51
|
Asymmetric Prefrontal Cortex Activation Associated with Mutual Gaze of Mothers and Children during Shared Play. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mother–child shared play provides rich opportunities for mutual symmetrical interactions that serve to foster bond formation in dyads. Mutual gaze, a symmetrical behaviour that occurs during direct eye contact between two partners, conveys important cues of social engagement, affect and attention. However, it is not known whether the prefrontal cortical areas responsible for higher-order social cognition of mothers and children likewise exhibit neural symmetry; that is, similarity in direction of neural activation in mothers and children. This study used functional Near-infrared Spectroscopy (fNIRS) hyperscanning on 22 pairs of mothers and their preschool-aged children as they engaged in a 10-min free-play session together. The play interaction was video recorded and instances of mutual gaze were coded for after the experiment. Multivariate linear regression analyses revealed that neural asymmetry occurred during mother–child mutual gaze, where mothers showed a deactivation of prefrontal activity whereas children showed an activation instead. Findings suggest that mothers and children may employ divergent prefrontal mechanisms when engaged in symmetrical behaviours such as mutual gaze. Future studies could ascertain whether the asymmetric nature of a parent–child relationship, or potential neurodevelopmental differences in social processing between adults and children, significantly contribute to this observation.
Collapse
|
52
|
Wass SV, Perapoch Amadó M, Ives J. Oscillatory entrainment to our early social or physical environment and the emergence of volitional control. Dev Cogn Neurosci 2022; 54:101102. [PMID: 35398645 PMCID: PMC9010552 DOI: 10.1016/j.dcn.2022.101102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
An individual's early interactions with their environment are thought to be largely passive; through the early years, the capacity for volitional control develops. Here, we consider: how is the emergence of volitional control characterised by changes in the entrainment observed between internal activity (behaviour, physiology and brain activity) and the sights and sounds in our everyday environment (physical and social)? We differentiate between contingent responsiveness (entrainment driven by evoked responses to external events) and oscillatory entrainment (driven by internal oscillators becoming temporally aligned with external oscillators). We conclude that ample evidence suggests that children show behavioural, physiological and neural entrainment to their physical and social environment, irrespective of volitional attention control; however, evidence for oscillatory entrainment beyond contingent responsiveness is currently lacking. Evidence for how oscillatory entrainment changes over developmental time is also lacking. Finally, we suggest a mechanism through which periodic environmental rhythms might facilitate both sensory processing and the development of volitional control even in the absence of oscillatory entrainment.
Collapse
Affiliation(s)
- S V Wass
- Department of Psychology, University of East London, UK.
| | | | - J Ives
- Department of Psychology, University of East London, UK
| |
Collapse
|
53
|
Lopera‐Perez DC, Nayak S, Stangier G, Tuladhar CT, St. John AM, Grieve PG, Tarullo AR. Infants’ neural sensitivity to social interactions varies by income and infant‐directed speech. Dev Psychobiol 2022; 64:e22265. [DOI: 10.1002/dev.22265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/13/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Diana C. Lopera‐Perez
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
| | - Srishti Nayak
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
- Department of Otolaryngology—Head & Neck Surgery Vanderbilt University Medical Center Nashville Tennessee USA
| | - Giulia Stangier
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
- Department of Clinical Psychology and Psychotherapy Philipps‐University of Marburg Marburg Germany
| | - Charu T. Tuladhar
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
| | - Ashley M. St. John
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
| | - Philip G. Grieve
- Department of Pediatrics Columbia University Medical Center New York New York USA
| | - Amanda R. Tarullo
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
| |
Collapse
|
54
|
Turk E, Vroomen J, Fonken Y, Levy J, van den Heuvel MI. In sync with your child: The potential of parent-child electroencephalography in developmental research. Dev Psychobiol 2022; 64:e22221. [PMID: 35312051 DOI: 10.1002/dev.22221] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Healthy interaction between parent and child is foundational for the child's socioemotional development. Recently, an innovative paradigm shift in electroencephalography (EEG) research has enabled the simultaneous measurement of neural activity in caregiver and child. This dual-EEG or hyperscanning approach, termed parent-child dual-EEG, combines the strength of both behavioral observations and EEG methods. In this review, we aim to inform on the potential of dual-EEG in parents and children (0-6 years) for developmental researchers. We first provide a general overview of the dual-EEG technique and continue by reviewing the first empirical work on the emerging field of parent-child dual-EEG, discussing the limited but fascinating findings on parent-child brain-to-behavior and brain-to-brain synchrony. We then continue by providing an overview of dual-EEG analysis techniques, including the technical challenges and solutions one may encounter. We finish by discussing the potential of parent-child dual-EEG for the future of developmental research. The analysis of multiple EEG data is technical and challenging, but when performed well, parent-child EEG may transform the way we understand how caregiver and child connect on a neurobiological level. Importantly, studying objective physiological measures of parent-child interactions could lead to the identification of novel brain-to-brain synchrony markers of interaction quality.
Collapse
Affiliation(s)
- Elise Turk
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Jean Vroomen
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Yvonne Fonken
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Jonathan Levy
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya (IDC), Herzliya, Israel.,Department of Neuroscience and Biomedical Engineering, Aalto University, Aalto, Finland
| | | |
Collapse
|
55
|
Norton ES, Manning BL, Harriott EM, Nikolaeva JI, Nyabingi OS, Fredian KM, Page JM, McWeeny S, Krogh-Jespersen S, MacNeill LA, Roberts MY, Wakschlag LS. Social EEG: A novel neurodevelopmental approach to studying brain-behavior links and brain-to-brain synchrony during naturalistic toddler-parent interactions. Dev Psychobiol 2022; 64:e22240. [PMID: 35312062 PMCID: PMC9867891 DOI: 10.1002/dev.22240] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/26/2023]
Abstract
Despite increasing emphasis on emergent brain-behavior patterns supporting language, cognitive, and socioemotional development in toddlerhood, methodologic challenges impede their characterization. Toddlers are notoriously difficult to engage in brain research, leaving a developmental window in which neural processes are understudied. Further, electroencephalography (EEG) and event-related potential paradigms at this age typically employ structured, experimental tasks that rarely reflect formative naturalistic interactions with caregivers. Here, we introduce and provide proof of concept for a new "Social EEG" paradigm, in which parent-toddler dyads interact naturally during EEG recording. Parents and toddlers sit at a table together and engage in different activities, such as book sharing or watching a movie. EEG is time locked to the video recording of their interaction. Offline, behavioral data are microcoded with mutually exclusive engagement state codes. From 216 sessions to date with 2- and 3-year-old toddlers and their parents, 72% of dyads successfully completed the full Social EEG paradigm, suggesting that it is possible to collect dual EEG from parents and toddlers during naturalistic interactions. In addition to providing naturalistic information about child neural development within the caregiving context, this paradigm holds promise for examination of emerging constructs such as brain-to-brain synchrony in parents and children.
Collapse
Affiliation(s)
- Elizabeth S. Norton
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Brittany L. Manning
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Emily M. Harriott
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Julia I. Nikolaeva
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Olufemi S. Nyabingi
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Kaitlyn M. Fredian
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Jessica M. Page
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sean McWeeny
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Sheila Krogh-Jespersen
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Leigha A. MacNeill
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan Y. Roberts
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lauren S. Wakschlag
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
56
|
DEEP: A dual EEG pipeline for developmental hyperscanning studies. Dev Cogn Neurosci 2022; 54:101104. [PMID: 35367895 PMCID: PMC8980555 DOI: 10.1016/j.dcn.2022.101104] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/31/2022] [Accepted: 03/25/2022] [Indexed: 12/21/2022] Open
Abstract
Cutting-edge hyperscanning methods led to a paradigm shift in social neuroscience. It allowed researchers to measure dynamic mutual alignment of neural processes between two or more individuals in naturalistic contexts. The ever-growing interest in hyperscanning research calls for the development of transparent and validated data analysis methods to further advance the field. We have developed and tested a dual electroencephalography (EEG) analysis pipeline, namely DEEP. Following the preprocessing of the data, DEEP allows users to calculate Phase Locking Values (PLVs) and cross-frequency PLVs as indices of inter-brain phase alignment of dyads as well as time-frequency responses and EEG power for each participant. The pipeline also includes scripts to control for spurious correlations. Our goal is to contribute to open and reproducible science practices by making DEEP publicly available together with an example mother-infant EEG hyperscanning dataset.
Collapse
|
57
|
Reindl V, Wass S, Leong V, Scharke W, Wistuba S, Wirth CL, Konrad K, Gerloff C. Multimodal hyperscanning reveals that synchrony of body and mind are distinct in mother-child dyads. Neuroimage 2022; 251:118982. [PMID: 35149229 DOI: 10.1016/j.neuroimage.2022.118982] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Hyperscanning studies have begun to unravel the brain mechanisms underlying social interaction, indicating a functional role for interpersonal neural synchronization (INS), yet the mechanisms that drive INS are poorly understood. The current study, thus, addresses whether INS is functionally-distinct from synchrony in other systems - specifically the autonomic nervous system and motor behavior. To test this, we used concurrent functional near-infrared spectroscopy - electrocardiography recordings, while N = 34 mother-child and stranger-child dyads engaged in cooperative and competitive tasks. Only in the neural domain was a higher synchrony for mother-child compared to stranger-child dyads observed. Further, autonomic nervous system and neural synchrony were positively related during competition but not during cooperation. These results suggest that synchrony in different behavioral and biological systems may reflect distinct processes. Furthermore, they show that increased mother-child INS is unlikely to be explained solely by shared arousal and behavioral similarities, supporting recent theories that postulate that INS is higher in close relationships.
