51
|
Helfer G, Ross AW, Russell L, Thomson LM, Shearer KD, Goodman TH, McCaffery PJ, Morgan PJ. Photoperiod regulates vitamin A and Wnt/β-catenin signaling in F344 rats. Endocrinology 2012; 153:815-24. [PMID: 22210746 DOI: 10.1210/en.2011-1792] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In seasonal mammals, growth, energy balance, and reproductive status are regulated by the neuroendocrine effects of photoperiod. Thyroid hormone (TH) is a key player in this response in a number of species. A neuroendocrine role for the nutritional factor vitamin A has not been considered, although its metabolic product retinoic acid (RA) regulates transcription via the same nuclear receptor family as TH. We hypothesized that vitamin A/RA plays a role in the neuroendocrine hypothalamus alongside TH signaling. Using a reporter assay to measure RA activity, we demonstrate that RA activity levels in the hypothalamus of photoperiod-sensitive F344 rats are reduced in short-day relative to long-day conditions. These lower RA activity levels can be explained by reduced expression of a whole network of RA signaling genes in the ependymal cells around the third ventricle and in the arcuate nucleus of the hypothalamus. These include genes required for uptake (Ttr, Stra6, and Crbp1), synthesis (Raldh1), receptor response (RAR), and ligand clearance (Crapb1 and Cyp26B1). Using melatonin injections into long-day rats, we show that the probable trigger of the fall in RA is melatonin. Surprisingly we also found RPE65 expression in the mammalian hypothalamus for the first time. Similar to RA signaling genes, members of the Wnt/β-catenin pathway and NMU and its receptor NMUR2 are also under photoperiodic control. Our data provide strong evidence for a novel endocrine axis, involving the nutrient vitamin A regulated by photoperiod and melatonin and suggest a role for several new players in the photoperiodic neuroendocrine response.
Collapse
Affiliation(s)
- Gisela Helfer
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen AB21 9SB, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
52
|
CM156, a sigma receptor ligand, reverses cocaine-induced place conditioning and transcriptional responses in the brain. Pharmacol Biochem Behav 2011; 101:174-80. [PMID: 22234290 DOI: 10.1016/j.pbb.2011.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 12/12/2011] [Accepted: 12/22/2011] [Indexed: 01/25/2023]
Abstract
Repeated exposure to cocaine induces neuroadaptations which contribute to the rewarding properties of cocaine. Using cocaine-induced conditioned place preference (CPP) as an animal model of reward, earlier studies have shown that sigma (σ) receptor ligands can attenuate the acquisition, expression and reactivation of CPP. However, the underlying molecular mechanisms that are associated with these changes are not yet understood. In the present study, CM156, a novel antagonist with high selectivity and affinity for σ receptors was used to attenuate the expression of cocaine-induced CPP in mice. Immediately following the behavioral evaluations, mouse brain tissues were collected and alterations in gene expression in half brain samples were profiled by cDNA microarray analysis. Microarray data was analyzed by three distinct normalization methods and four genes were consistently found to be upregulated by cocaine when compared to saline controls. Each of these gene changes were found by more than one normalization method to be reversed by at least one dose of CM156. Quantitative real time PCR confirmed that a single administration of CM156 was able to reverse the cocaine-induced increases in three of these four genes: metastasis associated lung adenocarcinoma transcript 1 (malat1), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (ywhaz), and transthyretin (ttr). These genes are involved in processes related to neuroplasticity and RNA editing. The data presented herein provides evidence that pharmacological intervention with a putative σ receptor antagonist reverses alterations in gene expression that are associated with cocaine-induced reward.
Collapse
|
53
|
Fragoso YD, Shearer KD, Sementilli A, de Carvalho LV, McCaffery PJ. High expression of retinoic acid receptors and synthetic enzymes in the human hippocampus. Brain Struct Funct 2011; 217:473-83. [PMID: 22075950 PMCID: PMC3322324 DOI: 10.1007/s00429-011-0359-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/20/2011] [Indexed: 02/06/2023]
Abstract
Retinoic acid, the active form of the nutrient vitamin A, regulates several facets of neuronal plasticity in the hippocampus, including neurogenesis and synaptic strength, acting via specific retinoic acid receptors (RARs). Essential for conversion of vitamin A to retinoic acid is the enzyme retinaldehyde dehydrogenase (RALDH) and in the rodent hippocampus this is only present in the adjacent meninges where it must act as a locally released paracrine hormone. Little is known though about the expression of RALDHs and RARs in the human hippocampus. This study confirms that RALDH levels are very low in mouse neurons but, surprisingly, strong expression of RALDH protein is detected by immunohistochemistry in hippocampal neurons. The receptors RARα, β and γ were also detected, each receptor exhibiting differing subcellular locations implying their potential regulation of both transcription and non-genomic actions. These results imply an essential function of retinoic acid in the human hippocampus likely to include regulation of neuronal plasticity.
Collapse
Affiliation(s)
- Yara Dadalti Fragoso
- Department of Neurology, Universidade Metropolitana de Santos, Santos, SP, Brazil
| | | | | | | | | |
Collapse
|
54
|
|
55
|
Sun H, Kawaguchi R. The membrane receptor for plasma retinol-binding protein, a new type of cell-surface receptor. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:1-41. [PMID: 21482409 DOI: 10.1016/b978-0-12-386041-5.00001-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vitamin A is essential for diverse aspects of life ranging from embryogenesis to the proper functioning of most adult organs. Its derivatives (retinoids) have potent biological activities such as regulating cell growth and differentiation. Plasma retinol-binding protein (RBP) is the specific vitamin A carrier protein in the blood that binds to vitamin A with high affinity and delivers it to target organs. A large amount of evidence has accumulated over the past decades supporting the existence of a cell-surface receptor for RBP that mediates cellular vitamin A uptake. Using an unbiased strategy, this specific cell-surface RBP receptor has been identified as STRA6, a multitransmembrane domain protein with previously unknown function. STRA6 is not homologous to any protein of known function and represents a new type of cell-surface receptor. Consistent with the diverse functions of vitamin A, STRA6 is widely expressed in embryonic development and in adult organ systems. Mutations in human STRA6 are associated with severe pathological phenotypes in many organs such as the eye, brain, heart, and lung. STRA6 binds to RBP with high affinity and mediates vitamin A uptake into cells. This review summarizes the history of the RBP receptor research, its expression in the context of known functions of vitamin A in distinct human organs, structure/function analysis of this new type of membrane receptor, pertinent questions regarding its very existence, and its potential implication in treating human diseases.
Collapse
Affiliation(s)
- Hui Sun
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
56
|
Meng QY, Chen XN, Zhao J, Swaab DF, Zhou JN. Distribution of retinoic acid receptor-α immunoreactivity in the human hypothalamus. Neuroscience 2010; 174:132-42. [PMID: 21130848 DOI: 10.1016/j.neuroscience.2010.11.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 11/27/2010] [Accepted: 11/30/2010] [Indexed: 11/16/2022]
Abstract
Retinoids, a family of molecules that is derived from vitamin A, are involved in a complex signaling pathway that regulates gene expression and controls neuronal differentiation in the central nervous system. The physiological actions of retinoids are mainly mediated by retinoic acid receptors. Here we describe the distribution of retinoic acid receptor α (RARα) in the human hypothalamus by immunohistochemistry. RARα immunoreactivity showed a widespread pattern throughout the hypothalamus, with high density in the suprachiasmatic nucleus (SCN), paraventricular nucleus (PVN), supraoptic nucleus (SON), infundibular nucleus and medial mamillary nucleus. No staining was observed in the sexually dimorphic nucleus of preoptic area, tuberomamillary nucleus and lateral hypothalamic area. RARα was co-localized with vasopressin (AVP) neurons in the SCN, PVN and SON, and co-localized with corticotropin releasing hormone (CRH) neurons in the PVN. These findings provide a neurobiological basis for the participation of retinoids in the regulation of various hypothalamic functions. As shown earlier, the co-localization of RARα in CRH neurons suggests that retinoids might directly modulate the hypothalamus-pituitary-adrenal axis in the PVN, which may have implications for the stress response and its involvement in mood disorders. Functional studies in the other sites of RARα localization have to follow in the future.
Collapse
Affiliation(s)
- Q-Y Meng
- Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, Anhui, PR China
| | | | | | | | | |
Collapse
|
57
|
Abstract
The aim of this study is to sum up the important information that has emerged from the last 10 years of experimental investigations over the effects of retinoic acid (RA) on embryonic structure and adult tissues. Administration of exogenous RA can affect the connective tissues including enhancement of myeloid compartment and suppression of erythroid cells and conversion of hematopoietic stem cells to erythroid progenitors. Also, it is able to induce osteogenic differentiation of stem cells derived from adipose tissues and etc. Examining the neural tissue highlighted that disruption of RA signaling in the adult leads to degeneration of motor neurons and development of some diseases. In vitro administration of All-Trans Retinoic Acid (ATRA) increased dendritic growth and synaptophysin puncta intensity and increased expressions of neuronal nuclei, neuron specific enolase, synaptophysin. RA also promotes expression of a marker of mature astrocytes. On muscular tissue, it can inhibit proliferation of smooth muscle cells (SMC) while promoting differentiation of SMC in vitro instead. The ATRA stimulates skeletal myogenesis while inhibiting cardiomyogenesis and hypertrophy and proliferation of cultured neonatal cardiomyocytes and cardiofibroblasts. In addition, differences in levels of embryonic RA may contribute to variability in great artery anomalies. In epithelial tissue, the squamous epithelium exposed to ATRA showed the columnar differentiation independent to proliferation. Also RA seems able to rescue the regeneration process of injured gut and revealing a better wound healing of the intestine undergone intra-operative radiotherapy. It can interrupt the process of progressive fibrosis, enhancements of the langerhans islets, exocrine pancreas, modulate the health of the mammary glands and repairs the lung cell. Thus, differences in levels of endogenous RA in embryonic and adult tissues may contribute to anomalies and pathogenesis of disease, furthermore RA has paradoxical effects on the parts forming the connective and muscles tissue in equal conditions.
