with WMH and lacunes.MethodsWe retrospectively analyzed the prospectively collected database of CSVD patients. Ninety-two CSVD patients with complete imaging data were included. We used arterial spin labeling (ASL) with post-labeling delay time (PLD) of 1,525 ms and 2,025 ms to measure CBF respectively, and the difference between CBFPLD1.5 and CBFPLD2.0 was recorded as δCBF. We performed regression analysis to understand the contribution of CBF, δCBF to CSVD imaging markers.ResultsWe found that CBF derived from both PLDs was associated with WMH volume and the presence of lacune. CBFPLD1.5 was significantly lower than CBFPLD2.0 in CSVD patients, and δCBF was correlated with WMH volume but not the presence of lacune. Furthermore, CBFPLD2.0 and δCBF were both associated with WMH in multiple regression analyses, suggesting an independent effect of delayed arterial transit. On an exploratory basis, we also investigated the relationship between venous disruption on δCBF, and we found that δCBF correlated with deep medullary veins score.ConclusionBoth CBF and arterial transit were associated with WMH. ASL with multiple PLDs could provide additional hemodynamic information to CSVD-related studies.
Collapse
Affiliation(s)
- Ruiting Zhang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Hui Hong
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yao Zhang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Min Lou
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
- *Correspondence: Minming Zhang
| |
Collapse
|
80
|
Mosolov SN, Fedorova EY. The risk of developing cardiovascular disease in bipolar disorder. Biological factors and therapy. TERAPEVT ARKH 2022; 94:579-583. [DOI: 10.26442/00403660.2022.04.201455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 11/22/2022]
Abstract
Background. Bipolar disorder (BD) is one of the most common mental disorders characterized by alternating episodes of mania/hypomania and depression, as well as the possibility of developing mixed conditions. Correct and timely diagnosis of BD is important due to the presence of a high suicidal risk and a high predisposition to the development of cardiovascular disease (CVD). The risk of CVD is higher in ВD than in other mental disorders.
Materials and methods. A sample assessment was made of current studies focusing on the vascular-bipolar link. The search was carried out in the PubMed and eLIBRARY databases for the following keywords: bipolar disorder, psychopharmacology, cardiovascular disease, biological mediators.
Results. There are several biological factors which explain the close association and common pathogenetic mechanisms of BD and CVD. The most interesting of them are inflammation, oxidative stress, and brain-derived neurotrophic factor. Neuroimaging methods have shown similar structural brain changes in people with BD and with CVD. There is some evidence of the efficacy of statins and angiotensin-converting enzyme inhibitors in reducing cardio-vascular risk factors in BD patients.
Conclusion. The predisposition of patients of BD to CVD is beyond doubt. It is necessary to consider the peculiarities of the course of BD and conduct active monitoring and preventive measures to reduce the risk of developing life-threatening CVDs. Further research focused on the pathogenetic relationship between BD and CVD could provide more insight into this area.
Collapse
|
81
|
The Underlying Role of the Glymphatic System and Meningeal Lymphatic Vessels in Cerebral Small Vessel Disease. Biomolecules 2022; 12:biom12060748. [PMID: 35740873 PMCID: PMC9221030 DOI: 10.3390/biom12060748] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
There is a growing prevalence of vascular cognitive impairment (VCI) worldwide, and most research has suggested that cerebral small vessel disease (CSVD) is the main contributor to VCI. Several potential physiopathologic mechanisms have been proven to be involved in the process of CSVD, such as blood-brain barrier damage, small vessels stiffening, venous collagenosis, cerebral blood flow reduction, white matter rarefaction, chronic ischaemia, neuroinflammation, myelin damage, and subsequent neurodegeneration. However, there still is a limited overall understanding of the sequence and the relative importance of these mechanisms. The glymphatic system (GS) and meningeal lymphatic vessels (mLVs) are the analogs of the lymphatic system in the central nervous system (CNS). As such, these systems play critical roles in regulating cerebrospinal fluid (CSF) and interstitial fluid (ISF) transport, waste clearance, and, potentially, neuroinflammation. Accumulating evidence has suggested that the glymphatic and meningeal lymphatic vessels played vital roles in animal models of CSVD and patients with CSVD. Given the complexity of CSVD, it was significant to understand the underlying interaction between glymphatic and meningeal lymphatic transport with CSVD. Here, we provide a novel framework based on new advances in main four aspects, including vascular risk factors, potential mechanisms, clinical subtypes, and cognition, which aims to explain how the glymphatic system and meningeal lymphatic vessels contribute to the progression of CSVD and proposes a comprehensive insight into the novel therapeutic strategy of CSVD.