Collapse
Affiliation(s)
- Vanessa Reindl
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Germany; Psychology, School of Social Sciences, Nanyang Technological University, Singapore S639818, Republic of Singapore.
| | - Sam Wass
- Division of Psychology, University of East London, London E16 2RD, United Kingdom
| | - Victoria Leong
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore S639818, Republic of Singapore; Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Wolfgang Scharke
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; Chair of Cognitive and Experimental Psychology, Institute of Psychology, RWTH Aachen University, Germany
| | - Sandra Wistuba
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany
| | - Christina Lisa Wirth
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany
| | - Kerstin Konrad
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Germany
| | - Christian Gerloff
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Germany; Chair II of Mathematics, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Germany
| |
Collapse
|
58
|
Zivan M, Gashri C, Habuba N, Horowitz-Kraus T. Reduced mother-child brain-to-brain synchrony during joint storytelling interaction interrupted by a media usage. Child Neuropsychol 2022; 28:918-937. [PMID: 35129078 DOI: 10.1080/09297049.2022.2034774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Parent-child synchrony is related to the quality of parent and child interactions and child development. One very emotionally and cognitively beneficial interaction in early childhood is Dialogic Reading (DR). Screen exposure was previously related to decreased parent-child interaction. Using a hyperscanning Electroencephalogram (EEG) method, the current study examined the neurobiological correlates for mother-child DR vs. mobile phone-interrupted DR in twenty-four white toddlers (24-42 months old, 8 girls) and their mothers. The DR-interrupted condition was related to decreased mother-child neural synchrony between the mother's language-related brain regions (left hemisphere) and the child's comprehension-related regions (right hemisphere) compared to the uninterrupted DR. This is the first neural evidence of the negative effect of parental smartphone use on parent-child interaction quality.
Collapse
Affiliation(s)
- Michal Zivan
- Educational Neuroimaging Group, Faculty of Education in Science and Technology and the Faculty of Biomedical Engineering, Technion.,Faculty of Education in Science and Technology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Carmel Gashri
- Educational Neuroimaging Group, Faculty of Education in Science and Technology and the Faculty of Biomedical Engineering, Technion
| | - Nir Habuba
- Educational Neuroimaging Group, Faculty of Education in Science and Technology and the Faculty of Biomedical Engineering, Technion
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology and the Faculty of Biomedical Engineering, Technion.,Faculty of Education in Science and Technology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
59
|
Sanchez-Alonso S, Aslin RN. Towards a model of language neurobiology in early development. BRAIN AND LANGUAGE 2022; 224:105047. [PMID: 34894429 DOI: 10.1016/j.bandl.2021.105047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Understanding language neurobiology in early childhood is essential for characterizing the developmental structural and functional changes that lead to the mature adult language network. In the last two decades, the field of language neurodevelopment has received increasing attention, particularly given the rapid advances in the implementation of neuroimaging techniques and analytic approaches that allow detailed investigations into the developing brain across a variety of cognitive domains. These methodological and analytical advances hold the promise of developing early markers of language outcomes that allow diagnosis and clinical interventions at the earliest stages of development. Here, we argue that findings in language neurobiology need to be integrated within an approach that captures the dynamic nature and inherent variability that characterizes the developing brain and the interplay between behavior and (structural and functional) neural patterns. Accordingly, we describe a framework for understanding language neurobiology in early development, which minimally requires an explicit characterization of the following core domains: i) computations underlying language learning mechanisms, ii) developmental patterns of change across neural and behavioral measures, iii) environmental variables that reinforce language learning (e.g., the social context), and iv) brain maturational constraints for optimal neural plasticity, which determine the infant's sensitivity to learning from the environment. We discuss each of these domains in the context of recent behavioral and neuroimaging findings and consider the need for quantitatively modeling two main sources of variation: individual differences or trait-like patterns of variation and within-subject differences or state-like patterns of variation. The goal is to enable models that allow prediction of language outcomes from neural measures that take into account these two types of variation. Finally, we examine how future methodological approaches would benefit from the inclusion of more ecologically valid paradigms that complement and allow generalization of traditional controlled laboratory methods.
Collapse
Affiliation(s)
| | - Richard N Aslin
- Haskins Laboratories, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA; Child Study Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
60
|
Zhang W, Rose MC, Yartsev MM. A unifying mechanism governing inter-brain neural relationship during social interactions. eLife 2022; 11:70493. [PMID: 35142287 PMCID: PMC8947764 DOI: 10.7554/elife.70493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/08/2022] [Indexed: 01/23/2023] Open
Abstract
A key goal of social neuroscience is to understand the inter-brain neural relationship-the relationship between the neural activity of socially interacting individuals. Decades of research investigating this relationship have focused on the similarity in neural activity across brains. Here, we instead asked how neural activity differs between brains, and how that difference evolves alongside activity patterns shared between brains. Applying this framework to bats engaged in spontaneous social interactions revealed two complementary phenomena characterizing the inter-brain neural relationship: fast fluctuations of activity difference across brains unfolding in parallel with slow activity covariation across brains. A model reproduced these observations and generated multiple predictions that we confirmed using experimental data involving pairs of bats and a larger social group of bats. The model suggests that a simple computational mechanism involving positive and negative feedback could explain diverse experimental observations regarding the inter-brain neural relationship.
Collapse
Affiliation(s)
- Wujie Zhang
- Helen Wills Neuroscience Institute and Department of Bioengineering, University of California, BerkeleyBerkeleyUnited States
| | - Maimon C Rose
- Helen Wills Neuroscience Institute and Department of Bioengineering, University of California, BerkeleyBerkeleyUnited States
| | - Michael M Yartsev
- Helen Wills Neuroscience Institute and Department of Bioengineering, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
61
|
Nguyen T, Hoehl S, Bertenthal BI, Abney DH. Coupling between prefrontal brain activity and respiratory sinus arrhythmia in infants and adults. Dev Cogn Neurosci 2021; 53:101047. [PMID: 34933169 PMCID: PMC8703057 DOI: 10.1016/j.dcn.2021.101047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 12/12/2021] [Indexed: 12/26/2022] Open
Abstract
Self-regulation is an essential aspect of healthy child development. Even though infants are dependent on their caregivers for co-regulation during the first years, they begin to gain early regulatory abilities through social interactions as well as their own cognitive development. These early regulatory abilities continue to increase with the maturation of both the prefrontal cortex and the vagal system. Importantly, theoretical accounts have suggested that the prefrontal cortex and the vagal system are linked through forward and backward feedback loops via the limbic system. Decreased coupling within this link is suggested to be associated with psychopathology. The primary goal of this study is to examine whether intrapersonal coupling of prefrontal brain activity and respiratory sinus arrythmia is evident in infancy. Using the simultaneous assessment of functional near-infrared spectroscopy and electrocardiography, we will use Cross-Recurrence Quantification Analysis to assess the coupling of prefrontal brain activity and respiratory sinus arrhythmia in 69 4–6-month-old infants and their mothers during rest. Understanding the developmental emergence of the neurobiological correlates of self- regulation will allow us to help identify neurodevelopmental risk factors. In adults, self-regulation involves coupling between the prefrontal cortex (PFC) and vagal activity. We investigate whether the coupling of brain and respiratory sinus arrhythmia (RSA) activity is evident during infancy. Understanding the developing connection between the PFC and vagal system will help to elucidate the pathways involved in self-regulation.
Collapse
Affiliation(s)
- Trinh Nguyen
- Department of Developmental and Educational Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.
| | - Stefanie Hoehl
- Department of Developmental and Educational Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.
| | - Bennett I Bertenthal
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 1101 E. 10th St., Bloomington, IN 47405, United States.
| | - Drew H Abney
- Department of Psychology, University of Georgia, 110 Hooper Street, Athens, GA 30602, United States.
| |
Collapse
|
62
|
Piazza EA, Nencheva ML, Lew-Williams C. THE DEVELOPMENT OF COMMUNICATION ACROSS TIMESCALES. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2021; 30:459-467. [PMID: 35177881 PMCID: PMC8849573 DOI: 10.1177/09637214211037665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
How do young children learn to organize the statistics of communicative input across milliseconds and months? Developmental science has made progress in understanding how infants learn patterns in language and how infant-directed speech is engineered to ease short-timescale processing, but less is known about how they link perceptual experiences across multiple levels of processing within an interaction (from syllables to stories) and across development. In this article, we propose that three domains of research - statistical summary, neural processing hierarchies, and neural coupling - will be fruitful in uncovering the dynamic exchange of information between children and adults, both in the moment and in aggregate. In particular, we discuss how the study of brain-to-brain and brain-to-behavior coupling between children and adults will further our understanding of how children's neural representations become aligned with the increasingly complex statistics of communication across timescales.