Collapse
Affiliation(s)
- B Yousefi
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | |
Collapse
|
58
|
Carter CJ, Farrar N, Carlone RL, Spencer GE. Developmental expression of a molluscan RXR and evidence for its novel, nongenomic role in growth cone guidance. Dev Biol 2010; 343:124-37. [PMID: 20381485 DOI: 10.1016/j.ydbio.2010.03.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/10/2010] [Accepted: 03/25/2010] [Indexed: 02/06/2023]
Abstract
It is well known that the vitamin A metabolite, retinoic acid, plays an important role in vertebrate development and regeneration. We have previously shown that the effects of RA in mediating neurite outgrowth, are conserved between vertebrates and invertebrates (Dmetrichuk et al., 2005, 2006) and that RA can induce growth cone turning in regenerating molluscan neurons (Farrar et al., 2009). In this study, we have cloned a retinoid receptor from the mollusc Lymnaea stagnalis (LymRXR) that shares about 80% amino acid identity with the vertebrate RXRalpha. We demonstrate using Western blot analysis that the LymRXR is present in the developing Lymnaea embryo and that treatment of embryos with the putative RXR ligand, 9-cis RA, or a RXR pan-agonist, PA024, significantly disrupts embryogenesis. We also demonstrate cytoplasmic localization of LymRXR in adult central neurons, with a strong localization in the neuritic (or axonal) domains. Using regenerating cultured motor neurons, we show that LymRXR is also present in the growth cones and that application of a RXR pan-agonist produces growth cone turning in isolated neurites (in the absence of the cell body and nucleus). These data support a role for RXR in growth cone guidance and are the first studies to suggest a nongenomic action for RXR in the nervous system.
Collapse
Affiliation(s)
- Christopher J Carter
- Dept. Biological Sciences, Brock University, 500 Glenridge Ave. St. Catharines, Ontario, Canada L2S 3A1
| | | | | | | |
Collapse
|
59
|
Shearer KD, Goodman TH, Ross AW, Reilly L, Morgan PJ, McCaffery PJ. Photoperiodic regulation of retinoic acid signaling in the hypothalamus. J Neurochem 2010; 112:246-57. [PMID: 19860856 DOI: 10.1111/j.1471-4159.2009.06455.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Both retinoic acid (RA) and thyroid hormone (TH) regulate transcription via specific nuclear receptors. TH regulates hypothalamic homeostasis and active T3 is generated by deiodinase enzymes in tanycytes surrounding the third ventricle. However, RA has not been previously considered in such a role. Data presented here highlights novel parallels between the TH and RA synthetic pathways in the hypothalamus implying that RA also acts to regulate hypothalamic gene expression and function. Key elements of the RA cellular signaling pathway were shown to be regulated in the rodent hypothalamus. Retinoid synthetic enzymes and the retinol transport protein Stra6 were located in the cells lining the third ventricle allowing synthesis of RA from retinol present in the CNS to act via RA receptors and retinoid X receptors in the hypothalamus. Photoperiod manipulation was shown to alter the expression of synthetic enzymes and receptors with lengthening of photoperiod leading to enhanced RA signaling. In vitro RA can regulate the hypothalamic neuroendocrine peptide adrenocorticotrophic hormone. This work presents the new concept of controlled RA synthesis by hypothalamic tanycytes giving rise to possible involvement of this system in endocrine, and possibly vitamin A, homeostasis.
Collapse
Affiliation(s)
- Kirsty D Shearer
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | | | | | | | | | | |
Collapse
|
60
|
Cardozo A, Ielpi M, Gómez D, Argibay P. Differential expression of Shh and BMP signaling in the potential conversion of human adipose tissue stem cells into neuron-like cells in vitro. Gene Expr 2010; 14:307-19. [PMID: 20635573 PMCID: PMC6042023 DOI: 10.3727/105221610x12717040569866] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nervous system (NS) has a limited self-repair capability and adult neurogenesis is limited to certain regions of the brain. This generates a great interest in using stem cells to repair the NS. Previous reports have shown the differentiation of adipose tissue-derived mesenchymal stem cells (ASCs) in neuron-like cells when cultures are enriched with growth factors participating in embryonic and adult neurogenesis. Therefore, it could be thought that there exists a functional parallelism between neurogenesis and neuronal differentiation of ASCs. For this reason, the goal of this work was to study the differential gene expression of Shh and BMP genetic pathways involved in cell fate determination and proliferation. In this study we demonstrated that hASCs are endowed with active Hedgehog and BMP signaling pathways through the expression of genes of both cascades and that their expressions are downregulated after neuronal induction. This idea is in accordance with the facts that Shh and BMP signaling is involved in the maintenance of cells with stem cells properties and that proliferation decreases during the process of differentiation. Furthermore, Noggin expression was detected in induced hASCs whereas there was no expression in noninduced cells, which indicates that these cells are probably adopting a neuronal fate because noggin diverts neural stem cells from glial to neuronal fate. We also detected FM1-43 and synaptophisin staining, which is evidence of the presence of putative functional presynaptic terminals, a neuron-specific property. These results could partially contribute to the elucidation of the molecular mechanisms involved in neuronal differentiation of adult human nonneural tissues.
Collapse
Affiliation(s)
- Alejandra Cardozo
- Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
61
|
Abstract
This protocol describes a highly sensitive and selective method to quantify retinoids using normal-phase HPLC with online APCI MS(N). The retinoids are key regulators of gene expression, retinol being oxidized via a retinaldehyde intermediate to retinoic acid (RA) which activates specific nuclear receptors, the signalling of which is turned off by oxidative inactivation of the ligand to 4-oxo-RA and other metabolites. Many of these retinoids are present only transiently at low concentrations in tissues and during analysis are labile to heat, light, and oxygen. HPLC with online APCI MS(N) provides a rapid technique to quantify these retinoids simultaneously. Techniques to extract the retinoids and prevent their degradation are described, with an emphasis on transcriptionally active RA. RA controls patterning of gene expression in the embryo, organizing embryonic morphology in the central nervous system. Similarly, a patterned distribution of RA controls function of the adult CNS, a tissue particularly difficult to analyse for RA because of its high lipid content. To understand how these patterns are organized in the brain and change over time, it is essential to determine the concentration of RA in small areas of tissues, and techniques of exquisite sensitivity are indispensable.
Collapse
Affiliation(s)
- James E Evans
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
62
|
Abstract
The vitamin A metabolite, retinoic acid (RA), is well known for its roles in neural development and regeneration. We have previously shown that RA can induce positive growth cone turning in regenerating neurons in vitro. In this study, we address the subcellular mechanisms underlying this chemo-attractive response, using identified central neurons from the adult mollusc, Lymnaea stagnalis. We show that the RA-induced positive growth cone turning was maintained in the presence of the transcriptional inhibitor, actinomycin D. We also physically transected the neurites from the cell body and showed that isolated growth cones retain the capacity to turn toward a gradient of RA. Moreover, this attractive turning is dependent on de novo local protein synthesis and Ca(2+) influx. Most of RA's actions during neurite outgrowth and regeneration require gene transcription, although these data show for the first time in any species, that the chemotropic action of RA in guiding neurite outgrowth, involves a novel, nongenomic mechanism.
Collapse
|
63
|
Trent S, Drew CJG, Mitchell PJ, Bailey SJ. Chronic treatment with 13-cis-retinoic acid changes aggressive behaviours in the resident-intruder paradigm in rats. Eur Neuropsychopharmacol 2009; 19:876-86. [PMID: 19651495 DOI: 10.1016/j.euroneuro.2009.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/19/2009] [Accepted: 07/07/2009] [Indexed: 12/24/2022]
Abstract
Retinoids, vitamin A related compounds, have an established role in the development of the nervous system and are increasingly recognized to play a role in adult brain function. The synthetic retinoid, 13-cis-retinoic acid (13-cis-RA, Roaccutane) is widely used to treat severe acne but has been linked to an increased risk of neuropsychiatric side effects, including depression. Here we report that chronic administration with 13-cis-RA (1 mg/kg i.p. daily, 7-14 days) in adult rats reduced aggression- and increased flight-related behaviours in the resident-intruder paradigm. However, in the forced swim, sucrose consumption and open field tests treatment for up to 6 weeks with 13-cis-RA did not modify behaviour in adult or juvenile animals. The behavioural change observed in the resident-intruder paradigm is directly opposite to that observed with chronic antidepressant administration. These findings indicate that when a suitably sensitive behavioural test is employed then chronic administration of 13-cis-RA in adult rats induces behavioural changes consistent with a pro-depressant action.