Collapse
|
82
|
Neumann K, Günther M, Düzel E, Schreiber S. Microvascular Impairment in Patients With Cerebral Small Vessel Disease Assessed With Arterial Spin Labeling Magnetic Resonance Imaging: A Pilot Study. Front Aging Neurosci 2022; 14:871612. [PMID: 35663571 PMCID: PMC9161030 DOI: 10.3389/fnagi.2022.871612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this pilot study, we investigated microvascular impairment in patients with cerebral small vessel disease (CSVD) using non-invasive arterial spin labeling (ASL) magnetic resonance imaging (MRI). This method enabled us to measure the perfusion parameters, cerebral blood flow (CBF), and arterial transit time (ATT), and the effective T1-relaxation time (T1eff) to research a novel approach of assessing perivascular clearance. CSVD severity was characterized using the Standards for Reporting Vascular Changes on Neuroimaging (STRIVE) and included a rating of white matter hyperintensities (WMHs), lacunes, enlarged perivascular spaces (EPVSs), and cerebral microbleeds (CMBs). Here, we found that CBF decreases and ATT increases with increasing CSVD severity in patients, most prominent for a white matter (WM) region-of-interest, whereas this relation was almost equally driven by WMHs, lacunes, EPVSs, and CMBs. Additionally, we observed a longer mean T1eff of gray matter and WM in patients with CSVD compared to elderly controls, providing an indication of impaired clearance in patients. Mainly T1eff of WM was associated with CSVD burden, whereas lobar lacunes and CMBs contributed primary to this relation compared to EPVSs of the centrum semiovale. Our results complement previous findings of CSVD-related hypoperfusion by the observation of retarded arterial blood arrival times in brain tissue and by an increased T1eff as potential indication of impaired clearance rates using ASL.
Collapse
Affiliation(s)
- Katja Neumann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- *Correspondence: Katja Neumann
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany
- mediri GmbH, Heidelberg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Center for Behavioral Brain Science, Magdeburg, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
83
|
Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn Reson Med 2022; 88:575-600. [PMID: 35510696 PMCID: PMC9233013 DOI: 10.1002/mrm.29272] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
84
|
Zhou X, Li T, Qu W, Pan D, Qiu Q, Wu L, Zhao J, Yu Z, Hao H, Luo X. Abnormalities of Retinal Structure and Microvasculature are Associated with Cerebral White Matter Hyperintensities. Eur J Neurol 2022; 29:2289-2298. [PMID: 35503727 DOI: 10.1111/ene.15378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE While retinal microvasculature represents cerebral small vessels, the retinal nerve fiber layer is the extended white matter of the brain. We aimed to investigate the correlation between changes in retina and white matter hyperintensities (WMH). METHODS 64 candidates with WMH received the optical coherence tomography angiography (OCTA) examination. WMH were divided into mild or moderate/severe groups according to the Fazekas score. After imaging superficial capillary plexus (SCP) and deep capillary plexus (DCP), we revealed the microvascular density parameters (vascular perfusion density (VPD), vascular length density (VLD), and fovea avascular zone area (FAZ-A)) and morphological parameters (vessel diameter index (VDI), fractal dimension (FD), and vessel tortuosity (VT)). The software algorithm measured the thickness of the peripapillary retina nerve fiber layer (PRNFL). RESULTS 32 were classified as having mild WMH and 32 were moderate/severe. The Median (interquartile range) ages of the two groups were 58 (54-64) and 61 (57-67) years, respectively. A decrease of FD, VPD and VLD in either SCP or DCP appeared with an increased risk of moderate/severe WMH. Although changes of capillary plexus were not associated with PWMH, decreased FD, VPD, VLD and FAZ-A in either SCP or DCP was associated with an increased risk of moderate/severe DWMH. Participants with moderate/severe WMH demonstrated reduced PRNFL thickness, particularly in the DWMH, compared with mild WMH. CONCLUSIONS Abnormalities of retinal microvascular density, morphological parameters, and PRNFL thickness are correlated with the incidence of moderate/severe WMH, particularly the DWMH, suggesting that arteriosclerosis and hypoperfusion are the causes of DWMH.