Collapse
Affiliation(s)
- Elise A Piazza
- Department of Psychology, Princeton University, Princeton, NJ 08544
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14611
| | - Mira L Nencheva
- Department of Psychology, Princeton University, Princeton, NJ 08544
| | | |
Collapse
|
63
|
Nguyen T, Abney DH, Salamander D, Bertenthal BI, Hoehl S. Proximity and touch are associated with neural but not physiological synchrony in naturalistic mother-infant interactions. Neuroimage 2021; 244:118599. [PMID: 34547452 DOI: 10.1016/j.neuroimage.2021.118599] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Caregiver touch plays a vital role in infants' growth and development, but its role as a communicative signal in human parent-infant interactions is surprisingly poorly understood. Here, we assessed whether touch and proximity in caregiver-infant dyads are related to neural and physiological synchrony. We simultaneously measured brain activity and respiratory sinus arrhythmia of 4-6-month-old infants and their mothers (N=69 dyads) in distal and proximal joint watching conditions as well as in an interactive face-to-face condition. Neural synchrony was higher during the proximal than during the distal joint watching conditions, and even higher during the face-to-face interaction. Physiological synchrony was highest during the face-to-face interaction and lower in both joint watching conditions, irrespective of proximity. Maternal affectionate touch during the face-to-face interaction was positively related to neural but not physiological synchrony. This is the first evidence that touch mediates mutual attunement of brain activities, but not cardio-respiratory rhythms in caregiver-infant dyads during naturalistic interactions. Our results also suggest that neural synchrony serves as a biological pathway of how social touch plays into infant development and how this pathway could be utilized to support infant learning and social bonding.
Collapse
Affiliation(s)
- Trinh Nguyen
- Department of Developmental and Educational Psychology, University of Vienna, Liebiggasse 5, Vienna 1010, Austria.
| | - Drew H Abney
- Department of Psychology, University of Georgia, 125 Baldwin St., Athens, GA 30602, United States.
| | - Dina Salamander
- Department of Developmental and Educational Psychology, University of Vienna, Liebiggasse 5, Vienna 1010, Austria.
| | - Bennett I Bertenthal
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 1101 E. 10th St., Bloomington, IN 47405, United States.
| | - Stefanie Hoehl
- Department of Developmental and Educational Psychology, University of Vienna, Liebiggasse 5, Vienna 1010, Austria.
| |
Collapse
|
64
|
Chen KH, Brown CL, Wells JL, Rothwell ES, Otero M, Levenson RW, Fredrickson BL. Physiological linkage during shared positive and shared negative emotion. J Pers Soc Psychol 2021; 121:1029-1056. [PMID: 32897091 PMCID: PMC8261768 DOI: 10.1037/pspi0000337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Physiological linkage refers to the degree to which peoples' physiological responses change in coordinated ways. Here, we examine whether and how physiological linkage relates to incidents of shared emotion, distinguished by valence. Past research has used an "overall average" approach and characterized how physiological linkage over relatively long time periods (e.g., 10-15 min) reflects psychological and social processes (e.g., marital satisfaction, empathy). Here, we used a "momentary" approach and characterized whether physiological linkage over relatively short time periods (i.e., 15 s) reflects shared positive emotion, shared negative emotion, or both, and whether linkage during shared emotions relates to relational functioning. Married couples (156 dyads) had a 15-min conflict conversation in the laboratory. Using behavioral coding, each second of conversation was classified into 1 of 4 emotion categories: shared positive emotion, shared negative emotion, shared neutral emotion, or unshared emotion. Using a composite of 3 peripheral physiological measures (i.e., heart rate, skin conductance, finger pulse amplitude), we computed momentary in-phase and antiphase linkage to represent coordinated changes in the same or opposite direction, respectively. We found that shared positive emotion was associated with higher in-phase and lower antiphase linkage, relative to the other 3 emotion categories. Greater in-phase physiological linkage during shared positive emotion was also consistently associated with higher-quality interactions and relationships, both concurrently and longitudinally (i.e., 5 to 6 years later). These findings advance our understanding of the nature of physiological linkage, the emotional conditions under which it occurs, and its possible associations with relational functioning. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Kuan-Hua Chen
- Institute of Personality and Social Research, University of California, Berkeley
- Department of Psychology, University of California, Berkeley
| | - Casey L. Brown
- Department of Psychology, University of California, Berkeley
| | - Jenna L. Wells
- Department of Psychology, University of California, Berkeley
| | - Emily S. Rothwell
- Department of Psychology, University of California, Davis
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst
| | - Marcela Otero
- Department of Psychology, University of California, Berkeley
- Sierra Pacific Mental Illness Research Education and Clinical Centers, VA Palo Alto Health Care System
- Department of Psychiatry and Behavioral Sciences, Stanford University
| | - Robert W. Levenson
- Institute of Personality and Social Research, University of California, Berkeley
- Department of Psychology, University of California, Berkeley
| | | |
Collapse
|
65
|
Pan Y, Novembre G, Olsson A. The Interpersonal Neuroscience of Social Learning. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2021; 17:680-695. [PMID: 34637374 DOI: 10.1177/17456916211008429] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The study of the brain mechanisms underpinning social behavior is currently undergoing a paradigm shift, moving its focus from single individuals to the real-time interaction among groups of individuals. Although this development opens unprecedented opportunities to study how interpersonal brain activity shapes behaviors through learning, there have been few direct connections to the rich field of learning science. Our article examines how the rapidly developing field of interpersonal neuroscience is (and could be) contributing to our understanding of social learning. To this end, we first review recent research extracting indices of brain-to-brain coupling (BtBC) in the context of social behaviors and, in particular, social learning. We then discuss how studying communicative behaviors during learning can aid the interpretation of BtBC and how studying BtBC can inform our understanding of such behaviors. We then discuss how BtBC and communicative behaviors collectively can predict learning outcomes, and we suggest several causative and mechanistic models. Finally, we highlight key methodological and interpretational challenges as well as exciting opportunities for integrating research in interpersonal neuroscience with social learning, and we propose a multiperson framework for understanding how interpersonal transmission of information between individual brains shapes social learning.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Clinical Neuroscience, Karolinska Institutet
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology
| | - Andreas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet
| |
Collapse
|
66
|
Piazza EA, Cohen A, Trach J, Lew-Williams C. Neural synchrony predicts children's learning of novel words. Cognition 2021; 214:104752. [PMID: 33965782 PMCID: PMC8324532 DOI: 10.1016/j.cognition.2021.104752] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
Social interactions, such as joint book reading, have a well-studied influence on early development and language learning. Recent work has begun to investigate the neural mechanisms that underlie shared representations of input, documenting neural synchrony (measured using intersubject temporal correlations of neural activity) between individuals exposed to the same stimulus. Neural synchrony has been found to predict the quality of engagement with a stimulus and with communicative cues, but studies have yet to address how neural synchrony among children may relate to real-time learning. Using functional near-infrared spectroscopy (fNIRS), we recorded the neural activity of 45 children (3.5-4.5 years) during joint book reading with an adult experimenter. The custom children's book contained four novel words and objects embedded in an unfolding story, as well as a range of narrative details about object functions and character roles. We observed synchronized neural activity between child participants during book reading and found a positive correlation between learning and intersubject neural synchronization in parietal cortex, an area implicated in narrative-level processing in adult research. Our findings suggest that signature patterns of neural engagement with the dynamics of stories facilitate children's learning.
Collapse
Affiliation(s)
- Elise A Piazza
- Department of Psychology, Princeton University, United States; Princeton Neuroscience Institute, Princeton University, United States; Department of Brain & Cognitive Sciences, University of Rochester, United States.
| | - Ariella Cohen
- Princeton Neuroscience Institute, Princeton University, United States; Icahn School of Medicine at Mount Sinai, United States
| | - Juliana Trach
- Department of Psychology, Princeton University, United States; Department of Psychology, Yale University, United States
| | | |
Collapse
|
67
|
Chen PHA, Qu Y. Taking a Computational Cultural Neuroscience Approach to Study Parent-Child Similarities in Diverse Cultural Contexts. Front Hum Neurosci 2021; 15:703999. [PMID: 34512293 PMCID: PMC8426574 DOI: 10.3389/fnhum.2021.703999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
Parent-child similarities and discrepancies at multiple levels provide a window to understand the cultural transmission process. Although prior research has examined parent-child similarities at the belief, behavioral, and physiological levels across cultures, little is known about parent-child similarities at the neural level. The current review introduces an interdisciplinary computational cultural neuroscience approach, which utilizes computational methods to understand neural and psychological processes being involved during parent-child interactions at intra- and inter-personal level. This review provides three examples, including the application of intersubject representational similarity analysis to analyze naturalistic neuroimaging data, the usage of computer vision to capture non-verbal social signals during parent-child interactions, and unraveling the psychological complexities involved during real-time parent-child interactions based on their simultaneous recorded brain response patterns. We hope that this computational cultural neuroscience approach can provide researchers an alternative way to examine parent-child similarities and discrepancies across different cultural contexts and gain a better understanding of cultural transmission processes.