Collapse
Affiliation(s)
- Simon Trent
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | |
Collapse
|
64
|
de Oliveira MR, Oliveira MWS, Moreira JCF. Pharmacological doses of vitamin A increase caspase-3 activity selectively in cerebral cortex. Fundam Clin Pharmacol 2009; 24:445-50. [PMID: 19889026 DOI: 10.1111/j.1472-8206.2009.00789.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vitamin A exerts a wide range of physiological roles from embryonic to adulthood stages of the mammalian life. However, there is a great concern regarding the deleterious effects of vitamin A use even therapeutically. It was shown that vitamin A induces behavioral impairments, for instance, anxiety-like behavior and depression, in experimental animals and humans. Caspases are enzymes associated with cell death; however, there is a role for such enzymes also in synaptic plasticity. Then, based on previously published data, we have investigated the effects of vitamin A supplementation at clinical doses (1000-9000 IU/kg/day) for 28 days on caspase-3 and caspase-8 activities in adult rat cerebral cortex, cerebellum, striatum, and hippocampus. Furthermore, we have quantified TNF-alpha levels, a pro-inflammatory cytokine that, besides other biological roles, trigger the extrinsic apoptotic pathway in several cellular types, in those rat brain regions. Interestingly, we found increased caspase-3 activity only in rat cerebral cortex. In all the other regions caspase-3 and caspase-8 activities did not change, as well as the levels of TNF-alpha. The presented results, herein, indicate that more caution is needed regarding vitamin A clinical use and, also importantly, the consumption of vitamin A-fortified foods, which are not exclusively distributed among vitamin A-deficient subjects.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Centro de Estudos em Estresse Oxidativo, Lab 32, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Av Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil.
| | | | | |
Collapse
|
65
|
Kane M, Chen N, Sparks S, Napoli J. Quantification of endogenous retinoic acid in limited biological samples by LC/MS/MS. Biochem J 2009; 388:363-9. [PMID: 15628969 PMCID: PMC1186726 DOI: 10.1042/bj20041867] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report a sensitive LC (liquid chromatography)/MS/MS assay using selected reaction monitoring to quantify RA (retinoic acid), which is applicable to biological samples of limited size (10-20 mg of tissue wet weight), requires no sample derivatization, provides mass identification and resolves atRA (all-trans-RA) from its geometric isomers. The assay quantifies over a linear range of 20 fmol to 10 pmol, and has a 10 fmol limit of detection at a signal/noise ratio of 3. Coefficients of variation are: instrumental, 0.5-2.9%; intra-assay, 5.4+/-0.4%; inter-assay 8.9+/-1.0%. An internal standard (all-trans-4,4-dimethyl-RA) improves accuracy by confirming extraction efficiency and revealing handling-induced isomerization. Tissues of 2-4-month-old C57BL/6 male mice had atRA concentrations of 7-9.6 pmol/g and serum atRA of 1.9+/-0.6 pmol/ml (+/-S.E.M.). Tissue 13-cis-RA ranged from 2.9 to 4.2 pmol/g, and serum 13-cis-RA was 1.2+/-0.3 pmol/ml. CRBP (cellular retinol-binding protein)-null mouse liver had atRA approximately 30% lower than wild-type (P<0.05), but kidney, testis, brain and serum atRA were similar to wild-type. atRA in brain areas of 12-month-old female C57BL/6 mice were (+/-S.E.M.): whole brain, 5.4+/-0.4 pmol/g; cerebellum, 10.7+/-0.3 pmol/g; cortex, 2.6+/-0.4 pmol/g; hippocampus, 8.4+/-1.2 pmol/g; striatum, 15.3+/-4.7 pmol/g. These data provide the first analytically robust quantification of atRA in animal brain and in CRBP-null mice. Direct measurements of endogenous RA should have a substantial impact on investigating target tissues of RA, mechanisms of RA action, and the relationship between RA and chronic disease.
Collapse
Affiliation(s)
- Maureen A. Kane
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
| | - Na Chen
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
| | - Susan Sparks
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
| | - Joseph L. Napoli
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
66
|
Kushida A, Tamura H. Retinoic acids induce neurosteroid biosynthesis in human glial GI-1 Cells via the induction of steroidogenic genes. J Biochem 2009; 146:917-23. [PMID: 19744992 DOI: 10.1093/jb/mvp142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The steroids synthesized in the central nervous system (CNS) are the neurosteroids. Since little information is currently available concerning the roles of the retinoic acids (RAs) during steroidogenesis in the CNS, we investigated the effects of RAs upon their synthesis in our current study. Specifically, we analyzed the effects of all-trans-retinoic acid (ATRA) upon the expression of neurosteroid biosynthesis genes in the human glial cell line GI-1, in which the major steroidogenic genes are expressed. Treatment with ATRA (10 muM) induced a 4.9-fold increase in the expression of the cytochrome P450scc (CYP11A1) gene, the product of which cleaves the cholesterol side chain, a rate-limiting step during steroidogenesis. ATRA also strongly induced the expression of steroidogenic acute regulatory protein (StAR) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) (an increase of 5- and 50-fold, respectively). A retinoic acid receptor (RAR)-specific agonist, TTNPB, was unable to mimic this induction whereas a retinoid X receptor (RXR)-specific agonist, methoprene acid, in addition to 9-cis-RA, could do so. These data indicate that ATRA is isomerized to 9-cis-RA in the culture medium, as reported previously, and that 9-cis-RA activates the RXR. In addition, ATRA also induced the de novo synthesis of neurosteroids such as pregnenolone and progesterone. These results suggest that ATRA might induce the de novo neurosteroid synthesis via the induction of steroidogenic genes in human glial cells. The multiple effects of vitamin A upon CNS functions might therefore be partly explained by the induction of neurosteroidogenesis by RAs, since neurosteroids have also been reported to have multiple effects in the CNS.
Collapse
Affiliation(s)
- Akira Kushida
- Graduate School of Pharmaceutical Sciences; and Faculty of Pharmacy, Keio University, Minatoku, Tokyo 105-8512, Japan
| | | |
Collapse
|
67
|
Muley PD, McNeill EM, Marzinke MA, Knobel KM, Barr MM, Clagett-Dame M. The atRA-responsive gene neuron navigator 2 functions in neurite outgrowth and axonal elongation. Dev Neurobiol 2009; 68:1441-53. [PMID: 18726912 DOI: 10.1002/dneu.20670] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuron navigator 2 (Nav2) was first identified as an all-trans retinoic acid (atRA)-responsive gene in human neuroblastoma cells (retinoic acid-induced in neuroblastoma 1, RAINB1) that extend neurites after exposure to atRA. It is structurally related to the Caenorhabditis elegans unc-53 gene that is required for cell migration and axonal outgrowth. To gain insight into NAV2 function, the full-length human protein was expressed in C. elegans unc-53 mutants under the control of a mechanosensory neuron promoter. Transgene expression of NAV2 rescued the defects in unc-53 mutant mechanosensory neuron elongation, indicating that Nav2 is an ortholog of unc-53. Using a loss-of-function approach, we also show that Nav2 induction is essential for atRA to induce neurite outgrowth in SH-SY5Y cells. The NAV2 protein is located both in the cell body and along the length of the growing neurites of SH-SY5Y cells in a pattern that closely mimics that of neurofilament and microtubule proteins. Transfection of Nav2 deletion constructs in Cos-1 cells reveals a region of the protein (aa 837-1065) that directs localization with the microtubule cytoskeleton. Collectively, this work supports a role for NAV2 in neurite outgrowth and axonal elongation and suggests this protein may act by facilitating interactions between microtubules and other proteins such as neurofilaments that are key players in the formation and stability of growing neurites.
Collapse
Affiliation(s)
- P D Muley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA
| | | | | | | | | | | |
Collapse
|
68
|
Vega VA, Anzulovich AC, Varas SM, Bonomi MR, Giménez MS, Oliveros LB. Effect of nutritional vitamin A deficiency on lipid metabolism in the rat heart: Its relation to PPAR gene expression. Nutrition 2009; 25:828-38. [PMID: 19342198 DOI: 10.1016/j.nut.2009.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/27/2008] [Accepted: 01/05/2009] [Indexed: 01/28/2023]
Abstract
OBJECTIVE We studied the effect of dietary vitamin A deprivation on lipid composition and mRNA expression of regulatory enzymes involved in rat heart energetic lipid metabolism and its relation to the expression of peroxisome proliferator-activated receptor (PPAR) and retinoid X receptor (RXR) genes. METHODS Male Wistar 21-d-old rats were fed for 3 mo with a vitamin A-free diet (vitamin A-deficient group) and the same diet plus 8 mg of retinol palmitate per kilogram of diet (control group). One group of deficient animals received the control diet 15 d before sacrifice (vitamin A-refed group). Heart ventricular and mitochondrial lipid contents were determined. Lipid synthesis was measured using radioactive precursors and acetyl-coenzyme A carboxylase and mitochondrial carnitine palmitoyltransferase-I (CPT-I) activities using radioactive substrates. Fatty acid composition of mitochondrial phospholipids was analyzed by gas-liquid chromatography. Heart expression of acetyl-coenzyme A carboxylase, CPT-I, PPAR-alpha, PPAR-beta, RXR-alpha, and RXR-beta was assessed by reverse transcriptase polymerase chain reaction, and CPT-I expression was also measured by real-time polymerase chain reaction. RESULTS Vitamin A deficiency induced changes in heart ventricular lipid content and synthesis. Mitochondrial cardiolipin decreased and the proportion of phospholipids/saturated fatty acids increased. Heart activity and mRNA levels of CPT-I and expression of PPAR-alpha and PPAR-beta genes were enhanced, whereas acetyl-coenzyme A carboxylase activity diminished. Furthermore, vitamin A deficiency decreased heart mRNA levels of RXRs. Vitamin A refeeding reverted most of the observed changes. CONCLUSION Lipid metabolism is significantly modified in hearts of vitamin A-deficient rats. Alteration of mitochondrial energetic processes by modifying the activity and gene expressions of the regulatory enzymes is associated with a high PPAR expression induced by vitamin A deprivation.