Collapse
Affiliation(s)
- Xirui Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wensheng Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dengji Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianwen Qiu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingshan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huang Hao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
85
|
van Dinther M, Voorter PH, Jansen JF, Jones EA, van Oostenbrugge RJ, Staals J, Backes WH. Assessment of microvascular rarefaction in human brain disorders using physiological magnetic resonance imaging. J Cereb Blood Flow Metab 2022; 42:718-737. [PMID: 35078344 PMCID: PMC9014687 DOI: 10.1177/0271678x221076557] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral microvascular rarefaction, the reduction in number of functional or structural small blood vessels in the brain, is thought to play an important role in the early stages of microvascular related brain disorders. A better understanding of its underlying pathophysiological mechanisms, and methods to measure microvascular density in the human brain are needed to develop biomarkers for early diagnosis and to identify targets for disease modifying treatments. Therefore, we provide an overview of the assumed main pathophysiological processes underlying cerebral microvascular rarefaction and the evidence for rarefaction in several microvascular related brain disorders. A number of advanced physiological MRI techniques can be used to measure the pathological alterations associated with microvascular rarefaction. Although more research is needed to explore and validate these MRI techniques in microvascular rarefaction in brain disorders, they provide a set of promising future tools to assess various features relevant for rarefaction, such as cerebral blood flow and volume, vessel density and radius and blood-brain barrier leakage.
Collapse
Affiliation(s)
- Maud van Dinther
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Paulien Hm Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Jacobus Fa Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | | | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Julie Staals
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Walter H Backes
- CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| |
Collapse
|
86
|
Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment. Neurobiol Dis 2022; 170:105750. [DOI: 10.1016/j.nbd.2022.105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/09/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022] Open
|
87
|
Cheng Z, Zhang W, Zhan Z, Xia L, Han Z. Cerebral Small Vessel Disease and Prognosis in Intracerebral Hemorrhage: A Systematic Review and Meta-analysis of Cohort Studies. Eur J Neurol 2022; 29:2511-2525. [PMID: 35435301 DOI: 10.1111/ene.15363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND To investigate whether cerebral small vessel disease (CSVD) markers and the total CSVD burden are associated with functional outcome, mortality, stroke recurrence, and hematoma expansion in patients with spontaneous intracerebral hemorrhage (ICH). METHODS Following a previously registered protocol (PROSPERO protocol: CRD42021287743), we systematically searched PubMed, Web of Science, and EMBASE to identify relevant literature up to November 2021. Cohort studies that examined the association between CSVD markers (white matter hyperintensity [WMH], lacune, enlarged perivascular space [EPVS], cerebral microbleed [CMB], and brain atrophy) or CSVD burden and prognosis in patients with ICH were included. The pooled estimates were calculated using random effects models. RESULTS Forty-one studies with 19,752 ICH patients were pooled in the meta-analysis. WMH (OR=1.50, 95% CI=1.32 to 1.70), lacune (OR=1.32, 95% CI=1.18 to 1.49), CMB (OR=2.60, 95% CI=1.13 to 5.97) and brain atrophy (OR=2.22, 95% CI=1.48 to 3.31) were associated with worse functional outcome. CSVD markers concerning increased risk of mortality were WMH (OR=1.57, 95% CI=1.38 to 1.79) and brain atrophy (OR=1.84, 95% CI=1.11 to 3.04), while concerning increased risk of stroke recurrence were WMH (OR=1.62, 95% CI=1.28 to 2.04) and lacune (OR=3.00, 95% CI=1.68 to 5.37). EPVS was not related to prognosis. There was a lack of association between CSVD markers and hematoma expansion. CSVD burden increased the risk of worse functional outcome, mortality, and stroke recurrence by 57%, 150%, and 44%, respectively. CONCLUSIONS In patients with spontaneous ICH, WMH, lacune, CMB, brain atrophy, and the total CSVD burden are associated with substantially increased risk of worse functional outcome, mortality, or stroke recurrence.
Collapse
Affiliation(s)
- Zicheng Cheng
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wenyuan Zhang
- Department of Neurology, Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China
| | - Zhenxiang Zhan
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingfan Xia
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhao Han
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
88
|
Bai T, Yu S, Feng J. Advances in the Role of Endothelial Cells in Cerebral Small Vessel Disease. Front Neurol 2022; 13:861714. [PMID: 35481273 PMCID: PMC9035937 DOI: 10.3389/fneur.2022.861714] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) poses a serious socio-economic burden due to its high prevalence and severe impact on the quality of life of elderly patients. Pathological changes in CSVD mainly influence small cerebral arteries, microarteries, capillaries, and small veins, which are usually caused by multiple vascular risk factors. CSVD is often identified on brain magnetic resonance imaging (MRI) by recent small subcortical infarcts, white matter hyperintensities, lacune, cerebral microbleeds (CMBs), enlarged perivascular spaces (ePVSs), and brain atrophy. Endothelial cell (EC) dysfunction is earlier than clinical symptoms. Immune activation, inflammation, and oxidative stress may be potential mechanisms of EC injury. ECs of the blood–brain–barrier (BBB) are the most important part of the neurovascular unit (NVU) that ensures constant blood flow to the brain. Impaired cerebral vascular autoregulation and disrupted BBB cause cumulative brain damage. This review will focus on the role of EC injury in CSVD. Furthermore, several specific biomarkers will be discussed, which may be useful for us to assess the endothelial dysfunction and explore new therapeutic directions.