Collapse
Affiliation(s)
- Pin-Hao A. Chen
- Department of Psychology, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan
| | - Yang Qu
- School of Education and Social Policy, Northwestern University, Evanston, IL, United States
| |
Collapse
|
68
|
Azhari A, Bizzego A, Esposito G. Father-child dyads exhibit unique inter-subject synchronization during co-viewing of animation video stimuli. Soc Neurosci 2021; 16:522-533. [PMID: 34407724 DOI: 10.1080/17470919.2021.1970016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Inter-subject synchronization reflects the entrainment of two individuals to each other's brain signals. In parent-child dyads, synchronization indicates an attunement to each other's emotional states. Despite the ubiquity with which parents and their children watch screen media together, no study has investigated synchronization in father-child dyads during co-viewing. The present study examined whether father-child dyads would exhibit inter-subject synchronization that is unique to the dyad and hence would not be observed in control dyads (i.e., randomly paired signals). Hyperscanning fNIRS was used to record the prefrontal cortex (PFC) signals of 29 fathers and their preschool-aged children as they co-viewed children's shows. Three 1-min videos from "Brave", "Peppa Pig" and "The Incredibles" were presented to each dyad and children's ratings of video positivity and familiarity were obtained. Four PFC clusters were analyzed: medial left, medial right, frontal left and frontal right clusters. Results demonstrated that true father-child dyads showed significantly greater synchronization than control dyads in the medial left cluster during the emotionally arousing conflict scene. Dyads with older fathers displayed less synchrony and older fathers, compared to younger ones, exhibited greater activity. These findings suggest unique inter-subject synchronization in father-child dyads during co-viewing which is potentially modulated by parental age.
Collapse
Affiliation(s)
- Atiqah Azhari
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Andrea Bizzego
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Gianluca Esposito
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Psychology and Cognitive Science, University of Trento, Trento, Italy.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
69
|
Zhao H, Cheng T, Zhai Y, Long Y, Wang Z, Lu C. How Mother-Child Interactions are Associated with a Child's Compliance. Cereb Cortex 2021; 31:4398-4410. [PMID: 33895811 DOI: 10.1093/cercor/bhab094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
While social interaction between a mother and her child has been found to play an important role in the child's committed compliance, the underlying neurocognitive process remains unclear. To investigate this process, we simultaneously recorded and assessed brain activity in 7-year-old children and in children's mothers or strangers during a free-play task using functional near-infrared spectroscopy-based hyperscanning. The results showed that a child's committed compliance was positively associated with the child's responsiveness but was negatively associated with mutual responsiveness and was not associated with the mother's responsiveness during mother-child interactions. Moreover, interpersonal neural synchronization (INS) at the temporoparietal junction mediated the relationship between the child's responsiveness and the child's committed compliance during mother-child interactions when the child's brain activity lagged behind that of the mother. However, these effects were not found during stranger-child interactions, nor were there significant effects in the mother-child pair when no real interactions occurred. Finally, we found a transfer effect of a child's committed compliance from mother-child interactions to stranger-child interactions via the mediation of mother-child INS, but the opposite did not occur. Together, these findings suggest that a child's responsiveness during mother-child interactions can significantly facilitate her or his committed compliance by increasing mother-child INS.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P.R. China
| | - Tong Cheng
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100875, P.R. China
| | - Yu Zhai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P.R. China
| | - Yuhang Long
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P.R. China
| | - Zhengyan Wang
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100875, P.R. China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
70
|
Smith ES, Elliott D, Killick R, Crawford TJ, Kidby S, Reid VM. Infants Oscillatory Frequencies change during Free-Play. Infant Behav Dev 2021; 64:101612. [PMID: 34332261 DOI: 10.1016/j.infbeh.2021.101612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Social interactions are known to be an essential component of infant development. For this reason, exploring functional neural activity while infants are engaged in social interactions will enable a better understanding of the infant social brain. This in turn, will enable the beginning of disentangling the neural basis of social and non-social interactions as well as the influence that maternal engagement has on infant brain function. Maternal sensitivity serves as a model for socio-emotional development during infancy, which poses the question: do interactions between parents and their offspring present altered electrophysiological responses in comparison to the general population if said parents are at risk of mental health disorders? The current research aimed to observe the oscillatory activity of 6-month-old infants during spontaneous free-play interactions with their mother. A 5-minute unconstrained free-play session was recorded between infant-mother dyads with EEG recordings taken from the 6-month-old infants (n = 64). During the recording, social and non-social behaviours were coded and EEG assessed with these epochs. Results showed an increase in oscillatory activity both when an infant played independently or interacted with their mother and oscillatory power was greatest in the alpha and theta bands. In the present 6-month-old cohort, no hemispheric power differences were observed as oscillatory power in the corresponding neural regions (i.e. left and right temporal regions) appeared to mirror each other. Instead, temporal estimates were larger and different from all other regions, whilst the frontal and parietal regions bihemispherically displayed similar estimates, which were larger than those observed centrally, but smaller than those displayed in the temporal locations. The interactions observed between the behavioural events and frequency bands demonstrated a significant reduction in power comparative to the power observed in the gamma band during the baseline event. The present research sought to explore the obstacle of artificial play paradigms for neuroscience research, whereby researchers question how much these paradigms relate to reality. The present manuscript will discuss the strengths and limitations of taking an unconstrained free-play approach.
Collapse
Affiliation(s)
- Eleanor S Smith
- Department of Psychology, Lancaster University, Bailrigg, UK; Department of Experimental Psychology, Downing Site, Downing Street, University of Cambridge, Cambridge, UK.
| | - David Elliott
- Department of Psychology, Lancaster University, Bailrigg, UK; School of Mathematics, University of Edinburgh, Edinburgh, UK
| | - Rebecca Killick
- Department of Mathematics and Statistics, Lancaster University, Bailrigg, UK
| | | | - Sayaka Kidby
- Department of Psychology, Lancaster University, Bailrigg, UK
| | - Vincent M Reid
- Department of Psychology, Lancaster University, Bailrigg, UK; School of Psychology, The University of Waikato, New Zealand
| |
Collapse
|
71
|
Jiang J, Zheng L, Lu C. A hierarchical model for interpersonal verbal communication. Soc Cogn Affect Neurosci 2021; 16:246-255. [PMID: 33150951 PMCID: PMC7812628 DOI: 10.1093/scan/nsaa151] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 10/07/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
The ability to use language makes us human. For decades, researchers have been racking their minds to understand the relation between language and the human brain. Nevertheless, most previous neuroscientific research has investigated this issue from a ‘single-brain’ perspective, thus neglecting the nature of interpersonal communication through language. With the development of modern hyperscanning techniques, researchers have begun probing the neurocognitive processes underlying interpersonal verbal communication and have examined the involvement of interpersonal neural synchronization (INS) in communication. However, in most cases, the neurocognitive processes underlying INS are obscure. To tentatively address this issue, we propose herein a hierarchical model based on the findings from a growing amount of hyperscanning research. We suggest that three levels of neurocognitive processes are primarily involved in interpersonal verbal communication and are closely associated with distinctive patterns of INS. Different levels of these processes modulate each other bidirectionally. Furthermore, we argued that two processes (shared representation and interpersonal predictive coding) might coexist and work together at each level to facilitate successful interpersonal verbal communication. We hope this model will inspire further innovative research in several directions within the fields of social and cognitive neuroscience.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Lifen Zheng
- Center for Teacher Education Research, Faculty of Education, Beijing Normal University, Beijing 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
72
|
Nguyen T, Schleihauf H, Kayhan E, Matthes D, Vrtička P, Hoehl S. Neural synchrony in mother-child conversation: Exploring the role of conversation patterns. Soc Cogn Affect Neurosci 2021; 16:93-102. [PMID: 32591781 PMCID: PMC7812624 DOI: 10.1093/scan/nsaa079] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Conversations are an essential form of communication in daily family life. Specific patterns of caregiver–child conversations have been linked to children’s socio-cognitive development and child-relationship quality beyond the immediate family environment. Recently, interpersonal neural synchronization has been proposed as a neural mechanism supporting conversation. Here, we present a functional near-infrared spectroscopy (fNIRS) hyperscanning study looking at the temporal dynamics of neural synchrony during mother–child conversation. Preschoolers (20 boys and 20 girls, M age 5;07 years) and their mothers (M age 36.37 years) were tested simultaneously with fNIRS hyperscanning while engaging in a free verbal conversation lasting for 4 min. Neural synchrony (using wavelet transform coherence analysis) was assessed over time. Furthermore, each conversational turn was coded for conversation patterns comprising turn-taking, relevance, contingency and intrusiveness. Results from linear mixed-effects modeling revealed that turn-taking, but not relevance, contingency or intrusiveness predicted neural synchronization during the conversation over time. Results are discussed to point out possible variables affecting parent–child conversation quality and the potential functional role of interpersonal neural synchronization for parent–child conversation.