Collapse
Affiliation(s)
- Verónica Analía Vega
- Department of Biochemistry and Biological Sciences, National University of San Luis, and IMIBIO-SL, CONICET, Argentina
| | | | | | | | | | | |
Collapse
|
69
|
Juszczak GR, Swiergiel AH. Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:181-98. [PMID: 19162118 DOI: 10.1016/j.pnpbp.2008.12.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Gap junctions play an important role in brain physiology. They synchronize neuronal activity and connect glial cells participating in the regulation of brain metabolism and homeostasis. Gap junction blockers (GJBs) include various chemicals that impair gap junction communication, disrupt oscillatory neuronal activity over a wide range of frequencies, and decrease epileptic discharges. The behavioural and clinical effects of GJBs suggest that gap junctions can be involved in the regulation of locomotor activity, arousal, memory, and breathing. Severe neuropsychiatric side effects suggest the involvement of gap junctions in mechanisms of consciousness. Unfortunately, the available GJBs are not selective and can bind to targets other than gap junctions. Other problems in behavioural studies include the possible adverse effects of GJBs, for example, retinal toxicity and hearing disturbances, changes in blood-brain transport, and the metabolism of other drugs. Therefore, it is necessary to design experiments properly to avoid false, misleading or uninterpretable results. We review the pharmacological properties and electrophysiological, behavioural and cognitive effects of the available gap junction blockers, such as carbenoxolone, glycyrrhetinic acid, quinine, quinidine, mefloquine, heptanol, octanol, anandamide, fenamates, 2-APB, several anaesthetics, retinoic acid, oleamide, spermine, aminosulfonates, and sodium propionate. It is concluded that despite a number of different problems, the currently used gap junction blockers could be useful tools in pharmacology and neuroscience.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 1, 05-552 Wolka Kosowska, Poland.
| | | |
Collapse
|
70
|
Kontaxakis VP, Skourides D, Ferentinos P, Havaki-Kontaxaki BJ, Papadimitriou GN. Isotretinoin and psychopathology: a review. Ann Gen Psychiatry 2009; 8:2. [PMID: 19154613 PMCID: PMC2637283 DOI: 10.1186/1744-859x-8-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 01/20/2009] [Indexed: 12/20/2022] Open
Abstract
Isotretinoin, a synthetic oral retinoid that is used against severe nodulocystic acne, has been associated with various psychiatric side effects such as depression, suicidality and psychotic symptoms. A great number of reports on its effects have been published since its introduction into the market. However, a causal relationship has not been established and the link between isotretinoin use and psychiatric events remains controversial. The present paper reviews the available evidence regarding the association of isotretinoin and psychiatric side effects. All published material reporting psychiatric side effects following isotretinoin treatment, including case reports, case series, reports from adverse drug event reporting systems, prospective surveys and retrospective case-control studies, are presented. In addition, the neurobiology of the retinoids and possible biological mechanisms that may lead to psychopathology are described.
Collapse
Affiliation(s)
- Vassilis P Kontaxakis
- Athens University Medical School, First Department of Psychiatry, Eginition Hospital, Athens, Greece
| | - Demetris Skourides
- Athens University Medical School, First Department of Psychiatry, Eginition Hospital, Athens, Greece
| | - Panayotis Ferentinos
- Athens University Medical School, First Department of Psychiatry, Eginition Hospital, Athens, Greece
| | - Beata J Havaki-Kontaxaki
- Athens University Medical School, First Department of Psychiatry, Eginition Hospital, Athens, Greece
| | - George N Papadimitriou
- Athens University Medical School, First Department of Psychiatry, Eginition Hospital, Athens, Greece
| |
Collapse
|
71
|
Abstract
The dystrobrevin-binding protein 1 (DTNBP1) gene has been one of the most studied and promising schizophrenia susceptibility genes since it was first reported to be associated with schizophrenia in the Irish Study of High Density Schizophrenia Families (ISHDSF). Although many studies have been performed both at the functional level and in association with psychiatric disorders, there has been no systematic review of the features of the DTNBP1 gene, protein or the relationship between function and phenotype. Using a bioinformatics approach, we identified the DTNBP1 gene in 13 vertebrate species. The comparison of these genes revealed a conserved gene structure, protein-coding sequence and dysbindin domain, but a diverse noncoding sequence. The molecular evolutionary analysis suggests the DTNBP1 gene probably originated in chordates and matured in vertebrates. No signature of recent positive selection was seen in any primate lineage. The DTNBP1 gene likely has many more alternative transcripts than the current three major isoforms annotated in the NCBI database. Our examination of risk haplotypes revealed that, although the frequency of a single nucleotide polymorphism (SNP) or haplotype might be significantly different in cases from controls, difference between major geographic populations was even larger. Finally, we constructed the first DTNBP1 interactome and explored its network features. Besides the biogenesis of lysosome-related organelles complex 1 and dystrophin-associated protein complex, several molecules in the DTNBP1 network likely provide insight into the role of DTNBP1 in biological systems: retinoic acid, beta-estradiol, calmodulin and tumour necrosis factor. Studies of these subnetworks and pathways may provide opportunities to deepen our understanding of the mechanisms of action of DTNBP1 variants.
Collapse
|
72
|
Wood WE, Olson CR, Lovell PV, Mello CV. Dietary retinoic acid affects song maturation and gene expression in the song system of the zebra finch. Dev Neurobiol 2008; 68:1213-24. [PMID: 18548487 DOI: 10.1002/dneu.20642] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vitamin A, an essential nutrient, is required in its acidic form (retinoic acid) for normal embryogenesis and neuronal development, typically within well-defined concentration ranges. In zebra finches, a songbird species, localized retinoic acid synthesis in the brain is important for the development of song, a learned behavior sharing significant commonalities with speech acquisition in humans. We tested how dietary retinoic acid affects the development of song behavior and the brain's system for song control. Supplemental doses of retinoic acid given to juveniles during the critical period for song learning resulted in more variable or plastic-like songs when the birds reached adulthood, compared to the normal songs of vehicle-fed controls. We also observed that several genes (brinp1, nrgn, rxr-alpha, and sdr2/scdr9) had altered levels of expression in specific nuclei of the song system when comparing the experimental and control diet groups. Interestingly, we found significant correlations between gene expression levels in nuclei of the anterior forebrain pathway (lMAN and area X) and the degree of variability in the recorded songs. We observed, however, no major morphological effects such as changes in the volumes of song nuclei. Overall, our results lend further support to a fundamental role of retinoic acid in song maturation and point to possible molecular pathways associated with this action. The data also demonstrate that dietary content of Vitamin A can affect the maturation of a naturally learned complex behavior.
Collapse
Affiliation(s)
- William E Wood
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
73
|
Faigle R, Liu L, Cundiff P, Funa K, Xia Z. Opposing effects of retinoid signaling on astrogliogenesis in embryonic day 13 and 17 cortical progenitor cells. J Neurochem 2008; 106:1681-98. [PMID: 18564368 DOI: 10.1111/j.1471-4159.2008.05525.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
All-trans retinoic acid (RA) is a differentiation factor in many tissues. However, its role in astrogliogenesis has not been extensively studied. Here, we investigated the effect of RA on the regulation of astrogliogenesis at different cortical developmental stages. We prepared rat cortical progenitor cells from embryonic day (E) 13 and E17, which correspond to the beginning of neurogenic and astrogliogenic periods, respectively. Surprisingly, RA promoted astrogliogenesis at E17 but inhibited astrogliogenesis induced by ciliary neurotrophic factor (CNTF) at E13. The inhibitory effect of RA on astrogliogenesis at E13 was not due to premature commitment of progenitors to a neuronal or oligodendroglial lineage. Rather, RA retained more progenitors in a proliferative state. Furthermore, RA inhibition of astrogliogenesis at E13 was independent of STAT3 signaling and required the function of the alpha and beta isoforms of the RA receptors (RAR). Moreover, the differential response of E13 and E17 progenitors to RA was due to differences in the intrinsic properties of these cells that are preserved in vitro. The inhibitory effect of RA on cytokine-induced astrogliogenesis at E13 may contribute to silencing of any potential precocious astrogliogenesis during the neurogenic period.
Collapse
Affiliation(s)
- Roland Faigle
- Department of Environmental and Occupational Health Sciences, and Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
74
|
Huang H, Wei H, Zhang X, Chen K, Li Y, Qu P, Zhang X, Chen J, Liu Y, Yang L, Li T. Changes in the expression and subcellular localization of RARalpha in the rat hippocampus during postnatal development. Brain Res 2008; 1227:26-33. [PMID: 18619947 DOI: 10.1016/j.brainres.2008.06.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 05/29/2008] [Accepted: 06/13/2008] [Indexed: 11/25/2022]
Abstract
Retinoic acid receptors (RARs) are reported to mediate the effects of retinoid acid and participate in the maintenance of normal hippocampal function during embryonic and postnatal stages. RARalpha is the only one that has been reported to be continuously expressed among RARs in the CA1-CA3 areas of the hippocampus, at both the mRNA and the protein level. Here, we show the expression and subcellular localization of RARalpha in granule and pyramidal cells in various regions of the hippocampus during postnatal development of rats. We discovered that the expression level of RARalpha in postnatal hippocampal tissue gradually decreased over time with increasing developmental maturity of the nervous system. Moreover, the subcellular localization of RARalpha expression showed a phenomenon of intracellular translocation during the postnatal development period. This new discovery is inconsistent with a traditional viewpoint according to which RARalpha, as a nuclear transcription factor, is mainly expressed inside nucleus. This phenomenon suggests that RARalpha may have different actions during each stage of hippocampal development.
Collapse
Affiliation(s)
- Hongmei Huang
- Nutritional Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Wang G, Scott SA. Retinoid signaling is involved in governing the waiting period for axons in chick hindlimb. Dev Biol 2008; 321:216-26. [PMID: 18602384 DOI: 10.1016/j.ydbio.2008.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/12/2008] [Accepted: 06/12/2008] [Indexed: 01/01/2023]
Abstract
During embryonic development in chick, axons pause in a plexus region for approximately 1 day prior to invading the limb. We have previously shown that this "waiting period" is governed by maturational changes in the limb. Here we provide a detailed description of the spatiotemporal pattern of Raldh2 expression in lumbosacral motoneurons and in the limb, and show that retinoid signaling in the limb contributes significantly to terminating the waiting period. Raldh2, indicative of retinoid signaling, first appears in hindlimb mesenchyme near the end of the waiting period. Transcripts are more abundant in connective tissue associated with predominantly fast muscles than predominantly slow muscles, but are not expressed in muscle cells themselves. The tips of ingrowing axons are always found in association with domains of Raldh2, but development of Raldh2 expression is not regulated by the axons. Instead, retinoid signaling appears to regulate axon entry into the limb. Supplying exogenous retinoic acid to proximal limb during the waiting period caused both motor and sensory axons to invade the limb prematurely and altered the normal stereotyped pattern of axon ingrowth without obvious effects on limb morphogenesis or motoneuron specification. Conversely, locally decreasing retinoid synthesis reduced axon growth into the limb. Retinoic acid significantly enhanced motor axon growth in vitro, suggesting that retinoic acid may directly promote axon growth into the limb in vivo. In addition, retinoid signaling may indirectly affect the waiting period by regulating the maturation of other gate keeping or guidance molecules in the limb. Together these findings reveal a novel function of retinoid signaling in governing the timing and patterning of axon growth into the limb.