Collapse
|
89
|
Zeng C, Chen Z, Yang H, Fan Y, Fei L, Chen X, Zhang M. Advanced high resolution three-dimensional imaging to visualize the cerebral neurovascular network in stroke. Int J Biol Sci 2022; 18:552-571. [PMID: 35002509 PMCID: PMC8741851 DOI: 10.7150/ijbs.64373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/28/2021] [Indexed: 11/05/2022] Open
Abstract
As an important method to accurately and timely diagnose stroke and study physiological characteristics and pathological mechanism in it, imaging technology has gone through more than a century of iteration. The interaction of cells densely packed in the brain is three-dimensional (3D), but the flat images brought by traditional visualization methods show only a few cells and ignore connections outside the slices. The increased resolution allows for a more microscopic and underlying view. Today's intuitive 3D imagings of micron or even nanometer scale are showing its essentiality in stroke. In recent years, 3D imaging technology has gained rapid development. With the overhaul of imaging mediums and the innovation of imaging mode, the resolution has been significantly improved, endowing researchers with the capability of holistic observation of a large volume, real-time monitoring of tiny voxels, and quantitative measurement of spatial parameters. In this review, we will summarize the current methods of high-resolution 3D imaging applied in stroke.
Collapse
Affiliation(s)
- Chudai Zeng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Lujing Fei
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Xinghang Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| |
Collapse
|
90
|
Kelly DM, Rothwell PM. Disentangling the Relationship Between Chronic Kidney Disease and Cognitive Disorders. Front Neurol 2022; 13:830064. [PMID: 35280286 PMCID: PMC8914950 DOI: 10.3389/fneur.2022.830064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a rapidly rising global health burden that affects nearly 40% of older adults. Epidemiologic data suggest that individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing cognitive disorders and dementia, and thus represent a vulnerable population. It is currently unknown to what extent this risk may be attributable to a clustering of traditional risk factors such as hypertension and diabetes mellitus leading to a high prevalence of both symptomatic and subclinical ischaemic cerebrovascular lesions, or whether other potential mechanisms, including direct neuronal injury by uraemic toxins or dialysis-specific factors could also be involved. These knowledge gaps may lead to suboptimal prevention and treatment strategies being implemented in this group. In this review, we explore the mechanisms of susceptibility and risk in the relationship between CKD and cognitive disorders.
Collapse
Affiliation(s)
- Dearbhla M. Kelly
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Peter M. Rothwell
- Wolfson Center for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
91
|
Wardlaw JM, Benveniste H, Williams A. Cerebral Vascular Dysfunctions Detected in Human Small Vessel Disease and Implications for Preclinical Studies. Annu Rev Physiol 2022; 84:409-434. [PMID: 34699267 DOI: 10.1146/annurev-physiol-060821-014521] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral small vessel disease (SVD) is highly prevalent and a common cause of ischemic and hemorrhagic stroke and dementia, yet the pathophysiology is poorly understood. Its clinical expression is highly varied, and prognostic implications are frequently overlooked in clinics; thus, treatment is currently confined to vascular risk factor management. Traditionally, SVD is considered the small vessel equivalent of large artery stroke (occlusion, rupture), but data emerging from human neuroimaging and genetic studies refute this, instead showing microvessel endothelial dysfunction impacting on cell-cell interactions and leading to brain damage. These dysfunctions reflect defects that appear to be inherited and secondary to environmental exposures, including vascular risk factors. Interrogation in preclinical models shows consistent and converging molecular and cellular interactions across the endothelial-glial-neural unit that increasingly explain the human macroscopic observations and identify common patterns of pathology despite different triggers. Importantly, these insights may offer new targets for therapeutic intervention focused on restoring endothelial-glial physiology.