Collapse
Affiliation(s)
- Trinh Nguyen
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria
| | - Hanna Schleihauf
- Cognitive Ethology Laboratory, German Primate Center-Leibniz Institute for Primate Research, Göttingen 37077, Germany.,Department for Primate Cognition, Georg-August-University Göttingen, Göttingen 37073, Germany.,Department of Psychology, Social Origins Lab, University of California, Berkeley, CA 94720-1650, USA
| | - Ezgi Kayhan
- Department of Developmental Psychology, University of Potsdam, Potsdam 14476, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Daniel Matthes
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Pascal Vrtička
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Stefanie Hoehl
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| |
Collapse
|
73
|
Hoehl S, Bertenthal BI. An interactionist perspective on the development of coordinated social attention. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2021; 61:1-41. [PMID: 34266562 DOI: 10.1016/bs.acdb.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Infants' ability to coordinate their attention with other people develops profoundly across the first year of life. Mainly based on experimental research focusing on infants' behavior under highly controlled conditions, developmental milestones were identified and explained in the past by prominent theories in terms of the onset of specific cognitive skills. In contrast to this approach, recent longitudinal research challenges this perspective with findings suggesting that social attention develops continuously with a gradual refinement of skills. Informed by these findings, we argue for an interactionist and dynamical systems view that bases observable advances in infant social attention skills on increasingly fine-tuned mutual adjustments in the caregiver-infant dyad, resulting in gradually improving mutual prediction. We present evidence for this view from recent studies leveraging new technologies which afford the opportunity to dynamically track social interactions in real-time. These new technically-sophisticated studies offer unprecedented insights into the dynamic processes of infant-caregiver social attention. It is now possible to track in much greater detail fluctuations over time with regard to object-directed attention as well as social attention and how these processes relate to one another. Encouraged by these initial results and new insights from this interactionist developmental social neuroscience approach, we conclude with a "call to action" in which we advocate for more ecologically valid paradigms for studying social attention as a dynamic and bi-directional process.
Collapse
|
74
|
A Guide to Parent-Child fNIRS Hyperscanning Data Processing and Analysis. SENSORS 2021; 21:s21124075. [PMID: 34199222 PMCID: PMC8231828 DOI: 10.3390/s21124075] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 12/27/2022]
Abstract
The use of functional near-infrared spectroscopy (fNIRS) hyperscanning during naturalistic interactions in parent–child dyads has substantially advanced our understanding of the neurobiological underpinnings of human social interaction. However, despite the rise of developmental hyperscanning studies over the last years, analysis procedures have not yet been standardized and are often individually developed by each research team. This article offers a guide on parent–child fNIRS hyperscanning data analysis in MATLAB and R. We provide an example dataset of 20 dyads assessed during a cooperative versus individual problem-solving task, with brain signal acquired using 16 channels located over bilateral frontal and temporo-parietal areas. We use MATLAB toolboxes Homer2 and SPM for fNIRS to preprocess the acquired brain signal data and suggest a standardized procedure. Next, we calculate interpersonal neural synchrony between dyads using Wavelet Transform Coherence (WTC) and illustrate how to run a random pair analysis to control for spurious correlations in the signal. We then use RStudio to estimate Generalized Linear Mixed Models (GLMM) to account for the bounded distribution of coherence values for interpersonal neural synchrony analyses. With this guide, we hope to offer advice for future parent–child fNIRS hyperscanning investigations and to enhance replicability within the field.
Collapse
|
75
|
Devezas MÂM. Shedding light on neuroscience: Two decades of functional near-infrared spectroscopy applications and advances from a bibliometric perspective. J Neuroimaging 2021; 31:641-655. [PMID: 34002425 DOI: 10.1111/jon.12877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical brain-imaging technique that detects changes in hemoglobin concentration in the cerebral cortex. fNIRS devices are safe, silent, portable, robust against motion artifacts, and have good temporal resolution. fNIRS is reliable and trustworthy, as well as an alternative and a complement to other brain-imaging modalities, such as electroencephalography or functional magnetic resonance imaging. Given these advantages, fNIRS has become a well-established tool for neuroscience research, used not only for healthy cortical activity but also as a biomarker during clinical assessment in individuals with schizophrenia, major depressive disorder, bipolar disease, epilepsy, Alzheimer's disease, vascular dementia, and cancer screening. Owing to its wide applicability, studies on fNIRS have increased exponentially over the last two decades. In this study, scientific publications indexed in the Web of Science databases were collected and a bibliometric-type methodology was developed. For this purpose, a comprehensive science mapping analysis, including top-ranked authors, journals, institutions, countries, and co-occurring keywords network, was conducted. From a total of 2310 eligible documents, 6028 authors and 531 journals published fNIRS-related papers, Fallgatter published the highest number of articles and was the most cited author. University of Tübingen in Germany has produced the most trending papers since 2000. USA was the most prolific country with the most active institutions, followed by China, Japan, Germany, and South Korea. The results also revealed global trends in emerging areas of research, such as neurodevelopment, aging, and cognitive and emotional assessment.
Collapse
|
76
|
Barreto C, Bruneri GDA, Brockington G, Ayaz H, Sato JR. A New Statistical Approach for fNIRS Hyperscanning to Predict Brain Activity of Preschoolers' Using Teacher's. Front Hum Neurosci 2021; 15:622146. [PMID: 34025373 PMCID: PMC8137814 DOI: 10.3389/fnhum.2021.622146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/17/2021] [Indexed: 11/18/2022] Open
Abstract
Hyperscanning studies using functional Near-Infrared Spectroscopy (fNIRS) have been performed to understand the neural mechanisms underlying human-human interactions. In this study, we propose a novel methodological approach that is developed for fNIRS multi-brain analysis. Our method uses support vector regression (SVR) to predict one brain activity time series using another as the predictor. We applied the proposed methodology to explore the teacher-student interaction, which plays a critical role in the formal learning process. In an illustrative application, we collected fNIRS data of the teacher and preschoolers’ dyads performing an interaction task. The teacher explained to the child how to add two numbers in the context of a game. The Prefrontal cortex and temporal-parietal junction of both teacher and student were recorded. A multivariate regression model was built for each channel in each dyad, with the student’s signal as the response variable and the teacher’s ones as the predictors. We compared the predictions of SVR with the conventional ordinary least square (OLS) predictor. The results predicted by the SVR model were statistically significantly correlated with the actual test data at least one channel-pair for all dyads. Overall, 29/90 channel-pairs across the five dyads (18 channels 5 dyads = 90 channel-pairs) presented significant signal predictions withthe SVR approach. The conventional OLS resulted in only 4 out of 90 valid predictions. These results demonstrated that the SVR could be used to perform channel-wise predictions across individuals, and the teachers’ cortical activity can be used to predict the student brain hemodynamic response.
Collapse
Affiliation(s)
- Candida Barreto
- Center of Mathematics, Computing and Cognition, Federal University of ABC, Sao Bernardo do Campo, Brazil
| | | | - Guilherme Brockington
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States.,Department of Psychology, College of Arts and Sciences, Drexel University, Philadelphia, PA, United States.,Drexel Solutions Institute, Drexel University, Philadelphia, PA, United States.,Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, United States.,Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Joao Ricardo Sato
- Center of Mathematics, Computing and Cognition, Federal University of ABC, Sao Bernardo do Campo, Brazil.,Interdisciplinary Unit for Applied Neuroscience, Federal University of ABC, Sao Bernardo do Campo, Brazil
| |
Collapse
|
77
|
Vaisvaser S. The Embodied-Enactive-Interactive Brain: Bridging Neuroscience and Creative Arts Therapies. Front Psychol 2021; 12:634079. [PMID: 33995190 PMCID: PMC8121022 DOI: 10.3389/fpsyg.2021.634079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/07/2021] [Indexed: 01/10/2023] Open
Abstract
The recognition and incorporation of evidence-based neuroscientific concepts into creative arts therapeutic knowledge and practice seem valuable and advantageous for the purpose of integration and professional development. Moreover, exhilarating insights from the field of neuroscience coincide with the nature, conceptualization, goals, and methods of Creative Arts Therapies (CATs), enabling comprehensive understandings of the clinical landscape, from a translational perspective. This paper contextualizes and discusses dynamic brain functions that have been suggested to lie at the heart of intra- and inter-personal processes. Touching upon fundamental aspects of the self and self-other interaction, the state-of-the-art neuroscientific-informed views will shed light on mechanisms of the embodied, predictive and relational brain. The conceptual analysis introduces and interweaves the following contemporary perspectives of brain function: firstly, the grounding of mental activity in the lived, bodily experience will be delineated; secondly, the enactive account of internal models, or generative predictive representations, shaped by experience, will be defined and extensively deliberated; and thirdly, the interpersonal simulation and synchronization mechanisms that support empathy and mentalization will be thoroughly considered. Throughout the paper, the cross-talks between the brain and the body, within the brain through functionally connected neural networks and in the context of agent-environment dynamics, will be addressed. These communicative patterns will be elaborated on to unfold psychophysiological linkage, as well as psychopathological shifts, concluding with the neuroplastic change associated with the formulation of CATs. The manuscript suggests an integrative view of the brain-body-mind in contexts relevant to the therapeutic potential of the expressive creative arts and the main avenues by which neuroscience may ground, enlighten and enrich the clinical psychotherapeutic practice.
Collapse
Affiliation(s)
- Sharon Vaisvaser
- School of Society and the Arts, Ono Academic College, Kiryat Ono, Israel
| |
Collapse
|
78
|
Zhang R, Zhou X, Feng D, Yuan D, Li S, Lu C, Li X. Effects of acute psychosocial stress on interpersonal cooperation and competition in young women. Brain Cogn 2021; 151:105738. [PMID: 33915401 DOI: 10.1016/j.bandc.2021.105738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 01/07/2023]
Abstract
Although tend-and-befriend is believed to be the dominant stress response in women, little is known regarding the effects of acute psychosocial stress on different dynamic social interactions. To measure these effects, 80 female participants were recruited, paired into the dyads, and instructed to complete cooperative and competitive key-pressing tasks after experiencing acute stress or a control condition. Each dyad of participants should press the key synchronously when the signal was presented in the cooperative task and as fast as possible in the competitive task. During the tasks, brain activities of prefrontal and right temporo-parietal areas were recorded from each dyad using functional near-infrared spectroscopy (fNIRS). The results showed that acute psychosocial stress evidently promoted competitive behavior, accompanied by increased interpersonal neural synchronization (INS) in the right dorsolateral prefrontal cortex. Despite the lack of a significant difference in the overall cooperation rate, the response time difference between two stressed participants markedly declined over time with more widespread INS in the prefrontal cortex, suggesting that there ensued cooperative improvement among stressed women. These findings behaviorally and neurologically revealed context-dependent response patterns to psychosocial stress in women during dynamic social interactions.