Collapse
Affiliation(s)
- Guoying Wang
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
76
|
Abstract
Vitamin A is the parent compound of retinoids, which regulate gene transcription by binding to nuclear retinoid receptors. Recently, it has been suggested that retinoid signaling pathways are important for adult neural function in health and disease. In this mini review we will summarize the molecular pathway of retinoid and experimental data on this pathway relating to sleep regulation, which suggests that retinoid signaling mechanism may be involved in the homeostatic component of sleep electroencephalogram.
Collapse
Affiliation(s)
- Hiroyoshi Sei
- Department of Integrative Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
77
|
van Neerven S, Kampmann E, Mey J. RAR/RXR and PPAR/RXR signaling in neurological and psychiatric diseases. Prog Neurobiol 2008; 85:433-51. [PMID: 18554773 DOI: 10.1016/j.pneurobio.2008.04.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 02/12/2008] [Accepted: 04/28/2008] [Indexed: 01/09/2023]
Abstract
Retinoids are important signals in brain development. They regulate gene transcription by binding to retinoic acid receptors (RAR) and, as was discovered recently, a peroxisome proliferator-activated receptor (PPAR). Traditional ligands of PPAR are best known for their functions in lipid metabolism and inflammation. RAR and PPAR are ligand-activated transcription factors, which share members of the retinoid X receptor (RXR) family as heterodimeric partners. Both signal transduction pathways have recently been implicated in the progression of neurodegenerative and psychiatric diseases. Since inflammatory processes contribute to various neurodegenerative diseases, the anti-inflammatory activity of retinoids and PPARgamma agonists recommends them as potential therapeutic targets. In addition, genetic linkage studies, transgenic mouse models and experiments with vitamin A deprivation provide evidence that retinoic acid signaling is directly involved in physiology and pathology of motoneurons, of the basal ganglia and of cognitive functions. The activation of PPAR/RXR and RAR/RXR transcription factors has therefore been proposed as a therapeutic strategy in disorders of the central nervous system.
Collapse
|
78
|
O'Reilly K, Bailey SJ, Lane MA. Retinoid-mediated regulation of mood: possible cellular mechanisms. Exp Biol Med (Maywood) 2008; 233:251-8. [PMID: 18296731 DOI: 10.3181/0706-mr-158] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vitamin A and its derivatives, the retinoids, have long been studied for their ability to alter central nervous system (CNS) development. Increasingly, it is recognized that sufficient levels of retinoids may also be required for adult CNS function. However, excess dietary vitamin A, due to the consumption of supplements or foods rich in vitamin A, has been reported to induce psychosis. In addition, 13-cis-retinoic acid (13-cis-RA, isotretinoin), the active ingredient in the acne treatment Accutane, has been reported to cause adverse psychiatric events, including depression and suicidal ideation. Nevertheless, epidemiological studies have reported no consistent link between Accutane use and clinical depression in humans. Using an animal model, we have recently shown that 13-cis-RA induces an increase in depression-related behavior. Impairments in spatial learning and memory have also been demonstrated following 13-cis-RA treatment in mice. This review focuses on the behavioral and possible cellular effects of retinoid deficiency or excess in the adult brain in relation to altered mood. Specifically, we discuss the effect of retinoids on depression-related behaviors and whether norepinephrinergic, dopaminergic, or serotonergic neurotransmitter systems may be impaired. In addition, we consider the evidence that adult neurogenesis, a process implicated in the pathophysiology of depression, is reduced by retinoid signaling. We suggest that 13-cis-RA treatment may induce depression-related behaviors by decreasing adult neurogenesis and/or altering the expression of components of serotonergic neurotransmitter system, thereby leading to impaired serotonin signaling.
Collapse
Affiliation(s)
- Kally O'Reilly
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
79
|
Farrar NR, Spencer GE. Pursuing a 'turning point' in growth cone research. Dev Biol 2008; 318:102-11. [PMID: 18436201 DOI: 10.1016/j.ydbio.2008.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 01/13/2023]
Abstract
Growth cones are highly motile structures found at the leading edge of developing and regenerating nerve processes. Their role in axonal pathfinding has been well established and many guidance cues that influence growth cone behavior have now been identified. Many studies are now providing insights into the transduction and integration of signals in the growth cone, though a full understanding of growth cone behavior still eludes us. This review focuses on recent studies adding to the growing body of literature on growth cone behavior, focusing particularly on the level of autonomy the growth cone possesses and the role of local protein synthesis.
Collapse
Affiliation(s)
- Nathan R Farrar
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
| | | |
Collapse
|
80
|
Bexarotene as add-on to antipsychotic treatment in schizophrenia patients: a pilot open-label trial. Clin Neuropharmacol 2008; 31:25-33. [PMID: 18303488 DOI: 10.1097/wnf.0b013e31806450da] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Bexarotene is a synthetic retinoid used for treatment of neoplastic or dermatologic disorders. Based on the retinoid dysregulation hypothesis, it was hypothesized that bexarotene augmentation would have a beneficial effect in the antipsychotic treatment of schizophrenia patients. This study is the first to investigate the safety and efficacy of add-on oral bexarotene to ongoing antipsychotic treatment in chronic schizophrenia patients who were stabilized on regular antipsychotic treatment. METHODS A 6-week open label trial was conducted in 2 mental health centers from October 2005 to October 2006. Twenty-five patients with chronic schizophrenia received a low dose of bexarotene (75 mg/d) augmentation. Mental condition and laboratory tests were assessed at baseline and after weeks 2, 4, and 6 of the study. The primary outcome measure was change from baseline in 4 symptom scales: the Positive and Negative Symptom Scale, Extrapyramidal Symptom Rating Scale, Abnormal Involuntary Movement Scale, and Barnes Akathisia Scale. Blood cell count, liver and thyroid functions, cholesterol, and triglyceride rates were followed. RESULTS Significant improvement from baseline to endpoint was observed on total Positive and Negative Symptom Scale score (P = 0.022), general psychopathology (P = 0.024), positive (P = 0.012), and the dysphoric mood (P = 0.028) factor scores. Furthermore, a trend to a diminishing Extrapyramidal Symptom Rating Scale score (P = 0.053) was found. Bexarotene was found to be a safe medication as measured by all laboratory parameters with the exception of increased total cholesterol serum level. CONCLUSIONS This short-term pilot study supports bexarotene as a potential valuable adjunct in management of schizophrenia. Low doses of bexarotene were well tolerated. A double-blind controlled study should be performed to replicate these preliminary positive results.
Collapse
|
81
|
Bremner JD, McCaffery P. The neurobiology of retinoic acid in affective disorders. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:315-31. [PMID: 17707566 PMCID: PMC2704911 DOI: 10.1016/j.pnpbp.2007.07.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 07/02/2007] [Accepted: 07/02/2007] [Indexed: 01/29/2023]
Abstract
Current models of affective disorders implicate alterations in norepinephrine, serotonin, dopamine, and CRF/cortisol; however treatments targeted at these neurotransmitters or hormones have led to imperfect resolution of symptoms, suggesting that the neurobiology of affective disorders is incompletely understood. Until now retinoids have not been considered as possible contributors to affective disorders. Retinoids represent a family of compounds derived from vitamin A that perform a large number of functions, many via the vitamin A product, retinoic acid. This signaling molecule binds to specific retinoic acid receptors in the brain which, like the glucocorticoid and thyroid hormone receptors, are part of the nuclear receptor superfamily and regulate gene transcription. Research in the field of retinoic acid in the CNS has focused on the developing brain, in part stimulated by the observation that isotretinoin (13-cis retinoic acid), an isomer of retinoic acid used in the treatment of acne, is highly teratogenic for the CNS. More recent work has suggested that retinoic acid may influence the adult brain; animal studies indicated that the administration of isotretinoin is associated with alterations in behavior as well as inhibition of neurogenesis in the hippocampus. Clinical evidence for an association between retinoids and depression includes case reports in the literature, studies of health care databases, and other sources. A preliminary PET study in human subjects showed that isotretinoin was associated with a decrease in orbitofrontal metabolism. Several studies have shown that the molecular components required for retinoic acid signaling are expressed in the adult brain; the overlap of brain areas implicated in retinoic acid function and stress and depression suggest that retinoids could play a role in affective disorders. This report reviews the evidence in this area and describes several systems that may be targets of retinoic acid and which contribute to the pathophysiology of depression.
Collapse
Affiliation(s)
- J Douglas Bremner
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA 30306, USA.
| | | |
Collapse
|
82
|
Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice. J Neurosci 2008; 28:279-91. [PMID: 18171945 DOI: 10.1523/jneurosci.4065-07.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
An increasing body of evidence indicates that the vitamin A metabolite retinoic acid (RA) plays a role in adult brain plasticity by activating gene transcription through nuclear receptors. Our previous studies in mice have shown that a moderate downregulation of retinoid-mediated transcription contributed to aging-related deficits in hippocampal long-term potentiation and long-term declarative memory (LTDM). Here, knock-out, pharmacological, and nutritional approaches were used in a series of radial-arm maze experiments with mice to further assess the hypothesis that retinoid-mediated nuclear events are causally involved in preferential degradation of hippocampal function in aging. Molecular and behavioral findings confirmed our hypothesis. First, a lifelong vitamin A supplementation, like short-term RA administration, was shown to counteract the aging-related hippocampal (but not striatal) hypoexpression of a plasticity-related retinoid target-gene, GAP43 (reverse transcription-PCR analyses, experiment 1), as well as short-term/working memory (STWM) deterioration seen particularly in organization demanding trials (STWM task, experiment 2). Second, using a two-stage paradigm of LTDM, we demonstrated that the vitamin A supplementation normalized memory encoding-induced recruitment of (hippocampo-prefrontal) declarative memory circuits, without affecting (striatal) procedural memory system activity in aged mice (Fos neuroimaging, experiment 3A) and alleviated their LTDM impairment (experiment 3B). Finally, we showed that (knock-out, experiment 4) RA receptor beta and retinoid X receptor gamma, known to be involved in STWM (Wietrzych et al., 2005), are also required for LTDM. Hence, aging-related retinoid signaling hypoexpression disrupts hippocampal cellular properties critically required for STWM organization and LTDM formation, and nutritional vitamin A supplementation represents a preventive strategy. These findings are discussed within current neurobiological perspectives questioning the historical consensus on STWM and LTDM system partition.