Collapse
Affiliation(s)
- Joanna M Wardlaw
- Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences; UK Dementia Research Institute; and Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom;
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
92
|
Rivard L, Friberg L, Conen D, Healey JS, Berge T, Boriani G, Brandes A, Calkins H, Camm AJ, Yee Chen L, Lluis Clua Espuny J, Collins R, Connolly S, Dagres N, Elkind MSV, Engdahl J, Field TS, Gersh BJ, Glotzer TV, Hankey GJ, Harbison JA, Haeusler KG, Hills MT, Johnson LSB, Joung B, Khairy P, Kirchhof P, Krieger D, Lip GYH, Løchen ML, Madhavan M, Mairesse GH, Montaner J, Ntaios G, Quinn TJ, Rienstra M, Rosenqvist M, Sandhu RK, Smyth B, Schnabel RB, Stavrakis S, Themistoclakis S, Van Gelder IC, Wang JG, Freedman B. Atrial Fibrillation and Dementia: A Report From the AF-SCREEN International Collaboration. Circulation 2022; 145:392-409. [PMID: 35100023 DOI: 10.1161/circulationaha.121.055018] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Growing evidence suggests a consistent association between atrial fibrillation (AF) and cognitive impairment and dementia that is independent of clinical stroke. This report from the AF-SCREEN International Collaboration summarizes the evidence linking AF to cognitive impairment and dementia. It provides guidance on the investigation and management of dementia in patients with AF on the basis of best available evidence. The document also addresses suspected pathophysiologic mechanisms and identifies knowledge gaps for future research. Whereas AF and dementia share numerous risk factors, the association appears to be independent of these variables. Nevertheless, the evidence remains inconclusive regarding a direct causal effect. Several pathophysiologic mechanisms have been proposed, some of which are potentially amenable to early intervention, including cerebral microinfarction, AF-related cerebral hypoperfusion, inflammation, microhemorrhage, brain atrophy, and systemic atherosclerotic vascular disease. The mitigating role of oral anticoagulation in specific subgroups (eg, low stroke risk, short duration or silent AF, after successful AF ablation, or atrial cardiopathy) and the effect of rhythm versus rate control strategies remain unknown. Likewise, screening for AF (in cognitively normal or cognitively impaired patients) and screening for cognitive impairment in patients with AF are debated. The pathophysiology of dementia and therapeutic strategies to reduce cognitive impairment warrant further investigation in individuals with AF. Cognition should be evaluated in future AF studies and integrated with patient-specific outcome priorities and patient preferences. Further large-scale prospective studies and randomized trials are needed to establish whether AF is a risk factor for cognitive impairment, to investigate strategies to prevent dementia, and to determine whether screening for unknown AF followed by targeted therapy might prevent or reduce cognitive impairment and dementia.
Collapse
Affiliation(s)
- Léna Rivard
- Montreal Heart Institute, Université de Montréal, Canada (L.R., P. Khairy)
| | - Leif Friberg
- Karolinska Institute, Stockholm, Sweden (L.F., M.R.)
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada (D.C., J.S.H., S.C.)
| | - Jeffrey S Healey
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada (D.C., J.S.H., S.C.)
| | | | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Italy (G.B.)
| | | | | | - A John Camm
- Cardiovascular Clinical Academic Group, St Georges Hospital, London, UK (A.J.C.)
| | | | | | | | - Stuart Connolly
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada (D.C., J.S.H., S.C.)
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Germany (N.D.)
| | | | - Johan Engdahl
- Karolinska Institutet, Department of Clinical Sciences, Danderyds Hospital, Stockholm, Sweden (J.E.)
| | - Thalia S Field
- University of British Columbia, Vancouver Stroke Program, Canada (T.S.F.)
| | | | | | - Graeme J Hankey
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia (G.J.H.)
| | | | - Karl G Haeusler
- Department of Neurology, Universitätsklinikum Würzburg, Germany (K.G.H.)
| | | | | | - Boyoung Joung
- Yonsei University College of Medicine, Seoul, South Korea (B.J.)
| | - Paul Khairy
- Montreal Heart Institute, Université de Montréal, Canada (L.R., P. Khairy)
| | - Paulus Kirchhof
- University Heart and Vascular Center UKE Hamburg, Germany (P. Kirchhof)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (P. Kirchhof)
- Institute of Cardiovascular Sciences, University of Birmingham, UK, and AFNET, Münster, Germany (P. Kirchhof)
| | - Derk Krieger
- University Hospital of Zurich, Switzerland (D.K.)
| | | | - Maja-Lisa Løchen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø (M.L.L.)
| | - Malini Madhavan
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (M.M.)
| | | | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain (J.M.)
- Stroke Research Program, Institute of Biomedicine of Seville, Spain (J.M.)
- IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Spain (J.M.)
- Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain (J.M.)
| | | | | | - Michiel Rienstra
- Karolinska Institute, Stockholm, Sweden (L.F., M.R.)