Collapse
Affiliation(s)
- Ruqian Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xiaoyu Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Danyang Feng
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Di Yuan
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Shijia Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Xianchun Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
79
|
Farahzadi Y, Kekecs Z. Towards a multi-brain framework for hypnosis: a review of quantitative methods. AMERICAN JOURNAL OF CLINICAL HYPNOSIS 2021; 63:389-403. [PMID: 33999773 DOI: 10.1080/00029157.2020.1865129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Most real-world applications of hypnosis involve a pair of actors: a hypnotist and a subject. Accordingly, most current models of hypnosis acknowledge the relevance of social factors in the development of the hypnotic response. Yet, psychophysiological research on hypnosis has been mostly restricted to techniques that are studying one individual, neglecting the complexity of hypnosis as a social phenomenon. In this paper, we review evidence suggesting that a multi-brain approach to studying the psychophysiology of hypnosis could lead to a breakthrough in our understanding of the neural correlates of hypnosis. In particular, we aim to highlight how this approach which relies on the information conveyed by complex verbal stimuli can be utilized to deal with the multifaceted nature of hypnosis. Furthermore, we present analytical approaches to assessing brain-to-brain coupling developed in the field of social cognitive neuroscience in the past decade, to aid the design of similar multi-brain studies in hypnosis research.
Collapse
Affiliation(s)
| | - Zoltan Kekecs
- Eötvös Loránd University, Budapest, Hungary
- Lund University, Lund, Sweden
| |
Collapse
|
80
|
Alemi R, Lehmann A, Deroche MLD. Changes in Spoken and Sung Productions Following Adaptation to Pitch-shifted Auditory Feedback. J Voice 2021; 37:466.e1-466.e15. [PMID: 33745802 DOI: 10.1016/j.jvoice.2021.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Using voice to speak or to sing is made possible by remarkably complex sensorimotor processes. Like any other sensorimotor system, the speech motor controller guides its actions with maximum performance at minimum cost, using available sources of information, among which, auditory feedback plays a major role. Manipulation of this feedback forces the speech monitoring system to refine its expectations for further actions. The present study hypothesizes that the duration of this refinement and the weight applied on different feedbacks loops would depend on the intended sounds to be produced, namely reading aloud versus singing. MATERIAL AND METHODS We asked participants to sing "Happy Birthday" and read a paragraph of Harry Potter before and after experiencing pitch-shifted feedback. A detailed fundamental frequency (F0) analysis was conducted for each note in the song and each segment in the paragraph (at the level of a sentence, a word, or a vowel) to determine whether some aspects of F0 production changed in response to the pitch perturbations experienced during the adaptation paradigm. RESULTS Our results showed that changes in the degree of F0-drift across the song or the paragraph was the metric that was the most consistent with a carry-over effect of adaptation, and in this regard, reading new material was more influenced by recent remapping than singing. CONCLUSION The motor commands used by (normally-hearing) speakers are malleable via altered-feedback paradigms, perhaps more so when reading aloud than when singing. But these effects are not revealed through simple indicators such as an overall change in mean F0 or F0 range, but rather through subtle metrics, such as a drift of the voice pitch across the recordings.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Otolaryngology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Centre for Research on Brain, Language & Music (CRBLM), Montreal, Quebec, Canada; International Laboratory for Brain, Music & Sound Research (BRAMS), Montreal, Quebec, Canada; Laboratory for Hearing and Cognition, Department of Psychology, Concordia University, Montreal, Quebec, Canada.
| | - Alexandre Lehmann
- Department of Otolaryngology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Centre for Research on Brain, Language & Music (CRBLM), Montreal, Quebec, Canada; International Laboratory for Brain, Music & Sound Research (BRAMS), Montreal, Quebec, Canada
| | - Mickael L D Deroche
- Department of Otolaryngology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Centre for Research on Brain, Language & Music (CRBLM), Montreal, Quebec, Canada; International Laboratory for Brain, Music & Sound Research (BRAMS), Montreal, Quebec, Canada; Laboratory for Hearing and Cognition, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
81
|
Yeshurun Y, Nguyen M, Hasson U. The default mode network: where the idiosyncratic self meets the shared social world. Nat Rev Neurosci 2021; 22:181-192. [PMID: 33483717 PMCID: PMC7959111 DOI: 10.1038/s41583-020-00420-w] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 01/29/2023]
Abstract
The default mode network (DMN) is classically considered an 'intrinsic' system, specializing in internally oriented cognitive processes such as daydreaming, reminiscing and future planning. In this Perspective, we suggest that the DMN is an active and dynamic 'sense-making' network that integrates incoming extrinsic information with prior intrinsic information to form rich, context-dependent models of situations as they unfold over time. We review studies that relied on naturalistic stimuli, such as stories and movies, to demonstrate how an individual's DMN neural responses are influenced both by external information accumulated as events unfold over time and by the individual's idiosyncratic past memories and knowledge. The integration of extrinsic and intrinsic information over long timescales provides a space for negotiating a shared neural code, which is necessary for establishing shared meaning, shared communication tools, shared narratives and, above all, shared communities and social networks.
Collapse
Affiliation(s)
- Yaara Yeshurun
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| | - Mai Nguyen
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- Department of Psychology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Uri Hasson
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
- Department of Psychology, Princeton University, Princeton, NJ, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
82
|
Levy J, Lankinen K, Hakonen M, Feldman R. The integration of social and neural synchrony: a case for ecologically valid research using MEG neuroimaging. Soc Cogn Affect Neurosci 2021; 16:143-152. [PMID: 32382751 PMCID: PMC7812634 DOI: 10.1093/scan/nsaa061] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/06/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
The recent decade has seen a shift from artificial and environmentally deprived experiments in neuroscience to real-life studies on multiple brains in interaction, coordination and synchrony. In these new interpersonal synchrony experiments, there has been a growing trend to employ naturalistic social interactions to evaluate mechanisms underlying synchronous neuronal communication. Here, we emphasize the importance of integrating the assessment of neural synchrony with measurement of nonverbal behavioral synchrony as expressed in various social contexts: relaxed social interactions, planning a joint pleasurable activity, conflict discussion, invocation of trauma, or support giving and assess the integration of neural and behavioral synchrony across developmental stages and psychopathological conditions. We also showcase the advantages of magnetoencephalography neuroimaging as a promising tool for studying interactive neural synchrony and consider the challenge of ecological validity at the expense of experimental rigor. We review recent evidence of rhythmic information flow between brains in interaction and conclude with addressing state-of-the-art developments that may contribute to advance research on brain-to-brain coordination to the next level.
Collapse
Affiliation(s)
- Jonathan Levy
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
- Interdisciplinary Center, Baruch Ivcher School of Psychology, Herzliya 46150, Israel
| | - Kaisu Lankinen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Maria Hakonen
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ruth Feldman
- Interdisciplinary Center, Baruch Ivcher School of Psychology, Herzliya 46150, Israel
- Yale University, Child Study Center, New Haven, CT 06520, USA
| |
Collapse
|
83
|
Nguyen T, Schleihauf H, Kungl M, Kayhan E, Hoehl S, Vrtička P. Interpersonal Neural Synchrony During Father-Child Problem Solving: An fNIRS Hyperscanning Study. Child Dev 2021; 92:e565-e580. [PMID: 33426676 PMCID: PMC8451924 DOI: 10.1111/cdev.13510] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Interpersonal neural synchrony (INS) has been previously evidenced in mother–child interactions, yet findings concerning father–child interaction are wanting. The current experiment examined whether fathers and their 5‐ to 6‐year‐old children (N = 66) synchronize their brain activity during a naturalistic interaction, and addressed paternal and child factors related to INS. Compared to individual problem solving and rest, father–child dyads showed increased INS in bilateral dorsolateral prefrontal cortex and left temporo‐parietal junction during cooperative problem solving. Furthermore, the father’s attitude toward his role as a parent was positively related to INS during the cooperation condition. These results highlight the implication of the father’s attitude to parenting in INS processes for the first time.