Collapse
|
83
|
Li HY, Zhou XF. Potential conversion of adult clavicle-derived chondrocytes into neural lineage cells in vitro. J Cell Physiol 2008; 214:630-44. [PMID: 17786944 DOI: 10.1002/jcp.21251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neural stem cells (NSC) can be isolated from a variety of adult tissues and become a valuable cell source for the repair of peripheral and central nervous diseases. However, their origin and identity remain controversial because of possible de-differentiation/trans-differentiation or contaminations by hematopoietic stem cells (HSCs) or mesenchymal stem cells (MSCs). We hypothesize that the commonly used NSC culture medium can induce committed cartilage chondrocytes to de-differentiate and/or trans-differentiate into neural cell lineages. Using a biological isolation and purification method with explants culture, we here show that adult rat clavicle cartilage chondrocytes migrate out from tissue blocks, form sphere-like structures, possess the capability of self-renewal, express nestin and p75NTR, markers for neural crest progenitors, and differentiate into neurons, glia, and smooth muscle cells. Comparing with adult cartilage, the spherical-forming neural crest cell-like cells downregulate the chondrocytic marker genes, including collagen II, collagen X, and sox9, as well as neural-lineage repressors/silencers REST and coREST, but upregulate a set of well-defined genes related to neural crest cells and pro-neural potential. Nerve growth factor (NGF) and glial growth factor (GGF) increase glial and neuronal differentiation, respectively. These results suggest that chondrocytes derived from adult clavicle cartilage can become neural crest stem-like cells and acquire neuronal phenotypes in vitro. The possible de-differentiation/trans-differentiation mechanisms underlying the conversion were discussed.
Collapse
Affiliation(s)
- Hong-Yun Li
- Department of Human Physiology, School of Medicine, Flinders University of South Australia, Adelaide, South Australia, Australia
| | | |
Collapse
|
84
|
Zhang X, Zeng Y, Zhang W, Wang J, Wu J, Li J. Co-Transplantation of Neural Stem Cells and NT-3-Overexpressing Schwann Cells in Transected Spinal Cord. J Neurotrauma 2007; 24:1863-77. [DOI: 10.1089/neu.2007.0334] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Xuebao Zhang
- Department of Histology and Embryology, Institute of Spinal Cord Injury, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuanshan Zeng
- Department of Histology and Embryology, Institute of Spinal Cord Injury, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhang
- Department of Histology and Embryology, Institute of Spinal Cord Injury, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junmei Wang
- Department of Histology and Embryology, Institute of Spinal Cord Injury, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinlang Wu
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan
- John D. Dingell VA Medical Center, Detroit, Michigan
| |
Collapse
|
85
|
Malaspina A, Michael-Titus AT. Is the modulation of retinoid and retinoid-associated signaling a future therapeutic strategy in neurological trauma and neurodegeneration? J Neurochem 2007; 104:584-95. [PMID: 18036157 DOI: 10.1111/j.1471-4159.2007.05071.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The complex molecular pathways that mediate the effects of vitamin A and its derivatives, are increasingly recognized as a component of the repair capacity that could be activated to induce protection and regeneration in the mature nervous tissue. Retinoid and retinoid-associated signaling plays an essential role in normal neurodevelopment and appears to remain active in the adult CNS. In this paper, we review evidence which supports the hypothesis of an activation of retinoid-associated signaling molecular pathways in the mature nervous tissue and its significance in the context of neurodegenerative, trauma-induced and psychiatric disorders, at spinal and supra-spinal levels. Finally, we summarize the potential therapeutic avenues based on the modulation of retinoid targets undergoing reactivation under conditions of acute injury and chronic degeneration in the central nervous system, and discuss some of the unresolved issues linked to this treatment strategy.
Collapse
Affiliation(s)
- Andrea Malaspina
- Neuroscience Centre, Institute of Cell and Molecular Science, Barts and the Royal London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
86
|
de Oliveira MR, de Bittencourt Pasquali MA, Silvestrin RB, Mello E Souza T, Moreira JCF. Vitamin A supplementation induces a prooxidative state in the striatum and impairs locomotory and exploratory activity of adult rats. Brain Res 2007; 1169:112-9. [PMID: 17673185 DOI: 10.1016/j.brainres.2007.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/03/2007] [Accepted: 07/05/2007] [Indexed: 11/15/2022]
Abstract
Although vitamin A has been reported to be essential to brain homeostasis, some central nervous system (CNS)-associated deleterious effects may be induced by vitamin A or by its metabolites. In this work, we investigated the effects of acute and chronic vitamin A supplementation at therapeutic (1,000 or 2,500 IU/kg/day) or excessive (4,500 or 9,000 IU/kg/day) doses on the redox state of the rat striatum. We found a 1.8- to 2.7-fold increase of lipid peroxidation in the striatum after acute or chronic supplementation (TBARS method). Therapeutic doses induced a 1.6- to 2.2-fold increase of protein carbonylation (dinitrophenylhydrazine (DNPH) derivatization). Vitamin A supplementation induced a 1.2- to 1.4-fold decrease of protein thiol content acutely and chronically. Superoxide dismutase (SOD) activity, assessed through the inhibition of epinephrine's autoxidation, was increased in a dose-dependent manner chronically. Acutely, both therapeutic and excessive vitamin A doses induced a 1.8- to 2.2-fold decrease of catalase (CAT) activity, as determined through the rate of decrease of hydrogen peroxide (H(2)O(2)). Glutathione peroxidase (GPx) activity did not change in this experimental model. Some vitamin A doses decreased the non-protein thiol content only chronically. Vitamin A supplementation decreased the striatal non-enzymatic antioxidant defenses (TRAP assay). Furthermore, our results show that vitamin A supplementation impaired the SOD/CAT ratio. Moreover, we observed a 1.6- to 2.0-fold decrease of locomotion and exploration in an open field after vitamin A supplementation. Therefore, our results suggest that vitamin A supplementation induces oxidative stress in the rat striatum and that it may be related to a metabolic impairment in such brain area.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Centro de Estudos em Estresse Oxidativo (Lab. 32), Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil.
| | | | | | | | | |
Collapse
|
87
|
de Oliveira MR, Moreira JCF. Acute and chronic vitamin A supplementation at therapeutic doses induces oxidative stress in submitochondrial particles isolated from cerebral cortex and cerebellum of adult rats. Toxicol Lett 2007; 173:145-50. [PMID: 17698304 DOI: 10.1016/j.toxlet.2007.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/03/2007] [Accepted: 07/03/2007] [Indexed: 11/24/2022]
Abstract
Vitamin A is an essential micronutrient to the normal brain function. However, there is an increasing concern regarding the use of vitamin A at high doses even therapeutically. Here, we show that acute and chronic vitamin A supplementation induces oxidative stress to submitochondrial particles (SMP) isolated from rat cerebral cortex and cerebellum. Both chronic and acute vitamin A supplementation at therapeutic (1000 IU/kg or 2500 IU/kg) or excessive (4500 IU/kg or 9000 IU/kg) doses induced lipid peroxidation, protein carbonylation, and oxidation of protein thiol groups in cerebral cortex and cerebellum SMP. Furthermore, vitamin A supplementation induced an increase in the superoxide (O(2)(-)) anion production, indicating an uncoupling in the electron transfer chain (ETC). Locomotory and exploratory activity, which are associated to cerebral cortex and cerebellum, also were affected by both acute and chronic vitamin A supplementation. Vitamin A induced a decrease in both locomotory and exploratory behavior. Together, these results show that vitamin A could be toxic at the sub cellular level, inducing mitochondrial dysfunction and altering cerebral cortex and/or cerebellum-dependent behavior.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, RS, Brazil.
| | | |
Collapse
|
88
|
Chen Y, Kundakovic M, Agis-Balboa RC, Pinna G, Grayson DR. Induction of the reelin promoter by retinoic acid is mediated by Sp1. J Neurochem 2007; 103:650-65. [PMID: 17666047 DOI: 10.1111/j.1471-4159.2007.04797.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have previously described the cloning of the human reelin promoter and provided evidence that it is regulated, in part, through changes in methylation. Results from our current studies provide a more detailed analysis of this promoter and the interactions of the transcription factors Sp1 and paired box gene 6 (Pax6) with their recognition sites. The promoter was studied in NT2 cells which are a neuroprogenitor line that undergoes differentiation in vitro. We examined reelin mRNA and promoter induction following a 6-day treatment of these cells with retinoic acid (RA). Deletion and site-directed mutations showed functionally relevant sequences necessary for regulation. Gel-shift assays demonstrated that the main site of action of the promoter lies within a closely packed ( approximately 25 bp) region in which these transcription factors likely bind, possibly forming a DNA/protein complex. Based on our results, it appears likely that RA-induces reelin expression through a critical Sp1 site that resides adjacent to the Pax6 site within this multisite enhancer region. We show that induction of the reelin promoter with RA is accompanied by higher amounts of Sp1 and Pax6 binding to this region. Finally, we show that while mutations in the Sp1 site prevent the RA-mediated promoter induction, similar mutations in the Pax6 site do not. The data suggest that while the Pax6 site plays a role in modulating reelin expression, it is not absolutely required for induction by RA.