- University of Groningen, University Medical Center Groningen, the Netherlands (M.R., I.C.V.G.)
| | | | | | - Breda Smyth
- Department of Public Health, Health Service Executive West, Galway, Ireland (B.S.)
| | | | | | | | - Isabelle C Van Gelder
- University of Groningen, University Medical Center Groningen, the Netherlands (M.R., I.C.V.G.)
| | - Ji-Guang Wang
- Jiaotong University School of Medicine, China (J.G.W.)
| | - Ben Freedman
- Charles Perkins Centre and Concord Hospital Cardiology, University of Sydney, Australia (B.F.)
| |
Collapse
|
93
|
Vemuri P, Decarli CS, Duering M. Imaging Markers of Vascular Brain Health: Quantification, Clinical Implications, and Future Directions. Stroke 2022; 53:416-426. [PMID: 35000423 PMCID: PMC8830603 DOI: 10.1161/strokeaha.120.032611] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cerebrovascular disease (CVD) manifests through a broad spectrum of mechanisms that negatively impact brain and cognitive health. Oftentimes, CVD changes (excluding acute stroke) are insufficiently considered in aging and dementia studies which can lead to an incomplete picture of the etiologies contributing to the burden of cognitive impairment. Our goal with this focused review is 3-fold. First, we provide a research update on the current magnetic resonance imaging methods that can measure CVD lesions as well as early CVD-related brain injury specifically related to small vessel disease. Second, we discuss the clinical implications and relevance of these CVD imaging markers for cognitive decline, incident dementia, and disease progression in Alzheimer disease, and Alzheimer-related dementias. Finally, we present our perspective on the outlook and challenges that remain in the field. With the increased research interest in this area, we believe that reliable CVD imaging biomarkers for aging and dementia studies are on the horizon.
Collapse
Affiliation(s)
| | - Charles S. Decarli
- Departments of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, California, USA
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
- Medical Image Analysis Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of Basel, Switzerland
| |
Collapse
|
94
|
Connectomic-genetic signatures in the cerebral small vessel disease. Neurobiol Dis 2022; 167:105671. [DOI: 10.1016/j.nbd.2022.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
|
95
|
Huang CJ, Zhou X, Yuan X, Zhang W, Li MX, You MZ, Zhu XQ, Sun ZW. Contribution of Inflammation and Hypoperfusion to White Matter Hyperintensities-Related Cognitive Impairment. Front Neurol 2022; 12:786840. [PMID: 35058875 PMCID: PMC8763977 DOI: 10.3389/fneur.2021.786840] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 01/15/2023] Open
Abstract
White matter hyperintensities (WMHs) of presumed vascular origin are one of the most important neuroimaging markers of cerebral small vessel disease (CSVD), which are closely associated with cognitive impairment. The aim of this study was to elucidate the pathogenesis of WMHs from the perspective of inflammation and hypoperfusion mechanisms. A total of 65 patients with WMHs and 65 healthy controls were enrolled in this study. Inflammatory markers measurements [hypersensitive C-reactive protein (hsCRP) and lipoprotein-associated phospholipase A2 (Lp-PLA2)], cognitive evaluation, and pseudocontinuous arterial spin labeling (PCASL) MRI scanning were performed in all the subjects. The multivariate logistic regression analysis showed that Lp-PLA2 was an independent risk factor for WMHs. Cerebral blood flow (CBF) in the whole brain, gray matter (GM), white matter (WM), left orbital medial frontal gyrus [MFG.L (orbital part)], left middle temporal gyrus (MTG.L), and right thalamus (Tha.R) in the patients was lower than those in the controls and CBF in the left triangular inferior frontal gyrus [IFG.L (triangular part)] was higher in the patients than in the controls. There was a significant correlation between Lp-PLA2 levels and CBF in the whole brain (R = -0.417, p < 0.001) and GM (R = -0.278, p = 0.025), but not in the WM in the patients. Moreover, CBF in the MFG.L (orbital part) and the Tha.R was, respectively, negatively associated with the trail making test (TMT) and the Stroop color word test (SCWT), suggesting the higher CBF, the better executive function. The CBF in the IFG.L (triangular part) was negatively correlated with attention scores in the Cambridge Cognitive Examination-Chinese Version (CAMCOG-C) subitems (R = -0.288, p = 0.020). Our results revealed the vascular inflammation roles in WMHs, which may through the regulation of CBF in the whole brain and GM. Additionally, CBF changes in different brain regions may imply a potential role in the modulation of cognitive function in different domains.
Collapse
Affiliation(s)
- Chao-Juan Huang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xia Zhou
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Yuan
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming-Xu Li
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng-Zhe You
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Qun Zhu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhong-Wu Sun
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
96
|
Stringer MS, Heye AK, Armitage PA, Chappell F, Valdés Hernández MDC, Makin SDJ, Sakka E, Thrippleton MJ, Wardlaw JM. Tracer kinetic assessment of blood-brain barrier leakage and blood volume in cerebral small vessel disease: Associations with disease burden and vascular risk factors. Neuroimage Clin 2022; 32:102883. [PMID: 34911189 PMCID: PMC8607271 DOI: 10.1016/j.nicl.2021.102883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022]
Abstract
Permeability surface area (PS) was higher, even in normal appearing tissue. PS was higher in patients with more white matter hyperintensities. Tissue damage affecting vascular surface area may affect how we interpret tracer kinetic results.