Collapse
Affiliation(s)
| | - Hanna Schleihauf
- German Primate Center - Leibniz Institute for Primate Research.,Georg-August-University Goettingen.,University of California, Berkeley
| | | | - Ezgi Kayhan
- University of Potsdam.,Max Planck Institute for Human Cognitive and Brain Sciences
| | - Stefanie Hoehl
- University of Vienna.,Max Planck Institute for Human Cognitive and Brain Sciences
| | - Pascal Vrtička
- Max Planck Institute for Human Cognitive and Brain Sciences.,University of Essex
| |
Collapse
|
84
|
Abstract
At least one in seven pregnant or recently postpartum women will experience a mental illness such as an anxiety disorder, depressive disorder, or substance use disorder. These mental illnesses have detrimental effects on the health of the mother, child, and family, but little is known about the hypothalamic and other neural correlates of maternal mental health concerns. The transition to parenthood alone is a time of remarkable neural plasticity, so it is perhaps not surprising that current research is showing that maternal mental illness has unique neural profiles. Furthermore, the neural systems affected by peripartum mental illness overlap and interact with the systems involved in maternal caregiving behaviors, and mother-infant interactions are, therefore, highly susceptible to disruption. This review discusses what we know about the unique neural changes occurring during peripartum mental illness and the role of the hypothalamus in these illnesses. With an improved understanding of the neural correlates of maternal mental health and disease, we will be better equipped to predict risk, develop effective treatments, and ultimately prevent suffering for millions of parents during this critical time in life.
Collapse
Affiliation(s)
- Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR S 1085, Rennes, France.
| | - James E Swain
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
85
|
Raz G, Saxe R. Learning in Infancy Is Active, Endogenously Motivated, and Depends on the Prefrontal Cortices. ACTA ACUST UNITED AC 2020. [DOI: 10.1146/annurev-devpsych-121318-084841] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A common view of learning in infancy emphasizes the role of incidental sensory experiences from which increasingly abstract statistical regularities are extracted. In this view, infant brains initially support basic sensory and motor functions, followed by maturation of higher-level association cortex. Here, we critique this view and posit that, by contrast and more like adults, infants are active, endogenously motivated learners who structure their own learning through flexible selection of attentional targets and active interventions on their environment. We further argue that the infant brain, and particularly the prefrontal cortex (PFC), is well equipped to support these learning behaviors. We review recent progress in characterizing the function of the infant PFC, which suggests that, as in adults, the PFC is functionally specialized and highly connected. Together, we present an integrative account of infant minds and brains, in which the infant PFC represents multiple intrinsic motivations, which are leveraged for active learning.
Collapse
Affiliation(s)
- Gal Raz
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Rebecca Saxe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
86
|
Balters S, Baker JM, Hawthorne G, Reiss AL. Capturing Human Interaction in the Virtual Age: A Perspective on the Future of fNIRS Hyperscanning. Front Hum Neurosci 2020; 14:588494. [PMID: 33240067 PMCID: PMC7669622 DOI: 10.3389/fnhum.2020.588494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/02/2020] [Indexed: 01/09/2023] Open
Abstract
Advances in video conferencing capabilities combined with dramatic socio-dynamic shifts brought about by COVID-19, have redefined the ways in which humans interact in modern society. From business meetings to medical exams, or from classroom instruction to yoga class, virtual interfacing has permeated nearly every aspect of our daily lives. A seemingly endless stream of technological advances combined with our newfound reliance on virtual interfacing makes it likely that humans will continue to use this modern form of social interaction into the future. However, emergent evidence suggests that virtual interfacing may not be equivalent to face-to-face interactions. Ultimately, too little is currently understood about the mechanisms that underlie human interactions over the virtual divide, including how these mechanisms differ from traditional face-to-face interaction. Here, we propose functional near-infrared spectroscopy (fNIRS) hyperscanning-simultaneous measurement of two or more brains-as an optimal approach to quantify potential neurocognitive differences between virtual and in-person interactions. We argue that increased focus on this understudied domain will help elucidate the reasons why virtual conferencing doesn't always stack up to in-person meetings and will also serve to spur new technologies designed to improve the virtual interaction experience. On the basis of existing fNIRS hyperscanning literature, we highlight the current gaps in research regarding virtual interactions. Furthermore, we provide insight into current hurdles regarding fNIRS hyperscanning hardware and methodology that should be addressed in order to shed light on this newly critical element of everyday life.
Collapse
Affiliation(s)
- Stephanie Balters
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Joseph M. Baker
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Grace Hawthorne
- Hasso Plattner Institute of Design, Stanford University, Stanford, CA, United States
| | - Allan L. Reiss
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
87
|
Perone S, Gartstein MA, Anderson AJ. Dynamics of frontal alpha asymmetry in mother-infant dyads: Insights from the Still Face Paradigm. Infant Behav Dev 2020; 61:101500. [PMID: 33197784 DOI: 10.1016/j.infbeh.2020.101500] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022]
Abstract
The parent-infant dynamic has a foundational role in emotion regulation development. Electroencephalography (EEG) hyperscanning from mother-infant dyads can provide an unprecedented window into inter-brain dynamics during the parent-infant exchange. This potential depends on the feasibility of hyperscanning with dyads in emotionally taxing contexts. We sought to demonstrate feasibility of hyperscanning from 10 mother-infant dyads during the Still Face Procedure (SFP). We measured frontal alpha asymmetry (FAA) to elucidate ongoing regulatory dynamics and considered maternal caregiving quality as a window into dyads' history. Results showed dyads exhibited a rightward shift in FAA over the course of SFP, indicating growing negative emotionality and desire to withdraw. Results also showed growing variability in FAA for infants over the course of SFP, indicating less active emotional control as stress ensued. Variability was especially low for mothers during periods when asked to be emotionally unavailable, suggesting active control to match the task demands. Dyads with a more responsive mother exhibited higher (more left) FAA relative to dyads with a less responsive mother, which might reflect a more positive emotional experience overall. We raise important methodological and theoretical questions that hyperscanning during SFP can address, such as the developmental origins of trait-like self-regulatory dispositions.
Collapse
Affiliation(s)
- Sammy Perone
- Department of Human Development, Washington State University, United States.
| | - Maria A Gartstein
- Department of Psychology, Washington State University, United States
| | - Alana J Anderson
- Department of Human Development, Washington State University, United States
| |
Collapse
|
88
|
Abney DH, Suanda SH, Smith LB, Yu C. What are the building blocks of parent-infant coordinated attention in free-flowing interaction? INFANCY 2020; 25:871-887. [PMID: 33022842 DOI: 10.1111/infa.12365] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/25/2022]
Abstract
The present article investigated the composition of different joint gaze components used to operationalize various types of coordinated attention between parents and infants and which types of coordinated attention were associated with future vocabulary size. Twenty-five 9-month-old infants and their parents wore head-mounted eye trackers as they played with objects together. With high-density gaze data, a variety of coordinated attention bout types were quantitatively measured by combining different gaze components, such as mutual gaze, joint object looks, face looks, and triadic gaze patterns. The key components of coordinated attention that were associated with vocabulary size at 12 and 15 months included the simultaneous combination of parent triadic gaze and infant object looking. The results from this article are discussed in terms of the importance of parent attentional monitoring and infant sustained attention for language development.
Collapse
Affiliation(s)
- Drew H Abney
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - Sumarga H Suanda
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Linda B Smith
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA.,School of Psychology, University of East Anglia, Norwich, UK
| | - Chen Yu
- Department of Psychology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
89
|
Samuelsson R. Guiding Preschool Play for Cultural Learning: Preschool Design as Cultural Niche Construction. Front Psychol 2020; 11:545846. [PMID: 33101121 PMCID: PMC7554243 DOI: 10.3389/fpsyg.2020.545846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022] Open
Abstract
This paper explores how preschools can be purposefully designed to aid cultural learning through guided play practices. In recent literature, there has been a renowned interest in the role of the exogenous environment in psychological processes, including learning. The idea that the design of preschools can meaningfully be seen as cultural niche construction and that guided play practices in these environments can aid the preparation for cultural action is promoted, and a theoretical framework is presented. The empirical data draw from a synthesis from three ethnographic research sites in multilingual communities, and data are used to explore how cultural affordances are used in designed environments as part of guided play practices. The results indicate how niche construction of affordances aid cultural learning and is achieved through both direct guided play interaction between teachers and children and also in the way of the indirect design of environments that is incorporated in children's peer play. It is discussed what this means for play research as well as for guided play practices that aim to promote cultural learning.