Collapse
Affiliation(s)
- Ying Chen
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Psychiatric Institute, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
89
|
Al-Wadei HAN, Takahashi T, Schuller HM. Growth stimulation of human pulmonary adenocarcinoma cells and small airway epithelial cells by beta-carotene via activation of cAMP, PKA, CREB and ERK1/2. Int J Cancer 2007; 118:1370-80. [PMID: 16206275 DOI: 10.1002/ijc.21537] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An alpha-tocopherol, beta-carotene supplementation trial (ATBC) and a chemoprevention trial with beta-carotene and retinoids (CARET trial) were conducted in the 1990s in populations at risk for the development of lung cancer. Both trials had to be discontinued due to significant increases in lung cancer and cardiovascular mortality. Clinical trials to test the cancer preventive effects of beta-carotene are still ongoing, and high concentrations of this provitamin are contained in numerous dietary supplements. Using a cell line derived from a human pulmonary adenocarcinoma (PAC) of Clara cell lineage and immortalized human small airway epithelial cells, our data show that low concentrations of beta-carotene that can be realistically expected in human tissues after oral administration caused a significant increase in intracellular cAMP and activated PKA, as well as in phosphorylation of ERK1/2 and CREB. Furthermore, the proliferation of cells was significantly stimulated by identical concentrations of beta-carotene as monitored by MTT assays. Control experiments with retinol also showed stimulation of cell proliferation and activation of PKA in both cell lines. In light of the fact that PAC is the leading type of lung cancer, these findings suggest that the growth promoting effects of beta-carotene on this cancer type observed in our experiments may have contributed to the unfortunate outcome of the ATBC and CARET trials. This interpretation is supported by the fact that elevated levels of cAMP in the cardiovascular system play a major role in the genesis of cardiovascular disease, which was also greatly promoted in the CARET trial. Our data challenge the widely accepted view that beta-carotene may be useful as a cancer preventive agent.
Collapse
Affiliation(s)
- Hussein A N Al-Wadei
- Experimental Oncology Laboratory, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
90
|
Környei Z, Gócza E, Rühl R, Orsolits B, Vörös E, Szabó B, Vágovits B, Madarász E. Astroglia‐derived retinoic acid is a key factor in glia‐induced neurogenesis. FASEB J 2007; 21:2496-509. [PMID: 17438145 DOI: 10.1096/fj.06-7756com] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Astroglial cells are essential components of the neurogenic niches within the central nervous system. Emerging evidence suggests that they are among the key regulators of postnatal neurogenesis. Although astrocytes have been demonstrated to possess the potential to instruct stem cells to adopt a neuronal fate, little is known about the nature of the glia-derived instructive signals. Here we propose that all-trans retinoic acid, one of the most powerful morphogenic molecules regulating neuronal cell fate commitment, may be one of the glia-derived factors directing astroglia-induced neurogenesis. According to data obtained from several complementary approaches, we show that cultured astrocytes express the key enzyme mRNAs of retinoic acid biosynthesis and actively produce all-trans retinoic acid. We show that blockage of retinoic acid signaling by the pan-RAR antagonist AGN193109 prevents glia-induced neuron formation by noncommitted stem cells. Therefore, we provide strong in vitro evidence for retinoic acid action in astroglia-induced neuronal differentiation.
Collapse
Affiliation(s)
- Z Környei
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Laboratory of Cellular and Developmental Neurobiology, H-1083 43 Szigony U., Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Guleria RS, Pan J, Dipette D, Singh US. Hyperglycemia inhibits retinoic acid-induced activation of Rac1, prevents differentiation of cortical neurons, and causes oxidative stress in a rat model of diabetic pregnancy. Diabetes 2006; 55:3326-34. [PMID: 17130476 DOI: 10.2337/db06-0169] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes is a risk factor for neuronal dysfunction. Impairment in signaling mechanisms that regulate differentiation of neurons is hypothesized to be one of the main causes of neuronal dysfunction. Retinoic acid, a physiologically active retinoid synthesized from vitamin A, regulates neuronal differentiation during embryonic development and is required for maintenance of plasticity in differentiated neurons. To date, little is known about the molecular events underlying hyperglycemia-induced complications in the central nervous system (CNS). Here, we provide evidence, in a diabetes rat model, of hyperglycemia-induced oxidative stress along with apoptotic stress in developing cortical neurons isolated from 16-day-old rat embryos. We also demonstrate impaired retinoic acid signaling that is involved in neuronal differentiation. Retinoic acid-induced neurite outgrowth and expression of neuronal markers were reduced in this model. The activation of small-molecular weight G-protein, Rac1, that mediates these effects was also reduced. Retinoic acid applied at a physiological concentration significantly decreased hyperglycemia-induced oxidative stress and thus supported the antioxidant defense system. These results suggest that diabetes-induced neuronal complications during pregnancy might be due to impaired retinoic acid signaling, and exogenously administered retinoic acid may be useful against CNS complications associated with diabetes.
Collapse
Affiliation(s)
- Rakeshwar S Guleria
- Division of Molecular Cardiology, Cardiovascular Research Institute, Building 205, 1901 South 1st St., Temple, TX 76504, USA
| | | | | | | |
Collapse
|
92
|
Malaspina A, Turkheimer F. A review of the functional role and of the expression profile of retinoid signaling and of nuclear receptors in human spinal cord. Brain Res Bull 2006; 71:437-46. [PMID: 17259011 DOI: 10.1016/j.brainresbull.2006.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 10/03/2006] [Accepted: 10/26/2006] [Indexed: 12/25/2022]
Abstract
Spinal cord degenerative pathologies in humans cause extensive disability and require a broad range of specialist and palliative medical interventions. In amyotrophic lateral sclerosis (ALS), motor cell loss leads to extensive paralysis and to death from respiratory failure in 3-5 years form disease onset. A wide range of molecular changes forms the basis of spinal cord involvement in ALS, including the reactivation of molecular pathways with potentially neurorestorative properties. Central to this tissue repair mechanism is the differential regulation of components of the retinoid signaling (ReS), a molecular pathway encompassing a variety of proteins functioning as transporters, signaling factors and metabolizing enzymes for retinoic acid. In this paper, we review the strong body of experimental evidence supporting retinoid signaling's primary role in spinal cord embryonic differentiation and its likely survival-promoting function in ALS. We discuss the potential involvement in ALS pathogenesis of a subgroup of nuclear receptors (NRs) that act as functional partners of retinoid receptors in human spinal cord. We also provide a review of the expression profile of 25 ReS and NRs genes in human adult spinal cord and in motor neurons of healthy and ALS individuals, using data retrieved from independent datasets obtained through serial analysis of gene expression and array investigations. Based on published expression data, we outline a tentative expression profile of ReS and functionally synergic NR genes in human spinal cord that could guide further experiments to clarify the role of these molecules in mature nervous tissue and suggest potential treatment strategies that could have therapeutic potentials in ALS.
Collapse
Affiliation(s)
- Andrea Malaspina
- Neuroscience Centre, Institute of Cell and Molecular Science, Queen Mary University, 4 Newark Street, Whitechapel, London E1 2AT, UK.
| | | |
Collapse
|
93
|
Boucheron C, Alfos S, Enderlin V, Husson M, Pallet V, Jaffard R, Higueret P. Age-related effects of ethanol consumption on triiodothyronine and retinoic acid nuclear receptors, neurogranin and neuromodulin expression levels in mouse brain. Neurobiol Aging 2006; 27:1326-34. [PMID: 16115698 DOI: 10.1016/j.neurobiolaging.2005.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 06/10/2005] [Accepted: 07/17/2005] [Indexed: 12/14/2022]
Abstract
The effects of ethanol consumption and ageing were investigated on the expression levels of retinoic acid (RA) and triiodothyronine (T3) nuclear receptors (RAR, RXR and TR) and of associated target genes involved in synaptic plasticity, neurogranin (RC3) and neuromodulin (GAP-43) in mice brain. For this purpose, C57BL/6 adult and aged mice were subjected to 5-month ethanol consumption and the mRNA expression of RAR, RXR, TR, RC3 and GAP-43 was measured using a real-time RT-PCR method. GAP-43 and RC3 protein levels also were measured by Western blot. Results showed that 12% ethanol consumption in adult mice (11 months) induced an increase in RARbeta, RXRbetagamma and TRalphabeta mRNA level in the brain with only an increase in RC3 expression. The same ethanol consumption in aged mice (22 months) reversed the age-related hypo-expression in brain RARbeta, TRalphabeta and target genes RC3 and GAP-43. Compared with our previous behavioral data showing that ethanol is able to partially suppress a selective age-related cognitive deficit, these results suggest that the ethanol-induced increase in RA and T3 nuclear receptors expression could be one of the mechanisms involved in the normalization of synaptic plasticity-associated gene expression altered in aging brain.