Subtle blood–brain barrier (BBB) permeability increases have been shown in small vessel disease (SVD) using various analysis methods. Following recent consensus recommendations, we used Patlak tracer kinetic analysis, considered optimal in low permeability states, to quantify permeability-surface area product (PS), a BBB leakage estimate, and blood plasma volume (vP) in 201 patients with SVD who underwent dynamic contrast-enhanced MRI scans. We ran multivariable regression models with a quantitative or qualitative metric of white matter hyperintensity (WMH) severity, demographic and vascular risk factors. PS increased with WMH severity in grey (B = 0.15, Confidence Interval (CI): [0.001,0.299], p = 0.049) and normal-appearing white matter (B = 0.015, CI: [−0.008,0.308], p = 0.062). Patients with more severe WMH had lower vP in WMH (B = -0.088, CI: [−0.138,-0.039], p < 0.001), but higher vP in normal-appearing white matter (B = 0.031, CI: [−0.004,0.065], p = 0.082). PS and vP were lower at older ages in WMH, grey and white matter. We conclude higher PS in normal-appearing tissue with more severe WMH suggests impaired BBB integrity beyond visible lesions indicating that the microvasculature is compromised in normal-appearing white matter and WMH. BBB dysfunction is an important mechanism in SVD, but associations with clinical variables are complex and underlying damage affecting vascular surface area may alter interpretation of tracer kinetic results.
Collapse
Affiliation(s)
- Michael S Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Anna K Heye
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Paul A Armitage
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | - Francesca Chappell
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Maria Del C Valdés Hernández
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | | | - Eleni Sakka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK.
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
97
|
Chen Y, Lin Y, Bian Y. Cognitive Functional Impairment and Hemodynamic Changes in Patients with Symptomatic Leukoaraiosis. JOURNAL OF BEHAVIORAL AND BRAIN SCIENCE 2022; 12:271-286. [DOI: 10.4236/jbbs.2022.126015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
|
98
|
Zhang K, Zhou Y, Zhang W, Li Q, Sun J, Lou M. MRI-visible perivascular spaces in basal ganglia but not centrum semiovale or hippocampus were related to deep medullary veins changes. J Cereb Blood Flow Metab 2022; 42:136-144. [PMID: 34431378 PMCID: PMC8721776 DOI: 10.1177/0271678x211038138] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Our purpose is to assess the role of deep medullary veins (DMVs) in pathogenesis of MRI-visible perivascular spaces (PVS) in patients with cerebral small vessel disease (cSVD). Consecutive patients recruited in the CIRCLE study (ClinicalTrials.gov ID: NCT03542734) were included. Susceptibility Weighted Imaging-Phase images were used to evaluate DMVs based on a brain region-based visual score. T2 weighted images were used to evaluate PVS based on the five-point score, and PVS in basal ganglia (BG-PVS), centrum semiovale (CSO-PVS) and hippocampus (H-PVS) were evaluated separately. 270 patients were included. The severity of BG-PVS, CSO-PVS and H-PVS was positively related to the increment of age (all p < 0.05). The severity of BG-PVS and H-PVS was positively related to DMVs score (both p < 0.05). Patients with more severe BG-PVS had higher Fazekas scores in both periventricle and deep white matter (both p < 0.001) and higher frequency of hypertension (p = 0.008). Patients with more severe H-PVS had higher frequency of diabetes (p < 0.001). Besides, high DMVs score was an independent risk factor for more severe BG-PVS (β = 0.204, p = 0.001). Our results suggested that DMVs disruption might be involved in the pathogenesis of BG-PVS.