Collapse
Affiliation(s)
- Robin Samuelsson
- School of Culture and Education, Södertörn University, Huddinge, Sweden
| |
Collapse
|
90
|
Pan Y, Olsson A, Golkar A. Social safety learning: Shared safety abolishes the recovery of learned threat. Behav Res Ther 2020; 135:103733. [PMID: 33011485 DOI: 10.1016/j.brat.2020.103733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
Humans, like other social animals, learn about threats and safety in the environment through social cues. Yet, the processes that contribute to the efficacy of social safety learning during threat transmission remain unknown. Here, we developed a novel dyadic model of associative threat and extinction learning. In three separate social groups, we manipulated whether safety information during extinction was acquired via direct exposure to the conditioned stimulus (CS) in the presence of another individual (Direct exposure), via observation of other's safety behavior (Vicarious exposure), or via the combination of both (Shared exposure).These groups were contrasted against a fourth group receiving direct CS exposure alone (Asocial exposure). Based on skin conductance responses, we observed that all social groups outperformed asocial learning in inhibiting the recovery of threat, but only Shared exposure abolished threat recovery. These results suggest that social safety learning is optimized by a combination of direct exposure and vicariously transmitted safety signals. This work might help develop exposure therapies used to treat symptoms of threat and anxiety-related disorders to counteract maladaptive fears in humans.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Armita Golkar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
91
|
Music G. One Foot in the Ditch: A Discussion of “Accompaniment in Jazz and Psychoanalysis”. PSYCHOANALYTIC DIALOGUES 2020. [DOI: 10.1080/10481885.2020.1774342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
92
|
Wadnerkar Kamble M, Lam-Cassettari C, James DM. Communication Skills and Communicative Autonomy of Prelinguistic Deaf and Hard-of-Hearing Children: Application of a Video Feedback Intervention. Front Psychol 2020; 11:1983. [PMID: 32973615 PMCID: PMC7468426 DOI: 10.3389/fpsyg.2020.01983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background and Aim Evidence on the efficacy of parenting interventions to support communication development in deaf and hard-of-hearing children is emerging. In previous research, we showed that parental participation in a video feedback-based intervention enhanced parental self-esteem and emotional availability to their deaf and hard-of-hearing children. This paper investigates the impact of the intervention on the development of the children's prelingual communication skills and autonomy. Evidence on the efficacy of parenting interventions to support communication development is warranted. Methods Sixteen hearing parents with a prelingual deaf and hard-of-hearing child (Mage = 2.05 years, SD = 1.77) were recruited by self-selection from pediatric audiological services and randomly stratified into intervention-first and waiting-list groups. Families completed three sessions of Video Interaction Guidance in their homes. Designed for maximal inclusion, the sample comprised children with complex developmental and social needs. The primary inclusion criterion was the child's prelingual status (<50 signed/spoken words), which was established using speech and language therapy reports. Child communicative autonomy was assessed from a 20 min free-play video recording using a gold standard measure for deaf and hard-of-hearing children (Tait) before and after the intervention. Results A Mann-Whitney U test indicated no significant difference between the two groups. The groups were collated, and a Wilcoxon signed-rank test with time (pre-/post-intervention) as a repeating variable was run. A significant increase in children's communicative autonomy (Z = -3.517, p < 0.0001, d = 0.62) and decrease in children's no-responses (Z = -3.111, p < 0.005, d = 0.55) were seen. There was no significant difference in the overall number of turn-taking between the parent and child, indicating differences in the quality of the parent-child interactions, not the quantity. Conclusion This study adds to the emerging evidence for parenting interventions with deaf and hard-of-hearing children. We hypothesize that the video feedback intervention with its focus on emotional availability created space for the children to show increased communicative autonomy during parent-child interactions. Communicative autonomy is a long-term predictor of communication and linguistic development in deaf and hard-of-hearing children, and its conceptual underpinning makes it a good early measure of relational agency. Results can inform wider interventions that focus on the quantity of the parent-child communication.
Collapse
Affiliation(s)
| | - Christa Lam-Cassettari
- MARCS Institute for Brain, Behaviour & Development, Western Sydney University, Sydney, NSW, Australia
| | - Deborah M James
- Education and Social Research Institute, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
93
|
Behavioral and brain- transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens. PLoS Genet 2020; 16:e1008831. [PMID: 32555673 PMCID: PMC7299326 DOI: 10.1371/journal.pgen.1008831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/05/2020] [Indexed: 01/13/2023] Open
Abstract
Conspecific male animals fight for resources such as food and mating opportunities but typically stop fighting after assessing their relative fighting abilities to avoid serious injuries. Physiologically, how the fighting behavior is controlled remains unknown. Using the fighting fish Betta splendens, we studied behavioral and brain-transcriptomic changes during the fight between the two opponents. At the behavioral level, surface-breathing, and biting/striking occurred only during intervals between mouth-locking. Eventually, the behaviors of the two opponents became synchronized, with each pair showing a unique behavioral pattern. At the physiological level, we examined the expression patterns of 23,306 brain transcripts using RNA-sequencing data from brains of fighting pairs after a 20-min (D20) and a 60-min (D60) fight. The two opponents in each D60 fighting pair showed a strong gene expression correlation, whereas those in D20 fighting pairs showed a weak correlation. Moreover, each fighting pair in the D60 group showed pair-specific gene expression patterns in a grade of membership analysis (GoM) and were grouped as a pair in the heatmap clustering. The observed pair-specific individualization in brain-transcriptomic synchronization (PIBS) suggested that this synchronization provides a physiological basis for the behavioral synchronization. An analysis using the synchronized genes in fighting pairs of the D60 group found genes enriched for ion transport, synaptic function, and learning and memory. Brain-transcriptomic synchronization could be a general phenomenon and may provide a new cornerstone with which to investigate coordinating and sustaining social interactions between two interacting partners of vertebrates. Agonistic encounters induce changes in the brain and behavior, but their underlying molecular mechanisms remain poorly understood. The fighting fish Betta splendens are small freshwater fish that are well known for their aggressiveness and are widely used to study aggression. Here, by measuring aggressive behavior displays (bite/strike/surface-breathing) between two opponents during fighting, we demonstrate that the two opponents in each fighting pair showed similar fighting configurations by influencing each other. In addition, we compared brain gene expression between opponents and showed synchronization of gene expression within a fighting pair, leading to pair-specific synchronization in genes associated with ion transport, synapse function, and learning and memory. This study presents the possibility that similar behaviors in pairs of animals under similar conditions may trigger synchronizing waves of transcription between the individuals, providing a hint to support the idea that fighting behaviors contain cooperative aspects at the molecular level.
Collapse
|
94
|
Chen CH, Castellanos I, Yu C, Houston DM. What leads to coordinated attention in parent-toddler interactions? Children's hearing status matters. Dev Sci 2020; 23:e12919. [PMID: 31680414 PMCID: PMC7160036 DOI: 10.1111/desc.12919] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022]
Abstract
Coordinated attention between children and their parents plays an important role in their social, language, and cognitive development. The current study used head-mounted eye-trackers to investigate the effects of children's prelingual hearing loss on how they achieve coordinated attention with their hearing parents during free-flowing object play. We found that toddlers with hearing loss (age: 24-37 months) had similar overall gaze patterns (e.g., gaze length and proportion of face looking) as their normal-hearing peers. In addition, children's hearing status did not affect how likely parents and children attended to the same object at the same time during play. However, when following parents' attention, children with hearing loss used both parents' gaze directions and hand actions as cues, whereas children with normal hearing mainly relied on parents' hand actions. The diversity of pathways leading to coordinated attention suggests the flexibility and robustness of developing systems in using multiple pathways to achieve the same functional end.
Collapse
Affiliation(s)
- Chi-hsin Chen
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, Ohio 43212
| | - Irina Castellanos
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, Ohio 43212
- Nationwide Children’s Hospital, 700 Children’s Dr, Columbus, Ohio 43205
| | - Chen Yu
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10 Street, Bloomington, Indiana 47405
| | - Derek M. Houston
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, Ohio 43212
- Nationwide Children’s Hospital, 700 Children’s Dr, Columbus, Ohio 43205
| |
Collapse
|
95
|
Xie X. Reciprocal waves: embodied intersubjective communication in dance/movement therapy (DMT) practice. BODY MOVEMENT AND DANCE IN PSYCHOTHERAPY 2020. [DOI: 10.1080/17432979.2020.1746400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- XiaoChuan Xie
- Rehabilitation Department, Rockland Psychiatric Center, Orangeburg, NY, USA
| |
Collapse
|
96
|
Melatonin Relations with Energy Metabolism as Possibly Involved in Fatal Mountain Road Traffic Accidents. Int J Mol Sci 2020; 21:ijms21062184. [PMID: 32235717 PMCID: PMC7139848 DOI: 10.3390/ijms21062184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/18/2022] Open
Abstract
Previous results evidenced acute exposure to high altitude (HA) weakening the relation between daily melatonin cycle and the respiratory quotient. This review deals with the threat extreme environments pose on body time order, particularly concerning energy metabolism. Working at HA, at poles, or in space challenge our ancestral inborn body timing system. This conflict may also mark many aspects of our current lifestyle, involving shift work, rapid time zone crossing, and even prolonged office work in closed buildings. Misalignments between external and internal rhythms, in the short term, traduce into risk of mental and physical performance shortfalls, mood changes, quarrels, drug and alcohol abuse, failure to accomplish with the mission and, finally, high rates of fatal accidents. Relations of melatonin with energy metabolism being altered under a condition of hypoxia focused our attention on interactions of the indoleamine with redox state, as well as, with autonomic regulations. Individual tolerance/susceptibility to such interactions may hint at adequately dealing with body timing disorders under extreme conditions.
Collapse
|
97
|
Interpersonal Neural Entrainment during Early Social Interaction. Trends Cogn Sci 2020; 24:329-342. [PMID: 32160569 DOI: 10.1016/j.tics.2020.01.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Currently, we understand much about how children's brains attend to and learn from information presented while they are alone, viewing a screen - but less about how interpersonal social influences are substantiated in the brain. Here, we consider research that examines how social behaviors affect not one, but both partners in a dyad. We review studies that measured interpersonal neural entrainment during early social interaction, considering two ways of measuring entrainment: concurrent entrainment (e.g., 'when A is high, B is high' - also known as synchrony) and sequential entrainment ('changes in A forward-predict changes in B'). We discuss possible causes of interpersonal neural entrainment, and consider whether it is merely an epiphenomenon, or whether it plays an independent, mechanistic role in early attention and learning.
Collapse
|
98
|
Nguyen T, Bánki A, Markova G, Hoehl S. Studying parent-child interaction with hyperscanning. PROGRESS IN BRAIN RESEARCH 2020; 254:1-24. [DOI: 10.1016/bs.pbr.2020.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|