Collapse
Affiliation(s)
- Catherine Boucheron
- Unité de Nutrition et Signalisation Cellulaire, EA MENRT; USC INRA, ISTAB, Université Bordeaux 1, 33405 Talence Cedex, France
| | | | | | | | | | | | | |
Collapse
|
94
|
O'Reilly KC, Shumake J, Gonzalez-Lima F, Lane MA, Bailey SJ. Chronic administration of 13-cis-retinoic acid increases depression-related behavior in mice. Neuropsychopharmacology 2006; 31:1919-27. [PMID: 16395305 DOI: 10.1038/sj.npp.1300998] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Retinoid signaling plays a well-established role in neuronal differentiation, neurite outgrowth, and the patterning of the anteroposterior axis of the developing neural tube. However, there is increasing evidence that nutritional vitamin A status and retinoid signaling play an important role in the function of the adult brain. 13-Cis-retinoic acid (13-cis-RA) (isotretinoin or Accutane), a synthetic retinoid that is an effective oral treatment for severe nodular acne, has been linked with depression and suicide in patients. The purpose of this study was to test the hypothesis that chronic administration of 13-cis-RA would lead to depression-related behaviors in mice. Young, adult male mice received 13-cis-RA (1 mg/kg) by daily intraperitoneal injection for 6 weeks. This treatment paradigm produced plasma levels of 13-cis-RA that are comparable to those reported in human patients taking Accutane. In both the forced swim test and the tail suspension test, we found that 13-cis-RA-treated mice spent significantly more time immobile compared to vehicle-treated controls. In the open field test, there was no change in anxiety-related behavior in 13-cis-RA-treated mice. Furthermore, chronic administration of 13-cis-RA did not impair locomotion in either the open field or the rotarod test. Taken together, these results suggest that administration of 13-cis-RA increases depression-related behaviors in mice.
Collapse
Affiliation(s)
- Kally C O'Reilly
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | | | | | | | | |
Collapse
|
95
|
Clagett-Dame M, McNeill EM, Muley PD. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. ACTA ACUST UNITED AC 2006; 66:739-56. [PMID: 16688769 DOI: 10.1002/neu.20241] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The vitamin A metabolite, all-trans retinoic acid (atRA) plays essential roles in nervous system development, including neuronal patterning, survival, and neurite outgrowth. Our understanding of how the vitamin A acid functions in neurite outgrowth comes largely from cultured embryonic neurons and model neuronal cell systems including human neuroblastoma cells. Specifically, atRA has been shown to increase neurite outgrowth from embryonic DRG, sympathetic, spinal cord, and olfactory receptor neurons, as well as dissociated cerebra and retina explants. A role for atRA in axonal elongation is also supported by a limited number of studies in vivo, in which a deficiency in retinoid signaling produced either by dietary or genetic means has been shown to alter neurite outgrowth from the spinal cord and hindbrain regions. Human neuroblastoma cells also show enhanced numbers of neurites and longer processes in response to atRA. The mechanism whereby retinoids regulate neurite outgrowth includes, but is not limited to, the regulation of the transcription of neurotrophin receptors. More recent evidence supports a role for atRA in regulating components of other signaling pathways or candidate neurite-regulating factors. Some of these effects, such as that on neuron navigator 2 (NAV2), may be direct, whereas others may be secondary to other atRA-induced changes in the cell. This review focuses on what is currently known about neurite initiation and growth, with emphasis on the manner in which atRA may influence these events.
Collapse
Affiliation(s)
- Margaret Clagett-Dame
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
96
|
Zhelyaznik N, Mey J. Regulation of retinoic acid receptors alpha, beta and retinoid X receptor alpha after sciatic nerve injury. Neuroscience 2006; 141:1761-74. [PMID: 16782282 DOI: 10.1016/j.neuroscience.2006.05.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 11/15/2022]
Abstract
Cell culture experiments indicated that activation of the retinoic acid signaling system is involved in axonal regeneration. This hypothesis was tested with sciatic nerve injury in the rat. Since the effect of retinoic acid is mediated via retinoic acid receptors and retinoid X receptors, we investigated mRNA and protein expression of these receptors during injury-induced degeneration and regeneration. Seven days after crush injury, transcript concentrations of all retinoic acid receptors and of retinoid X receptor alpha were significantly higher than in non-lesioned nerves. Protein levels of retinoic acid receptor alpha, retinoic acid receptor beta and retinoid X receptor alpha were upregulated 4, 7 and 14 days after injury. In degenerating nerves a significant increase of retinoic acid receptor alpha was detected 7 and 14 days, and of retinoic acid receptor beta 14 and 21 days after complete transection. Immunohistochemical staining of retinoid receptors revealed their expression in Schwann cells and macrophages. In addition, we observed that retinoic acid receptor alpha and retinoid X receptor alpha appeared in the cell nuclei of macrophages during the lesion-induced inflammatory reaction, and that retinoid X receptor alpha-staining co-localized with some regenerating axons. Experiments with Schwann cell primary cultures revealed an effect of retinoic acid on the expression of the neuregulin receptor ErbB3, suggesting that one function of retinoic acid consists in the regulation of neuroglial interactions after peripheral nerve injury.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Northern/methods
- Blotting, Western/methods
- Cells, Cultured
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Immunohistochemistry/methods
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptor, Nerve Growth Factor/genetics
- Receptor, Nerve Growth Factor/metabolism
- Receptors, Retinoic Acid/classification
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Schwann Cells/drug effects
- Schwann Cells/metabolism
- Sciatic Neuropathy/metabolism
- Sciatic Neuropathy/physiopathology
- Time Factors
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- N Zhelyaznik
- Institut für Biologie II, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen, Germany
| | | |
Collapse
|
97
|
Dmetrichuk JM, Carlone RL, Spencer GE. Retinoic acid induces neurite outgrowth and growth cone turning in invertebrate neurons. Dev Biol 2006; 294:39-49. [PMID: 16626686 DOI: 10.1016/j.ydbio.2006.02.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/22/2005] [Accepted: 02/14/2006] [Indexed: 11/20/2022]
Abstract
Identification of molecules involved in neurite outgrowth during development and/or regeneration is a major goal in the field of neuroscience. Retinoic acid (RA) is a biologically important metabolite of vitamin A that acts as a trophic factor and has been implicated in neurite outgrowth and regeneration in many vertebrate species. Although abundant in the CNS of many vertebrates, the precise role of RA in neural regeneration has yet to be determined. Moreover, very little information is available regarding the role of RA in invertebrate nervous systems. Here, we demonstrate for the first time that RA induces neurite outgrowth from invertebrate neurons. Using individually identified neurons isolated from the CNS of Lymnaea stagnalis, we demonstrated that a significantly greater proportion of cells produced neurite outgrowth in RA. RA also extended the duration of time that cells remained electrically excitable in vitro, and we showed that exogenously applied RA acted as a chemoattractive factor and induced growth cone turning toward the source of RA. This is the first demonstration that RA can induce turning of an individual growth cone. These data strongly suggest that the actions of RA on neurite outgrowth and cell survival are highly conserved across species.
Collapse
Affiliation(s)
- Jennifer M Dmetrichuk
- Department of Biology, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
| | | | | |
Collapse
|
98
|
Wang T, Montell C. Rhodopsin formation in Drosophila is dependent on the PINTA retinoid-binding protein. J Neurosci 2006; 25:5187-94. [PMID: 15917458 PMCID: PMC6724816 DOI: 10.1523/jneurosci.0995-05.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinoids participate in many essential processes including the initial event in photoreception. 11-cis-retinal binds to opsin and undergoes a light-driven isomerization to all-trans-retinal. In mammals, the all-trans-retinal is converted to vitamin A (all-trans-retinol) and is transported to the retinal pigment epithelium (RPE), where along with dietary vitamin A, it is converted into 11-cis-retinal. Although this cycle has been studied extensively in mammals, many questions remain, including the specific roles of retinoid-binding proteins. Here, we establish the Drosophila visual system as a genetic model for characterizing retinoid-binding proteins. In a genetic screen for mutations that affect the biosynthesis of rhodopsin, we identified a novel CRAL-TRIO domain protein, prolonged depolarization afterpotential is not apparent (PINTA), which binds to all-trans-retinol. We demonstrate that PINTA functions subsequent to the production of vitamin A and is expressed and required in the retinal pigment cells. These results represent the first genetic evidence for a role for the retinal pigment cells in the visual response. Moreover, our data implicate Drosophila retinal pigment cells as functioning in the conversion of dietary all-trans-retinol to 11-cis-retinal and suggest that these cells are the closest invertebrate equivalent to the RPE.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
99
|
Abstract
Acne is a common disorder that may have a considerable psychologic impact including anxiety and depression. Depression and suicide occur frequently in adolescents and young adults. Although case reports suggest an association between isotretinoin and depression and suicide, more rigorous observational studies and epidemiologic studies, using different designs, have not shown any effect of isotretinoin use in increasing the occurrence of depression and suicide. It is prudent for the practitioner to continue to use isotretinoin to treat severe acne, while at the same time informing patients and their relatives that depressive symptoms should be actively assessed at each visit and, if necessary, referral to a psychiatrist and a discontinuation of isotretinoin should be considered.
Collapse
Affiliation(s)
- Peter R Hull
- Division of Dermatology, Department of Medicine, Royal University Hospital, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK, Canada S7N 0W8.
| | | |
Collapse
|
100
|
Jeong JK, Velho TAF, Mello CV. Cloning and expression analysis of retinoic acid receptors in the zebra finch brain. J Comp Neurol 2005; 489:23-41. [PMID: 15977168 DOI: 10.1002/cne.20605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vitamin A derivative retinoic acid is produced postembryonically in discrete portions of the songbird brain, including some of the nuclei involved in song production and song learning, and its synthesis is required for the normal maturation of song behavior. To identify the brain targets for retinoic acid action, we cloned the zebra finch homologs of the alpha, beta, and gamma classes of retinoic acid receptors (RARs). In situ hybridization analysis revealed that the mRNAs for all three RARs are expressed at different levels in several brain areas, with a broader distribution than the mRNA for retinaldehyde-specific aldehyde dehydrogenase (zRalDH), a retinoic acid-synthesizing enzyme. Detectable RAR expression was found in all nuclei of the song control system, with the most marked expression occurring within the striatal song nucleus area X. These observations are consistent with a persistent action of retinoic acid in the postembryonic and adult songbird brain and provide further evidence for an involvement of retinoic acid signaling in the control of learned vocal behavior in a songbird species. They also suggest that the striatum is a major target of retinoic acid in songbirds.
Collapse
Affiliation(s)
- Jin K Jeong
- Neurological Sciences Institute, Oregon Health and Science University, West Campus, Beaverton, Oregon 97221, USA
| | | | | |
Collapse
|