Collapse
Affiliation(s)
- Kemeng Zhang
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Wenhua Zhang
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Qingqing Li
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jianzhong Sun
- Department of Radiology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Min Lou
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
99
|
Kang P, Ying C, Chen Y, Ford AL, An H, Lee JM. Oxygen Metabolic Stress and White Matter Injury in Patients With Cerebral Small Vessel Disease. Stroke 2021; 53:1570-1579. [PMID: 34886686 PMCID: PMC9038643 DOI: 10.1161/strokeaha.121.035674] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Chronic hypoxia-ischemia is a putative mechanism underlying the development of white matter hyperintensities (WMH) and microstructural disruption in cerebral small vessel disease. WMH fall primarily within deep white matter (WM) watershed regions. We hypothesized that elevated oxygen extraction fraction (OEF), a signature of hypoxia-ischemia, would be detected in the watershed where WMH density is highest. We further hypothesized that OEF would be elevated in regions immediately surrounding WMH, at the leading edge of growth. METHODS In this cross-sectional study conducted from 2016 to 2019 at an academic medical center in St Louis, MO, participants (age >50) with a range of cerebrovascular risk factors underwent brain magnetic resonance imaging using pseudocontinuous arterial spin labeling, asymmetric spin echo, fluid-attenuated inversion recovery and diffusion tensor imaging to measure cerebral blood flow (CBF), OEF, WMH, and WM integrity, respectively. We defined the physiologic watershed as a region where CBF was below the 10th percentile of mean WM CBF in a young healthy cohort. We conducted linear regression to evaluate the relationship between CBF and OEF with structural and microstructural WM injury defined by fluid-attenuated inversion recovery WMH and diffusion tensor imaging, respectively. We conducted ANOVA to determine if OEF was increased in proximity to WMH lesions. RESULTS In a cohort of 42 participants (age 50-80), the physiologic watershed region spatially overlapped with regions of highest WMH lesion density. As CBF decreased and OEF increased, WMH density increased. Elevated watershed OEF was associated with greater WMH burden and microstructural disruption, after adjusting for vascular risk factors. In contrast, WM and watershed CBF were not associated with WMH burden or microstructural disruption. Moreover, OEF progressively increased while CBF decreased, in concentric contours approaching WMH lesions. CONCLUSIONS Chronic hypoxia-ischemia in the watershed region may contribute to cerebral small vessel disease pathogenesis and development of WMH. Watershed OEF may hold promise as an imaging biomarker to identify individuals at risk for cerebral small vessel disease progression.
Collapse
Affiliation(s)
- Peter Kang
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.)
| | - Chunwei Ying
- Department of Biomedical Engineering, Washington University (C.Y., H.A., J.-M.L.)
| | - Yasheng Chen
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.)
| | - Andria L Ford
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.).,Mallinckrodt Institute of Radiology, Washington University School of Medicine. (A.L.F., H.A., J.-M.L.)
| | - Hongyu An
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.).,Mallinckrodt Institute of Radiology, Washington University School of Medicine. (A.L.F., H.A., J.-M.L.).,Department of Biomedical Engineering, Washington University (C.Y., H.A., J.-M.L.)
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.).,Mallinckrodt Institute of Radiology, Washington University School of Medicine. (A.L.F., H.A., J.-M.L.).,Department of Biomedical Engineering, Washington University (C.Y., H.A., J.-M.L.)
| |
Collapse
|
100
|
Reliability of arterial spin labeling derived cerebral blood flow in periventricular white matter. NEUROIMAGE. REPORTS 2021; 1. [PMID: 35419550 PMCID: PMC9004331 DOI: 10.1016/j.ynirp.2021.100063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We aimed to assess the reliability of cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion magnetic resonance imaging (MRI) from the periventricular white matter (PVWM) by computing its repeatability and comparing to [15O]-water Positron Emission Tomography (PET) as a reference. Simultaneous PET/MRI perfusion data were acquired twice in the same session, about 15 min apart, from 16 subjects (age: 41.4 ± 12.0 years, 9 female). ASL protocols used pseudocontinuous labeling (pCASL) with background-suppressed 3-dimensional readouts, and included both single and multiple post labeling delay (PLD) acquisitions, each acquired twice, with the latter providing both CBF and arterial transit time (ATT) maps. The reliability of ASL derived PVWM CBF was evaluated using intra-session repeatability assessed by the within-subject coefficient of variation (wsCV) of the PVWM CBF values obtained from the two scans, correlation with concurrently-acquired PET CBF values, and by comparing them with that measured in other commonly used regions of interest (ROIs) such as whole brain (WB), gray matter (GM) and white matter (WM). The wsCVs for PVWM CBF with single and multi-PLD acquisitions were 5.7 (95% CI: (3.4,7.7)) % and 6.1 (95% CI: (3.8,8.3))%, which were similar to those obtained from WB, GM and WM CBF even though the PVWM region is the most weakly perfused region of brain parenchyma. Correlations between relative PVWM CBF derived from ASL and from [15O]-water PET were also comparable to the other ROIs. Finally, the ATT of the PVWM region was found to be 1.27 ± 0.27s, which was not an outlier for the arterial circulation of the brain. These findings suggest that PVWM CBF can be reliably measured with the current state-of-the-art ASL methods.
Collapse
|